WO2019176577A1 - 情報処理装置、情報処理方法、および記録媒体 - Google Patents

情報処理装置、情報処理方法、および記録媒体 Download PDF

Info

Publication number
WO2019176577A1
WO2019176577A1 PCT/JP2019/008001 JP2019008001W WO2019176577A1 WO 2019176577 A1 WO2019176577 A1 WO 2019176577A1 JP 2019008001 W JP2019008001 W JP 2019008001W WO 2019176577 A1 WO2019176577 A1 WO 2019176577A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
display
brightness
user
control unit
Prior art date
Application number
PCT/JP2019/008001
Other languages
English (en)
French (fr)
Inventor
洋史 湯浅
相木 一磨
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/978,546 priority Critical patent/US11631380B2/en
Priority to JP2020505765A priority patent/JP7173126B2/ja
Priority to KR1020207024296A priority patent/KR20200130810A/ko
Priority to EP19766764.5A priority patent/EP3767432A4/en
Publication of WO2019176577A1 publication Critical patent/WO2019176577A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/203Drawing of straight lines or curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/023Display panel composed of stacked panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/144Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light being ambient light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls

Definitions

  • the present technology relates to an information processing device, an information processing method, and a recording medium, and in particular, an information processing device and information that allow a user to quickly recognize a surrounding environment when the brightness changes suddenly.
  • the present invention relates to a processing method and a recording medium.
  • AR Augmented Reality
  • HMD Head-Mounted-Display
  • Patent Document 1 discloses a technique for preventing the visibility of the outside world from being hindered by immediately reducing the brightness of video light when a sudden drop in external light is detected. The display of information by video light is continued in a state where the luminance is lowered without hindering the visibility of the outside world.
  • the present technology has been made in view of such a situation, and makes it possible for the user to quickly recognize the surrounding environment when the brightness suddenly changes.
  • An information processing apparatus includes an acquisition unit that acquires environment information that is information related to an environment including an object that exists in real space, and when the change in brightness of the real space exceeds a threshold value, A display control unit configured to perform display control based on the environment information of the shape information representing the shape of the object with respect to a display unit that displays predetermined information in a state of being visible in a superimposed manner in the real space.
  • environmental information which is information related to the environment including objects that exist in the real space
  • the information can be visually superimposed and viewed.
  • Display control based on environment information of shape information representing the shape of an object is performed on a display unit that displays predetermined information in a stable state.
  • the surrounding environment can be quickly recognized by the user.
  • FIG. 1 is a diagram illustrating a configuration example of an information processing system according to an embodiment of the present technology.
  • the information processing system of FIG. 1 is configured by connecting an HMD (Head Mounted Display) 1 as an information processing apparatus and a content distribution server 2 via a network 3 such as the Internet. Data transmission / reception between the HMD 1 and the content distribution server 2 may be performed via a mobile terminal possessed by the user, such as a smart phone or a tablet terminal.
  • HMD Head Mounted Display
  • HMD1 is a glasses-type wearable terminal equipped with a transmissive display device.
  • a right eye side optical system 1R that guides various information lights (image light) together with outside light to the right eye of the user is provided.
  • a left-eye optical system 1L that guides light of various types of information to the user's left eye is provided.
  • the HMD 1 communicates with the content distribution server 2 via the network 3 and receives data transmitted from the content distribution server 2.
  • the HMD 1 displays (draws) various types of information such as images and characters based on the data transmitted from the content distribution server 2 and presents them to the user.
  • the HMD 1 is a wearable terminal used for AR (Augmented Reality).
  • the projection method in the HMD 1 may be a virtual image projection method or a retinal projection method that forms an image directly on the retina of the user's eye.
  • the information displayed by the HMD 1 is not limited to information displayed based on the data transmitted from the content distribution server 2. For example, information stored in a memory mounted on the HMD 1 is displayed on the HMD 1. Further, data stored in the user's portable terminal and data stored in a PC (Personal Computer) are acquired by the HMD 1 and various information is displayed.
  • a PC Personal Computer
  • FIG. 2 is a diagram showing a configuration in the vicinity of the right-eye optical system 1R. The main configuration will be described.
  • the right-eye optical system 1R is configured by attaching a transparent substrate 13 such as glass to the surface side of a light guide plate 12 composed of a transparent member.
  • a display portion 11 is provided in a temple portion (not shown) extending from a rim for fixing the right eye side optical system 1R, and light control is provided at a position near the left eye side optical system 1L on the surface side of the right eye side optical system 1R.
  • An element 14 is provided.
  • the display unit 11 includes a display device 21, a polarization beam splitter 22, a light source 23, and a lens 24 as indicated by being surrounded by a one-dot chain line.
  • the display device 21 is composed of a reflective display device such as an LCD (Liquid Crystal Display) or a self-luminous display device such as an organic EL (Electro Luminescence) display.
  • the display device 21 displays various information such as images and characters to be presented to the user.
  • the display device 21 is a device that supports color display, for example.
  • the polarization beam splitter 22 reflects part of the light from the light source 23 and guides it to the display device 21, passes part of the light emitted from the display device 21, and guides it to the light guide plate 12 via the lens 24. .
  • a deflection unit 12 ⁇ / b> A and a deflection unit 12 ⁇ / b> B which is a multilayer laminated structure in which a large number of dielectric laminated films are laminated, are configured.
  • the deflecting unit 12A is composed of an aluminum film or the like
  • the dielectric laminated film composing the deflecting unit 12B is composed of, for example, a TiO 2 film as a high dielectric constant material and an SiO 2 film as a low dielectric constant material.
  • Light emitted from the display device 21 guided through the polarization beam splitter 22 is reflected toward the inside of the light guide plate 12 by the deflecting unit 12A.
  • the light control element 14 is configured by sandwiching an electrochromic element 41 between a transparent electrode 42 and a transparent electrode 43. Depending on the voltages applied to the transparent electrode 42 and the transparent electrode 43, an oxidation reaction and a reduction reaction of the electrochromic element 41 occur, and the transmittance is controlled.
  • the voltage applied to the transparent electrode 42 and the transparent electrode 43 is controlled according to the ambient illuminance detected by an illuminance sensor provided in the HMD 1, for example.
  • Light from the outside is guided to the user's right eye E R through the light control element 14 whose transmittance is adjusted according to the ambient illuminance.
  • the same configuration as that shown in FIG. 2 is provided symmetrically on the left eye side optical system 1L side.
  • the same information as the display contents of the display device 21 of the right eye side optical system 1R is displayed, and the image light is delivered to the user's left eye.
  • the display of information in the HMD 1 is performed by adjusting the display luminance of the display unit 11 and the transmittance of the light control element 14.
  • the display luminance is the luminance used in the display unit 11 for displaying information.
  • FIG. 3 is a diagram illustrating an example of how the user looks.
  • the state shown in FIG. 3 is a state where no information is displayed. In this case, most of the outside light reaches the eyes directly, and the user visually recognizes the actual scenery in front of the eyes as shown in FIG.
  • a landscape surrounded by a frame F in the approximate center of FIG. 3 is a landscape in a range in which information can be superimposed and displayed by the HMD 1 among the landscapes included in the entire visual field of the user.
  • the displayable range of the HMD 1 is a partial range of the entire field of view of the user. Various information is displayed using the partial range. Hereinafter, how the user sees within the displayable range of the HMD 1 will be described.
  • FIG. 4 is a diagram showing another example of how the user looks.
  • FIG. 4A shows how a motorcycle image is displayed as a virtual object O.
  • FIG. The object displayed by the HMD 1 is visually recognized as a virtual object superimposed on the object that exists in front of the user.
  • the virtual object O may be a two-dimensional image or a three-dimensional image that can be stereoscopically viewed.
  • the transmittance is 50% and the display luminance is 50%.
  • the line indicating the peripheral object (object) such as a bed is actually shown in a blurred state means that the peripheral object in the bedroom is visible through the light control element 14 with reduced transmittance. Represents.
  • a light line indicating the virtual object O indicates that the display luminance is suppressed.
  • FIG. 4B shows the appearance of the state where the transmittance is 10% and the display luminance is 100%.
  • the fact that the peripheral object is blurred from A in FIG. 4 indicates that the transmittance in B of FIG. 4 is lower than the transmittance in A of FIG.
  • Such adjustment of transmittance and display brightness is performed according to the brightness of the surroundings including the place where the user is.
  • the ambient brightness is determined based on, for example, the illuminance detected by the illuminance sensor provided in the HMD 1.
  • the brightness of the surroundings may be determined based on the luminance of the image captured by the camera provided in the HMD 1.
  • FIG. 5 is a diagram showing a setting example of transmittance and display luminance.
  • the horizontal axis in FIG. 5 represents the brightness of the surroundings, and the vertical axis represents the visibility of the display content.
  • the ambient brightness is illuminance n1
  • a combination of 50% transmittance and 50% display luminance is used.
  • the ambient brightness is illuminance n1
  • information is displayed in a state as shown in FIG.
  • the maximum value of the transmittance is 50% is that the maximum transmittance of the light control element 14 itself is about 70% due to the limitation of the material, and the reflection film on the emission side of the light guide plate 12 This is because the transmittance is about 75%. Due to these limitations, the maximum transmittance of the HMD 1 is, for example, 50%.
  • the transmittance of the dimmer 14 is appropriately controlled.
  • the overall transmittance of the HMD 1 is controlled by controlling the transmittance of the dimmer 14.
  • the transmittance is 20% and the display brightness is 60%.
  • the transmittance is 20% and the display brightness is 80%.
  • a combination of% is used.
  • the surrounding brightness is illuminance n5
  • a combination of 10% transmittance and 60% display luminance is used.
  • the transmittance is 10% and the display brightness is 80%.
  • a combination of% is used.
  • the ambient brightness is illuminance n7
  • a combination of 10% transmittance and 100% display luminance is used.
  • the brightness of the light control element 14 is adjusted stepwise so that the brightness of the surroundings is brighter.
  • Such information regarding the combination of transmittance and display luminance is preset in the HMD 1.
  • the HMD 1 detects peripheral brightness at, for example, predetermined intervals, and adjusts the transmittance and the display brightness of the display unit 11 using a combination according to the detected brightness.
  • the adjustment of the transmittance and display brightness using a combination as shown in FIG. 5 is performed only during normal times. In the case of danger such as sudden darkening, the transmittance and display brightness are adjusted using settings different from the normal settings.
  • FIG. 6 is a diagram illustrating a display example of danger information.
  • the state shown at the left end of FIG. 6 is a normal state. Various information is displayed using the combination of the transmittance and the display luminance in FIG. In the example at the left end of FIG. 6, no information is displayed.
  • the outline of the surrounding object is shown at the end of the white arrow # 2.
  • Drawing for emphasis is performed.
  • the display mode of the HMD 1 is switched from the display mode for normal time to the display mode for dangerous time, and information representing the outline of the peripheral object is displayed as the information for dangerous time instead of the information displayed so far.
  • an image of a line representing the outline of each peripheral object such as a bed, a chair, a table, or a wall window is displayed superimposed on a dark landscape.
  • An image of a line representing an outline including an edge or a pointed portion is displayed in a predetermined color.
  • the HMD 1 not only detects the brightness of the surroundings, but also recognizes the surrounding objects by analyzing the image captured by the camera, and acquires information on the feature points that make up the outline of the surrounding objects It has been done repeatedly.
  • Information on the feature points of the peripheral objects is repeatedly stored in the memory of the HMD 1 as environment information.
  • the feature points of the peripheral objects include information on points at which the distance from the user changes abruptly, such as corners of stairs on the stairs.
  • the HMD 1 repeatedly estimates the position and orientation of the user based on the information on the feature points of the surrounding objects, the acceleration detected by the acceleration sensor, the angular velocity detected by the gyro sensor, and the like. Has been done.
  • FIG. 7 is a diagram showing a setting example of transmittance and display brightness used for displaying the information for danger.
  • FIG. 7 The horizontal axis in Fig. 7 represents time.
  • a in FIG. 7 represents a change in ambient illuminance
  • B in FIG. 7 represents a change in transmittance
  • C in FIG. 7 represents a change in display luminance of the display unit 11.
  • the maximum transmittance is adjusted as shown in FIG. 7B. Moreover, the display of the information showing the outline of a peripheral object is started at the timing of time t1.
  • the transmittance becomes the maximum transmittance after a predetermined time has elapsed from time t1.
  • the state of maximum transmittance is continued for a predetermined time.
  • the display brightness of the display unit 11 is set to the same display brightness as that before time t1 until time t2 immediately after time t1.
  • the information representing the outline of the peripheral object is displayed using the same display brightness as the information displayed before that.
  • the display brightness is adjusted so as to gradually decrease with the passage of time.
  • FIG. 8 is a diagram showing an example of a change in display luminance.
  • the horizontal axis represents time
  • the vertical axis represents display luminance
  • the display brightness of the display unit 11 gradually decreases after time t2 immediately after the display of information representing the outline of the surrounding object is started.
  • a broken line L11 in FIG. 8 represents display luminance.
  • the solid line L1 represents the user's dark adaptation characteristics.
  • Dark adaptation is a change in vision in which visual acuity is gradually secured over time when the surrounding environment changes from a bright environment to a dark environment.
  • the dark adaptation characteristic indicated by the solid line L1 represents a time change of the minimum brightness necessary for the user to visually recognize. At each time, the user can visually recognize information displayed at a display luminance higher than the luminance indicated by the solid line L1, and the user visually recognizes information displayed at a display luminance lower than the luminance indicated by the solid line L1. I can't.
  • the display brightness used for displaying information representing the contour of the surrounding object gradually decreases, it is set as a value that is always visible to the user who has dark adaptation.
  • the dark adaptation characteristics are set as, for example, general human characteristics. As will be described later, dark adaptation characteristics may be set according to user attributes such as age and visual acuity, and display luminance may be adjusted according to the set dark adaptation characteristics.
  • the information representing the outline of the peripheral object is displayed while gradually decreasing the display brightness, it is possible to prevent the display of the information representing the outline of the peripheral object from impeding dark adaptation. For example, after a certain amount of time has elapsed, the user can immediately see the surrounding environment even if the HMD 1 is removed.
  • FIG. 10 is a diagram illustrating an example of how the image is viewed when the HMD 1 is removed.
  • FIG. 10 shows the appearance when the display luminance is not changed, and the lower part shows the appearance when the display luminance is changed as described with reference to FIG.
  • the tip of the white arrow # 21 by suppressing the display brightness of the information representing the outline of the peripheral object in accordance with the dark adaptation characteristics, since the dark adaptation is not performed, the surrounding environment is changed. It becomes possible to prevent it from being difficult to see.
  • the HMD 1 is removed, as indicated by the tip of the white arrow # 22, the user has been able to visually adjust the surrounding environment since dark adaptation has been achieved so far.
  • the display brightness used for displaying information representing the outline of the peripheral object may be changed to a straight line (linear) instead of a curved line (non-linear) as shown in FIG. Further, it may be changed stepwise instead of continuously.
  • FIG. 11 is a diagram showing an example of adjusting the color temperature.
  • the color temperature is adjusted so as to gradually increase after time t2 immediately after the start of display of information representing the outline of the peripheral object.
  • a broken line L21 in FIG. 11 represents the color temperature used by the display unit 11 for drawing.
  • a solid line L1 represents the dark adaptation characteristics of the user.
  • FIG. 12 is a block diagram illustrating a configuration example of the HMD 1.
  • the HMD 1 includes a control unit 51, a motion sensor 52, a camera 53, an illuminance sensor 54, a communication unit 55, a memory 56, and a video display unit 57.
  • the motion sensor 52 includes an acceleration sensor 71 and a gyro sensor 72.
  • the motion sensor 52, the camera 53, and the illuminance sensor 54 are not provided in the HMD 1, but may be provided in an external device such as a portable terminal held by the user.
  • the control unit 51 includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like.
  • the control unit 51 executes a program stored in the ROM or the memory 56 and controls the overall operation of the HMD 1.
  • the position / posture estimation unit 81, the surrounding environment recognition unit 82, the imaging control unit 83, the display control unit 84, and the counter 85 are realized in the control unit 51.
  • the position / posture estimation unit 81 estimates the state of the user based on the image captured by the camera 53, the acceleration detected by the acceleration sensor 71, and the angular velocity detected by the gyro sensor 72. For estimation of the user's state, information on the feature points of the surrounding objects recognized by the surrounding environment recognition unit 82 is also used as appropriate.
  • the position / posture estimation unit 81 information related to peripheral objects at each position is prepared.
  • the position / posture estimation unit 81 estimates the position of the user based on the peripheral object recognized by the peripheral environment recognition unit 82 and the peripheral object captured in the image captured by the camera 53.
  • the position / posture estimation unit 81 is provided with information on acceleration and angular velocity for each posture of the user.
  • the position / posture estimation unit 81 estimates the user's posture based on the acceleration detected by the acceleration sensor 71 and the angular velocity detected by the gyro sensor 72.
  • the user state estimated by the position / posture estimation unit 81 includes at least one of the user position and the user posture.
  • Information representing the position and orientation estimation results is supplied to the display control unit 84.
  • the surrounding environment recognition unit 82 recognizes the position, shape, feature point, and the like of an actual object (peripheral object) in the vicinity by analyzing an image captured by the camera 53. As appropriate, the distance to the surrounding object, the height at which the surrounding object is placed, the type of the surrounding object, and the like are also recognized. Information for use in recognizing these contents is prepared for the surrounding environment recognition unit 82.
  • the surrounding environment recognition unit 82 functions as an acquisition unit that acquires environment information that is information related to the surrounding physical environment.
  • the surrounding environment recognition unit 82 outputs environment information including information on at least one of the position, shape, feature point, distance, height, and type of the surrounding object to the display control unit 84.
  • the position of the peripheral object represents, for example, the relative position of the peripheral object based on the position of the HMD, and is acquired based on the captured image.
  • a communication device such as a beacon may be installed in the surrounding object in advance, and the position may be acquired by the HMD based on a signal from the communication device.
  • Information on the feature points of the peripheral objects included in the environment information output from the surrounding environment recognition unit 82 is also supplied to the position / posture estimation unit 81 and is used for estimating the position and posture of the user as appropriate.
  • the imaging control unit 83 controls the camera 53 to repeatedly capture the landscape in front of the user's eyes.
  • the imaging control unit 83 detects that the surrounding area has suddenly darkened based on the data supplied from the illuminance sensor 54, the imaging control unit 83 sets the imaging element of the camera 53 so as to increase the gain and lengthen the exposure time. Control. By changing the setting of the image sensor, it is possible to continue capturing an appropriate image used for recognition of the surrounding environment even when the periphery suddenly becomes dark.
  • the display control unit 84 controls the display unit 11 and the light control element 14 of the video display unit 57 to display various types of information such as images and text.
  • information indicating a combination of transmittance and display luminance as described with reference to FIG. 5 is prepared.
  • the display by the display control unit 84 is performed based on data transmitted from an external device and received by the communication unit 55 or data read from the memory 56, for example.
  • the display control unit 84 detects that the surrounding area has suddenly darkened based on the data supplied from the illuminance sensor 54, the display control unit 84 sets the display mode as the display mode for danger and displays the information for danger. Start.
  • the display control unit 84 adjusts the display brightness or adjusts the color temperature with the passage of time represented by the count value supplied from the counter 85 after the display of the emergency information is started. Control the display of information for danger.
  • the counter 85 outputs a count value indicating the passage of time to the display control unit 84.
  • the acceleration sensor 71 of the motion sensor 52 detects the acceleration of the HMD 1 and outputs information on the detected acceleration to the position / posture estimation unit 81.
  • the gyro sensor 72 detects the angular velocity of the HMD 1 and outputs information on the detected angular velocity to the position / posture estimation unit 81.
  • the camera 53 is provided, for example, at a predetermined position in front of the HMD 1 and images a landscape in front of the user.
  • the camera 53 outputs an image obtained by imaging to the position / posture estimation unit 81 and the surrounding environment recognition unit 82.
  • the illuminance sensor 54 detects the illuminance and outputs illuminance information representing the brightness of the surroundings to the imaging control unit 83 and the display control unit 84.
  • the communication unit 55 is a communication module such as a wireless LAN or Bluetooth (registered trademark).
  • the communication unit 55 communicates with an external device such as a portable terminal held by the user or the content distribution server 2. Information presented to the user is acquired through communication by the communication unit 55.
  • the memory 56 is a storage medium such as a flash memory.
  • the memory 56 stores various data such as a program executed by the CPU of the control unit 51 and information presented to the user.
  • the video display unit 57 includes the display unit 11 and the light control element 14.
  • the video display unit 57 operates according to the control by the display control unit 84, and delivers video light of predetermined information together with external light to both eyes of the user via each unit of the right eye side optical system 1R and the left eye side optical system 1L.
  • the HMD 1 is also provided with buttons operated by the user, a speaker that outputs sound, a microphone that detects the user's voice, and the like.
  • step S1 display control processing is performed.
  • the display control process performed in step S1 is a normal process with a small change in ambient brightness. Details of the display control process will be described later.
  • the display control process displays predetermined information in the state described with reference to FIG.
  • step S2 the surrounding environment recognition unit 82 recognizes the position, shape, feature point, and the like of the surrounding object by analyzing the image captured by the camera 53.
  • the environmental information including the recognition result is supplied to the display control unit 84.
  • step S ⁇ b> 3 the position / posture estimation unit 81 estimates the position and posture of the user based on the image captured by the camera 53, the acceleration detected by the acceleration sensor 71, and the angular velocity detected by the gyro sensor 72. To do. Information representing the position and orientation estimation results is supplied to the display control unit 84.
  • step S4 the illuminance sensor 54 detects the ambient illuminance.
  • Information representing the ambient illuminance is supplied to the display control unit 84.
  • the peripheral environment recognition unit 82 repeatedly performs processing for recognizing the position, shape, feature points, and the like of the surrounding object, the position / posture estimation unit 81 for estimating the user's position and posture, and the illuminance sensor 54 for detecting ambient illuminance. Is called.
  • step S5 the display control unit 84 determines whether or not the ambient illuminance has decreased by a certain level or more. If it is determined in step S5 that the ambient illuminance has fallen above a certain level, the process proceeds to step S6.
  • step S6 a danger information display process is performed.
  • the danger information display process is a process of terminating the display of the information displayed so far and displaying the danger information. Details of the danger time information display processing will be described later with reference to the flowchart of FIG.
  • step S5 After the danger information display process is performed, or when it is determined in step S5 that the ambient illuminance has not decreased below a certain level, the process returns to step S1 and the above process is repeated.
  • step S11 the display control unit 84 controls the light control element 14 so that the transmittance is maximized.
  • step S12 the display control unit 84 draws information representing the outline of the peripheral object recognized by the peripheral environment recognition unit 82.
  • the image of the line representing the outline of the peripheral object is displayed at a position overlapping the actual outline of the peripheral object, for example, according to the position and posture of the user estimated by the position / posture estimation unit 81.
  • step S13 the display control unit 84 determines whether or not a predetermined time has elapsed based on the count value measured by the counter 85.
  • step S14 the display control unit 84 continues to draw information representing the contour by lowering the display brightness and increasing the color temperature.
