WO2019172226A1 - Method for producing activated carbon - Google Patents

Method for producing activated carbon Download PDF

Info

Publication number
WO2019172226A1
WO2019172226A1 PCT/JP2019/008532 JP2019008532W WO2019172226A1 WO 2019172226 A1 WO2019172226 A1 WO 2019172226A1 JP 2019008532 W JP2019008532 W JP 2019008532W WO 2019172226 A1 WO2019172226 A1 WO 2019172226A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
carbide
raw material
cleaning
activation
Prior art date
Application number
PCT/JP2019/008532
Other languages
French (fr)
Japanese (ja)
Inventor
啓悟 蓮見
圭祐 菊池
櫻川 智史
里恵 山下
Original Assignee
サンコール株式会社
静岡県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンコール株式会社, 静岡県 filed Critical サンコール株式会社
Publication of WO2019172226A1 publication Critical patent/WO2019172226A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents

Definitions

  • the present invention relates to a method for producing activated carbon from biomass raw materials such as bamboo and coffee grounds.
  • bamboo is carbonized to obtain bamboo carbide, and the bamboo carbide is washed to remove 20 to 100% by weight of potassium with respect to the total amount of potassium contained in the bamboo carbide.
  • a method for producing bamboo activated carbon is disclosed which includes a step of obtaining potassium adjusted bamboo carbide and a step of activating potassium adjusted bamboo carbide to obtain bamboo activated carbon.
  • the conventional method for producing bamboo activated carbon makes it easy and inexpensive to make bamboo activated carbon having relatively uniform micropores without being affected by the elements and composition of minerals and the like that differ depending on the production area, type and growth process of bamboo. It is said that you can get.
  • Patent Document 1 describes that the adjustment of the amount of potassium can be performed by cleaning the bamboo as a raw material instead of by cleaning the bamboo carbide.
  • Patent Document 1 potassium obtained by washing bamboo as a raw material to remove 20 to 100% by weight of potassium with respect to the total amount of potassium contained in the bamboo is disclosed.
  • a method for producing bamboo activated carbon which includes a step of obtaining adjusted bamboo, a step of carbonizing potassium adjusted bamboo to obtain potassium adjusted bamboo carbide, and a step of activating potassium adjusted bamboo carbide to obtain bamboo activated carbon. .
  • Patent Document 1 in a method for producing bamboo activated carbon comprising a step of carbonizing bamboo and a step of activating bamboo carbide, cleaning performed in the state of bamboo as a raw material, and the state of bamboo carbide is disclosed.
  • activated carbon having a high specific surface area in fields such as electrodes of power storage devices.
  • the inventor of the present application is not enough to provide activated carbon with micropores having a pore size of 2 nm or less.
  • activated carbon has a mesopore with a pore size of 2 nm to 50 nm. It came to the new idea that it is necessary to provide holes.
  • the present invention has been made in view of such a conventional technique, and is a method for producing activated carbon from a biomass raw material, and activated carbon capable of efficiently producing activated carbon having a large specific surface area in which not only micropores but also mesopores have been developed. It aims at providing the manufacturing method of this.
  • the present invention provides a step of preparing chip-like ash-containing biomass raw material, a raw material washing step of performing ash removal cleaning on the chip-like biomass raw material, and carbonizing the washed raw material.
  • a method for producing activated carbon including a carbonization step for obtaining carbide, a carbide washing step for performing ash removal washing on the carbide, and an activation step for obtaining activated carbon by activating the washed carbide.
  • ash removal cleaning is performed on the chip-shaped biomass raw material, the cleaned raw material is carbonized to generate carbide, and the generated carbide is further subjected to ash removal cleaning. Since the activated carbon is obtained by activating the washed carbide, activated carbon having a large specific surface area in which both micropores and mesopores are developed can be efficiently produced.
  • the chip-shaped biomass raw material is poured into the cleaning water in the treatment tank, boiled and cooled, and the chip-shaped biomass raw material precipitated in the cleaning water is taken out as the cleaned raw material. .
  • the carbide is put into cleaning water in the treatment tank, boiled and cooled, and the carbide precipitated in the cleaning water is taken out as cleaned carbide.
  • the activation time is set so that the specific surface area of the activated carbon is 1700 m 2 / g or more. More preferably, the activation time is set so that the specific surface area of the activated carbon is 2000 m 2 / g or less.
  • the carbonization step is performed by heating the cleaned raw material at a temperature of 600 ° C. or more and 750 ° C. or less in a superheated steam atmosphere
  • the activation step is performed by heating the cleaned carbide to the superheated steam.
  • the heating is performed at a temperature of 750 ° C. to 900 ° C. in an atmosphere.
  • the chip-like ash-containing biomass material is bamboo chips having a minimum side of a shape in plan view of 500 ⁇ m or more and 2 mm or less.
  • FIG. 1 is a front view of an example of a heating apparatus capable of performing a carbonization step and an activation step in an activated carbon production method according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of the heating device.
  • FIG. 3 is a longitudinal sectional view of a heat treatment unit in the heating apparatus.
  • FIG. 4 shows the relationship between activation time and activation yield in activated carbon A produced by washing the raw material, activated carbon B produced by washing the carbide, and activated carbon C not washed. It is a graph to represent.
  • FIG. 5 is a graph showing the relationship between the yield and specific surface area of the activated carbons A to C.
  • 6 (a) to 6 (c) are graphs showing the frequency distribution of the pore diameters in the activated carbons A to C, respectively.
  • the method for producing activated carbon according to the present invention is based on the following novel idea by the inventor of the present invention. From the biomass raw material containing ash, micropores (pore diameter 2 nm or less) and mesopores (pore diameter 2 nm or more and 50 nm or less) This is a method for efficiently producing the activated carbon in which both have been developed.
  • the method for producing activated carbon including the carbonization step of performing carbonization treatment on the ash-containing biomass raw material to generate carbide, and the activation step of performing activation treatment on the carbide to generate activated carbon, before the activation step It has heretofore been known to perform ash removal cleaning on a stage, specifically, biomass feedstock or carbide.
  • the cleaning of the biomass raw material or the cleaning of the carbide is performed alternatively, and any cleaning was considered to develop micropores in the manufactured activated carbon.
  • the present inventor found that ash removal cleaning for the biomass raw material state contributes to the development of micropores in the activated carbon that is produced, while ash removal cleaning for the carbide state is the development of micropores in the produced activated carbon.
  • the present invention was completed by obtaining a new idea that it may contribute to the development of mesopores.
  • the activated carbon manufacturing method includes a step of preparing a chip body of an ash-containing biomass material.
  • biomass raw materials containing ash examples include bamboo, coffee grounds (coffee extraction residue), rice husks, and corn.
  • the size and shape of the chip body are not limited, but considering the cleaning efficiency in the following cleaning step, the minimum side of the shape in plan view can be 2 mm or less. That is, even if the length of one side in the plan view shape is 5 cm, the ash content can be effectively removed in the following cleaning step if the length of the other side in the plan view shape is 2 mm or less.
  • the minimum side of the shape of the chip body in plan view is preferably 500 ⁇ m or more. That is, when the minimum side of the chip body is less than 500 ⁇ m, the activation yield of the product by the activation process is less than 5%, and there is a fear that the ash state is obtained.
  • the activated carbon manufacturing method further includes a raw material cleaning step of performing ash removal cleaning on the chip biomass material.
  • the raw material washing step can have various washing treatments as long as ash can be removed from the chip-like biomass raw material.
  • the biomass material is boiled / cooled and washed by adding the chip-like biomass material to the washing water in the treatment tank, boiling and cooling, and taking out the chip-like biomass material precipitated in the washing water as the washed material.
  • washing water can be efficiently infiltrated into the chip biomass raw material, and ash can be efficiently removed from the chip biomass raw material.
  • ion exchange water can be used as the washing water.
  • the amount of washing water is set to an amount larger than the whole chip biomass raw material can be immersed.
  • the amount of the washing water can be set to Ma / Da or more when the bulk density Da of the chip-like biomass raw material is used.
  • the boiling treatment can be performed, for example, by boiling the washing water into which the chip-like biomass material is charged.
  • the maintenance time of the boiling state is not particularly limited, and is appropriately set according to the weight of the chip biomass material.
  • the cooling treatment can be performed, for example, by cooling the washing water containing the boiled chip biomass raw material to room temperature.
  • the cooling method is not particularly limited, and various methods such as natural cooling, water cooling, and air cooling can be used.
  • the boiling and cooling cycle can be performed multiple times.
  • the raw material cleaning step is preferably configured to perform a nitric acid cleaning process on the chip biomass raw material after the boiling / cooling cleaning process.
  • nitric acid washing treatment After the boiling / cooling washing treatment, the supernatant water out of the washing water is discarded, and ion-exchanged water is replenished in an amount corresponding to the discarded supernatant water amount. In addition, it can be performed by leaving it for a predetermined time.
  • concentration of nitric acid water is not particularly limited, and for example, nitric acid water can be added so that the nitric acid concentration of washing water is 3 to 10%.
  • vibration can be applied a predetermined number of times in a state in which diluted nitric acid is added to the cleaning water, thereby enhancing the cleaning effect by nitric acid.
  • the chip biomass raw material is taken out from the washing water containing diluted nitric acid water after the nitric acid washing treatment, and the rinsing treatment is performed to remove nitric acid from the chip biomass raw material with ion exchange water. It can be performed.
  • the activated carbon manufacturing method further includes a carbonization step of carbonizing the cleaned raw material after the raw material cleaning step.
  • the carbide is generated by heating the washed raw material at a temperature of 650 ° C. or higher and 750 ° C. or lower in a superheated steam atmosphere. .
  • the carbonization process in the carbonization process and the activation process in the following activation process can be performed by changing only the temperature condition while using a single superheated steam heating apparatus.
  • the activated carbon production method further includes a carbide cleaning step of performing ash removal cleaning on the carbide generated by the carbonization step.
  • the carbide cleaning step can have various cleaning treatments as long as ash can be removed from the carbide.
  • the carbide cleaning step may include a boiling / cooling cleaning process in which the carbide is put into cleaning water in the treatment tank, boiled and cooled, and the carbide precipitated in the cleaning water is taken out as cleaned carbide.
  • washing water can be efficiently infiltrated into the inside of the carbide, and ash can be efficiently removed from the carbide.
  • ion exchange water can be used as the washing water.
  • the amount of the washing water is set to an amount that allows the entire carbide to be immersed.
  • the amount of washing water can be Mb / Db or more, assuming that the carbide has a bulk density Db.
  • the boiling treatment can be performed, for example, by boiling the wash water charged with carbide.
  • the time for maintaining the boiling state is not particularly limited, and is appropriately set according to the weight of the carbide.
  • the cooling treatment can be performed, for example, by cooling the washing water containing the boiled carbide to room temperature.
  • the cooling method is not particularly limited, and various methods such as natural cooling, water cooling, and air cooling can be used.
  • the boiling and cooling cycle can be performed multiple times.
  • the carbide cleaning step is preferably configured to perform a nitric acid cleaning process on the carbide after the boiling / cooling cleaning process.
  • nitric acid washing treatment After the boiling / cooling washing treatment, the supernatant water out of the washing water is discarded, and ion-exchanged water is replenished in an amount corresponding to the discarded supernatant water amount. In addition, it can be performed by leaving it for a predetermined time.
  • concentration of nitric acid water is not particularly limited, and for example, nitric acid water can be added so that the nitric acid concentration of washing water is 3 to 10%.
  • vibration can be applied a predetermined number of times in a state in which diluted nitric acid is added to the cleaning water, thereby enhancing the cleaning effect by nitric acid.
  • the carbide cleaning step includes the nitric acid cleaning process
  • the carbide can be taken out from the cleaning water containing diluted nitric acid water after the nitric acid cleaning process, and rinse treatment for removing nitric acid from the carbide with ion-exchanged water can be performed.
  • the activated carbon production method further includes an activation step of activating the washed carbide to obtain activated carbon after the carbide washing step.
  • various activation methods can be used.
  • a superheated steam heating apparatus that can be used for carbonization in the carbonization step is used, and the temperature is 750 ° C. or more and 900 ° C. or less in a superheated steam atmosphere.
  • the activated carbon is formed by heating the carbide at a temperature of
  • FIGS. 1 and 2 show a front view and a schematic block diagram of an example 1 of a superheated steam heating apparatus capable of performing the carbonization step and the activation step, respectively.
  • the heating device 1 includes a water supply unit 90 that supplies steam or mist-like water, and a heat treatment unit 100.
  • Reference numeral 10 in FIG. 1 denotes a gantry that supports the heat treatment unit 100.
  • FIG. 3 shows a longitudinal sectional view of the heat treatment unit 100.
  • the heat treatment unit 100 includes a case body 110, a screw conveyor 120, and a superheated steam generation mechanism 130.
  • the case body 110 is configured to define a processing space 110A that receives a processing target (cleaned raw material or cleaned carbide) in an airtight state.
  • the case main body 110 includes a substantially rectangular upper surface 111 defined by a pair of long sides extending in the longitudinal direction and a pair of short sides extending in the width direction, A pair of side surfaces 112 extending substantially vertically from a pair of long sides of the upper surface 111, a pair of end surfaces 113 extending substantially vertically from a pair of short sides of the upper surface 111, a lower end portion of the pair of side surfaces 112, and the pair of end surfaces A substantially rectangular parallelepiped shape having a bottom surface 114 that closes the lower end of 113 is formed.
  • the screw conveyor 120 is driven to rotate around the axis to convey the object to be processed (cleaned raw material or cleaned carbide) in the processing space 110A from one side in the longitudinal direction of the processing space 110A to the other side.
  • the screw conveyor 120 includes a rotating shaft 121 that longitudinally cuts the processing space 110 ⁇ / b> A along the longitudinal direction with at least one end 121 a extending in an airtight manner outward, and the rotating shaft 121.
  • a conveyance body 122 such as a spiral blade provided and an actuator (not shown) such as an electric motor that rotationally drives the one end 121a of the rotating shaft 121 are provided.
  • the screw conveyor 120 may include first and second rotating shafts arranged in parallel with each other as the rotating shaft 121, and the first and second rotating shafts provided as the transport body 122, respectively. 1 and a 2nd conveyance body can be included. In this case, the first and second rotating shafts are synchronously rotated by the actuator.
  • the superheated steam generation mechanism 130 includes a fluid heating pipe 131 and a cover case 140 connected to the case main body 110.
  • the fluid heating tube 131 is a long hollow member formed of a conductive material that heats in response to voltage application such as Inconel, Hastelloy, or stainless steel, and is supplied with steam or mist supplied from the water supply unit 90
  • the water in the interior space is received and heated by receiving a voltage applied to convert the steam or mist water in the interior space into superheated steam and discharge it to the outside.
