WO2019171837A1 - 物理量測定装置 - Google Patents

物理量測定装置 Download PDF

Info

Publication number
WO2019171837A1
WO2019171837A1 PCT/JP2019/003291 JP2019003291W WO2019171837A1 WO 2019171837 A1 WO2019171837 A1 WO 2019171837A1 JP 2019003291 W JP2019003291 W JP 2019003291W WO 2019171837 A1 WO2019171837 A1 WO 2019171837A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical quantity
circuit board
printed circuit
housing
quantity measuring
Prior art date
Application number
PCT/JP2019/003291
Other languages
English (en)
French (fr)
Inventor
石塚 典男
余語 孝之
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201980005246.9A priority Critical patent/CN111247398B/zh
Priority to US16/763,663 priority patent/US11112287B2/en
Priority to DE112019000135.3T priority patent/DE112019000135B4/de
Publication of WO2019171837A1 publication Critical patent/WO2019171837A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10386Sensors for intake systems for flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10393Sensors for intake systems for characterising a multi-component mixture, e.g. for the composition such as humidity, density or viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/024Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/148Details about the circuit board integration, e.g. integrated with the diaphragm surface or encapsulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/18Packaging of the electronic circuit in a casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • G01K2205/02Application of thermometers in motors, e.g. of a vehicle for measuring inlet gas temperature

