WO2019172225A1 - Method for producing activated carbon - Google Patents

Method for producing activated carbon Download PDF

Info

Publication number
WO2019172225A1
WO2019172225A1 PCT/JP2019/008531 JP2019008531W WO2019172225A1 WO 2019172225 A1 WO2019172225 A1 WO 2019172225A1 JP 2019008531 W JP2019008531 W JP 2019008531W WO 2019172225 A1 WO2019172225 A1 WO 2019172225A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
raw material
activation
chip
superheated steam
Prior art date
Application number
PCT/JP2019/008531
Other languages
French (fr)
Japanese (ja)
Inventor
啓悟 蓮見
圭祐 菊池
櫻川 智史
里恵 山下
Original Assignee
サンコール株式会社
静岡県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンコール株式会社, 静岡県 filed Critical サンコール株式会社
Publication of WO2019172225A1 publication Critical patent/WO2019172225A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents

Definitions

  • the present invention relates to a method for producing activated carbon from biomass raw materials such as bamboo and coffee grounds.
  • Patent Document 1 listed below includes a step of carbonizing bamboo to obtain bamboo carbide, and washing the bamboo carbide so that 20 to 100% by weight of potassium is removed with respect to the total amount of potassium contained in the bamboo carbide.
  • a method for producing bamboo activated carbon (hereinafter referred to as a first known method) comprising a step of obtaining adjusted bamboo carbide, a step of activating potassium adjusted bamboo carbide to obtain bamboo activated carbon, and the total amount of potassium contained in bamboo Washing the bamboo so that 20 to 100% by weight of potassium is removed to obtain potassium adjusted bamboo, carbonizing the potassium adjusted bamboo to obtain potassium adjusted bamboo carbide, and potassium adjusted bamboo carbide.
  • a method for producing bamboo activated carbon (hereinafter referred to as a second known method) comprising a step of activating and obtaining bamboo activated carbon is disclosed.
  • Patent Document 1 According to Patent Document 1, according to the first and second known methods, relatively uniform micropores can be obtained without being influenced by elements such as minerals and component compositions that differ depending on the production area, type, and growth process of bamboo. It is possible to easily and inexpensively obtain bamboo activated carbon having the following properties. Furthermore, by adjusting potassium contained in bamboo or bamboo carbide, it becomes possible to control the pore distribution of bamboo activated carbon, and to make certain chemical substances It is described that bamboo activated carbon that can be easily adsorbed can be obtained.
  • Patent Document 1 regarding the cleaning of bamboo or bamboo carbide, there is no particular limitation on the method of removing potassium, but only that it can be easily removed by washing with water, acid, etc. No specific cleaning method is described.
  • the present invention has been made in view of such prior art, and is a method for producing activated carbon from a biomass raw material, and provides a method for producing activated carbon that can efficiently produce activated carbon with developed micropores and a large specific surface area. Objective.
  • the present invention provides a step of preparing a chip-like ash-containing biomass raw material, and the chip-like biomass raw material is poured into the washing water in the treatment tank, and boiled and cooled.
  • a raw material washing step for extracting the precipitated chip biomass raw material as a washed raw material a carbonization step for carbonizing the washed raw material after the raw material washing step to obtain a carbide, and an activation step for obtaining activated carbon by activating the carbide.
  • the washing water charged with the chip-like biomass material is boiled and cooled, the chip-like biomass material precipitated in the washing water is taken out as the washed material, and the washed material Since carbonized to obtain a carbide and activated carbon to obtain activated carbon to obtain the activated carbon, it is possible to efficiently produce activated carbon having a large specific surface area with developed micropores .
  • the raw material cleaning step includes a process of adding nitric acid to the treatment tank and performing nitric acid cleaning with nitric acid-containing cleaning water after boiling and cooling.
  • a boiling and cooling cycle is performed a plurality of times.
  • the activation time in the activation step can be set so that the specific surface area of the activated carbon is 1400 m 2 / g or more. More preferably, the activation time can be set so that the specific surface area of the activated carbon is 2000 m 2 / g or less.
  • the carbonization step is performed by heating the washed raw material at a temperature of 600 ° C. or higher and 750 ° C. or lower in a superheated steam atmosphere, and the activation step is performed at 750 ° C. or higher and 900 ° C. in a superheated steam atmosphere. It is performed by heating at the following temperature.
  • the chip-like ash-containing biomass material is preferably bamboo chips having a minimum side of a shape in plan view of 500 ⁇ m or more and 2 mm or less.
  • FIG. 1 is a front view of an example of a heating apparatus capable of performing a carbonization step and an activation step in an activated carbon production method according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of the heating device.
  • FIG. 3 is a longitudinal sectional view of a first heat treatment unit in the heating apparatus.
  • FIG. 4 is a longitudinal sectional view of a second heat treatment unit in the heating apparatus.
  • FIG. 5 is a graph showing the relationship between the activation time and the activation yield in Examples 1 to 4 and Comparative Examples 1 to 4 manufactured based on the above embodiment.
  • FIG. 6 is a graph showing the relationship between yield and specific surface area in Examples 1 to 4 and Comparative Examples 1 to 3.
  • 7 (a) and 7 (b) are graphs showing the frequency distribution of pore diameters in Examples 1 to 4 and Comparative Examples 1 to 3, respectively.
  • the activated carbon production method according to the present embodiment is a method for producing activated carbon from a biomass raw material containing ash, and the biomass raw material containing ash includes bamboo, coffee grounds (coffee extraction residue), rice husk, corn, and the like. Illustrated.
  • the activated carbon manufacturing method includes a step of preparing a chip body of an ash-containing biomass material.
  • the size and shape of the chip body are not limited, but considering the cleaning efficiency in the following cleaning step, the minimum side of the shape in plan view can be 2 mm or less. That is, even if the length of one side in the plan view shape is 5 cm, the ash content can be effectively removed in the following cleaning step if the length of the other side in the plan view shape is 2 mm or less.
  • the minimum side of the shape of the chip body in plan view is preferably 500 ⁇ m or more. That is, when the minimum side of the chip body is less than 500 ⁇ m, the activation yield of the product by the activation process is less than 5%, and there is a fear that the ash state is obtained.
  • the activated carbon production method further includes a raw material washing step in which the chip-like biomass raw material is poured into washing water in the treatment tank, boiled and cooled, and the chip-like biomass raw material precipitated in the washing water is taken out as a washed raw material. doing.
  • washing water can be efficiently infiltrated into the chip biomass raw material, and ash can be efficiently removed from the chip biomass raw material.
  • ion exchange water can be used as the washing water.
  • the amount of washing water is set to an amount larger than the whole chip biomass raw material can be immersed. For example, when the chip biomass material is M grams, the amount of washing water can be set to M / D or more when the bulk density D of the chip biomass material is used.
  • the boiling treatment can be performed, for example, by boiling the washing water into which the chip-like biomass material is charged.
  • the maintenance time of the boiling state is not particularly limited, and is appropriately set according to the weight of the chip biomass material.
  • the cooling treatment can be performed, for example, by cooling the washing water containing the boiled chip biomass raw material to room temperature.
  • the cooling method is not particularly limited, and various methods such as natural cooling, water cooling, and air cooling can be used.
  • the boiling and cooling cycle can be performed multiple times.
  • the raw material washing step is preferably configured to perform nitric acid washing treatment on the chip biomass raw material after boiling and cooling the washing water charged with the chip biomass raw material.
  • nitric acid washing treatment After boiling and cooling treatment, the supernatant water in the washing water is discarded, and ion-exchanged water is replenished by an amount corresponding to the discarded supernatant water amount, and nitrate water is added to the washing water in that state. It can be performed by leaving it for a predetermined time.
  • concentration of nitric acid water is not particularly limited, and for example, nitric acid water can be added so that the nitric acid concentration of washing water is 3 to 10%.
  • vibration can be applied a predetermined number of times in a state in which diluted nitric acid is added to the cleaning water, thereby enhancing the cleaning effect by nitric acid.
  • the chip biomass raw material is taken out from the washing water containing diluted nitric acid water after the nitric acid washing treatment, and the rinsing treatment is performed to remove nitric acid from the chip biomass raw material with ion exchange water. It can be performed.
  • the activated carbon production method further includes a carbonization step of carbonizing the dried washed raw material after the raw material cleaning step.
  • the carbide is generated by heating the washed raw material at a temperature of 650 ° C. or higher and 750 ° C. or lower in a superheated steam atmosphere. .
  • the carbonization treatment in the carbonization step and the activation treatment in the following activation step subsequent to the carbonization step are performed by changing only the temperature condition while using a single superheated steam heating apparatus. be able to.
  • the activated carbon manufacturing method further includes an activation step of obtaining activated carbon by performing activation treatment on the carbide generated by the carbonization step.
  • various activation methods can be used.
  • a superheated steam heating apparatus that can be used for carbonization in the carbonization step is used, and the temperature is 750 ° C. or more and 900 ° C. or less in a superheated steam atmosphere.
  • the activated carbon is formed by heating the carbide at a temperature of
  • FIGS. 1 and 2 show a front view and a schematic block diagram of an example 1 of a superheated steam heating apparatus capable of performing the carbonization step and the activation step, respectively.
  • the heating device 1 includes a water supply unit 90 that supplies steam or mist-like water, a first heat treatment unit 100, and a second heat treatment unit 200.
  • reference numeral 10 denotes a gantry that supports the carbonization processing unit 100 and the activation processing unit 200.
  • 3 and 4 are longitudinal sectional views of the first and second heat treatment units 100 and 200, respectively.
  • the first heat treatment unit 100 is configured to perform a carbonization process on an object to be processed (cleaned raw material).
  • the first heat treatment unit 100 includes a first case body 110, a first screw conveyor 120, and a first superheated steam generation mechanism 130.
  • the first case body 110 is configured to define a first processing space 110A that receives a portion to be processed (cleaned raw material) in an airtight state.
  • the first case main body 110 includes a substantially rectangular upper surface 111 defined by a pair of long sides extending in the longitudinal direction and a pair of short sides extending in the width direction, as shown in FIG. 3.
  • a pair of side surfaces 112 extending substantially vertically from a pair of long sides of the upper surface 111, a pair of end surfaces 113 extending substantially vertically from a pair of short sides of the upper surface 111, a lower end portion of the pair of side surfaces 112, and the pair of It is made into the substantially rectangular parallelepiped shape which has the bottom face 114 which closes the lower end part of the end surface 113 of this.
  • the first screw conveyor 120 is driven to rotate about an axis to convey an object to be processed (cleaned raw material) in the first processing space 110A from one side in the longitudinal direction of the first processing space 110A to the other side. .
  • the first screw conveyor 120 includes a rotating shaft 121 that longitudinally cuts the first processing space 110A in the longitudinal direction with at least one end 121a extending airtightly outward,
  • a conveyance body 122 such as a spiral blade provided on the rotation shaft 121 and an actuator (not shown) such as an electric motor that rotationally drives the one end 121 a of the rotation shaft 121 are provided.
  • the first screw conveyor 120 includes first and second rotating shafts arranged in parallel with each other as the rotating shaft 121, and the first and second rotating shafts provided as the transport body 122, respectively. And a second carrier. In this case, the first and second rotating shafts are synchronously rotated by the actuator.
  • the first superheated steam generation mechanism 130 includes a first fluid heating pipe 131 and a first cover case 140 connected to the first case body 110.
  • the first fluid heating pipe 131 is a long hollow member formed of a conductive material that heats in response to voltage application such as Inconel, Hastelloy, or stainless steel. It is configured to receive the mist-like water in the internal space, convert the steam in the internal space or the mist-like water into superheated steam by being heated by receiving a voltage application, and discharge it to the outside.
  • voltage application such as Inconel, Hastelloy, or stainless steel.
  • the first case body 110 includes a receiving port 110 (in) for receiving an object to be processed (cleaned raw material) into one side of the first processing space 110A, and an object to be processed.
  • the first processing space between the discharge port 110 (out) for discharging the processed material (cleaned raw material) from the other side of the first processing space 110A and the receiving port 110 (in) and the discharge port 110 (out) in the transport direction.
  • An upper opening 115 that opens 110A upward is provided.
  • the first fluid heating pipe 131 is disposed above the first case body 110 so that the intermediate portion 133 faces the upper opening 115, and the first cover case 140 includes the first fluid case.
  • the upper case 115 is fixed to the first case body 110 so as to airtightly close the upper opening 115 while covering the intermediate portion 133 of the heating tube 131.
  • the first end 131a on one side in the longitudinal direction and the second end 131b on the other side in the longitudinal direction extend outward from the first cover case 140.
  • the intermediate portion 133 between the first and second end portions 131 a and 131 b is disposed so as to face the upper opening 115.
  • the first and second end portions 131a and 131b are provided with first and second feeding points 135 and 135b, respectively, and one of the first and second end portions 131a and 131b has the first end.
  • An inlet for introducing steam or mist water from the water supply mechanism 90 is provided in the internal space of the fluid heating tube 131.
  • the water supply unit 90 has a boiler 91, and steam is supplied from the boiler 91 to the inlet of the first fluid heating pipe 131.
  • Reference numeral 92 in FIG. 2 is an adjustment valve that adjusts the amount of steam supplied from the boiler 91 to the first fluid heating pipe 131.
  • the first fluid heating pipe 131 is heated when a voltage is applied to the first and second feeding points 135a and 135b, and converts steam or mist-like water in the internal space into superheated steam.
  • the intermediate portion 133 is provided with one or a plurality of drying discharge ports (not shown), and the superheated steam generated by the first fluid heating pipe 131 is discharged from the one or more drying discharge ports. It is discharged to the outside and supplied to the first processing space 110A through the upper opening 115.
  • the first fluid heating pipe 131 is supported by the first cover case 140 via various attachment members, and the first cover case 140 is attached to the first cover case 140.
  • the intermediate portion 133 of the first fluid heating tube 131 faces the upper opening 115 by being fixed to the upper surface 111 of the one case body 110.
  • the heating device 1 includes a first temperature sensor (not shown) that detects the temperature of the first processing space 110A, and a control device 300 that controls on / off control of voltage application to the first superheated steam generation mechanism 130. 2), the control device 300 includes the first overheating so that the temperature in the first processing space 110A is a predetermined temperature (600 ° C. or higher and 750 ° C. or lower) suitable for carbonization. Voltage application control to the steam generation mechanism 130 is performed.
  • the first superheated steam generation mechanism 130 is configured to generate superheated steam by the heat generation action of the first fluid heating pipe 131 in response to voltage application.
  • the first superheated steam generation mechanism 130 heats the steam or mist-like water supplied from the water supply unit 90 by electromagnetic induction action to generate superheated steam.
  • the first electromagnetic induction heating means includes, for example, a first introduction pipe having one end fluidly connected to the water supply unit 90 and the other end fluidly connected to the first fluid pipe; And a first excitation coil wound around.
  • the first fluid pipe may be disposed such that a predetermined portion in the longitudinal direction provided with one or a plurality of drying discharge ports for discharging superheated steam faces the upper opening 115 in the first cover case 140.
  • the second heat treatment unit 200 is configured to perform an activation process on an object to be treated (carbide) supplied directly or indirectly from the first heat treatment unit 100.
  • the second heat treatment unit 200 has substantially the same configuration as the first heat treatment unit 100. Specifically, as shown in FIGS. 2 and 4, the second heat treatment unit 200 includes a second case main body 210, a second screw conveyor 220, and a second superheated steam generation mechanism 230.
  • the second case body 210 is configured to define a second processing space 210A that receives an object to be processed (carbide) supplied directly or indirectly from the first heat treatment unit 100 in an airtight state.
  • the heating device 1 includes an intermediate transport unit 50 between the first and second heat treatment units 100 and 200 in the transport direction of the workpiece, and the second A workpiece (carbide) is supplied to the heat treatment unit 200 from the intermediate conveyance unit 50.
  • the intermediate conveyance unit 50 includes an intermediate conveyance case 51 that defines an airtight conveyance space, and an intermediate conveyance screw conveyor 52 that conveys an object to be processed from one side of the conveyance space of the intermediate conveyance case 51 to the other side. doing.
  • the intermediate transfer case 51 has an intermediate receiving port 51 (in) and an intermediate discharge port 51 (out) formed to communicate with one side and the other side of the transfer space, respectively, and the first case A discharge port 110 (out) of the main body 110 is connected to an intermediate receiving port 51 (in) of the intermediate transfer case 51 in an airtight state, and an intermediate discharge port 51 (out) of the intermediate transfer case 51 is connected to the second case main body 210.