  • the case body 110 includes a receiving port 110 (in) for receiving an object to be processed (cleaned raw material or cleaned carbide) to one side of the processing space 110A, and an object to be processed.
  • An upper opening 115 that opens 110A upward is provided.
  • the fluid heating tube 131 is disposed above the case body 110 so that the intermediate portion 133 faces the upper opening 115, and the cover case 140 includes the intermediate portion 133 of the fluid heating tube 131.
  • the upper body 115 is fixed to the case body 110 so as to airtightly close the upper opening 115 while covering.
  • the fluid heating tube 131 has the first end 131a on one side in the longitudinal direction and the second end 131b on the other side in the longitudinal direction extending outward from the cover case 140.
  • the intermediate portion 133 between the first and second end portions 131 a and 131 b is disposed so as to face the upper opening 115.
  • the first and second end portions 131a and 131b are provided with first and second feeding points 135 and 135b, respectively, and one of the first and second end portions 131a and 131b has the fluid heating.
  • An inlet for introducing steam or mist-like water from the water supply mechanism 90 is provided in the internal space of the pipe 131.
  • the water supply unit 90 has a boiler 91, and steam is supplied from the boiler 91 to the inlet of the fluid heating pipe 131.
  • Reference numeral 92 in FIG. 2 is an adjustment valve that adjusts the amount of steam supplied from the boiler 91 to the fluid heating pipe 131.
  • the fluid heating pipe 131 is heated by applying a voltage to the first and second feeding points 135a and 135b, and converts the steam in the internal space or mist-like water into superheated steam.
  • the intermediate portion 133 is provided with one or a plurality of drying discharge ports (not shown), and the superheated steam generated by the fluid heating pipe 131 is discharged from the one or more drying discharge ports to the outside. It is discharged and supplied to the processing space 110A through the upper opening 115.
  • the fluid heating tube 131 is supported by the cover case 140 via various attachment members, and the cover case 140 is attached to the upper surface 111 of the case body 110. By fixing, the intermediate portion 133 of the fluid heating tube 131 faces the upper opening 115.
  • the heating device 1 includes a temperature sensor (not shown) that detects the temperature of the processing space 110A, and a control device 300 (see FIG. 2) that controls on / off control of voltage application to the superheated steam generation mechanism 130.
  • the controller 300 includes a predetermined temperature (600 ° C. or higher and 750 ° C. or lower) suitable for the carbonization treatment, or a predetermined temperature (750 ° C. or higher and 900 ° C. or lower) suitable for the activation treatment.
  • voltage application control to the superheated steam generation mechanism 130 is performed.
  • the superheated steam generation mechanism 130 is configured to generate superheated steam by the heat generation action of the fluid heating pipe 131 in response to voltage application. Instead, the superheated steam generation mechanism 130 is heated by steam or mist-like water supplied from the water supply unit 90 by electromagnetic induction action to generate superheated steam (not shown), It is also possible to have a fluid pipe (not shown) to which superheated steam generated by the electromagnetic induction heating means is supplied, and a cover case 140 that can close the upper opening 115 in an airtight state. .
  • the electromagnetic induction heating means includes, for example, an introduction pipe whose one end is fluidly connected to the water supply unit 90 and the other end is fluidly connected to the fluid pipe, and an excitation coil wound around the introduction pipe And can have
  • the fluid pipe may be arranged such that a predetermined portion in the longitudinal direction provided with one or a plurality of drying discharge ports for discharging superheated steam faces the upper opening 115 in the cover case 140.
  • the control device 300 is configured to set processing conditions including the processing temperature of the processing space 110A and the conveying speed of the screw conveyor 120, and the superheated steam generation mechanism 130 and the control device 300 according to the set processing conditions.
  • the operation of the screw conveyor 120 is controlled.
  • the object to be processed (cleaned raw material) is transported or stopped in the processing space 110 ⁇ / b> A defined by the case body 110 while the object to be processed (cleaned raw material or cleaned carbide) is being conveyed.
  • the superheated steam generated by the superheated steam generation mechanism 130 is supplied to the cleaned carbide) via the upper opening 115 of the case body 110, so that the entire processing space 110A is heated to a high temperature. Steam can be supplied efficiently.
  • the intermediate portion 133 of the fluid heating tube 131 provided with the one or more discharge ports faces the upper opening 115 of the case body 110. Since the upper opening 115 and the intermediate portion 133 are hermetically covered by the cover case 140, the high-temperature superheated steam can be efficiently supplied to the entire processing space 110A. In addition, the temperature in the processing space 110A can be increased by the heat amount of the fluid heating pipe 131 as well as the heat amount by the superheated steam, and good heating efficiency can be obtained.
  • the heating device 1 having such a configuration, the carbonization treatment and the activation treatment can be performed efficiently.
  • the heating device 1 includes a hopper 20 that can store a processed material (cleaned raw material or cleaned carbide) upstream of the heat processing unit 100 in the flow direction of the processed material.
  • the case 110 has a receiving port 110 (in) connected directly or indirectly to the outlet of the hopper 20.
  • an upstream-side transport unit 30 is interposed between the hopper 20 and the heat treatment unit 100.
  • the upstream conveyance unit 30 includes an upstream conveyance case 31 that defines an airtight conveyance space, and an upstream conveyance screw conveyor that conveys an object to be processed from one side of the conveyance space of the upstream conveyance case 31 to the other side. 32.
  • the upstream transport case 31 has an upstream inlet 31 (in) and an upstream outlet 31 (out) formed to communicate with one side and the other side of the transport space, respectively.
  • the outlet of the hopper 20 is connected to the upstream receiving port 31 (in) of the upstream transfer case 31 in an airtight state, and the upstream discharge port 31 (out) of the upstream transfer case 31 is connected to the receiving port of the case body 110. 110 (in) in an airtight state.
  • the upstream conveying screw conveyor 32 includes a rotating shaft 32a that longitudinally cuts the conveying space along the longitudinal direction with at least one end extending outwardly, and conveying of a spiral blade provided on the rotating shaft 32a.
  • the body 32b and an actuator (not shown) such as an electric motor that rotationally drives one end of the rotating shaft 32a are provided.
  • the heating device 1 has an upstream opening / closing operation that opens or closes the receiving port 110 (in) and the discharging port 110 (out) of the case body 110 directly or indirectly, respectively.
  • a valve 40 and a downstream opening / closing valve 60 are provided.
  • the upstream opening / closing valve 40 By providing the upstream opening / closing valve 40, it is possible to control the amount of work to be processed into the heat treatment unit 100, and by providing the downstream opening / closing valve 60, from the heat treatment unit 100, The discharge amount of the object to be processed can be controlled.
  • the upstream side opening / closing valve 40 and the downstream side opening / closing valve 60 are provided. Furthermore, by providing the upstream side opening / closing valve 40 and the downstream side opening / closing valve 60, the inflow of air into the case body 110 is more reliably prevented, and the superheated steam atmosphere in the case body 110 is effectively maintained. can do.
  • the case main body 110 can be provided without the upstream side open / close valve 40 and the downstream side open / close valve 60.
  • air can be prevented from flowing in from the inlet 110 (in) and the outlet 110 (out) of the main body 110 to some extent, by providing the upstream on-off valve 40 and the downstream on-off valve 60, This inflow of air can be prevented more reliably.
  • the upstream side open / close valve 40 and the downstream side open / close valve 60 may be configured to open and close by an actuator that is controlled by the control device 300.
  • the upstream opening / closing valve 40 is connected to a pipe that connects the upstream discharge port 31 (out) of the upstream transfer case 31 and the receiving port 110 (in) of the case body 110. It is inserted.
  • symbol 65 in FIG.1 and FIG.2 is a tray which receives the to-be-processed object (carbide or activated carbon) discharged
  • the heating device 1 includes an exhaust duct 70 whose one end communicates with the processing space 110 ⁇ / b> A, an exhaust fan 72 inserted in the exhaust duct 70, and the exhaust duct 70. And a forced oxidizer 85 connected to the end.
  • One end of the exhaust duct 70 is provided in the case main body 110 so as to be opened outward above a region in which the object to be processed (cleaned raw material or cleaned carbide) is conveyed in the processing space 110A. Connected to the outlet.
  • the exhaust port of the forced oxidizer 85 is connected to the exhaust duct 75.
  • the exhaust fan 72 is configured to be controlled by the control device 300.
  • the said heating apparatus 1 is comprised so that the said heat processing part 100 can perform both a carbonization process and an activation process. That is, when performing the carbonization process, the heat treatment unit 100 is controlled so that the processing space 110A has a predetermined temperature (600 ° C. or higher and 750 ° C. or lower) suitable for the carbonization process. The heat treatment unit 100 is controlled so that the treatment space 110A has a predetermined temperature (750 ° C. or more and 900 ° C. or less) suitable for the activation treatment.
  • a predetermined temperature 600 ° C. or higher and 750 ° C. or lower
  • the heat treatment unit 100 is controlled so that the treatment space 110A has a predetermined temperature (750 ° C. or more and 900 ° C. or less) suitable for the activation treatment.
  • a heating apparatus that includes two heat treatment parts, a heat treatment part for carbonization treatment and a heat treatment part for activation treatment, and configured to perform the carbonization treatment and the activation treatment in parallel, It is also possible to implement the activated carbon production method according to the present embodiment.
  • the washing was performed by repeating the boiling and cooling cycles twice with 100 g of bamboo chips having a minimum side of 500 ⁇ m to 2 mm in a plan view shape placed in 2 liters of ion-exchanged water. .
  • the bamboo chips precipitated in the ion-exchanged water are taken out as washed bamboo chips, dried in air at a temperature of 110 ° C., and then carbonized by heating at a temperature of 600 ° C. for 60 minutes in a nitrogen atmosphere. To produce bamboo carbide.
  • activated charcoal is generated by heating for 50 minutes, 70 minutes, 110 minutes, and 130 minutes, respectively, at a temperature of 850 ° C. in a superheated steam atmosphere. (Hereinafter referred to as activated carbon A (1) to activated carbon A (4), respectively).
  • bamboo carbide was produced by heating 60 g of bamboo chips having a minimum side of 500 ⁇ m to 2 mm in plan view in a nitrogen atmosphere at a temperature of 600 ° C. for 60 minutes without washing. .
  • bamboo activated carbon was activated by heating for 50 minutes, 70 minutes, 90 minutes and 110 minutes, respectively, at a temperature of 850 ° C. in a superheated steam atmosphere. (Hereinafter referred to as activated carbon B (1) to activated carbon B (4), respectively).
  • Activated carbon (activated carbon C) was manufactured, without wash
  • bamboo carbide was produced by heating 60 g of bamboo chips having a minimum side of 500 ⁇ m to 2 mm in plan view in a nitrogen atmosphere at a temperature of 600 ° C. for 60 minutes without washing. .
  • activated carbon is produced by heating for 30 minutes, 40 minutes, 50 minutes and 60 minutes, respectively, at a temperature of 850 ° C. in a superheated steam atmosphere. (Hereinafter referred to as activated carbon C (1) to activated carbon C (4), respectively).
  • Activation yield which is the ratio of the weight of activated carbon to the weight of the carbide state with respect to activated carbon A (1) to A (4), activated carbon B (1) to B (4) and activated carbon C (1) to C (4) was measured.
  • FIG. 4 shows the relationship between the activation time and the activation yield.
  • An activation yield of 5% or less means that the product after the activation treatment is in an ash state rather than activated carbon.
  • FIG. 5 shows the relationship between the yield, which is the ratio of the activated carbon weight to the raw material weight, and the specific surface area.
  • the frequency of the pore diameter formed in the activated carbon A (1) to A (4), activated carbon B (1) to B (4) and activated carbon C (1) to C (3) was measured by a nitrogen adsorption / desorption measuring device.
  • . 6 (a) to 6 (c) show the pore sizes and frequencies of activated carbon A (1) to A (4), activated carbon B (1) to B (4), and activated carbon C (1) to C (3), respectively. Shows the relationship.
  • the activation yield was 5% in the activated carbon C (4) with an activation treatment time of 60 minutes.
  • the product after the activation treatment was substantially in an ash state.
  • the activation yield was 20% or more even after the activation treatment was performed for 130 minutes (activated carbon A (4)), and the product was good. It was an active carbon state.
  • the activation yield was 15% or more even when the activation treatment was performed for 110 minutes (activated carbon B (4)), and the product was in a good activated carbon state.
  • the activated carbon C (2) having an activation time of 40 minutes has an increased specific surface area compared to the activated carbon C (1) having an activation time of 30 minutes, but the activation time is 50 minutes.
  • Activated carbon C (3) has a reduced specific surface area compared to activated carbon C (2).
  • activated carbon A and activated carbon B have a higher rate of increase in specific surface area with respect to a decrease in yield than activated carbon C.
  • the frequency of micropores having a pore diameter of 2 nm or less increased with an increase in activation time, and in particular, the activation time was 110 minutes.
  • activated carbon a (3) (a specific surface area of 2000 m 2 / g (see FIG. 5)) is compared to the activation time of 70 min the activated carbon a (2) (specific surface area 1400 m 2 / g (see FIG. 5)), the micropores The frequency was rising significantly.
  • the cleaning treatment at the raw material stage contributes to the development of micropores in the activated carbon.
  • the frequency of micropores with a pore diameter of 2 nm or less increased as the activation time increased, but the frequency of micropores
  • the cleaning treatment at the stage after carbonization contributes to the development of both micropores and mesopores in the activated carbon.
  • activated carbon B (2) (specific surface area 1700 m 2 / g (see FIG. 5)) with an activation time of 70 minutes is activated carbon B (1) (specific surface area 1300 m 2 / g (Fig. 5)). Compared to 5)), the frequency of mesopores increased significantly.
  • the activation time when the activation time is set so that the specific surface area is 1700 m 2 / g or more, micropores having a pore diameter of 2 nm or less and It can be inferred that activated carbon having a greatly increased frequency of mesopores having a pore diameter of 2 nm to 50 nm can be efficiently produced. Furthermore, considering the production efficiency, it is preferable to set the activation time so that the specific surface area is 2000 m 2 / g or less.
  • cleaning after carbonization is based on the following reasons. That is, the ash has a catalytic action for steam activation, shortening the activation time, and increasing the diameter of the formed pores. Therefore, by reducing the ash content of the workpiece before the activation treatment, the catalytic action due to the ash content is reduced. As a result, the desired activation can be achieved along with the reduction in the pore size formed and the pore size reduction. The activation time for obtaining the yield is prolonged.
  • the ash content at the stage before the activation treatment can be reduced as much as possible. It is estimated that large activated carbon can be obtained.
  • the aggregated ash can be efficiently removed by washing the carbide in such a state, and the mesopores develop from the location where the aggregated ash is removed during the activation process. It is guessed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This method for producing activated carbon comprises: a step in of providing an ash-containing biomass starting material in chip form; a starting material rinsing step for removing ash from the chip-form biomass starting material by rinsing; a carbonization step for performing carbonization of the rinsed starting material to obtain carbides; a carbide rinsing step for removing ash from the carbides by rinsing; and an activation step for activating the rinsed carbides to obtained activated carbon. Activation time is preferably set in such a manner that the specific surface area of the activated carbon is at least 1700 m2/g, and more preferably in such a manner that the specific surface area of the activated carbon is at least 2000 m2/g.

