WO2019169545A1 - 一种三自由度大振幅自由振动风洞试验装置 - Google Patents

一种三自由度大振幅自由振动风洞试验装置 Download PDF

Info

Publication number
WO2019169545A1
WO2019169545A1 PCT/CN2018/078117 CN2018078117W WO2019169545A1 WO 2019169545 A1 WO2019169545 A1 WO 2019169545A1 CN 2018078117 W CN2018078117 W CN 2018078117W WO 2019169545 A1 WO2019169545 A1 WO 2019169545A1
Authority
WO
WIPO (PCT)
Prior art keywords
rigid
vertical
vibration
linear
degree
Prior art date
Application number
PCT/CN2018/078117
Other languages
English (en)
French (fr)
Inventor
许福友
杨晶
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2018/078117 priority Critical patent/WO2019169545A1/zh
Priority to US16/349,603 priority patent/US10900865B2/en
Publication of WO2019169545A1 publication Critical patent/WO2019169545A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/062Wind tunnel balances; Holding devices combined with measuring arrangements

Definitions

  • the invention relates to a three-degree-of-freedom free vibration wind tunnel test device capable of realizing large amplitude of a bridge rigid model and capable of ensuring linear vertical stiffness, linear torsional stiffness and linear lateral stiffness, and particularly relates to a circular boom, Vertical and torsion coupling large amplitude free vibration system consisting of lightweight high-strength string, vertical linear tension spring and fixed pulley, and lateral direction of lightweight high-strength string, bearing, vertical linear tension spring and fixed pulley
  • the free vibration system converts the three-degree-of-freedom coupling large-amplitude free vibration of the bridge rigid model into the vertical free-expansion of the linear spring, and realizes the vertical and side of the system by the linear tensile stiffness of the spring, the rigid arc boom and the fixed pulley.
  • the three-degree-of-freedom coupling free vibration method is a main method for bridge wind tunnel test vibration measurement (vortex vibration, buffeting, galloping, flutter), and an important wind tunnel test method for bridge flutter derivative identification.
  • the traditional three-degree-of-freedom coupling free vibration test device adopts vertical and lateral spring suspension main beam segment models, and has the advantages of simple device and convenient implementation.
  • the vertical tension spring has less lateral tilt
  • the lateral tension spring has less vertical vibration
  • the vertical and lateral tension springs approximately satisfy the linear geometric stiffness condition.
  • the conventional system has the following problems: (1) The lateral tension spring will sag due to its own weight, and the level cannot be guaranteed, so the linear stiffness cannot be guaranteed; (2) When the model is vertical and torsional, the lateral tension spring is also Vertical vibration will be generated to increase the damping of the system; (3) When the model is vertical and torsional, the influence of the lateral spring on the modal quality of the system is not easy to determine; (4) When the model is lateral and torsional, vertical Lateral vibration also occurs in the tension spring, which increases the damping of the system. (5) When the lateral and torsional vibrations occur in the model, the influence of the vertical tension spring on the modal quality of the system is not easy to determine.
  • the technical problem to be solved by the invention is to meet the need of three-degree-of-freedom coupling large amplitude free vibration of bridge and other structural member segment models in wind tunnel test, and to provide a nonlinear factor which can effectively avoid the test process and ensure three degrees of freedom.
  • Amplitude linear free vibration test device includes a rigid test model, a rigid rod, a rigid boom, a circular arc block with grooves, a lightweight high-strength string, a fixed pulley, and a linear tension spring.
  • a three-degree-of-freedom large-amplitude free-vibration wind tunnel test device comprising a rigid test model 1, a rigid round rod 2, a rigid boom 3, a circular arc block with grooves 4, a first lightweight high-strength string 5, a linear tension spring 6, a first fixed pulley 7, a second lightweight high-strength string 8, a second linear tension spring 9, a second fixed pulley 10 and a bearing 11;
  • a rigid rigid rod is fixed at both ends of the rigid test model 1 2, the rigid round rod 2 vertically passes through the center of the rigid boom 3 and is fixed thereto, and ensures that the torsion center line of the rigid test model 1 is collinear with the axis of the rigid round rod 2 and the center line of the rigid boom 3;
  • the arc blocks 4 are respectively fixed at the two ends of the rigid boom 3, and the center of the two arc-shaped blocks 4 with grooves is the center of the rigid boom 3;
  • the first lightweight high-strength string 5 is symmetrically wound around
  • the first lightweight high-strength string 5 passes through the first fixed pulley 7, ensuring that the first linear tension spring 6 is always in a vertical state when the rigid test model 1 is subjected to lateral vibration A lateral tilt occurs;
  • the upper end of the second lightweight high-strength string 8 is connected to the lower end of the second linear tension spring 9, which bypasses the second fixed pulley 10, and the lower end is connected to the bearing 11 sleeved on the rigid round rod 2, and the bearing 11