Definitions

  • the present disclosure relates to a physical quantity measuring device for intake air of an internal combustion engine.
  • Patent Document 1 an invention related to a physical quantity measuring device for intake air of an internal combustion engine is known (see Patent Document 1 below).
  • the physical quantity measuring device described in Patent Document 1 includes a circuit board in which an insulating film is formed on the outer surface of the board body, and a housing in which the circuit board is insert-molded (see the same document, claim 1 and the like). ).
  • the circuit board includes a fixing portion fixed to the housing, a pressing portion to which a mold for molding the housing is pressed, a conductor arrangement portion in which a circuit conductor is arranged, the fixing portion and the pressing portion. It has a boundary part formed between at least one of this part and the said conductor arrangement
  • the insulating film includes a first region disposed in the fixing portion, a second region disposed in the pressing portion, a third region disposed in the conductor placement portion, and the boundary portion. 4th area
  • Such a physical quantity measuring device is installed so as to protrude into the main passage from the wall surface of the main passage through which intake air, which is a target for measuring the physical quantity, flows.
  • the conventional physical quantity measuring device is in a cantilever state in which one end is supported by the wall portion of the main passage of the intake air and the other end is a free end. For this reason, the physical quantity measuring device vibrates under the influence of, for example, the rotation of the internal combustion engine and the housing bends, whereby stress acts on the circuit board. Therefore, when a printed circuit board is used as the circuit board of the physical quantity measuring device, a measure for suppressing the breakage of the wiring due to the stress acting on the circuit board becomes important.
  • the present disclosure provides a physical quantity measuring apparatus capable of suppressing breakage of wiring on a printed circuit board.
  • One aspect of the present disclosure is a physical quantity measurement device that measures a physical quantity of a gas flowing in a main passage, and is provided so as to protrude inward from the flange to the main passage, and a flange for fixing to the main passage.
  • a housing and a printed circuit board on which the measurement element for measuring the physical quantity is mounted, and the wiring of the printed circuit board has a plurality of irregularities formed along one direction of the surface.
  • the physical quantity measuring device is arranged such that a direction in which the unevenness is formed is along a protruding direction of the housing toward the inside of the main passage.
  • the schematic diagram which shows an example of the control system of an internal combustion engine.
  • the front view of the physical quantity measuring apparatus of the control system shown in FIG. The right view of the physical quantity measuring apparatus shown in FIG.
  • the front view which shows the state which removed the front cover of the physical quantity measuring apparatus shown in FIG.
  • the rear view which shows the state which removed the back cover of the physical quantity measuring apparatus shown in FIG.
  • the graph which shows an example of the relationship between the angle between the formation direction of the unevenness
  • FIG. 6B The front view equivalent to FIG. 4 of the physical-quantity measuring apparatus which concerns on a modification.
  • FIG. 1 is a schematic diagram illustrating an example of a control system 200 of the internal combustion engine 210 including the physical quantity measuring device 100 according to an embodiment of the present disclosure.
  • the intake air IG which is the gas to be measured G of the physical quantity measuring device 100
  • the air cleaner 201 for example, an intake pipe. It is guided to the combustion chamber of the engine cylinder 211 via the main passage 202, the throttle body 203 and the intake manifold 204.
  • the physical quantity of the intake air IG guided to the combustion chamber is measured by the physical quantity measuring device 100, and fuel is supplied from the fuel injection valve 205 based on the measured physical quantity, and the combustion chamber is in the state of an air-fuel mixture together with the intake air IG. Led to.
  • the fuel injection valve 205 is provided, for example, at the intake port of the internal combustion engine 210, and the fuel injected into the intake port is mixed with the intake air IG to become an air-fuel mixture, which is led to the combustion chamber via the intake valve 213. Combusts and generates mechanical energy.
  • the physical quantity measuring apparatus 100 can be used not only for the method of injecting fuel into the intake port of the internal combustion engine 210 shown in FIG. 1 but also for the method of directly injecting fuel into each combustion chamber.
  • the basic concept of the control parameter measurement method including the method of using the physical quantity measuring device 100 and the control method of the internal combustion engine including the fuel supply amount and the ignition timing is generally the same.
  • FIG. 1 shows a method of injecting fuel into an intake port as a representative example of both types.
  • the fuel and air guided to the combustion chamber are in a mixed state in which they are mixed, explosively burned by the spark ignition of the spark plug 214, and generate mechanical energy.
  • the gas after combustion is led from the exhaust valve 215 to the exhaust pipe, and is exhausted from the exhaust pipe to the outside as exhaust EG.
  • the flow rate of the intake air IG guided to the combustion chamber is controlled by a throttle valve 206 whose opening degree changes based on the operation of an accelerator pedal.
  • the fuel supply amount is controlled based on the flow rate of the intake air IG guided to the combustion chamber, and the driver controls the flow rate of the intake air IG guided to the combustion chamber by controlling the opening degree of the throttle valve 206.
  • the mechanical energy generated by the internal combustion engine 210 can be controlled.
  • the gas to be measured G which is the intake air IG taken in from the air cleaner 201, flows through the main passage 202, and the physical quantity of the gas to be measured G such as flow rate, temperature, humidity, and pressure is measured by the physical quantity measuring device 100.
  • the physical quantity measuring device 100 is provided so as to protrude from the wall portion of the main passage 202 into the main passage 202 by being inserted into the main passage 202 from an insertion port opened in the wall portion of the main passage 202, for example. ing. That is, the physical quantity measuring apparatus 100 has one end as a fixed end fixed to the wall portion of the main passage 202 and the other end as a free end disposed in the main passage 202, and cantilever on the wall portion of the main passage 202. It is supported.
  • the electrical signal representing the physical quantity of the intake air IG measured by the physical quantity measuring device 100 is output from the physical quantity measuring device 100 and input to the control device 220. Further, the output of the throttle angle sensor 207 that measures the opening degree of the throttle valve 206 is input to the control device 220. Further, in order to measure the position and state of the engine piston 212, the intake valve 213, and the exhaust valve 215 of the internal combustion engine 210 and the rotational speed of the internal combustion engine 210, the output of the rotation angle sensor 216 is input to the control device 220. . In order to measure the state of the mixture ratio between the fuel amount and the air amount from the state of the exhaust EG, the output of the oxygen sensor 217 is input to the control device 220.
  • the control device 220 calculates the fuel injection amount and the ignition timing based on the physical amount of the intake air IG that is the output of the physical quantity measuring device 100 and the rotational speed of the internal combustion engine 210 that is the output of the rotation angle sensor 216. Based on these calculation results, the amount of fuel supplied from the fuel injection valve 205 and the ignition timing ignited by the spark plug 214 are controlled. In actuality, the fuel supply amount and the ignition timing further correspond to the intake air temperature measured by the physical quantity measuring device 100, the change state of the throttle angle, the change state of the engine speed, and the air-fuel ratio state measured by the oxygen sensor 217. Is controlled on the basis.
  • the control device 220 further controls the amount of air that bypasses the throttle valve 206 by the idle air control valve 208 when the internal combustion engine 210 is in the idling operation state, and controls the rotational speed of the internal combustion engine 210 in the idling operation state.
  • Both the fuel supply amount and ignition timing, which are the main control amounts of the internal combustion engine 210, are calculated using the output of the physical quantity measuring device 100 as a main parameter. Therefore, improvement of the measurement accuracy of the physical quantity measuring apparatus 100, suppression of changes over time, and improvement of reliability are important in terms of improving the control accuracy of the vehicle and ensuring reliability. From the viewpoint of improving the reliability of the physical quantity measuring device 100, it is also important that the physical quantity measuring device 100 has high durability.
  • FIG. 2 is a front view of the physical quantity measuring apparatus 100 shown in FIG.
  • FIG. 3 is a right side view of the physical quantity measuring device 100 shown in FIG.
  • FIG. 4 is a front view showing a state where the front cover 102 of the physical quantity measuring device 100 shown in FIG. 2 is removed.
  • FIG. 5 is a rear view showing a state where the back cover 103 of the physical quantity measuring device 100 shown in FIG. 2 is removed.
  • the physical quantity measuring device 100 of the present embodiment is a device that measures the physical quantity of the gas G to be measured flowing through the main passage 202, and has the following characteristics.
  • the physical quantity measuring device 100 includes a housing 101 that is disposed so as to protrude from the wall portion of the main passage 202 into the main passage 202, and a printed circuit board 140 that is insert-molded in the housing 101 and on which a measuring element that measures a physical quantity is mounted.
  • the measurement element may have a configuration in which the control circuit is integrally formed or a configuration in which the measurement circuit is formed separately.
  • the printed circuit board 140 has a plurality of irregularities F (see FIGS. 6A and 6B) formed along one direction of the surface.
  • the printed circuit board 140 is arranged so that the formation direction of the unevenness F is along the protruding direction into the main passage 202 of the housing 101.
  • each configuration of the physical quantity measuring device 100 of the present embodiment will be described in detail.
  • the physical quantity measuring apparatus 100 includes a housing 101, a front cover 102, and a back cover 103, as shown in FIGS.
  • the housing 101 is formed by, for example, molding by molding a resin material using a mold.
  • the housing 101 has an external connection having a flange 110 for fixing the physical quantity measuring device 100 to the wall portion of the intake body, which is the main passage 202, and a connector for projecting from the flange 110 to make an electrical connection with an external device.
  • a measurement unit 130 that protrudes from the flange 110 toward the center of the main passage 202 and extends in a direction orthogonal to the main flow direction of the gas G to be measured flowing through the main passage 202.
  • the housing 101 is configured such that, for example, the flange 110 is fixed to the wall portion of the main passage 202 by a fastening member such as a bolt, and the measurement portion 130 is inserted into an opening provided in the wall portion of the main passage 202. It is arranged so as to protrude from the wall portion of 202 into the main passage 202.
  • the protruding direction of the housing 101 into the main passage 202 is, for example, a direction from the wall portion of the main passage 202 toward the center of the main passage 202 and is a radial direction of the main passage 202.