  • step S15 the display control unit 84 determines whether or not the ambient illuminance is equal to or higher than a certain level. Determine.
  • step S15 If it is determined in step S15 that the ambient illuminance is not equal to or greater than a certain level, the process returns to step S12 and the display of the information representing the outline of the peripheral object is continued.
  • step S15 When it is determined in step S15 that the ambient illuminance has become a certain level or more due to the elimination of the power failure, the process returns to step S6 in FIG. 13 and the subsequent processing is performed.
  • information indicating the outline of the peripheral object is displayed as the information for danger, but the shape of the peripheral object such as information indicating the surface of the peripheral object and information indicating the feature point of the peripheral object is displayed.
  • the line representing the outline of the peripheral object is also information indicating the shape of the peripheral object.
  • the shape information that represents the shape of the surrounding object includes various color, shape, and pattern information such as a line that represents the outline of the surrounding object, a line and color that represents the surface of the surrounding object, and a mark that represents a feature point of the surrounding object. included.
  • ⁇ Modification> Display example 1 for danger information Not only the contours of the surrounding objects in the real space, but also the information necessary in the event of danger is recognized in advance, but the information is displayed when the illuminance suddenly decreases. Good.
  • Information necessary in the event of danger includes, for example, information such as exits of rooms, stairs, evacuation routes such as wide-area shelters, and places for flashlights.
  • a method for recognizing information necessary in danger there is a method for performing object recognition based on an image captured by the camera 53.
  • map information is given to the HMD 1 in advance, and information necessary at the time of danger is recognized according to a position measured by GPS (Global Positioning System).
  • ⁇ Display example 2 for danger information In addition to the outline, information representing the shape of the entire peripheral object may be displayed. At this time, for example, the outline is highlighted. For highlighting, various methods are used such as changing the gradation, changing the display color, changing the thickness, blinking, and changing the line type to a broken line or a wavy line.
  • contour highlighting may be performed by changing the display method according to the visibility information of the user. For example, when the user has low visibility of the color in the low wavelength region, the color in the high wavelength region is used for highlighting the outline.
  • FIG. 15 is a diagram illustrating an example of highlight display of danger information.
  • FIG. 15 is a state in which the outline of the peripheral object is displayed as it is.
  • an image of a line representing the outline of a peripheral object is displayed superimposed on a dark landscape.
  • the lines representing the contours of the surrounding objects are highlighted by the broken lines. Also good.
  • an image of a line representing the outline of a low risk part such as a wall or a window may be hidden.
  • lines representing the outline may be displayed in different colors according to the distance to the surrounding object.
  • the line representing the outline of the bed at the closest position is displayed in the most prominent color
  • the line indicating the outline of the chair and table at the next closest position is displayed in the next most prominent color.
  • FIG. 16 is a diagram illustrating another example of highlighting information for danger.
  • the state shown in the upper left of FIG. 16 is a state in which the outline of the peripheral object is displayed as it is.
  • a line representing the outline of the surrounding object may be displayed with the gradation changed according to the degree of danger.
  • the line representing the outline of the surrounding object may be displayed with the thickness changed according to the degree of danger.
  • a line representing an outline but also corners and feature points may be highlighted.
  • the highlighting of corners and feature points is performed using, for example, a conspicuous color, a conspicuous shape, blinking, or the like.
  • a feature point is a part in which luminance and shape change greatly as compared with surrounding parts, and is specified by analyzing a captured image, for example.
  • the line representing the outline is displayed by appropriately combining each element including the type, color, gradation, and thickness of the line.
  • FIG. 17 is a diagram showing an example of setting the display brightness.
  • FIG. 17A represents a change in ambient illuminance
  • B in FIG. 17 represents luminance that is easily visible to the user.
  • C in FIG. 17 represents display luminance.
  • FIG. 17A when walking on a dark night road, as shown in FIG. 17A, when a headlight of a car traveling nearby gets into the eyes and becomes bright for a moment at time t11, it is shown in FIG. 17B.
  • the luminance that is easy to visually recognize temporarily increases, and it becomes difficult to visually recognize the surroundings until dark adaptation is performed again.
  • the display brightness of the contour of the peripheral object is once increased and controlled so as to gradually decrease, so that the contour of the peripheral object is not disturbed without disturbing the dark adaptation again. Can continue to be displayed.
  • the danger information may be displayed at a timing other than when the surrounding brightness suddenly decreases.
  • ⁇ Display example 6 for danger information There may be a case where the outline display of the peripheral object is not performed.
  • a peripheral object at a position higher than the height of the user's back, such as a ceiling or lighting installed on the ceiling, is less likely to collide even if the user moves.
  • a line representing the contour may not be displayed.
  • ⁇ Dangerous information display example 7 When the intensity of outside light is low, it is considered that the moving speed of the user also decreases. By displaying a line representing an outline only for a nearby object in the vicinity without displaying a line representing an outline for a nearby object located far away, it is possible to reduce the danger during movement.
  • the outline lines are not displayed, but only for peripherals such as bookshelves and shelves with casters that may move in the event of an earthquake.
  • a line representing the outline may be displayed to call attention. Whether or not the position is likely to change is also specified based on the image captured by the camera 53 when the surrounding environment is recognized.
  • Peripheral types include large / small size, high / low height, heavy / light weight, movable / fixed type, etc.
  • the type of material is included.
  • ⁇ Dangerous information display example 8 Information on a peripheral object that is not at a position where it can be displayed superimposed on the scenery in the real space may be displayed as danger information. For example, information on the direction of the evacuation route or fire based on information on peripheral objects that are outside the displayable range of the display unit 11 (the range of the frame F in FIG. 3) and within the imageable range of the camera 53. Information on the direction in which fire is sometimes emitted may be displayed. In addition, such information may be notified by voice using a speaker.
  • ⁇ Display example 9 of danger information When the user can visually recognize the surrounding environment, only information that cannot be directly recognized, such as a route to a wide area evacuation site or information outside the user's field of view, may be displayed and the outline of the surrounding object may not be displayed. Information on the speed of dark adaptation and information on user attributes such as age and visual acuity are input in advance, and the information is used to determine whether the user can visually recognize the surrounding environment. Good.
  • the acquisition of information on the peripheral object using the camera 53 may be stopped.
  • the information on the peripheral object is updated by updating the information on the peripheral object acquired last by using the estimation result of the motion state of the user by the acceleration sensor 71 and the gyro sensor 72.
  • information may be presented by combining information acquired based on an image captured by the camera 53 with an increased gain of the image sensor and information on acquired peripheral objects.
  • information related to objects such as furniture hidden behind objects that cannot be recognized from an image captured by the camera 53 may be displayed.
  • information related to objects such as furniture hidden behind objects that cannot be recognized from an image captured by the camera 53 may be displayed.
  • Display example 10 of danger information Information related to peripheral objects that cannot be directly visually recognized by the user may be displayed as information for danger. For example, by displaying information on an object hidden behind a nearby object, it is possible to avoid hitting an object ahead of the object when a nearby object is stepped over or avoided.
  • a risk level representing the degree of danger of the user in a dark environment may be calculated, and the display of the danger information may be controlled according to the calculated risk level.
  • the degree of risk is obtained based on the user's state such as position and posture, and the surrounding environment represented by the environment information, for example.
  • the information for danger may be displayed by changing the display color or gradation according to the place where the vertical movement such as stairs occurs or the degree of danger depending on the distance between the user and the surrounding object. Good. As a result, it is possible to urge the moving user to prevent tripping and to pay attention to nearby objects.
  • FIG. 18 is a diagram showing an example of evaluation values used for risk assessment.
  • the table shown in FIG. 18 shows evaluation values corresponding to the respective situations of “user posture”, “user moving speed”, “periphery of surrounding objects”, and “user position (distance to surrounding objects)”. It is a table
  • the evaluation value is expressed in three stages of “0”, “1”, and “2”, and the higher the numerical value, the higher the risk level.
  • “User's moving speed” As shown in the evaluation value of “User's moving speed”, when the user is moving at a speed of less than 1 km / h, “0” is set as the evaluation value, and it is 1 km / h or more and 3 km / h or less. When moving at a speed, “1” is set as the evaluation value. When the user is moving at a speed exceeding 3 km / h, “2” is set as the evaluation value.
  • 0 is set as the evaluation value when the unevenness of the peripheral object is less than 10 cm
  • “1” is set as the evaluation value when it is 10 cm or more Is done.
  • the evaluation value As shown as an evaluation value of “user position”, when the distance to the surrounding object exceeds 2 m, the evaluation value is set as “0”, and when the distance is 1 m or more and 2 m or less, the evaluation value is “ 1 "is set. When the distance to the surrounding object is less than 1 m, “2” is set as the evaluation value.
  • evaluation values used for risk assessment are set according to each situation.
  • the risk of each peripheral object is obtained as, for example, the sum of evaluation values. For example, if a user is moving at a speed of 1 km / h or more and 3 km / h or less, and a peripheral object having a surface with an unevenness of 10 cm or more is at a distance of 1 m or more and 2 m or less, the risk of the peripheral object is Required as “5”.
  • FIG. 19 is a diagram showing a display example according to the degree of risk.
  • the items of the display method of the information representing the outline of the surrounding object include line type, blinking / non-flashing of line, gradation, color, thickness, presence / absence of feature point display, and feature.
  • the presence / absence of blinking dots is shown.
  • the line type is set as a solid line, and the presence / absence of blinking of the line is set as none.
  • the gradation is set as half of the maximum value, and the color is set as green.
  • the thickness is set as 1 pix (1 pixel), and the presence / absence of feature point display is set as no.
  • the presence / absence of blinking feature points is set as none.
  • Example of output of danger information In addition to detecting a sudden decrease in illuminance, the detection of a siren's sound with a microphone or the detection of a fire with a temperature sensor can be used as a trigger. Information may be displayed. The occurrence of a disaster may be detected based on information transmitted from an external device, and danger information may be displayed using this as a trigger.
  • the display of the information for danger may be terminated on the assumption that the user has returned to the situation where the surrounding environment can be visually recognized.
  • the display of the danger information may be stopped at the timing when it is detected that the user has removed the HMD 1 by the mounting detection proximity sensor mounted on the HMD 1.
  • the display of the information for danger may be stopped at the timing instructed by the user or the timing at which the arrival of the user at the wide-area refuge is detected based on the position information measured by GPS.
  • ⁇ Information on the user's age may be set in advance.
  • the display luminance reduction rate is adjusted according to the dark adaptation characteristics according to the age of the user.
  • the dark adaptation characteristics may be set not only according to the age but also according to various user attributes such as visual acuity and sex, and the display luminance may be adjusted according to the set dark adaptation characteristics.
  • the display brightness may be adjusted according to the characteristics according to the user's state such that the characteristics are switched between when the user is stationary and when the user is moving.
  • Example of environment recognition Although the surrounding environment is recognized based on the image captured by the camera 53, the surrounding environment may be recognized using another sensor.
  • the surrounding environment may be recognized using a ToF (Time-of-Flight) sensor using infrared rays.
  • ToF Time-of-Flight
  • the ToF sensor it is possible to recognize the surrounding environment even in a dark environment that cannot be recognized by the camera 53 equipped with an imaging device capable of detecting visible light.
  • the environmental information showing the surrounding environment was acquired based on the image imaged with the camera, you may make it acquire from the server connected via a network.
  • the model number information of a sofa that exists as a peripheral object is acquired, information on the shape of the sofa may be acquired from the server based on the model number information.
  • the model number information of the sofa may be acquired by communicating with a device built in the sofa, for example, or may be specified based on the position information of the HMD 1.
  • FIG. 20 is a diagram illustrating a setting example of transmittance and display luminance.
  • the combination of the transmittance and display luminance shown in FIG. 20 is the same as the combination described with reference to FIG.
  • the horizontal axis in FIG. 20 represents the brightness of the surroundings, and the vertical axis represents the visibility of the display content.
  • the ambient brightness is represented by luminance or illuminance.
  • the transmittance is set in three stages of 10%, 20%, and 50%.
  • the display luminance used in combination with the transmittance is set in five stages of 40%, 50%, 60%, 80%, and 100%.
  • the transmittance is adjusted with a smaller number of steps than the number of steps of display luminance.
  • the state s1 is a state in which a combination in which the transmittance is 50% and the display luminance is 50% is used.
  • the states s2 to s4 are states in which a combination is used in which the transmittance is 20% and the display luminance is 40%, 60%, and 80%, respectively. Since a lower transmittance is set than in the state s1, the external light reaching the user's eyes is further suppressed in the states s2 to s4.
  • the states s5 to s7 are states in which a combination of 10% transmittance and 60%, 80%, and 100% display luminance is used, respectively. Since a lower transmittance is set than in the states s2 to s4, the external light reaching the user's eyes is further suppressed in the states s5 to s7.
  • the display brightness is adjusted by adjusting the duty ratio of a pulse representing the display period of the display unit 11 (display device 21).
  • the display control unit 84 in FIG. 12 adjusts the display luminance of the display unit 11 by outputting a control signal including a pulse having a predetermined duty ratio.
  • the duty ratio of the pulses constituting the control signal corresponds to the display brightness of the display unit 11.
  • the duty ratio is also lower than the previous duty ratio, that is, the display brightness is set to be dark. This is because when the transmittance decreases by one step, the external light limited by the light control element 14 is further limited, and the amount of light incident on the user's eyes is reduced, so that the display brightness of the image is preferably lowered. Because. By performing such control, deterioration of the display device 21 can be suppressed.
  • the transition from the state s1 to the state s2 occurs when the surrounding brightness changes to the brightness n12 when the brightness is lower than the brightness n12.
  • the transition from the state s2 to the state s1 indicated by an arrow # 111 occurs when the surrounding brightness changes to the brightness n11 when the brightness is higher than the brightness n11.
  • the brightness n12 at which the transition from the state s1 to the state s2 occurs is set as a value brighter than the brightness n11 at which the transition from the state s2 to the state s1 occurs.
  • the transition from the state s2 to the state s3 occurs when the ambient brightness changes to the brightness n14 in a state where the brightness is lower than the brightness n14.
  • the transition from the state s3 to the state s2 indicated by the arrow # 112 occurs when the surrounding brightness changes to the brightness n13 in a state where the brightness is brighter than the brightness n13.
  • the brightness n14 at which the transition from the state s2 to the state s3 occurs is set as a brighter value than the brightness n13 at which the transition from the state s3 to the state s2 occurs.
  • transitions between other states For example, as indicated by an arrow # 106, the transition from the state s6 to the state s7 occurs when the surrounding brightness changes to the brightness n22 in a state where the brightness is lower than the brightness n22. On the other hand, the transition from the state s7 to the state s6, indicated by the arrow # 116, occurs when the surrounding brightness is changed to the brightness n21 in a state where the brightness is brighter than the brightness n21.
  • the brightness n22 at which the transition from the state s6 to the state s7 occurs is set as a brighter value than the brightness n21 at which the transition from the state s7 to the state s6 occurs.
  • the hysteresis characteristic is set for adjusting the transmittance as shown by the bidirectional arrows in FIG.
  • the threshold for increasing the transmittance when changing from a bright state to a dark state and the threshold for decreasing the transmittance when changing from a dark state to a bright state the transmittance is frequently increased. Can be prevented from changing.
  • ⁇ Hysteresis characteristics are set not only for transmittance adjustment but also for display brightness adjustment. As a result, the display luminance can be adjusted in a more natural manner in accordance with the change in external light.
  • FIG. 21 is another diagram showing a setting example of transmittance and display luminance.
  • the upper part of FIG. 21 shows the change in transmittance when the horizontal axis is the brightness of the surroundings and the vertical axis is the transmittance.
  • the transmittance referred to here is the transmittance of the entire HMD 1 realized by adjusting the transmittance of the light control element 14.
  • the lower part of FIG. 21 represents a change in display luminance when the horizontal axis is the peripheral brightness and the vertical axis is the display luminance of the display unit 11.
  • the transmittance changes from 50% to 20% when the brightness is n12, and 20% when the brightness is n18. To 10%. Further, when the periphery changes from a bright state to a dark state, the transmittance changes from 10% to 20% when the brightness is n17, and from 20% to 50% when the brightness is n11.
  • the display luminance changes from 50% to 40% at the brightness n12 and 40% at the brightness n14.
  • the display brightness changes from 60% to 80% when the brightness is n16, and changes from 80% to 60% when the brightness is n18.
  • the display luminance changes from 60% to 80% when the brightness is n20, and changes from 80% to 100% when the brightness is n22.
  • the display luminance changes from 100% to 80% when the brightness is n21, and changes from 80% to 60% when the brightness is n19.
  • the display brightness changes from 60% to 80% when the brightness is n17, and changes from 80% to 60% when the brightness is n15.
  • the display brightness changes from 60% to 40% when the brightness is n13, and changes from 40% to 50% when the brightness is n11.
  • the HMD 1 displays various types of information using such a combination of transmittance and display luminance.
  • Control of the transmittance and display brightness according to the surrounding brightness is performed at intervals according to the user's state, such as the speed at which the user is moving.
  • Japanese Patent Application Laid-Open Nos. 2012-252091 and 2013-5201 disclose techniques for controlling the transmittance based on the output value of the illuminance sensor.
  • an electrochromic element may be used as the light control element.
  • the electrochromic element changes the transmittance by utilizing an oxidation reaction / reduction reaction of a material.
  • the light control device using a chemical reaction such as ion diffusion has a slow response speed of a change in transmittance of several seconds compared to a device such as a liquid crystal shutter. Due to the slow response speed, when moving from a bright place to a dark place, a situation may occur in which the increase in transmittance is delayed and the user's field of vision remains dark for a few seconds.
  • Measures such as shortening the brightness detection cycle can be considered as a countermeasure against the slow response speed.
  • the transmittance changes in conjunction with a short-time change in brightness. The transmittance changes frequently, and the user may feel uncomfortable.
  • the light control element respond quickly when a change in brightness occurs, but if the change in transmittance occurs too frequently, the user may feel uncomfortable.
  • various processes such as controlling the transmittance and the display brightness at intervals according to the user's state are performed in order to prevent the user from feeling uncomfortable.
  • FIG. 22 is a block diagram illustrating a configuration example of the HMD 1.
  • FIG. 22 shows only a part of the configuration of the HMD 1.
  • the HMD 1 in FIG. 22 includes other configurations described with reference to FIG. The same applies to the configurations shown in FIGS. 24, 26, and 28.
  • the 22 includes a position / attitude estimation unit 81 and a display control unit 84.
  • the display control unit 84 includes a transmittance control unit 101 and a display luminance control unit 102.
  • the position / posture estimation unit 81 analyzes the sensor data supplied from the motion sensor 52 and estimates the state of the user.
  • the user state estimated by the position / posture estimation unit 81 includes at least one of the type of user movement and the speed of the user movement.
  • Information on the acceleration detected by the acceleration sensor 71 constituting the motion sensor 52 and the angular velocity detected by the gyro sensor 72 are supplied to the position / orientation estimation unit 81 as sensor data.
  • classification of types of movement such as a situation in which a movement such as a head swing does not occur with a change in brightness and a situation in which the HMD 1 is moving without moving is performed based on a change in acceleration.
  • the speed of the user's movement is detected by the integrated value of acceleration.
  • a geomagnetic sensor may be provided in the motion sensor 52, and the speed of the user's movement may be detected based on information on the direction.
  • the position / posture estimation unit 81 outputs information indicating the type of user movement and the speed of the user movement to the transmittance control unit 101 and the display luminance control unit 102.
  • the transmittance control unit 101 identifies the state of the user based on the information supplied from the position / posture estimation unit 81 and adjusts the reading interval of the ambient illuminance detected by the illuminance sensor 54.
  • the detection of ambient illuminance by the illuminance sensor 54 is repeatedly performed at a predetermined cycle.
  • the transmittance control unit 101 reads the ambient illuminance according to the adjusted readout interval, and controls the transmittance of the light control element 14 as described with reference to FIG. By controlling the reading interval of the peripheral illuminance, the interval for controlling the transmittance of the light control element 14 is also controlled.
  • the transmittance control unit 101 reads the ambient illuminance at long intervals such as 1 second or more.
  • the transmittance control unit 101 does not need to shorten the interval for controlling the transmittance so much.
  • the transmittance of the light control element 14 is not controlled, so that the user is uncomfortable. Can be prevented.
  • the transmittance control unit 101 reads the ambient illuminance at short intervals such as 0.1 seconds.
  • the transmittance control unit 101 sets the reading interval of the peripheral illuminance short.
  • the display brightness control unit 102 controls the peripheral illuminance readout interval and the display brightness control interval in the same manner as the transmittance control unit 101.
  • the display luminance control unit 102 specifies the user state based on the information supplied from the position / posture estimation unit 81 and adjusts the reading interval of the ambient illuminance.
  • the display luminance control unit 102 reads the peripheral illuminance according to the adjusted reading interval, and controls the display luminance of the display unit 11 as described with reference to FIG.
  • the display brightness control unit 102 reads the ambient illuminance at long intervals such as 1 second or more.
  • the display luminance control unit 102 reads the ambient illuminance at short intervals such as 0.1 seconds.
  • step S101 the acceleration sensor 71 of the motion sensor 52 detects the acceleration of the HMD1, and the gyro sensor 72 detects the angular velocity of the HMD1.
  • the acceleration information and the angular velocity information are supplied to the position / posture estimation unit 81 as motion data.
  • step S102 the position / orientation estimation unit 81 analyzes the motion data supplied from the motion sensor 52, estimates the type of the user's movement, and calculates the speed of the user's movement. Information indicating the type of user movement and the speed of the user movement is supplied to the transmittance control unit 101 and the display luminance control unit 102.
  • step S ⁇ b> 103 the display control unit 84 (the transmittance control unit 101 and the display luminance control unit 102) specifies the user state based on the information supplied from the position / posture estimation unit 81, and the surroundings detected by the illuminance sensor 54. Determine the illuminance readout interval.
  • step S104 the display control unit 84 reads the ambient illuminance according to the determined reading interval.
  • step S105 the display control unit 84 determines whether or not the ambient illuminance has decreased to be equal to or less than a threshold value.
  • step S106 the display control unit 84 controls the transmittance and the display luminance. That is, the transmittance of the dimming element 14 is adjusted by the transmittance control unit 101 using the combination when the ambient illuminance is lower than the threshold value described with reference to FIGS. 20 and 21, and the display luminance control unit 102. Thus, the display brightness of the display unit 11 is adjusted.
  • step S107 the display control unit 84 determines whether or not the ambient illuminance has increased to be greater than or equal to the threshold.
  • step S108 the display control unit 84 controls the transmittance and the display luminance.
  • the transmittance of the dimming element 14 is adjusted by the transmittance control unit 101 using the combination when the ambient illuminance rises above the threshold value described with reference to FIGS. 20 and 21, and the display luminance control unit 102.
  • the display brightness of the display unit 11 is adjusted.
  • step S107 When it is determined in step S107 that the ambient illuminance is not equal to or greater than the threshold value, or after the processing in steps S106 and S108 is performed, the process returns to step S101 and the above processing is repeated.
  • the transmittance and the transmission rate are not delayed.
  • the display brightness can be adjusted.
