WO2019174537A1 - 一种图像矫正方法及光纤扫描成像设备 - Google Patents

一种图像矫正方法及光纤扫描成像设备 Download PDF

Info

Publication number
WO2019174537A1
WO2019174537A1 PCT/CN2019/077606 CN2019077606W WO2019174537A1 WO 2019174537 A1 WO2019174537 A1 WO 2019174537A1 CN 2019077606 W CN2019077606 W CN 2019077606W WO 2019174537 A1 WO2019174537 A1 WO 2019174537A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving signal
driving
displacement
response component
scanner
Prior art date
Application number
PCT/CN2019/077606
Other languages
English (en)
French (fr)
Inventor
姚长呈
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2019174537A1 publication Critical patent/WO2019174537A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements

Definitions

  • the present invention relates to the field of optical imaging, and in particular to an image correction method and an optical fiber scanning imaging device.
  • laser scanning imaging such as fiber scanning imaging, MEMS (Micro-Electro-Mechanical Systems) scanning imaging, etc.
  • MEMS Micro-Electro-Mechanical Systems
  • a prominent advantage is Smaller, it can be integrated into a variety of handheld devices, such as: embedded in a mobile phone, or made into a separate cm-scale micro-projector, so that users can carry it anywhere, anytime, anywhere projection display.
  • the fiber-scanning projection imaging system uses the driver to drive the high-speed vibration of the fiber, and cooperates with the laser modulation algorithm to realize the display of image information.
  • the fiber operates in a resonant mode, and the scanning characteristics of the fiber in a resonant state are complicated. Due to the nonlinear effects of vibration, fiber symmetry, symmetry of the scanner installation, stability, etc., the scanning trajectory of the fast axis of the XY scanner is no longer ideal when the vibration amplitude of the fiber is large in the resonance region.
  • the straight, slow axis scan trajectory is no longer a vertical straight line, but a slanted straight line.
  • the scanning trajectories of the fast axis and the slow axis may become elliptical or circular, and the imaging region may be distorted and a ghost image may be generated, resulting in an image. blurry.
  • the mark 1 in the figure is the scan track of the fast axis (x direction)
  • 2 is the scan track of the slow axis (y direction)
  • 3 is the image display of the synthesized track when the fast and slow axes are simultaneously scanned. region.
  • the modulated display image is no longer a rectangle, which seriously affects the image display effect.
  • the object of the present invention is to provide an image correction method and a fiber scanning imaging device for solving the problem that the imaging region is distorted when the XY laser scanning imaging device is projected in the prior art, resulting in a reduced image display effect. problem.
  • a first aspect of the present invention provides an image correction method, which is applied to a fiber scanner, wherein a scanning direction of the fiber scanner includes at least a first direction and a first direction different from the first direction.
  • the method includes:
  • the displacement response component has an opposite amount of displacement such that the scan trajectory of the fiber optic scanner is along the first direction.
  • calculating the correction driving signal in the second direction based on the displacement response component including:
  • the fiber scanner is an XY type two-dimensional scanner, and the first direction and the second direction are perpendicular to each other.
  • the calculation expression of the correction driving signal in the second direction is: Where U y is the corrected driving signal in the second direction, b is the displacement amplitude of the displacement response component, and w x is the driving frequency of the first driving signal, The frequency response coefficient of the fiber scanner when the driving frequency is w x , t is time, and f(w x t) is the first driving signal.
  • the image correction method further includes:
  • a second aspect of the embodiments of the present invention provides a fiber scanning imaging device, including a fiber scanner, a processor, and a computer readable storage medium, wherein the scanning direction of the fiber scanner includes at least a first direction and is different from the first direction
  • the second direction when the computer program stored in the computer readable storage medium is executed by the processor, implements the following steps:
  • the displacement response component has an opposite amount of displacement such that the scan trajectory of the fiber optic scanner is along the first direction.
  • a computer program stored in the computer readable storage medium corresponding to the step of calculating a correction driving signal in the second direction based on the displacement response component, wherein the computer program is executed by the processor Implement the following steps:
  • the fiber scanner is an XY type two-dimensional scanner, and the first direction and the second direction are perpendicular to each other.
  • the computer readable storage medium stores a calculation expression of the correction driving signal in the second direction, where the calculation expression is: Where U y is the corrected driving signal in the second direction, b is the displacement amplitude of the displacement response component, and w x is the driving frequency of the first driving signal, The frequency response coefficient of the fiber scanner when the driving frequency is w x , t is time, and f(w x t) is the first driving signal.
  • the computer readable storage medium further stores other computer programs that, when executed by the processor, implement the following steps:
  • the displacement response component of the scan trajectory in the second direction is calculated, and based on Determining a displacement response component, calculating a correction drive signal in the second direction, such that the fiber scanner is driven in the second direction and driven by the first drive signal and the correction drive signal Displacement response component an opposite displacement amount, the opposite displacement amount being capable of canceling a displacement response component of the scan trajectory in the second direction, such that a scan trajectory of the fiber scanner is along the first direction, thereby solving the present
  • the XY-type laser scanning imaging device is projected, the image is distorted, resulting in a technical problem of reducing the image display effect, and the display effect of the image is improved, thereby improving the user experience of the optical fiber scanning imaging device.
  • 1A-1C are schematic diagrams showing projection distortion of a fiber scanning imaging device in the prior art
  • FIG. 2 is a schematic flowchart of an image correction method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a corrected projection provided by an embodiment of the present invention.
  • the biggest difference between the fiber scanning display and the traditional display is that it is separated from the material pixel limitation.
  • the pixel grid displayed by the fiber scanning is an artificially divided spatial area, and is modulated by the laser according to a predetermined modulation time, thereby achieving uniformity and pre-preparation.
  • the set image is displayed. Therefore, the laser modulation parameters can be changed to deform the image, such as image distortion similar to optical distortion, fisheye effect, etc., uneven pixel size, irregular display area, and the like.
  • the scanning direction of the fiber scanner includes at least a first direction and a second direction different from the first direction.
  • the difference between the first direction and the second direction means that the first direction is not parallel to the second direction.
  • the first direction and the second direction may be at any angle as long as the two are not parallel.
  • the first direction and the second direction are perpendicular to each other.
  • the fiber scanner can be an XY type two-dimensional scanner.
  • the fiber scanner can also be other multi-pole drive scanners, such as a three-pole drive or a four-pole drive, which is not limited by the present invention.
  • FIG. 2 is a schematic flowchart of an image correction method according to an embodiment of the present invention, which includes the following steps 101 to 104.
  • step 101 a scan trajectory driven by the first drive signal of the fiber scanner in the first direction is detected.
  • the driving signal may be a sinusoidal signal, a cosine signal or a triangular wave signal.
  • the first driving signal can be a test signal, and the projected image is a test image, so the detection process can be performed when the fiber scanning imaging device is turned on.
  • the first driving signal can also be periodically performed during the scanning and projection process, and the projected image is no longer a test image, but an image that actually needs to be projected, which is not limited by the present invention.
  • step 102 it is determined whether the scan trajectory is along the first direction. In a case where it is determined that the scan trajectory is not along the first direction, step 103 is performed. In the case where it is judged that the scanning trajectory is in the first direction, the present image correcting method is terminated.
  • step 103 in a case where it is determined that the scan trajectory is not along the first direction, a displacement response component of the scan trajectory in the second direction is calculated.
  • the scan trajectory detected in step 101 can be projected in the second direction, thereby calculating the scan trajectory in the second The displacement response component in the direction.
  • step 104 a corrected drive signal in the second direction is calculated based on the displacement response component, and the fiber scanner is driven in accordance with the first drive signal and the corrected drive signal.
  • a displacement amount opposite to the displacement response component of the first driving signal in the second direction may be generated, and the opposite displacement amount may cancel the scanning trajectory in the
  • the displacement response component in the second direction is such that the scan trajectory of the fiber scanner is along the first direction.
  • the scanning trajectory can always be in the scanning direction without geometric deformation, thereby solving the prior art, and the XY-type laser scanning imaging device is distorted when projecting.
  • the driving signal in the second direction may also generate a displacement response component in the first direction. Therefore, the first direction may be performed by the same method as steps 101 to 104 described above.
  • the drive signal is corrected so that the scan path of the fiber scanner is always in the second direction.
  • the scan driver is an XY-type fiber scanner
  • the drive signal in the x direction can be corrected so that the scan track in the y direction does not undergo geometric deformation, or in the x direction.