  • the air inlet 210 (in) is connected in an airtight state.
  • the intermediate conveying screw conveyor 52 includes a rotating shaft 52a that longitudinally cuts the conveying space in the longitudinal direction with at least one end extending outwardly, and a conveying body such as a spiral blade provided on the rotating shaft 52a. 52b and an actuator (not shown) such as an electric motor that rotationally drives one end of the rotating shaft 52a.
  • the second case body 210 includes a substantially rectangular upper surface 211 defined by a pair of long sides extending in the longitudinal direction and a pair of short sides extending in the width direction. , A pair of side surfaces 212 extending substantially vertically from a pair of long sides of the upper surface 211, a pair of end surfaces 213 extending substantially vertically from a pair of short sides of the upper surface 211, a lower end portion of the pair of side surfaces 212, and the pair The end surface 213 has a substantially rectangular parallelepiped shape having a bottom surface 214 that closes the lower end portion.
  • the second screw conveyor 220 is driven to rotate about an axis to convey an object to be processed (carbide) in the second processing space 210A from one side to the other side of the second processing space 210A.
  • the second screw conveyor 220 includes a rotating shaft 221 that longitudinally cuts the second processing space 210 ⁇ / b> A along the longitudinal direction with at least one end extending airtightly outward, and the rotation A conveyance body 222 such as a spiral blade provided on the shaft 221 and an actuator (not shown) such as an electric motor that rotationally drives the one end 221a of the rotation shaft 221 are provided.
  • the rotation A conveyance body 222 such as a spiral blade provided on the shaft 221 and an actuator (not shown) such as an electric motor that rotationally drives the one end 221a of the rotation shaft 221 are provided.
  • the second superheated steam generation mechanism 230 includes a second fluid heating pipe 231 and a second cover case 240 connected to the second case body 210.
  • the second fluid heating pipe 231 is a long hollow member formed of a conductive material that is heated in response to voltage application such as Inconel, Hastelloy, or stainless steel, and is supplied with steam or The mist-like water is received in the internal space, and is heated by receiving a voltage application, thereby converting the steam in the internal space or the mist-like water into superheated steam and releasing it to the outside.
  • voltage application such as Inconel, Hastelloy, or stainless steel
  • the second case main body 210 has a receiving port 210 (in) for receiving a workpiece (carbide) on one side of the second treatment space 210 ⁇ / b> A, and a workpiece (carbide). And an upper opening that opens the second processing space 210A upward between the receiving port 210 (in) and the discharge port 210 (out) in the transport direction. 215 are provided.
  • the second fluid heating pipe 231 is disposed above the second case body 210 such that the intermediate portion 233 faces the upper opening 215, and the second cover case 240 is disposed in the second fluid.
  • the upper case 215 is fixed to the second case body 210 so as to hermetically close the upper opening 215 while covering the intermediate portion 233 of the heating tube 231.
  • the second fluid heating pipe 231 has a first end portion 231a on one side in the longitudinal direction and a second end portion 231b on the other side in the longitudinal direction extending outward from the second cover case 240.
  • the intermediate portion 233 between the first and second end portions 231a and 231b is disposed so as to face the upper opening 215.
  • the first and second end portions 231a and 231b are provided with first and second feeding points 235a and 235b, respectively, and one of the first and second end portions 231a and 231b has the second end.
  • An inlet for introducing steam or mist water from the water supply mechanism 90 is provided in the internal space of the fluid heating pipe 231.
  • the water supply unit 90 includes the boiler 91, and steam is supplied from the boiler 91 to the inlet of the second fluid heating pipe 231 (see FIG. 2).
  • reference numeral 92 in FIG. 2 is an adjustment valve that adjusts the amount of steam supplied from the boiler 91 to the second fluid heating pipe 231.
  • the second fluid heating pipe 231 is heated when a voltage is applied to the first and second feeding points 235a and 235b, and converts steam or mist-like water in the internal space into superheated steam.
  • the superheated steam generated by the second fluid heating pipe 231 is discharged to the outside from one or a plurality of discharge ports (not shown) provided in the intermediate portion 233, and the second treatment is performed through the upper opening 215. It is supplied to the space 210A.
  • the second fluid heating pipe 231 is supported by the second cover case 240 via various attachment members, and the second cover case 240 is attached to the second cover case 240.
  • the intermediate portion 233 of the second fluid heating tube 231 faces the upper opening 215.
  • the heating apparatus 1 includes a second temperature sensor (not shown) that detects the temperature of the second processing space 210A, and the control device 300 activates the temperature in the second processing space 210A. Voltage application control to the second superheated steam generation mechanism 230 is performed so as to be a predetermined temperature suitable for processing (750 ° C. or more and 900 ° C. or less).
  • the second superheated steam generation mechanism 230 is configured to generate superheated steam by the heat generation action of the second fluid heating pipe 231 in response to voltage application.
  • the second superheated steam generation mechanism 230 heats the steam or mist-like water supplied from the water supply unit 90 by electromagnetic induction action to generate superheated steam.
  • the second electromagnetic induction heating means includes, for example, a second introduction pipe having one end fluidly connected to the water supply unit 90 and the other end fluidly connected to the second fluid pipe; And a second excitation coil wound around.
  • the second fluid pipe may be disposed such that a predetermined portion in the longitudinal direction provided with one or a plurality of discharge ports for discharging superheated steam faces the upper opening 215 in the second cover case 240.
  • the control device 300 is configured and configured to set processing conditions including the processing temperature of the first and second processing spaces 110A and 210A and the conveying speed of the first and second screw conveyors 120 and 220.
  • the first superheated steam generation mechanism 130, the first screw conveyor 120, the second superheated steam generation mechanism 230, and the second screw conveyor 220 are configured to perform operation control according to the processed conditions.
  • the object to be processed (cleaned raw material) is transported or stopped in the first processing space 110 ⁇ / b> A defined by the first case body 110. ),
  • the superheated steam generated by the first superheated steam generation mechanism 130 is supplied through the upper opening 115 of the first case body 110, so that the entire first processing space 110A has a high temperature. Can be efficiently supplied.
  • the intermediate portion 133 of the first fluid heating tube 131 provided with the one or more discharge ports is formed on the first case body 110. Since the upper opening 115 and the intermediate portion 133 are hermetically covered by the first cover case 140 while being arranged so as to face the upper opening 115, the entire first processing space 110A has a high temperature. In addition to being able to efficiently supply superheated steam, the temperature in the first processing space 110A can be increased by the heat quantity of the first fluid heating pipe 131 together with the heat quantity of the superheated steam, and good heating efficiency can be obtained. Can do.
  • a to-be-processed object (carbide) is conveyed to a to-be-processed object (carbide) in the stop state.
  • the superheated steam generated by the second superheated steam generation mechanism 230 is supplied through the upper opening 215 of the second case body 210, the entire second processing space 210A is heated to a high temperature. Steam can be supplied efficiently.
  • the second fluid heating pipe 231 that is heated in response to voltage application is used, and the intermediate portion 233 of the second fluid heating pipe 231 provided with the one or more discharge ports is formed on the second case body 210. Since the upper opening 215 and the intermediate portion 233 are hermetically covered by the second cover case 240 while being arranged so as to face the upper opening 215, the entire second processing space 210A has a high temperature. In addition to being able to efficiently supply superheated steam, the temperature in the second processing space 210A can be increased by the heat quantity of the second fluid heating pipe 231 as well as the heat quantity of the superheated steam, and good heating efficiency can be obtained. Can do.
  • the heating device 1 having such a configuration, it is possible to efficiently and continuously produce good activated carbon from the washed raw material.
  • the heating apparatus 1 includes a hopper 20 that can store an object to be processed (cleaned raw material) upstream of the first heat treatment unit 100 in the flow direction of the object to be processed.
  • a receiving port 110 (in) of the first case body 110 is directly or indirectly connected to an outlet of the hopper 20.
  • an upstream conveyance unit 30 is interposed between the hopper 20 and the first heat treatment unit 100.
  • the upstream conveyance unit 30 includes an upstream conveyance case 31 that defines an airtight conveyance space, and an upstream conveyance screw conveyor that conveys an object to be processed from one side of the conveyance space of the upstream conveyance case 31 to the other side. 32.
  • the upstream transport case 31 has an upstream inlet 31 (in) and an upstream outlet 31 (out) formed to communicate with one side and the other side of the transport space, respectively.
  • the outlet of the hopper 20 is connected to the upstream receiving port 31 (in) of the upstream transfer case 31 in an airtight state, and the upstream discharge port 31 (out) of the upstream transfer case 31 is connected to the first case body 110. It is connected to the receiving port 110 (in) in an airtight state.
  • the upstream conveying screw conveyor 32 includes a rotating shaft 32a that longitudinally cuts the conveying space along the longitudinal direction with at least one end extending outwardly, and conveying of a spiral blade provided on the rotating shaft 32a.
  • the body 32b and an actuator (not shown) such as an electric motor that rotationally drives one end of the rotating shaft 32a are provided.
  • the heating device 1 is provided with an upstream on-off valve 40 that opens or closes the receiving port 110 (in) of the first case body 110 directly or indirectly.
  • an upstream opening / closing valve 40 By providing the upstream opening / closing valve 40, it is possible to control the input amount of the object to be processed into the first heat treatment unit 100.
  • the upstream side opening / closing valve 40 it is possible to more reliably prevent the inflow of air into the first case body 110 and to effectively maintain the superheated steam atmosphere in the first case body 110. it can.
  • the first case body 110 since the inside of the first case body 110 is pressurized by the superheated steam released from the first fluid heating pipe 131, the first case body can be provided without the upstream opening / closing valve 40. Although it is possible to prevent the atmosphere from flowing in from the receiving port 110 (in) of 110 to some extent, the upstream opening / closing valve 40 can prevent the atmosphere from flowing in more reliably.
  • the upstream side opening / closing valve 40 may be configured to open and close by an actuator that is controlled by the control device 300.
  • the upstream opening / closing valve 40 connects the upstream discharge port 31 (out) of the upstream transfer case 31 and the receiving port 110 (in) of the first case main body 110. It is inserted in the piping.
  • the heating device 1 is provided with a downstream on-off valve 60 that opens or closes the outlet 210 (out) of the second case body 210 directly or indirectly. It is done.
  • downstream opening / closing valve 60 By providing the downstream opening / closing valve 60, it is possible to more reliably prevent the inflow of air into the second case body 210 and to effectively maintain the superheated steam atmosphere in the second case body 210.
  • the second case main body 210 can be provided without the downstream opening / closing valve 60. Although it is possible to prevent the atmosphere from flowing in from the outlet 210 (out) of the 210 to some extent, by providing the downstream opening / closing valve 60, the inflow of the atmosphere can be more reliably prevented.
  • the downstream opening / closing valve 60 may be configured to open and close by an actuator that is controlled by the control device 300.
  • the downstream on-off valve 60 is provided at the outlet 210 (out) of the second case body 210.
  • the heating device 1 includes a first exhaust duct 70 having one end communicating with the first processing space 110 ⁇ / b> A, and a first exhaust fan 72 interposed in the first exhaust duct 70. And a forced oxidizer 85 connected to the other end of the first exhaust duct 70.
  • One end of the first exhaust duct 70 is provided in the first case main body 110 so as to be opened outward above an area in which the object to be processed (cleaned raw material) is conveyed in the first processing space 110A. Connected to the outlet.
  • the exhaust port of the forced oxidizer 85 is connected to the exhaust duct 75.
  • the first exhaust fan 72 is configured to be controlled by the control device 300.
  • the heating device 1 includes a second exhaust duct 80 having one end communicating with the second processing space 210A and the other end connected to the forced oxidation device, and the second exhaust. And a second exhaust fan 82 interposed in the duct 80.
  • One end portion of the second exhaust duct 80 is provided in the second case main body 210 so as to be opened outward above a region in which the workpiece (carbide) is conveyed in the second processing space 210A. Connected to the outlet.
  • dry distillation gas such as tar generated during the activation process by the second heat treatment unit 200 can be released to the atmosphere in a state where it is burned by the forced oxidizer 85.
  • the heating device 1 includes the first and second heat treatment units 100 and 200 arranged in series in the conveyance direction of the workpiece, and the first and second heat treatment units 100 and 200 are respectively It is comprised so that a carbonization process and an activation process may be performed.
  • the cleaned raw material is heated to a predetermined carbonization temperature in the common heat treatment unit to perform carbonization, and then the carbide generated in the common heat treatment unit is heated to a predetermined activation treatment temperature. Then, activation treatment can be performed to produce activated carbon.
  • the said Example was manufactured with the following manufacturing method. Washing was performed by repeating the boiling and cooling cycle twice with 100 g of bamboo chips having a minimum side of 500 ⁇ m to 2 mm in a plan view shape placed in 2 liters of ion-exchanged water.
  • bamboo chips precipitated in the ion exchange water are taken out as washed bamboo chips, dried in air at a temperature of 110 ° C., and then heated at a temperature of 600 ° C. for 60 minutes in a nitrogen atmosphere.
  • bamboo carbide was produced.
  • bamboo activated carbon was produced by heating for 50 minutes, 70 minutes, 110 minutes, and 130 minutes, respectively, at a temperature of 850 ° C. in a superheated steam atmosphere. (Hereinafter referred to as Examples 1 to 4, respectively).
  • the activation yield which is the ratio of the weight of activated carbon to the weight of the carbide state, was measured.
  • FIG. 5 shows the relationship between the activation time and the activation yield.
  • the activation yield of 5% or less means that the product is in an ash state rather than activated carbon.
  • FIG. 6 shows the relationship between the yield, which is the ratio of the weight of activated carbon to the weight of the washed raw material, and the specific surface area.
  • FIG. 7 (a) shows the relationship between the pore diameter and the frequency.
  • Comparative Examples 1 to 4 4 sets of carbides were generated under the same conditions as in the above example except that no washing treatment was performed, and activated carbon was generated under the same conditions as in the above example except for the activation time.
  • the activation times were 30 minutes, 40 minutes, 50 minutes, and 60 minutes, respectively (hereinafter referred to as Comparative Examples 1 to 4, respectively).
  • FIG. 5 shows the relationship between the activation time and the activation yield in Comparative Examples 1 to 4
  • FIG. 6 shows the relationship between the yield and the specific surface area in Comparative Examples 1 to 3, respectively.
  • FIG. 7 (b) shows the relationship between the pore diameter and the frequency in Comparative Examples 1 to 3.
  • the activation yield was 5% in Comparative Example 4 (activation process 60 minutes), and the product was substantially in an ash state, but in the example, the activation process was performed for 130 minutes. Even if it goes, the activation yield is 20% or more (Example 4), and the product is in a good activated carbon state.
  • Comparative Example 2 is higher than that of Comparative Example 1, the specific surface area of Comparative Example 3 is reduced as compared to Comparative Example 2. Furthermore, from FIG. 7 (b), it can be confirmed that in the comparative example, the frequency of the pore diameter does not change so much even if the activation treatment time is increased. Note that Comparative Example 4 was substantially in an ash state, and the frequency distribution of specific surface area and pore diameter was difficult to measure.
  • Example 2 the frequency of micropores having an opening diameter of 2 nm or less is slightly increased compared to Example 1, and Example 4 is compared with Example 3.
  • Example 3 the frequency of micropores in Example 3 is significantly increased as compared with Example 2.
  • the frequency of micropores having an opening diameter of 2 nm or less can be significantly increased. Furthermore, considering the production efficiency, it is preferable to set the activation time so that the specific surface area is 2000 m 2 / g or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This method for producing activated carbon comprises: a step of providing a chip-form ash-containing biomass starting material; a starting material rinsing step in which the chip-form biomass starting material is poured into rinsing water inside a processing tank, where said starting material is subjected to boiling and cooling, and chip-form biomass starting material which has sunk to the bottom of the rinsing water is removed as a rinsed starting material; a step in which rinsed starting materials which have undergone the starting material rinsing step are carbonized to obtain carbides; and an activation step in which the carbides are activated to obtain activated carbon. Activation time is preferably set in such a manner that the specific surface area of the activated carbon is at least 1400 m2/g, and more preferably in such a manner that that the specific surface of the activated carbon does not exceed 2000 m2/g.