  • the user's safety during walking can be ensured by adjusting the transmittance and display brightness without delay.
  • the transmittance and display brightness do not change frequently, so there is no response to changes in brightness for a short time, and the occurrence of unpleasant changes in transmittance and display brightness can be suppressed. it can. Further, by increasing the interval for controlling the transmittance and the display luminance, it is possible to reduce the calculation resources, and it is possible to reduce the power consumption and distribute the resources for image rendering.
  • step S1 of FIG. Such display control processing is performed in step S1 of FIG. Similarly, the display control process described with reference to FIGS. 25, 27, and 29 is the process performed in step S1 of FIG.
  • the detection interval of the peripheral illuminance by the illuminance sensor 54 may be adjusted.
  • FIG. 24 is a block diagram illustrating another configuration example of the HMD 1.
  • the configuration of the control unit 51 of the HMD 1 shown in FIG. 24 is different from the configuration shown in FIG. 22 in that an image analysis unit 111 is provided instead of the position / posture estimation unit 81.
  • the image taken by the camera 53 is supplied to the image analysis unit 111. Imaging by the camera 53 is repeatedly performed at a predetermined cycle.
  • the brightness after a predetermined time elapses is predicted by analyzing the image captured by the camera 53, and the transmittance and display luminance are controlled according to the predicted change in brightness.
  • the image analysis unit 111 detects a change in brightness by comparing the central luminance of the current image with the central luminance of the image captured immediately before.
  • the center luminance is a luminance within a predetermined range including the center of the image.
  • a change in brightness may be detected using the brightness of the entire image.
  • the luminance at the center of the image represents the luminance of the entire image after a predetermined time.
  • the image analysis unit 111 calculates the central luminance, which is the luminance of the image central portion, as the luminance representing the brightness after a lapse of a predetermined time, with the direction of the image central portion being the user moving direction.
  • the image analysis unit 111 outputs the central luminance information to the transmittance control unit 101 and the display luminance control unit 102.
  • the transmittance control unit 101 controls the transmittance of the light control element 14 as described with reference to FIG. 20 and the like based on the central luminance represented by the information supplied from the image analysis unit 111. By performing processing in accordance with the central luminance, the transmittance is controlled in a proactive manner.
  • the display luminance control unit 102 controls the display luminance of the display unit 11 based on the central luminance represented by the information supplied from the image analysis unit 111 as described with reference to FIG. By performing processing according to the center luminance, the display luminance of the display unit 11 is controlled in advance.
  • step S111 the camera 53 images the surrounding environment.
  • step S112 the image analysis unit 111 calculates the center luminance of the image captured by the camera 53.
  • step S113 the display control unit 84 determines whether or not the central luminance has decreased to be equal to or lower than the threshold value.
  • step S114 the display control unit 84 controls the transmittance and the display luminance.
  • the transmittance of the dimming element 14 is adjusted by the transmittance control unit 101 using the combination when the luminance is lower than the threshold value described with reference to FIGS. 20 and 21, and the display unit is controlled by the display luminance control unit 102. 11 display brightness is adjusted.
  • step S115 the display control unit 84 determines whether the central luminance has increased and has become equal to or greater than the threshold value.
  • step S116 the display control unit 84 controls the transmittance and the display luminance.
  • the transmittance of the dimming element 14 is adjusted by the transmittance control unit 101 using the combination when the luminance has risen above the threshold value described with reference to FIGS. 20 and 21, and the display unit is controlled by the display luminance control unit 102. 11 display brightness is adjusted.
  • step S115 When it is determined in step S115 that the central luminance is not equal to or greater than the threshold value, or after the processing in steps S114 and S116 is performed, the process returns to step S111 and the above processing is repeated.
  • the transmittance and display brightness can be adjusted without delay by predicting the brightness of the environment in which the user is assumed to be after a predetermined time based on the image captured by the camera 53. Is possible.
  • FIG. 26 is a block diagram illustrating still another configuration example of the HMD 1.
  • the configuration of the control unit 51 of the HMD 1 shown in FIG. 26 is different from the configuration shown in FIG. 24 in that a position / posture estimation unit 81 and an imaging control unit 83 are provided.
  • the imaging interval by the camera 53 is adjusted according to the state of the user.
  • the brightness of the surroundings is predicted from the image captured by the camera 53, and the transmittance and display luminance are controlled in accordance with the predicted change in brightness.
  • the position / orientation estimation unit 81 analyzes the sensor data supplied from the motion sensor 52 and detects the type of user movement and the speed of the user movement.
  • the position / posture estimation unit 81 outputs information indicating the type of user movement and the speed of the user movement to the imaging control unit 83.
  • the imaging control unit 83 identifies the user state based on the information supplied from the position / posture estimation unit 81 and adjusts the imaging interval of the camera 53.
  • the imaging control unit 83 performs surrounding imaging at a long interval such as 1 second or more.
  • the transmittance control unit 101 captures surrounding images at short intervals such as 0.1 seconds. An image captured by the camera 53 according to the adjusted interval is supplied to the image analysis unit 111.
  • the image analysis unit 111 detects a change in brightness based on the center luminance of the image captured by the camera 53, similarly to the image analysis unit 111 in FIG.
  • step S121 the acceleration sensor 71 of the motion sensor 52 detects the acceleration of the HMD1, and the gyro sensor 72 detects the angular velocity of the HMD1.
  • the acceleration information and the angular velocity information are supplied to the position / posture estimation unit 81 as motion data.
  • step S122 the position / orientation estimation unit 81 analyzes the motion data supplied from the motion sensor 52, estimates the type of the user's movement, and calculates the speed of the user's movement. Information representing the type of user movement and the speed of the user movement is supplied to the imaging control unit 83.
  • step S123 the imaging control unit 83 identifies the user's state based on the information supplied from the position / posture estimation unit 81, and determines the imaging interval of the camera 53.
  • step S124 the camera 53 images the surrounding environment according to the imaging interval determined by the imaging control unit 83.
  • step S125 the image analysis unit 111 calculates the center luminance of the image captured by the camera 53.
  • step S126 the image analysis unit 111 determines whether or not the center luminance has decreased by ⁇ L from the luminance d seconds before, which is a preset time.
  • ⁇ L represents a predetermined luminance.
  • step S127 the image analysis unit 111 predicts the brightness of the entire image after T seconds based on the current user speed. For example, a range corresponding to the current user speed is set in the image captured by the camera 53, and the luminance of the set range is obtained as the predicted luminance of the entire image after T seconds.
  • step S1208 the image analysis unit 111 determines whether the predicted luminance is equal to or less than a threshold value.
  • step S129 the display control unit 84 controls the transmittance and the display brightness.
  • the transmittance of the dimming element 14 is adjusted by the transmittance control unit 101 using the combination when the luminance is lower than the threshold value described with reference to FIGS. 20 and 21, and the display unit is controlled by the display luminance control unit 102. 11 display brightness is adjusted.
  • step S130 the image analysis unit 111 has increased the central luminance by ⁇ L from the luminance before d seconds. It is determined whether or not.
  • step S131 the image analysis unit 111 predicts the luminance of the entire image after T seconds based on the current user speed.
  • step S132 the image analysis unit 111 determines whether the predicted luminance is equal to or higher than a threshold value.
  • step S133 the display control unit 84 controls the transmittance and the display luminance.
  • the transmittance of the dimming element 14 is adjusted by the transmittance control unit 101 using the combination when the luminance has risen above the threshold value described with reference to FIGS. 20 and 21, and the display unit is controlled by the display luminance control unit 102. 11 display brightness is adjusted.
  • step S132 If it is determined in step S132 that the predicted luminance is not greater than or equal to the threshold value, the process returns to step S121 and the above processing is repeated.
  • step S130 When it is determined in step S130 that the luminance has not increased by ⁇ L from the luminance d seconds before, or when the processing in steps S129 and S133 is performed, the processing returns to step S121 and the above processing is repeated.
  • the setting of T seconds may be switched between when the user is walking and when the user is running. For example, when the user is running, the brightness of the previous time is predicted for a shorter time than when walking.
  • FIG. 28 is a block diagram showing still another configuration example of the HMD 1.
  • the configuration of the control unit 51 of the HMD 1 illustrated in FIG. 28 is different from the configuration illustrated in FIG. 26 in that a surrounding environment recognition unit 82 and a location information processing unit 121 are provided instead of the imaging control unit 83.
  • the brightness of the surroundings after a predetermined time has been predicted based on the location information, and the transmittance and display luminance are controlled according to the predicted change in brightness.
  • the location information is user location information.
  • the position / orientation estimation unit 81 analyzes the sensor data supplied from the motion sensor 52 and detects the type of user movement and the speed of the user movement.
  • the position / posture estimation unit 81 outputs information representing the type of user movement and the speed of the user movement to the image analysis unit 111 and the location information processing unit 121.
  • the image analysis unit 111 analyzes the image captured by the camera 53 in response to the detection of the type of user motion and the speed of the user motion by the position / posture estimation unit 81, and the image is captured in the image. Extract features of surrounding environment.
  • the image analysis unit 111 outputs information related to characteristics of the surrounding environment to the location information processing unit 121.
  • the surrounding environmental features extracted by the image analysis unit 111 are used for estimation of the current position.
  • the location information processing unit 121 estimates the current position based on the feature represented by the information supplied from the image analysis unit 111. For the location information processing unit 121, for example, information on the feature of each position on the map is given in advance together with the map information.
  • the location information processing unit 121 estimates the current position by comparing the feature represented by the information supplied from the image analysis unit 111 with the feature of each position given in advance.
  • the current position is estimated by appropriately correcting the position according to the user's state detected by the position / posture estimation unit 81.
  • the location information processing unit 121 estimates a position after a predetermined time has elapsed from the current position according to the state of the user detected by the position / posture estimation unit 81, and displays information indicating the estimation result together with the current position information. Output to the surrounding environment recognition unit 82.
  • the surrounding environment recognition unit 82 specifies the surrounding illuminance detected by the illuminance sensor 54 as the surrounding illuminance at the current position.
  • the surrounding environment recognition unit 82 estimates the surrounding illuminance at a position after a predetermined time, which is represented by the information supplied from the location information processing unit 121. For example, information related to ambient illuminance at each position on the map is given in advance to the surrounding environment recognition unit 82 together with the map information.
  • the surrounding environment recognizing unit 82 refers to information on the surrounding illuminance at each position given in advance, and identifies the surrounding illuminance at the position estimated by the location information processing unit 121. For example, the ambient environment recognition unit 82 predicts the ambient illuminance at a position T seconds after the current time.
  • step S141 the acceleration sensor 71 of the motion sensor 52 detects the acceleration of the HMD1, and the gyro sensor 72 detects the angular velocity of the HMD1.
  • the acceleration information and the angular velocity information are supplied to the position / posture estimation unit 81 as motion data.
  • step S142 the position / orientation estimation unit 81 analyzes the motion data supplied from the motion sensor 52, estimates the type of user movement, and calculates the speed of the user movement. Information on the type of user movement and the speed of user movement is supplied to the image analysis unit 111 and the location information processing unit 121.
  • step S143 the camera 53 images the surrounding environment.
  • the captured image is supplied to the image analysis unit 111.
  • step S144 the image analysis unit 111 analyzes the image captured by the camera 53, and extracts features of the surrounding environment that are reflected in the image. Information regarding the characteristics of the surrounding environment is supplied to the location information processing unit 121.
  • step S145 the location information processing unit 121 estimates the current position based on the feature represented by the information supplied from the image analysis unit 111.
  • step S146 the surrounding environment recognition unit 82 acquires the surrounding illuminance at the current position detected by the illuminance sensor 54.
  • step S147 the surrounding environment recognition unit 82 determines whether or not the surrounding illuminance has decreased by a certain level or more.
  • step S147 when it is determined in step S147 that the ambient illuminance has decreased more than a certain value because the ambient illuminance has suddenly decreased, the danger information display process described with reference to FIG. 14 is performed in step S148.
  • step S147 If it is determined in step S147 that the ambient illuminance has not decreased by a certain value or more, or if a danger information display process is performed in step S148, the process proceeds to step S149.
  • step S149 the surrounding environment recognition unit 82 predicts the surrounding illuminance at the position after T seconds based on the current user speed.
  • step S150 the surrounding environment recognition unit 82 determines whether or not the surrounding illuminance at the position after T seconds decreases and becomes equal to or less than the threshold value.
  • step S151 the display control unit 84 controls the transmittance and the display luminance.
  • the transmittance of the dimming element 14 is adjusted by the transmittance control unit 101 using the combination when the ambient illuminance decreases below the threshold value described with reference to FIGS. 20 and 21, and displayed by the display luminance control unit 102.
  • the display brightness of the unit 11 is adjusted.
  • step S150 if it is determined in step S150 that the ambient illuminance at the position after T seconds does not become the threshold or less, the ambient environment recognition unit 82 increases the ambient illuminance at the position after T seconds and exceeds the threshold in step S152. It is determined whether or not.
  • step S153 the display control unit 84 controls the transmittance and the display luminance.
  • the transmittance of the dimming element 14 is adjusted by the transmittance control unit 101 using the combination when the ambient illuminance rises above the threshold value described with reference to FIGS.
  • the display brightness of the unit 11 is adjusted.
  • step S152 If it is determined in step S152 that the ambient illuminance after T seconds does not exceed the threshold, the process returns to step S141 and the above processing is repeated. Similarly, when the processes of steps S151 and S153 are performed, the process returns to step S141 and the above processes are repeated.
  • the ambient illuminance at the position where the user is estimated to be present after a predetermined time has passed is predicted, and the transmittance and display are displayed without delay with respect to changes in the ambient illuminance.
  • the brightness can be adjusted.
  • the current position is estimated by analyzing the image
  • the current position may be estimated using GPS or the like.
  • the control unit 51 can predict a sudden change in illuminance near the entrance and exit of the tunnel and change the transmittance and the display luminance in advance.
  • Measures regarding the accuracy of positioning results are required when using GPS. For example, when there is a certain difference between the speed obtained from the transition of the GPS measurement result and the speed calculated based on the sensor data detected by the motion sensor 52, the sensor data detected by the motion sensor 52 The positioning result may be corrected based on the calculated speed.
  • the above display control can be applied not to glasses-type wearable terminals but to mobile terminals such as smart phones and tablet terminals.
  • the transparency of the image captured by the camera is adjusted in the same manner as the transmittance of the light control element 14 and displayed in an overlapping manner.
  • the display brightness of the image is adjusted in the same manner as the display brightness of the display unit 11.
  • control unit for controlling display and the display unit (video display unit 57) are provided inside the HMD 1, they may be provided outside the HMD 1.
  • control performed by the display control unit includes not only direct control of the light control element and the display unit but also output of a control signal for display to the display unit.
  • the control signal may be image data itself to be displayed, or may be only a signal for instructing image display.
  • FIG. 30 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • an input / output interface 1005 is connected to the bus 1004.
  • the input / output interface 1005 is connected to an input unit 1006 including a keyboard and a mouse, and an output unit 1007 including a display and a speaker.
  • the input / output interface 1005 is connected to a storage unit 1008 made up of a hard disk, a non-volatile memory, etc., a communication unit 1009 made up of a network interface, etc., and a drive 1010 that drives a removable medium 1011.
  • the CPU 1001 loads the program stored in the storage unit 1008 to the RAM 1003 via the input / output interface 1005 and the bus 1004 and executes it, thereby executing the above-described series of processing. Is done.
  • the program executed by the CPU 1001 is recorded in the removable medium 1011 or provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital broadcasting, and installed in the storage unit 1008.
  • a wired or wireless transmission medium such as a local area network, the Internet, or digital broadcasting
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • Embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
  • the present technology can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • An acquisition unit that acquires environment information that is information about an environment including an object that exists in real space; When a change greater than a threshold value occurs in the brightness of the real space, the shape information representing the shape of the object is displayed on a display unit that displays predetermined information in a state of being visible while being superimposed on the real space.
  • An information processing apparatus comprising: a display control unit that performs display control based on environmental information.
  • the display control unit controls a change in luminance of the shape information according to a user attribute or according to a user state including at least one of the user position and posture.
  • the information processing apparatus can display an outline of the object as the shape information.
  • the acquisition unit acquires information on at least one of the position of the object, the distance to the object, the height of the object, and the type of the object as the environment information. (1) to (4) ).
  • the display control unit controls display of the shape information in accordance with a risk level of the object specified based on the environment information.
  • the display control unit displays the outline of the object as the shape information by changing at least one of type, thickness, color, and gradation according to the degree of risk.
  • the information processing apparatus according to any one of (6).
  • the information processing apparatus displays information representing a feature point of the object as the shape information.
  • the information processing apparatus controls the dimming unit to increase a transmittance when a change in brightness greater than the threshold value occurs.
  • the information processing apparatus is a head-mounted display attached to a head of the user.
  • An imaging unit for imaging the real space The imaging control unit according to any one of (1) to (10), further including: an imaging control unit that controls the imaging unit so as to increase a gain and lengthen an exposure time when a brightness change greater than the threshold occurs.
  • Information processing device (12) The information processing apparatus according to any one of (1) to (11), wherein the display control unit displays the shape information by gradually increasing a color temperature after displaying the shape information. (13) The display control unit displays the shape information instead of the information displayed before the brightness change occurs when the brightness change is greater than the threshold value. (1) to (12) The information processing apparatus according to any one of the above.
  • the information processing apparatus according to any one of (1) to (13), wherein the display control unit ends the display of the shape information when the brightness of the real space becomes a predetermined brightness.
  • Information processing device Obtain environment information, which is information about the environment including objects that exist in real space, When a change greater than a threshold value occurs in the brightness of the real space, the shape information representing the shape of the object is displayed on a display unit that displays predetermined information in a state of being visible while being superimposed on the real space.
  • An information processing method that performs display control based on environmental information.
  • this technique can also take the following structures.
  • a dimmer that guides light in real space to the user's eyes with a predetermined transmittance;
  • a display unit that displays predetermined information in a state of being visible in a superimposed manner in the real space;
  • a display control unit that controls the transmittance of the light control unit and the brightness of the predetermined information displayed by the display unit according to the brightness of the real space at intervals according to the state of the user
  • An information processing apparatus comprising: (B) The said display control part controls the transmittance
  • Information processing device is a space
  • (C) The information processing apparatus according to (A) or (B), wherein, when the user is moving, the display control unit adjusts the interval so as to be shorter as the moving speed of the user is faster.
  • (D) The information processing apparatus according to any one of (A) to (C), wherein the display control unit controls the transmittance of the dimming unit and the luminance of the predetermined information according to a preset combination.
  • (E) The information processing apparatus according to (D), wherein the display control unit adjusts the transmittance of the dimming unit with a number of steps smaller than a number of steps used for switching the luminance of the predetermined information.
  • the predetermined combination is used using the second combination that is used when the brightness of the real space is brighter.
  • the brightness of the real space that becomes a threshold when transitioning to the second state in which information is displayed and the brightness of the real space that becomes the threshold when transitioning from the second state to the first state are as follows: The information processing apparatus according to (D) or (E), wherein the brightness is set as different brightness.
  • the brightness of the real space that is a threshold when transitioning from the first state to the second state is the brightness of the real space that is the threshold when transitioning from the second state to the first state. Brighter than brightness
  • (H) It further includes an illuminance sensor, The display control unit controls the transmittance of the light control unit and the luminance of the predetermined information according to the brightness of the real space detected by the illuminance sensor.
  • (A) to (G) The information processing apparatus according to any one of the above.
  • (I) It further comprises an imaging unit that images the real space, The display control unit controls the transmittance of the dimming unit and the luminance of the predetermined information according to the brightness of the real space specified by analyzing the image captured by the imaging unit.
  • the information processing apparatus according to any one of (A) to (G).
  • the display control unit transmits the transmittance of the dimming unit and the luminance of the predetermined information according to the brightness of the real space after a predetermined time predicted based on the moving speed as the state of the user.
  • the information processing apparatus according to any one of (A) to (G).
  • the display control unit predicts the brightness of the real space after the elapse of the predetermined time, when the predetermined moving time is predicted as a predetermined time when the moving speed of the user is high and when the moving speed of the user is low.
  • the information processing apparatus according to (J), wherein the information processing apparatus controls the transmittance of the light control unit and the luminance of the predetermined information.
  • the display control unit is further configured to determine the transmittance of the dimming unit according to the brightness of the real space after the predetermined time has elapsed, which is predicted based on the position of the user as the state of the user.
  • M An imaging unit for imaging the real space;
  • N A positioning unit that measures the current position;
  • the information processing apparatus according to any one of (A) to (M), wherein the information processing apparatus is a head mounted display attached to the head of the user.
  • P A dimmer that guides light in real space to the user's eyes with a predetermined transmittance;
  • An information processing apparatus having a display unit that displays predetermined information in a state where the information can be viewed in a superimposed manner in the real space, Controlling the transmittance of the dimming unit and the luminance of the predetermined information displayed on the display unit according to the brightness of the real space is performed at intervals according to the state of the user .
  • a dimmer that guides light in real space to the user's eyes with a predetermined transmittance
  • a computer of an information processing apparatus having a display unit that displays predetermined information in a state of being visible in a state of being superimposed on the real space, Controlling the transmittance of the light control unit and the brightness of the predetermined information displayed on the display unit according to the brightness of the real space is performed at intervals according to the state of the user
  • a recording medium on which a program for recording is recorded.
  • 1 HMD, 2 content distribution server, 3 network 11 display unit, 14 dimming element, 51 control unit, 52 motion sensor, 53 camera, 54 illumination sensor, 55 communication unit, 56 memory, 57 video display unit, 71 acceleration sensor , 72 gyro sensor, 81 position / orientation estimation unit, 82 ambient environment recognition unit, 83 imaging control unit, 84 display control unit, 85 counter, 101 transmission control unit, 102 display brightness control unit, 111 image analysis unit, 121 location Information processing department