  • the driving signal in the y direction can be corrected, so that the scanning trajectory in the x direction does not cause geometric deformation. As shown in FIG.
  • the mark 1 in the figure is a scan track of the fast axis (x direction), which is a horizontal straight line
  • 2 is a scan track of the slow axis (y direction), which is a vertical straight line
  • 3 is fast
  • the image display area of the synthesized track is synthesized while the slow axis is simultaneously scanned. At this time, the projected display image is an ideal rectangle.
  • the scanning direction of the XY-type fiber scanner includes a fast axis direction (x direction) and a slow axis direction (y direction).
  • the scanning trajectory of the fiber scanner can be detected by the following detection method.
  • the optical fiber scanning imaging device may be provided with a PSD (English name: Position Sensitive Detector; Chinese name: position sensitive detector).
  • PSD Position Sensitive Detector
  • the trajectory of the scanning fiber end face can be obtained according to the position information of the beam incident on the PSD, thereby obtaining the scanning track of the fiber scanner.
  • the light beam splitting onto the PSD may be partial imaging light or detection light for position detection, and the detection light may be invisible light, such as infrared light or ultraviolet light.
  • step 102 is performed to determine whether the scan track is along the first direction.
  • the scan track of the fiber scanner should be along the first direction.
  • the first direction is a horizontal direction
  • the scanning trajectory of the fiber scanner should be horizontal, but due to vibration Nonlinear effects, fiber symmetry, symmetry of the scanner installation, stability, etc., cause the scanning trajectory of the fast axis of the XY scanner to be no longer the ideal horizontal direction when the vibration amplitude of the fiber in the resonance region is large. It is a slanted line, ellipse or circle after the geometric deformation.
  • the ideal scanning trajectory is also known, and therefore, the scanning trajectory detected in step 101 can be determined when determining whether the scanning trajectory is in the first direction. Compare with the ideal scan trajectory to determine whether the scan trajectory is in the first direction.
  • the driving signal is a cosine signal
  • the scanning trajectory of the scanning trajectory as the x direction (fast axis) as an example
  • the driving signal of the fast axis can be expressed as:
  • a is the amplitude of the displacement response component in the x direction
  • w x is the driving frequency.
  • the frequency response coefficient of the fiber scanner when the driving frequency is w x
  • the frequency response coefficient refers to the amplitude of the fiber scanner response at a driving frequency of w x , 1 V, and t is time. Then the scan track of the fast axis can be expressed as:
  • i and j are the direction vectors corresponding to the x and y directions
  • a is the amplitude of the displacement response component in the x direction
  • b is the amplitude of the displacement response component in the y direction
  • w x is the driving frequency in the x direction (ie, driven Circular frequency)
  • the displacement response component of the scan trajectory in the y direction is calculated.
  • the displacement response component can be expressed as
  • a displacement response threshold may also be set according to the empirical value, and then, when b is less than or equal to the displacement response threshold, it is determined that the scan trajectory is approximately in the horizontal direction, and in this case, the scan trajectory is subtle.
  • the deformation does not have a great influence on the imaging effect, and the human eye is generally undetectable; and when the value of b is greater than the displacement response threshold, it is determined that the scanning trajectory is not in the horizontal direction, in which case the deformation of the scanning trajectory is severe. Affecting the imaging effect requires image correction.
  • step 104 is performed to calculate a correction driving signal in the second direction based on the displacement response component, and to pair the optical fiber according to the first driving signal and the correction driving signal.
  • the scanner is driven.
  • the driving frequency can be added to the driving signal of the slow axis as the fast axis driving frequency.
  • the drive signal produces a displacement amount (i.e., a phase difference of ⁇ ) that is opposite to the displacement response component of the fast axis drive signal in the slow axis direction.
  • the correction driving signal of the slow axis can be calculated according to the displacement amplitude of the displacement response component, the driving frequency of the fast axis driving signal, and the frequency response coefficient of the fiber scanner at the driving frequency, and the specific calculation expression thereof
  • the formula is:
  • b is the amplitude of the displacement response component of the fiber scanner in the y direction driven by the fast axis drive signal.
  • the frequency response coefficient of the fiber scanner when the driving frequency is w x
  • w x is the driving frequency of the fast axis driving signal
  • t is time.
  • the driving signal of the fast axis is as shown in the above expression (1), and the correcting driving signal of the slow axis can be expressed as:
  • the phase difference between the corrected drive signal of the slow axis and the displacement response corresponding to the corrected drive signal is based on the fast axis drive signal (the drive signal corresponding to the expression (1)) and the corrected drive signal of the slow axis (the expression ( 4) Corresponding drive signal)
  • the scan track of the fast axis of the fiber scanner can be expressed as:
  • the displacement can be generated by the correction drive signal on the slow axis.
  • the displacement amount and the displacement response component of the fast axis drive signal on the slow axis The opposite is true, thereby eliminating the displacement response component of the fast axis scan track on the slow axis, so that the fast axis scan track is always along the fast axis direction.
  • the driving signal applied on the slow axis and the correcting driving signal may be superimposed to obtain an actual driving signal on the slow axis, and then, according to the actual driving signal pair.
  • the slow axis is driven.
  • the drive signal applied to the slow axis is:
  • c is the amplitude of the displacement of the fiber scanner in the y direction driven by the slow axis drive signal
  • w y is the drive frequency of the fast axis drive signal.
  • the frequency response coefficient of the fiber scanner when the drive frequency is w y , and t is time. Then, after the driving signal with the driving frequency of the fast axis driving frequency is added to the driving signal of the slow axis, the actual driving signal applied to the slow axis can be expressed as:
  • the fiber scanner is capable of canceling the displacement response component of the fast axis drive signal in the slow axis direction driven by the actual drive signal.
  • the drive frequency can also be added by adding the drive frequency to the drive signal of the fast axis.
  • the drive signal of the shaft drive frequency thereby generating a displacement amount opposite to the displacement response component in the fast axis direction to cancel the displacement response component of the slow axis drive signal in the fast axis direction, so that the scan track of the slow axis always follows the slow axis direction.
  • the method for calculating the correction driving signal on the fast axis is the same as the method for calculating the correction driving signal on the slow axis in the above embodiment, and the present invention will not be repeated herein.
  • the method in the embodiment of the present invention is also applicable to other multi-pole driven fiber scanners, and the scanning track of the other driving direction can be corrected by superimposing the corresponding correcting driving signals in one driving direction.
  • the calculation method of the correction driving signal in each driving direction is the same as the calculation method of the correction driving signal in the above embodiment, and the present invention will not be described herein.
  • an embodiment of the present invention further provides an optical fiber scanning imaging device.
  • the fiber scanning imaging device of this embodiment includes a fiber scanner, a processor, and a computer readable storage medium, the scanning direction of the fiber scanner including at least a first direction and a second direction different from the first direction,
  • the computer program stored in the computer readable storage medium is executed by the processor to implement the following steps:
  • the displacement response component has an opposite amount of displacement such that the scan trajectory of the fiber optic scanner is along the first direction.
  • the computer program stored in the computer readable storage medium corresponding to the step of calculating the correction driving signal in the second direction based on the displacement response component performs the following steps during execution by the processor :
  • the fiber scanner is an XY type two-dimensional scanner, and the first direction and the second direction are perpendicular to each other.
  • the computer readable storage medium stores a calculation expression of the correction driving signal in the second direction, where the calculation expression is: Where U y is the corrected driving signal in the second direction, b is the displacement amplitude of the displacement response component, and w x is the driving frequency of the first driving signal, The frequency response coefficient of the fiber scanner when the driving frequency is w x , t is time, and f(w x t) is the first driving signal.
  • the computer readable storage medium further stores other computer programs, where the computer program, when executed by the processor, includes the following steps:
  • the displacement response component of the scan trajectory in the second direction is calculated, and based on Determining a displacement response component, calculating a correction drive signal in the second direction, such that the fiber scanner is driven in the second direction and driven by the first drive signal and the correction drive signal Displacement response component an opposite displacement amount, the opposite displacement amount being capable of canceling a displacement response component of the scan trajectory in the second direction, such that a scan trajectory of the fiber scanner is along the first direction, thereby solving the present
  • the XY-type laser scanning imaging device is projected, the image is distorted, resulting in a technical problem of reducing the image display effect, and the display effect of the image is improved, thereby improving the user experience of the optical fiber scanning imaging device.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