  • the free rotation around the rigid round rod 2 ensures that the rigid linear test spring 1 only undergoes vertical expansion and contraction during the lateral vibration process, and satisfies the lateral stiffness linear condition.
  • the length of the rigid boom 3 and the diameter of the circular arc block 4 with grooves are determined according to the mass, mass moment and the ratio of the torsional frequency to the vertical bending frequency of the rigid test model 1, generally between 0.2 m and 1.5 m. Within the scope.
  • the first fixed pulley 7 and the second fixed pulley 10 respectively have the friction coefficient of the first lightweight high-strength string 5 and the second lightweight high-strength string 8 as small as possible to ensure that three-degree-of-freedom coupling vibration occurs.
  • the system damping ratio is as small as possible; at the same time, the two first fixed pulleys 7 of the first lightweight high-strength string 5 are restrained from being as small as possible under the condition that the rotation is not affected, that is, the first lightweight high-strength string 5 laterally
  • the space to be moved is as small as possible, ensuring that the first lightweight high-strength string 5 above the first fixed pulley 7 is kept as vertical as possible, so that the first linear tension spring 6 has only vertical expansion and contraction.
  • the second lightweight high-strength string 8 is always in a tensioned state, ensuring that the second linear tension spring 9 is always in a linear elastic state.
  • the first fixed pulley 7 and the rigid boom 3 should have a sufficiently long vertical distance, and the second fixed pulley 10 and the bearing 11 should have a sufficiently long horizontal distance, thereby reducing the vertical and lateral vibrations as much as possible. The effect on lateral and vertical stiffness.
  • the invention has the beneficial effects that the three-degree-of-freedom coupling large free vibration displacement of the bridge rigid model is converted into the vertical linear tensile deformation of the spring by the fixed pulley, ensuring that the spring does not laterally tilt during the vibration of the model, and the lateral direction does not need to be considered.
  • the uncertain effects of the spring satisfy the linear geometric stiffness condition.
  • the tensile stiffness of the linear spring is constant during the free vibration process, the system mass and mass inertia are unchanged, and the force arm is also unchanged. Therefore, the vertical, torsional and lateral stiffness and vibration frequency of the system are maintained throughout the vibration process.
  • the test device has the following obvious advantages: (1) canceling the traditional lateral spring, using vertical spring, long enough lightweight high-strength string and fixed pulley to achieve lateral direction Simulation of ideal linear stiffness; (2) use vertical spring, long enough lightweight high-strength string and fixed pulley to avoid the lateral vibration generated by traditional vertical spring only; (3) because the string is long enough, vertical And the influence of the torsional displacement on the lateral stiffness can be neglected.
  • the lateral displacement has negligible influence on the vertical and torsional stiffness, so the various nonlinearities caused by the large vibration can be greatly reduced.
  • the original vertical spring and the boom The connection method is improved, and a circular arc section is added at both ends, thereby ensuring that even if a large torsional vibration occurs, the string and the vertical spring always maintain linear rigidity while ensuring a constant torsional rigidity;
  • due to reliable lateral restraint and Lateral stiffness simulation the lower vertical spring used in the traditional method can be canceled, and the upper vertical spring selection is less restricted, so it is more convenient.
  • Fig. 1 is a structural view of a three-degree-of-freedom coupling free vibration wind tunnel test device for a bridge rigid model.
  • a three-degree-of-freedom coupling large-amplitude free-vibration wind tunnel test device includes a rigid test model 1, a rigid round bar 2, a rigid boom 3, a circular arc block with grooves 4, and a first light
  • the high-strength string 5 the first linear tension spring 6, the first fixed pulley 7, the second lightweight high-strength string 8, the second linear tension spring 9, the second fixed pulley 10, and the bearing 11.
  • the rigid test model 1 has a rigid round rod 2 fixed at both ends, and the rigid round rod 2 vertically passes through the center of the rigid boom 3 and is fixed thereto, and ensures the rigidity test model 1 torsion center line and the rigid round rod 2 axis, the rigid boom 3
  • the center line is collinear; two circular arc blocks 4 with grooves are respectively fixed at the two ends of the rigid boom 3, and the center formed by the two circular arc blocks 4 with grooves is the center of the rigid boom 3;
  • the lightweight high-strength string 5 symmetrically bypasses the circular arc block 4 with the groove, and the upper end of the first lightweight high-strength string 5 is connected with the lower end of the first linear tension spring 6, and the lower end of the first lightweight high-strength string 5 is
  • the bottom of the arc block 4 with grooves is fixed to ensure the relative rolling of the first lightweight high-strength string 5 and the grooved arc block 4 during the three-degree-of-freedom large amplitude free vibration process