Description

活性炭の製造方法Method for producing activated carbon
 本発明は、竹やコーヒーかす等のバイオマス原料から活性炭を製造する方法に関する。 The present invention relates to a method for producing activated carbon from biomass raw materials such as bamboo and coffee grounds.
 下記特許文献1には、竹を炭化して、竹炭化物を得る工程と、竹炭化物に対して洗浄を行って、竹炭化物に含まれるカリウム全量に対して20~100重量%のカリウムを除去したカリウム調整竹炭化物を得る工程と、カリウム調整竹炭化物を賦活して、竹活性炭を得る工程とを含む竹活性炭の製造方法が開示されている。 In the following Patent Document 1, bamboo is carbonized to obtain bamboo carbide, and the bamboo carbide is washed to remove 20 to 100% by weight of potassium with respect to the total amount of potassium contained in the bamboo carbide. A method for producing bamboo activated carbon is disclosed which includes a step of obtaining potassium adjusted bamboo carbide and a step of activating potassium adjusted bamboo carbide to obtain bamboo activated carbon.
 前記従来の竹活性炭の製造方法は、竹の産地や種類、成長過程等によって異なるミネラル等の元素や成分組成に影響されることなく、比較的均一なミクロ孔を有する竹活性炭を容易且つ安価に得ることができるとされている。 The conventional method for producing bamboo activated carbon makes it easy and inexpensive to make bamboo activated carbon having relatively uniform micropores without being affected by the elements and composition of minerals and the like that differ depending on the production area, type and growth process of bamboo. It is said that you can get.
 また、前記特許文献1には、カリウム量の調整を、竹炭化物に対する洗浄によって行う代わりに、原料となる竹に対する洗浄によって行うことも可能である旨記載されている。 Further, Patent Document 1 describes that the adjustment of the amount of potassium can be performed by cleaning the bamboo as a raw material instead of by cleaning the bamboo carbide.
 具体的には、前記特許文献1には、他の製造方法として、原料となる竹に対して洗浄を行って、竹に含まれるカリウム全量に対して20~100重量%のカリウムを除去したカリウム調整竹を得る工程と、カリウム調整竹を炭化してカリウム調整竹炭化物を得る工程と、カリウム調整竹炭化物を賦活して、竹活性炭を得る工程とを含む竹活性炭の製造方法が開示されている。 Specifically, in Patent Document 1, as another production method, potassium obtained by washing bamboo as a raw material to remove 20 to 100% by weight of potassium with respect to the total amount of potassium contained in the bamboo is disclosed. A method for producing bamboo activated carbon is disclosed which includes a step of obtaining adjusted bamboo, a step of carbonizing potassium adjusted bamboo to obtain potassium adjusted bamboo carbide, and a step of activating potassium adjusted bamboo carbide to obtain bamboo activated carbon. .
 即ち、前記特許文献1には、竹を炭化する工程と竹炭化物を賦活する工程とを備えた竹活性炭の製造方法において、原料となる竹の状態にて行う洗浄、及び、竹炭化物の状態にて行う洗浄の何れを選択的に行うことによって、最終製造物である竹活性炭に比較的均一なミクロ孔をもたらすことができるという技術的思想が開示されている。 That is, in Patent Document 1, in a method for producing bamboo activated carbon comprising a step of carbonizing bamboo and a step of activating bamboo carbide, cleaning performed in the state of bamboo as a raw material, and the state of bamboo carbide The technical idea that relatively uniform micropores can be provided in bamboo activated carbon, which is the final product, by selectively performing any of the cleaning operations described above is disclosed.
 ところで、近年、蓄電装置の電極等の分野において、高比表面積の活性炭の需要が高まっている。
 本願発明者は、この需要に応える為には、活性炭に孔径2nm以下のミクロ孔を設けることだけでは不十分で、活性炭に、孔径2nm以下のミクロ孔に加えて、孔径2nm以上50nm以下のメソ孔を設けることが必要であるという新規な着想に至った。
Incidentally, in recent years, there has been an increasing demand for activated carbon having a high specific surface area in fields such as electrodes of power storage devices.
In order to meet this demand, the inventor of the present application is not enough to provide activated carbon with micropores having a pore size of 2 nm or less. In addition to micropores with a pore size of 2 nm or less, activated carbon has a mesopore with a pore size of 2 nm to 50 nm. It came to the new idea that it is necessary to provide holes.
特開2007-261918号公報JP 2007-261918 A
 本発明は、斯かる従来技術に鑑みなされたものであり、バイオマス原料から活性炭を製造する方法であって、ミクロ孔のみならずメソ孔も発達した、比表面積の大きな活性炭を効率良く製造できる活性炭の製造方法の提供を目的とする。 The present invention has been made in view of such a conventional technique, and is a method for producing activated carbon from a biomass raw material, and activated carbon capable of efficiently producing activated carbon having a large specific surface area in which not only micropores but also mesopores have been developed. It aims at providing the manufacturing method of this.
 本発明は、前記目的を達成する為に、チップ状の灰分含有バイオマス原料を用意する工程と、チップ状バイオマス原料に対して灰分除去洗浄を行う原料洗浄工程と、洗浄済原料を炭化処理して炭化物を得る炭化工程と、炭化物に対して灰分除去洗浄を行う炭化物洗浄工程と、洗浄済炭化物を賦活処理して活性炭を得る賦活工程とを含む活性炭の製造方法を提供する。 In order to achieve the above object, the present invention provides a step of preparing chip-like ash-containing biomass raw material, a raw material washing step of performing ash removal cleaning on the chip-like biomass raw material, and carbonizing the washed raw material. There is provided a method for producing activated carbon including a carbonization step for obtaining carbide, a carbide washing step for performing ash removal washing on the carbide, and an activation step for obtaining activated carbon by activating the washed carbide.
 本発明に係る活性炭の製造方法によれば、チップ状バイオマス原料に対して灰分除去洗浄を行い、洗浄済原料を炭化処理して炭化物を生成し、生成した炭化物に対してさらに灰分除去洗浄を行い、洗浄済炭化物を賦活処理して活性炭を得るように構成されているので、ミクロ孔及びメソ孔の双方が発達した比表面積の大きな活性炭を効率良く製造することができる。 According to the method for producing activated carbon according to the present invention, ash removal cleaning is performed on the chip-shaped biomass raw material, the cleaned raw material is carbonized to generate carbide, and the generated carbide is further subjected to ash removal cleaning. Since the activated carbon is obtained by activating the washed carbide, activated carbon having a large specific surface area in which both micropores and mesopores are developed can be efficiently produced.
 好ましくは、前記原料洗浄工程は、チップ状バイオマス原料を処理槽内の洗浄水に投入して煮沸及び冷却を行い、洗浄水内に沈殿したチップ状バイオマス原料を洗浄済原料として取り出すものとされる。 Preferably, in the raw material cleaning step, the chip-shaped biomass raw material is poured into the cleaning water in the treatment tank, boiled and cooled, and the chip-shaped biomass raw material precipitated in the cleaning water is taken out as the cleaned raw material. .
 好ましくは、前記炭化物洗浄工程は、炭化物を処理槽内の洗浄水に投入して煮沸及び冷却を行い、洗浄水内に沈殿した炭化物を洗浄済炭化物として取り出すものとされる。 Preferably, in the carbide cleaning step, the carbide is put into cleaning water in the treatment tank, boiled and cooled, and the carbide precipitated in the cleaning water is taken out as cleaned carbide.
 前記種々の構成において、好ましくは、前記賦活工程は、活性炭の比表面積が1700m/g以上となるように、賦活時間が設定される。
 より好ましくは、前記賦活工程は、活性炭の比表面積が2000m/g以下となるように、賦活時間が設定される。
In the various configurations, preferably, in the activation step, the activation time is set so that the specific surface area of the activated carbon is 1700 m 2 / g or more.
More preferably, the activation time is set so that the specific surface area of the activated carbon is 2000 m 2 / g or less.
 前記種々の構成において、好ましくは、前記炭化工程は、洗浄済原料を過熱水蒸気雰囲気下で600℃以上750℃以下の温度で加熱することによって行われ、前記賦活工程は、洗浄済炭化物を過熱水蒸気雰囲気下で750℃以上900℃以下の温度で加熱することによって行われるものとされる。 In the various configurations, preferably, the carbonization step is performed by heating the cleaned raw material at a temperature of 600 ° C. or more and 750 ° C. or less in a superheated steam atmosphere, and the activation step is performed by heating the cleaned carbide to the superheated steam. The heating is performed at a temperature of 750 ° C. to 900 ° C. in an atmosphere.
 好ましくは、チップ状の灰分含有バイオマス原料は、平面視形状の最小辺が500μm以上2mm以下の竹チップとされる。 Preferably, the chip-like ash-containing biomass material is bamboo chips having a minimum side of a shape in plan view of 500 μm or more and 2 mm or less.
図1は、本発明の一実施の形態に係る活性炭製造方法における炭化工程及び賦活工程を実施可能な加熱装置の一例の正面図である。FIG. 1 is a front view of an example of a heating apparatus capable of performing a carbonization step and an activation step in an activated carbon production method according to an embodiment of the present invention. 図2は、前記加熱装置の模式ブロック図である。FIG. 2 is a schematic block diagram of the heating device. 図3は、前記加熱装置における加熱処理部の縦断面図である。FIG. 3 is a longitudinal sectional view of a heat treatment unit in the heating apparatus. 図4は、原料に対して洗浄を行って製造した活性炭A、炭化物に対して洗浄を行って製造した活性炭B、及び、洗浄を行わなかった活性炭Cにおける賦活時間と賦活収率との関係を表すグラフである。FIG. 4 shows the relationship between activation time and activation yield in activated carbon A produced by washing the raw material, activated carbon B produced by washing the carbide, and activated carbon C not washed. It is a graph to represent. 図5は、前記活性炭A~Cにおける収率と比表面積との関係を表すグラフである。FIG. 5 is a graph showing the relationship between the yield and specific surface area of the activated carbons A to C. 図6(a)~(c)は、それぞれ、前記活性炭A~Cにおける孔径の頻度分布を表すグラフである。6 (a) to 6 (c) are graphs showing the frequency distribution of the pore diameters in the activated carbons A to C, respectively.
 本発明に係る活性炭製造方法は、本願発明者による下記の新規な着想に基づくものであり、灰分を含有するバイオマス原料から、ミクロ孔(孔径2nm以下)及びメソ孔(孔径2nm以上50nm以下)の双方が発達した活性炭を効率良く製造する方法である。 The method for producing activated carbon according to the present invention is based on the following novel idea by the inventor of the present invention. From the biomass raw material containing ash, micropores (pore diameter 2 nm or less) and mesopores (pore diameter 2 nm or more and 50 nm or less) This is a method for efficiently producing the activated carbon in which both have been developed.
 即ち、灰分含有バイオマス原料に対して炭化処理を行って炭化物を生成する炭化工程及び炭化物に対して賦活処理を行って活性炭を生成する賦活工程を備えた活性炭の製造方法において、賦活工程より前の段階、具体的には、バイオマス原料、又は、炭化物に対して灰分除去洗浄を行うことは、従来から知られていた。 That is, in the method for producing activated carbon including the carbonization step of performing carbonization treatment on the ash-containing biomass raw material to generate carbide, and the activation step of performing activation treatment on the carbide to generate activated carbon, before the activation step It has heretofore been known to perform ash removal cleaning on a stage, specifically, biomass feedstock or carbide.
 このバイオマス原料に対する洗浄又は炭化物に対する洗浄は択一的に行われており、何れの洗浄によっても、製造される活性炭におけるミクロ孔を発達させるものと考えられていた。 The cleaning of the biomass raw material or the cleaning of the carbide is performed alternatively, and any cleaning was considered to develop micropores in the manufactured activated carbon.
 この点に関し、本願発明者は、バイオマス原料状態に対する灰分除去洗浄は、製造される活性炭のミクロ孔の発達に寄与する一方で、炭化物状態に対する灰分除去洗浄は、製造される活性炭のミクロ孔の発達に加えてメソ孔の発達にも寄与するのではないか、という新規な着想を得て、本願発明を完成するに至った。 In this regard, the present inventor found that ash removal cleaning for the biomass raw material state contributes to the development of micropores in the activated carbon that is produced, while ash removal cleaning for the carbide state is the development of micropores in the produced activated carbon. In addition to this, the present invention was completed by obtaining a new idea that it may contribute to the development of mesopores.
 以下、本発明の一実施の形態に係る活性炭製造方法について説明する。
 前記活性炭製造方法は、灰分含有バイオマス原料のチップ体を用意する工程を有している。
Hereinafter, the activated carbon manufacturing method which concerns on one embodiment of this invention is demonstrated.
The activated carbon manufacturing method includes a step of preparing a chip body of an ash-containing biomass material.
 灰分を含有するバイオマス原料としては、竹、コーヒーかす(コーヒー抽出残さ)、籾殻、トウモロコシ等が例示される。 Examples of biomass raw materials containing ash include bamboo, coffee grounds (coffee extraction residue), rice husks, and corn.
 チップ体の大きさ及び形状は限定されるものではないが、下記洗浄工程での洗浄効率を考慮すると、平面視形状の最小辺が2mm以下とされ得る。
 即ち、平面視形状の一辺の長さが5cmであっても、平面視形状の他辺の長さが2mm以下であれば、下記洗浄工程において灰分を有効に除去することが可能となる。
The size and shape of the chip body are not limited, but considering the cleaning efficiency in the following cleaning step, the minimum side of the shape in plan view can be 2 mm or less.
That is, even if the length of one side in the plan view shape is 5 cm, the ash content can be effectively removed in the following cleaning step if the length of the other side in the plan view shape is 2 mm or less.
 また、後続する下記賦活工程での賦活収率を考慮すると、チップ体の平面視形状の最小辺は、好ましくは、500μm以上とされる。
 即ち、チップ体の最小辺が500μm未満であると、賦活工程による生成物の賦活収率が5%未満となって、灰状態になるおそれがある。
In addition, considering the activation yield in the following activation process, the minimum side of the shape of the chip body in plan view is preferably 500 μm or more.
That is, when the minimum side of the chip body is less than 500 μm, the activation yield of the product by the activation process is less than 5%, and there is a fear that the ash state is obtained.
 前記活性炭製造方法は、さらに、チップ状バイオマス原料に対して灰分除去洗浄を行う原料洗浄工程を有している。
 前記原料洗浄工程は、チップ状バイオマス原料から灰分を除去できる限り、種々の洗浄処理を有することができる。
The activated carbon manufacturing method further includes a raw material cleaning step of performing ash removal cleaning on the chip biomass material.
The raw material washing step can have various washing treatments as long as ash can be removed from the chip-like biomass raw material.
 好ましくは、前記原料洗浄工程は、チップ状バイオマス原料を処理槽内の洗浄水に投入して煮沸及び冷却を行い、洗浄水内に沈殿したチップ状バイオマス原料を洗浄済原料として取り出す煮沸・冷却洗浄処理を有し得る。 Preferably, in the raw material cleaning step, the biomass material is boiled / cooled and washed by adding the chip-like biomass material to the washing water in the treatment tank, boiling and cooling, and taking out the chip-like biomass material precipitated in the washing water as the washed material. You can have a treatment.
 前記煮沸・冷却洗浄処理によれば、チップ状バイオマス原料の内部まで洗浄水を効率的に浸透させることができ、チップ状バイオマス原料から灰分を効率良く除去することができる。 According to the boiling / cooling washing treatment, washing water can be efficiently infiltrated into the chip biomass raw material, and ash can be efficiently removed from the chip biomass raw material.
 洗浄水は、例えば、イオン交換水を用いることができる。
 洗浄水の水量は、チップ状バイオマス原料の全体が浸り得る以上の量とされる。例えば、チップ状バイオマス原料がMaグラムの場合、当該チップ状バイオマス原料のかさ密度Daとすると、洗浄水の水量は、Ma/Da以上とすることができる。
For example, ion exchange water can be used as the washing water.
The amount of washing water is set to an amount larger than the whole chip biomass raw material can be immersed. For example, when the chip-like biomass raw material is Ma gram, the amount of the washing water can be set to Ma / Da or more when the bulk density Da of the chip-like biomass raw material is used.
 煮沸処理は、例えば、チップ状バイオマス原料が投入された洗浄水を沸騰させることによって行うことができる。沸騰状態の維持時間は特に限定されるものではなく、チップ状バイオマス原料の重量に応じて、適宜設定される。 The boiling treatment can be performed, for example, by boiling the washing water into which the chip-like biomass material is charged. The maintenance time of the boiling state is not particularly limited, and is appropriately set according to the weight of the chip biomass material.