本发明公开了一种图像矫正方法及光纤扫描成像设备,所述方法包括:检测所述光纤扫描器在第一方向上的第一驱动信号驱动下的扫描轨迹;判断所述扫描轨迹是否沿所述第一方向;若不是,计算所述扫描轨迹在第二方向上的位移响应分量;基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,并基于所述第一驱动信号和所述矫正驱动信号对光纤扫描器进行驱动,以在所述第二方向上产生与所述位移响应分量相反的位移量,使得所述光纤扫描器的扫描轨迹沿所述第一方向。上述方法用于解决现有技术中存在的,XY型激光扫描成像设备在投影时,成像区域会产生畸变的技术问题。

Description

一种图像矫正方法及光纤扫描成像设备
本申请要求享有2018年3月15日提交的名称为“一种图像矫正方法及光纤扫描成像设备”的中国专利申请CN201810215077.9的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及光学成像领域,尤其涉及一种图像矫正方法及光纤扫描成像设备。
背景技术
相比传统的投影显示设备,以激光扫描成像(如光纤扫描成像、MEMS(Micro-Electro-Mechanical Systems;微机电***)扫描成像等)为核心光学显示***的激光扫描成像设备,一个突出优势就是体积更小,可以集成到各种手持设备中,如:嵌入手机、或者做成独立的厘米级别尺寸的微型投影仪,从而方便用户随身携带,随时随地进行投影显示。
光纤扫描投影成像***利用驱动器带动光纤高速振动,配合激光调制算法,实现图像信息的显示。为了实现最大幅度的振动,光纤工作在共振模式,而共振状态下光纤的扫描特性复杂。由于振动的非线性效应、光纤对称性、扫描器安装的对称性、稳定性等因素,导致光纤在共振区内振动幅度较大时,XY型扫描器快轴的扫描轨迹不再是理想的水平直线,慢轴的扫描轨迹也不再是竖直的直线,而是倾斜的直线。并且,由于非线性的影响,当摆幅更大时,快轴和慢轴的扫描轨迹均有可能会变成椭圆或圆形,此时成像区域会发生畸变,同时会产生重影,导致图像模糊。如图1A-图1C所示,图中标记1为快轴(x方向)的扫描轨迹,2为慢轴(y方向)的扫描轨迹,3为快、慢轴同时扫描时合成轨迹的图像显示区域。此时,调制出来的显示图像不再是矩形,严重影响了图像显示效果。
发明内容
本发明的目的是提供一种图像矫正方法及光纤扫描成像设备,用于解决现有技术中存在的,XY型激光扫描成像设备在投影时,成像区域会产生畸变,导致图像显示效果降低的技术问题。
为了实现上述发明目的,本发明实施例第一方面提供一种图像矫正方法,应用于光纤扫描器中,所述光纤扫描器的扫描方向至少包括第一方向和与所述第一方向不同的第二方向,所述方法包括:
检测所述光纤扫描器在第一方向上的第一驱动信号驱动下的扫描轨迹;
判断所述扫描轨迹是否沿所述第一方向;
在判断出所述扫描轨迹未沿所述第一方向的情况下,计算所述扫描轨迹在第二方向上的位移响应分量;
基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,并根据所述第一驱动信号和所述矫正驱动信号对光纤扫描器进行驱动,以在所述第二方向上产生与所述位移响应分量相反的位移量,使得所述光纤扫描器的扫描轨迹沿所述第一方向。
可选的,基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,包括:
根据所述位移响应分量的位移幅值、所述第一驱动信号的驱动频率和所述光纤扫描器在所述驱动频率下的频率响应系数,计算所述第二方向上的矫正驱动信号。
可选的,所述光纤扫描器为XY型二维扫描器,所述第一方向和所述第二方向相互垂直。
可选的,所述第二方向上的矫正驱动信号的计算表达式为:
Figure PCTCN2019077606-appb-000001
其中,U y为所述第二方向上的矫正驱动信号,b为所述位移响应分量的位移幅值,w x为第一驱动信号的驱动频率,
Figure PCTCN2019077606-appb-000002
为驱动频率为w x时光纤扫描器的频率响应系数,t为时间,f(w xt)为所述第一驱动信号。
可选的,所述图像矫正方法还包括:
将所述第二方向上的第二驱动信号和所述第二方向上的矫正驱动信号进行叠加,获得所述第二方向上的实际驱动信号。
本发明实施例第二方面提供一种光纤扫描成像设备,包括光纤扫描器、处理器和计算机可读存储介质,所述光纤扫描器的扫描方向至少包括第一方向和与所述第一方向不同的第二方向,所述计算机可读存储介质中存储的计算机程序被处理器执行时实现如下步骤:
检测所述光纤扫描器在第一方向上的第一驱动信号驱动下的扫描轨迹;
判断所述扫描轨迹是否沿所述第一方向;
在判断出所述扫描轨迹未沿所述第一方向的情况下,计算所述扫描轨迹在第二方向上 的位移响应分量;
基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,并根据所述第一驱动信号和所述矫正驱动信号对光纤扫描器进行驱动,以在所述第二方向上产生与所述位移响应分量相反的位移量,使得所述光纤扫描器的扫描轨迹沿所述第一方向。
可选的,所述计算机可读存储介质中存储的对应于基于所述位移响应分量计算所述第二方向上的矫正驱动信号的步骤的计算机程序,在该计算机程序被所述处理器执行过程中实现如下步骤:
根据所述位移响应分量的位移幅值、所述第一驱动信号的驱动频率和所述光纤扫描器在所述驱动频率下的频率响应系数,计算所述第二方向上的矫正驱动信号。
可选的,所述光纤扫描器为XY型二维扫描器,所述第一方向和所述第二方向相互垂直。
可选的,所述计算机可读存储介质中存储有所述第二方向上的矫正驱动信号的计算表达式,所述计算表达式为:
Figure PCTCN2019077606-appb-000003
其中,U y为所述第二方向上的矫正驱动信号,b为所述位移响应分量的位移幅值,w x为第一驱动信号的驱动频率,
Figure PCTCN2019077606-appb-000004
为驱动频率为w x时光纤扫描器的频率响应系数,t为时间,f(w xt)为所述第一驱动信号。
可选的,所述计算机可读存储介质中还存储有另外一些计算机程序,这些计算机程序在被所述处理器执行时实现如下步骤:
将所述第二方向上的第二驱动信号和所述第二方向上的矫正驱动信号进行叠加,获得所述第二方向上的实际驱动信号。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
本发明实施例的方案中,通过判断光纤扫描器在第一驱动信号驱动下的扫描轨迹是否沿第一方向,如果不是,则计算该扫描轨迹在第二方向上的位移响应分量,并基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,以使得光纤扫描器在所述第一驱动信号和所述矫正驱动信号的驱动下,在所述第二方向上产生与所述位移响应分量相反的位移量,该相反的位移量能够抵消所述扫描轨迹在所述第二方向上的位移响应分量,使得所述光纤扫描器的扫描轨迹沿所述第一方向,从而解决现有技术中存在的,XY型激光扫描成像设备在投影时,图像会产生畸变,导致图像显示效果降低的技术问题,实现了提高图像的显示效果,从而提升该类光纤扫描成像设备的用户体验的技术效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图:
图1A-图1C为现有技术中光纤扫描成像设备投影产生畸变的示意图;
图2为本发明实施例提供的图像矫正方法的流程示意图;
图3为本发明实施例提供的矫正后的投影的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
光纤扫描显示与传统显示最大的区别就在于,其脱离了物料像素的限制,光纤扫描显示的像素网格是人为划分的空间区域,并通过激光按照预定的调制时间进行调制,从而实现均匀、预设的图像显示。因此,可以改变激光调制参数,使图像产生变形,如类似于光学畸变、鱼眼效应等的图像变形、像素尺寸不均匀、显示区域不规则等各种变形形式。
本申请发明人基于上述光纤扫描技术特性,针对光纤扫描容易产生几何变形,包括倾斜、椭圆形形变、圆形形变等等,提出了一种图像矫正方法,该方法适用于光纤扫描器中,所述光纤扫描器的扫描方向至少包括第一方向和与所述第一方向不同的第二方向。这里,第一方向与第二方向不同指的是第一方向与第二方向不平行。在具体实施过程中,第一方向和第二方向可以呈任意角度,只要两者不平行即可。可选的,第一方向和第二方向相互垂直。光纤扫描器可以为XY型二维扫描器。除上述二维扫描器外,光纤扫描器还可以为其他多极驱动扫描器,如:三极驱动或四极驱动,本发明对此不做限制。
请参考图2,图2为本发明实施例提供的图像矫正方法的流程示意图,包括以下步骤101至步骤104。
在步骤101中,检测所述光纤扫描器在第一方向上的第一驱动信号驱动下的扫描轨迹。
其中,驱动信号可以为正弦信号、余弦信号或三角波信号等。第一驱动信号可以为测试信号,投影的图像为测试图像,因此,检测过程可以在光纤扫描成像设备开机时进行。当然,第一驱动信号也可以在扫描投影过程中周期性进行,则投影的图像不再是测试图像,而是实际需要投影的图像,本发明对此不做限制。
在步骤102中,判断所述扫描轨迹是否沿所述第一方向。在判断出所述扫描轨迹未沿所述第一方向的情况下,执行步骤103。在判断出所述扫描轨迹是沿所述第一方向的情况下,终止本图像矫正方法。
在步骤103中,在判断出所述扫描轨迹未沿所述第一方向的情况下,计算所述扫描轨迹在第二方向上的位移响应分量。
本发明实施例中,由于第一方向和第二方向之间的角度是确定的,因此,可以将步骤101中检测到的扫描轨迹在第二方向上进行投影,从而计算得到扫描轨迹在第二方向上的位移响应分量。
在步骤104中,基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,并根据所述第一驱动信号和所述矫正驱动信号对光纤扫描器进行驱动。
具体的,在第二方向上的矫正驱动信号的驱动下,可以产生与第一驱动信号在第二方向上的位移响应分量相反的位移量,该相反的位移量可以抵消所述扫描轨迹在所述第二方向上的位移响应分量,使得所述光纤扫描器的扫描轨迹沿所述第一方向。
可见,上述方案中,通过矫正驱动信号,可以使扫描轨迹始终沿扫描方向,而不会产生几何形变,从而解决现有技术中存在的,XY型激光扫描成像设备在投影时,图像会产生畸变,导致图像显示效果降低的技术问题,提高图像的显示效果,从而提升该类光纤扫描成像设备的用户体验。
在具体实施过程中,同样的,第二方向上的驱动信号也有可能在第一方向上产生了位移响应分量,因此,也可以通过与上述步骤101至步骤104同样的方法,对第一方向上的驱动信号进行矫正,以使光纤扫描器的扫描轨迹始终沿第二方向。举例来讲,假设扫描驱动器为XY型光纤扫描器,在y方向的扫描轨迹产生几何形变时,可以通过矫正x方向的驱动信号,使得y方向的扫描轨迹不产生几何形变,或者在x方向的扫描轨迹产生几何形变时,可以通过矫正y方向的驱动信号,使得x方向的扫描轨迹不产生几何形变。如图3所示,其中,图中标记1为快轴(x方向)的扫描轨迹,为水平的直线,2为慢轴(y方向)的扫描轨迹,为竖直的直线,3为快、慢轴同时扫描时合成轨迹的图像显示区域,此时,投影出来的显示图像为理想的矩形。
接下来,以扫描驱动器为XY型光纤扫描器,驱动信号为余弦信号为例,对本发明实施例中的图像矫正方法进行详细说明。XY型光纤扫描器的扫描方向包括快轴方向(x方向)和慢轴方向(y方向)。
在步骤101中,可以通过以下检测方式检测光纤扫描器的扫描轨迹。具体的,光纤扫描成像设备中可以设置有PSD(英文全称:Position Sensitive Detector;中文名称:位置敏感探测器)。在扫描过程中,将光纤扫描器中的扫描光纤输出的部分扫描光束分光至PSD,就可以根据光束入射到PSD上的位置信息,得到扫描光纤端面的运动轨迹,从而得到光纤扫描器的扫描轨迹。其中,分光至PSD上的光束可以为部分成像光,也可以为用于位置检测的检测光,检测光可以为不可见光,例如:红外光或者紫外光等等。
然后,在检测到光纤扫描器的扫描轨迹之后,执行步骤102,判断所述扫描轨迹是否沿所述第一方向,理想状态下,光纤扫描器的扫描轨迹应该沿第一方向。举例来讲,假设第一方向为水平方向,则在理想状态下,当在光纤扫描器上在水平方向上施加第一驱动信号时,光纤扫描器的扫描轨迹应该沿水平方式,但由于振动的非线性效应、光纤对称性、扫描器安装的对称性、稳定性等因素,导致光纤在共振区内振动幅度较大时,XY型扫描器快轴的扫描轨迹不再是理想的水平方向,而是发生几何形变之后的倾斜直线,椭圆或者圆。
具体来讲,如果光纤扫描成像设备的驱动信号是已知的,则理想的扫描轨迹也是已知的,因此,在判断扫描轨迹是否沿第一方向时,可以将步骤101中检测到的扫描轨迹和理想的扫描轨迹进行比较,从而判断扫描轨迹是否沿第一方向。
在另一种可能的判断方式中,假设驱动信号为余弦信号,以扫描轨迹为x方向(快轴)的扫描轨迹为例,快轴的驱动信号可以表示为:
Figure PCTCN2019077606-appb-000005
其中,a为x方向位移响应分量的幅值,w x为驱动频率,
Figure PCTCN2019077606-appb-000006
驱动频率为w x时光纤扫描器的频率响应系数,频率响应系数是指驱动频率为w x,1V的电压下,光纤扫描器响应的幅值,t为时间。则快轴的扫描轨迹可以表示为:
Figure PCTCN2019077606-appb-000007
其中,i、j分别为对应x、y方向的方向矢量,a为x方向位移响应分量的幅值,b 为y方向位移响应分量的幅值,w x为x方向的驱动频率(即驱动的圆频率),
Figure PCTCN2019077606-appb-000008
为快轴的驱动信号在x方向和y方向的位移响应分量之间的相位差。可见,当b=0时,可以确定快轴的扫描轨迹为沿x方向的水平直线;b≠0时,快轴的扫描轨迹在y方向有分量,此时,如果
Figure PCTCN2019077606-appb-000009
Figure PCTCN2019077606-appb-000010
则扫描轨迹为倾斜的直线,如果
Figure PCTCN2019077606-appb-000011
Figure PCTCN2019077606-appb-000012
则轨迹为椭圆或圆。因此,本发明实施例中,可以通过b的值判断扫描器轨迹是否沿水平方向。
本发明实施例中,在判断结果为否,即扫描轨迹发生了几何形变时,计算扫描轨迹在y方向的位移响应分量,根据表达式(2)可知,该位移响应分量可表示为
Figure PCTCN2019077606-appb-000013