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Controls And Circuits For Display Device (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本技術は、周辺の明るさが急に変化した場合に、周辺の環境をユーザに迅速に視認させることができるようにする情報処理装置、情報処理方法、および記録媒体に関する。 本技術の一実施形態に係る情報処理装置は、実空間に存在するオブジェクトを含む環境に関する情報である環境情報を取得する取得部と、実空間の明るさに閾値より大きい変化が生じた場合、実空間に重畳して視認可能な状態で所定の情報を表示する表示部に対して、オブジェクトの形状を表す形状情報の環境情報に基づく表示制御を行う表示制御部とを備えるものである。本技術は、前方の風景に重ねて情報を表示させるHMDに適用することができる。

Description

情報処理装置、情報処理方法、および記録媒体
 本技術は、情報処理装置、情報処理方法、および記録媒体に関し、特に、明るさが急に変化した場合に、周辺の環境をユーザに迅速に視認させることができるようにした情報処理装置、情報処理方法、および記録媒体に関する。
 ユーザの目の前の風景に画像や文字などの情報を重ねて表示させるAR(Augmented Reality)が注目されている。ARを実現するためのデバイスとして、情報を表示させるための映像光を外光に重畳してユーザに視認させる、透過型のHMD(Head Mounted Display)がある。
 特許文献1には、外光の急激な低下を検知した場合に映像光の輝度を即座に下げることで、外界の視認性を妨げないようにする技術が開示されている。外界の視認性を妨げることなく、映像光による情報の表示が輝度を下げた状態で続けられる。
特開2017-68000号公報
 外光が急激に低下した場合、ユーザの視覚には暗順応が生じ、暗い環境を視認出来るまでには一定の時間がかかる。ユーザは、暗い環境を視認出来るまでの間、外界の情報を認知することができなくなる。
 また、外光が急激に低下した場合、ユーザの安全性の観点からは、外光が低下するまでに表示していた情報と同じ情報を視認させ続ける必要がない。
 本技術はこのような状況に鑑みてなされたものであり、明るさが急に変化した場合に、周辺の環境をユーザに迅速に視認させることができるようにするものである。
 本技術の一側面の情報処理装置は、実空間に存在するオブジェクトを含む環境に関する情報である環境情報を取得する取得部と、前記実空間の明るさに閾値より大きい変化が生じた場合、前記実空間に重畳して視認可能な状態で所定の情報を表示する表示部に対して、前記オブジェクトの形状を表す形状情報の前記環境情報に基づく表示制御を行う表示制御部とを備える。
 本技術の一側面においては、実空間に存在するオブジェクトを含む環境に関する情報である環境情報が取得され、実空間の明るさに閾値より大きい変化が生じた場合、実空間に重畳して視認可能な状態で所定の情報を表示する表示部に対して、オブジェクトの形状を表す形状情報の環境情報に基づく表示制御が行われる。
 本技術によれば、明るさが急に変化した場合に、周辺の環境をユーザに迅速に視認させることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の一実施形態に係る情報処理システムの構成例を示す図である。 右目側光学系の近傍の構成を示す図である。 ユーザの見え方の例を示す図である。 ユーザの見え方の他の例を示す図である。 透過率と表示輝度の設定例を示す図である。 危険時用情報の表示例を示す図である。 危険時用情報の表示に用いられる透過率と表示輝度の設定例を示す図である。 表示輝度の変化の例を示す図である。 表示輝度の変化の他の例を示す図である。 HMDを外したときの見え方の例を示す図である。 色温度の調整の例を示す図である。 HMDの構成例を示すブロック図である。 HMDの表示処理について説明するフローチャートである。 図13のステップS6において行われる危険時用情報表示処理について説明するフローチャートである。 危険時用情報の強調表示の例を示す図である。 危険時用情報の強調表示の他の例を示す図である。 表示輝度の設定例を示す図である。 危険度の評価に用いられる評価値の例を示す図である。 危険度に応じた表示例を示す図である。 透過率と表示輝度の設定例を示す図である。 透過率と表示輝度の設定例を示す他の図である。 HMDの構成例を示すブロック図である。 図22の構成を有するHMDによる表示制御処理について説明するフローチャートである。 HMDの他の構成例を示すブロック図である。 図24の構成を有するHMDによる表示制御処理について説明するフローチャートである。 HMDのさらに他の構成例を示すブロック図である。 図26の構成を有するHMDによる表示制御処理について説明するフローチャートである。 HMDのさらに他の構成例を示すブロック図である。 図28の構成を有するHMDによる表示制御処理について説明するフローチャートである。 コンピュータの構成例を示すブロック図である。
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.第1の実施の形態(周辺の明るさが急激に変化した場合の例)
 2.第2の実施の形態(周辺の明るさが緩やかに変化した場合の例)
<<第1の実施の形態 周辺の明るさが急激に変化した場合の例>>
<情報処理システムについて>
 図1は、本技術の一実施形態に係る情報処理システムの構成例を示す図である。
 図1の情報処理システムは、情報処理装置としてのHMD(Head Mounted Display)1と、コンテンツ配信サーバ2が、インターネットなどのネットワーク3を介して接続されることによって構成される。HMD1とコンテンツ配信サーバ2の間のデータの送受信が、スマートホンやタブレット端末などの、ユーザが有する携帯端末を介して行われるようにしてもよい。
 HMD1は、透過型の表示デバイスを備えた眼鏡型のウェアラブル端末である。HMD1を頭部に装着したユーザの右目の前には、外光とともに各種の情報の光(映像光)をユーザの右目に導く右目側光学系1Rが設けられ、左目の前には、外光とともに各種の情報の光をユーザの左目に導く左目側光学系1Lが設けられる。
 HMD1は、ネットワーク3を介してコンテンツ配信サーバ2と通信を行い、コンテンツ配信サーバ2から送信されてきたデータを受信する。HMD1は、コンテンツ配信サーバ2から送信されてきたデータに基づいて、画像や文字などの各種の情報を表示(描画)し、ユーザに提示する。
 ユーザは、自分の前方の風景に重ねて、各種の情報を見ることになる。このように、HMD1はAR(Augmented Reality)に用いられるウェアラブル端末である。
 HMD1における投影方式は、虚像投影方式であってもよいし、ユーザの目の網膜に直接結像させる網膜投影方式であってもよい。
 HMD1が表示する情報は、コンテンツ配信サーバ2から送信されてきたデータに基づいて表示される情報に限られるものではない。例えば、HMD1に搭載されたメモリに記憶された情報がHMD1において表示される。また、ユーザの携帯端末に記憶されているデータやPC(Personal Computer)に記憶されているデータがHMD1により取得され、各種の情報が表示される。
 図2は、右目側光学系1Rの近傍の構成を示す図である。主な構成について説明する。
 図2に示すように、右目側光学系1Rは、透明部材によって構成される導光板12の表面側に、ガラスなどの透明基板13が貼り付けられることによって構成される。右目側光学系1Rを固定するリムから延びるテンプル部(図示せず)には表示部11が設けられ、右目側光学系1Rの表面側の、左目側光学系1L寄りの位置には、調光素子14が設けられる。
 一点鎖線で囲んで示すように、表示部11は、表示デバイス21、偏光ビームスプリッタ22、光源23、およびレンズ24から構成される。
 表示デバイス21は、LCD(Liquid Crystal Display)などにより構成される反射型の表示デバイス、もしくは、有機EL(Electro Luminescence)ディスプレイなどの自発光表示デバイスにより構成される。表示デバイス21には、ユーザに提示する、画像、文字などの各種の情報が表示される。表示デバイス21は、例えばカラー表示に対応したデバイスである。
 偏光ビームスプリッタ22は、光源23からの光の一部を反射して表示デバイス21に導くとともに、表示デバイス21より出射された光の一部を通過させ、レンズ24を介して導光板12に導く。
 導光板12の内部には、偏向部12Aと、誘電体積層膜が多数積層された多層積層構造体である偏向部12Bが構成される。偏向部12Aは、アルミニウム膜などにより構成され、偏向部12Bを構成する誘電体積層膜は、例えば、高誘電率材料としてのTiO2膜、低誘電率材料としてのSiO2膜から構成される。
 偏光ビームスプリッタ22を介して導かれた表示デバイス21からの出射光は、偏向部12Aにおいて、導光板12の内部に向けて反射される。偏向部12Aにおいて反射された光は、導光板12の内部を全反射することによって伝播し、偏向部12Bにおいて反射された後、ユーザの右目ERに向かって出射される。これにより、表示デバイス21の表示内容を表す映像光がユーザの右目ERに導かれる。
 調光素子14は、エレクトロクロミック素子41を透明電極42、透明電極43で挟むことによって構成される。透明電極42、透明電極43に印可する電圧に応じて、エレクトロクロミック素子41の酸化反応、還元反応が生じ、透過率が制御される。
 透明電極42、透明電極43に印可する電圧は、例えば、HMD1に設けられた照度センサにより検出された、周辺の照度に応じて制御される。周辺の照度に応じて透過率が調整された調光素子14を透過して、外部からの光がユーザの右目ERに導かれる。
 左目側光学系1L側にも、図2に示すような構成と同じ構成が位置を対称にして設けられる。左目側光学系1Lに設けられた表示デバイスには、右目側光学系1Rの表示デバイス21の表示内容と同じ内容の情報が表示され、映像光がユーザの左目に届けられる。
 このような構成を有するヘッドマウントディスプレイの詳細については、例えば、特開2012-252091号公報、特開2013-5201号公報に開示されている。
 このように、HMD1における情報の表示は、表示部11の表示輝度と調光素子14の透過率をそれぞれ調整して行われる。表示輝度は、情報を表示するために表示部11において用いられる輝度である。
 表示部11の表示輝度を表示内容やユーザの視覚特性に応じて調整し、適宜、輝度を抑えることにより、表示デバイス21の寿命を延ばすことが可能になる。また、調光素子14の透過率を調整し、外光の変化を適宜和らげることにより、情報の視認性を確保することが可能になる。
<情報の表示例>
 図3は、ユーザの見え方の例を示す図である。
 図3に示す状態は、いずれの情報も表示されていない状態である。この場合、外光の大部分が目に直接届き、図3に示すように、目の前の実際の風景をユーザは視認することになる。
 図3の例においては、ユーザが家のベッドルームにいるものとされている。ユーザから見て右側には2つのベッドが並び、左奥には椅子やテーブルが置かれている。
 なお、ユーザが実際に見る風景は、破線の矩形で囲んで示すような広い範囲の風景である。図3の略中央に枠Fで囲んで示す風景は、ユーザの視野全体に含まれる風景のうち、HMD1によって情報を重畳して表示することが可能な範囲の風景である。
 すなわち、HMD1の表示可能範囲は、ユーザの視野全体のうちの一部の範囲となる。その一部の範囲を用いて、各種の情報の表示が行われる。以下、HMD1の表示可能範囲内のユーザの見え方について説明する。
 図4は、ユーザの見え方の他の例を示す図である。
 図4のAは、バイクの画像が仮想オブジェクトOとして表示された場合の見え方を示している。HMD1により表示されたオブジェクトについては、ユーザは、目の前に実在するオブジェクトに重畳して、仮想的なオブジェクトとして視認することになる。仮想オブジェクトOは、二次元の画像であってもよいし、立体視が可能な三次元の画像であってもよい。
 図4のAの例においては、透過率が50%であり、表示輝度が50%とされている。
 実際にあるベッドなどの周辺物(オブジェクト)を示す線がぼかした状態で示されていることは、ベッドルームにある周辺物が、透過率を抑えた調光素子14を介して見えていることを表す。また、仮想オブジェクトOを示す線が薄い色で示されていることは、表示輝度が抑えられていることを表す。
 図4のBは、透過率を10%、表示輝度を100%とした状態の見え方を示している。図4のAより周辺物がぼかした状態で示されていることは、図4のBにおける透過率が、図4のAにおける透過率より低いことを表す。
 このような透過率と表示輝度の調整は、ユーザがいる場所を含む周辺の明るさに応じて行われる。周辺の明るさは、例えば、HMD1に設けられた照度センサにより検出された照度に基づいて判断される。HMD1に設けられたカメラにより撮像された画像の輝度に基づいて周辺の明るさが判断されるようにしてもよい。
 図5は、透過率と表示輝度の設定例を示す図である。
 図5の横軸は周辺の明るさを表し、縦軸は表示内容の視認性を表す。
 例えば、周辺の明るさが照度n1である場合、透過率を50%、表示輝度を50%とする組み合わせが用いられる。周辺の明るさが照度n1である場合、図4のAに示すような状態で情報の表示が行われる。
 なお、透過率の最大値が50%となっている理由は、調光素子14そのものの最大透過率が、材料の制限により70%程度であり、また、導光板12の出射側の反射膜の透過率が75%程度であるためである。これらの制限から、HMD1の最大の透過率が例えば50%となる。
 以下においては、適宜、調光素子14の透過率を制御するものとして説明するが、調光素子14の透過率を制御することを通じて、HMD1の全体の透過率が制御されることになる。
 また、周辺の明るさが照度n2である場合、透過率を20%、表示輝度を40%とする組み合わせが用いられる。透過率を50%、表示輝度を50%とする組み合わせが用いられる状態から、透過率を20%、表示輝度を40%とする組み合わせが用いられる状態への遷移と、その逆の遷移は、それぞれ、周辺の明るさが閾値となる明るさになったときに生じる。各状態の遷移については後に詳述する。
 周辺の明るさが照度n3である場合、透過率を20%、表示輝度を60%とする組み合わせが用いられ、周辺の明るさが照度n4である場合、透過率を20%、表示輝度を80%とする組み合わせが用いられる。
 周辺の明るさが照度n5である場合、透過率を10%、表示輝度を60%とする組み合わせが用いられ、周辺の明るさが照度n6である場合、透過率を10%、表示輝度を80%とする組み合わせが用いられる。周辺の明るさが照度n7である場合、透過率を10%、表示輝度を100%とする組み合わせが用いられる。
 周辺の明るさが明るいほど、調光素子14の透過率は、より低くなるように段階的に調整される。
 このような、透過率と表示輝度の組み合わせに関する情報がHMD1には予め設定されている。HMD1は、周辺の明るさを例えば所定の間隔で検出し、検出した明るさに応じた組み合わせを用いて、透過率と表示部11の表示輝度を調整する。
 図5に示すような組み合わせを用いた透過率と表示輝度の調整は通常時にのみ行われる。急に暗くなるなどの危険時には、通常時とは異なる設定を用いて、透過率と表示輝度が調整される。
 例えば、周辺の明るさが、閾値として設定された変化量以上、低下した場合、危険時であると判断され、危険時用情報の表示が行われる。
<危険時用情報の表示例>
 図6は、危険時用情報の表示例を示す図である。
 図6の左端に示す状態は、通常時の状態である。図5の透過率と表示輝度の組み合わせを用いて、各種の情報の表示が行われる。なお、図6の左端の例においては、いずれの情報も表示されていない。
 ここで、白抜き矢印#1の先に示すように停電が発生するなどして、周辺の明るさが急に低下した場合、白抜き矢印#2の先に示すように、周辺物の輪郭を強調するための描画が行われる。HMD1の表示モードが、通常時用の表示モードから危険時用の表示モードに切り替わり、それまで表示されていた情報に代えて、周辺物の輪郭を表す情報が危険時用情報として表示される。
 図6の右端の例においては、ベッド、椅子、テーブル、壁面の窓などのそれぞれの周辺物の輪郭を表す線の画像が、暗い風景に重畳して表示されている。縁や尖った部分などを含む輪郭を表す線の画像は所定の色で表示される。
 すなわち、通常時、HMD1においては、周辺の明るさを検出するだけでなく、カメラにより撮像された画像を解析することによって周辺物を認識し、周辺物の輪郭を構成する特徴点の情報を取得することが繰り返し行われている。周辺物の特徴点の情報は、環境情報としてHMD1のメモリに繰り返し格納される。周辺物の特徴点には、階段の踏み板の角などの、ユーザからの距離が急激に変わる点の情報も含まれる。
 また、通常時、HMD1においては、周辺物の特徴点の情報、加速度センサにより検出された加速度、および、ジャイロセンサにより検出された角速度などに基づいて、ユーザの位置と姿勢を推定することが繰り返し行われている。
 なお、これらの処理は通常時に行われるため、危険時表示のために処理の負荷や電力の消費を特段増加させるものではない。
 周辺の明るさが急に低下した場合、直前に取得された周辺物の特徴点の情報と、位置と姿勢を含むユーザの状態を表す情報に基づいて、図6の右端に示すような、周辺物の輪郭を表す情報の表示が行われることになる。
 図7は、危険時用情報の表示に用いられる透過率と表示輝度の設定例を示す図である。
 図7の横軸は時刻を表す。図7のAは周辺照度の変化を表し、図7のBは透過率の変化を表す。図7のCは表示部11の表示輝度の変化を表す。
 図7のAに示すように、例えば、時刻t1において停電が発生し、周辺照度が閾値以上低下した場合、図7のBに示すように、最大透過率になるように調整される。また、時刻t1のタイミングで、周辺物の輪郭を表す情報の表示が開始される。
 透過率は、時刻t1から所定の時間経過後に最大透過率になる。最大透過率とする状態は所定の時間だけ継続される。
 また、図7のCに示すように、表示部11の表示輝度については、時刻t1の直後の時刻t2までは、時刻t1以前の表示輝度と同じ表示輝度が設定される。表示開始直後、周辺物の輪郭を表す情報は、その前に表示されていた情報と同じ表示輝度を用いて表示されることになる。
 時刻t2以降、表示輝度は、時間の経過に伴って徐々に下げるように調整される。
 図8は、表示輝度の変化の例を示す図である。
 図8の横軸は時刻を表し、縦軸は表示輝度を表す。
 上述したように、周辺物の輪郭を表す情報の表示開始直後の時刻t2以降、表示部11の表示輝度は徐々に低下する。図8の破線L11は表示輝度を表す。
 また、実線L1は、ユーザの暗順応特性を表す。暗順応は、周辺の環境が明るい環境から暗い環境に変化した場合に、時間の経過とともに視力が徐々に確保される、視覚の変化である。
 実線L1で示す暗順応特性は、ユーザが視認するのに必要な最低限の明るさの時間変化を表す。各時刻において、実線L1で示す輝度より高い表示輝度で表示される情報については、ユーザは視認することができ、実線L1で示す輝度より低い表示輝度で表示される情報については、ユーザは視認することができない。
 図8に示すように、周辺物の輪郭を表す情報の表示に用いられる表示輝度は、徐々に低下するものの、常時、暗順応が生じているユーザにとって視認可能な値として設定される。
 これにより、ユーザは、停電によって周辺が急激に暗くなり、暗順応が生じている間でも、周辺物の輪郭を表す情報を視認することが可能になる。
 例えば図9の破線で示すように、時刻t2のタイミングで表示輝度を急激に下げるとした場合、表示輝度が、暗順応特性により表される最低限の輝度を超えることになる時刻t3までは、周辺物の輪郭を表す情報をユーザは視認することができない。図8に示すようにして表示輝度を徐々に低下させることにより、暗い環境を視認出来るまで周辺物の輪郭を表す情報を視認することができないといったことを防ぐことが可能になる。
 暗順応特性は、例えば一般的な人の特性として設定される。後述するように、年齢、視力などのユーザの属性に応じて暗順応特性が設定され、設定された暗順応特性に応じて表示輝度が調整されるようにしてもよい。
 このように、周辺が急に暗くなった場合に周辺物の輪郭を表す情報が表示されることにより、ユーザは、家具の角などの、周辺にある危険なものを把握することができる。
 また、周辺物の輪郭を表す情報が表示輝度を徐々に下げながら表示されるため、周辺物の輪郭を表す情報の表示が、暗順応を妨げてしまうといったことを防ぐことが可能となる。例えば、ユーザは、ある程度時間が経過すれば、HMD1を外したとしても、周辺の環境をすぐに視認することが可能になる。
 図10は、HMD1を外したときの見え方の例を示す図である。
 図10の上段は、表示輝度を変化させない場合の見え方を示し、下段は、図8を参照して説明したようにして表示輝度を変化させた場合の見え方を示す。
 表示輝度を変えずに、周辺物の輪郭を表す情報の表示が行われた場合、一定の表示輝度の情報がユーザの目に届き続け、暗順応が生じにくくなる。従って、白抜き矢印#11の先に示すようにユーザがHMD1を外した場合、暗順応ができていないために、周辺の環境が見えづらいままになってしまうことが起こりうる。
 白抜き矢印#21の先に示すように、周辺物の輪郭を表す情報の表示輝度を暗順応特性に合わせて抑えることにより、そのような、暗順応ができていないために、周辺の環境が見えづらいままになってしまうといったことを防ぐことが可能になる。HMD1を外した場合、白抜き矢印#22の先に示すように、それまでの間に暗順応できているため、ユーザは周辺の環境を視認することが可能となる。
 周辺物の輪郭を表す情報の表示に用いられる表示輝度を、図8に示すように曲線状(非線形)に変化させるのではなく、直線状(線形)に変化させるようにしてもよい。また、連続的に変化させるのではなく、段階的に変化させるようにしてもよい。
 表示輝度が調整されるだけでなく、色温度が調整されるようにしてもよい。
 図11は、色温度の調整の例を示す図である。
 周辺物の輪郭を表す情報の表示開始直後の時刻t2以降、色温度は、徐々に上昇するように調整される。図11の破線L21は、表示部11が描画に用いる色温度を表す。実線L1はユーザの暗順応特性を表す。
 図11に示すように、表示開始直後は、色温度が低い色で周辺物の輪郭を表す情報を表示し、時間の経過に伴って徐々に色温度を上げていくことにより、ユーザの暗順応を妨げずに、視認性を確保することが可能となる。人間の目の特性上、暗くなった直後に青色成分が強い色、すなわち色温度が高い色のものを見た場合、それにより暗順応が妨げられてしまうが、そのようなことを防ぐことが可能になる。