  • the protruding direction of the housing 101 is, for example, a direction that intersects the main flow direction of the gas G to be measured flowing through the main passage 202 and is a direction that is orthogonal to the main flow direction of the gas G to be measured.
  • the external connection portion 120 of the housing 101 has a connector 121 that is provided on the upper surface of the flange 110 and projects from the flange 110 toward the downstream side in the main flow direction of the gas G to be measured.
  • the connector 121 is provided with an insertion hole 121a for inserting a communication cable for connecting with the control device 220.
  • four external terminals 122 are provided in the insertion hole 121a.
  • the external terminal 122 serves as a terminal for outputting information on a physical quantity that is a measurement result of the physical quantity measuring apparatus 100 and a power supply terminal for supplying DC power for operating the physical quantity measuring apparatus 100.
  • a printed circuit board 140 which is a circuit board, is integrally molded on the measurement unit 130 by insert molding.
  • the printed circuit board 140 is formed integrally with the housing 101 by insert molding in which the printed circuit board 140 is previously placed in a mold for forming the housing 101 and the housing 101 is formed.
  • the printed circuit board 140 is provided with at least one measurement unit for measuring the physical quantity of the gas G to be measured flowing through the main passage 202 and a circuit unit for processing a signal measured by the measurement unit.
  • the measurement unit is arranged at a position exposed to the gas G to be measured, and the circuit unit is arranged in a circuit chamber sealed by the front cover 102.
  • the insert molding is taken as an example of the technique for fixing the printed circuit board 140, but the present invention is not limited to this, and the printed circuit board 140 may be fixed to the housing 101 with an adhesive or the like.
  • the measurement unit 130 of the housing 101 shortens the main flow direction of the measurement gas G when viewed from the direction perpendicular to the main flow direction of the measurement gas G and the protruding direction of the housing 101. It has a generally rectangular outer shape with the hand direction and the protruding direction of the housing 101 as the longitudinal direction. Further, as shown in FIG. 3, the measurement unit 130 of the housing 101 extends in the protruding direction of the housing 101 when viewed from a direction parallel to the main flow direction of the gas G to be measured and perpendicular to the protruding direction of the housing 101. It has an elongated rectangular outer shape as a direction.
  • the direction orthogonal to the main flow direction of the gas G to be measured and the protruding direction of the housing 101 is the thickness direction of the measurement unit 130. That is, the measurement unit 130 of the housing 101 has a rectangular plate-like outer shape in which the main flow direction of the gas G to be measured is the short direction and the protruding direction of the housing 101 is the longitudinal direction, and the front and back surfaces in the thickness direction In addition, a thin rectangular plate-shaped front cover 102 and a back cover 103 are arranged.
  • a sub-passage groove is provided on the front and back surfaces of the measurement unit 130.
  • the secondary passage groove of the measuring unit 130 forms the first secondary passage 131 shown in FIGS. 4 and 5 together with the front cover 102 and the back cover 103.
  • a first sub passage inlet 131 a for taking a part of the measurement gas G such as intake air IG into the first sub passage 131, and the measurement gas G from the first sub passage 131.
  • a first sub-passage outlet 131b for returning to the main passage 202 is provided.
  • a part of the printed circuit board 140 protrudes in the middle of the first sub-passage 131.
  • a flow rate measuring unit 141 is disposed on the protruding portion of the printed circuit board 140.
  • the flow rate measuring unit 141 is a measuring element that measures a flow rate that is a physical quantity of the gas G to be measured.
  • a second sub-passage 132 is provided in the middle portion of the measurement unit 130 closer to the flange 110 than the first sub-passage 131 for taking a part of the measurement gas G such as the intake air IG into the sensor chamber.
  • the second sub passage 132 is formed by the measurement unit 130 and the back cover 103.
  • the second sub-passage 132 has a second sub-passage inlet 132a for taking in the measurement gas G, and a second sub-passage outlet 132b for returning the measurement gas G from the second sub-passage 132 to the main passage 202. ing.
  • the second sub-passage 132 communicates with the sensor chamber Rs formed on the back side, that is, the back side of the measurement unit 130.
  • pressure sensors 142A and 142B and a humidity sensor 143 provided on the back surface of the printed circuit board 140 are arranged.
  • a sub-passage groove for forming the first sub-passage 131 is provided in the projecting direction of the measuring unit 130, that is, the distal end side in the longitudinal direction.
  • the sub passage groove for forming the first sub passage 131 has a front side sub passage groove 131F shown in FIG. 4 and a back side sub passage groove 131R shown in FIG.
  • the front side sub-passage groove 131 ⁇ / b> F gradually moves from the first sub-passage outlet 131 b that opens to the downstream outer wall 133 of the measuring unit 130 toward the upstream outer wall 134.
  • the opening 135 is formed along the flow direction of the gas G to be measured in the main passage 124 so as to extend between the upstream outer wall 134 and the downstream outer wall 133.
  • the back side auxiliary passage groove 131 ⁇ / b> R moves from the upstream outer wall 134 toward the downstream outer wall 133, and is divided into two branches at an intermediate position between the upstream outer wall 134 and the downstream outer wall 133.
  • One of the back side sub-passage grooves 131R divided into two branches extends straight as it is as a discharge passage and opens to the discharge port 131c of the downstream outer wall 133.
  • the other side of the back side sub-passage groove 131R divided into two branches is gradually curved toward the flange 110 side, which is the base end side of the measuring unit 130, as it moves to the downstream side outer wall 133, and in the vicinity of the downstream side outer wall 133, It communicates with the opening 135.
  • the back side sub-passage groove 131R forms an inlet groove into which the measurement gas G flows from the main passage 202, and the front side sub-passage groove 131F exits the measurement gas G taken from the back side sub-passage groove 131R to the main passage 202 Grooves are formed. That is, as shown in FIG. 5, a part of the measurement gas G flowing through the main passage 202 is taken into the back side sub passage groove 131R from the first sub passage inlet 131a and flows through the back side sub passage groove 131R.
  • the large foreign matter contained in the gas to be measured G flows into a discharge passage extending straight from the branch together with a part of the gas to be measured G, and flows from the discharge port 131c of the downstream outer wall 133 to the main passage 202. To be discharged.
  • the back side sub-passage groove 131R has a shape that becomes deeper as it travels, and the gas to be measured G gradually moves to the front side of the measurement unit 130 as it flows along the back side sub-passage groove 131R.
  • the rear side sub-passage groove 131R is provided with a steeply inclined portion 131d that suddenly deepens in front of the opening 135, and a part of the air having a small mass moves along the steeply inclined portion 131d. It flows on the measurement surface 140a side of the printed circuit board 140.
  • a foreign substance having a large mass flows on the back surface 140b side of the measurement surface 140a because it is difficult to change the course rapidly.
  • the gas G to be measured that has moved to the front side through the opening 135 flows along the measurement surface 140a of the printed circuit board 140 and transfers heat to and from the flow rate measurement unit 141 provided on the measurement surface 140a.
  • the flow rate is measured.
  • Both air flowing from the opening 135 to the front side sub-passage groove 131F flows along the front side sub-passage groove 131F, and is discharged to the main passage 202 from the first sub-passage outlet 131b that opens to the downstream outer wall 133.
  • the second sub-passage 132 extends in a straight line between the second sub-passage inlet 132a and the second sub-passage outlet 132b in parallel with the flange 110 so as to be along the main flow direction of the gas G to be measured flowing through the main passage 124. It is formed in a shape.
  • the second auxiliary passage inlet 132a is formed by cutting out a part of the upstream outer wall 134, and the second auxiliary passage outlet 132b is formed by cutting out a part of the downstream outer wall 133.
  • the second sub-passage inlet 132a and the second sub-passage outlet 132b are cut out to a depth that is flush with the back surface 140b of the printed circuit board 140.
  • the second sub-passage 132 functions as a cooling channel for cooling the printed circuit board 140 because the gas to be measured G passes along the back surface 140b of the printed circuit board 140.
  • a sensor chamber Rs is provided on the proximal end side of the measurement unit 130 with respect to the second sub-passage 132.
  • Humidity is measured. That is, the pressure sensors 142A and 142B and the humidity sensor 143 are measurement elements that measure the pressure and relative humidity, which are physical quantities of the gas G to be measured, respectively.
  • the printed circuit board 140 is molded integrally with the housing 101 so that the flow rate measuring unit 141 of the printed circuit board 140 is disposed in the opening 135 that is a connecting portion between the front side sub-passage groove 131F and the back side sub-passage groove 131R.
  • the measurement part 130 of the housing 101 is provided with fixing parts 136 and 137 that fix the peripheral part of the printed circuit board 140 by embedding it in the housing 101 with a resin mold.
  • the fixing portions 136 and 137 include and fix the peripheral portion of the printed circuit board 140 so as to be sandwiched from the front side and the back side.
  • a part of the printed circuit board 140 is also fixed in the same manner as the fixing portions 136 and 137 by a partition wall 138 that partitions the circuit chamber Rc of the measurement unit 130 and the first sub-passage 131.
  • the printed circuit board 140 has a temperature measuring unit 144 at the center of the upstream edge of the gas G to be measured.
  • the temperature measurement unit 144 is one of measurement elements for measuring the physical quantity of the gas G to be measured flowing through the main passage 202, and is mounted on the printed circuit board 140.
  • the printed circuit board 140 has a protrusion 145 that protrudes from the second sub-passage inlet 132a of the second sub-passage 132 toward the upstream side of the gas G to be measured, and the temperature measurement unit 144 is a protrusion 450 and a circuit.
  • a chip-type temperature sensor 146 is provided on the back surface of the substrate 400. The temperature sensor 146 and its wiring portion are covered with a synthetic resin material, and prevent electrolytic corrosion from occurring due to adhesion of salt water.
  • the second sub passage inlet 132a is formed on the downstream side of the temperature measuring unit 144. Therefore, the gas G to be measured flowing into the second sub-passage 132 from the second sub-passage inlet 132a flows into the second sub-passage inlet 132a after contacting the temperature measurement unit 144, and the temperature when the temperature measurement unit 144 comes into contact with the temperature measurement unit 144. Is measured.
  • the gas G to be measured that has contacted the temperature measurement unit 144 flows directly from the second sub-passage inlet 132a into the second sub-passage 132, passes through the second sub-passage 132, and is discharged from the second sub-passage outlet 132b to the main passage 202. Is done.
  • 6A and 6B are schematic enlarged perspective views in which a part of the printed circuit board 140 is cut.
  • illustration of the solder resist formed on the surface of the printed circuit board 140 is omitted.