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种三自由度大振幅自由振动风洞试验装置,属于桥梁风洞试验装置技术领域。桥梁三自由度耦合大振幅自由振动风洞试验装置包括刚性试验模型(1)、刚性圆杆(2)、刚性吊臂(3)、带有凹槽的圆弧块(4)、轻质高强细绳(5,8)、线性拉伸弹簧(6,9)、定滑轮(7,10)和轴承(11)。本装置可有效解决传统三自由度振动试验装置中水平放置侧向弹簧下挠以及大振幅条件下竖向弹簧侧向倾斜,进而导致无法保证线性竖向刚度、线性扭转刚度和线性侧向刚度的问题;本装置简单,安装方便,易于调节初始攻角,在振动过程中由于避免了弹簧下挠和倾斜,因此即使在大幅振动过程中仍然能够保证***的线性刚度和非常稳定的振动频率,使得大振幅条件下桥梁三维非线性气动特性研究成为可能。

Description

一种三自由度大振幅自由振动风洞试验装置 技术领域
本发明涉及一种可以实现桥梁刚性模型大振幅的、且能够保证线性竖向刚度、线性扭转刚度和线性侧向刚度的三自由度自由振动风洞试验装置,具体涉及到通过圆弧吊臂、轻质高强细绳、竖直线性拉伸弹簧和定滑轮构成的竖向和扭转耦合大振幅自由振动***,以及轻质高强细绳、轴承、竖直线性拉伸弹簧和定滑轮构成的侧向自由振动***,将桥梁刚性模型的三自由度耦合大振幅自由振动转化为线性弹簧的竖向自由伸缩,利用弹簧的线性拉伸刚度、刚性圆弧吊臂和定滑轮实现***的竖向和侧向线性平动刚度及线性扭转刚度。由于***在整个大幅耦合振动过程中,***质量和质量惯矩、弹簧刚度、力臂始终不变,因此***的竖向平动频率、侧向平动频率以及绕链轮中心扭转频率保持恒定。
背景技术
三自由度耦合自由振动法是桥梁风洞试验测振(涡振、抖振、驰振、颤振)的一种主要方法,也是桥梁颤振导数识别的一种重要风洞试验方法。传统三自由度耦合自由振动试验装置采用竖向和侧向弹簧悬挂主梁节段模型,优点在于装置简单,实现方便。对于小振幅的三自由度耦合自由振动,竖向拉伸弹簧的侧向倾斜较小,侧向拉伸弹簧竖向振动较小,竖向和侧向拉伸弹簧近似满足线性几何刚度条件。然而,传统***存在以下问题:(1)侧向拉伸弹簧由于自重作用而会下垂,无法保证水平,因此线性刚度无法保证;(2)模型竖向和扭转振动时,侧向拉伸弹簧也会产生竖向振动,增大***的阻尼;(3)模型竖向和扭转振动时,侧向弹簧对***模态质量的影响不易确定;(4)模型发生侧向和扭转振动时,竖向拉伸弹簧也会发生侧向振动,增大***的阻尼;(5)模型发生侧向和扭转振动时,竖向拉伸弹簧对***模态质量的影响不易确定。(6)当扭转振幅较大时,竖向拉伸弹簧发生明显侧向倾斜,弹簧几何刚度不满足线性条件,因此耦合振动***的竖向和扭转刚度不再保持常数,而是与振幅相关,因此对后续试验结果造成不可接受的明显误差。振幅越大,传统***以上问题越严重,因此不适用于大振幅自由振动测试。一般认为当扭转振幅在2°之内时,误差基本可以忽略。但对于研究大振幅的扭转振动情况,如塔科马旧桥风毁时,扭转振幅达到惊人的35°,采用传统自由三自由度耦合自由振动试验装置根本无法模拟。