 冷却処理は、例えば、沸騰処理されたチップ状バイオマス原料を含む洗浄水を常温まで冷却させることによって行うことができる。冷却方法は特に限定されるものでは無く、自然冷却、水冷、空冷等、種々の方法を用いることができる。 The cooling treatment can be performed, for example, by cooling the washing water containing the boiled chip biomass raw material to room temperature. The cooling method is not particularly limited, and various methods such as natural cooling, water cooling, and air cooling can be used.
 好ましくは、煮沸及び冷却のサイクルを複数回、行うことができる。 Preferably, the boiling and cooling cycle can be performed multiple times.
 前記原料洗浄工程は、好ましくは、前記煮沸・冷却洗浄処理の後に、チップ状バイオマス原料に対して硝酸洗浄処理を行うように構成される。 The raw material cleaning step is preferably configured to perform a nitric acid cleaning process on the chip biomass raw material after the boiling / cooling cleaning process.
 前記硝酸洗浄処理は、前記煮沸・冷却洗浄処理の後に、洗浄水のうちの上澄み水を捨て且つ捨てた上澄み水量に応じた水量だけイオン交換水を補充し、その状態の洗浄水に硝酸水を加えて、所定時間放置することによって行うことができる。
 硝酸水の濃度は特に限定されるものでは無く、例えば、洗浄水の硝酸濃度が3~10%となるように、硝酸水を加えることができる。
In the nitric acid washing treatment, after the boiling / cooling washing treatment, the supernatant water out of the washing water is discarded, and ion-exchanged water is replenished in an amount corresponding to the discarded supernatant water amount. In addition, it can be performed by leaving it for a predetermined time.
The concentration of nitric acid water is not particularly limited, and for example, nitric acid water can be added so that the nitric acid concentration of washing water is 3 to 10%.
 好ましくは、希釈硝酸水を洗浄水に加えた状態で、所定回数、振動を加えることができ、これにより、硝酸による洗浄効果を高めることができる。 Preferably, vibration can be applied a predetermined number of times in a state in which diluted nitric acid is added to the cleaning water, thereby enhancing the cleaning effect by nitric acid.
 前記原料洗浄工程が前記硝酸洗浄処理を含む場合には、前記硝酸洗浄処理後にチップ状バイオマス原料を希釈硝酸水が含まれる洗浄水から取り出し、イオン交換水でチップ状バイオマス原料から硝酸を取り除くリンス処理を行うことができる。 When the raw material washing step includes the nitric acid washing treatment, the chip biomass raw material is taken out from the washing water containing diluted nitric acid water after the nitric acid washing treatment, and the rinsing treatment is performed to remove nitric acid from the chip biomass raw material with ion exchange water. It can be performed.
 前記活性炭製造方法は、さらに、原料洗浄工程後に、洗浄済原料を炭化処理する炭化工程を備えている。 The activated carbon manufacturing method further includes a carbonization step of carbonizing the cleaned raw material after the raw material cleaning step.
 前記炭化工程は、種々の炭化方法を用いることができるが、好ましくは、過熱水蒸気雰囲気下で650℃以上750℃以下の温度で洗浄済原料を加熱することによって炭化物を生成するように構成される。 In the carbonization step, various carbonization methods can be used. Preferably, the carbide is generated by heating the washed raw material at a temperature of 650 ° C. or higher and 750 ° C. or lower in a superheated steam atmosphere. .
 斯かる構成によれば、単一の過熱水蒸気加熱装置を用いつつ、温度条件だけを変更することによって、炭化工程での炭化処理と後続する下記賦活工程での賦活処理とを行うことができる。 According to such a configuration, the carbonization process in the carbonization process and the activation process in the following activation process can be performed by changing only the temperature condition while using a single superheated steam heating apparatus.
 前記活性炭製造方法は、さらに、前記炭化工程によって生成された炭化物に対して灰分除去洗浄を行う炭化物洗浄工程を有している。
 前記炭化物洗浄工程は、炭化物から灰分を除去できる限り、種々の洗浄処理を有することができる。
The activated carbon production method further includes a carbide cleaning step of performing ash removal cleaning on the carbide generated by the carbonization step.
The carbide cleaning step can have various cleaning treatments as long as ash can be removed from the carbide.
 好ましくは、前記炭化物洗浄工程は、炭化物を処理槽内の洗浄水に投入して煮沸及び冷却を行い、洗浄水内に沈殿した炭化物を洗浄済炭化物として取り出す煮沸・冷却洗浄処理を有し得る。 Preferably, the carbide cleaning step may include a boiling / cooling cleaning process in which the carbide is put into cleaning water in the treatment tank, boiled and cooled, and the carbide precipitated in the cleaning water is taken out as cleaned carbide.
 前記煮沸・冷却洗浄処理によれば、炭化物の内部まで洗浄水を効率的に浸透させることができ、炭化物から灰分を効率良く除去することができる。 According to the boiling / cooling washing treatment, washing water can be efficiently infiltrated into the inside of the carbide, and ash can be efficiently removed from the carbide.
 洗浄水は、例えば、イオン交換水を用いることができる。
 洗浄水の水量は、炭化物の全体が浸り得る以上の量とされる。例えば、炭化物がMbグラムの場合、当該炭化物のかさ密度Dbとすると、洗浄水の水量は、Mb/Db以上とすることができる。
For example, ion exchange water can be used as the washing water.
The amount of the washing water is set to an amount that allows the entire carbide to be immersed. For example, when the carbide is Mb gram, the amount of washing water can be Mb / Db or more, assuming that the carbide has a bulk density Db.
 煮沸処理は、例えば、炭化物が投入された洗浄水を沸騰させることによって行うことができる。沸騰状態の維持時間は特に限定されるものではなく、炭化物の重量に応じて、適宜設定される。 The boiling treatment can be performed, for example, by boiling the wash water charged with carbide. The time for maintaining the boiling state is not particularly limited, and is appropriately set according to the weight of the carbide.
 冷却処理は、例えば、沸騰処理された炭化物を含む洗浄水を常温まで冷却させることによって行うことができる。冷却方法は特に限定されるものでは無く、自然冷却、水冷、空冷等、種々の方法を用いることができる。 The cooling treatment can be performed, for example, by cooling the washing water containing the boiled carbide to room temperature. The cooling method is not particularly limited, and various methods such as natural cooling, water cooling, and air cooling can be used.
 好ましくは、煮沸及び冷却のサイクルを複数回、行うことができる。 Preferably, the boiling and cooling cycle can be performed multiple times.
 前記炭化物洗浄工程は、好ましくは、前記煮沸・冷却洗浄処理の後に、炭化物に対して硝酸洗浄処理を行うように構成される。 The carbide cleaning step is preferably configured to perform a nitric acid cleaning process on the carbide after the boiling / cooling cleaning process.
 前記硝酸洗浄処理は、前記煮沸・冷却洗浄処理の後に、洗浄水のうちの上澄み水を捨て且つ捨てた上澄み水量に応じた水量だけイオン交換水を補充し、その状態の洗浄水に硝酸水を加えて、所定時間放置することによって行うことができる。
 硝酸水の濃度は特に限定されるものでは無く、例えば、洗浄水の硝酸濃度が3~10%となるように、硝酸水を加えることができる。
In the nitric acid washing treatment, after the boiling / cooling washing treatment, the supernatant water out of the washing water is discarded, and ion-exchanged water is replenished in an amount corresponding to the discarded supernatant water amount. In addition, it can be performed by leaving it for a predetermined time.
The concentration of nitric acid water is not particularly limited, and for example, nitric acid water can be added so that the nitric acid concentration of washing water is 3 to 10%.
 好ましくは、希釈硝酸水を洗浄水に加えた状態で、所定回数、振動を加えることができ、これにより、硝酸による洗浄効果を高めることができる。 Preferably, vibration can be applied a predetermined number of times in a state in which diluted nitric acid is added to the cleaning water, thereby enhancing the cleaning effect by nitric acid.
 前記炭化物洗浄工程が前記硝酸洗浄処理を含む場合には、前記硝酸洗浄処理後に炭化物を希釈硝酸水が含まれる洗浄水から取り出し、イオン交換水で炭化物から硝酸を取り除くリンス処理を行うことができる。 When the carbide cleaning step includes the nitric acid cleaning process, the carbide can be taken out from the cleaning water containing diluted nitric acid water after the nitric acid cleaning process, and rinse treatment for removing nitric acid from the carbide with ion-exchanged water can be performed.
 前記活性炭製造方法は、さらに、前記炭化物洗浄工程後に、洗浄済炭化物を賦活処理して活性炭を得る賦活工程を備えている。 The activated carbon production method further includes an activation step of activating the washed carbide to obtain activated carbon after the carbide washing step.
 前記賦活工程は、種々の賦活方法を用いることができるが、好ましくは、前記炭化工程での炭化処理にも利用可能な過熱水蒸気加熱装置を用いて、過熱水蒸気雰囲気下で750℃以上900℃以下の温度で炭化物を加熱することによって活性炭を生成するように構成される。 In the activation step, various activation methods can be used. Preferably, a superheated steam heating apparatus that can be used for carbonization in the carbonization step is used, and the temperature is 750 ° C. or more and 900 ° C. or less in a superheated steam atmosphere. The activated carbon is formed by heating the carbide at a temperature of
 図1及び図2に、それぞれ、前記炭化工程及び前記賦活工程を実施可能な過熱水蒸気加熱装置の一例1の正面図及び模式ブロック図を示す。 FIGS. 1 and 2 show a front view and a schematic block diagram of an example 1 of a superheated steam heating apparatus capable of performing the carbonization step and the activation step, respectively.
 図1及び図2に示すように、前記加熱装置1は、蒸気又は霧状の水を供給する水供給部90と、加熱処理部100とを備えている。
 図1中の符号10は、前記加熱処理部100を支持する架台である。
 図3に、前記加熱処理部100の縦断面図を示す。
As shown in FIGS. 1 and 2, the heating device 1 includes a water supply unit 90 that supplies steam or mist-like water, and a heat treatment unit 100.
Reference numeral 10 in FIG. 1 denotes a gantry that supports the heat treatment unit 100.
FIG. 3 shows a longitudinal sectional view of the heat treatment unit 100.
 図2及び図3に示すように、前記加熱処理部100は、ケース本体110と、スクリューコンベア120と、過熱蒸気発生機構130とを有している。 2 and 3, the heat treatment unit 100 includes a case body 110, a screw conveyor 120, and a superheated steam generation mechanism 130.
 前記ケース本体110は、被処理部(洗浄済原料又は洗浄済炭化物)を受け入れる処理空間110Aを気密状態で画するように構成されている。 The case body 110 is configured to define a processing space 110A that receives a processing target (cleaned raw material or cleaned carbide) in an airtight state.
 前記加熱装置1においては、前記ケース本体110は、図3に示すように、長手方向に延びる一対の長辺及び幅方向に延びる一対の短辺によって画される略矩形状の上面111と、前記上面111の一対の長辺から略垂直に延びる一対の側面112と、前記上面111の一対の短辺から略垂直に延びる一対の端面113と、前記一対の側面112の下端部及び前記一対の端面113の下端部を閉じる底面114とを有する略直方体形状とされている。 In the heating device 1, as shown in FIG. 3, the case main body 110 includes a substantially rectangular upper surface 111 defined by a pair of long sides extending in the longitudinal direction and a pair of short sides extending in the width direction, A pair of side surfaces 112 extending substantially vertically from a pair of long sides of the upper surface 111, a pair of end surfaces 113 extending substantially vertically from a pair of short sides of the upper surface 111, a lower end portion of the pair of side surfaces 112, and the pair of end surfaces A substantially rectangular parallelepiped shape having a bottom surface 114 that closes the lower end of 113 is formed.
 前記スクリューコンベア120は、軸線回りに回転駆動されることによって処理空間110A内の被処理物(洗浄済原料又は洗浄済炭化物)を前記処理空間110Aの長手方向一方側から他方側へ搬送する。 The screw conveyor 120 is driven to rotate around the axis to convey the object to be processed (cleaned raw material or cleaned carbide) in the processing space 110A from one side in the longitudinal direction of the processing space 110A to the other side.
 図3に示すように、前記スクリューコンベア120は、少なくとも一端部121aが外方へ気密に延在された状態で処理空間110Aを長手方向に沿って縦断する回転軸121と、前記回転軸121に設けられた螺旋羽根等の搬送体122と、前記回転軸121の一端部121aを回転駆動する電動モータ等のアクチュエータ(図示せず)とを有している。 As shown in FIG. 3, the screw conveyor 120 includes a rotating shaft 121 that longitudinally cuts the processing space 110 </ b> A along the longitudinal direction with at least one end 121 a extending in an airtight manner outward, and the rotating shaft 121. A conveyance body 122 such as a spiral blade provided and an actuator (not shown) such as an electric motor that rotationally drives the one end 121a of the rotating shaft 121 are provided.
 前記スクリューコンベア120は、前記回転軸121として互いに対して並列配置された第1及び第2回転軸を含むことができ、前記搬送体122として前記第1及び第2回転軸にそれぞれ設けられた第1及び第2搬送体を含むことができる。この場合、前記第1及び第2回転軸は前記アクチュエータによって同期回転される。 The screw conveyor 120 may include first and second rotating shafts arranged in parallel with each other as the rotating shaft 121, and the first and second rotating shafts provided as the transport body 122, respectively. 1 and a 2nd conveyance body can be included. In this case, the first and second rotating shafts are synchronously rotated by the actuator.
 図2及び図3に示すように、前記過熱蒸気発生機構130は、流体加熱管131と、前記ケース本体110に連結されるカバーケース140とを有している。 2 and 3, the superheated steam generation mechanism 130 includes a fluid heating pipe 131 and a cover case 140 connected to the case main body 110.
 前記流体加熱管131は、インコネル、ハステロイ又はステンレス等の電圧印加に応じて加熱する導電材によって形成された長尺の中空部材とされており、前記水供給部90から供給される蒸気又は霧状の水を内部空間に受け入れ、電圧印加を受けて加熱されることによって内部空間の蒸気又は霧状の水を過熱蒸気に変換し、外部へ放出するように構成されている。 The fluid heating tube 131 is a long hollow member formed of a conductive material that heats in response to voltage application such as Inconel, Hastelloy, or stainless steel, and is supplied with steam or mist supplied from the water supply unit 90 The water in the interior space is received and heated by receiving a voltage applied to convert the steam or mist water in the interior space into superheated steam and discharge it to the outside.
 詳しくは、図2及び図3に示すように、前記ケース本体110には、被処理物(洗浄済原料又は洗浄済炭化物)を処理空間110Aの一方側へ受け入れる受入口110(in)と、被処理物(洗浄済原料又は洗浄済炭化物)を処理空間110Aの他方側から排出する排出口110(out)と、搬送方向に関し受入口110(in)及び排出口110(out)の間において処理空間110Aを上方に開く上方開口115とが設けられている。 Specifically, as shown in FIGS. 2 and 3, the case body 110 includes a receiving port 110 (in) for receiving an object to be processed (cleaned raw material or cleaned carbide) to one side of the processing space 110A, and an object to be processed. A processing space between the discharge port 110 (out) for discharging the processed material (cleaned raw material or cleaned carbide) from the other side of the processing space 110A and the receiving port 110 (in) and the discharge port 110 (out) in the transport direction An upper opening 115 that opens 110A upward is provided.
 斯かる構成において、前記流体加熱管131は中間部分133が前記上方開口115に臨むように前記ケース本体110の上方に配置されており、前記カバーケース140は前記流体加熱管131の中間部分133を覆いつつ前記上方開口115を気密に閉塞するように前記ケース本体110に固着されている。 In such a configuration, the fluid heating tube 131 is disposed above the case body 110 so that the intermediate portion 133 faces the upper opening 115, and the cover case 140 includes the intermediate portion 133 of the fluid heating tube 131. The upper body 115 is fixed to the case body 110 so as to airtightly close the upper opening 115 while covering.
 より詳しくは、前記流体加熱管131は、長手方向一方側の第1端部131a及び長手方向他方側の第2端部131bが前記カバーケース140から外方へ延在された状態で、前記第1及び第2端部131a、131bの間の前記中間部分133が前記上方開口115に臨むように配置されている。 More specifically, the fluid heating tube 131 has the first end 131a on one side in the longitudinal direction and the second end 131b on the other side in the longitudinal direction extending outward from the cover case 140. The intermediate portion 133 between the first and second end portions 131 a and 131 b is disposed so as to face the upper opening 115.