  • 6A illustrates an example in which the base material of the printed circuit board 140 does not have the unevenness F
  • FIG. 6B illustrates an example in which the base material of the printed circuit board 140 has the unevenness F.
  • wiring W such as copper wiring is formed in a predetermined wiring pattern.
  • the printed circuit board 140 has a plurality of irregularities F formed along one direction of the surface.
  • the unevenness F on the wiring W of the printed board 140 is formed by polishing for the purpose of improving the adhesion between the surface finish of the wiring W and the resist, for example. That is, the plurality of irregularities F along one direction of the surface of the printed circuit board 140 are polishing marks formed in one direction on the wiring W of the printed circuit board 140 by, for example, a buffing method.
  • the buff polishing method the printed circuit board 140 is polished using a cylindrical polishing wheel. At this time, the printed circuit board 140 is set in the buff polishing apparatus so that the rotation direction of the polishing wheel is the same as or along the protruding direction when the polishing board is disposed on the housing 101.
  • the unevenness F formed in the wiring W is not limited to such a polishing mark, and may be a rolling mark of the wiring W, for example.
  • irregularities may be formed in the printed circuit board 140 base material, and the irregularities may become the irregularities F of the wiring W. is there.
  • the printed circuit board 140 is arranged so that the formation direction of the unevenness F is along the protruding direction into the main passage 202 of the housing 101.
  • the printed circuit board 140 is fixed to the housing 101 so that the formation direction of the unevenness F is along the insertion direction. That is, the formation direction of the unevenness F is parallel to the protruding direction of the housing 101, for example. Or the angle between the formation direction of the unevenness F and the protruding direction of the housing 101 is less than 45 [°].
  • the angle between the formation direction of the unevenness F and the protruding direction of the housing 101 is preferably 10 [°] or less.
  • the protruding direction of the housing 101 into the main passage 202 is, for example, the direction from the wall portion of the main passage 202 toward the center of the main passage 202 and the radial direction of the main passage 202. In other words, the direction is from the flange 110 to the lower neck (side to be inserted into the main passage). Further, the protruding direction of the housing 101 into the main passage 202 is, for example, a direction that intersects the main flow direction of the gas G to be measured flowing through the main passage 202, and a direction that is orthogonal to the main flow direction of the gas G to be measured. is there. In addition, as shown in FIGS. 1 to 5, when the measuring portion 130 of the housing 101 inserted into the main passage 202 has a rectangular plate shape, the protruding direction of the housing 101 into the main passage 202 is measured. This is the longitudinal direction of the portion 130.
  • the physical quantity measuring device 100 of the present embodiment includes the flow rate measuring unit 141, the pressure sensors 142A and 142B, the humidity sensor 143, and the temperature measuring unit 144 that are physical quantity measuring elements mounted on the printed circuit board 140.
  • the physical quantity of the gas G to be measured which is the intake air IG flowing through the main passage 202 can be measured.
  • the physical quantity measuring device 100 can output an electrical signal representing the measured physical quantity of the intake air IG to the control device 220 via a communication cable connected to the external connection unit 120.
  • the physical quantity measuring device 100 of the present embodiment has one end as a fixed end fixed to the wall portion of the main passage 202 and the other end as a free end disposed in the main passage 202.
  • the wall of the main passage 202 is cantilevered. Therefore, in the housing 101 of the physical quantity measuring device 100, for example, as described above, the flange 110 is fixed to the wall portion of the main passage 202 by a fastening member such as a bolt, and the measurement portion 130 is provided on the wall portion of the main passage 202. By being inserted into the opening, the main passage 202 protrudes from the wall portion of the main passage 202 into the main passage 202.
  • the housing 101 arranged to protrude from the wall portion of the main passage 202 into the main passage 202 intersects the protruding direction of the housing 101. Vibration is applied in the direction of the movement. More specifically, as shown in FIGS. 2 to 5, the measurement unit 130 of the housing 101 having a generally rectangular plate shape has a thickness direction of the measurement unit 130, that is, a protruding direction of the housing 101 and Vibration is applied in a direction substantially orthogonal to the main flow direction of the gas G to be measured.
  • the housing 101 of the physical quantity measuring apparatus 100 for example, a vibration of about 30 times (30G) gravitational acceleration is generated. Further, when resonance occurs, for example, the response magnification becomes about 100 times, and there is a possibility that vibration of about 3000 G at maximum occurs.
  • high stress is repeatedly applied to the printed circuit board 140 that is insert-molded in the housing 101.
  • the measurement unit 130 of the housing 101 vibrates in the thickness direction, a high stress acts on the printed circuit board 140 in the stress direction S shown in FIGS. 2, 4, and 5.
  • the stress direction S is substantially parallel to the direction in which the housing 101 projects into the main passage 202.
  • the formation direction of the plurality of projections and depressions F formed in one direction along the surface of the printed circuit board 140 is, for example, orthogonal to the stress direction S or has an angle of 45 [°] or more with respect to the stress direction S. If the crossing occurs, stress concentrates on the unevenness F, and the wiring W may be broken or the durability of the printed circuit board 140 may be reduced.
  • the physical quantity measuring device 100 of the present embodiment is a device that measures the physical quantity of the gas G to be measured flowing through the main passage 202 as described above, and enters the main passage 202 from the wall portion of the main passage 202.
  • a housing 101 is provided so as to protrude, and a printed circuit board 140 on which a measuring element that is insert-molded in the housing 101 and measures a physical quantity is mounted.
  • the printed circuit board 104 has a plurality of projections and depressions F formed along one direction of the surface, and is arranged so that the formation direction of the projections and depressions F is along the protruding direction into the main passage 202 of the housing 101. Yes.
  • the physical quantity measuring apparatus 100 can suppress the stress concentration on the unevenness F of the printed circuit board 140, can suppress the breakage of the wiring W, and the durability of the printed circuit board 140 when vibration of the housing 101 occurs. Can be improved. Therefore, according to this embodiment, the reliability of the physical quantity measuring apparatus 100 can be improved.
  • FIG. 7 shows an example of the relationship between the angle [°] between the formation direction of the unevenness F of the printed circuit board 140 and the protruding direction of the housing 101 (that is, the stress direction S) and the stress [MPa] acting on the unevenness F. It is a graph to show.
  • the angle between the forming direction of the unevenness F and the protruding direction of the housing 101 is ⁇ 90 [°] and 90 [°], that is, the forming direction of the unevenness F and the protruding direction of the housing 101 are orthogonal to each other.
  • the stress acting on the unevenness F is a maximum value of about 63 [MPa].
  • the unevenness F acts on the unevenness F.
  • the stress to be reduced can be reduced by 30% or more to be less than about 44 [MPa]. Further, when the angle between the formation direction of the unevenness F and the projecting direction of the housing 101 is 10 [°] or less, the stress acting on the unevenness F is reduced by 63% or more to about 23 [MPa] or less. Can do.
  • the unevenness F when the angle between the forming direction of the unevenness F and the protruding direction of the housing 101 is 0 [°], that is, when the forming direction of the unevenness F and the protruding direction of the housing 101 are parallel, the unevenness F
  • the acting stress can be set to a minimum value of about 22 [MPa].
  • FIG. 8 is a front view of a physical quantity measuring device 100 ′ according to a modification corresponding to FIG. 4 of the physical quantity measuring device 100 according to the above-described embodiment.
  • This physical quantity measuring device 100 ′ is a device that measures the physical quantity of the gas G to be measured flowing through the main passage 202, similarly to the physical quantity measuring device 100 according to the above-described embodiment.
  • the physical quantity measuring device 100 ′ includes a housing 101 ′ that protrudes from the wall portion of the main passage 202 into the main passage 202, and the housing 101 ′. And a printed circuit board 140 ′ on which measurement elements (a flow sensor 141 ′, a pressure sensor 142 ′, a temperature sensor 146 ′, and a temperature / humidity sensor 148) for measuring physical quantities can be mounted.
  • the printed circuit board 140 ' is fixed to the housing 101' with an adhesive or the like.
  • the printed circuit board 140 ′ may be insert-fixed to the housing 101 ′.
  • the measurement element is mounted on the printed circuit board 140 ′ by fixing the resin package 147 to the printed circuit board 140 ′.
  • the resin package 147 is mounted on the printed circuit board 101 '.
  • the resin package 147 is formed by sealing with resin so that the flow rate sensor 141 ′ and the control circuit are mounted on the lead frame, and the flow rate measurement portion (thin wall portion) of the flow rate sensor 141 ′ is at least exposed.
  • the lead terminals of the resin package 147 are electrically and mechanically connected to the printed circuit board 140 ′ by soldering or welding.
  • the measuring element can be protected by the resin package 147, and the durability and reliability of the physical quantity measuring device 100 'can be improved.
  • the flow sensor 141 'and the control circuit may be integrated into the same semiconductor element. That is, the measurement element may be formed integrally with the control circuit.
  • the printed circuit board 140 ′ has a plurality of projections and depressions F formed along one direction of the surface, and the formation direction of the projections and depressions F is a protruding direction from the flange 110 ′ of the housing 101 ′ to the inside of the main passage 202 (in other words, In the insertion direction). Therefore, according to the physical quantity measuring device 100 ′ according to this modification, the same effects as those of the physical quantity measuring device 100 according to the above-described embodiment can be obtained.
  • FIG. 9 is a plan view showing a modification of the printed circuit board 140 of the physical quantity measuring device 100 shown in FIG.
  • the measurement element including the flow rate measurement unit 141 ′ may be mounted on the printed circuit board 140 ′ via a support 150 attached to the printed circuit board 140 ′.
  • the stress acting on the measurement element is reduced and the durability and reliability of the physical quantity measurement device 100 are reduced as compared with the case where the measurement element including the flow rate measurement unit 141 ′ is directly mounted on the printed circuit board 140 ′.
  • mounting a component on the printed circuit board 140 ′ includes, for example, attaching the component to the printed circuit board 140 ′ and electrically connecting the component to the wiring of the printed circuit board 140 ′.
  • Examples of the support 150 include a metal member such as a metal lead frame, an LTCC substrate, a printed circuit board, or the like on which electrical wiring can be formed.
  • the support 150 may be formed with a hole or protrusion for positioning with the housing 101 ′, and may be positioned by a positioning protrusion or hole formed in the housing 101 ′.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