技术问题
本发明要解决的技术问题是针对风洞试验中桥梁及其他结构构件节段模型三自由度耦合大振幅自由振动的需要,提供一种可以有效避免试验过程中非线性因素,保证三自由度大振幅线性自由振动试验装置。三自由度耦合自由振动风洞试验装置包括刚性试验模型、刚性杆、刚性吊臂、带有凹槽的圆弧块、轻质高强细绳、定滑轮和线性拉伸弹簧。
技术解决方案
本发明的技术方案:
一种三自由度大振幅自由振动风洞试验装置,包括刚性试验模型1、刚性圆杆2、刚性吊臂3、带有凹槽的圆弧块4、第一轻质高强细绳5、第一线性拉伸弹簧6、第一定滑轮7、第二轻质高强细绳8、第二线性拉伸弹簧9、第二定滑轮10和轴承11;刚性试验模型1两端固结刚性圆杆2,刚性圆杆2垂直穿过刚性吊臂3的中心并与其固定,且保证刚性试验模型1扭转中心线与刚性圆杆2轴线、刚性吊臂3中心线共线;两带有凹槽的圆弧块4分别固定在刚性吊臂3的两端,两带有凹槽的圆弧块4所形成的圆心为刚性吊臂3的中心;第一轻质高强细绳5对称地绕过带有凹槽的圆弧块4,第一轻质高强细绳5上端与第一线性拉伸弹簧6下端连接,第一轻质高强细绳5下端与带有凹槽的圆弧块4底部固定,保证三自由度大振幅自由振动过程中第一轻质高强细绳5与带有凹槽的圆弧块4仅发生相对滚动,以及该装置的安全性;第一轻质高强细绳5穿过第一定滑轮7,保证刚性试验模型1在发生侧向振动时,第一线性拉伸弹簧6始终保持竖直状态而不发生侧向倾斜;第二轻质高强细绳8上端与第二线性拉伸弹簧9下端连接,其绕过第二定滑轮10,下端与套在刚性圆杆2上的轴承11连接,轴承11绕刚性圆杆2自由旋转,保证刚性试验模型1在侧向振动过程中,第二线性拉伸弹簧9仅发生竖向伸缩变形,满足侧向刚度线性条件。
所述的刚性吊臂3的长度及带有凹槽的圆弧块4的直径根据刚性试验模型1的质量、质量惯矩及扭转频率与竖弯频率的比值确定,一般在0.2m-1.5m范围内。
所述的第一定滑轮7和第二定滑轮10分别与第一轻质高强细绳5和第二轻质高强细绳8的摩擦系数要尽可能小,保证发生三自由度耦合振动时,***阻尼比尽可能小;同时,限制第一轻质高强细绳5的两个第一定滑轮7在不影响转动的条件下,距离尽可能小,即第一轻质高强细绳5侧向移动的空间尽可能小,确保第一定滑轮7以上的第一轻质高强细绳5尽可能保持竖直状态,使得第一线性拉伸弹簧6仅有竖向伸缩变形。所述的第二轻质高强细绳8始终处于拉紧状态,保证第二线性拉伸弹簧9始终处于线性弹性状态。
所述的第一定滑轮7与刚性吊臂3要有足够长的竖向距离,第二定滑轮10与轴承11要有足够长的水平距离,由此尽可能降低竖向和侧向振动分别对侧向和竖向刚度的影响。
有益效果