Description

活性炭の製造方法Method for producing activated carbon
 本発明は、竹やコーヒーかす等のバイオマス原料から活性炭を製造する方法に関する。 The present invention relates to a method for producing activated carbon from biomass raw materials such as bamboo and coffee grounds.
 下記特許文献1には、竹を炭化させて竹炭化物を得る工程と、竹炭化物に含まれるカリウム全量に対して20~100重量%のカリウムが除去されるように竹炭化物を洗浄して、カリウム調整竹炭化物を得る工程と、カリウム調整竹炭化物を賦活して竹活性炭を得る工程とを備えた竹活性炭の製造方法(以下、第1公知方法という)、及び、竹に含まれるカリウム全量に対して20~100重量%のカリウムが除去されるように竹を洗浄して、カリウム調整竹を得る工程と、カリウム調整竹を炭化させて、カリウム調整竹炭化物を得る工程と、カリウム調整竹炭化物を賦活して竹活性炭を得る工程とを備えた竹活性炭の製造方法(以下、第2公知方法という)が開示されている。 Patent Document 1 listed below includes a step of carbonizing bamboo to obtain bamboo carbide, and washing the bamboo carbide so that 20 to 100% by weight of potassium is removed with respect to the total amount of potassium contained in the bamboo carbide. A method for producing bamboo activated carbon (hereinafter referred to as a first known method) comprising a step of obtaining adjusted bamboo carbide, a step of activating potassium adjusted bamboo carbide to obtain bamboo activated carbon, and the total amount of potassium contained in bamboo Washing the bamboo so that 20 to 100% by weight of potassium is removed to obtain potassium adjusted bamboo, carbonizing the potassium adjusted bamboo to obtain potassium adjusted bamboo carbide, and potassium adjusted bamboo carbide. A method for producing bamboo activated carbon (hereinafter referred to as a second known method) comprising a step of activating and obtaining bamboo activated carbon is disclosed.
 前記特許文献1には、前記第1及び第2公知方法によれば、竹の産地や種類、成長過程等によって異なるミネラル等の元素や成分組成に影響を受けることなく、比較的均一なミクロ孔を有する竹活性炭を容易且つ安価に得ることができ、さらに、竹、或いは竹炭化物に含まれるカリウムを調整することによって、竹活性炭の細孔分布を制御することが可能となり、特定の化学物質を吸着し易い竹活性炭を得ることができる旨、記載されている。 According to Patent Document 1, according to the first and second known methods, relatively uniform micropores can be obtained without being influenced by elements such as minerals and component compositions that differ depending on the production area, type, and growth process of bamboo. It is possible to easily and inexpensively obtain bamboo activated carbon having the following properties. Furthermore, by adjusting potassium contained in bamboo or bamboo carbide, it becomes possible to control the pore distribution of bamboo activated carbon, and to make certain chemical substances It is described that bamboo activated carbon that can be easily adsorbed can be obtained.
 しかしながら、前記特許文献1には、竹、又は、竹炭化物の洗浄に関しては、カリウムの除去方法は特に限定されないが、水や酸等による洗浄によって容易に除去できる旨記載されているだけであり、具体的な洗浄方法については何ら記載されていない。 However, in the above-mentioned Patent Document 1, regarding the cleaning of bamboo or bamboo carbide, there is no particular limitation on the method of removing potassium, but only that it can be easily removed by washing with water, acid, etc. No specific cleaning method is described.
特開2007-261918号公報JP 2007-261918 A
 本発明は、斯かる従来技術に鑑みなされたものであり、バイオマス原料から活性炭を製造する方法であって、ミクロ孔が発達した比表面積の大きな活性炭を効率良く製造できる活性炭の製造方法の提供を目的とする。 The present invention has been made in view of such prior art, and is a method for producing activated carbon from a biomass raw material, and provides a method for producing activated carbon that can efficiently produce activated carbon with developed micropores and a large specific surface area. Objective.
 本発明は、前記目的を達成するために、チップ状の灰分含有バイオマス原料を用意する工程と、チップ状バイオマス原料を処理槽内の洗浄水に投入して煮沸及び冷却を行い、洗浄水内に沈殿したチップ状バイオマス原料を洗浄済原料として取り出す原料洗浄工程と、原料洗浄工程後の洗浄済原料を炭化処理して炭化物を得る炭化工程と、前記炭化物を賦活処理して活性炭を得る賦活工程とを含む活性炭の製造方法を提供する。 In order to achieve the above object, the present invention provides a step of preparing a chip-like ash-containing biomass raw material, and the chip-like biomass raw material is poured into the washing water in the treatment tank, and boiled and cooled. A raw material washing step for extracting the precipitated chip biomass raw material as a washed raw material, a carbonization step for carbonizing the washed raw material after the raw material washing step to obtain a carbide, and an activation step for obtaining activated carbon by activating the carbide. A method for producing activated carbon containing
 本発明に係る活性炭の製造方法によれば、チップ状バイオマス原料が投入された洗浄水を煮沸及び冷却して、洗浄水内に沈殿したチップ状バイオマス原料を洗浄済原料として取り出し、前記洗浄済原料に対して炭化処理して炭化物を得て、且つ、前記炭化物に対して賦活処理して活性炭を得るように構成したので、ミクロ孔が発達した比表面積の大きな活性炭を効率良く製造することができる。 According to the method for producing activated carbon according to the present invention, the washing water charged with the chip-like biomass material is boiled and cooled, the chip-like biomass material precipitated in the washing water is taken out as the washed material, and the washed material Since carbonized to obtain a carbide and activated carbon to obtain activated carbon to obtain the activated carbon, it is possible to efficiently produce activated carbon having a large specific surface area with developed micropores .
 好ましくは、前記原料洗浄工程は、煮沸及び冷却を行った後に、処理槽内に硝酸を加えて硝酸含有洗浄水で硝酸洗浄を行う処理を含むものとされる。 Preferably, the raw material cleaning step includes a process of adding nitric acid to the treatment tank and performing nitric acid cleaning with nitric acid-containing cleaning water after boiling and cooling.
 好ましくは、前記原料洗浄工程は、煮沸及び冷却のサイクルを複数回行うものとされる。 Preferably, in the raw material cleaning step, a boiling and cooling cycle is performed a plurality of times.
 好ましくは、活性炭の比表面積が1400m/g以上となるように、前記賦活工程における賦活時間を設定することができる。
 より好ましくは、活性炭の比表面積が2000m/g以下となるように、賦活時間を設定することができる。
Preferably, the activation time in the activation step can be set so that the specific surface area of the activated carbon is 1400 m 2 / g or more.
More preferably, the activation time can be set so that the specific surface area of the activated carbon is 2000 m 2 / g or less.
 好ましくは、前記炭化工程は、洗浄済原料を過熱水蒸気雰囲気下で600℃以上750℃以下の温度で加熱することによって行われ、前記賦活工程は、炭化物を過熱水蒸気雰囲気下で750℃以上900℃以下の温度で加熱することによって行われる。 Preferably, the carbonization step is performed by heating the washed raw material at a temperature of 600 ° C. or higher and 750 ° C. or lower in a superheated steam atmosphere, and the activation step is performed at 750 ° C. or higher and 900 ° C. in a superheated steam atmosphere. It is performed by heating at the following temperature.
 チップ状の灰分含有バイオマス原料は、好適には、平面視形状の最小辺が500μm以上2mm以下の竹チップとされる。 The chip-like ash-containing biomass material is preferably bamboo chips having a minimum side of a shape in plan view of 500 μm or more and 2 mm or less.
図1は、本発明の一実施の形態に係る活性炭製造方法における炭化工程及び賦活工程を実施可能な加熱装置の一例の正面図である。FIG. 1 is a front view of an example of a heating apparatus capable of performing a carbonization step and an activation step in an activated carbon production method according to an embodiment of the present invention. 図2は、前記加熱装置の模式ブロック図である。FIG. 2 is a schematic block diagram of the heating device. 図3は、前記加熱装置における第1加熱処理部の縦断面図である。FIG. 3 is a longitudinal sectional view of a first heat treatment unit in the heating apparatus. 図4は、前記加熱装置における第2加熱処理部の縦断面図である。FIG. 4 is a longitudinal sectional view of a second heat treatment unit in the heating apparatus. 図5は、前記実施の形態に基づいて製造した実施例1~4及び比較例1~4における賦活時間と賦活収率との関係を表すグラフである。FIG. 5 is a graph showing the relationship between the activation time and the activation yield in Examples 1 to 4 and Comparative Examples 1 to 4 manufactured based on the above embodiment. 図6は、実施例1~4及び比較例1~3における収率と比表面積との関係を表すグラフである。FIG. 6 is a graph showing the relationship between yield and specific surface area in Examples 1 to 4 and Comparative Examples 1 to 3. 図7(a)及び(b)は、それぞれ、実施例1~4及び比較例1~3における細孔径の頻度分布を表すグラフである。7 (a) and 7 (b) are graphs showing the frequency distribution of pore diameters in Examples 1 to 4 and Comparative Examples 1 to 3, respectively.
 以下、本発明に係る活性炭製造方法の一実施の形態について説明する。
 本実施の形態に係る活性炭製造方法は、灰分を含有するバイオマス原料から活性炭を製造する方法であり、灰分を含有するバイオマス原料としては、竹、コーヒーかす(コーヒー抽出残さ)、籾殻、トウモロコシ等が例示される。
Hereinafter, an embodiment of the activated carbon production method according to the present invention will be described.
The activated carbon production method according to the present embodiment is a method for producing activated carbon from a biomass raw material containing ash, and the biomass raw material containing ash includes bamboo, coffee grounds (coffee extraction residue), rice husk, corn, and the like. Illustrated.
 前記活性炭製造方法は、灰分含有バイオマス原料のチップ体を用意する工程を有している。
 チップ体の大きさ及び形状は限定されるものではないが、下記洗浄工程での洗浄効率を考慮すると、平面視形状の最小辺が2mm以下とされ得る。
 即ち、平面視形状の一辺の長さが5cmであっても、平面視形状の他辺の長さが2mm以下であれば、下記洗浄工程において灰分を有効に除去することが可能となる。
The activated carbon manufacturing method includes a step of preparing a chip body of an ash-containing biomass material.
The size and shape of the chip body are not limited, but considering the cleaning efficiency in the following cleaning step, the minimum side of the shape in plan view can be 2 mm or less.
That is, even if the length of one side in the plan view shape is 5 cm, the ash content can be effectively removed in the following cleaning step if the length of the other side in the plan view shape is 2 mm or less.
 また、後続する下記賦活工程での賦活収率を考慮すると、チップ体の平面視形状の最小辺は、好ましくは、500μm以上とされる。
 即ち、チップ体の最小辺が500μm未満であると、賦活工程による生成物の賦活収率が5%未満となって、灰状態になるおそれがある。
In addition, considering the activation yield in the following activation process, the minimum side of the shape of the chip body in plan view is preferably 500 μm or more.
That is, when the minimum side of the chip body is less than 500 μm, the activation yield of the product by the activation process is less than 5%, and there is a fear that the ash state is obtained.
 前記活性炭製造方法は、さらに、チップ状バイオマス原料を処理槽内の洗浄水に投入して煮沸及び冷却を行い、洗浄水内に沈殿したチップ状バイオマス原料を洗浄済原料として取り出す原料洗浄工程を有している。 The activated carbon production method further includes a raw material washing step in which the chip-like biomass raw material is poured into washing water in the treatment tank, boiled and cooled, and the chip-like biomass raw material precipitated in the washing water is taken out as a washed raw material. doing.
 斯かる原料洗浄工程によって、チップ状バイオマス原料の内部まで洗浄水を効率的に浸透させることができ、チップ状バイオマス原料から灰分を効率良く除去することができる。 By such a raw material washing step, washing water can be efficiently infiltrated into the chip biomass raw material, and ash can be efficiently removed from the chip biomass raw material.
 洗浄水は、例えば、イオン交換水を用いることができる。
 洗浄水の水量は、チップ状バイオマス原料の全体が浸り得る以上の量とされる。例えば、チップ状バイオマス原料がMグラムの場合、当該チップ状バイオマス原料のかさ密度Dとすると、洗浄水の水量は、M/D以上とすることができる。
For example, ion exchange water can be used as the washing water.
The amount of washing water is set to an amount larger than the whole chip biomass raw material can be immersed. For example, when the chip biomass material is M grams, the amount of washing water can be set to M / D or more when the bulk density D of the chip biomass material is used.
 煮沸処理は、例えば、チップ状バイオマス原料が投入された洗浄水を沸騰させることによって行うことができる。沸騰状態の維持時間は特に限定されるものではなく、チップ状バイオマス原料の重量に応じて、適宜設定される。 The boiling treatment can be performed, for example, by boiling the washing water into which the chip-like biomass material is charged. The maintenance time of the boiling state is not particularly limited, and is appropriately set according to the weight of the chip biomass material.
 冷却処理は、例えば、沸騰処理されたチップ状バイオマス原料を含む洗浄水を常温まで冷却させることによって行うことができる。冷却方法は特に限定されるものでは無く、自然冷却、水冷、空冷等、種々の方法を用いることができる。 The cooling treatment can be performed, for example, by cooling the washing water containing the boiled chip biomass raw material to room temperature. The cooling method is not particularly limited, and various methods such as natural cooling, water cooling, and air cooling can be used.
 好ましくは、煮沸及び冷却のサイクルを複数回、行うことができる。 Preferably, the boiling and cooling cycle can be performed multiple times.
 前記原料洗浄工程は、好ましくは、チップ状バイオマス原料が投入された洗浄水を煮沸及び冷却させた後に、チップ状バイオマス原料に対して硝酸洗浄処理を行うように構成される。 The raw material washing step is preferably configured to perform nitric acid washing treatment on the chip biomass raw material after boiling and cooling the washing water charged with the chip biomass raw material.
 硝酸洗浄処理は、前記煮沸及び冷却処理の後に、洗浄水のうちの上澄み水を捨て且つ捨てた上澄み水量に応じた水量だけイオン交換水を補充し、その状態の洗浄水に硝酸水を加えて、所定時間放置することによって行うことができる。
 硝酸水の濃度は特に限定されるものでは無く、例えば、洗浄水の硝酸濃度が3~10%となるように、硝酸水を加えることができる。
In the nitric acid washing treatment, after boiling and cooling treatment, the supernatant water in the washing water is discarded, and ion-exchanged water is replenished by an amount corresponding to the discarded supernatant water amount, and nitrate water is added to the washing water in that state. It can be performed by leaving it for a predetermined time.
The concentration of nitric acid water is not particularly limited, and for example, nitric acid water can be added so that the nitric acid concentration of washing water is 3 to 10%.
 好ましくは、希釈硝酸水を洗浄水に加えた状態で、所定回数、振動を加えることができ、これにより、硝酸による洗浄効果を高めることができる。 Preferably, vibration can be applied a predetermined number of times in a state in which diluted nitric acid is added to the cleaning water, thereby enhancing the cleaning effect by nitric acid.
 前記原料洗浄工程が前記硝酸洗浄処理を含む場合には、前記硝酸洗浄処理後にチップ状バイオマス原料を希釈硝酸水が含まれる洗浄水から取り出し、イオン交換水でチップ状バイオマス原料から硝酸を取り除くリンス処理を行うことができる。 When the raw material washing step includes the nitric acid washing treatment, the chip biomass raw material is taken out from the washing water containing diluted nitric acid water after the nitric acid washing treatment, and the rinsing treatment is performed to remove nitric acid from the chip biomass raw material with ion exchange water. It can be performed.
 前記活性炭製造方法は、さらに、原料洗浄工程後に、乾燥させた洗浄済原料を炭化処理する炭化工程を備えている。 The activated carbon production method further includes a carbonization step of carbonizing the dried washed raw material after the raw material cleaning step.
 前記炭化工程は、種々の炭化方法を用いることができるが、好ましくは、過熱水蒸気雰囲気下で650℃以上750℃以下の温度で洗浄済原料を加熱することによって炭化物を生成するように構成される。 In the carbonization step, various carbonization methods can be used. Preferably, the carbide is generated by heating the washed raw material at a temperature of 650 ° C. or higher and 750 ° C. or lower in a superheated steam atmosphere. .
 斯かる構成によれば、単一の過熱水蒸気加熱装置を用いつつ、温度条件だけを変更することによって、炭化工程での炭化処理と前記炭化工程に後続する下記賦活工程での賦活処理とを行うことができる。 According to such a configuration, the carbonization treatment in the carbonization step and the activation treatment in the following activation step subsequent to the carbonization step are performed by changing only the temperature condition while using a single superheated steam heating apparatus. be able to.
 即ち、前記活性炭製造方法は、さらに、前記炭化工程によって生成された炭化物に対して賦活処理を行って活性炭を得る賦活工程を備えている。 That is, the activated carbon manufacturing method further includes an activation step of obtaining activated carbon by performing activation treatment on the carbide generated by the carbonization step.
 前記賦活工程は、種々の賦活方法を用いることができるが、好ましくは、前記炭化工程での炭化処理にも利用可能な過熱水蒸気加熱装置を用いて、過熱水蒸気雰囲気下で750℃以上900℃以下の温度で炭化物を加熱することによって活性炭を生成するように構成される。 In the activation step, various activation methods can be used. Preferably, a superheated steam heating apparatus that can be used for carbonization in the carbonization step is used, and the temperature is 750 ° C. or more and 900 ° C. or less in a superheated steam atmosphere. The activated carbon is formed by heating the carbide at a temperature of