プリント基板を用いた物理量測定装置において、プリント基板の配線の破断を抑制する。 主通路に固定するためのフランジ110と、フランジ110から主通路内方向へ突出するように設けられるハウジング101と、このハウジング101に固定され、物理量を測定する測定素子が実装されるプリント基板140と、を備える。プリント基板140の配線は、表面の一方向に沿って形成された複数の凹凸を有し、その凹凸の形成方向がハウジング101の主通路内方向への突出方向に沿うように配置されている。

Description

物理量測定装置
 本開示は、内燃機関の吸入空気の物理量測定装置に関する。
 従来から内燃機関の吸入空気の物理量測定装置に関する発明が知られている(下記特許文献1を参照)。特許文献1に記載された物理量測定装置は、基板本体の外表面に絶縁膜が形成された回路基板と、その回路基板がインサート成形されたハウジングとを有する(同文献、請求項1等を参照)。
 前記回路基板は、前記ハウジングに固定される固定部と、前記ハウジングを成形するための金型が押し当てられる押当部と、回路導体が配置される導体配置部と、前記固定部および前記押当部の少なくとも一方と前記導体配置部との間に形成される境界部とを有する。
 前記絶縁膜は、前記固定部に配置された第1の領域と、前記押当部に配置された第2の領域と、前記導体配置部に配置された第3の領域と、前記境界部に配置された第4の領域とを有し、前記第1の領域及び前記第2の領域と前記第4の領域との間で膜厚が異なる。
特開2017-150929号公報
 前記従来の物理量測定装置によれば、絶縁膜の損傷に起因した回路基板の回路導体の腐食を低減できるという優れた効果を発揮することができる。このような物理量測定装置は、物理量を測定する対象である吸入空気が流れる主通路の壁面から、主通路内へ突出させて設置される。
 すなわち、前記従来の物理量測定装置は、一端が吸入空気の主通路の壁部に支持され、他端が自由端である片持ち状態となる。そのため、物理量測定装置は、たとえば内燃機関の回転等の影響を受けて振動してハウジングがたわむことで、回路基板に応力が作用する。したがって、物理量測定装置の回路基板としてプリント基板を用いる場合、回路基板に作用する応力による配線の破断を抑制する対策が重要になる。
 本開示は、プリント基板の配線の破断を抑制することが可能な物理量測定装置を提供する。
 本開示の一態様は、主通路を流れる気体の物理量を測定する物理量測定装置であって、前記主通路に固定するためのフランジと、前記フランジから前記主通路内方向へ突出するように設けられるハウジングと、前記ハウジングに固定され、前記物理量を測定する測定素子が実装されるプリント基板と、を備え、前記プリント基板の配線は、表面の一方向に沿って形成された複数の凹凸を有し、該凹凸の形成方向が前記ハウジングの前記主通路内方向への突出方向に沿うように配置されていること特徴とする物理量測定装置である。
 本開示の上記一態様によれば、プリント基板の配線の破断を抑制することが可能な物理量測定装置を提供することができる。
内燃機関の制御システムの一例を示す模式図。 図1に示す制御システムの物理量測定装置の正面図。 図2に示す物理量測定装置の右側面図。 図2に示す物理量測定装置の表カバーを取り外した状態を示す正面図。 図2に示す物理量測定装置の裏カバーを取り外した状態を示す背面図。 図4に示す物理量測定装置のプリント基板を切断した模式的な拡大斜視図。 図4に示す物理量測定装置のプリント基板を切断した模式的な拡大斜視図。 図6Aおよび図6Bに示すプリント基板の凹凸の形成方向とハウジングの突出方向との間の角度と、凹凸に作用する応力との関係の一例を示すグラフ。 変形例に係る物理量測定装置の図4に相当する正面図。 図4に示す物理量測定装置のプリント基板の変形例を示す平面図。
 以下、図面を参照して本開示に係る物理量測定装置の一実施形態を説明する。
 図1は、本開示の一実施形態に係る物理量測定装置100を備えた内燃機関210の制御システム200の一例を示す模式図である。この制御システム200では、エンジンシリンダ211とエンジンピストン212を備える内燃機関210の動作に基づいて、物理量測定装置100の被測定気体Gである吸入空気IGがエアクリーナ201から吸入され、たとえば吸気管である主通路202、スロットルボディ203、吸気マニホールド204を介してエンジンシリンダ211の燃焼室に導かれる。
 前記燃焼室に導かれる吸入空気IGの物理量は、物理量測定装置100で測定され、その測定された物理量に基づいて燃料噴射弁205により燃料が供給され、吸入空気IGとともに混合気の状態で燃焼室に導かれる。なお、燃料噴射弁205は、たとえば、内燃機関210の吸気ポートに設けられ、吸気ポートに噴射された燃料が吸入空気IGと混合されて混合気となり、吸気弁213を介して燃焼室に導かれ、燃焼して機械エネルギを発生する。
 物理量測定装置100は、図1に示す内燃機関210の吸気ポートに燃料を噴射する方式だけでなく、各燃焼室に燃料を直接噴射する方式にも同様に使用できる。両方式とも物理量測定装置100の使用方法を含めた制御パラメータの測定方法および燃料供給量や点火時期を含めた内燃機関の制御方法の基本概念は、おおむね共通している。図1では、両方式の代表例として、吸気ポートに燃料を噴射する方式を示す。
 燃焼室に導かれた燃料および空気は、これらが混合された混合状態であり、点火プラグ214の火花着火によって爆発的に燃焼し、機械エネルギを発生する。燃焼後の気体は、排気弁215から排気管に導かれ、排気EGとして排気管から車外に排出される。前記燃焼室に導かれる吸入空気IGの流量は、アクセルペダルの操作に基づいてその開度が変化するスロットルバルブ206によって制御される。前記燃焼室に導かれる吸入空気IGの流量に基づいて燃料供給量が制御され、運転者はスロットルバルブ206の開度を制御して前記燃焼室に導かれる吸入空気IGの流量を制御することにより、内燃機関210が発生する機械エネルギを制御することができる。
 エアクリーナ201から取り込まれた吸入空気IGである被測定気体Gは、主通路202を流れ、物理量測定装置100によって、たとえば、流量、温度、湿度、圧力などの被測定気体Gの物理量が測定される。物理量測定装置100は、たとえば、主通路202の壁部に開口された挿入口から主通路202の内部へ挿入されることで、主通路202の壁部から主通路202内へ突出させて設けられている。すなわち、物理量測定装置100は、一端が主通路202の壁部に固定された固定端とされ、他端が主通路202内に配置された自由端とされ、主通路202の壁部に片持ち支持されている。
 物理量測定装置100によって測定された吸入空気IGの物理量を表す電気信号は、物理量測定装置100から出力されて制御装置220に入力される。また、スロットルバルブ206の開度を測定するスロットル角度センサ207の出力が制御装置220に入力される。さらに、内燃機関210のエンジンピストン212や吸気弁213や排気弁215の位置や状態、さらに内燃機関210の回転速度を測定するために、回転角度センサ216の出力が、制御装置220に入力される。排気EGの状態から燃料量と空気量との混合比の状態を測定するために、酸素センサ217の出力が制御装置220に入力される。
 制御装置220は、物理量測定装置100の出力である吸入空気IGの物理量と、回転角度センサ216の出力である内燃機関210の回転速度とに基づいて、燃料噴射量や点火時期を演算する。これら演算結果に基づいて、燃料噴射弁205から供給される燃料量や点火プラグ214により点火される点火時期が制御される。燃料供給量や点火時期は、実際には、さらに物理量測定装置100で測定される吸気温度や、スロットル角度の変化状態、エンジン回転速度の変化状態、酸素センサ217で測定された空燃比の状態に基づいて制御されている。制御装置220は、さらに内燃機関210のアイドル運転状態において、スロットルバルブ206をバイパスする空気量をアイドルエアコントロールバルブ208により制御し、アイドル運転状態での内燃機関210の回転速度を制御する。
 内燃機関210の主要な制御量である燃料供給量や点火時期は、いずれも物理量測定装置100の出力を主パラメータとして演算される。したがって、物理量測定装置100の測定精度の向上や、経時変化の抑制、信頼性の向上が、車両の制御精度の向上や信頼性の確保に関して重要である。物理量測定装置100の信頼性を向上させる観点から、物理量測定装置100が高い耐久性を有していることも重要である。
 図2は、図1に示す物理量測定装置100の正面図である。図3は、図2に示す物理量測定装置100の右側面図である。図4は、図2に示す物理量測定装置100の表カバー102を取り外した状態を示す正面図である。図5は、図2に示す物理量測定装置100の裏カバー103を取り外した状態を示す背面図である。
 詳細については後述するが、本実施形態の物理量測定装置100は、主通路202を流れる被測定気体Gの物理量を測定する装置であって、次の構成を備えることを主な特徴としている。物理量測定装置100は、主通路202の壁部から主通路202内へ突出させて配置されるハウジング101と、このハウジング101にインサート成形され、物理量を測定する測定素子が実装されたプリント基板140と、を備える。測定素子は、制御回路を一体に形成している構成でも、別体に形成している構成でもよい。プリント基板140は、表面の一方向に沿って形成された複数の凹凸F(図6A、図6B参照)を有している。物理量測定装置100において、プリント基板140は、凹凸Fの形成方向がハウジング101の主通路202内への突出方向に沿うように配置されている。以下、本実施形態の物理量測定装置100の各構成について詳細に説明する。
 物理量測定装置100は、図2および図3に示すように、ハウジング101と、表カバー102と、裏カバー103とを備えている。
 ハウジング101は、たとえば、金型を用いて樹脂材を成形するモールド成形によって形成されている。ハウジング101は、物理量測定装置100を主通路202である吸気ボディの壁部に固定するためのフランジ110と、フランジ110から突出して外部機器との電気的な接続を行うためのコネクタを有する外部接続部120と、フランジ110から主通路202の中心に向かって突出して主通路202を流れる被測定気体Gの主流れ方向に対して直交する方向に延びる測定部130と、を有している。
 ハウジング101は、たとえば、ボルト等の締結部材によってフランジ110が主通路202の壁部に固定され、測定部130が主通路202の壁部に設けられた開口部に挿入されることで、主通路202の壁部から主通路202内へ突出させて配置される。ハウジング101の主通路202内への突出方向は、たとえば、主通路202の壁部から主通路202の中心に向かう方向であり、主通路202の径方向である。また、ハウジング101の突出方向は、たとえば、主通路202を流れる被測定気体Gの主流れ方向に交差する方向であり、被測定気体Gの主流れ方向に直交する方向である。