 以上のようにして危険時用情報を表示させるHMD1の処理についてはフローチャートを参照して後述する。
<HMDの構成>
 図12は、HMD1の構成例を示すブロック図である。
 図12に示すように、HMD1は、制御部51、モーションセンサ52、カメラ53、照度センサ54、通信部55、メモリ56、および映像表示部57から構成される。モーションセンサ52は、加速度センサ71とジャイロセンサ72から構成される。モーションセンサ52、カメラ53、照度センサ54については、HMD1に設けられるのではなく、ユーザが持つ携帯端末などの外部の装置に設けられるようにしてもよい。
 制御部51は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などにより構成される。制御部51は、ROMやメモリ56に記憶されているプログラムを実行し、HMD1の全体の動作を制御する。所定のプログラムを実行することにより、制御部51においては、位置・姿勢推定部81、周辺環境認識部82、撮像制御部83、表示制御部84、およびカウンタ85が実現される。
 位置・姿勢推定部81は、カメラ53により撮像された画像、加速度センサ71により検出された加速度、および、ジャイロセンサ72により検出された角速度に基づいて、ユーザの状態を推定する。ユーザの状態の推定には、適宜、周辺環境認識部82により認識された周辺物の特徴点の情報も用いられる。
 例えば、位置・姿勢推定部81には、各位置の周辺物に関する情報が用意されている。位置・姿勢推定部81は、周辺環境認識部82により認識された周辺物や、カメラ53により撮像された画像に写る周辺物に基づいて、ユーザの位置を推定する。
 また、位置・姿勢推定部81には、ユーザの姿勢毎の、加速度、角速度に関する情報が用意されている。位置・姿勢推定部81は、加速度センサ71により検出された加速度とジャイロセンサ72により検出された角速度に基づいて、ユーザの姿勢を推定する。
 このように、位置・姿勢推定部81が推定するユーザの状態には、ユーザの位置とユーザの姿勢のうちの少なくともいずれかが含まれる。位置と姿勢の推定結果を表す情報は表示制御部84に供給される。
 周辺環境認識部82は、カメラ53により撮像された画像を解析することによって、周辺に実在する物(周辺物)の位置、形状、特徴点などを認識する。適宜、周辺物までの距離、周辺物が置かれている高さ、周辺物の種類なども認識される。周辺環境認識部82に対しては、これらの各内容の認識に用いるための情報が用意されている。周辺環境認識部82は、周辺の物理的な環境に関する情報である環境情報を取得する取得部として機能する。
 周辺環境認識部82は、周辺物の位置、形状、特徴点、距離、高さ、および種類のうちの少なくともいずれかに関する情報を含む環境情報を表示制御部84に出力する。周辺物の位置は、例えば、HMDの位置を基準とした周辺物の相対的な位置を表し、撮像画像に基づいて取得される。周辺物にビーコンなどの通信機器をあらかじめ設置しておき、通信機器からの信号に基づいてHMDにより位置が取得されるようにしてもよい。周辺環境認識部82から出力された環境情報に含まれる周辺物の特徴点の情報は、位置・姿勢推定部81にも供給され、適宜、ユーザの位置と姿勢の推定に用いられる。
 撮像制御部83は、カメラ53を制御し、ユーザの目の前の風景を繰り返し撮像する。
 また、撮像制御部83は、周辺が急に暗くなったことを照度センサ54から供給されたデータに基づいて検出した場合、利得を上げるとともに露光時間を長くするように、カメラ53の撮像素子を制御する。撮像素子の設定を変更することにより、周辺が急に暗くなった場合でも、周辺環境の認識などに用いられる適切な画像を撮像し続けることが可能になる。
 表示制御部84は、映像表示部57の表示部11と調光素子14を制御し、画像やテキストなどの各種の情報を表示させる。表示制御部84には、図5を参照して説明したような透過率と表示輝度の組み合わせを表す情報が用意されている。表示制御部84による表示は、例えば、外部の装置から送信され、通信部55において受信されたデータ、または、メモリ56から読み出されたデータに基づいて行われる。
 また、表示制御部84は、周辺が急に暗くなったことを照度センサ54から供給されたデータに基づいて検出した場合、表示モードを危険時用の表示モードとして、危険時用情報の表示を開始する。表示制御部84は、危険時用情報の表示を開始した後、カウンタ85から供給されるカウント値により表される時間の経過に伴って表示輝度を調整したり、色温度を調整したりして、危険時用情報の表示を制御する。
 カウンタ85は、時間経過を表すカウント値を表示制御部84に出力する。
 モーションセンサ52の加速度センサ71は、HMD1の加速度を検出し、検出した加速度の情報を位置・姿勢推定部81に出力する。
 ジャイロセンサ72は、HMD1の角速度を検出し、検出した角速度の情報を位置・姿勢推定部81に出力する。
 カメラ53は、例えばHMD1の正面の所定の位置に設けられ、ユーザの前方の風景を撮像する。カメラ53は、撮像することによって得られた画像を位置・姿勢推定部81と周辺環境認識部82に出力する。
 照度センサ54は、照度を検出し、周辺の明るさを表す照度の情報を撮像制御部83と表示制御部84に出力する。
 通信部55は、無線LAN、Bluetooth(登録商標)などの通信モジュールである。通信部55は、ユーザが持っている携帯端末やコンテンツ配信サーバ2などの外部の装置と通信を行う。通信部55による通信によって、ユーザに提示する情報が取得される。
 メモリ56は、フラッシュメモリなどの記憶媒体である。メモリ56には、制御部51のCPUが実行するプログラム、ユーザに提示する情報などの各種のデータが記憶される。
 映像表示部57は、表示部11、調光素子14により構成される。映像表示部57は、表示制御部84による制御に従って動作し、右目側光学系1Rと左目側光学系1Lの各部を介して、所定の情報の映像光を外光とともにユーザの両目に届ける。
 なお、HMD1には、ユーザにより操作されるボタン、音を出力するスピーカ、ユーザの音声を検出するマイクなども設けられる。
<HMDの動作>
 ここで、図13のフローチャートを参照して、以上のような構成を有するHMD1の表示処理について説明する。
 ステップS1において、表示制御処理が行われる。ステップS1において行われる表示制御処理は、周辺の明るさの変化が小さい通常時の処理である。表示制御処理の詳細については後述する。表示制御処理により、図4を参照して説明したような状態で所定の情報が表示される。
 ステップS2において、周辺環境認識部82は、カメラ53により撮像された画像を解析することによって、周辺物の位置、形状、特徴点などを認識する。認識結果を含む環境情報は表示制御部84に供給される。
 ステップS3において、位置・姿勢推定部81は、カメラ53により撮像された画像、加速度センサ71により検出された加速度、および、ジャイロセンサ72により検出された角速度に基づいて、ユーザの位置と姿勢を推定する。位置と姿勢の推定結果を表す情報は表示制御部84に供給される。
 ステップS4において、照度センサ54は周辺照度を検出する。周辺照度を表す情報は表示制御部84に供給される。
 周辺環境認識部82による周辺物の位置、形状、特徴点などの認識処理、位置・姿勢推定部81によるユーザの位置と姿勢の推定処理、および、照度センサ54による周辺照度の検出処理は繰り返し行われる。
 ステップS5において、表示制御部84は、周辺照度が一定以上下がったか否かを判定する。周辺照度が一定以上下がったとステップS5において判定された場合、処理はステップS6に進む。
 ステップS6において、危険時用情報表示処理が行われる。危険時用情報表示処理は、上述したように、それまで表示していた情報の表示を終了し、危険時用情報を表示する処理である。危険時用情報表示処理の詳細については図14のフローチャートを参照して後述する。
 危険時用情報表示処理が行われた後、または、ステップS5において、周辺照度が一定以上下がっていないと判定された場合、ステップS1に戻り、以上の処理が繰り返される。
 例えば、各種の情報の表示を終了することがユーザにより指示された場合、または、ユーザがHMD1を外したことが検出された場合、図13の処理は終了となる。
 次に、図14のフローチャートを参照して、図13のステップS6において行われる危険時用情報表示処理について説明する。
 ステップS11において、表示制御部84は、透過率が最大になるように調光素子14を制御する。
 ステップS12において、表示制御部84は、周辺環境認識部82により認識された周辺物の輪郭を表す情報を描画する。周辺物の輪郭を表す線の画像は、例えば、位置・姿勢推定部81により推定されたユーザの位置と姿勢に応じて、実在する周辺物の輪郭に重なる位置に表示される。
 ステップS13において、表示制御部84は、カウンタ85により計測されたカウント値に基づいて、一定時間が経過したか否かを判定する。
 一定時間が経過したとステップS13において判定した場合、ステップS14において、表示制御部84は、表示輝度を下げるとともに色温度を上げて、輪郭を表す情報の描画を続ける。
 ステップS14において表示輝度と色温度を調整した後、または、ステップS13において一定時間が経過していないと判定した場合、ステップS15において、表示制御部84は、周辺照度が一定以上であるか否かを判定する。
 周辺照度が一定以上ではないとステップS15において判定した場合、ステップS12に戻り、周辺物の輪郭を表す情報の表示が続けられる。
 停電が解消することによって周辺照度が一定以上になったとステップS15において判定された場合、図13のステップS6に戻り、それ以降の処理が行われる。
 以上の処理により、停電等が生じ、周辺が急に暗くなった場合であっても、周辺の環境をユーザに迅速に視認させることが可能になる。また、表示輝度や色温度を暗順応特性に応じて制御することにより、ユーザの暗順応を妨げずに、表示物の視認性を確保することが可能となる。
 以上においては、危険時用情報として、周辺物の輪郭を表す情報が表示されるものとしたが、周辺物の表面を表す情報、周辺物の特徴点を表す情報などの、周辺物の形状を表す各種の情報が表示されるようにしてもよい。周辺物の輪郭を表す線も、周辺物の形状を表す情報である。周辺物の形状を表す形状情報には、周辺物の輪郭を表す線、周辺物の表面を表す線や色、周辺物の特徴点を表すマークなどの、各種の色、形状、模様の情報が含まれる。
<変形例>
・危険時用情報の表示例1
 実空間にある周辺物の輪郭だけではなく、暗闇において視認できないものの、危険時に必要となる情報を予め認識しておき、照度が急に低下したときにそれらの情報が表示されるようにしてもよい。危険時に必要となる情報には、例えば、部屋の出口、階段、広域避難所等の避難経路、懐中電灯の置き場などの情報がある。
 危険時に必要となる情報を認識する方法としては、カメラ53により撮像された画像に基づいて物体認識を行う方法がある。また、地図情報をHMD1に予め与えておき、GPS(Global Positioning System)により測定された位置に応じて、危険時に必要となる情報を認識する方法がある。
・危険時用情報の表示例2
 輪郭だけでなく、周辺物全体の形状を表す情報が表示されるようにしてもよい。このとき、例えば輪郭については強調表示が行われる。強調表示には、例えば、階調を変えたり、表示色を変えたり、太さを変えたり、点滅させたり、線の種類を破線や波線にしたりするなどの、各種の方法が用いられる。
 ユーザの視感度情報が予め与えられている場合、輪郭の強調表示が、ユーザの視感度情報に応じて表示方法を変えて行われるようにしてもよい。例えば、ユーザが低波長領域の色の視認性が低い場合、高波長領域の色が輪郭の強調表示に用いられる。
・危険時用情報の表示例3
 図15は、危険時用情報の強調表示の例を示す図である。
 図15の左上に示す状態は、周辺物の輪郭をそのまま表示する状態である。図15の左上の例においては、周辺物の輪郭を表す線の画像が暗い風景に重畳して表示されている。
 白抜き矢印#51の先に示すように、周辺物の輪郭を表す線のうち、ベッド、椅子、テーブルなどの危険度の高い部分の輪郭を表す線が、破線によって強調表示されるようにしてもよい。
 白抜き矢印#52の先に示すように、壁や窓等の、危険度の低い部分の輪郭を表す線の画像が非表示とされるようにしてもよい。
 白抜き矢印#53の先に示すように、周辺物までの距離に応じて、輪郭を表す線が色分けして表示されるようにしてもよい。この場合、例えば、最も近い位置にあるベッドの輪郭を表す線が最も目立つ色で表示され、次に近い位置にある椅子とテーブルの輪郭を表す線が、次に目立つ他の色で表示される。
・危険時用情報の表示例4
 図16は、危険時用情報の強調表示の他の例を示す図である。
 図16の左上に示す状態は、周辺物の輪郭をそのまま表示する状態である。
 白抜き矢印#61の先に示すように、周辺物の輪郭を表す線が、危険度に応じて階調を変えて表示されるようにしてもよい。
 白抜き矢印#62の先に示すように、周辺物の輪郭を表す線が、危険度に応じて太さを変えて表示されるようにしてもよい。
 白抜き矢印#63の先に示すように、輪郭を表す線だけでなく、角や特徴点が強調表示されるようにしてもよい。角や特徴点の強調表示は、例えば、目立つ色、目立つ形状、点滅等を用いて行われる。特徴点は、周りの部分と比べて、輝度や形状が大きく変化する部分であり、例えば、撮像された画像を解析することによって特定される。
 このように、輪郭を表す線は、線の種類、色、階調、太さを含む各要素を適宜組み合わせて表示される。
・危険時用情報の表示例5
 暗い環境において周辺照度が一瞬だけ上がるような場合、表示輝度は、一度高くなってから、徐々に下がるように調整される。
 図17は、表示輝度の設定例を示す図である。
 図17のAは周辺照度の変化を表し、図17のBはユーザにとって視認しやすい輝度を表す。図17のCは表示輝度を表す。
 例えば暗い夜道を歩いている状態で、図17のAに示すように、近くを走行する自動車のヘッドライトが目に入るなどして時刻t11において一瞬だけ明るくなった場合、図17のBに示すように、目がくらむため、どの輝度も視認しにくくなる。その後、視認しやすい輝度が一時的に上がり、再度、暗順応するまでは周辺を視認しづらい状態になる。
 図17のCに示すように、時刻t11の直後において、周辺物の輪郭の表示輝度を一度高くし、徐々に下げるように制御することにより、再度の暗順応を妨げずに、周辺物の輪郭を表示し続けることが可能になる。
 このように、周辺の明るさが急に低下したとき以外のタイミングで危険時用情報が表示されるようにしてもよい。
・危険時用情報の表示例6
 周辺物の輪郭表示を行わない場合があってもよい。例えば、天井や、天井に設置されている照明などの、ユーザの背の高さより高い位置にある周辺物は、ユーザが動いたとしてもぶつかる可能性が少ない。このような高い位置にある周辺物については、輪郭を表す線が表示されないようにしてもよい。
・危険時用情報の表示例7
 外光の強度が低い場合、ユーザの移動速度も落ちると考えられる。遠くにある周辺物については輪郭を表す線を表示させず、近くにある周辺物についてのみ、輪郭を表す線を表示させることにより、移動時の危険を低減させることができる。
 また、大型家具や柱といった、位置が変わらない周辺物については輪郭を表す線を表示させず、地震があったときに移動する可能性がある、本棚やキャスタ付きの棚などの周辺物についてのみ、輪郭を表す線を表示させ、注意喚起するようにしてもよい。位置が変わる可能性があるか否かについても、周辺環境の認識時にカメラ53により撮像された画像に基づいて特定される。
 このように、オブジェクトとしての周辺物の種類に応じて、危険時用情報の表示が制御される。周辺物の種類には、大型/小型などの大きさの種類、高い/低いなどの高さの種類、重い/軽いなどの重さの種類、可動/固定などの設置の仕方に応じた種類、材質の種類などが含まれる。
・危険時用情報の表示例8
 実空間の風景に重畳して表示させることができる位置にない周辺物の情報が危険時用情報として表示されるようにしてもよい。例えば、表示部11の表示可能範囲(図3の枠Fの範囲)外であって、カメラ53の撮影可能範囲内にある周辺物の情報を元に、避難経路がある方向の情報や、火災時に火が出ている方向の情報が表示されるようにしてもよい。また、それらの情報が、スピーカを使って、音声によって通知されるようにしてもよい。
・危険時用情報の表示例9
 周辺環境をユーザが視認できる場合、広域避難場所への経路やユーザの視野外の情報といった、直接視認できない情報のみを表示させ、周辺物の輪郭を表示させないようにしてもよい。暗順応の速度の情報や、年齢、視力といったユーザの属性に関する情報を予め入力しておき、それらの情報を用いて、周辺環境をユーザが視認できるか否かの判断が行われるようにしてもよい。
・環境の認識の例
 カメラ53の撮像素子でも検出できないほど外光が低下した場合、カメラ53を用いた周辺物の情報の取得が停止されるようにしてもよい。この場合、周辺物の情報の更新は、最後に取得された周辺物の情報を、加速度センサ71とジャイロセンサ72によるユーザの運動状態の推定結果を用いて更新するようにして行われる。
 また、撮像素子のゲインを上げたカメラ53によって撮像された画像に基づいて取得された情報と、取得済みの周辺物の情報とを組み合わせて情報の提示が行われるようにしてもよい。
 例えば、カメラ53によって撮像された画像からは認識できない、物陰に隠れた家具などの物に関する情報が表示されるようにしてもよい。ユーザからは見えない場所にある周辺物の情報を取得済みの情報に基づいて表示することにより、ユーザが動いている場合であっても、奥にある周辺物にぶつかることを回避させることができる。
・危険時用情報の表示例10
 ユーザが直接視認することができない周辺物に関する情報が危険時用情報として表示されるようにしてもよい。例えば、近くにある物の後ろに隠れた物の情報を表示させることで、近くにある物を踏み越えたり避けたりしたときに、その物の先にある物にぶつかることを回避させることができる。
・危険時用情報の表示例11
 暗い環境下におけるユーザの危険性の度合いを表す危険度を算出し、算出した危険度に応じて、危険時用情報の表示が制御されるようにしてもよい。危険度は、例えば、位置、姿勢などのユーザの状態、環境情報により表される周辺の環境に基づいて求められる。
 また、階段のような上下方向の移動が発生する箇所や、ユーザと周辺物との距離による危険度合いに応じて、表示色や階調を変えて危険時用情報が表示されるようにしてもよい。これにより、動いているユーザに、つまずき防止を促したり、近くにある物への注意を促したりすることが可能となる。
 図18は、危険度の評価に用いられる評価値の例を示す図である。
 図18に示す表は、「ユーザの姿勢」、「ユーザの移動速度」、「周辺物の凹凸」、および「ユーザの位置(周辺物との距離)」のそれぞれの状況に応じた評価値を示す表である。評価値は「0」、「1」、「2」の3段階で表され、数値が高いほど危険度が高い。
 「ユーザの姿勢」の評価値として示されるように、ユーザが座っている場合、評価値として「0」が設定され、立ち止まっている場合、評価値として「1」が設定される。また、ユーザが動いている場合、評価値として「2」が設定される。
 「ユーザの移動速度」の評価値として示されるように、ユーザが1km/h未満の速度で移動している場合、評価値として「0」が設定され、1km/h以上、3km/h以下の速度で移動している場合、評価値として「1」が設定される。また、ユーザが3km/hを超える速度で移動している場合、評価値として「2」が設定される。
 「周辺物の凹凸」の評価値として示されるように、周辺物の凹凸が10cm未満である場合、評価値として「0」が設定され、10cm以上である場合、評価値として「1」が設定される。
 「ユーザの位置」の評価値として示されるように、周辺物までの距離が2mを超えている場合、評価値が「0」として設定され、1m以上、2m以下である場合、評価値として「1」が設定される。周辺物までの距離が1m未満である場合、評価値として「2」が設定される。
 このように、危険度の評価に用いられる評価値がそれぞれの状況に応じて設定される。
 各周辺物の危険度は、例えば評価値の合計として求められる。例えば、ユーザが1km/h以上、3km/h以下の速度で動いており、10cm以上の凹凸が表面にある周辺物が、1m以上、2m以下の距離にある場合、その周辺物の危険度は「5」として求められる。
 図19は、危険度に応じた表示例を示す図である。
 図19の例においては、周辺物の輪郭を表す情報の表示方法の項目として、線の種類、線の点滅のあり/なし、階調、色、太さ、特徴点表示のあり/なし、特徴点の点滅のあり/なしが示されている。
 例えば、危険度が「0」である場合、線の種類が実線として設定され、線の点滅のあり/なしが、なしとして設定される。また、階調が最大値の半分として設定され、色が緑として設定される。太さが1pix(1画素)として設定され、特徴点表示のあり/なしが、なしとして設定される。特徴点の点滅のあり/なしが、なしとして設定される。
 危険度が「1~2」の場合、または「3以上」である場合も、同様にして各項目の内容が設定され、周辺物の輪郭を表す情報の表示が行われる。
 このように、危険度が高いほど、より強調した形で、輪郭を表す情報が表示される。
・危険時用情報の出力例
 照度の急な低下を検出すること以外にも、サイレンの音をマイクにより検出したり、火災の発生を温度センサにより検出したりすることをトリガとして、危険時用情報の表示が行われるようにしてもよい。外部の装置から送信されてきた情報に基づいて災害の発生が検出され、そのことをトリガとして危険時用情報が表示されるようにしてもよい。
・表示タイミングの例
 外光強度がある一定値以上になった場合、ユーザが周辺環境を視認できる状況に戻ったとして、危険時用情報の表示が終了されるようにしてもよい。
 また、HMD1に搭載された装着検出用の近接センサによってユーザがHMD1を外したことが検出されたタイミングで、危険時用情報の表示が停止されるようにしてもよい。
 ユーザにより指示されたタイミングや、ユーザが広域避難所に到着したことがGPSにより測定された位置情報に基づいて検出されたタイミングで、危険時用情報の表示が停止されるようにしてもよい。
・表示輝度の調整の例
 暗順応の速度は、年齢によって変化することが知られている。具体的には、成人の場合、年齢を重ねる毎に暗順応の速度が低下する傾向にあることが知られている。