 図1及び図2に、それぞれ、前記炭化工程及び前記賦活工程を実施可能な過熱水蒸気加熱装置の一例1の正面図及び模式ブロック図を示す。 FIGS. 1 and 2 show a front view and a schematic block diagram of an example 1 of a superheated steam heating apparatus capable of performing the carbonization step and the activation step, respectively.
 図1及び図2に示すように、前記加熱装置1は、蒸気又は霧状の水を供給する水供給部90と、第1加熱処理部100と、第2加熱処理部200とを備えている。
 図中、符号10は、前記炭化処理部100及び前記賦活処理部200を支持する架台である。
As shown in FIGS. 1 and 2, the heating device 1 includes a water supply unit 90 that supplies steam or mist-like water, a first heat treatment unit 100, and a second heat treatment unit 200. .
In the figure, reference numeral 10 denotes a gantry that supports the carbonization processing unit 100 and the activation processing unit 200.
 図3及び図4に、それぞれ、前記第1及び第2加熱処理部100、200の縦断面図を示す。 3 and 4 are longitudinal sectional views of the first and second heat treatment units 100 and 200, respectively.
 前記第1加熱処理部100は、被処理物(洗浄済原料)に対して炭化処理を行うように構成されている。 The first heat treatment unit 100 is configured to perform a carbonization process on an object to be processed (cleaned raw material).
 図2及び図3に示すように、前記第1加熱処理部100は、第1ケース本体110と、第1スクリューコンベア120と、第1過熱蒸気発生機構130とを有している。 2 and 3, the first heat treatment unit 100 includes a first case body 110, a first screw conveyor 120, and a first superheated steam generation mechanism 130.
 前記第1ケース本体110は、被処理部(洗浄済原料)を受け入れる第1処理空間110Aを気密状態で画するように構成されている。 The first case body 110 is configured to define a first processing space 110A that receives a portion to be processed (cleaned raw material) in an airtight state.
 前記加熱装置1においては、前記第1ケース本体110は、図3に示すように、長手方向に延びる一対の長辺及び幅方向に延びる一対の短辺によって画される略矩形状の上面111と、前記上面111の一対の長辺から略垂直に延びる一対の側面112と、前記上面111の一対の短辺から略垂直に延びる一対の端面113と、前記一対の側面112の下端部及び前記一対の端面113の下端部を閉じる底面114とを有する略直方体形状とされている。 In the heating apparatus 1, the first case main body 110 includes a substantially rectangular upper surface 111 defined by a pair of long sides extending in the longitudinal direction and a pair of short sides extending in the width direction, as shown in FIG. 3. A pair of side surfaces 112 extending substantially vertically from a pair of long sides of the upper surface 111, a pair of end surfaces 113 extending substantially vertically from a pair of short sides of the upper surface 111, a lower end portion of the pair of side surfaces 112, and the pair of It is made into the substantially rectangular parallelepiped shape which has the bottom face 114 which closes the lower end part of the end surface 113 of this.
 前記第1スクリューコンベア120は、軸線回りに回転駆動されることによって第1処理空間110A内の被処理物(洗浄済原料)を前記第1処理空間110Aの長手方向一方側から他方側へ搬送する。 The first screw conveyor 120 is driven to rotate about an axis to convey an object to be processed (cleaned raw material) in the first processing space 110A from one side in the longitudinal direction of the first processing space 110A to the other side. .
 図3に示すように、前記第1スクリューコンベア120は、少なくとも一端部121aが外方へ気密に延在された状態で第1処理空間110Aを長手方向に沿って縦断する回転軸121と、前記回転軸121に設けられた螺旋羽根等の搬送体122と、前記回転軸121の一端部121aを回転駆動する電動モータ等のアクチュエータ(図示せず)とを有している。 As shown in FIG. 3, the first screw conveyor 120 includes a rotating shaft 121 that longitudinally cuts the first processing space 110A in the longitudinal direction with at least one end 121a extending airtightly outward, A conveyance body 122 such as a spiral blade provided on the rotation shaft 121 and an actuator (not shown) such as an electric motor that rotationally drives the one end 121 a of the rotation shaft 121 are provided.
 前記第1スクリューコンベア120は、前記回転軸121として互いに対して並列配置された第1及び第2回転軸を含み、前記搬送体122として前記第1及び第2回転軸にそれぞれ設けられた第1及び第2搬送体を含むことができる。この場合、前記第1及び第2回転軸は前記アクチュエータによって同期回転される。 The first screw conveyor 120 includes first and second rotating shafts arranged in parallel with each other as the rotating shaft 121, and the first and second rotating shafts provided as the transport body 122, respectively. And a second carrier. In this case, the first and second rotating shafts are synchronously rotated by the actuator.
 図2及び図3に示すように、前記第1過熱蒸気発生機構130は、第1流体加熱管131と、前記第1ケース本体110に連結される第1カバーケース140とを有している。 2 and 3, the first superheated steam generation mechanism 130 includes a first fluid heating pipe 131 and a first cover case 140 connected to the first case body 110.
 前記第1流体加熱管131は、インコネル、ハステロイ又はステンレス等の電圧印加に応じて加熱する導電材によって形成された長尺の中空部材とされており、前記水供給部90から供給される蒸気又は霧状の水を内部空間に受け入れ、電圧印加を受けて加熱されることによって内部空間の蒸気又は霧状の水を過熱蒸気に変換し、外部へ放出するように構成されている。 The first fluid heating pipe 131 is a long hollow member formed of a conductive material that heats in response to voltage application such as Inconel, Hastelloy, or stainless steel. It is configured to receive the mist-like water in the internal space, convert the steam in the internal space or the mist-like water into superheated steam by being heated by receiving a voltage application, and discharge it to the outside.
 詳しくは、図2及び図3に示すように、前記第1ケース本体110には、被処理物(洗浄済原料)を第1処理空間110Aの一方側へ受け入れる受入口110(in)と、被処理物(洗浄済原料)を第1処理空間110Aの他方側から排出する排出口110(out)と、搬送方向に関し受入口110(in)及び排出口110(out)の間において第1処理空間110Aを上方に開く上方開口115とが設けられている。 Specifically, as shown in FIGS. 2 and 3, the first case body 110 includes a receiving port 110 (in) for receiving an object to be processed (cleaned raw material) into one side of the first processing space 110A, and an object to be processed. The first processing space between the discharge port 110 (out) for discharging the processed material (cleaned raw material) from the other side of the first processing space 110A and the receiving port 110 (in) and the discharge port 110 (out) in the transport direction. An upper opening 115 that opens 110A upward is provided.
 斯かる構成において、前記第1流体加熱管131は中間部分133が前記上方開口115に臨むように前記第1ケース本体110の上方に配置されており、前記第1カバーケース140は前記第1流体加熱管131の中間部分133を覆いつつ前記上方開口115を気密に閉塞するように前記第1ケース本体110に固着されている。 In such a configuration, the first fluid heating pipe 131 is disposed above the first case body 110 so that the intermediate portion 133 faces the upper opening 115, and the first cover case 140 includes the first fluid case. The upper case 115 is fixed to the first case body 110 so as to airtightly close the upper opening 115 while covering the intermediate portion 133 of the heating tube 131.
 より詳しくは、前記第1流体加熱管131は、長手方向一方側の第1端部131a及び長手方向他方側の第2端部131bが前記第1カバーケース140から外方へ延在された状態で、前記第1及び第2端部131a、131bの間の前記中間部分133が前記上方開口115に臨むように配置されている。 More specifically, in the first fluid heating tube 131, the first end 131a on one side in the longitudinal direction and the second end 131b on the other side in the longitudinal direction extend outward from the first cover case 140. Thus, the intermediate portion 133 between the first and second end portions 131 a and 131 b is disposed so as to face the upper opening 115.
 前記第1及び第2端部131a、131bには、それぞれ、第1及び第2給電点135、135bが設けられ、且つ、前記第1及び第2端部131a、131bの一方には前記第1流体加熱管131の内部空間に前記水供給機構90からの蒸気又は霧状の水を導入する導入口が設けられている。 The first and second end portions 131a and 131b are provided with first and second feeding points 135 and 135b, respectively, and one of the first and second end portions 131a and 131b has the first end. An inlet for introducing steam or mist water from the water supply mechanism 90 is provided in the internal space of the fluid heating tube 131.
 図2に示すように、前記水供給部90はボイラー91を有しており、前記ボイラー91から前記第1流体加熱管131の導入口に蒸気が供給される。
 図2中の符号92は、前記ボイラー91から前記第1流体加熱管131へ供給される蒸気の量を調整する調整弁である。
As shown in FIG. 2, the water supply unit 90 has a boiler 91, and steam is supplied from the boiler 91 to the inlet of the first fluid heating pipe 131.
Reference numeral 92 in FIG. 2 is an adjustment valve that adjusts the amount of steam supplied from the boiler 91 to the first fluid heating pipe 131.
 前記第1流体加熱管131は、前記第1及び第2給電点135a、135bに電圧が印加されることによって加熱し、内部空間の蒸気又は霧状の水を過熱蒸気に変換する。
 前記中間部分133には一又は複数の乾燥用吐出口(図示せず)が設けられており、前記第1流体加熱管131によって生成された過熱蒸気は、前記一又は複数の乾燥用放出口から外部に放出され、前記上方開口115を介して第1処理空間110Aに供給される。
The first fluid heating pipe 131 is heated when a voltage is applied to the first and second feeding points 135a and 135b, and converts steam or mist-like water in the internal space into superheated steam.
The intermediate portion 133 is provided with one or a plurality of drying discharge ports (not shown), and the superheated steam generated by the first fluid heating pipe 131 is discharged from the one or more drying discharge ports. It is discharged to the outside and supplied to the first processing space 110A through the upper opening 115.
 なお、前記加熱装置1においては、図3に示すように、前記第1流体加熱管131は前記第1カバーケース140に種々の取付部材を介して支持され、前記第1カバーケース140を前記第1ケース本体110の上面111に固着させることで、前記第1流体加熱管131の中間部分133が前記上方開口115に臨むようになっている。 In the heating apparatus 1, as shown in FIG. 3, the first fluid heating pipe 131 is supported by the first cover case 140 via various attachment members, and the first cover case 140 is attached to the first cover case 140. The intermediate portion 133 of the first fluid heating tube 131 faces the upper opening 115 by being fixed to the upper surface 111 of the one case body 110.
 前記加熱装置1には、前記第1処理空間110Aの温度を検出する第1温度センサ(図示せず)と、前記第1過熱蒸気発生機構130への電圧印可のオンオフ制御を司る制御装置300(図2参照)とが備えられており、前記制御装置300は、前記第1処理空間110A内の温度が炭化処理に適した所定温度(600℃以上750℃以下)となるように前記第1過熱蒸気発生機構130への電圧印可制御を行う。 The heating device 1 includes a first temperature sensor (not shown) that detects the temperature of the first processing space 110A, and a control device 300 that controls on / off control of voltage application to the first superheated steam generation mechanism 130. 2), the control device 300 includes the first overheating so that the temperature in the first processing space 110A is a predetermined temperature (600 ° C. or higher and 750 ° C. or lower) suitable for carbonization. Voltage application control to the steam generation mechanism 130 is performed.
 なお、前記加熱装置1においては、前述の通り、前記第1過熱蒸気発生機構130は、電圧印加に応じた前記第1流体加熱管131の発熱作用によって過熱蒸気を生成するように構成されているが、これに代えて、前記第1過熱蒸気発生機構130が、前記水供給部90から供給される蒸気又は霧状の水を電磁誘導作用によって加熱して過熱蒸気を生成する第1電磁誘導加熱手段(図示せず)と、前記第1電磁誘導加熱手段によって生成された過熱蒸気が供給される第1流体管(図示せず)と、前記上方開口115を気密状態に閉塞可能な第1カバーケース140とを有するように構成することも可能である。 In the heating device 1, as described above, the first superheated steam generation mechanism 130 is configured to generate superheated steam by the heat generation action of the first fluid heating pipe 131 in response to voltage application. However, instead of this, the first superheated steam generation mechanism 130 heats the steam or mist-like water supplied from the water supply unit 90 by electromagnetic induction action to generate superheated steam. Means (not shown), a first fluid pipe (not shown) supplied with superheated steam generated by the first electromagnetic induction heating means, and a first cover capable of closing the upper opening 115 in an airtight state It is also possible to have a case 140.
 前記第1電磁誘導加熱手段は、例えば、一端部が前記水供給部90に流体接続され且つ他端部が前記第1流体管に流体接続された第1導入管と、前記第1導入管の周りに巻き回された第1励磁コイルとを有し得る。
 前記第1流体管は、過熱蒸気を放出する一又は複数の乾燥用吐出口が設けられた長手方向所定部分が前記第1カバーケース140内において前記上方開口115に臨むように配置され得る。
The first electromagnetic induction heating means includes, for example, a first introduction pipe having one end fluidly connected to the water supply unit 90 and the other end fluidly connected to the first fluid pipe; And a first excitation coil wound around.
The first fluid pipe may be disposed such that a predetermined portion in the longitudinal direction provided with one or a plurality of drying discharge ports for discharging superheated steam faces the upper opening 115 in the first cover case 140.
 前記第2加熱処理部200は、前記第1加熱処理部100から直接又は間接的に供給される被処理物(炭化物)に対して賦活処理を行うように構成されている。 The second heat treatment unit 200 is configured to perform an activation process on an object to be treated (carbide) supplied directly or indirectly from the first heat treatment unit 100.
 前記第2加熱処理部200は、前記第1加熱処理部100と実質的に同一構成を有している。
 詳しくは、図2及び図4に示すように、前記第2加熱処理部200は、第2ケース本体210と、第2スクリューコンベア220と、第2過熱蒸気発生機構230とを有している。
The second heat treatment unit 200 has substantially the same configuration as the first heat treatment unit 100.
Specifically, as shown in FIGS. 2 and 4, the second heat treatment unit 200 includes a second case main body 210, a second screw conveyor 220, and a second superheated steam generation mechanism 230.
 前記第2ケース本体210は、前記第1加熱処理部100から直接又は間接的に供給される被処理物(炭化物)を受け入れる第2処理空間210Aを気密状態で画するように構成されている。 The second case body 210 is configured to define a second processing space 210A that receives an object to be processed (carbide) supplied directly or indirectly from the first heat treatment unit 100 in an airtight state.
 なお、前記加熱装置1は、図2に示すように、被処理物の搬送方向に関し前記第1及び第2加熱処理部100、200の間に中間搬送部50を有しており、前記第2加熱処理部200には前記中間搬送部50から被処理物(炭化物)が供給される。 As shown in FIG. 2, the heating device 1 includes an intermediate transport unit 50 between the first and second heat treatment units 100 and 200 in the transport direction of the workpiece, and the second A workpiece (carbide) is supplied to the heat treatment unit 200 from the intermediate conveyance unit 50.
 前記中間搬送部50は、気密状態の搬送空間を画する中間搬送ケース51と、前記中間搬送ケース51の搬送空間の一方側から他方側へ被処理物を搬送する中間搬送スクリューコンベア52とを有している。 The intermediate conveyance unit 50 includes an intermediate conveyance case 51 that defines an airtight conveyance space, and an intermediate conveyance screw conveyor 52 that conveys an object to be processed from one side of the conveyance space of the intermediate conveyance case 51 to the other side. doing.
 前記中間搬送ケース51は、前記搬送空間の一方側及び他方側にそれぞれ連通するように形成された中間受入口51(in)及び中間排出口51(out)を有しており、前記第1ケース本体110の排出口110(out)が前記中間搬送ケース51の中間受入口51(in)に気密状態で連結され且つ前記中間搬送ケース51の中間排出口51(out)が前記第2ケース本体210の受入口210(in)に気密状態で連結されている。 The intermediate transfer case 51 has an intermediate receiving port 51 (in) and an intermediate discharge port 51 (out) formed to communicate with one side and the other side of the transfer space, respectively, and the first case A discharge port 110 (out) of the main body 110 is connected to an intermediate receiving port 51 (in) of the intermediate transfer case 51 in an airtight state, and an intermediate discharge port 51 (out) of the intermediate transfer case 51 is connected to the second case main body 210. The air inlet 210 (in) is connected in an airtight state.
 前記中間搬送スクリューコンベア52は、少なくとも一端部が外方へ延在された状態で搬送空間を長手方向に沿って縦断する回転軸52aと、前記回転軸52aに設けられた螺旋羽根等の搬送体52bと、前記回転軸52aの一端部を回転駆動する電動モータ等のアクチュエータ(図示せず)とを有するものとされる。 The intermediate conveying screw conveyor 52 includes a rotating shaft 52a that longitudinally cuts the conveying space in the longitudinal direction with at least one end extending outwardly, and a conveying body such as a spiral blade provided on the rotating shaft 52a. 52b and an actuator (not shown) such as an electric motor that rotationally drives one end of the rotating shaft 52a.