本发明的有益效果:通过定滑轮将桥梁刚性模型三自由度耦合大幅自由振动位移转化为弹簧的竖向线性拉伸变形,确保模型振动过程中,弹簧不发生侧向倾斜,且无需考虑侧向弹簧带来的不确定影响,满足线性几何刚度条件。另外,自由振动过程中线性弹簧的拉伸刚度不变,***质量和质量惯矩不变,力臂也不变,因此***竖向、扭转和侧向刚度及振动频率在整个振动过程中都保持不变,成功避免了传统方法试验过程中弹簧倾斜引起的几何非线性和刚度非线性问题,以及侧向弹簧自重带来的不确定影响。相比于传统三自由度自由振动试验装置,该试验装置具有以下明显优点:(1)取消传统侧向弹簧,改用竖向弹簧、足够长的轻质高强细绳与定滑轮来实现侧向理想线性刚度的模拟,;(2)采用竖向弹簧、足够长轻质高强细绳与定滑轮来避免传统仅有竖向弹簧产生的侧向振动;(3)由于细绳足够长,竖向和扭转位移对侧向刚度影响可以忽略,侧向位移对竖向和扭转刚度影响可以忽略,因此可以大大降低大幅振动带来的各种非线性;(4)将原来的竖向弹簧与吊臂连接方式改进,两端加一圆弧段,由此保证即使发生大幅扭转振动,细绳及竖向弹簧始终保持线性刚度,同时保证扭转刚度恒定;(5)由于有了可靠的侧向约束和侧向刚度模拟,传统方法用到的下竖向弹簧能够取消,上竖向弹簧选型所受限制条件更少,因此更方便。
附图说明
图1是桥梁刚性模型三自由度耦合自由振动风洞试验装置的构造图。
图中:1刚性试验模型;2刚性圆杆;3刚性吊臂;4带有凹槽的圆弧块;5第一轻质高强细绳;6第一线性拉伸弹簧;7第一定滑轮;8第二轻质高强细绳;9第二线性拉伸弹簧;10第二定滑轮;11轴承。
本发明的实施方式
以下结合技术方案和附图,详细叙述本发明的具体实施方式。
如图1所示,一种三自由度耦合大振幅自由振动风洞试验装置,包括刚性试验模型1、刚性圆杆2、刚性吊臂3、带有凹槽的圆弧块4、第一轻质高强细绳5、第一线性拉伸弹簧6、第一定滑轮7、第二轻质高强细绳8、第二线性拉伸弹簧9第二定滑轮10、和轴承11。刚性试验模型1两端固结刚性圆杆2,刚性圆杆2垂直穿过刚性吊臂3的中心并与其固定,且保证刚性试验模型1扭转中心线与刚性圆杆2轴线、刚性吊臂3中心线共线;两带有凹槽的圆弧块4分别固定在刚性吊臂3的两端,两带有凹槽的圆弧块4所形成的圆心为刚性吊臂3的中心;第一轻质高强细绳5对称地绕过带有凹槽的圆弧块4,第一轻质高强细绳5上端与第一线性拉伸弹簧6下端连接,第一轻质高强细绳5下端与带有凹槽的圆弧块4底部固定,保证三自由度大振幅自由振动过程中第一轻质高强细绳5与带有凹槽的圆弧块4仅发生相对滚动,以及该装置的安全性;第一轻质高强细绳5穿过第一定滑轮7,保证刚性试验模型1在发生侧向振动时,第一线性拉伸弹簧6始终保持竖直状态而不发生侧向倾斜;第二轻质高强细绳8上端与第二线性拉伸弹簧9下端连接,绕过第二定滑轮10,下端与套在刚性圆杆2上的轴承11连接,轴承11可以绕刚性圆杆2自由旋转,保证刚性试验模型1在侧向振动过程中,第二线性拉伸弹簧9仅发生竖向伸缩变形,满足侧向刚度线性条件。