 ユーザの年齢の情報を予め設定しておくことができるようにしてもよい。この場合、表示輝度の低下速度は、ユーザの年齢に応じた暗順応特性に従って調整される。年齢だけでなく、視力、性別などの各種のユーザの属性に応じて暗順応特性が設定され、設定された暗順応特性に応じて表示輝度が調整されるようにしてもよい。
 ユーザが静止している場合と動いている場合とで特性が切り替えられるといったように、ユーザの状態に応じた特性に従って表示輝度が調整されるようにしてもよい。
・環境の認識の例
 カメラ53により撮像された画像に基づいて周辺環境が認識されるものとしたが、他のセンサを用いて、周辺環境が認識されるようにしてもよい。
 例えば、赤外線を利用したToF(Time of Flight)センサを用いて周辺環境が認識されるようにしてもよい。ToFセンサを用いることにより、可視光を検出可能な撮像素子を搭載したカメラ53では認識できないほど暗い環境においても、周辺環境を認識することが可能となる。
・環境情報の取得
 周辺の環境を表す環境情報がカメラにより撮像された画像に基づいて取得されるものとしたが、ネットワークを介して接続されるサーバから取得されるようにしてもよい。例えば、周辺物として存在するソファの型番情報が取得されている場合、型番情報に基づいて、ソファの形状の情報がサーバから取得されるようにしてもよい。ソファの型番情報は、例えばソファに内蔵された装置と通信を行うことによって取得されるようにしてもよいし、HMD1の位置情報に基づいて特定されるようにしてもよい。
<<第2の実施の形態 周辺の明るさが緩やかに変化した場合の例>>
 危険時用情報の表示が行われる危険時以外の通常時においては、図5を参照して説明した透過率と表示輝度の組み合わせを用いて、各種の情報の表示が行われる。
<透過率と表示輝度の設定例>
 図20は、透過率と表示輝度の設定例を示す図である。
 図20に示す透過率と表示輝度の組み合わせは、図5を参照して説明した組み合わせと同様である。図5の説明と重複する説明については適宜省略する。図20の横軸は周辺の明るさを表し、縦軸は表示内容の視認性を表す。周辺の明るさは、輝度または照度により表される。
 上述したように、透過率は、10%、20%、50%の3段階で設定される。一方、透過率と組み合わせて用いる表示輝度は、40%、50%、60%、80%、100%の5段階で設定される。透過率は、表示輝度の段階数より少ない段階数で調整されることになる。
 これらの透過率と表示輝度を用いて7種類の組み合わせが設定される。
 図20の左から順に示すように、状態s1は、透過率を50%、表示輝度を50%とする組み合わせが用いられる状態である。
 状態s2乃至s4は、透過率を20%として、それぞれ、表示輝度を40%、60%、80%とする組み合わせが用いられる状態である。状態s1のときより低い透過率が設定されるため、状態s2乃至s4においては、ユーザの目に届く外光がより抑えられることになる。
 状態s5乃至s7は、透過率を10%として、それぞれ、表示輝度を60%、80%、100%とする組み合わせが用いられる状態である。状態s2乃至s4のときより低い透過率が設定されるため、状態s5乃至s7においては、ユーザの目に届く外光がより抑えられることになる。
 表示輝度の調整は、表示部11(表示デバイス21)の表示期間を表すパルスのDuty比を調整することによって行われる。図12の表示制御部84は、所定のDuty比のパルスからなる制御信号を出力することによって表示部11の表示輝度を調整する。制御信号を構成するパルスのDuty比は、表示部11の表示輝度に対応する。
 例えば、Duty比が50%のパルスからなる制御信号が表示制御部84から出力された場合、表示部11の表示輝度として50%が設定される。また、Duty比が100%のパルスからなる制御信号が表示制御部84から出力された場合、表示部11の表示輝度として100%が設定される。
 透過率が1段階低くなると、Duty比もそれまでのDuty比よりも低く、すなわち、表示輝度が暗く設定される。これは、透過率が1段階下がると、調光素子14によって制限されていた外光がさらに制限され、ユーザの目に入射する光量が少なくなることにより、画像の表示輝度を下げた方が好ましいためである。このような制御を行うことにより、表示デバイス21の劣化を抑えることができる。
 図20の矢印#101として示すように、状態s1から状態s2への遷移は、周辺の明るさが明るさn12より暗い状態において、明るさn12に変化したときに生じる。一方、矢印#111として示す、状態s2から状態s1への遷移は、周辺の明るさが明るさn11より明るい状態において、明るさn11に変化したときに生じる。
 状態s1から状態s2への遷移が生じる明るさn12は、状態s2から状態s1への遷移が生じる明るさn11より明るい値として設定される。
 また、矢印#102として示すように、状態s2から状態s3への遷移は、周辺の明るさが明るさn14より暗い状態において、明るさn14に変化したときに生じる。一方、矢印#112として示す、状態s3から状態s2への遷移は、周辺の明るさが明るさn13より明るい状態において、明るさn13に変化したときに生じる。
 状態s2から状態s3への遷移が生じる明るさn14は、状態s3から状態s2への遷移が生じる明るさn13より明るい値として設定される。
 他の状態間の遷移についても同様である。例えば、矢印#106として示すように、状態s6から状態s7への遷移は、周辺の明るさが明るさn22より暗い状態において、明るさn22に変化したときに生じる。一方、矢印#116として示す、状態s7から状態s6への遷移は、周辺の明るさが明るさn21より明るい状態において、明るさn21に変化したときに生じる。
 状態s6から状態s7への遷移が生じる明るさn22は、状態s7から状態s6への遷移が生じる明るさn21より明るい値として設定される。
 このように、透過率の調整には、図20の双方向の矢印で示すようにヒステリシス特性が設定される。
 ヒステリシス特性を持たせた形で透過率が調整されることにより、少しの照度変化によって透過率が頻繁に変わり、ユーザが不快に感じてしまうことを防ぐことが可能となる。
 すなわち、明るい状態から暗い状態に変化するときの、透過率を上昇させる閾値と、暗い状態から明るい状態に変化するときの、透過率を低下させる閾値とに差をつけることにより、透過率が頻繁に変化することを防ぐことができる。
 透過率の調整だけでなく、表示輝度の調整にもヒステリシス特性が設定される。これにより、表示輝度の調整を、外光の変化に合わせて、より自然な形で行うことが可能となる。
 図21は、透過率と表示輝度の設定例を示す他の図である。
 図21の上段は、横軸を周辺の明るさ、縦軸を透過率としたときの透過率の変化を表す。なお、上述したように、ここでいう透過率は、調光素子14の透過率を調整することによって実現される、HMD1全体の透過率である。また、図21の下段は、横軸を周辺の明るさ、縦軸を表示部11の表示輝度としたときの表示輝度の変化を表す。
 透過率は、図20を参照して説明したように、周辺が暗い状態から明るい状態に変化する場合、明るさn12のときに50%から20%に変化し、明るさn18のときに20%から10%に変化する。また、透過率は、周辺が明るい状態から暗い状態に変化する場合、明るさn17のときに10%から20%に変化し、明るさn11のときに20%から50%に変化する。
 表示輝度は、図20を参照して説明したように、周辺が暗い状態から明るい状態に変化する場合、明るさn12のときに50%から40%に変化し、明るさn14のときに40%から60%に変化する。また、表示輝度は、明るさn16のときに60%から80%に変化し、明るさn18のときに80%から60%に変化する。表示輝度は、明るさn20のときに60%から80%に変化し、明るさn22のときに80%から100%に変化する。
 また、表示輝度は、周辺が明るい状態から暗い状態に変化する場合、明るさn21のときに100%から80%に変化し、明るさn19のときに80%から60%に変化する。また、表示輝度は、明るさn17のときに60%から80%に変化し、明るさn15のときに80%から60%に変化する。表示輝度は、明るさn13のときに60%から40%に変化し、明るさn11のときに40%から50%に変化する。
 通常時、HMD1においては、このような透過率と表示輝度の組み合わせを用いて、各種の情報の表示が行われる。周辺の明るさに応じた透過率と表示輝度の制御は、例えば、ユーザが動いている速度などの、ユーザの状態に応じた間隔で行われる。
 ここで、HMD1などのウェアラブル端末を屋外で使用する場合、外光が非常に強いことによって、表示が見えづらくなることがある。このような状況に対して、例えば、特開2012-252091号公報や特開2013-5201号公報には、透過率を照度センサの出力値に基づいて制御する技術が開示されている。
 調光素子として例えばエレクトロクロミック素子を用いることが考えられる。エレクトロクロミック素子は、材料の酸化反応・還元反応を利用することにより、透過率を変化させるものである。
 イオンの拡散などの化学反応を利用した調光素子は、液晶シャッターなどの素子と比較すると、透過率の変化の応答速度が数秒程度といったように遅い。応答速度が遅いことにより、明るい場所から暗い場所に移動した場合、透過率の上昇が遅れ、数秒間、ユーザの視界が暗いままになるといった状況が起こりうる。
 応答速度が遅いことの対策として、明るさの検出周期を短くするといった対策が考えられる。しかし、明るさの検出周期を短くした場合、明るさの短時間の変化にも連動して透過率が変化してしまうことになる。透過率が頻繁に変化することになって、ユーザが不快に感じてしまうことがある。
 すなわち、明るさの変化が起こるときには調光素子を素早く応答させた方が好ましいが、透過率の変化が頻繁に起こりすぎるとユーザが不快に感じることがある。
 HMD1においては、ユーザに不快感を与えるのを防ぐために、透過率と表示輝度の制御をユーザの状態に応じた間隔で行うなどの各種の処理が行われる。
<構成例1>
 図22は、HMD1の構成例を示すブロック図である。
 図22に示す構成のうち、図12を参照して説明した構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
 なお、図22には、HMD1の一部の構成のみが示されている。図22のHMD1には、図12を参照して説明した他の構成も含まれる。図24、図26、図28に示す構成についても同様である。
 図22の制御部51は、位置・姿勢推定部81と表示制御部84から構成される。表示制御部84は、透過率制御部101と表示輝度制御部102から構成される。
 位置・姿勢推定部81は、モーションセンサ52から供給されたセンサデータを解析し、ユーザの状態を推定する。位置・姿勢推定部81が推定するユーザの状態には、ユーザの動きの種類と、ユーザの動きの速さのうちの少なくともいずれかが含まれる。位置・姿勢推定部81に対しては、モーションセンサ52を構成する加速度センサ71により検出された加速度、ジャイロセンサ72により検出された角速度の情報がセンサデータとして供給される。
 例えば、明るさの変化を伴わない、首振りなどの動きが生じている状況、体が動かずにHMD1が動いている状況などの動きの種類の分類は、加速度の変化に基づいて行われる。また、加速度の積分値によって、ユーザの動きの速さが検出される。地磁気センサがモーションセンサ52に設けられ、方角に関する情報に基づいてユーザの動きの速さなどが検出されるようにしてもよい。
 位置・姿勢推定部81は、ユーザの動きの種類とユーザの動きの速さを表す情報を透過率制御部101と表示輝度制御部102に出力する。
 透過率制御部101は、位置・姿勢推定部81から供給された情報によりユーザの状態を特定し、照度センサ54により検出された周辺照度の読み出し間隔を調整する。照度センサ54による周辺照度の検出は、所定の周期で繰り返し行われる。
 透過率制御部101は、調整した読み出し間隔に従って周辺照度を読み出し、周辺照度を読み出す毎に、調光素子14の透過率を、図20等を参照して説明したようにして制御する。周辺照度の読み出し間隔を制御することにより、調光素子14の透過率の制御を行う間隔も制御されることになる。
 例えば、透過率制御部101は、ユーザが静止している場合、周辺照度の読み出しを、1秒以上といったような長い間隔で行う。ユーザが静止している場合、周辺の環境が急変するような状況はあまりなく、透過率制御部101は、透過率を制御する間隔をそれほど短くする必要がない。
 1秒以上といったような長い間隔で透過率を制御することにより、前方を一瞬遮られたような場合でも、調光素子14の透過率の制御が行われないため、ユーザに不快感を与えてしまうのを防ぐことができる。
 また、透過率制御部101は、ユーザが歩いている場合、周辺照度の読み出しを、0.1秒といったような短い間隔で行う。ユーザが歩いている場合、明るい屋外から暗い屋内に移動するなどの、明るさが異なる場所に移動することが想定されるため、透過率制御部101は、周辺照度の読み出し間隔を短く設定する。
 0.1秒以上といったような短い間隔で透過率を制御することにより、調光素子14の応答速度が遅い場合であっても、遅延感の無い動作を行わせることが可能となる。
 表示輝度制御部102は、透過率制御部101と同様にして、周辺照度の読み出し間隔と、表示輝度の制御の間隔を制御する。
 すなわち、表示輝度制御部102は、位置・姿勢推定部81から供給された情報によりユーザの状態を特定し、周辺照度の読み出し間隔を調整する。表示輝度制御部102は、調整した読み出し間隔に従って周辺照度を読み出し、周辺照度を読み出す毎に、表示部11の表示輝度を、図20等を参照して説明したようにして制御する。
 例えば、表示輝度制御部102は、ユーザが静止している場合、周辺照度の読み出しを、1秒以上といったような長い間隔で行う。また、表示輝度制御部102は、ユーザが歩いている場合、周辺照度の読み出しを、0.1秒といったような短い間隔で行う。
 ここで、図23のフローチャートを参照して、図22の構成を有するHMD1による表示制御処理について説明する。
 ステップS101において、モーションセンサ52の加速度センサ71は、HMD1の加速度を検出し、ジャイロセンサ72は、HMD1の角速度を検出する。加速度の情報および角速度の情報はモーションデータとして位置・姿勢推定部81に供給される。
 ステップS102において、位置・姿勢推定部81は、モーションセンサ52から供給されたモーションデータを解析し、ユーザの動きの種類を推定するとともに、ユーザの動きの速度を算出する。ユーザの動きの種類とユーザの動きの速度を表す情報は透過率制御部101と表示輝度制御部102に供給される。
 ステップS103において、表示制御部84(透過率制御部101と表示輝度制御部102)は、位置・姿勢推定部81から供給された情報によりユーザの状態を特定し、照度センサ54により検出された周辺照度の読み出し間隔を決定する。
 ステップS104において、表示制御部84は、決定した読み出し間隔に従って周辺照度を読み出す。
 ステップS105において、表示制御部84は、周辺照度が低下して閾値以下になったか否かを判定する。
 周辺照度が閾値以下になったとステップS105において判定した場合、ステップS106において、表示制御部84は、透過率と表示輝度を制御する。すなわち、図20、図21を参照して説明した、周辺照度が閾値より低下したときの組み合わせを用いて、透過率制御部101により調光素子14の透過率が調整され、表示輝度制御部102により表示部11の表示輝度が調整される。
 一方、周辺照度が閾値以下になっていないとステップS105において判定した場合、ステップS107において、表示制御部84は、周辺照度が上昇して閾値以上になったか否かを判定する。
 周辺照度が閾値以上になったとステップS107において判定した場合、ステップS108において、表示制御部84は、透過率と表示輝度を制御する。すなわち、図20、図21を参照して説明した、周辺照度が閾値より上昇したときの組み合わせを用いて、透過率制御部101により調光素子14の透過率が調整され、表示輝度制御部102により表示部11の表示輝度が調整される。
 周辺照度が閾値以上になっていないとステップS107において判定された場合、または、ステップS106,S108の処理が行われた後、ステップS101に戻り、以上の処理が繰り返される。
 以上のように、周辺照度の読み出し間隔をユーザの動きの速さに基づいて決定することにより、ユーザが歩行している場合であっても、明るさの変化に対して遅延なく、透過率と表示輝度の調整を行うことが可能となる。
 透過率と表示輝度の調整を遅延なく行うことにより、歩行時のユーザの安全性を確保することができる。
 また、静止時には、透過率と表示輝度が頻繁に変わることがなくなるため、短時間の明るさの変化に対して反応することがなくなり、透過率と表示輝度の不快な変化の発生を抑えることができる。また、透過率と表示輝度の制御を行う間隔を長くすることによって、演算リソースの削減が可能となり、消費電力の削減や、画像のレンダリングなどにリソースを分配することが可能となる。
 このような表示制御処理が、図13のステップS1において行われる。図25、図27、および図29を参照して説明する表示制御処理も同様に、図13のステップS1において行われる処理となる。
 照度センサ54により検出された周辺照度の読み出し間隔が調整されるのではなく、照度センサ54による周辺照度の検出間隔が調整されるようにしてもよい。
<構成例2>
 図24は、HMD1の他の構成例を示すブロック図である。
 図24に示すHMD1の制御部51の構成は、位置・姿勢推定部81に代えて画像解析部111が設けられている点で、図22に示す構成と異なる。画像解析部111に対しては、カメラ53により撮像された画像が供給される。カメラ53による撮像は、所定の周期で繰り返し行われる。
 図24のHMD1においては、カメラ53により撮像された画像を解析することによって所定の時間経過後の明るさが予測され、予測された明るさの変化に応じて、透過率と表示輝度が制御される。
 画像解析部111は、現在の画像の中心輝度と、直前に撮像された画像の中心輝度とを比較することによって明るさの変化を検出する。中心輝度は、画像の中心を含む所定の範囲の輝度である。明るさの変化が、画像全体の輝度を用いて検出されるようにしてもよい。
 ユーザの正面方向とカメラ53の撮影方向が一致するため、移動しようとしているユーザは、移動方向、すなわち画像の中心部を向いていると考えられる。画像中心部の輝度は、所定時間後の画像全体の輝度を表しているといえる。
 画像解析部111は、画像中心部の方向をユーザの移動方向とし、画像中心部の輝度である中心輝度を、所定時間経過後の明るさを表す輝度として算出する。画像解析部111は、中心輝度の情報を透過率制御部101と表示輝度制御部102に出力する。
 透過率制御部101は、画像解析部111から供給された情報により表される中心輝度に基づいて、調光素子14の透過率を、図20等を参照して説明したようにして制御する。中心輝度に応じて処理が行われることにより、透過率がいわば先取り的に制御されることになる。
 表示輝度制御部102は、画像解析部111から供給された情報により表される中心輝度に基づいて、表示部11の表示輝度を、図20等を参照して説明したようにして制御する。中心輝度に応じて処理が行われることにより、表示部11の表示輝度が先取り的に制御されることになる。
 ここで、図25のフローチャートを参照して、図24の構成を有するHMD1による表示制御処理について説明する。
 ステップS111において、カメラ53は、周辺環境の撮像を行う。
 ステップS112において、画像解析部111は、カメラ53により撮像された画像の中心輝度を算出する。
 ステップS113において、表示制御部84は、中心輝度が低下して閾値以下になったか否かを判定する。
 中心輝度が閾値以下になったとステップS113において判定した場合、ステップS114において、表示制御部84は、透過率と表示輝度を制御する。図20、図21を参照して説明した、輝度が閾値より低下したときの組み合わせを用いて、透過率制御部101により調光素子14の透過率が調整され、表示輝度制御部102により表示部11の表示輝度が調整される。
 一方、中心輝度が低下して閾値以下になっていないとステップS113において判定した場合、ステップS115において、表示制御部84は、中心輝度が上昇して閾値以上になったか否かを判定する。
 中心輝度が閾値以上になったとステップS115において判定した場合、ステップS116において、表示制御部84は、透過率と表示輝度を制御する。図20、図21を参照して説明した、輝度が閾値より上昇したときの組み合わせを用いて、透過率制御部101により調光素子14の透過率が調整され、表示輝度制御部102により表示部11の表示輝度が調整される。
 中心輝度が閾値以上になっていないとステップS115において判定された場合、または、ステップS114,S116の処理が行われた後、ステップS111に戻り、以上の処理が繰り返される。
 以上の処理により、カメラ53により撮像された画像に基づいて、ユーザが所定時間経過後にいると推測される環境の明るさを予測することにより、遅延なく、透過率と表示輝度の調整を行うことが可能となる。
<構成例3>
 図26は、HMD1のさらに他の構成例を示すブロック図である。
 図26に示すHMD1の制御部51の構成は、位置・姿勢推定部81と撮像制御部83が設けられている点で、図24に示す構成と異なる。図26のHMD1においては、カメラ53による撮像間隔が、ユーザの状態に応じて調整される。また、カメラ53により撮像された画像から周辺の明るさが予測され、予測された明るさの変化に応じて、透過率と表示輝度が制御される。
 位置・姿勢推定部81は、モーションセンサ52から供給されたセンサデータを解析し、ユーザの動きの種類と、ユーザの動きの速さを検出する。位置・姿勢推定部81は、ユーザの動きの種類とユーザの動きの速さを表す情報を撮像制御部83に出力する。
 撮像制御部83は、位置・姿勢推定部81から供給された情報によりユーザの状態を特定し、カメラ53による撮像間隔を調整する。
 例えば、撮像制御部83は、ユーザが静止している場合、周辺の撮像を、1秒以上といったような長い間隔で行う。また、透過率制御部101は、ユーザが歩いている場合、周辺の撮像を、0.1秒といったような短い間隔で行う。調整された間隔に従ってカメラ53により撮像された画像は画像解析部111に供給される。
 画像解析部111は、図24の画像解析部111と同様に、カメラ53により撮像された画像の中心輝度に基づいて、明るさの変化を検出する。
 ここで、図27のフローチャートを参照して、図26の構成を有するHMD1による表示制御処理について説明する。