 前記第1及び第2端部131a、131bには、それぞれ、第1及び第2給電点135、135bが設けられ、且つ、前記第1及び第2端部131a、131bの一方には前記流体加熱管131の内部空間に前記水供給機構90からの蒸気又は霧状の水を導入する導入口が設けられている。 The first and second end portions 131a and 131b are provided with first and second feeding points 135 and 135b, respectively, and one of the first and second end portions 131a and 131b has the fluid heating. An inlet for introducing steam or mist-like water from the water supply mechanism 90 is provided in the internal space of the pipe 131.
 図2に示すように、前記水供給部90はボイラー91を有しており、前記ボイラー91から前記流体加熱管131の導入口に蒸気が供給される。
 図2中の符号92は、前記ボイラー91から前記流体加熱管131へ供給される蒸気の量を調整する調整弁である。
As shown in FIG. 2, the water supply unit 90 has a boiler 91, and steam is supplied from the boiler 91 to the inlet of the fluid heating pipe 131.
Reference numeral 92 in FIG. 2 is an adjustment valve that adjusts the amount of steam supplied from the boiler 91 to the fluid heating pipe 131.
 前記流体加熱管131は、前記第1及び第2給電点135a、135bに電圧が印加されることによって加熱し、内部空間の蒸気又は霧状の水を過熱蒸気に変換する。
 前記中間部分133には一又は複数の乾燥用吐出口(図示せず)が設けられており、前記流体加熱管131によって生成された過熱蒸気は、前記一又は複数の乾燥用放出口から外部に放出され、前記上方開口115を介して処理空間110Aに供給される。
The fluid heating pipe 131 is heated by applying a voltage to the first and second feeding points 135a and 135b, and converts the steam in the internal space or mist-like water into superheated steam.
The intermediate portion 133 is provided with one or a plurality of drying discharge ports (not shown), and the superheated steam generated by the fluid heating pipe 131 is discharged from the one or more drying discharge ports to the outside. It is discharged and supplied to the processing space 110A through the upper opening 115.
 なお、前記加熱装置1においては、図3に示すように、前記流体加熱管131は前記カバーケース140に種々の取付部材を介して支持され、前記カバーケース140を前記ケース本体110の上面111に固着させることで、前記流体加熱管131の中間部分133が前記上方開口115に臨むようになっている。 In the heating device 1, as shown in FIG. 3, the fluid heating tube 131 is supported by the cover case 140 via various attachment members, and the cover case 140 is attached to the upper surface 111 of the case body 110. By fixing, the intermediate portion 133 of the fluid heating tube 131 faces the upper opening 115.
 前記加熱装置1には、前記処理空間110Aの温度を検出する温度センサ(図示せず)と、前記過熱蒸気発生機構130への電圧印可のオンオフ制御を司る制御装置300(図2参照)とが備えられており、前記制御装置300は、前記処理空間110A内の温度が炭化処理に適した所定温度(600℃以上750℃以下)又は賦活処理に適した所定温度(750℃以上900℃以下)となるように前記過熱蒸気発生機構130への電圧印可制御を行う。 The heating device 1 includes a temperature sensor (not shown) that detects the temperature of the processing space 110A, and a control device 300 (see FIG. 2) that controls on / off control of voltage application to the superheated steam generation mechanism 130. The controller 300 includes a predetermined temperature (600 ° C. or higher and 750 ° C. or lower) suitable for the carbonization treatment, or a predetermined temperature (750 ° C. or higher and 900 ° C. or lower) suitable for the activation treatment. Thus, voltage application control to the superheated steam generation mechanism 130 is performed.
 なお、前記加熱装置1においては、前述の通り、前記過熱蒸気発生機構130は、電圧印加に応じた前記流体加熱管131の発熱作用によって過熱蒸気を生成するように構成されているが、これに代えて、前記過熱蒸気発生機構130が、前記水供給部90から供給される蒸気又は霧状の水を電磁誘導作用によって加熱して過熱蒸気を生成する電磁誘導加熱手段(図示せず)と、前記電磁誘導加熱手段によって生成された過熱蒸気が供給される流体管(図示せず)と、前記上方開口115を気密状態に閉塞可能なカバーケース140とを有するように構成することも可能である。 In the heating device 1, as described above, the superheated steam generation mechanism 130 is configured to generate superheated steam by the heat generation action of the fluid heating pipe 131 in response to voltage application. Instead, the superheated steam generation mechanism 130 is heated by steam or mist-like water supplied from the water supply unit 90 by electromagnetic induction action to generate superheated steam (not shown), It is also possible to have a fluid pipe (not shown) to which superheated steam generated by the electromagnetic induction heating means is supplied, and a cover case 140 that can close the upper opening 115 in an airtight state. .
 前記電磁誘導加熱手段は、例えば、一端部が前記水供給部90に流体接続され且つ他端部が前記流体管に流体接続された導入管と、前記導入管の周りに巻き回された励磁コイルとを有し得る。
 前記流体管は、過熱蒸気を放出する一又は複数の乾燥用吐出口が設けられた長手方向所定部分が前記カバーケース140内において前記上方開口115に臨むように配置され得る。
The electromagnetic induction heating means includes, for example, an introduction pipe whose one end is fluidly connected to the water supply unit 90 and the other end is fluidly connected to the fluid pipe, and an excitation coil wound around the introduction pipe And can have
The fluid pipe may be arranged such that a predetermined portion in the longitudinal direction provided with one or a plurality of drying discharge ports for discharging superheated steam faces the upper opening 115 in the cover case 140.
 前記制御装置300は、前記処理空間110Aの処理温度、並びに、前記スクリューコンベア120の搬送速度を含む処理条件を設定できるように構成され、設定された処理条件に応じて前記過熱蒸気発生機構130及び前記スクリューコンベア120の作動制御を行うように構成される。 The control device 300 is configured to set processing conditions including the processing temperature of the processing space 110A and the conveying speed of the screw conveyor 120, and the superheated steam generation mechanism 130 and the control device 300 according to the set processing conditions. The operation of the screw conveyor 120 is controlled.
 前記加熱装置1によれば、前記ケース本体110によって画される処理空間110A内において、被処理物(洗浄済原料又は洗浄済炭化物)を搬送しつつ又は停止状態で、被処理物(洗浄済原料又は洗浄済炭化物)に対し前記ケース本体110の上方開口115を介して前記過熱蒸気発生機構130によって発生された過熱蒸気を供給するように構成されているので、処理空間110Aの全体に高温の過熱蒸気を効率的に供給できる。 According to the heating device 1, the object to be processed (cleaned raw material) is transported or stopped in the processing space 110 </ b> A defined by the case body 110 while the object to be processed (cleaned raw material or cleaned carbide) is being conveyed. Alternatively, the superheated steam generated by the superheated steam generation mechanism 130 is supplied to the cleaned carbide) via the upper opening 115 of the case body 110, so that the entire processing space 110A is heated to a high temperature. Steam can be supplied efficiently.
 さらに、電圧印加に応じて加熱する前記流体加熱管131を用い、前記一又は複数の吐出口が設けられた前記流体加熱管131の前記中間部分133が前記ケース本体110の前記上方開口115に臨むように配置しつつ、前記上方開口115及び前記中間部分133を前記カバーケース140によって気密に覆うように構成されているので、処理空間110Aの全体に高温の過熱蒸気を効率的に供給できることに加えて、過熱蒸気による熱量と共に前記流体加熱管131の熱量によっても処理空間110A内の温度を上昇させることができ、良好な加熱効率を得ることができる。 Further, using the fluid heating tube 131 that heats in response to voltage application, the intermediate portion 133 of the fluid heating tube 131 provided with the one or more discharge ports faces the upper opening 115 of the case body 110. Since the upper opening 115 and the intermediate portion 133 are hermetically covered by the cover case 140, the high-temperature superheated steam can be efficiently supplied to the entire processing space 110A. In addition, the temperature in the processing space 110A can be increased by the heat amount of the fluid heating pipe 131 as well as the heat amount by the superheated steam, and good heating efficiency can be obtained.
 従って、斯かる構成の前記加熱装置1によれば、炭化処理及び賦活処理を効率良く行うことができる。 Therefore, according to the heating device 1 having such a configuration, the carbonization treatment and the activation treatment can be performed efficiently.
 図1~図3等に示すように、前記加熱装置1は、前記加熱処理部100より被処理物の流れ方向上流側に被処理物(洗浄済原料又は洗浄済炭化物)を収容可能なホッパー20を備えており、前記ケース本体110の受入口110(in)は前記ホッパー20の出口に直接又は間接的に連結されている。 As shown in FIG. 1 to FIG. 3 and the like, the heating device 1 includes a hopper 20 that can store a processed material (cleaned raw material or cleaned carbide) upstream of the heat processing unit 100 in the flow direction of the processed material. The case 110 has a receiving port 110 (in) connected directly or indirectly to the outlet of the hopper 20.
 なお、前記加熱装置1においては、図1及び図2に示すように、前記ホッパー20と前記加熱処理部100との間には上流側搬送部30が介挿されている。 In the heating device 1, as shown in FIGS. 1 and 2, an upstream-side transport unit 30 is interposed between the hopper 20 and the heat treatment unit 100.
 前記上流側搬送部30は、気密状態の搬送空間を画する上流側搬送ケース31と、前記上流側搬送ケース31の搬送空間の一方側から他方側へ被処理物を搬送する上流側搬送スクリューコンベア32とを有している。 The upstream conveyance unit 30 includes an upstream conveyance case 31 that defines an airtight conveyance space, and an upstream conveyance screw conveyor that conveys an object to be processed from one side of the conveyance space of the upstream conveyance case 31 to the other side. 32.
 前記上流側搬送ケース31は、前記搬送空間の一方側及び他方側にそれぞれ連通するように形成された上流側受入口31(in)及び上流側排出口31(out)を有しており、前記ホッパー20の出口が前記上流側搬送ケース31の上流側受入口31(in)に気密状態で連結され且つ前記上流側搬送ケース31の上流側排出口31(out)が前記ケース本体110の受入口110(in)に気密状態で連結されている。 The upstream transport case 31 has an upstream inlet 31 (in) and an upstream outlet 31 (out) formed to communicate with one side and the other side of the transport space, respectively. The outlet of the hopper 20 is connected to the upstream receiving port 31 (in) of the upstream transfer case 31 in an airtight state, and the upstream discharge port 31 (out) of the upstream transfer case 31 is connected to the receiving port of the case body 110. 110 (in) in an airtight state.
 前記上流側搬送スクリューコンベア32は、少なくとも一端部が外方へ延在された状態で搬送空間を長手方向に沿って縦断する回転軸32aと、前記回転軸32aに設けられた螺旋羽根等の搬送体32bと、前記回転軸32aの一端部を回転駆動する電動モータ等のアクチュエータ(図示せず)とを有するものとされる。 The upstream conveying screw conveyor 32 includes a rotating shaft 32a that longitudinally cuts the conveying space along the longitudinal direction with at least one end extending outwardly, and conveying of a spiral blade provided on the rotating shaft 32a. The body 32b and an actuator (not shown) such as an electric motor that rotationally drives one end of the rotating shaft 32a are provided.
 好ましくは、図1及び図2に示すように、前記加熱装置1には、前記ケース本体110の受入口110(in)及び排出口110(out)をそれぞれ直接又は間接的に開閉する上流側開閉弁40及び下流側開閉弁60が設けられる。 Preferably, as shown in FIGS. 1 and 2, the heating device 1 has an upstream opening / closing operation that opens or closes the receiving port 110 (in) and the discharging port 110 (out) of the case body 110 directly or indirectly, respectively. A valve 40 and a downstream opening / closing valve 60 are provided.
 前記上流側開閉弁40を備えることにより、前記加熱処理部100への被処理物の投入量の制御を行うことができ、前記下流側開閉弁60を備えることにより、前記加熱処理部100からの被処理物の排出量の制御を行うことができる。 By providing the upstream opening / closing valve 40, it is possible to control the amount of work to be processed into the heat treatment unit 100, and by providing the downstream opening / closing valve 60, from the heat treatment unit 100, The discharge amount of the object to be processed can be controlled.
 さらに、前記上流側開閉弁40及び前記下流側開閉弁60を備えることにより、前記ケース本体110内への大気の流入をより確実に防止して前記ケース本体110内の過熱蒸気雰囲気を有効に維持することができる。 Furthermore, by providing the upstream side opening / closing valve 40 and the downstream side opening / closing valve 60, the inflow of air into the case body 110 is more reliably prevented, and the superheated steam atmosphere in the case body 110 is effectively maintained. can do.
 即ち、前記ケース本体110内は前記流体加熱管131から放出される過熱蒸気によって与圧状態とされている為、前記上流側開閉弁40及び前記下流側開閉弁60を備えなくても、前記ケース本体110の受入口110(in)及び排出口110(out)から大気が流入することをある程度は防止することができるが、前記上流側開閉弁40及び前記下流側開閉弁60を備えることによって、この大気の流入をより確実に防止することができる。 That is, since the inside of the case body 110 is pressurized by the superheated steam released from the fluid heating pipe 131, the case main body 110 can be provided without the upstream side open / close valve 40 and the downstream side open / close valve 60. Although air can be prevented from flowing in from the inlet 110 (in) and the outlet 110 (out) of the main body 110 to some extent, by providing the upstream on-off valve 40 and the downstream on-off valve 60, This inflow of air can be prevented more reliably.
 好ましくは、前記上流側開閉弁40及び前記下流側開閉弁60は、前記制御装置300によって作動制御されるアクチュエータによって開閉動作するように構成され得る。
 なお、本実施の形態においては、前記上流側開閉弁40は、前記上流側搬送ケース31の上流側排出口31(out)と前記ケース本体110の受入口110(in)とを連結する配管に介挿されている。
Preferably, the upstream side open / close valve 40 and the downstream side open / close valve 60 may be configured to open and close by an actuator that is controlled by the control device 300.
In the present embodiment, the upstream opening / closing valve 40 is connected to a pipe that connects the upstream discharge port 31 (out) of the upstream transfer case 31 and the receiving port 110 (in) of the case body 110. It is inserted.
 なお、図1及び図2中の符号65は、前記加熱処理部100から排出される被処理物(炭化物又は活性炭)を受け止めるトレイである。 In addition, the code | symbol 65 in FIG.1 and FIG.2 is a tray which receives the to-be-processed object (carbide or activated carbon) discharged | emitted from the said heat processing part 100. FIG.
 さらに、図2に示すように、前記加熱装置1は、一端部が処理空間110Aに連通された排気ダクト70と、前記排気ダクト70に介挿された排気ファン72と、前記排気ダクト70の他端部に接続された強制酸化装置85とを備えている。 Further, as shown in FIG. 2, the heating device 1 includes an exhaust duct 70 whose one end communicates with the processing space 110 </ b> A, an exhaust fan 72 inserted in the exhaust duct 70, and the exhaust duct 70. And a forced oxidizer 85 connected to the end.
 前記排気ダクト70の一端部は、処理空間110Aのうち被処理物(洗浄済原料又は洗浄済炭化物)が搬送される領域より上方において外方に開口されるように前記ケース本体110に設けられた排出口に接続される。 One end of the exhaust duct 70 is provided in the case main body 110 so as to be opened outward above a region in which the object to be processed (cleaned raw material or cleaned carbide) is conveyed in the processing space 110A. Connected to the outlet.
 斯かる構成を備えることにより、前記加熱処理部200による炭化処理及び賦活処理に際し生成されるタール等の乾留ガスを前記強制酸化装置85によって燃焼させた状態で大気に放出することができる。
 なお、本実施の形態においては、前記強制酸化装置85の排出口は排気ダクト75に接続されている。
By providing such a configuration, it is possible to release dry distillation gas such as tar generated during the carbonization treatment and activation treatment by the heat treatment unit 200 to the atmosphere in a state where it is burned by the forced oxidizer 85.
In the present embodiment, the exhaust port of the forced oxidizer 85 is connected to the exhaust duct 75.
 好ましくは、前記排気ファン72は、前記制御装置300によって作動制御されるように構成される。 Preferably, the exhaust fan 72 is configured to be controlled by the control device 300.
 なお、前記加熱装置1は、前記加熱処理部100が炭化処理及び賦活処理の双方を行えるように構成されている。
 即ち、炭化処理を行う場合には、前記加熱処理部100は前記処理空間110Aが炭化処理に適した所定温度(600℃以上750℃以下)となるように制御され、賦活処理を行う場合には、前記加熱処理部100は前記処理空間110Aが賦活処理に適した所定温度(750℃以上900℃以下)となるように制御される。
In addition, the said heating apparatus 1 is comprised so that the said heat processing part 100 can perform both a carbonization process and an activation process.
That is, when performing the carbonization process, the heat treatment unit 100 is controlled so that the processing space 110A has a predetermined temperature (600 ° C. or higher and 750 ° C. or lower) suitable for the carbonization process. The heat treatment unit 100 is controlled so that the treatment space 110A has a predetermined temperature (750 ° C. or more and 900 ° C. or less) suitable for the activation treatment.