而在判断结果为是时,则终止图像矫正。进一步,如果步骤101中的扫描轨迹检测为周期性检测,则等待下一次扫描轨迹检测结果之后,再进行判断。
进一步,本发明实施例中,还可以根据经验值设置一个位移响应阈值,然后,在b小于或者等于位移响应阈值时,则判定扫描轨迹近似沿水平方向,在这种情况下,扫描轨迹的细微形变不会对成像效果造成很大影响,且人眼一般无法察觉;而在b的值大于位移响应阈值时,则判定扫描轨迹没有沿水平方向,在这种情况下,扫描轨迹的形变会严重影响成像效果,需要进行图像矫正。
然后,在需要对驱动信号进行矫正时,执行步骤104,基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,并根据所述第一驱动信号和所述矫正驱动信号对光纤扫描器进行驱动。
本发明实施例中,为了使快轴驱动下的扫描轨迹为沿水平方向的直线,需要消除慢轴方向的位移响应分量,因此,可以在慢轴的驱动信号中加入驱动频率为快轴驱动频率的驱动信号,从而产生与快轴驱动信号在慢轴方向的位移响应分量相反的位移量(即相位差为π)。
具体的,可以根据位移响应分量的位移幅值、快轴驱动信号的驱动频率以及光纤扫描器在所述驱动频率下的频率响应系数,计算所述慢轴的矫正驱动信号,其具体的计算表达式为:
Figure PCTCN2019077606-appb-000014
其中,b为光纤扫描器在快轴驱动信号的驱动下,在y方向位移响应分量的幅值,
Figure PCTCN2019077606-appb-000015
驱动频率为w x时光纤扫描器的频率响应系数,w x为快轴驱动信号的驱动频率,t为时间。
举例来讲,继续沿用上述驱动信号为余弦信号的例子,快轴的驱动信号如上述表达式(1)所示,则慢轴的矫正驱动信号可以表示为:
Figure PCTCN2019077606-appb-000016
其中,
Figure PCTCN2019077606-appb-000017
为慢轴的矫正驱动信号与矫正驱动信号所对应的位移响应之间的相位差,则根据快轴驱动信号(表达式(1)对应的驱动信号)和慢轴的矫正驱动信号(表达式(4)对应的驱动信号)共同驱动下,光纤扫描器的快轴的扫描轨迹可以表示为:
Figure PCTCN2019077606-appb-000018
可见,通过慢轴上的矫正驱动信号,可以产生位移量
Figure PCTCN2019077606-appb-000019
该位移量与快轴驱动信号在慢轴上产生的位移响应分量
Figure PCTCN2019077606-appb-000020
是相反的,从而消除快轴的扫描轨迹在慢轴上的位移响应分量,使得快轴的扫描轨迹始终沿快轴方向。
在具体实施过程中,在确定慢轴上的矫正驱动信号后,可以将施加在慢轴上的驱动信号和矫正驱动信号进行叠加,得到慢轴上实际驱动信号,然后,再根据实际驱动信号对慢轴进行驱动。
具体的,假设驱动信号为余弦信号,施加在慢轴上的驱动信号为:
Figure PCTCN2019077606-appb-000021
其中,c为光纤扫描器在慢轴驱动信号的驱动下,在y方向的位移量的幅值,w y为快轴驱动信号的驱动频率,
Figure PCTCN2019077606-appb-000022
驱动频率为w y时光纤扫描器的频率响应系数,t为时间。则在慢轴的驱动信号中加入驱动频率为快轴驱动频率的驱动信号后,施加在慢轴上的实际驱动信号可以表示为:
Figure PCTCN2019077606-appb-000023
使得光纤扫描器在该实际驱动信号的驱动下,能够抵消快轴驱动信号在慢轴方向上产生的位移响应分量。
本发明实施例中,同样的,如果慢轴驱动信号在快轴方向产生了位移响应分量,即慢轴的扫描轨迹发生几何形变时,也可以通过在快轴的驱动信号中加入驱动频率为慢轴驱动频率的驱动信号,从而在快轴方向上产生与上述位移响应分量相反的位移量,以抵消慢轴 驱动信号在快轴方向产生的位移响应分量,使得慢轴的扫描轨迹始终沿慢轴方向。其中,计算快轴上的矫正驱动信号的方法和上述实施例中慢轴上的矫正驱动信号的计算方法相同,本发明在此不再赘述。
需要说明的是,本发明实施例中的方法同样适用于其他多极驱动的光纤扫描器,通过在其中一个驱动方向上叠加相应的矫正驱动信号,就可以对另一个驱动方向的扫描轨迹进行矫正,每个驱动方向上的矫正驱动信号的计算方法和上述实施例中矫正驱动信号的计算方法相同,本发明在此也不再赘述。
基于同一发明构思,本发明实施例还提供一种光纤扫描成像设备。本实施例的光纤扫描成像设备包括光纤扫描器、处理器和计算机可读存储介质,所述光纤扫描器的扫描方向至少包括第一方向和与所述第一方向不同的第二方向,所述计算机可读存储介质中存储的计算机程序被处理器执行时实现如下步骤:
检测所述光纤扫描器在第一方向上的第一驱动信号驱动下的扫描轨迹;
判断所述扫描轨迹是否沿所述第一方向;
在判断出所述扫描轨迹未沿所述第一方向的情况下,计算所述扫描轨迹在第二方向上的位移响应分量;
基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,并根据所述第一驱动信号和所述矫正驱动信号对光纤扫描器进行驱动,以在所述第二方向上产生与所述位移响应分量相反的位移量,使得所述光纤扫描器的扫描轨迹沿所述第一方向。
可选的,所述计算机可读存储介质中存储的对应于基于所述位移响应分量计算所述第二方向上的矫正驱动信号的步骤的计算机程序,在具体被处理器执行过程中执行如下步骤:
根据所述位移响应分量的位移幅值、所述第一驱动信号的驱动频率和所述光纤扫描器在所述驱动频率下的频率响应系数,计算所述第二方向上的矫正驱动信号。
可选的,所述光纤扫描器为XY型二维扫描器,所述第一方向和所述第二方向相互垂直。
可选的,所述计算机可读存储介质中存储有所述第二方向上的矫正驱动信号的计算表达式,所述计算表达式为:
Figure PCTCN2019077606-appb-000024
其中,U y为所述第二方向上的矫正驱动信号,b为所述位移响应分量的位移幅值,w x为第一驱动信号的驱动频率,
Figure PCTCN2019077606-appb-000025
为驱动频率为w x时光纤扫描器的频率响应系数,t为时间,f(w xt)为所述第一驱动信号。
可选的,所述计算机可读存储介质中还存储有另外一些计算机程序,这些计算机程序在被处理器执行时包括如下步骤:
将所述第二方向上的第二驱动信号和所述第二方向上的矫正驱动信号进行叠加,获得所述第二方向上的实际驱动信号。
本发明实施例中的一个或者多个技术方案,至少具有如下技术效果或者优点:
本发明实施例的方案中,通过判断光纤扫描器在第一驱动信号驱动下的扫描轨迹是否沿第一方向,如果不是,则计算该扫描轨迹在第二方向上的位移响应分量,并基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,以使得光纤扫描器在所述第一驱动信号和所述矫正驱动信号的驱动下,在所述第二方向上产生与所述位移响应分量相反的位移量,该相反的位移量能够抵消所述扫描轨迹在所述第二方向上的位移响应分量,使得所述光纤扫描器的扫描轨迹沿所述第一方向,从而解决现有技术中存在的,XY型激光扫描成像设备在投影时,图像会产生畸变,导致图像显示效果降低的技术问题,实现了提高图像的显示效果,从而提升该类光纤扫描成像设备的用户体验的技术效果。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (10)