 ステップS121において、モーションセンサ52の加速度センサ71は、HMD1の加速度を検出し、ジャイロセンサ72は、HMD1の角速度を検出する。加速度の情報および角速度の情報はモーションデータとして位置・姿勢推定部81に供給される。
 ステップS122において、位置・姿勢推定部81は、モーションセンサ52から供給されたモーションデータを解析し、ユーザの動きの種類を推定するとともに、ユーザの動きの速度を算出する。ユーザの動きの種類とユーザの動きの速度を表す情報は撮像制御部83に供給される。
 ステップS123において、撮像制御部83は、位置・姿勢推定部81から供給された情報によりユーザの状態を特定し、カメラ53による撮像間隔を決定する。
 ステップS124において、カメラ53は、撮像制御部83により決定された撮像間隔に従って周辺環境の撮像を行う。
 ステップS125において、画像解析部111は、カメラ53により撮像された画像の中心輝度を算出する。
 ステップS126において、画像解析部111は、中心輝度が、予め設定されている時間であるd秒前の輝度から、ΔLだけ低下したか否かを判定する。ΔLは所定の輝度を表す。
 d秒前の輝度からΔLだけ低下したとステップS126において判定した場合、ステップS127において、画像解析部111は、現在のユーザの速度に基づいて、T秒後の画像全体の輝度を予測する。例えば、カメラ53により撮像された画像のうち、現在のユーザの速度に応じた範囲が設定され、設定された範囲の輝度が、T秒後の画像全体の予測輝度として求められる。
 ステップS128において、画像解析部111は、予測輝度が閾値以下であるか否かを判定する。
 予測輝度が閾値以下であるとステップS128において判定した場合、ステップS129において、表示制御部84は、透過率と表示輝度を制御する。図20、図21を参照して説明した、輝度が閾値より低下したときの組み合わせを用いて、透過率制御部101により調光素子14の透過率が調整され、表示輝度制御部102により表示部11の表示輝度が調整される。
 一方、ステップS126において、中心輝度がd秒前の輝度からΔLだけ低下していないと判定した場合、ステップS130において、画像解析部111は、中心輝度が、d秒前の輝度からΔLだけ上昇したか否かを判定する。
 d秒前の輝度からΔLだけ上昇したとステップS130において判定した場合、ステップS131において、画像解析部111は、現在のユーザの速度に基づいて、T秒後の画像全体の輝度を予測する。
 ステップS132において、画像解析部111は、予測輝度が閾値以上であるか否かを判定する。
 予測輝度が閾値以上であるとステップS132において判定した場合、ステップS133において、表示制御部84は、透過率と表示輝度を制御する。図20、図21を参照して説明した、輝度が閾値より上昇したときの組み合わせを用いて、透過率制御部101により調光素子14の透過率が調整され、表示輝度制御部102により表示部11の表示輝度が調整される。
 予測輝度が閾値以上ではないとステップS132において判定された場合、ステップS121に戻り、以上の処理が繰り返される。d秒前の輝度からΔLだけ上昇していないとステップS130において判定された場合、または、ステップS129,S133の処理が行われた場合も同様に、ステップS121に戻り、以上の処理が繰り返される。
 以上の処理により、透過率と表示輝度をユーザの移動に追随して調整するだけでなく、所定時間経過後の環境の明るさをユーザの状態に応じて予測して、透過率と表示輝度を調整することが可能となる。
 ユーザが歩行している場合と走っている場合とで、T秒の設定が切り替えられるようにしてもよい。例えば、ユーザが走っている場合、歩行している場合より短い時間だけ先の時間の明るさが予測される。
<構成例4>
 図28は、HMD1のさらに他の構成例を示すブロック図である。
 図28に示すHMD1の制御部51の構成は、撮像制御部83の代わりに周辺環境認識部82とロケーション情報処理部121が設けられている点で、図26に示す構成と異なる。図28のHMD1においては、ロケーション情報に基づいて所定の時間経過後の周辺の明るさが予測され、予測された明るさの変化に応じて、透過率と表示輝度が制御される。ロケーション情報は、ユーザの位置の情報である。
 位置・姿勢推定部81は、モーションセンサ52から供給されたセンサデータを解析し、ユーザの動きの種類と、ユーザの動きの速さを検出する。位置・姿勢推定部81は、ユーザの動きの種類とユーザの動きの速さを表す情報を画像解析部111とロケーション情報処理部121に出力する。
 画像解析部111は、ユーザの動きの種類とユーザの動きの速さが位置・姿勢推定部81により検出されることに応じて、カメラ53により撮像された画像を解析し、画像に写っている、周辺の環境の特徴を抽出する。画像解析部111は、周辺の環境の特徴に関する情報をロケーション情報処理部121に出力する。画像解析部111により抽出された周辺の環境の特徴は、現在位置の推定に用いられる。
 ロケーション情報処理部121は、画像解析部111から供給された情報により表される特徴に基づいて現在位置を推定する。ロケーション情報処理部121に対しては、例えば、地図情報とともに、地図上の各位置の特徴に関する情報が予め与えられている。
 ロケーション情報処理部121は、画像解析部111から供給された情報により表される特徴と、予め与えられている各位置の特徴とを照合することによって、現在位置を推定する。現在位置の推定は、適宜、位置・姿勢推定部81により検出されたユーザの状態に応じて位置を補正することによって行われる。
 ロケーション情報処理部121は、現在位置から所定の時間経過後の位置を、位置・姿勢推定部81により検出されたユーザの状態に応じて推定し、推定結果を表す情報を、現在位置の情報とともに周辺環境認識部82に出力する。
 周辺環境認識部82は、照度センサ54により検出された周辺照度を現在位置の周辺照度として特定する。
 また、周辺環境認識部82は、ロケーション情報処理部121から供給された情報により表される、所定の時間経過後の位置における周辺照度を推定する。周辺環境認識部82に対しては、例えば、地図情報とともに、地図上の各位置の周辺照度に関する情報が予め与えられている。
 周辺環境認識部82は、予め与えられている各位置の周辺照度に関する情報を参照し、ロケーション情報処理部121により推定された位置の周辺照度を特定する。例えば、現在からT秒後の位置の周辺照度が周辺環境認識部82により予測される。
 ここで、図29のフローチャートを参照して、図28の構成を有するHMD1による表示制御処理について説明する。
 ステップS141において、モーションセンサ52の加速度センサ71は、HMD1の加速度を検出し、ジャイロセンサ72は、HMD1の角速度を検出する。加速度の情報および角速度の情報はモーションデータとして位置・姿勢推定部81に供給される。
 ステップS142において、位置・姿勢推定部81は、モーションセンサ52から供給されたモーションデータを解析し、ユーザの動きの種類を推定するとともに、ユーザの動きの速度を算出する。ユーザの動きの種類とユーザの動きの速度の情報は画像解析部111とロケーション情報処理部121に供給される。
 ステップS143において、カメラ53は、周辺環境の撮像を行う。撮像された画像は画像解析部111に供給される。
 ステップS144において、画像解析部111は、カメラ53により撮像された画像を解析し、画像に写っている、周辺の環境の特徴を抽出する。周辺環境の特徴に関する情報はロケーション情報処理部121に供給される。
 ステップS145において、ロケーション情報処理部121は、画像解析部111から供給された情報により表される特徴に基づいて現在位置を推定する。
 ステップS146において、周辺環境認識部82は、照度センサ54により検出された現在位置の周辺照度を取得する。
 ステップS147において、周辺環境認識部82は、周辺照度が一定以上低下したか否かを判定する。
 例えば周辺照度が急に低下したことから、周辺照度が一定以上低下したとステップS147において判定された場合、ステップS148において、図14を参照して説明した危険時用情報表示処理が行われる。
 周辺照度が一定値以上低下していないとステップS147において判定された場合、または、ステップS148において危険時用情報表示処理が行われた場合、処理はステップS149に進む。
 ステップS149において、周辺環境認識部82は、現在のユーザの速度に基づいて、T秒後の位置の周辺照度を予測する。
 ステップS150において、周辺環境認識部82は、T秒後の位置の周辺照度が低下して閾値以下になるか否かを判定する。
 T秒後の位置の周辺照度が閾値以下になるとステップS150において判定された場合、ステップS151において、表示制御部84は、透過率と表示輝度を制御する。図20、図21を参照して説明した、周辺照度が閾値より低下したときの組み合わせを用いて、透過率制御部101により調光素子14の透過率が調整され、表示輝度制御部102により表示部11の表示輝度が調整される。
 一方、ステップS150において、T秒後の位置の周辺照度が閾値以下にならないと判定した場合、ステップS152において、周辺環境認識部82は、T秒後の位置の周辺照度が上昇して閾値以上になるか否かを判定する。
 T秒後の位置の周辺照度が閾値以上になるとステップS152において判定された場合、ステップS153において、表示制御部84は、透過率と表示輝度を制御する。図20、図21を参照して説明した、周辺照度が閾値より上昇したときの組み合わせを用いて、透過率制御部101により調光素子14の透過率が調整され、表示輝度制御部102により表示部11の表示輝度が調整される。
 T秒後の周辺照度が閾値以上にならないとステップS152において判定された場合、ステップS141に戻り、以上の処理が繰り返される。ステップS151,S153の処理が行われた場合も同様に、ステップS141に戻り、以上の処理が繰り返される。
 以上の処理により、ユーザが歩行している場合であっても、所定時間経過後にユーザがいると推測される位置の周辺照度を予測し、周辺照度の変化に対して遅延なく、透過率と表示輝度の調整を行うことが可能となる。
 画像を解析することによって現在位置の推定が行われるものとしたが、GPSなどを用いて現在位置の推定が行われるようにしてもよい。GPSを用いることにより、制御部51は、トンネルの出入り口付近などでの急な照度変化を予測し、透過率と表示輝度を事前に変化させることが可能となる。
 GPSを用いる場合、測位結果の精度に関する対策が必要となる。例えば、GPSの測定結果の推移から得られた速度と、モーションセンサ52により検出されたセンサデータに基づいて算出された速度に一定以上の乖離がある場合、モーションセンサ52により検出されたセンサデータに基づいて算出された速度に基づいて、測位結果が補正されるようにしてもよい。
<変形例>
 以上の表示制御は、メガネ型のウェアラブル端末ではなく、スマートホン、タブレット端末などの携帯端末に適用可能である。
 例えば、携帯端末のカメラにより撮像された画像に重ねて所定の画像を表示させる場合、カメラにより撮像された画像の透過度が調光素子14の透過度と同様にして調整され、重ねて表示される画像の表示輝度が表示部11の表示輝度と同様にして調整される。
 表示の制御を行う制御部(表示制御部84)と表示部(映像表示部57)がHMD1の内部に設けられるものとしたが、それらの構成がHMD1の外部に設けられるようにしてもよい。この場合、表示制御部が行う制御には、調光素子と表示部に対する直接の制御だけでなく、表示のための制御信号を表示部に対して出力することも含まれる。制御信号は、表示する画像データそのものである場合もあるし、画像の表示を指示する信号だけの場合もある。
・コンピュータの構成例
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、汎用のパーソナルコンピュータなどにインストールされる。
 図30は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003は、バス1004により相互に接続されている。
 バス1004には、さらに、入出力インタフェース1005が接続されている。入出力インタフェース1005には、キーボード、マウスなどよりなる入力部1006、ディスプレイ、スピーカなどよりなる出力部1007が接続される。また、入出力インタフェース1005には、ハードディスクや不揮発性のメモリなどよりなる記憶部1008、ネットワークインタフェースなどよりなる通信部1009、リムーバブルメディア1011を駆動するドライブ1010が接続される。
 以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを入出力インタフェース1005及びバス1004を介してRAM1003にロードして実行することにより、上述した一連の処理が行われる。
 CPU1001が実行するプログラムは、例えばリムーバブルメディア1011に記録して、あるいは、ローカルエリアネットワーク、インターネット、デジタル放送といった、有線または無線の伝送媒体を介して提供され、記憶部1008にインストールされる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
<構成の組み合わせ例>
 本技術は、以下のような構成をとることもできる。
(1)
 実空間に存在するオブジェクトを含む環境に関する情報である環境情報を取得する取得部と、
 前記実空間の明るさに閾値より大きい変化が生じた場合、前記実空間に重畳して視認可能な状態で所定の情報を表示する表示部に対して、前記オブジェクトの形状を表す形状情報の前記環境情報に基づく表示制御を行う表示制御部と
 を備える情報処理装置。
(2)
 前記表示制御部は、前記形状情報を表示させた後、輝度を変化させて前記形状情報を表示させる
 前記(1)に記載の情報処理装置。
(3)
 前記表示制御部は、前記形状情報の輝度の変化を、ユーザの属性に応じて、または、前記ユーザの位置と姿勢のうちの少なくともいずれかを含む前記ユーザの状態に応じて制御する
 前記(1)または(2)に記載の情報処理装置。
(4)
 前記表示制御部は、前記形状情報として、前記オブジェクトの輪郭線を表示させる
 前記(1)乃至(3)のいずれかに記載の情報処理装置。
(5)
 前記取得部は、前記オブジェクトの位置、前記オブジェクトまでの距離、前記オブジェクトの高さ、および、前記オブジェクトの種類のうちの少なくともいずれかに関する情報を前記環境情報として取得する
 前記(1)乃至(4)のいずれかに記載の情報処理装置。
(6)
 前記表示制御部は、前記環境情報に基づいて特定される前記オブジェクトの危険度に応じて、前記形状情報の表示を制御する
 前記(1)乃至(5)のいずれかに記載の情報処理装置。
(7)
 前記表示制御部は、前記形状情報としての前記オブジェクトの輪郭線を、種類、太さ、色、および階調のうちの少なくともいずれかを前記危険度に応じて変えて表示させる
 前記(1)乃至(6)のいずれかに記載の情報処理装置。
(8)
 前記表示制御部は、前記形状情報として、前記オブジェクトの特徴点を表す情報を表示させる
 前記(1)乃至(7)のいずれかに記載の情報処理装置。
(9)
 前記実空間の光を所定の透過率でユーザの目に導く調光部をさらに備え、
 前記表示制御部は、前記閾値より大きい明るさの変化が生じた場合、透過率を上げるように前記調光部を制御する
 前記(1)乃至(8)のいずれかに記載の情報処理装置。
(10)
 前記情報処理装置は、前記ユーザの頭部に装着されるヘッドマウントディスプレイである
 前記(1)乃至(9)のいずれかに記載の情報処理装置。
(11)
 前記実空間を撮像する撮像部と、
 前記閾値より大きい明るさの変化が生じた場合、利得を上げるとともに露光時間を長くするように前記撮像部を制御する撮像制御部と
 をさらに備える前記(1)乃至(10)のいずれかに記載の情報処理装置。
(12)
 前記表示制御部は、前記形状情報を表示させた後、色温度を徐々に上げて前記形状情報を表示させる
 前記(1)乃至(11)のいずれかに記載の情報処理装置。
(13)
 前記表示制御部は、前記閾値より大きい明るさの変化が生じた場合、明るさの変化が生じる前に表示させていた情報に代えて、前記形状情報を表示させる
 前記(1)乃至(12)のいずれかに記載の情報処理装置。
(14)
 前記表示制御部は、前記実空間の明るさが所定の明るさになった場合、前記形状情報の表示を終了させる
 前記(1)乃至(13)のいずれかに記載の情報処理装置。
(15)
 情報処理装置が、
 実空間に存在するオブジェクトを含む環境に関する情報である環境情報を取得し、
 前記実空間の明るさに閾値より大きい変化が生じた場合、前記実空間に重畳して視認可能な状態で所定の情報を表示する表示部に対して、前記オブジェクトの形状を表す形状情報の前記環境情報に基づく表示制御を行う
 情報処理方法。
(16)
 コンピュータに、
 実空間に存在するオブジェクトを含む環境に関する情報である環境情報を取得し、
 前記実空間の明るさに閾値より大きい変化が生じた場合、前記実空間に重畳して視認可能な状態で所定の情報を表示する表示部に対して、前記オブジェクトの形状を表す形状情報の前記環境情報に基づく表示制御を行う
 処理を実行させるためのプログラムを記録した記録媒体。
 また、本技術は、以下のような構成をとることもできる。
(A)
 実空間の光を所定の透過率でユーザの目に導く調光部と、
 前記実空間に重畳して視認可能な状態で所定の情報を表示する表示部と、
 前記調光部の透過率と、前記表示部が表示する前記所定の情報の輝度とを前記実空間の明るさに応じて制御することを、前記ユーザの状態に応じた間隔で行う表示制御部と
 を備える情報処理装置。
(B)
 前記表示制御部は、前記ユーザが静止している場合、前記ユーザが動いている場合より長い間隔で前記調光部の透過率と前記所定の情報の輝度とを制御する
 前記(A)に記載の情報処理装置。
(C)
 前記表示制御部は、前記ユーザが動いている場合、前記ユーザの移動速度が速いほど短くなるように前記間隔を調整する
 前記(A)または(B)に記載の情報処理装置。
(D)
 前記表示制御部は、予め設定された組み合わせに従って、前記調光部の透過率と前記所定の情報の輝度を制御する
 前記(A)乃至(C)のいずれかに記載の情報処理装置。
(E)
 前記表示制御部は、前記調光部の透過率を、前記所定の情報の輝度の切り替えに用いる段階数より少ない段階数で調整する
 前記(D)に記載の情報処理装置。
(F)
 複数の前記組み合わせのうちの第1の組み合わせを用いて前記所定の情報の表示を行う第1の状態から、前記実空間の明るさがより明るい場合に用いる第2の組み合わせを用いて前記所定の情報の表示を行う第2の状態に遷移するときの閾値となる前記実空間の明るさと、前記第2の状態から前記第1の状態に遷移するときの閾値となる前記実空間の明るさは、異なる明るさとして設定される
 前記(D)または(E)に記載の情報処理装置。
(G)
 前記第1の状態から前記第2の状態に遷移するときの閾値となる前記実空間の明るさは、前記第2の状態から前記第1の状態に遷移するときの閾値となる前記実空間の明るさより明るい
 前記(F)に記載の情報処理装置。
(H)
 照度センサをさらに備え、
 前記表示制御部は、前記照度センサにより検出された前記実空間の明るさに応じて、前記調光部の透過率と前記所定の情報の輝度とを制御する
 前記(A)乃至(G)のいずれかに記載の情報処理装置。
(I)
 前記実空間を撮像する撮像部をさらに備え、
 前記表示制御部は、前記撮像部により撮像された画像を解析することによって特定された前記実空間の明るさに応じて、前記調光部の透過率と前記所定の情報の輝度とを制御する
 前記(A)乃至(G)のいずれかに記載の情報処理装置。
(J)
 前記表示制御部は、前記ユーザの状態としての移動速度に基づいて予測された所定の時間経過後の前記実空間の明るさに応じて、前記調光部の透過率と前記所定の情報の輝度とを制御する
 前記(A)乃至(G)のいずれかに記載の情報処理装置。
(K)
 前記表示制御部は、前記ユーザの移動速度が速い場合、前記ユーザの移動速度が遅い場合より短い時間を前記所定の時間として予測された、前記所定の時間経過後の前記実空間の明るさに応じて、前記調光部の透過率と前記所定の情報の輝度とを制御する
 前記(J)に記載の情報処理装置。
(L)
 前記表示制御部は、さらに、前記ユーザの状態としての前記ユーザの位置に基づいて予測された、前記所定の時間経過後の前記実空間の明るさに応じて、前記調光部の透過率と前記所定の情報の輝度とを制御する
 前記(J)または(K)に記載の情報処理装置。
(M)
 前記実空間を撮像する撮像部と、
 前記撮像部により撮像された画像を解析することによって特定された前記ユーザの位置に基づいて、前記実空間の明るさを予測する予測部と
 をさらに備える前記(L)に記載の情報処理装置。
(N)
 現在位置を測定する測位部と、
 前記測位部により測定された前記ユーザの位置に基づいて、前記実空間の明るさを予測する予測部と
 をさらに備える前記(L)に記載の情報処理装置。
(O)
 前記情報処理装置は、前記ユーザの頭部に装着されるヘッドマウントディスプレイである
 前記(A)乃至(M)のいずれかに記載の情報処理装置。
(P)
 実空間の光を所定の透過率でユーザの目に導く調光部と、
 前記実空間に重畳して視認可能な状態で所定の情報を表示する表示部と
 を有する情報処理装置が、
 前記調光部の透過率と、前記表示部が表示する前記所定の情報の輝度とを前記実空間の明るさに応じて制御することを、前記ユーザの状態に応じた間隔で行う
 情報処理方法。
(Q)
 実空間の光を所定の透過率でユーザの目に導く調光部と、
 前記実空間に重畳して視認可能な状態で所定の情報を表示する表示部と
 を有する情報処理装置のコンピュータに、
 前記調光部の透過率と、前記表示部が表示する前記所定の情報の輝度とを前記実空間の明るさに応じて制御することを、前記ユーザの状態に応じた間隔で行う
 処理を実行させるためのプログラムを記録した記録媒体。
 1 HMD, 2 コンテンツ配信サーバ, 3 ネットワーク, 11 表示部, 14 調光素子, 51 制御部, 52 モーションセンサ, 53 カメラ, 54 照度センサ, 55 通信部, 56 メモリ, 57 映像表示部, 71 加速度センサ, 72 ジャイロセンサ, 81 位置・姿勢推定部, 82 周辺環境認識部, 83 撮像制御部, 84 表示制御部, 85 カウンタ, 101 透過率制御部, 102 表示輝度制御部, 111 画像解析部, 121 ロケーション情報処理部