 図4に示すように、前記加熱装置1においては、前記第2ケース本体210は、長手方向に延びる一対の長辺及び幅方向に延びる一対の短辺によって画される略矩形状の上面211と、前記上面211の一対の長辺から略垂直に延びる一対の側面212と、前記上面211の一対の短辺から略垂直に延びる一対の端面213と、前記一対の側面212の下端部及び前記一対の端面213の下端部を閉じる底面214とを有する略直方体形状とされている。 As shown in FIG. 4, in the heating device 1, the second case body 210 includes a substantially rectangular upper surface 211 defined by a pair of long sides extending in the longitudinal direction and a pair of short sides extending in the width direction. , A pair of side surfaces 212 extending substantially vertically from a pair of long sides of the upper surface 211, a pair of end surfaces 213 extending substantially vertically from a pair of short sides of the upper surface 211, a lower end portion of the pair of side surfaces 212, and the pair The end surface 213 has a substantially rectangular parallelepiped shape having a bottom surface 214 that closes the lower end portion.
 前記第2スクリューコンベア220は、軸線回りに回転駆動されることによって第2処理空間210A内の被処理物(炭化物)を前記第2処理空間210Aの一方側から他方側へ搬送する。 The second screw conveyor 220 is driven to rotate about an axis to convey an object to be processed (carbide) in the second processing space 210A from one side to the other side of the second processing space 210A.
 図4に示すように、前記第2スクリューコンベア220は、少なくとも一端部が外方へ気密に延在された状態で第2処理空間210Aを長手方向に沿って縦断する回転軸221と、前記回転軸221に設けられた螺旋羽根等の搬送体222と、前記回転軸221の一端部221aを回転駆動する電動モータ等のアクチュエータ(図示せず)とを有している。 As shown in FIG. 4, the second screw conveyor 220 includes a rotating shaft 221 that longitudinally cuts the second processing space 210 </ b> A along the longitudinal direction with at least one end extending airtightly outward, and the rotation A conveyance body 222 such as a spiral blade provided on the shaft 221 and an actuator (not shown) such as an electric motor that rotationally drives the one end 221a of the rotation shaft 221 are provided.
 図2及び図4に示すように、前記第2過熱蒸気発生機構230は、第2流体加熱管231と、前記第2ケース本体210に連結される第2カバーケース240とを有している。 2 and 4, the second superheated steam generation mechanism 230 includes a second fluid heating pipe 231 and a second cover case 240 connected to the second case body 210.
 前記第2流体加熱管231は、インコネル、ハステロイ又はステンレス等の電圧印加に応じて加熱する導電材によって形成された長尺の中空部材とされており、前記水供給部90から供給される蒸気又は霧状の水を内部空間に受け入れ、電圧印加を受けて加熱されることによって内部空間の蒸気又は霧状の水を過熱蒸気に変換し、外部に放出するように構成されている。 The second fluid heating pipe 231 is a long hollow member formed of a conductive material that is heated in response to voltage application such as Inconel, Hastelloy, or stainless steel, and is supplied with steam or The mist-like water is received in the internal space, and is heated by receiving a voltage application, thereby converting the steam in the internal space or the mist-like water into superheated steam and releasing it to the outside.
 詳しくは、図4に示すように、前記第2ケース本体210には、被処理物(炭化物)を第2処理空間210Aの一方側へ受け入れる受入口210(in)と、被処理物(炭化物)を第2処理空間210Aの他方側から排出する排出口210(out)と、搬送方向に関し受入口210(in)及び排出口210(out)の間において第2処理空間210Aを上方に開く上方開口215とが設けられている。 Specifically, as shown in FIG. 4, the second case main body 210 has a receiving port 210 (in) for receiving a workpiece (carbide) on one side of the second treatment space 210 </ b> A, and a workpiece (carbide). And an upper opening that opens the second processing space 210A upward between the receiving port 210 (in) and the discharge port 210 (out) in the transport direction. 215 are provided.
 斯かる構成において、前記第2流体加熱管231は中間部分233が前記上方開口215に臨むように前記第2ケース本体210の上方に配置されており、前記第2カバーケース240は前記第2流体加熱管231の中間部分233を覆いつつ前記上方開口215を気密に閉塞するように前記第2ケース本体210に固着されている。 In such a configuration, the second fluid heating pipe 231 is disposed above the second case body 210 such that the intermediate portion 233 faces the upper opening 215, and the second cover case 240 is disposed in the second fluid. The upper case 215 is fixed to the second case body 210 so as to hermetically close the upper opening 215 while covering the intermediate portion 233 of the heating tube 231.
 より詳しくは、前記第2流体加熱管231は、長手方向一方側の第1端部231a及び長手方向他方側の第2端部231bが前記第2カバーケース240から外方へ延在された状態で、前記第1及び第2端部231a、231bの間の前記中間部分233が前記上方開口215に臨むように配置されている。 More specifically, the second fluid heating pipe 231 has a first end portion 231a on one side in the longitudinal direction and a second end portion 231b on the other side in the longitudinal direction extending outward from the second cover case 240. Thus, the intermediate portion 233 between the first and second end portions 231a and 231b is disposed so as to face the upper opening 215.
 前記第1及び第2端部231a、231bには、それぞれ、第1及び第2給電点235a、235bが設けられ、且つ、前記第1及び第2端部231a、231bの一方には前記第2流体加熱管231の内部空間に前記水供給機構90からの蒸気又は霧状の水を導入する導入口が設けられている。 The first and second end portions 231a and 231b are provided with first and second feeding points 235a and 235b, respectively, and one of the first and second end portions 231a and 231b has the second end. An inlet for introducing steam or mist water from the water supply mechanism 90 is provided in the internal space of the fluid heating pipe 231.
 前述の通り、前記加熱装置1においては、前記水供給部90はボイラー91を有しており、前記ボイラー91から前記第2流体加熱管231の導入口に蒸気が供給される(図2参照)。
 なお、図2中の符号92は、前記ボイラー91から前記第2流体加熱管231へ供給される蒸気の量を調整する調整弁である。
As described above, in the heating device 1, the water supply unit 90 includes the boiler 91, and steam is supplied from the boiler 91 to the inlet of the second fluid heating pipe 231 (see FIG. 2). .
Note that reference numeral 92 in FIG. 2 is an adjustment valve that adjusts the amount of steam supplied from the boiler 91 to the second fluid heating pipe 231.
 前記第2流体加熱管231は、前記第1及び第2給電点235a、235bに電圧が印加されることによって加熱し、内部空間の蒸気又は霧状の水を過熱蒸気に変換する。
 前記第2流体加熱管231によって生成された過熱蒸気は、前記中間部分233に設けられた一又は複数の放出口(図示せず)から外部に放出され、前記上方開口215を介して第2処理空間210Aに供給される。
The second fluid heating pipe 231 is heated when a voltage is applied to the first and second feeding points 235a and 235b, and converts steam or mist-like water in the internal space into superheated steam.
The superheated steam generated by the second fluid heating pipe 231 is discharged to the outside from one or a plurality of discharge ports (not shown) provided in the intermediate portion 233, and the second treatment is performed through the upper opening 215. It is supplied to the space 210A.
 なお、前記加熱装置1においては、図4に示すように、前記第2流体加熱管231は前記第2カバーケース240に種々の取付部材を介して支持され、前記第2カバーケース240を前記第2ケース本体210の上面211に固着させることで、前記第2流体加熱管231の中間部分233が前記上方開口215に臨むようになっている。 In the heating apparatus 1, as shown in FIG. 4, the second fluid heating pipe 231 is supported by the second cover case 240 via various attachment members, and the second cover case 240 is attached to the second cover case 240. By fixing to the upper surface 211 of the two-case body 210, the intermediate portion 233 of the second fluid heating tube 231 faces the upper opening 215.
 前記加熱装置1には、前記第2処理空間210Aの温度を検出する第2温度センサ(図示せず)が備えられており、前記制御装置300は、前記第2処理空間210A内の温度が賦活処理に適した所定温度(750℃以上900℃以下)となるように前記第2過熱蒸気発生機構230への電圧印可制御を行う。 The heating apparatus 1 includes a second temperature sensor (not shown) that detects the temperature of the second processing space 210A, and the control device 300 activates the temperature in the second processing space 210A. Voltage application control to the second superheated steam generation mechanism 230 is performed so as to be a predetermined temperature suitable for processing (750 ° C. or more and 900 ° C. or less).
 なお、前記加熱装置1においては、前述の通り、前記第2過熱蒸気発生機構230は、電圧印加に応じた前記第2流体加熱管231の発熱作用によって過熱蒸気を生成するように構成されているが、これに代えて、前記第2過熱蒸気発生機構230が、前記水供給部90から供給される蒸気又は霧状の水を電磁誘導作用によって加熱して過熱蒸気を生成する第2電磁誘導加熱手段(図示せず)と、前記第2電磁誘導加熱手段によって生成された過熱蒸気が供給される第2流体管(図示せず)と、前記上方開口215を気密状態に閉塞可能な第2カバーケース240とを有するように構成することも可能である。 In the heating device 1, as described above, the second superheated steam generation mechanism 230 is configured to generate superheated steam by the heat generation action of the second fluid heating pipe 231 in response to voltage application. However, instead of this, the second superheated steam generation mechanism 230 heats the steam or mist-like water supplied from the water supply unit 90 by electromagnetic induction action to generate superheated steam. Means (not shown), a second fluid pipe (not shown) supplied with superheated steam generated by the second electromagnetic induction heating means, and a second cover capable of closing the upper opening 215 in an airtight state. It is also possible to have a case 240.
 前記第2電磁誘導加熱手段は、例えば、一端部が前記水供給部90に流体接続され且つ他端部が前記第2流体管に流体接続された第2導入管と、前記第2導入管の周りに巻き回された第2励磁コイルとを有し得る。
 前記第2流体管は、過熱蒸気を放出する一又は複数の吐出口が設けられた長手方向所定部分が前記第2カバーケース240内において前記上方開口215に臨むように配置され得る。
The second electromagnetic induction heating means includes, for example, a second introduction pipe having one end fluidly connected to the water supply unit 90 and the other end fluidly connected to the second fluid pipe; And a second excitation coil wound around.
The second fluid pipe may be disposed such that a predetermined portion in the longitudinal direction provided with one or a plurality of discharge ports for discharging superheated steam faces the upper opening 215 in the second cover case 240.
 前記制御装置300は、前記第1及び第2処理空間110A、210Aの処理温度、並びに、前記第1及び第2スクリューコンベア120、220の搬送速度を含む処理条件を設定できるように構成され、設定された処理条件に応じて前記第1過熱蒸気発生機構130、前記第1スクリューコンベア120、前記第2過熱蒸気発生機構230及び前記第2スクリューコンベア220の作動制御を行うように構成される。 The control device 300 is configured and configured to set processing conditions including the processing temperature of the first and second processing spaces 110A and 210A and the conveying speed of the first and second screw conveyors 120 and 220. The first superheated steam generation mechanism 130, the first screw conveyor 120, the second superheated steam generation mechanism 230, and the second screw conveyor 220 are configured to perform operation control according to the processed conditions.
 前記加熱装置1によれば、前記第1ケース本体110によって画される第1処理空間110A内において、被処理物(洗浄済原料)を搬送しつつ又は停止状態で、被処理物(洗浄済原料)に対し前記第1ケース本体110の上方開口115を介して前記第1過熱蒸気発生機構130によって発生された過熱蒸気を供給するように構成されているので、第1処理空間110Aの全体に高温の過熱蒸気を効率的に供給できる。 According to the heating device 1, the object to be processed (cleaned raw material) is transported or stopped in the first processing space 110 </ b> A defined by the first case body 110. ), The superheated steam generated by the first superheated steam generation mechanism 130 is supplied through the upper opening 115 of the first case body 110, so that the entire first processing space 110A has a high temperature. Can be efficiently supplied.
 さらに、電圧印加に応じて加熱する前記第1流体加熱管131を用い、前記一又は複数の吐出口が設けられた前記第1流体加熱管131の前記中間部分133が前記第1ケース本体110の前記上方開口115に臨むように配置しつつ、前記上方開口115及び前記中間部分133を前記第1カバーケース140によって気密に覆うように構成されているので、第1処理空間110Aの全体に高温の過熱蒸気を効率的に供給できることに加えて、過熱蒸気による熱量と共に前記第1流体加熱管131の熱量によっても第1処理空間110A内の温度を上昇させることができ、良好な加熱効率を得ることができる。 Furthermore, using the first fluid heating tube 131 that heats in response to voltage application, the intermediate portion 133 of the first fluid heating tube 131 provided with the one or more discharge ports is formed on the first case body 110. Since the upper opening 115 and the intermediate portion 133 are hermetically covered by the first cover case 140 while being arranged so as to face the upper opening 115, the entire first processing space 110A has a high temperature. In addition to being able to efficiently supply superheated steam, the temperature in the first processing space 110A can be increased by the heat quantity of the first fluid heating pipe 131 together with the heat quantity of the superheated steam, and good heating efficiency can be obtained. Can do.
 また、前記加熱装置1によれば、前記第2ケース本体210によって画される第2処理空間210A内において、被処理物(炭化物)を搬送しつつ又は停止状態で、被処理物(炭化物)に対し前記第2ケース本体210の上方開口215を介して前記第2過熱蒸気発生機構230によって発生された過熱蒸気を供給するように構成されているので、第2処理空間210Aの全体に高温の過熱蒸気を効率的に供給できる。 Moreover, according to the said heating apparatus 1, in the 2nd process space 210A demarcated by the said 2nd case main body 210, a to-be-processed object (carbide) is conveyed to a to-be-processed object (carbide) in the stop state. On the other hand, since the superheated steam generated by the second superheated steam generation mechanism 230 is supplied through the upper opening 215 of the second case body 210, the entire second processing space 210A is heated to a high temperature. Steam can be supplied efficiently.
 さらに、電圧印加に応じて加熱する前記第2流体加熱管231を用い、前記一又は複数の吐出口が設けられた前記第2流体加熱管231の前記中間部分233が前記第2ケース本体210の前記上方開口215に臨むように配置しつつ、前記上方開口215及び前記中間部分233を前記第2カバーケース240によって気密に覆うように構成されているので、第2処理空間210Aの全体に高温の過熱蒸気を効率的に供給できることに加えて、過熱蒸気による熱量と共に前記第2流体加熱管231の熱量によっても第2処理空間210A内の温度を上昇させることができ、良好な加熱効率を得ることができる。 Further, the second fluid heating pipe 231 that is heated in response to voltage application is used, and the intermediate portion 233 of the second fluid heating pipe 231 provided with the one or more discharge ports is formed on the second case body 210. Since the upper opening 215 and the intermediate portion 233 are hermetically covered by the second cover case 240 while being arranged so as to face the upper opening 215, the entire second processing space 210A has a high temperature. In addition to being able to efficiently supply superheated steam, the temperature in the second processing space 210A can be increased by the heat quantity of the second fluid heating pipe 231 as well as the heat quantity of the superheated steam, and good heating efficiency can be obtained. Can do.
 従って、斯かる構成の前記加熱装置1によれば、洗浄済原料から良好な活性炭を効率良く且つ連続的に製造することができる。 Therefore, according to the heating device 1 having such a configuration, it is possible to efficiently and continuously produce good activated carbon from the washed raw material.
 図1~図4等に示すように、前記加熱装置1は、前記第1加熱処理部100より被処理物の流れ方向上流側に被処理物(洗浄済原料)を収容可能なホッパー20を備えており、前記第1ケース本体110の受入口110(in)は前記ホッパー20の出口に直接又は間接的に連結されている。 As shown in FIG. 1 to FIG. 4 and the like, the heating apparatus 1 includes a hopper 20 that can store an object to be processed (cleaned raw material) upstream of the first heat treatment unit 100 in the flow direction of the object to be processed. A receiving port 110 (in) of the first case body 110 is directly or indirectly connected to an outlet of the hopper 20.
 なお、前記加熱装置1においては、図1及び図2に示すように、前記ホッパー20と前記第1加熱処理部100との間には上流側搬送部30が介挿されている。 In the heating device 1, as shown in FIGS. 1 and 2, an upstream conveyance unit 30 is interposed between the hopper 20 and the first heat treatment unit 100.
 前記上流側搬送部30は、気密状態の搬送空間を画する上流側搬送ケース31と、前記上流側搬送ケース31の搬送空間の一方側から他方側へ被処理物を搬送する上流側搬送スクリューコンベア32とを有している。 The upstream conveyance unit 30 includes an upstream conveyance case 31 that defines an airtight conveyance space, and an upstream conveyance screw conveyor that conveys an object to be processed from one side of the conveyance space of the upstream conveyance case 31 to the other side. 32.