  1. 一种图像矫正方法,应用于光纤扫描器中,所述光纤扫描器的扫描方向至少包括第一方向和与所述第一方向不同的第二方向,其特征在于,所述方法包括:
    检测所述光纤扫描器在第一方向上的第一驱动信号驱动下的扫描轨迹;
    判断所述扫描轨迹是否沿所述第一方向;
    在判断出所述扫描轨迹未沿所述第一方向的情况下,计算所述扫描轨迹在第二方向上的位移响应分量;
    基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,并根据所述第一驱动信号和所述矫正驱动信号对光纤扫描器进行驱动,以在所述第二方向上产生与所述位移响应分量相反的位移量,使得所述光纤扫描器的扫描轨迹沿所述第一方向。
  2. 如权利要求1所述的方法,其特征在于,基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,包括:
    根据所述位移响应分量的位移幅值、所述第一驱动信号的驱动频率和所述光纤扫描器在所述驱动频率下的频率响应系数,计算所述第二方向上的矫正驱动信号。
  3. 如权利要求1或2所述的方法,其特征在于,所述光纤扫描器为XY型二维扫描器,所述第一方向和所述第二方向相互垂直。
  4. 如权利要求3所述的方法,其特征在于,所述第二方向上的矫正驱动信号的计算表达式为:
    Figure PCTCN2019077606-appb-100001
    其中,U y为所述第二方向上的矫正驱动信号,b为所述位移响应分量的位移幅值,w x为第一驱动信号的驱动频率,
    Figure PCTCN2019077606-appb-100002
    为驱动频率为w x时光纤扫描器的频率响应系数,t为时间,f(w xt)为所述第一驱动信号。
  5. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    将所述第二方向上的第二驱动信号和所述第二方向上的矫正驱动信号进行叠加,获得所述第二方向上的实际驱动信号。
  6. 一种光纤扫描成像设备,其特征在于,包括光纤扫描器、处理器和计算机可读存储介质,所述光纤扫描器的扫描方向至少包括第一方向和与所述第一方向不同的第二方向,所述计算机可读存储介质中存储的计算机程序被所述处理器执行时实现如下步骤:
    检测所述光纤扫描器在第一方向上的第一驱动信号驱动下的扫描轨迹;
    判断所述扫描轨迹是否沿所述第一方向;
    在判断出所述扫描轨迹未沿所述第一方向的情况下,计算所述扫描轨迹在第二方向上的位移响应分量;
    基于所述位移响应分量,计算所述第二方向上的矫正驱动信号,并根据所述第一驱动信号和所述矫正驱动信号对光纤扫描器进行驱动,以在所述第二方向上产生与所述位移响应分量相反的位移量,使得所述光纤扫描器的扫描轨迹沿所述第一方向。
  7. 如权利要求6所述的设备,其特征在于,所述计算机可读存储介质中存储的对应于基于所述位移响应分量计算所述第二方向上的矫正驱动信号的步骤的计算机程序,在具体被所述处理器执行过程中实现如下步骤:
    根据所述位移响应分量的位移幅值、所述第一驱动信号的驱动频率和所述光纤扫描器在所述驱动频率下的频率响应系数,计算所述第二方向上的矫正驱动信号。
  8. 如权利要求6或7所述的设备,其特征在于,所述光纤扫描器为XY型二维扫描器,所述第一方向和所述第二方向相互垂直。
  9. 如权利要求8所述的设备,其特征在于,所述计算机可读存储介质中存储有所述第二方向上的矫正驱动信号的计算表达式,所述计算表达式为:
    Figure PCTCN2019077606-appb-100003
    其中,U y为所述第二方向上的矫正驱动信号,b为所述位移响应分量的位移幅值,w x为第一驱动信号的驱动频率,
    Figure PCTCN2019077606-appb-100004
    为驱动频率为w x时光纤扫描器的频率响应系数,t为时间,f(w xt)为所述第一驱动信号。
  10. 如权利要求6所述的设备,其特征在于,所述计算机可读存储介质中还存储有另外一些计算机程序,这些计算机程序在被所述处理器执行时实现如下步骤:
    将所述第二方向上的第二驱动信号和所述第二方向上的矫正驱动信号进行叠加,获得所述第二方向上的实际驱动信号。
PCT/CN2019/077606 2018-03-15 2019-03-11 一种图像矫正方法及光纤扫描成像设备 WO2019174537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810215077.9A CN108803011A (zh) 2018-03-15 2018-03-15 一种图像矫正方法及光纤扫描成像设备
CN201810215077.9 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019174537A1 true WO2019174537A1 (zh) 2019-09-19