Claims (16)

  1.  実空間に存在するオブジェクトを含む環境に関する情報である環境情報を取得する取得部と、
     前記実空間の明るさに閾値より大きい変化が生じた場合、前記実空間に重畳して視認可能な状態で所定の情報を表示する表示部に対して、前記オブジェクトの形状を表す形状情報の前記環境情報に基づく表示制御を行う表示制御部と
     を備える情報処理装置。
  2.  前記表示制御部は、前記形状情報を表示させた後、輝度を変化させて前記形状情報を表示させる
     請求項1に記載の情報処理装置。
  3.  前記表示制御部は、前記形状情報の輝度の変化を、ユーザの属性に応じて、または、前記ユーザの位置と姿勢のうちの少なくともいずれかを含む前記ユーザの状態に応じて制御する
     請求項2に記載の情報処理装置。
  4.  前記表示制御部は、前記形状情報として、前記オブジェクトの輪郭線を表示させる
     請求項1に記載の情報処理装置。
  5.  前記取得部は、前記オブジェクトの位置、前記オブジェクトまでの距離、前記オブジェクトの高さ、および、前記オブジェクトの種類のうちの少なくともいずれかに関する情報を前記環境情報として取得する
     請求項1に記載の情報処理装置。
  6.  前記表示制御部は、前記環境情報に基づいて特定される前記オブジェクトの危険度に応じて、前記形状情報の表示を制御する
     請求項5に記載の情報処理装置。
  7.  前記表示制御部は、前記形状情報としての前記オブジェクトの輪郭線を、種類、太さ、色、および階調のうちの少なくともいずれかを前記危険度に応じて変えて表示させる
     請求項6に記載の情報処理装置。
  8.  前記表示制御部は、前記形状情報として、前記オブジェクトの特徴点を表す情報を表示させる
     請求項1に記載の情報処理装置。
  9.  前記実空間の光を所定の透過率でユーザの目に導く調光部をさらに備え、
     前記表示制御部は、前記閾値より大きい明るさの変化が生じた場合、透過率を上げるように前記調光部を制御する
     請求項1に記載の情報処理装置。
  10.  前記情報処理装置は、前記ユーザの頭部に装着されるヘッドマウントディスプレイである
     請求項9に記載の情報処理装置。
  11.  前記実空間を撮像する撮像部と、
     前記閾値より大きい明るさの変化が生じた場合、利得を上げるとともに露光時間を長くするように前記撮像部を制御する撮像制御部と
     をさらに備える請求項1に記載の情報処理装置。
  12.  前記表示制御部は、前記形状情報を表示させた後、色温度を徐々に上げて前記形状情報を表示させる
     請求項1に記載の情報処理装置。
  13.  前記表示制御部は、前記閾値より大きい明るさの変化が生じた場合、明るさの変化が生じる前に表示させていた情報に代えて、前記形状情報を表示させる
     請求項1に記載の情報処理装置。
  14.  前記表示制御部は、前記実空間の明るさが所定の明るさになった場合、前記形状情報の表示を終了させる
     請求項1に記載の情報処理装置。
  15.  情報処理装置が、
     実空間に存在するオブジェクトを含む環境に関する情報である環境情報を取得し、
     前記実空間の明るさに閾値より大きい変化が生じた場合、前記実空間に重畳して視認可能な状態で所定の情報を表示する表示部に対して、前記オブジェクトの形状を表す形状情報の前記環境情報に基づく表示制御を行う
     情報処理方法。
  16.  コンピュータに、
     実空間に存在するオブジェクトを含む環境に関する情報である環境情報を取得し、
     前記実空間の明るさに閾値より大きい変化が生じた場合、前記実空間に重畳して視認可能な状態で所定の情報を表示する表示部に対して、前記オブジェクトの形状を表す形状情報の前記環境情報に基づく表示制御を行う
     処理を実行させるためのプログラムを記録した記録媒体。
PCT/JP2019/008001 2018-03-14 2019-03-01 情報処理装置、情報処理方法、および記録媒体 WO2019176577A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/978,546 US11631380B2 (en) 2018-03-14 2019-03-01 Information processing apparatus, information processing method, and recording medium
JP2020505765A JP7173126B2 (ja) 2018-03-14 2019-03-01 情報処理装置、情報処理方法、および記録媒体
KR1020207024296A KR20200130810A (ko) 2018-03-14 2019-03-01 정보 처리 장치, 정보 처리 방법, 및 기록 매체
EP19766764.5A EP3767432A4 (en) 2018-03-14 2019-03-01 INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND RECORDING MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-046335 2018-03-14
JP2018046335 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019176577A1 true WO2019176577A1 (ja) 2019-09-19

Family

ID=67908183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008001 WO2019176577A1 (ja) 2018-03-14 2019-03-01 情報処理装置、情報処理方法、および記録媒体

Country Status (5)

Country Link
US (1) US11631380B2 (ja)
EP (1) EP3767432A4 (ja)
JP (1) JP7173126B2 (ja)
KR (1) KR20200130810A (ja)
WO (1) WO2019176577A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186581A1 (ja) * 2020-03-17 2021-09-23 株式会社ソニー・インタラクティブエンタテインメント 画像生成装置および画像生成方法
WO2022146696A1 (en) * 2021-01-04 2022-07-07 Rovi Guides, Inc. Methods and systems for controlling media content presentation on a smart glasses display
WO2022196069A1 (ja) * 2021-03-15 2022-09-22 ソニーグループ株式会社 情報処理装置、情報処理方法、及び、プログラム
WO2023042433A1 (ja) * 2021-09-15 2023-03-23 ソニーグループ株式会社 情報処理装置、情報処理システム、情報処理方法、及び、プログラム
US11747622B2 (en) 2021-01-04 2023-09-05 Rovi Guides, Inc. Methods and systems for controlling media content presentation on a smart glasses display
US11906737B2 (en) 2021-01-04 2024-02-20 Rovi Guides, Inc. Methods and systems for controlling media content presentation on a smart glasses display

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113407263A (zh) * 2020-03-16 2021-09-17 富顶精密组件(深圳)有限公司 车用中控屏***及控制该***的方法
GB2606183B (en) 2021-04-28 2023-11-22 Sony Interactive Entertainment Inc Head mountable display system and methods
KR102574494B1 (ko) * 2021-08-03 2023-09-06 주식회사 엘지유플러스 Ar 글래스 시스템 및 이에 포함되는 사용자 단말기 및 그들의 제어방법
US12002176B2 (en) 2022-08-03 2024-06-04 Eqpme Inc. Systems and methods for dynamic interaction with an augmented reality environment
US11688149B1 (en) * 2022-08-03 2023-06-27 Eqpme Inc. Systems and methods for dynamic interaction with an augmented reality environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085829A (ja) * 2009-10-19 2011-04-28 Nikon Corp ヘッドマウントディスプレイ
JP2011175035A (ja) * 2010-02-23 2011-09-08 Shimadzu Corp 頭部装着型表示装置
JP2012252091A (ja) 2011-06-01 2012-12-20 Sony Corp 表示装置
JP2013005201A (ja) 2011-06-16 2013-01-07 Sony Corp 表示装置
JP2017068000A (ja) 2015-09-30 2017-04-06 セイコーエプソン株式会社 透過型表示装置及び透過型表示装置用の調光シェード
JP2017102298A (ja) * 2015-12-02 2017-06-08 株式会社ソニー・インタラクティブエンタテインメント 表示制御装置及び表示制御方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328259A (ja) * 1992-05-26 1993-12-10 Olympus Optical Co Ltd 頭部装着式ディスプレイ装置
DE102009004432B4 (de) * 2008-01-25 2016-12-08 Denso Corporation Kraftfahrzeuganzeigevorrichtung zum Anzeigen eines ein vorderes Hindernis umkreisenden Bildflecks
MX2012010540A (es) * 2010-03-23 2013-01-28 Steven Verdooner Aparato y metodo para formacion de imagen de ojo.
US20120182206A1 (en) * 2011-01-17 2012-07-19 Ronald Steven Cok Head-mounted display control with sensory stimulation
EP2761362A2 (en) 2011-09-26 2014-08-06 Microsoft Corporation Video display modification based on sensor input for a see-through near-to-eye display
US10338385B2 (en) * 2011-12-14 2019-07-02 Christopher V. Beckman Shifted reality display device and environmental scanning system
JP6051605B2 (ja) * 2012-06-13 2016-12-27 ソニー株式会社 表示装置、および表示制御方法、並びにプログラム
WO2015036903A2 (en) * 2013-09-13 2015-03-19 Koninklijke Philips N.V. System and method for augmented reality support
WO2015094371A1 (en) * 2013-12-20 2015-06-25 Intel Corporation Systems and methods for augmented reality in a head-up display
US9494800B2 (en) 2014-01-21 2016-11-15 Osterhout Group, Inc. See-through computer display systems
DE112015006032B4 (de) * 2015-01-22 2021-04-01 Mitsubishi Electric Corporation Vorrichtung und Verfahren zur Bilderfassung eines Objekts, das sich in einem Abbildungsfeld-Winkelbereich befindet, Programm und Aufzeichnungsmedium
JP6688549B2 (ja) * 2015-03-31 2020-04-28 シグニファイ ホールディング ビー ヴィSignify Holding B.V. 人の覚醒を改善するためのライティングシステム及び方法
US10712556B2 (en) * 2015-12-31 2020-07-14 Huawei Technologies Co., Ltd. Image information processing method and augmented reality AR device
US9836652B2 (en) * 2016-02-02 2017-12-05 International Business Machines Corporation Showing danger areas associated with objects using augmented-reality display techniques
WO2018057050A1 (en) * 2016-09-23 2018-03-29 Bao Sheng Selectably opaque displays
GB201709199D0 (en) * 2017-06-09 2017-07-26 Delamont Dean Lindsay IR mixed reality and augmented reality gaming system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085829A (ja) * 2009-10-19 2011-04-28 Nikon Corp ヘッドマウントディスプレイ
JP2011175035A (ja) * 2010-02-23 2011-09-08 Shimadzu Corp 頭部装着型表示装置
JP2012252091A (ja) 2011-06-01 2012-12-20 Sony Corp 表示装置
JP2013005201A (ja) 2011-06-16 2013-01-07 Sony Corp 表示装置
JP2017068000A (ja) 2015-09-30 2017-04-06 セイコーエプソン株式会社 透過型表示装置及び透過型表示装置用の調光シェード
JP2017102298A (ja) * 2015-12-02 2017-06-08 株式会社ソニー・インタラクティブエンタテインメント 表示制御装置及び表示制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3767432A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186581A1 (ja) * 2020-03-17 2021-09-23 株式会社ソニー・インタラクティブエンタテインメント 画像生成装置および画像生成方法
JP7454648B2 (ja) 2020-03-17 2024-03-22 株式会社ソニー・インタラクティブエンタテインメント 画像生成装置および画像生成方法
US11948483B2 (en) 2020-03-17 2024-04-02 Sony Interactive Entertainment Inc. Image generation apparatus and image generation method
WO2022146696A1 (en) * 2021-01-04 2022-07-07 Rovi Guides, Inc. Methods and systems for controlling media content presentation on a smart glasses display
US11747622B2 (en) 2021-01-04 2023-09-05 Rovi Guides, Inc. Methods and systems for controlling media content presentation on a smart glasses display
US11906737B2 (en) 2021-01-04 2024-02-20 Rovi Guides, Inc. Methods and systems for controlling media content presentation on a smart glasses display
WO2022196069A1 (ja) * 2021-03-15 2022-09-22 ソニーグループ株式会社 情報処理装置、情報処理方法、及び、プログラム
WO2023042433A1 (ja) * 2021-09-15 2023-03-23 ソニーグループ株式会社 情報処理装置、情報処理システム、情報処理方法、及び、プログラム

Also Published As

Publication number Publication date
JPWO2019176577A1 (ja) 2021-04-15
EP3767432A1 (en) 2021-01-20
EP3767432A4 (en) 2021-05-05
US20210020141A1 (en) 2021-01-21
KR20200130810A (ko) 2020-11-20
US11631380B2 (en) 2023-04-18
JP7173126B2 (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2019176577A1 (ja) 情報処理装置、情報処理方法、および記録媒体
US10788673B2 (en) User-based context sensitive hologram reaction
US9898868B2 (en) Display device, method of controlling the same, and program
US10475243B2 (en) Transition between virtual reality and real world
US20180314339A1 (en) Wearable glasses and method of providing content using the same
KR20210013572A (ko) 깊이 감지 시스템들을 위한 동적 구조화 광
US8957916B1 (en) Display method
KR102047059B1 (ko) 디스플레이 방법 및 장치
US20140292637A1 (en) Method for adjusting head-mounted display adaptively and head-mounted display
US20140225915A1 (en) Wearable display system with detached projector
US20140192092A1 (en) Display device and control method thereof
US20110305375A1 (en) Device function modification method and system
JP2007101618A (ja) 表示装置
JP5622431B2 (ja) 頭部装着型瞳孔検出装置
CN111052044B (zh) 信息处理装置、信息处理方法和程序
JP6464729B2 (ja) 表示装置、及び、表示装置の制御方法
US11366321B1 (en) Predictive dimming of optical passthrough displays
US11071650B2 (en) Visibility enhancing eyewear
EP3441847B1 (en) Controller for use in a display device
CN107111139A (zh) 用于显示内容的设备和方法
CN114365077B (zh) 观看者同步的照明感测
JP2018084767A (ja) 表示制御装置、制御方法、プログラム及び記憶媒体
TWI683135B (zh) 頭戴型顯示裝置及用於其之調整方法
JP2023065837A (ja) 頭部装着型表示装置、及び、頭部装着型表示装置の制御方法
JP2014191238A (ja) 音声認識装置及び音声認識プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019766764

Country of ref document: EP

Effective date: 20201014