 これに代えて、炭化処理用の加熱処理部及び賦活処理用の加熱処理部の2つの加熱処理部を備え、炭化処理及び賦活処理を平行して行えるように構成された加熱装置を用いて、本実施の形態に係る活性炭製造方法を実施することも可能である。 Instead of this, using a heating apparatus that includes two heat treatment parts, a heat treatment part for carbonization treatment and a heat treatment part for activation treatment, and configured to perform the carbonization treatment and the activation treatment in parallel, It is also possible to implement the activated carbon production method according to the present embodiment.
 ここで、本実施の形態に係る活性炭製造方法の効果を確認する為に、下記の第1~第3製造方法によってそれぞれ製造した活性炭A~Cに対して行った実験結果について説明する。 Here, in order to confirm the effect of the activated carbon manufacturing method according to the present embodiment, experimental results performed on activated carbons A to C respectively manufactured by the following first to third manufacturing methods will be described.
・第1製造方法
 原料段階で洗浄を行い、その後に、洗浄済原料に対して炭化処理を行って炭化物を作成し、炭化物に対しては洗浄を行わずに、賦活処理を行って活性炭(活性炭A)を製造した。
-1st manufacturing method It wash | cleans in a raw material stage, Then, carbonization processing is performed with respect to the washed raw material, a carbide | carbonized_material is produced, and activation processing is performed without performing washing | cleaning with respect to carbide | carbonized_material (activated carbon (active carbon)). A) was produced.
 具体的には、平面視形状の最小辺が500μm~2mmとされた竹チップ100gを2リットルのイオン交換水内に投入した状態で、沸騰及び冷却のサイクルを2回繰り返して、洗浄を行った。 Specifically, the washing was performed by repeating the boiling and cooling cycles twice with 100 g of bamboo chips having a minimum side of 500 μm to 2 mm in a plan view shape placed in 2 liters of ion-exchanged water. .
 前記イオン交換水に沈殿している状態の竹チップを洗浄済竹チップとして取り出し、空気中で110℃の温度で乾燥させてから、窒素雰囲気下で600℃の温度で60分間の加熱による炭化処理を行って竹炭化物を生成した。 The bamboo chips precipitated in the ion-exchanged water are taken out as washed bamboo chips, dried in air at a temperature of 110 ° C., and then carbonized by heating at a temperature of 600 ° C. for 60 minutes in a nitrogen atmosphere. To produce bamboo carbide.
 このようにして生成した竹炭化物を4セット用意し、過熱水蒸気雰囲気下で850℃の温度で、それぞれ、50分間、70分間、110分間及び130分間の加熱による賦活処理を行って竹活性炭を生成した(以下、それぞれ、活性炭A(1)~活性炭A(4)という)。 Four sets of bamboo carbide produced in this way are prepared, and activated charcoal is generated by heating for 50 minutes, 70 minutes, 110 minutes, and 130 minutes, respectively, at a temperature of 850 ° C. in a superheated steam atmosphere. (Hereinafter referred to as activated carbon A (1) to activated carbon A (4), respectively).
・第2製造方法
 原料段階では洗浄を行わずに炭化処理を行って炭化物を作成し、炭化物に対して洗浄を行い、洗浄済炭化物に対して賦活処理を行って活性炭(活性炭B)を製造した。
-2nd manufacturing method Carbide processing was performed without performing washing in the raw material stage, carbide was created, the carbide was washed, activated treatment was performed on the washed carbide, and activated carbon (activated carbon B) was produced. .
 具体的には、平面視形状の最小辺が500μm~2mmとされた竹チップ100gに対し、洗浄しないままで、窒素雰囲気下で600℃の温度で60分間の加熱を行って竹炭化物を生成した。 Specifically, bamboo carbide was produced by heating 60 g of bamboo chips having a minimum side of 500 μm to 2 mm in plan view in a nitrogen atmosphere at a temperature of 600 ° C. for 60 minutes without washing. .
 その後に、竹炭化物を2リットルのイオン交換水内に投入した状態で、沸騰及び冷却のサイクルを2回繰り返して、洗浄を行い、前記イオン交換水に沈殿している状態の竹炭化物を洗浄済竹炭化物として取り出した。 After that, with the bamboo carbide in the 2 liters of ion exchange water, the boiling and cooling cycles are repeated twice to perform washing, and the bamboo carbide in the state of precipitation in the ion exchange water has been washed. Removed as bamboo carbide.
 このようにして生成した洗浄済竹炭化物を4セット用意し、過熱水蒸気雰囲気下で850℃の温度で、それぞれ、50分間、70分間、90分間及び110分間の加熱による賦活処理を行って竹活性炭を生成した(以下、それぞれ、活性炭B(1)~活性炭B(4)という)。 Four sets of washed bamboo carbide produced in this way were prepared, and bamboo activated carbon was activated by heating for 50 minutes, 70 minutes, 90 minutes and 110 minutes, respectively, at a temperature of 850 ° C. in a superheated steam atmosphere. (Hereinafter referred to as activated carbon B (1) to activated carbon B (4), respectively).
・第3製造方法
 原料段階及び炭化後の段階の何れにおいても洗浄を行わずに、活性炭(活性炭C)を製造した。
-3rd manufacturing method Activated carbon (activated carbon C) was manufactured, without wash | cleaning in any of a raw material stage and the stage after carbonization.
 具体的には、平面視形状の最小辺が500μm~2mmとされた竹チップ100gに対し、洗浄しないままで、窒素雰囲気下で600℃の温度で60分間の加熱を行って竹炭化物を生成した。 Specifically, bamboo carbide was produced by heating 60 g of bamboo chips having a minimum side of 500 μm to 2 mm in plan view in a nitrogen atmosphere at a temperature of 600 ° C. for 60 minutes without washing. .
 このようにして生成した竹炭化物を4セット用意し、過熱水蒸気雰囲気下で850℃の温度で、それぞれ、30分間、40分間、50分間及び60分間の加熱による賦活処理を行って、活性炭を製造した(以下、それぞれ、活性炭C(1)~活性炭C(4)という)。 Four sets of bamboo carbide produced in this way are prepared, and activated carbon is produced by heating for 30 minutes, 40 minutes, 50 minutes and 60 minutes, respectively, at a temperature of 850 ° C. in a superheated steam atmosphere. (Hereinafter referred to as activated carbon C (1) to activated carbon C (4), respectively).
 活性炭A(1)~A(4)、活性炭B(1)~B(4)及び活性炭C(1)~C(4)に対して、炭化物状態の重量に対する活性炭重量の割合である賦活収率を測定した。
 図4に、賦活時間と賦活収率との関係を示す。
 なお、賦活収率5%以下は、賦活処理後の生成物が活性炭というよりは灰状態になっていることを意味する。
Activation yield, which is the ratio of the weight of activated carbon to the weight of the carbide state with respect to activated carbon A (1) to A (4), activated carbon B (1) to B (4) and activated carbon C (1) to C (4) Was measured.
FIG. 4 shows the relationship between the activation time and the activation yield.
An activation yield of 5% or less means that the product after the activation treatment is in an ash state rather than activated carbon.
 また、活性体A(1)~A(4)、活性炭B(1)~B(4)及び活性炭C(1)~C(3)の比表面積を窒素吸脱着測定装置によって測定した。
 図5に、原料重量に対する活性炭重量の割合である収率と比表面積との関係を示す。
Further, the specific surface areas of the active substances A (1) to A (4), activated carbon B (1) to B (4) and activated carbon C (1) to C (3) were measured with a nitrogen adsorption / desorption measuring device.
FIG. 5 shows the relationship between the yield, which is the ratio of the activated carbon weight to the raw material weight, and the specific surface area.
 さらに、活性炭A(1)~A(4)、活性炭B(1)~B(4)及び活性炭C(1)~C(3)に形成された孔径の頻度を窒素吸脱着測定装置によって測定した。
 図6(a)~(c)に、それぞれ、活性炭A(1)~A(4)、活性炭B(1)~B(4)及び活性炭C(1)~C(3)における、孔径と頻度との関係を示す。
Further, the frequency of the pore diameter formed in the activated carbon A (1) to A (4), activated carbon B (1) to B (4) and activated carbon C (1) to C (3) was measured by a nitrogen adsorption / desorption measuring device. .
6 (a) to 6 (c) show the pore sizes and frequencies of activated carbon A (1) to A (4), activated carbon B (1) to B (4), and activated carbon C (1) to C (3), respectively. Shows the relationship.
 図4から明らかなように、原料段階及び炭化後の段階の何れにおいても洗浄を行わなかった活性炭Cのうち、賦活処理時間が60分間の活性炭C(4)においては賦活収率が5%となり、賦活処理後の生成物は実質的に灰状態になった。 As is clear from FIG. 4, among the activated carbons C that were not washed in either the raw material stage or the stage after carbonization, the activation yield was 5% in the activated carbon C (4) with an activation treatment time of 60 minutes. The product after the activation treatment was substantially in an ash state.
 これに対し、図4に示す通り、原料段階で洗浄を行った活性炭Aにおいては、賦活処理を130分行っても賦活収率が20%以上あり(活性炭A(4))、生成物は良好な活性炭状態であった。
 また、炭化後の段階で洗浄を行った活性炭Bにおいては、賦活処理を110分行っても賦活収率が15%以上あり(活性炭B(4))、生成物は良好な活性炭状態であった。
On the other hand, as shown in FIG. 4, in the activated carbon A which was washed in the raw material stage, the activation yield was 20% or more even after the activation treatment was performed for 130 minutes (activated carbon A (4)), and the product was good. It was an active carbon state.
Moreover, in the activated carbon B which was washed at the stage after carbonization, the activation yield was 15% or more even when the activation treatment was performed for 110 minutes (activated carbon B (4)), and the product was in a good activated carbon state. .
 また、図5から、活性炭Cにおいては、賦活時間40分の活性炭C(2)は賦活時間30分の活性炭C(1)に比して比表面積が上昇しているものの、賦活時間50分の活性炭C(3)は活性炭C(2)に比して比表面積が減少した。 Further, from FIG. 5, in the activated carbon C, the activated carbon C (2) having an activation time of 40 minutes has an increased specific surface area compared to the activated carbon C (1) having an activation time of 30 minutes, but the activation time is 50 minutes. Activated carbon C (3) has a reduced specific surface area compared to activated carbon C (2).
 また、図5から、活性炭A及び活性炭Bは、活性炭Cに比して、収率の減少に対する、比表面積の増加割合が高いことが確認できる。 Further, from FIG. 5, it can be confirmed that activated carbon A and activated carbon B have a higher rate of increase in specific surface area with respect to a decrease in yield than activated carbon C.
 さらに、図6(c)から、原料段階及び炭化後の段階の何れにおいても洗浄を行わなかった活性炭Cにおいては、賦活処理時間を長くしても、細孔径の頻度はそれ程変化しないことが確認できる。
 なお、活性炭C(4)は、実質的に灰状態となっており、比表面積及び細孔径の頻度分布は測定困難であった。
Further, from FIG. 6 (c), it is confirmed that the frequency of the pore diameter does not change so much even when the activation treatment time is increased in the activated carbon C that has not been washed in either the raw material stage or the stage after carbonization. it can.
Activated carbon C (4) was substantially in an ash state, and the frequency distribution of specific surface area and pore diameter was difficult to measure.
 これに対し、図6(a)から、原料段階で洗浄を行った活性炭Aにおいては、賦活時間の増加に応じて、孔径2nm以下のミクロ孔の頻度が上昇し、特に、賦活時間110分の活性炭A(3)(比表面積2000m/g(図5参照))は賦活時間70分の活性炭A(2)(比表面積1400m/g(図5参照))に比して、ミクロ孔の頻度が大幅に上昇していた。 On the other hand, from FIG. 6 (a), in the activated carbon A that was washed in the raw material stage, the frequency of micropores having a pore diameter of 2 nm or less increased with an increase in activation time, and in particular, the activation time was 110 minutes. activated carbon a (3) (a specific surface area of 2000 m 2 / g (see FIG. 5)) is compared to the activation time of 70 min the activated carbon a (2) (specific surface area 1400 m 2 / g (see FIG. 5)), the micropores The frequency was rising significantly.
 このことから、原料段階での洗浄処理は、活性炭におけるミクロ孔の発達に寄与するものと推測できる。 From this, it can be inferred that the cleaning treatment at the raw material stage contributes to the development of micropores in the activated carbon.
 さらに、図6(b)から、炭化後の段階で洗浄を行った活性炭Bにおいては、賦活時間の増加に応じて、孔径2nm以下のミクロ孔の頻度も上昇しているものの、ミクロ孔の頻度上昇よりも、孔径2nm以上50nm以下のメソ孔の頻度が大幅に上昇した。 Furthermore, from FIG. 6 (b), in the activated carbon B that was washed at the stage after carbonization, the frequency of micropores with a pore diameter of 2 nm or less increased as the activation time increased, but the frequency of micropores The frequency of mesopores having a pore diameter of 2 nm or more and 50 nm or less significantly increased than the increase.
 このことから、炭化後の段階での洗浄処理は、活性炭におけるミクロ孔及びメソ孔の双方の発達に寄与するものと推測できる。 From this, it can be inferred that the cleaning treatment at the stage after carbonization contributes to the development of both micropores and mesopores in the activated carbon.
 特に、活性炭Bにおいては、賦活時間70分の活性炭B(2)(比表面積1700m/g(図5参照))は賦活時間50分の活性炭B(1)(比表面積1300m/g(図5参照))に比して、メソ孔の頻度が大幅に上昇した。 In particular, in the activated carbon B, activated carbon B (2) (specific surface area 1700 m 2 / g (see FIG. 5)) with an activation time of 70 minutes is activated carbon B (1) (specific surface area 1300 m 2 / g (Fig. 5)). Compared to 5))), the frequency of mesopores increased significantly.
 これらから、原料段階での洗浄及び炭化後の段階での洗浄を行う本実施の形態においては、比表面積が1700m/g以上となるように賦活時間を設定すると、孔径2nm以下のミクロ孔及び孔径2nm以上50nm以下のメソ孔の頻度を大幅に上昇させた活性炭を効率良く製造できると推測できる。
 さらに、製造効率を考慮すると、比表面積が2000m/g以下となるように賦活時間を設定するのが好ましい。
From these, in the present embodiment in which cleaning at the raw material stage and cleaning at the stage after carbonization are performed, when the activation time is set so that the specific surface area is 1700 m 2 / g or more, micropores having a pore diameter of 2 nm or less and It can be inferred that activated carbon having a greatly increased frequency of mesopores having a pore diameter of 2 nm to 50 nm can be efficiently produced.
Furthermore, considering the production efficiency, it is preferable to set the activation time so that the specific surface area is 2000 m 2 / g or less.
 なお、原料段階での洗浄、及び、炭化後の洗浄の双方を行うことによる前記効果は、以下の理由によるものと推測される。
 即ち、灰分は、水蒸気賦活に対する触媒作用を奏し、賦活時間の短縮、及び、形成される孔径の大型化をもたらす。従って、賦活処理前の段階で被処理物の灰分を減少させることにより、灰分による前記触媒作用が低減され、その結果、形成される孔径の小型化、及び、孔径の小型化に伴って所望賦活収率を得る為の賦活時間の長時間化をもたらす。
In addition, it is estimated that the said effect by performing both the washing | cleaning in a raw material stage and the washing | cleaning after carbonization is based on the following reasons.
That is, the ash has a catalytic action for steam activation, shortening the activation time, and increasing the diameter of the formed pores. Therefore, by reducing the ash content of the workpiece before the activation treatment, the catalytic action due to the ash content is reduced. As a result, the desired activation can be achieved along with the reduction in the pore size formed and the pore size reduction. The activation time for obtaining the yield is prolonged.
 従って、原料段階での洗浄及び炭化後の洗浄の双方を行うことで、賦活処理前の段階での灰分を可及的に減少させることができ、これにより、ミクロ孔が発達した、比表面積の大きな活性炭が得られるものと推測される。 Therefore, by performing both the cleaning at the raw material stage and the cleaning after carbonization, the ash content at the stage before the activation treatment can be reduced as much as possible. It is estimated that large activated carbon can be obtained.
 さらに、洗浄後原料の炭化処理中に、洗浄後原料に残存していた灰分(原料洗浄によっては除去しきれなかった灰分)が集約し、炭化処理によって生成された炭化物は、集約灰分を有する状態となっているものと推測される。 Furthermore, during the carbonization of the raw material after cleaning, the ash remaining in the raw material after cleaning (the ash that could not be removed by the raw material cleaning) is aggregated, and the carbide generated by the carbonization process has aggregate ash It is presumed that
 このような状態の前記炭化物に対して洗浄を行うことによって前記集約灰分を効率的に除去でき、賦活処理中に、前記集約灰分が除去された箇所が起点となって、メソ孔が発達するものと推測される。 The aggregated ash can be efficiently removed by washing the carbide in such a state, and the mesopores develop from the location where the aggregated ash is removed during the activation process. It is guessed.