Claims (8)

  1. 一种三自由度大振幅自由振动风洞试验装置,其特征在于,所述的桥梁三自由度耦合大振幅自由振动风洞试验装置包括刚性试验模型(1)、刚性圆杆(2)、刚性吊臂(3)、带有凹槽的圆弧块(4)、第一轻质高强细绳(5)、第一线性拉伸弹簧(6)、第一定滑轮(7)、第二轻质高强细绳(8)、第二线性拉伸弹簧(9)、第二定滑轮(10)和轴承(11);刚性试验模型(1)两端固结刚性圆杆(2),刚性圆杆(2)垂直穿过刚性吊臂(3)的中心并与其固定,且保证刚性试验模型(1)扭转中心线与刚性圆杆(2)轴线、刚性吊臂(3)中心线共线;两带有凹槽的圆弧块(4)分别固定在刚性吊臂(3)的两端,两带有凹槽的圆弧块(4)所形成的圆心为刚性吊臂(3)的中心;第一轻质高强细绳(5)对称地绕过带有凹槽的圆弧块(4),第一轻质高强细绳(5)上端与第一线性拉伸弹簧(6)下端连接,第一轻质高强细绳(5)下端与带有凹槽的圆弧块(4)底部固定,保证三自由度大振幅自由振动过程中第一轻质高强细绳(5)与带有凹槽的圆弧块(4)仅发生相对滚动,以及该装置的安全性;第一轻质高强细绳(5)穿过第一定滑轮(7),保证刚性试验模型(1)在发生侧向振动时,第一线性拉伸弹簧(6)始终保持竖直状态而不发生侧向倾斜;第二轻质高强细绳(8)上端与第二线性拉伸弹簧(9)下端连接,第二轻质高强细绳(8)绕过第二定滑轮(10),下端与套在刚性圆杆(2)上的轴承(11)连接,轴承(11)绕刚性圆杆(2)自由旋转,摩擦尽可能小,保证刚性试验模型(1)在侧向振动过程中,第二拉伸弹簧(10)仅发生竖向伸缩变形,满足侧向刚度线性条件。
  2. 根据权利要求1所述的三自由度大振幅自由振动风洞试验装置,其特征在于,所述的刚性吊臂(3)的长度及带有凹槽的圆弧块(4)的直径根据刚性试验模型(1)的质量、质量惯矩及扭转频率与竖弯频率的比值确定,控制在0.2m-1.5m范围内。
  3. 根据权利要求1或2所述的三自由度大振幅自由振动风洞试验装置,其特征在于,第一定滑轮(7)和第二定滑轮(10)分别与第一轻质高强细绳(5)和第二轻质高强细绳(8)的摩擦系数尽可能小,保证发生三自由度耦合振动时,***阻尼比尽可能小;同时,限制第一轻质高强细绳(5)的两个第一定滑轮(7)在不影响转动的条件下,距离尽可能小,即第一轻质高强细绳(5)侧向移动的空间尽可能小,确保第一定滑轮(7)以上的第一轻质高强细绳(5)尽可能保持竖直状态,使得第一线性拉伸弹簧(6)仅有竖向伸缩变形。
  4. 根据权利要求1或2所述的三自由度大振幅自由振动风洞试验装置,其特征在于,所述的第二轻质高强细绳(8)始终处于拉紧状态,保证第二线性拉伸弹簧(9)始终处于线性弹性状态。
  5. 根据权利要求3所述的三自由度大振幅自由振动风洞试验装置,其特征在于,所述的第二轻质高强细绳(8)始终处于拉紧状态,保证第二线性拉伸弹簧(9)始终处于线性弹性状态。
  6. 根据权利要求1、2或5所述的桥梁三自由度耦合大振幅自由振动风洞试验装置,其特征在于,所述的第一定滑轮(7)与刚性吊臂(3)要有足够长的竖向距离,第二定滑轮(10)与轴承(11)要有足够长的水平距离,由此尽可能降低竖向和侧向振动分别对侧向和竖向刚度的影响。
  7. 根据权利要求3所述的桥梁三自由度耦合大振幅自由振动风洞试验装置,其特征在于,所述的第一定滑轮(7)与刚性吊臂(3)要有足够长的竖向距离,第二定滑轮(10)与轴承(11)要有足够长的水平距离,由此尽可能降低竖向和侧向振动分别对侧向和竖向刚度的影响。
  8. 根据权利要求4所述的桥梁三自由度耦合大振幅自由振动风洞试验装置,其特征在于,所述的第一定滑轮(7)与刚性吊臂(3)要有足够长的竖向距离,第二定滑轮(10)与轴承(11)要有足够长的水平距离,由此尽可能降低竖向和侧向振动分别对侧向和竖向刚度的影响。
PCT/CN2018/078117 2018-03-06 2018-03-06 一种三自由度大振幅自由振动风洞试验装置 WO2019169545A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/078117 WO2019169545A1 (zh) 2018-03-06 2018-03-06 一种三自由度大振幅自由振动风洞试验装置
US16/349,603 US10900865B2 (en) 2018-03-06 2018-03-06 Experimental setup for three-degree-of-freedom large-amplitude free vibration in wind tunnel test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078117 WO2019169545A1 (zh) 2018-03-06 2018-03-06 一种三自由度大振幅自由振动风洞试验装置