Family

ID=64095083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077606 WO2019174537A1 (zh) 2018-03-15 2019-03-11 一种图像矫正方法及光纤扫描成像设备

Country Status (2)

Country Link
CN (1) CN108803011A (zh)
WO (1) WO2019174537A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108803011A (zh) * 2018-03-15 2018-11-13 成都理想境界科技有限公司 一种图像矫正方法及光纤扫描成像设备
CN109991746A (zh) * 2019-03-08 2019-07-09 成都理想境界科技有限公司 图像源模组及近眼显示***
CN112859327B (zh) * 2019-11-27 2022-10-18 成都理想境界科技有限公司 一种图像输出控制方法及光纤扫描成像***
CN113741123B (zh) * 2020-05-28 2022-12-30 成都理想境界科技有限公司 一种投影矫正方法及光纤扫描成像设备
CN114967109B (zh) * 2021-02-25 2024-01-05 成都理想境界科技有限公司 图像矫正方法及光纤扫描成像***
CN114967110B (zh) * 2021-02-25 2024-02-06 成都理想境界科技有限公司 扫描显示单元标定方法及光纤扫描成像***
CN115079403B (zh) * 2021-03-15 2024-03-08 成都理想境界科技有限公司 投影矫正方法及光纤扫描成像***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116922A (ja) * 2006-09-14 2008-05-22 Optiscan Pty Ltd 光ファイバ走査装置
JP2014044271A (ja) * 2012-08-24 2014-03-13 Olympus Corp 光走査型観察装置
CN104135909A (zh) * 2012-02-29 2014-11-05 Hoya株式会社 校准装置
CN106413511A (zh) * 2014-05-27 2017-02-15 奥林巴斯株式会社 光扫描型内窥镜装置
CN108803011A (zh) * 2018-03-15 2018-11-13 成都理想境界科技有限公司 一种图像矫正方法及光纤扫描成像设备