 前記上流側搬送ケース31は、前記搬送空間の一方側及び他方側にそれぞれ連通するように形成された上流側受入口31(in)及び上流側排出口31(out)を有しており、前記ホッパー20の出口が前記上流側搬送ケース31の上流側受入口31(in)に気密状態で連結され且つ前記上流側搬送ケース31の上流側排出口31(out)が前記第1ケース本体110の受入口110(in)に気密状態で連結されている。 The upstream transport case 31 has an upstream inlet 31 (in) and an upstream outlet 31 (out) formed to communicate with one side and the other side of the transport space, respectively. The outlet of the hopper 20 is connected to the upstream receiving port 31 (in) of the upstream transfer case 31 in an airtight state, and the upstream discharge port 31 (out) of the upstream transfer case 31 is connected to the first case body 110. It is connected to the receiving port 110 (in) in an airtight state.
 前記上流側搬送スクリューコンベア32は、少なくとも一端部が外方へ延在された状態で搬送空間を長手方向に沿って縦断する回転軸32aと、前記回転軸32aに設けられた螺旋羽根等の搬送体32bと、前記回転軸32aの一端部を回転駆動する電動モータ等のアクチュエータ(図示せず)とを有するものとされる。 The upstream conveying screw conveyor 32 includes a rotating shaft 32a that longitudinally cuts the conveying space along the longitudinal direction with at least one end extending outwardly, and conveying of a spiral blade provided on the rotating shaft 32a. The body 32b and an actuator (not shown) such as an electric motor that rotationally drives one end of the rotating shaft 32a are provided.
 好ましくは、図1及び図2に示すように、前記加熱装置1には、前記第1ケース本体110の受入口110(in)を直接又は間接的に開閉する上流側開閉弁40が設けられる。
 前記上流側開閉弁40を備えることにより、前記第1加熱処理部100への被処理物の投入量の制御を行うことができる。
Preferably, as shown in FIGS. 1 and 2, the heating device 1 is provided with an upstream on-off valve 40 that opens or closes the receiving port 110 (in) of the first case body 110 directly or indirectly.
By providing the upstream opening / closing valve 40, it is possible to control the input amount of the object to be processed into the first heat treatment unit 100.
 さらに、前記上流側開閉弁40を備えることにより、前記第1ケース本体110内への大気の流入をより確実に防止して前記第1ケース本体110内の過熱蒸気雰囲気を有効に維持することができる。 Furthermore, by providing the upstream side opening / closing valve 40, it is possible to more reliably prevent the inflow of air into the first case body 110 and to effectively maintain the superheated steam atmosphere in the first case body 110. it can.
 即ち、前記第1ケース本体110内は前記第1流体加熱管131から放出される過熱蒸気によって与圧状態とされている為、前記上流側開閉弁40を備えなくても、前記第1ケース本体110の受入口110(in)から大気が流入することをある程度は防止することができるが、前記上流側開閉弁40を備えることによって、この大気の流入をより確実に防止することができる。 That is, since the inside of the first case body 110 is pressurized by the superheated steam released from the first fluid heating pipe 131, the first case body can be provided without the upstream opening / closing valve 40. Although it is possible to prevent the atmosphere from flowing in from the receiving port 110 (in) of 110 to some extent, the upstream opening / closing valve 40 can prevent the atmosphere from flowing in more reliably.
 好ましくは、前記上流側開閉弁40は、前記制御装置300によって作動制御されるアクチュエータによって開閉動作するように構成され得る。
 なお、本実施の形態においては、前記上流側開閉弁40は、前記上流側搬送ケース31の上流側排出口31(out)と前記第1ケース本体110の受入口110(in)とを連結する配管に介挿されている。
Preferably, the upstream side opening / closing valve 40 may be configured to open and close by an actuator that is controlled by the control device 300.
In the present embodiment, the upstream opening / closing valve 40 connects the upstream discharge port 31 (out) of the upstream transfer case 31 and the receiving port 110 (in) of the first case main body 110. It is inserted in the piping.
 また、好ましくは、図1及び図2に示すように、前記加熱装置1には、前記第2ケース本体210の排出口210(out)を直接又は間接的に開閉する下流側開閉弁60が設けられる。 Preferably, as shown in FIGS. 1 and 2, the heating device 1 is provided with a downstream on-off valve 60 that opens or closes the outlet 210 (out) of the second case body 210 directly or indirectly. It is done.
 前記下流側開閉弁60を備えることにより、前記第2ケース本体210内への大気の流入をより確実に防止して前記第2ケース本体210内の過熱蒸気雰囲気を有効に維持することができる。 By providing the downstream opening / closing valve 60, it is possible to more reliably prevent the inflow of air into the second case body 210 and to effectively maintain the superheated steam atmosphere in the second case body 210.
 即ち、前記第2ケース本体210内は前記第2流体加熱管231から放出される過熱蒸気によって与圧状態とされている為、前記下流側開閉弁60を備えなくても、前記第2ケース本体210の排出口210(out)から大気が流入することをある程度は防止することができるが、前記下流側開閉弁60を備えることによって、この大気の流入をより確実に防止することができる。 That is, since the inside of the second case main body 210 is pressurized by the superheated steam discharged from the second fluid heating pipe 231, the second case main body 210 can be provided without the downstream opening / closing valve 60. Although it is possible to prevent the atmosphere from flowing in from the outlet 210 (out) of the 210 to some extent, by providing the downstream opening / closing valve 60, the inflow of the atmosphere can be more reliably prevented.
 好ましくは、前記下流側開閉弁60は、前記制御装置300によって作動制御されるアクチュエータによって開閉動作するように構成され得る。
 なお、前記加熱装置1においては、前記下流側開閉弁60は、前記第2ケース本体210の排出口210(out)に設けられている。
Preferably, the downstream opening / closing valve 60 may be configured to open and close by an actuator that is controlled by the control device 300.
In the heating device 1, the downstream on-off valve 60 is provided at the outlet 210 (out) of the second case body 210.
 さらに、図2に示すように、前記加熱装置1は、一端部が第1処理空間110Aに連通された第1排気ダクト70と、前記第1排気ダクト70に介挿された第1排気ファン72と、前記第1排気ダクト70の他端部に接続された強制酸化装置85とを備えている。 Further, as shown in FIG. 2, the heating device 1 includes a first exhaust duct 70 having one end communicating with the first processing space 110 </ b> A, and a first exhaust fan 72 interposed in the first exhaust duct 70. And a forced oxidizer 85 connected to the other end of the first exhaust duct 70.
 前記第1排気ダクト70の一端部は、第1処理空間110Aのうち被処理物(洗浄済原料)が搬送される領域より上方において外方に開口されるように前記第1ケース本体110に設けられた排出口に接続される。 One end of the first exhaust duct 70 is provided in the first case main body 110 so as to be opened outward above an area in which the object to be processed (cleaned raw material) is conveyed in the first processing space 110A. Connected to the outlet.
 斯かる構成を備えることにより、前記第1加熱処理部200による炭化処理に際し生成されるタール等の乾留ガスを前記強制酸化装置85によって燃焼させた状態で大気に放出することができる。
 なお、本実施の形態においては、前記強制酸化装置85の排出口は排気ダクト75に接続されている。
By providing such a configuration, it is possible to release dry distillation gas such as tar generated during the carbonization treatment by the first heat treatment unit 200 to the atmosphere in a state where it is burned by the forced oxidizer 85.
In the present embodiment, the exhaust port of the forced oxidizer 85 is connected to the exhaust duct 75.
 好ましくは、前記第1排気ファン72は、前記制御装置300によって作動制御されるように構成される。 Preferably, the first exhaust fan 72 is configured to be controlled by the control device 300.
 さらに、前記加熱装置1は、図2に示すように、一端部が第2処理空間210Aに連通され且つ他端部が前記強制酸化装置に接続された第2排気ダクト80と、前記第2排気ダクト80に介挿された第2排気ファン82とを備えている。 Further, as shown in FIG. 2, the heating device 1 includes a second exhaust duct 80 having one end communicating with the second processing space 210A and the other end connected to the forced oxidation device, and the second exhaust. And a second exhaust fan 82 interposed in the duct 80.
 前記第2排気ダクト80の一端部は、第2処理空間210Aのうち被処理物(炭化物)が搬送される領域より上方において外方に開口されるように前記第2ケース本体210に設けられた排出口に接続される。 One end portion of the second exhaust duct 80 is provided in the second case main body 210 so as to be opened outward above a region in which the workpiece (carbide) is conveyed in the second processing space 210A. Connected to the outlet.
 斯かる構成を備えることにより、前記第2加熱処理部200による賦活処理に際し生成されるタール等の乾留ガスを前記強制酸化装置85によって燃焼させた状態で大気に放出することができる。 By providing such a configuration, dry distillation gas such as tar generated during the activation process by the second heat treatment unit 200 can be released to the atmosphere in a state where it is burned by the forced oxidizer 85.
 なお、前記加熱装置1は、被処理物の搬送方向に関し直列配置された前記第1及び第2加熱処理部100、200を備え、前記第1及び第2加熱処理部100、200が、それぞれ、炭化処理及び賦活処理を行うように構成されている。 The heating device 1 includes the first and second heat treatment units 100 and 200 arranged in series in the conveyance direction of the workpiece, and the first and second heat treatment units 100 and 200 are respectively It is comprised so that a carbonization process and an activation process may be performed.
 これに代えて、単一の共通加熱処理部を備えた加熱装置を用いて、本実施の形態に係る活性炭製造方法を実施することも可能である。
 この場合、まず、前記共通加熱処理部において洗浄済原料を所定の炭化処理温度に加熱して炭化処理を行い、その後に、当該共通加熱処理部内に生成された炭化物を所定の賦活処理温度に加熱して賦活処理を行って、活性炭を製造することができる。
It can replace with this and can also implement the activated carbon manufacturing method which concerns on this Embodiment using the heating apparatus provided with the single common heat processing part.
In this case, first, the cleaned raw material is heated to a predetermined carbonization temperature in the common heat treatment unit to perform carbonization, and then the carbide generated in the common heat treatment unit is heated to a predetermined activation treatment temperature. Then, activation treatment can be performed to produce activated carbon.
 ここで、本実施の形態に係る活性炭製造方法の一例によって製造した活性炭(実施例)に対して行った分析結果について説明する。 Here, the analysis result performed with respect to the activated carbon (Example) manufactured by an example of the activated carbon manufacturing method which concerns on this Embodiment is demonstrated.
 前記実施例は、下記製造方法によって製造した。
 平面視形状の最小辺が500μm~2mmとされた竹チップ100gを2リットルのイオン交換水内に投入した状態で、沸騰及び冷却のサイクルを2回繰り返して、洗浄を行った。
The said Example was manufactured with the following manufacturing method.
Washing was performed by repeating the boiling and cooling cycle twice with 100 g of bamboo chips having a minimum side of 500 μm to 2 mm in a plan view shape placed in 2 liters of ion-exchanged water.
 前記イオン交換水に沈殿している状態の竹チップを洗浄済竹チップとして取り出し、空気中で110℃の温度で乾燥させてから、窒素雰囲気下で600℃の温度で60分間の加熱を行って竹炭化物を生成した。 The bamboo chips precipitated in the ion exchange water are taken out as washed bamboo chips, dried in air at a temperature of 110 ° C., and then heated at a temperature of 600 ° C. for 60 minutes in a nitrogen atmosphere. Bamboo carbide was produced.
 このようにして生成した竹炭化物を4セット用意し、過熱水蒸気雰囲気下で850℃の温度で、それぞれ、50分間、70分間、110分間、及び、130分間の加熱を行って竹活性炭を生成した(以下、それぞれ、実施例1~4という)。 Four sets of bamboo carbide thus produced were prepared, and bamboo activated carbon was produced by heating for 50 minutes, 70 minutes, 110 minutes, and 130 minutes, respectively, at a temperature of 850 ° C. in a superheated steam atmosphere. (Hereinafter referred to as Examples 1 to 4, respectively).
 実施例1~4に対して、炭化物状態の重量に対する活性炭重量の割合である賦活収率を測定した。
 図5に、賦活時間と賦活収率との関係を示す。
 なお、賦活収率5%以下は、生成物が活性炭というよりは灰状態になっていることを意味する。
For Examples 1 to 4, the activation yield, which is the ratio of the weight of activated carbon to the weight of the carbide state, was measured.
FIG. 5 shows the relationship between the activation time and the activation yield.
The activation yield of 5% or less means that the product is in an ash state rather than activated carbon.
 また、実施例1~4の比表面積を窒素吸脱着測定装置によって測定した。
 図6に、洗浄済原料状態での重量に対する活性炭重量の割合である収率と比表面積との関係を示す。
The specific surface areas of Examples 1 to 4 were measured with a nitrogen adsorption / desorption measuring device.
FIG. 6 shows the relationship between the yield, which is the ratio of the weight of activated carbon to the weight of the washed raw material, and the specific surface area.
 さらに、実施例1~4に形成された細孔径の頻度を窒素吸脱着測定装置によって測定した。
 図7(a)に、細孔径と頻度との関係を示す。
Further, the frequency of the pore diameters formed in Examples 1 to 4 was measured by a nitrogen adsorption / desorption measuring device.
FIG. 7 (a) shows the relationship between the pore diameter and the frequency.
 比較例として、洗浄処理を行わない点以外は前記実施例と同一条件で炭化物を4セット生成し、さらに、賦活時間以外は前記実施例と同一条件で活性炭を生成した。
 比較例においては、賦活時間を、それぞれ、30分間、40分間、50分間及び60分間とした(以下、それぞれ、比較例1~4という)。
As a comparative example, 4 sets of carbides were generated under the same conditions as in the above example except that no washing treatment was performed, and activated carbon was generated under the same conditions as in the above example except for the activation time.
In the comparative examples, the activation times were 30 minutes, 40 minutes, 50 minutes, and 60 minutes, respectively (hereinafter referred to as Comparative Examples 1 to 4, respectively).
 図5に比較例1~4における賦活時間及び賦活収率の関係を、図6に比較例1~3における収率及び比表面積の関係を、それぞれ、併せて示す。
 また、図7(b)に、比較例1~3における細孔径と頻度との関係を示す。
FIG. 5 shows the relationship between the activation time and the activation yield in Comparative Examples 1 to 4, and FIG. 6 shows the relationship between the yield and the specific surface area in Comparative Examples 1 to 3, respectively.
FIG. 7 (b) shows the relationship between the pore diameter and the frequency in Comparative Examples 1 to 3.
 図5から明らかなように、比較例4(賦活処理60分間)においては賦活収率が5%となり、生成物は実質的に灰状態になったが、実施例においては、賦活処理を130分行っても賦活収率が20%以上あり(実施例4)、生成物は良好な活性炭状態となっている。 As is clear from FIG. 5, the activation yield was 5% in Comparative Example 4 (activation process 60 minutes), and the product was substantially in an ash state, but in the example, the activation process was performed for 130 minutes. Even if it goes, the activation yield is 20% or more (Example 4), and the product is in a good activated carbon state.
 また、図6から、比較例2は比較例1に比して比表面積が上昇しているものの、比較例3は比較例2に比して比表面積が減少していることが確認できる。
 さらに、図7(b)から、比較例においては、賦活処理時間を長くしても、細孔径の頻度はそれ程変化しないことが確認できる。
 なお、比較例4は、実質的に灰状態となっており、比表面積及び細孔径の頻度分布は測定困難であった。
From FIG. 6, it can be confirmed that although the specific surface area of Comparative Example 2 is higher than that of Comparative Example 1, the specific surface area of Comparative Example 3 is reduced as compared to Comparative Example 2.
Furthermore, from FIG. 7 (b), it can be confirmed that in the comparative example, the frequency of the pore diameter does not change so much even if the activation treatment time is increased.
Note that Comparative Example 4 was substantially in an ash state, and the frequency distribution of specific surface area and pore diameter was difficult to measure.
 これに対し、実施例においては、図7(a)から、実施例2は実施例1に比して開口径2nm以下のミクロ孔の頻度が若干上昇し且つ実施例4は実施例3に比してミクロ孔の頻度が若干上昇していることが確認されるが、実施例3は実施例2に比してミクロ孔の頻度が大幅に上昇していることが確認できる。 On the other hand, in the example, from FIG. 7 (a), in Example 2, the frequency of micropores having an opening diameter of 2 nm or less is slightly increased compared to Example 1, and Example 4 is compared with Example 3. Thus, although it is confirmed that the frequency of micropores is slightly increased, it can be confirmed that the frequency of micropores in Example 3 is significantly increased as compared with Example 2.
 また、図6の実施例のグラフから、実施例1及び2間の傾き、並びに、実施例3及び4間の傾きに比して、実施例2及び3間の傾きが大きくなっていることが確認できる。 In addition, from the graph of the example in FIG. 6, the slope between Examples 2 and 3 is larger than the slope between Examples 1 and 2 and the slope between Examples 3 and 4. I can confirm.
 これらから、実施例においては、比表面積が1400m/g以上となるように賦活時間を設定すると、開口径2nm以下のミクロ孔の頻度を大幅に上昇させることができると推測できる。
 さらに、製造効率を考慮すると、比表面積が2000m/g以下となるように賦活時間を設定するのが好ましい。
From these, it can be inferred that in the examples, when the activation time is set so that the specific surface area is 1400 m 2 / g or more, the frequency of micropores having an opening diameter of 2 nm or less can be significantly increased.
Furthermore, considering the production efficiency, it is preferable to set the activation time so that the specific surface area is 2000 m 2 / g or less.