 ハウジング101の外部接続部120は、図3に示すように、フランジ110の上面に設けられてフランジ110から被測定気体Gの主流れ方向の下流側に向かって突出するコネクタ121を有している。コネクタ121には、制御装置220との間を接続する通信ケーブルを差し込むための差し込み穴121aが設けられている。差し込み穴121a内には、たとえば、4本の外部端子122が設けられている。外部端子122は、物理量測定装置100の計測結果である物理量の情報を出力するための端子および物理量測定装置100が動作するための直流電力を供給するための電源端子となる。
 図4に示すように、ハウジング101は、インサート成形によって測定部130に回路基板であるプリント基板140が一体にモールドされている。プリント基板140は、ハウジング101を成形する金型内にプリント基板140を予め配置してハウジング101を成形するインサート成形によって、ハウジング101と一体に成形される。プリント基板140には、主通路202を流れる被測定気体Gの物理量を測定するための少なくとも一つの測定部と、測定部で測定した信号を処理するための回路部が設けられている。測定部は、被測定気体Gに晒される位置に配置され、回路部は、表カバー102によって密閉された回路室に配置される。なお、本実施形態では、プリント基板140を固定する手法としてインサート成型を例に挙げたが、これに限定されるものではなく、プリント基板140を接着剤等でハウジング101に固定してもよい。
 ハウジング101の測定部130は、図2および図4に示すように、被測定気体Gの主流れ方向およびハウジング101の突出方向に直交する方向から見て、被測定気体Gの主流れ方向を短手方向とし、ハウジング101の突出方向を長手方向とする、おおむね長方形の外形を有している。また、ハウジング101の測定部130は、図3に示すように、被測定気体Gの主流れ方向に平行で、かつハウジング101の突出方向に直交する方向から見て、ハウジング101の突出方向を長手方向とする、細長い長方形の外形を有している。
 図3において、被測定気体Gの主流れ方向およびハウジング101の突出方向に直交する方向は、測定部130の厚さ方向である。すなわち、ハウジング101の測定部130は、被測定気体Gの主流れ方向を短手方向、ハウジング101の突出方向を長手方向とする長方形の板状の外形を有し、厚さ方向の表面と裏面に、それぞれ薄い長方形板状の表カバー102と裏カバー103とが配置されている。
 測定部130の表面と裏面には、副通路溝が設けられている。測定部130の副通路溝は、表カバー102および裏カバー103とともに、図4および図5に示す第1副通路131を形成する。測定部130の先端部には、吸入空気IGなどの被測定気体Gの一部を第1副通路131に取り込むための第1副通路入口131aと、第1副通路131から被測定気体Gを主通路202に戻すための第1副通路出口131bが設けられている。第1副通路131の通路途中には、プリント基板140の一部が突出している。そのプリント基板140の突出部分には、流量測定部141が配置されている。流量測定部141は、被測定気体Gの物理量である流量を測定する測定素子である。
 第1副通路131よりもフランジ110に近い測定部130の中間部には、吸入空気IGなどの被測定気体Gの一部をセンサ室に取り入れるための第2副通路132が設けられている。第2副通路132は、測定部130と裏カバー103とにより形成される。第2副通路132は、被測定気体Gを取り込むための第2副通路入口132aと、第2副通路132から被測定気体Gを主通路202に戻すための第2副通路出口132bを有している。第2副通路132は、測定部130の背面側すなわち裏面側に形成されたセンサ室Rsに連通している。センサ室Rsには、プリント基板140の裏面に設けられた圧力センサ142A、142Bと湿度センサ143が配置されている。
 測定部130の突出方向すなわち長手方向の先端側には、第1副通路131を成形するための副通路溝が設けられている。第1副通路131を形成するための副通路溝は、図4に示す表側副通路溝131Fと、図5に示す裏側副通路溝131Rを有している。表側副通路溝131Fは、図4に示すように、測定部130の下流側外壁133に開口する第1副通路出口131bから上流側外壁134に向かって移行するにしたがって、漸次、測定部130の基端側であるフランジ110側に湾曲し、上流側外壁134の近傍位置で、測定部130を厚さ方向に貫通する開口部135に連通している。開口部135は、上流側外壁134と下流側外壁133との間に亘って延びるように、主通路124の被測定気体Gの流れ方向に沿って形成されている。
 裏側副通路溝131Rは、図5に示すように、上流側外壁134から下流側外壁133に向かって移行し、上流側外壁134と下流側外壁133との中間位置で二股に分かれている。二股に分かれた裏側副通路溝131Rの一方は、排出通路としてそのまま一直線状に延在して下流側外壁133の排出口131cに開口している。二股に分かれた裏側副通路溝131Rの他方は、下流側外壁133に移行するにしたがって、漸次、測定部130の基端側であるフランジ110側に湾曲し、下流側外壁133の近傍位置で、開口部135に連通している。
 裏側副通路溝131Rは、主通路202から被測定気体Gが流入する入口溝を形成し、表側副通路溝131Fは、裏側副通路溝131Rから取り込んだ被測定気体Gを主通路202に戻す出口溝を形成する。すなわち、主通路202を流れる被測定気体Gの一部は、図5に示すように、第1副通路入口131aから裏側副通路溝131R内に取り込まれ、裏側副通路溝131R内を流れる。そして、被測定気体Gに含まれている質量の大きな異物は一部の被測定気体Gとともに分岐からそのまま一直線状に延在する排出通路に流れ込み、下流側外壁133の排出口131cから主通路202に排出される。
 裏側副通路溝131Rは、進むにつれて深くなる形状をしており、被測定気体Gは裏側副通路溝131Rに沿って流れるにつれ測定部130の表側に徐々に移動する。特に裏側副通路溝131Rは開口部135の手前で急激に深くなる急傾斜部131dが設けられていて、質量の小さい空気の一部は急傾斜部131dに沿って移動し、開口部135内でプリント基板140の測定面140a側を流れる。一方、質量の大きい異物は、急激な進路変更が困難なため、測定面140aの裏面140b側を流れる。
 図4に示すように、開口部135で表側に移動した被測定気体Gは、プリント基板140の測定面140aに沿って流れ、測定面140aに設けられた流量測定部141との間で熱伝達が行われ、流量の測定が行われる。開口部135から表側副通路溝131Fに流れてきた空気は共に表側副通路溝131Fに沿って流れ、下流側外壁133に開口する第1副通路出口131bから主通路202に排出される。
 第2副通路132は、主通路124を流れる被測定気体Gの主流れ方向に沿うように、フランジ110と平行に第2副通路入口132aと第2副通路出口132bとの間に亘って一直線状に形成されている。第2副通路入口132aは、上流側外壁134の一部を切り欠いて形成され、第2副通路出口132bは、下流側外壁133の一部を切り欠いて形成されている。第2副通路入口132aと第2副通路出口132bは、プリント基板140の裏面140bと面一になる深さ位置まで切り欠かれている。
 第2副通路132は、プリント基板140の裏面140bに沿って被測定気体Gが通過するので、プリント基板140を冷却するクーリングチャンネルとして機能する。第2副通路132よりも測定部130の基端側にセンサ室Rsが設けられている。第2副通路入口132aから第2副通路132に流れ込んだ被測定気体Gの一部は、センサ室Rsに流れ込み、センサ室Rs内の圧力センサ142A,142Bと、湿度センサ143によってそれぞれ圧力と相対湿度が測定される。すなわち、圧力センサ142A,142Bと、湿度センサ143は、それぞれ、被測定気体Gの物理量である圧力と相対湿度を測定する測定素子である。
 プリント基板140は、たとえば、表側副通路溝131Fと裏側副通路溝131Rのつながりの部分である開口部135に、プリント基板140の流量測定部141が配置されるように、ハウジング101に一体にモールドされている。ハウジング101の測定部130には、プリント基板140の周縁部をハウジング101に樹脂モールドにより埋設して固定する部分が、固定部136、137として設けられている。固定部136、137は、プリント基板140の周縁部を表側と裏側から挟み込むように包含して固定している。また、プリント基板140の一部は、測定部130の回路室Rcと第1副通路131との間を仕切る仕切壁138によっても、固定部136、137と同様に固定されている。
 プリント基板140は、被測定気体Gの上流側の端縁の中央部に温度測定部144を有している。温度測定部144は、主通路202を流れる被測定気体Gの物理量を測定するための測定素子の一つであり、プリント基板140に実装されている。プリント基板140は、第2副通路132の第2副通路入口132aから被測定気体Gの上流に向かって突出する突出部145を有しており、温度測定部144は、突出部450でかつ回路基板400の裏面に設けられたチップ型の温度センサ146を有している。温度センサ146とその配線部分は、合成樹脂材で被覆されており、塩水の付着により電食が生ずるのを防いでいる。
 第2副通路入口132aは、温度測定部144の下流側に形成されている。そのため、第2副通路入口132aから第2副通路132に流れ込む被測定気体Gは、温度測定部144に接触してから第2副通路入口132aに流れ込み、温度測定部144に接触した際に温度が測定される。温度測定部144に接触した被測定気体Gは、そのまま第2副通路入口132aから第2副通路132に流れ込み、第2副通路132を通過して第2副通路出口132bから主通路202に排出される。
 図6Aおよび図6Bは、プリント基板140の一部を切断した模式的な拡大斜視図である。なお、図6Aおよび図6Bでは、プリント基板140の表面に形成されたソルダーレジストの図示を省略している。図6Aは、プリント基板140の下地材が凹凸Fを有しない例を示し、図6Bは、プリント基板140の下地材が凹凸Fを有している例を示している。プリント基板140には、たとえば、銅配線などの配線Wが所定の配線パターンで形成されている。プリント基板140は、表面の一方向に沿って形成された複数の凹凸Fを有している。