Claims (7)

  1.  チップ状の灰分含有バイオマス原料を用意する工程と、
     チップ状バイオマス原料に対して灰分除去洗浄を行う原料洗浄工程と、
     洗浄済原料を炭化処理して炭化物を得る炭化工程と、
     炭化物に対して灰分除去洗浄を行う炭化物洗浄工程と、
     洗浄済炭化物を賦活処理して活性炭を得る賦活工程とを含むことを特徴とする活性炭の製造方法。
    Preparing a chip-like ash-containing biomass material;
    A raw material cleaning process for performing ash removal cleaning for chip biomass raw materials,
    A carbonization step of carbonizing the washed raw material to obtain a carbide,
    Carbide cleaning process for ash removal cleaning for carbides,
    And an activation step of activating the washed carbide to obtain activated carbon.
  2.  前記原料洗浄工程は、チップ状バイオマス原料を処理槽内の洗浄水に投入して煮沸及び冷却を行い、洗浄水内に沈殿したチップ状バイオマス原料を洗浄済原料として取り出すものとされていることを特徴とする請求項1に記載の活性炭の製造方法。 The raw material washing step is to put the chip-like biomass raw material into the washing water in the treatment tank, perform boiling and cooling, and take out the chip-like biomass raw material precipitated in the washing water as a washed raw material. The method for producing activated carbon according to claim 1.
  3.  前記炭化物洗浄工程は、炭化物を処理槽内の洗浄水に投入して煮沸及び冷却を行い、洗浄水内に沈殿した炭化物を洗浄済炭化物として取り出すものとされていることを特徴とする請求項1又は2に記載の活性炭の製造方法。 2. The carbide cleaning step is characterized in that the carbide is poured into cleaning water in a treatment tank, boiled and cooled, and the carbide precipitated in the cleaning water is taken out as cleaned carbide. Or the manufacturing method of activated carbon of 2.
  4.  前記賦活工程は、活性炭の比表面積が1700m/g以上となるように、賦活時間が設定されていることを特徴とする請求項1から3の何れかに記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 3, wherein in the activation step, an activation time is set such that a specific surface area of the activated carbon is 1700 m 2 / g or more.
  5.  前記賦活工程は、活性炭の比表面積が2000m/g以下となるように、賦活時間が設定されていることを特徴とする請求項4に記載の活性炭の製造方法。 5. The method for producing activated carbon according to claim 4, wherein in the activation step, an activation time is set so that a specific surface area of the activated carbon is 2000 m 2 / g or less.
  6.  前記炭化工程は、洗浄済原料を過熱水蒸気雰囲気下で600℃以上750℃以下の温度で加熱することによって行われ、
     前記賦活工程は、洗浄済炭化物を過熱水蒸気雰囲気下で750℃以上900℃以下の温度で加熱することによって行われることを特徴とする請求項1から5の何れかに記載の活性炭の製造方法。
    The carbonization step is performed by heating the washed raw material at a temperature of 600 ° C. or higher and 750 ° C. or lower in a superheated steam atmosphere,
    6. The method for producing activated carbon according to claim 1, wherein the activation step is performed by heating the washed carbide at a temperature of 750 ° C. to 900 ° C. in a superheated steam atmosphere.
  7.  チップ状の灰分含有バイオマス原料は、平面視形状の最小辺が500μm以上2mm以下の竹チップであることを特徴とする請求項1から6の何れかに記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 6, wherein the chip-like ash-containing biomass material is bamboo chips having a minimum side of a shape in plan view of 500 µm to 2 mm.
PCT/JP2019/008532 2018-03-07 2019-03-05 Method for producing activated carbon WO2019172226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040491A JP7195053B2 (en) 2018-03-07 2018-03-07 Method for producing activated carbon
JP2018-040491 2018-03-07