Claims (7)

  1.  チップ状の灰分含有バイオマス原料を用意する工程と、
     チップ状バイオマス原料を処理槽内の洗浄水に投入して煮沸及び冷却を行い、洗浄水内に沈殿したチップ状バイオマス原料を洗浄済原料として取り出す原料洗浄工程と、
     原料洗浄工程後の洗浄済原料を炭化処理して炭化物を得る炭化工程と、
     前記炭化物を賦活処理して活性炭を得る賦活工程とを含むことを特徴とする活性炭の製造方法。
    Preparing a chip-like ash-containing biomass material;
    A raw material washing step of charging the chip biomass raw material into the washing water in the treatment tank, boiling and cooling, and taking out the chip biomass raw material precipitated in the washing water as a washed raw material,
    A carbonization step of carbonizing the cleaned raw material after the raw material cleaning step to obtain a carbide;
    An activation step of activating the carbide to obtain activated carbon.
  2.  前記原料洗浄工程は、煮沸及び冷却を行った後に、処理槽内に硝酸を加えて硝酸含有洗浄水で硝酸洗浄を行う処理を含むことを特徴とする請求項1に記載の活性炭の製造方法。 The method for producing activated carbon according to claim 1, wherein the raw material washing step includes a treatment of adding nitric acid into a treatment tank and performing nitric acid washing with a nitric acid-containing washing water after boiling and cooling.
  3.  前記原料洗浄工程は、煮沸及び冷却のサイクルを複数回行うことを特徴とする請求項1又は2に記載の活性炭の製造方法。 The method for producing activated carbon according to claim 1 or 2, wherein the raw material cleaning step performs a boiling and cooling cycle a plurality of times.
  4.  前記賦活工程は、活性炭の比表面積が1400m/g以上となるように、賦活時間が設定されていることを特徴とする請求項1から3の何れかに記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 3, wherein in the activation step, an activation time is set so that a specific surface area of the activated carbon is 1400 m 2 / g or more.
  5.  前記賦活工程は、活性炭の比表面積が2000m/g以下となるように、賦活時間が設定されていることを特徴とする請求項4に記載の活性炭の製造方法。 5. The method for producing activated carbon according to claim 4, wherein in the activation step, an activation time is set so that a specific surface area of the activated carbon is 2000 m 2 / g or less.
  6.  前記炭化工程は、洗浄済原料を過熱水蒸気雰囲気下で600℃以上750℃以下の温度で加熱することによって行われ、
     前記賦活工程は、炭化物を過熱水蒸気雰囲気下で750℃以上900℃以下の温度で加熱することによって行われることを特徴とする請求項1から5の何れかに記載の活性炭の製造方法。
    The carbonization step is performed by heating the washed raw material at a temperature of 600 ° C. or higher and 750 ° C. or lower in a superheated steam atmosphere,
    The said activation process is performed by heating a carbide | carbonized_material at the temperature of 750 degreeC or more and 900 degrees C or less in superheated steam atmosphere, The manufacturing method of the activated carbon in any one of Claim 1 to 5 characterized by the above-mentioned.
  7.  チップ状の灰分含有バイオマス原料は、平面視形状の最小辺が500μm以上2mm以下の竹チップであることを特徴とする請求項1から6の何れかに記載の活性炭の製造方法。 The method for producing activated carbon according to any one of claims 1 to 6, wherein the chip-like ash-containing biomass material is bamboo chips having a minimum side of a shape in plan view of 500 µm to 2 mm.
PCT/JP2019/008531 2018-03-07 2019-03-05 Method for producing activated carbon WO2019172225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-040490 2018-03-07
JP2018040490A JP7152865B2 (en) 2018-03-07 2018-03-07 Method for producing activated carbon