 このようなプリント基板140の配線W上の凹凸Fは、たとえば、配線Wの表面仕上げとレジストとの密着性向上を目的とする研磨によって形成される。すなわち、プリント基板140の表面の一方向に沿う複数の凹凸Fは、たとえば、バフ研磨加工手法により、プリント基板140の配線Wに一方向に形成される研磨痕である。バフ研磨加工手法では、円筒状の研磨輪を用いてプリント基板140を研磨する。この際に、研磨輪の回転方向が、プリント基板140のハウジング101に配置される際の突出方向と同一または突出方向に沿う方向となるように、プリント基板140をバフ研磨加工装置にセットする。なお、配線Wに形成された凹凸Fは、このような研磨痕に限定されず、たとえば、配線Wの圧延痕であってもよい。また、図6Bに示すように、配線Wと下地材との密着性を向上させるために、プリント基板140下地材に凹凸を形成する場合があり、この凹凸が配線Wの凹凸Fとなる場合もある。
 本実施形態の物理量測定装置100において、プリント基板140は、凹凸Fの形成方向がハウジング101の主通路202内への突出方向に沿うように配置されている。言い換えると、プリント基板140は、凹凸Fの形成方向が挿入方向に沿うようにハウジング101に固定されている。すなわち、凹凸Fの形成方向は、たとえば、ハウジング101の突出方向に対して平行である。または、凹凸Fの形成方向とハウジング101の突出方向との間の角度は、45[°]未満である。なお、物理量測定装置100の耐久性向上と信頼性向上の観点から、凹凸Fの形成方向とハウジング101の突出方向との間の角度は、10[°]以下であることが好ましい。
 なお、ハウジング101の主通路202内への突出方向は、前述のように、たとえば、主通路202の壁部から主通路202の中心に向かう方向であり、主通路202の径方向である。言い換えると、フランジ110から首下(主通路へ挿入される側)方向である。また、ハウジング101の主通路202内への突出方向は、たとえば、主通路202を流れる被測定気体Gの主流れ方向に交差する方向であり、被測定気体Gの主流れ方向に直交する方向である。また、図1から図5に示すように、主通路202に挿入されるハウジング101の測定部130が長方形の板状の形状を有する場合、ハウジング101の主通路202内への突出方向は、測定部130の長手方向である。
 以下、本実施形態の物理量測定装置100の作用について説明する。
 本実施形態の物理量測定装置100は、前述のように、プリント基板140に実装された物理量の測定素子である流量測定部141、圧力センサ142A,142B、湿度センサ143、および温度測定部144によって、主通路202を流れる吸入空気IGである被測定気体Gの物理量を測定することができる。そして、物理量測定装置100は、測定した吸入空気IGの物理量を表す電気信号を、外部接続部120に接続された通信ケーブルを介して制御装置220に出力することができる。
 ここで、本実施形態の物理量測定装置100は、前述のように、一端が主通路202の壁部に固定された固定端とされ、他端が主通路202内に配置された自由端とされ、主通路202の壁部に片持ち支持されている。そのため、物理量測定装置100のハウジング101は、たとえば、前述のように、ボルト等の締結部材によってフランジ110が主通路202の壁部に固定され、測定部130が主通路202の壁部に設けられた開口部に挿入されることで、主通路202の壁部から主通路202内へ突出させて配置される。
 このような状態で、たとえば内燃機関210の回転によって主通路202が振動すると、主通路202の壁部から主通路202内へ突出させて配置されたハウジング101は、そのハウジング101の突出方向に交差する方向に振動が加えられる。より具体的には、図2から図5に示すように、おおむね長方形板状の形状を有するハウジング101の測定部130には、その測定部130の厚さ方向、すなわち、ハウジング101の突出方向および被測定気体Gの主流れ方向におおむね直交する方向に振動が加えられる。
 これにより、物理量測定装置100のハウジング101には、たとえば重力加速度の30倍(30G)程度の振動が発生する。また、共振が発生した場合には、たとえば応答倍率が100倍程度になり、最大で3000G程度の振動が発生するおそれがある。ハウジング101にこのような振動が発生すると、ハウジング101にインサート成形されたプリント基板140に対して繰り返し高い応力が作用する。前述のように、ハウジング101の測定部130が厚さ方向に振動する場合には、プリント基板140に対して、図2、図4および図5に示す応力方向Sに高い応力が作用する。この応力方向Sは、たとえば、ハウジング101の主通路202内への突出方向におおむね平行である。
 そのため、プリント基板140の表面に沿う一方向に形成された複数の凹凸Fの形成方向が、たとえば応力方向Sに直交する場合や、応力方向Sに対して45[°]以上の角度を有して交差する場合、凹凸Fに応力が集中し、配線Wが破断したり、プリント基板140の耐久性が低下したりするおそれがある。
 これに対し、本実施形態の物理量測定装置100は、前述のように、主通路202を流れる被測定気体Gの物理量を測定する装置であって、主通路202の壁部から主通路202内へ突出させて配置されるハウジング101と、このハウジング101にインサート成形され物理量を測定する測定素子が実装されたプリント基板140と、を備えている。そして、プリント基板104は、表面の一方向に沿って形成された複数の凹凸Fを有し、その凹凸Fの形成方向がハウジング101の主通路202内への突出方向に沿うように配置されている。
 この構成により、本実施形態の物理量測定装置100は、プリント基板140の凹凸Fに対する応力集中が抑制され、配線Wの破断を抑制することができ、ハウジング101の振動発生時にプリント基板140の耐久性を向上させることができる。したがって、本実施形態によれば、物理量測定装置100の信頼性を向上させることができる。
 図7は、プリント基板140の凹凸Fの形成方向とハウジング101の突出方向(すなわち応力方向S)との間の角度[°]と、凹凸Fに作用する応力[MPa]との関係の一例を示すグラフである。この例において、凹凸Fの形成方向とハウジング101の突出方向との間の角度が-90[°]と90[°]の場合、すなわち、凹凸Fの形成方向とハウジング101の突出方向とが直交する場合に、凹凸Fに作用する応力が最大値の約63[MPa]となっている。
 一方、凹凸Fの形成方向が、ハウジング101の突出方向に沿う場合、すなわち、凹凸Fの形成方向とハウジング101の突出方向との間の角度が45[°]未満である場合、凹凸Fに作用する応力を30%以上低下させ、約44[MPa]未満にすることができる。また、凹凸Fの形成方向とハウジング101の突出方向との間の角度が10[°]以下である場合、凹凸Fに作用する応力を63%以上低下させ、約23[MPa]以下にすることができる。特に、凹凸Fの形成方向とハウジング101の突出方向との間の角度が0[°]である場合、すなわち、凹凸Fの形成方向とハウジング101の突出方向とが平行である場合、凹凸Fに作用する応力を最小値の約22[MPa]にすることができる。
 以上説明したように、本実施形態によれば、プリント基板140を用いた物理量測定装置100において、プリント基板140の配線Wの破断を抑制することができる。以上、図面を用いて本開示の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。以下、前述の実施形態の変形例について説明する。
 図8は、前述の実施形態に係る物理量測定装置100の図4に相当する変形例に係る物理量測定装置100’の正面図である。この物理量測定装置100’は、前述の実施形態に係る物理量測定装置100と同様に、主通路202を流れる被測定気体Gの物理量を測定する装置である。
 物理量測定装置100’は、前述の実施形態に係る物理量測定装置100と同様に、主通路202の壁部から主通路202内へ突出させて配置されるハウジング101’と、そのハウジング101’に、物理量を測定する測定素子(流量センサ141’、圧力センサ142’、温度センサ146’および温湿度センサ148)が実装可能なプリント基板140’と、を備えている。プリント基板140’は、ハウジング101’に接着材等により固定されている。また、前述の実施形態と同様に、プリント基板140’は、ハウジング101’にインサート固定されていてもよい。測定素子は、樹脂パッケージ147をプリント基板140’に固定することにより、プリント基板140’に実装されている。
 本変形例では、樹脂パッケージ147が、プリント基板101’に実装されている。樹脂パッケージ147は、流量センサ141’と制御回路がリードフレーム上に実装され、流量センサ141’の流量測定部(薄肉部)が少なくとも露出するように樹脂により封止して形成される。樹脂パッケージ147のリード端子を、はんだ付けや溶接等によって、プリント基板140’に電気的かつ機械的に接続している。測定素子を樹脂パッケージ147によって保護し、物理量測定装置100’の耐久性および信頼性を向上させることができる。なお、流量センサ141’と制御回路を同一の半導体素子に一体化した構成であってもよい。すなわち、測定素子は、制御回路が一体に形成されていてもよい。
 プリント基板140’は、表面の一方向に沿って形成された複数の凹凸Fを有し、その凹凸Fの形成方向がハウジング101’のフランジ110’から主通路202内方向への突出方向(言い換えれば挿入方向)に沿うように配置されている。したがって、本変形例に係る物理量測定装置100’によれば、前述の実施形態に係る物理量測定装置100と同様の効果を奏することができる。
 図9は、図4に示す物理量測定装置100のプリント基板140の変形例を示す平面図である。流量測定部141’を含む測定素子は、プリント基板140’に取り付けられた支持体150を介してプリント基板140’に実装されていてもよい。この構成により、流量測定部141’を含む測定素子を直接、プリント基板140’に実装する場合と比較して、測定素子に作用する応力を低減し、物理量測定装置100の耐久性および信頼性を向上させることができる。なお、プリント基板140’に部品を実装するとは、たとえば、プリント基板140’に部品を取り付けること、およびプリント基板140’の配線に部品を電気的に接続することを含む。支持体150の例として、金属製のリードフレームなどの金属部材や、LTCC基板、プリント基板等、電気配線が形成可能なものが挙げられる。支持体150には、ハウジング101’との位置決め用の穴、若しくは突起が形成され、ハウジング101’に形成される位置決め用の突起、若しくは穴により位置決めされる構成としてもよい。
100  物理量測定装置
100’ 物理量測定装置
101  ハウジング
101’ ハウジング
140  プリント基板
140’ プリント基板
141  流量測定部(測定素子)
141’ 流量センサ(物理量測定部)
142A 圧力センサ(測定素子)
142B 圧力センサ(測定素子)
142’ 圧力センサ(測定素子)
143  湿度センサ(測定素子)
144  温度測定部(測定素子)
146’ 温度センサ(測定素子)
147  樹脂パッケージ
148  温湿度センサ(測定素子)
150  支持体
202  主通路
F    凹凸
G    被測定気体
W    配線