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE151891T1 (de) * 1990-08-07 1997-05-15 Omron Tateisi Electronics Co Optischer abtaster
TW224169B (zh) * 1992-06-19 1994-05-21 Philips Nv
JPH10301052A (ja) * 1997-05-02 1998-11-13 Sumitomo Heavy Ind Ltd レーザ加工装置の加工位置ずれ補正方式
US7170665B2 (en) * 2002-07-24 2007-01-30 Olympus Corporation Optical unit provided with an actuator
US6661393B2 (en) * 1999-08-05 2003-12-09 Microvision, Inc. Scanned display with variation compensation
JP4576058B2 (ja) * 2001-01-31 2010-11-04 オリンパス株式会社 変位検出機能を備えた可変形状鏡
JP4684470B2 (ja) * 2001-06-08 2011-05-18 キヤノン株式会社 光走査装置及びそれを用いた画像形成装置
CN1392432A (zh) * 2001-06-20 2003-01-22 力捷电脑股份有限公司 影像扫描装置的背光光源均匀度校正方法及其背光模组
US20040004775A1 (en) * 2002-07-08 2004-01-08 Turner Arthur Monroe Resonant scanning mirror with inertially coupled activation
JP2004109767A (ja) * 2002-09-20 2004-04-08 Ricoh Co Ltd 画像表示装置および結像光学装置および画像表示装置用の結像光学系
US6987595B2 (en) * 2002-12-23 2006-01-17 Lexmark International, Inc. Oscillator imaging with control of media speed and modulation frequency
US7755657B2 (en) * 2003-06-12 2010-07-13 Micronic Laser Systems Ab Method for high precision printing of patterns
JP2006300981A (ja) * 2005-04-15 2006-11-02 Seiko Epson Corp 光走査装置、光走査装置の制御方法及び画像表示装置
US7130095B1 (en) * 2005-06-24 2006-10-31 Symbol Technologies, Inc. Correcting for image distortion in image projectors
US7239436B2 (en) * 2005-08-17 2007-07-03 Texas Instruments Incorporated Method for aligning consecutive scan lines on bi-directional scans of a resonant mirror
JP2007199251A (ja) * 2006-01-25 2007-08-09 Canon Inc 光走査装置及びそれを有する走査型画像表示装置
JP2008295174A (ja) * 2007-05-23 2008-12-04 Panasonic Electric Works Co Ltd 揺動装置、同装置を用いた光走査装置、映像表示装置、及び揺動装置の制御方法
US7864390B2 (en) * 2007-05-28 2011-01-04 Konica Minolta Opto, Inc. Image display apparatus
JP2008310925A (ja) * 2007-06-18 2008-12-25 Sony Corp 変形可能ミラー装置、光ピックアップ、光学ドライブ装置
CN101720445B (zh) * 2008-04-30 2013-02-27 松下电器产业株式会社 扫描式图像显示装置、眼镜型头戴式显示器以及车辆
CN101685197B (zh) * 2008-09-24 2012-01-25 中国科学院自动化研究所 一种评价摄像机镜头切向畸变指标的方法
JP5220120B2 (ja) * 2008-10-17 2013-06-26 パナソニック株式会社 走査型画像表示装置
WO2010060474A1 (en) * 2008-11-26 2010-06-03 Contex A/S Optical scanning
CN102822722B (zh) * 2010-03-31 2014-08-06 日本电气株式会社 投影仪、投影仪***和图像校正方法
EP2716036B1 (en) * 2011-06-03 2018-07-04 Thomson Licensing Variable and serrated scanning in laser projectors
JP6214550B2 (ja) * 2011-12-05 2017-10-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 干渉検知システムの動き補償のための方法及び装置
JP6033000B2 (ja) * 2011-12-20 2016-11-30 オリンパス株式会社 走査型内視鏡
JP2013161069A (ja) * 2012-02-09 2013-08-19 Hitachi Media Electoronics Co Ltd 画像表示装置
CN102937816B (zh) * 2012-11-22 2015-05-27 四川华雁信息产业股份有限公司 摄像机预置位偏差校准方法及装置
CN102981445B (zh) * 2012-12-03 2014-08-13 西安红宇矿用特种移动设备有限公司 一种基于plc的煤炭采制样机智能控制***和方法
JP6120611B2 (ja) * 2013-02-27 2017-04-26 日立マクセル株式会社 ビーム走査型表示装置
US10725287B2 (en) * 2013-06-11 2020-07-28 Nlight, Inc. Image rotation compensation for multiple beam material processing
CN104749769A (zh) * 2013-12-27 2015-07-01 光宝科技股份有限公司 静电式微扫描镜的驱动校正装置及其驱动校正方法
CN105007413B (zh) * 2015-06-30 2018-01-19 广东欧珀移动通信有限公司 一种拍摄控制方法及用户终端
CN104994281B (zh) * 2015-06-30 2017-09-19 广东欧珀移动通信有限公司 一种人脸畸变校正的方法及终端
CN105138028B (zh) * 2015-09-18 2018-09-18 珠海格力电器股份有限公司 吸油烟机的转速控制方法和装置
CN105554403B (zh) * 2016-02-29 2018-12-04 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置
EP3220183B1 (en) * 2016-03-17 2021-11-10 Ricoh Company, Ltd. Control unit, optical deflection system, image projection apparatus, and control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116922A (ja) * 2006-09-14 2008-05-22 Optiscan Pty Ltd 光ファイバ走査装置
CN104135909A (zh) * 2012-02-29 2014-11-05 Hoya株式会社 校准装置
JP2014044271A (ja) * 2012-08-24 2014-03-13 Olympus Corp 光走査型観察装置
CN106413511A (zh) * 2014-05-27 2017-02-15 奥林巴斯株式会社 光扫描型内窥镜装置
CN108803011A (zh) * 2018-03-15 2018-11-13 成都理想境界科技有限公司 一种图像矫正方法及光纤扫描成像设备

Also Published As

Publication number Publication date
CN108803011A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2019174537A1 (zh) 一种图像矫正方法及光纤扫描成像设备
CN102998885B (zh) 对投影仪投影图像失真校正的方法
US10009585B2 (en) MEMS scan controlled keystone and distortion correction
US10511823B2 (en) Video display apparatus, video display system, and video display method
US8876298B2 (en) Projector and projector system
US8717414B2 (en) Method and apparatus for matching color image and depth image
WO2019114500A1 (zh) 光纤扫描成像设备及其投影几何变形的矫正***
US9514524B2 (en) Optical distortion compensation
TWI439788B (zh) 投影校正系統及方法
CN103974047B (zh) 一种穿戴式投影装置及其调焦方法、投影方法
CN110456602B (zh) 一种投影***的投影图案校正装置、方法及***
CN101762953A (zh) 自动调整成像尺寸的投影装置及方法
JP2001061121A (ja) プロジェクタ装置
US7204595B2 (en) Projector and method of correcting projected image distortion
US20140092369A1 (en) Image output device, image output method, and program
US10481363B2 (en) Projector and focus adjustment method
JP2011176629A (ja) 制御装置および投写型映像表示装置
JP2009015124A (ja) 走査型画像表示装置
CN109688390B (zh) 一种投影画面自动校正方法、***
US11240484B2 (en) Information processing apparatus and information processing method for stereo imaging based on corrected parameters
JP2005346012A (ja) 表示装置、表示方法、及びプログラム
CN109308684A (zh) 一种图像倾斜矫正方法及计算机可读存储介质
Pan et al. DoCam: depth sensing with an optical image stabilization supported RGB camera
US9615070B2 (en) Video signal processing device and projection-type display device
JP2012129747A (ja) 画像投影装置及びその制御方法、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766894

Country of ref document: EP

Kind code of ref document: A1