Publications (1)

Publication Number Publication Date
WO2019169545A1 true WO2019169545A1 (zh) 2019-09-12

Family

ID=67845528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078117 WO2019169545A1 (zh) 2018-03-06 2018-03-06 一种三自由度大振幅自由振动风洞试验装置

Country Status (2)

Country Link
US (1) US10900865B2 (zh)
WO (1) WO2019169545A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631801A (zh) * 2019-09-18 2019-12-31 西安交通大学 一种弯扭刚度解耦的颤振风洞试验装置
CN113970418A (zh) * 2021-10-26 2022-01-25 中国航空工业集团公司哈尔滨空气动力研究所 一种风洞试验变迎角装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10866159B2 (en) * 2018-02-09 2020-12-15 Dalian University Of Technology Large-amplitude vertical-torsional coupled free vibration device for wind tunnel test
WO2019169527A1 (zh) * 2018-03-05 2019-09-12 大连理工大学 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置
US11371908B2 (en) * 2020-02-06 2022-06-28 Dalian University Of Technology Wind tunnel testing device for torsional-vertical coupled free vibration with adjustable frequency ratio
CN111562080B (zh) * 2020-05-20 2022-06-10 长沙理工大学 一种竖向扭转耦合大振幅自由振动的风洞实验***
CN113029498B (zh) * 2021-03-24 2023-03-10 中国空气动力研究与发展中心高速空气动力研究所 一种风洞迎角机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU614669A1 (ru) * 1973-07-19 1981-03-23 Предприятие П/Я Г-4903 Подвеска дл испытаний динамическипОдОбНыХ МОдЕлЕй лЕТАТЕльНыХ АппАРА-TOB B АэРОдиНАМичЕСКиХ ТРубАХ МАлыХСКОРОСТЕй
JPH09210839A (ja) * 1996-01-30 1997-08-15 Mitsubishi Heavy Ind Ltd 構造物の風洞試験装置
CN107345846A (zh) * 2017-07-28 2017-11-14 大连理工大学 一种大振幅自由竖向和扭转耦合振动风洞试验装置
CN107588923A (zh) * 2017-07-28 2018-01-16 大连理工大学 一种大振幅自由扭转振动风洞试验装置
CN108225715A (zh) * 2018-03-06 2018-06-29 大连理工大学 一种三自由度大振幅自由振动风洞试验装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1538035A (en) * 1977-06-21 1979-01-10 Bulychev G Device suspending an aircraft model in a wind tunnel
JPS60164233A (ja) * 1984-02-06 1985-08-27 Kawasaki Heavy Ind Ltd 動的空気力の計測方法並びにその計測システム
JP2001041846A (ja) * 1999-08-02 2001-02-16 Nkk Corp 風洞試験の模型支持方法及びその装置
CN202793734U (zh) * 2012-05-11 2013-03-13 中国航空工业集团公司西安飞机设计研究所 一种新型全机低速颤振模型风洞试验悬挂***
CN104089753A (zh) * 2014-07-08 2014-10-08 中国空气动力研究与发展中心低速空气动力研究所 一种用于低速风洞柔性物测力的试验装置及其测试方法
CN104792490B (zh) * 2015-04-21 2018-04-13 中国航空工业集团公司沈阳飞机设计研究所 一种风洞颤振模型外挂物侧摆频率和偏航频率解耦装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU614669A1 (ru) * 1973-07-19 1981-03-23 Предприятие П/Я Г-4903 Подвеска дл испытаний динамическипОдОбНыХ МОдЕлЕй лЕТАТЕльНыХ АппАРА-TOB B АэРОдиНАМичЕСКиХ ТРубАХ МАлыХСКОРОСТЕй
JPH09210839A (ja) * 1996-01-30 1997-08-15 Mitsubishi Heavy Ind Ltd 構造物の風洞試験装置
CN107345846A (zh) * 2017-07-28 2017-11-14 大连理工大学 一种大振幅自由竖向和扭转耦合振动风洞试验装置
CN107588923A (zh) * 2017-07-28 2018-01-16 大连理工大学 一种大振幅自由扭转振动风洞试验装置
CN108225715A (zh) * 2018-03-06 2018-06-29 大连理工大学 一种三自由度大振幅自由振动风洞试验装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631801A (zh) * 2019-09-18 2019-12-31 西安交通大学 一种弯扭刚度解耦的颤振风洞试验装置
CN113970418A (zh) * 2021-10-26 2022-01-25 中国航空工业集团公司哈尔滨空气动力研究所 一种风洞试验变迎角装置