Claims (8)

  1.  主通路を流れる気体の物理量を測定する物理量測定装置であって、
     前記主通路に固定するためのフランジと、
     前記フランジから前記主通路内方向へ突出するように設けられるハウジングと、
     前記ハウジングに固定され前記物理量を測定する測定素子が実装されるプリント基板と、を備え、
     前記プリント基板の配線は、表面の一方向に沿って形成された複数の凹凸を有し、該凹凸の形成方向が前記ハウジングの前記主通路内方向への突出方向に沿うように配置されていることを特徴とする物理量測定装置。
  2.  前記凹凸の形成方向と前記ハウジングの前記突出方向との間の角度は、10[°]以下であることを特徴とする請求項1に記載の物理量測定装置。
  3.  前記凹凸は、円筒状の研磨輪を用いて形成された研磨痕であることを特徴とする請求項1に記載の物理量測定装置。
  4.  前記凹凸は、前記プリント基板の配線の圧延痕であること特徴とする請求項1に記載の物理量測定装置。
  5.  前記測定素子の物理量測定部を露出させた状態で前記測定素子を封止する樹脂パッケージを備え、
     前記樹脂パッケージを前記プリント基板に固定することにより、前記測定素子が前記プリント基板に実装されていることを特徴とする請求項1から請求項4のいずれか一項に記載の物理量測定装置。
  6.  前記測定素子は、前記プリント基板に取り付けられた支持体を介して前記プリント基板に実装されていることを特徴とする請求項1から請求項4のいずれか一項に記載の物理量測定装置。
  7.  前記支持体は、金属部材であり、前記測定素子は、制御回路が一体に形成されていることを特徴とする請求項6に記載の物理量測定装置。
  8.  前記支持体には、位置決め用の穴、若しくは突起が形成されていることを特徴とする請求項7に記載の物理量測定装置。
PCT/JP2019/003291 2018-03-09 2019-01-31 物理量測定装置 WO2019171837A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980005246.9A CN111247398B (zh) 2018-03-09 2019-01-31 物理量测量装置
US16/763,663 US11112287B2 (en) 2018-03-09 2019-01-31 Physical quantity measurement device
DE112019000135.3T DE112019000135B4 (de) 2018-03-09 2019-01-31 Vorrichtung zur messung einer physikalischen grösse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042549A JP6838227B2 (ja) 2018-03-09 2018-03-09 物理量測定装置
JP2018-042549 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019171837A1 true WO2019171837A1 (ja) 2019-09-12

Family

ID=67847177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003291 WO2019171837A1 (ja) 2018-03-09 2019-01-31 物理量測定装置

Country Status (5)

Country Link
US (1) US11112287B2 (ja)
JP (1) JP6838227B2 (ja)
CN (1) CN111247398B (ja)
DE (1) DE112019000135B4 (ja)
WO (1) WO2019171837A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10591168B2 (en) * 2017-07-21 2020-03-17 Hamilton Beach Brands, Inc. Countertop oven
JP2021113722A (ja) 2020-01-17 2021-08-05 株式会社デンソー 空気流量測定装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056694A1 (ja) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 物理量検出装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5221468B2 (ja) * 2009-02-27 2013-06-26 株式会社日立製作所 電池監視装置
JP5208099B2 (ja) * 2009-12-11 2013-06-12 日立オートモティブシステムズ株式会社 流量センサとその製造方法、及び流量センサモジュール
WO2012049742A1 (ja) * 2010-10-13 2012-04-19 日立オートモティブシステムズ株式会社 流量センサおよびその製造方法並びに流量センサモジュールおよびその製造方法
CN106959140B (zh) * 2012-06-15 2021-11-16 日立安斯泰莫株式会社 热式流量计
JP5645880B2 (ja) * 2012-06-15 2014-12-24 日立オートモティブシステムズ株式会社 熱式流量計
JP5851973B2 (ja) * 2012-11-02 2016-02-03 日立オートモティブシステムズ株式会社 熱式流量計
EP3203195B1 (en) * 2014-09-30 2021-12-08 Hitachi Astemo, Ltd. Thermal flow meter
JP2016090413A (ja) * 2014-11-06 2016-05-23 日立オートモティブシステムズ株式会社 熱式空気流量計
JP6295209B2 (ja) * 2015-01-09 2018-03-14 日立オートモティブシステムズ株式会社 熱式流体流量センサ
EP3267161B1 (en) * 2015-03-05 2020-08-26 Hitachi Automotive Systems, Ltd. Air flow rate detecting device
DE112016004983B4 (de) * 2015-10-30 2022-10-27 Hitachi Astemo, Ltd. Messvorrichtung für physikalische Größen
JP6453790B2 (ja) 2016-02-24 2019-01-16 日立オートモティブシステムズ株式会社 物理量検出装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056694A1 (ja) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 物理量検出装置

Also Published As

Publication number Publication date
US11112287B2 (en) 2021-09-07
DE112019000135T5 (de) 2020-07-02
JP6838227B2 (ja) 2021-03-03
US20200363247A1 (en) 2020-11-19
CN111247398B (zh) 2021-07-30
JP2019158429A (ja) 2019-09-19
DE112019000135B4 (de) 2024-05-16
CN111247398A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN108139250B (zh) 流量计
JP6198955B2 (ja) 物理量検出装置
JP6154966B2 (ja) 物理量検出装置
JP6965358B2 (ja) 熱式流量計
JP6578238B2 (ja) 物理量検出装置
US11079262B2 (en) Physical quantity detection apparatus and electronic apparatus
WO2016017301A1 (ja) 物理量検出装置
JP6786606B2 (ja) 物理量検出装置
US10260921B2 (en) Thermal flow meter
WO2019171837A1 (ja) 物理量測定装置
US10591331B2 (en) Intake temperature detection device and maximum heat generating amount components mounted on a single circuit board
JP2018204993A (ja) 物理量測定装置
CN109791064B (zh) 空气流量测量装置
CN113574352B (zh) 物理量检测装置
JP7265643B2 (ja) 流量測定装置
WO2022264498A1 (ja) 物理量検出装置
CN113597537B (zh) 物理量检测装置
US20220349736A1 (en) Air flow rate measuring device
CN116997774A (zh) 物理量测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764759

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19764759

Country of ref document: EP

Kind code of ref document: A1