Publications (1)

Publication Number Publication Date
WO2019172226A1 true WO2019172226A1 (en) 2019-09-12

Family

ID=67846149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008532 WO2019172226A1 (en) 2018-03-07 2019-03-05 Method for producing activated carbon

Country Status (2)

Country Link
JP (1) JP7195053B2 (en)
WO (1) WO2019172226A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040361A (en) * 1999-07-27 2001-02-13 Ishii Shoji Kk Production of bamboo charcoal and liquid for boiling bamboo
JP2007261918A (en) * 2006-03-30 2007-10-11 Shiga Pref Gov Method for manufacture bamboo activated carbon
JP2009226401A (en) * 2008-02-28 2009-10-08 Tokyo Metropolitan Industrial Technology Research Institute Adsorbent for adsorbing volatile organic compound, its producing method and method for utilizing bark or its molding
JP2009242178A (en) * 2008-03-31 2009-10-22 Toshiba Corp Nanocarbon and carbonized material continuous production apparatus
JP2009242179A (en) * 2008-03-31 2009-10-22 Toshiba Corp Nanocarbon and carbonized material continuous production apparatus
JP2009292670A (en) * 2008-06-03 2009-12-17 Toshinori Kokubu Method for producing high specific surface area activated carbon

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737618B2 (en) 2016-03-31 2020-08-12 昭和産業株式会社 Activated carbon manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040361A (en) * 1999-07-27 2001-02-13 Ishii Shoji Kk Production of bamboo charcoal and liquid for boiling bamboo
JP2007261918A (en) * 2006-03-30 2007-10-11 Shiga Pref Gov Method for manufacture bamboo activated carbon
JP2009226401A (en) * 2008-02-28 2009-10-08 Tokyo Metropolitan Industrial Technology Research Institute Adsorbent for adsorbing volatile organic compound, its producing method and method for utilizing bark or its molding
JP2009242178A (en) * 2008-03-31 2009-10-22 Toshiba Corp Nanocarbon and carbonized material continuous production apparatus
JP2009242179A (en) * 2008-03-31 2009-10-22 Toshiba Corp Nanocarbon and carbonized material continuous production apparatus
JP2009292670A (en) * 2008-06-03 2009-12-17 Toshinori Kokubu Method for producing high specific surface area activated carbon

Also Published As

Publication number Publication date
JP2019156650A (en) 2019-09-19
JP7195053B2 (en) 2022-12-23

Similar Documents

Publication Publication Date Title
JP5754620B2 (en) Production method of alpha rice
WO2015060140A1 (en) Superheated steam processing device
JP5419340B2 (en) Continuous atmospheric pressure superheated steam drying method and apparatus
CN107487809A (en) Based on handling the method and system that make waste water upgrading up to standard in a manner of activated carbon is renewable
JP2012161251A5 (en)
JP4336244B2 (en) Method and apparatus for heating material to be heated
JP5108277B2 (en) Pre-firing method for honeycomb molded body and pre-firing system for honeycomb molded body
CN207385175U (en) A kind of chemical industry tail gas purifies absorption plant
WO2019172226A1 (en) Method for producing activated carbon
KR20120053047A (en) - method and device for drying bulk capillary-porous materials
WO2019172225A1 (en) Method for producing activated carbon
JP2007055825A (en) Method and apparatus for producing activated carbon
CN106974318B (en) A kind of technique of high frequency and thin plate combined drying pipe tobacco
JP2006262706A (en) Apparatus and method for drying fish meat or meat
JP2011083196A (en) Method for producing quick-cooking rice and quick-cooking rice produced by the method
JP2017014492A (en) Carbonization device
JP2005341834A (en) Method and device for continuous sterilization under normal pressure at high temperature
JP6729906B1 (en) Heat treatment equipment
CN211120501U (en) Drying device of nanometer heat insulation felt
CN205701565U (en) A kind of medical device classification cleaning and drying device
CN210538741U (en) A drying device for sweet potato vermicelli production
US20110239429A1 (en) method to increase yield and reduce down time in semiconductor fabrication units by preconditioning components using sub-aperture reactive atom etch
JP4272586B2 (en) Activated carbon for water treatment
JP6996827B2 (en) Solid fuel manufacturing equipment
KR102025114B1 (en) Manufacuring method of detergent with ionized calcium and detergent with ionized calcium using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763288

Country of ref document: EP

Kind code of ref document: A1