Also Published As

Publication number Publication date
US20200072699A1 (en) 2020-03-05
US10900865B2 (en) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2019169545A1 (zh) 一种三自由度大振幅自由振动风洞试验装置
US10866159B2 (en) Large-amplitude vertical-torsional coupled free vibration device for wind tunnel test
WO2019169527A1 (zh) 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置
CN108414186B (zh) 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置
CN108225715B (zh) 一种三自由度大振幅自由振动风洞试验装置
CN110207925B (zh) 自然风场中桥梁大振幅竖向和扭转耦合自由振动试验装置
CN108444670B (zh) 一种桥梁竖向和扭转耦合大振幅自由振动风洞试验装置
CN111562080B (zh) 一种竖向扭转耦合大振幅自由振动的风洞实验***
CN110192044A (zh) 紧凑的空间的椭圆体质量摆
US2215541A (en) Torsional damper for line conductors
KR20070053806A (ko) 건축물에서 진동을 댐핑하기 위한 장치
CN107797211A (zh) 一种光缆拉紧固定装置
US11371908B2 (en) Wind tunnel testing device for torsional-vertical coupled free vibration with adjustable frequency ratio
CN114778063A (zh) 竖弯和扭转独立支承大攻角大振幅节段模型风洞试验装置
JP4771642B2 (ja) 制振装置における制振体の固有振動数設定方法及び装置
CN112924132A (zh) 一种竖直扭转两自由度的节段模型风洞试验***
JPH0539606A (ja) 主塔の制振装置
EP1847771B1 (en) Balance system
RU2619135C1 (ru) Кино- или телеоператорский кран
JP2003336683A6 (ja) 制振装置における制振体の固有振動数設定方法
RU2619136C1 (ru) Кино- или телеоператорский кран
CN219510301U (zh) 一种高抗震性的钢结构
JP2009168248A (ja) 制振装置における制振体の固有振動数設定方法及び装置
JPH11264114A (ja) 吊橋のねじれ減衰向上方法及び吊橋
RU163704U1 (ru) Кино- или телеоператорский кран

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908474

Country of ref document: EP

Kind code of ref document: A1