Publications (1)

Publication Number Publication Date
WO2019172225A1 true WO2019172225A1 (en) 2019-09-12

Family

ID=67846226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008531 WO2019172225A1 (en) 2018-03-07 2019-03-05 Method for producing activated carbon

Country Status (2)

Country Link
JP (1) JP7152865B2 (en)
WO (1) WO2019172225A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040361A (en) * 1999-07-27 2001-02-13 Ishii Shoji Kk Production of bamboo charcoal and liquid for boiling bamboo
JP2007261918A (en) * 2006-03-30 2007-10-11 Shiga Pref Gov Method for manufacture bamboo activated carbon
JP2009226401A (en) * 2008-02-28 2009-10-08 Tokyo Metropolitan Industrial Technology Research Institute Adsorbent for adsorbing volatile organic compound, its producing method and method for utilizing bark or its molding
JP2009242178A (en) * 2008-03-31 2009-10-22 Toshiba Corp Nanocarbon and carbonized material continuous production apparatus
JP2009242179A (en) * 2008-03-31 2009-10-22 Toshiba Corp Nanocarbon and carbonized material continuous production apparatus
JP2009292670A (en) * 2008-06-03 2009-12-17 Toshinori Kokubu Method for producing high specific surface area activated carbon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040361A (en) * 1999-07-27 2001-02-13 Ishii Shoji Kk Production of bamboo charcoal and liquid for boiling bamboo
JP2007261918A (en) * 2006-03-30 2007-10-11 Shiga Pref Gov Method for manufacture bamboo activated carbon
JP2009226401A (en) * 2008-02-28 2009-10-08 Tokyo Metropolitan Industrial Technology Research Institute Adsorbent for adsorbing volatile organic compound, its producing method and method for utilizing bark or its molding
JP2009242178A (en) * 2008-03-31 2009-10-22 Toshiba Corp Nanocarbon and carbonized material continuous production apparatus
JP2009242179A (en) * 2008-03-31 2009-10-22 Toshiba Corp Nanocarbon and carbonized material continuous production apparatus
JP2009292670A (en) * 2008-06-03 2009-12-17 Toshinori Kokubu Method for producing high specific surface area activated carbon

Also Published As

Publication number Publication date
JP7152865B2 (en) 2022-10-13
JP2019156649A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
KR102083743B1 (en) Method for producing alpharized rice and alpharized rice produced by the method
US4622757A (en) Cogeneration microwave food dryer
JP4336244B2 (en) Method and apparatus for heating material to be heated
CN107487809A (en) Based on handling the method and system that make waste water upgrading up to standard in a manner of activated carbon is renewable
JP2012161251A5 (en)
RU2009143489A (en) METHOD AND DEVICE FOR FOOD PRODUCTION
JPH01187073A (en) Method and apparatus for continuously allowing product mixture composed of liquid containing granular solid to flow to apply heat treatment thereto
KR101712227B1 (en) Method and device for drying bulk capillary-porous materials
WO2019172225A1 (en) Method for producing activated carbon
JP2011131190A (en) Production apparatus of rice, and method for producing rice
WO2019172226A1 (en) Method for producing activated carbon
CN108151035B (en) A kind of electric heating oxidation VOCs device and processing method
JP6815763B2 (en) Carbonization equipment
CN106766810A (en) A kind of drying machine
CN106352683A (en) Catalyst precursor industrial drying method capable of being easily influenced by temperature and oxygen and system thereof
WO2021079619A1 (en) Heat treatment apparatus
CN206492331U (en) A kind of exhaust gas utilization dust arrester extracted for fir essential oil
CN205701565U (en) A kind of medical device classification cleaning and drying device
JP2024013423A (en) Halogen-free bamboo charcoal and its manufacturing method
JP2005341834A (en) Method and device for continuous sterilization under normal pressure at high temperature
RU2291105C1 (en) Method of production of silicon dioxide and the heat energy from the silicon-containing vegetable wastes and the installation for burning of the fine-dispersed materials
JP6871852B2 (en) Carbonization equipment and carbonization method for organic matter
CN211120501U (en) Drying device of nanometer heat insulation felt
CN203262225U (en) Dryer for marine product processing
JP6418584B1 (en) Activation furnace and activated carbon production equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763908

Country of ref document: EP

Kind code of ref document: A1