WO2019163386A1 - Flake ice production apparatus and method for producing flake ice production apparatus - Google Patents

Flake ice production apparatus and method for producing flake ice production apparatus Download PDF

Info

Publication number
WO2019163386A1
WO2019163386A1 PCT/JP2019/002261 JP2019002261W WO2019163386A1 WO 2019163386 A1 WO2019163386 A1 WO 2019163386A1 JP 2019002261 W JP2019002261 W JP 2019002261W WO 2019163386 A1 WO2019163386 A1 WO 2019163386A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
flow path
flake ice
manufacturing apparatus
outer cylinder
Prior art date
Application number
PCT/JP2019/002261
Other languages
French (fr)
Japanese (ja)
Inventor
美雄 廣兼
伊朗 井筒
Original Assignee
ブランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブランテック株式会社 filed Critical ブランテック株式会社
Publication of WO2019163386A1 publication Critical patent/WO2019163386A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • F25C1/14Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes
    • F25C1/145Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes from the inner walls of cooled bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws

Definitions

  • the present invention relates to a flake ice manufacturing apparatus and a manufacturing method of the flake ice manufacturing apparatus.
  • a saddle-shaped inner cylinder and an outer cylinder arranged coaxially, a shaft arranged on the central axis of the inner cylinder and rotating, and an axially spaced interval are attached to the shaft.
  • a sherbet ice manufacturing apparatus (flake ice manufacturing apparatus) including a plurality of plate-shaped scrapers is described.
  • a raw water flow path is formed between the inner cylinder and the shaft.
  • a refrigerant flow path is provided between the inner cylinder and the outer cylinder.
  • This sherbet ice production device generates ice on the inner surface of the inner cylinder by cooling the raw water supplied to the raw water flow path with the refrigerant supplied to the refrigerant flow path.
  • the scraper rotates as the shaft rotates.
  • This sherbet ice manufacturing apparatus manufactures flake ice by scraping a scraper that rotates ice generated on the inner surface of the inner cylinder.
  • a refrigerant flow path is provided between an inner cylinder and an outer cylinder, and ice generated on the inner surface of the inner cylinder is scraped off by a scraper. Therefore, the inner cylinder is easily deformed.
  • a plurality of ring-shaped spacers are required between the inner cylinder and the outer cylinder. The inner cylinder of such a sherbet ice manufacturing apparatus is hardly deformed by the spacer.
  • the spacer is formed with a through-hole so that the refrigerant flows through the refrigerant flow path in order to partition the refrigerant flow path.
  • the refrigerant does not flow smoothly in the refrigerant flow path due to the spacer. That is, the spacer increases the flow resistance of the refrigerant flow path. Therefore, the flake ice manufacturing apparatus provided with the spacer in the refrigerant flow path contributes to a decrease in the cooling capacity of the refrigerant.
  • An object of the present invention is to provide a flake ice production apparatus and a production method of the flake ice production apparatus in which the refrigerant smoothly flows in the refrigerant flow path.
  • the flake ice manufacturing apparatus is A cylindrical metal plate having an inner surface for freezing the brine sprayed from the nozzle to make ice, A scraper that scrapes off the ice produced on the inner surface of the metal plate; A spiral refrigerant flow path provided on the outer surface of the metal plate; It has.
  • the coolant channel is surrounded by the metal plate, an outer cylinder arranged to surround the metal plate, and a spiral channel wall provided between the metal plate and the outer cylinder. It is formed.
  • the flake ice manufacturing apparatus may include outward flanges at both ends of the metal plate.
  • the metal plate, the outer cylinder, and the flow path wall may be welded in a liquid-tight manner.
  • the flake ice manufacturing apparatus may include a rotating shaft that holds and rotates the scraper on the central axis of the metal plate.
  • the metal plate of the flake ice manufacturing apparatus according to the present invention may be made of copper or a copper alloy.
  • the manufacturing method of the flake ice manufacturing apparatus A cylindrical metal plate having outward flanges at both ends, an outer cylinder disposed so as to surround the metal plate, and a spiral flow path wall provided between the metal plate and the outer cylinder
  • a manufacturing method of a flake ice manufacturing apparatus in which a spiral refrigerant flow path is formed surrounded by, Externally fitting the flow path wall to the outside of the metal plate not provided with at least one of the flanges; Welding the metal plate and the flow path wall; Externally fitting the outer cylinder to the flow path wall; Welding the flow path wall and the outer cylinder; Attaching the flange to the metal plate; The process of annealing the whole, Is included.
  • One aspect of the manufacturing method of the flake ice manufacturing apparatus according to the present invention is: Before welding the metal plate and the flow path wall, fitting a shape retainer in the metal plate; Removing the shape retainer after welding the flow path wall and the outer cylinder; Is included.
  • the present invention it is possible to provide a flake ice production apparatus and a production method of the flake ice production apparatus in which the refrigerant smoothly flows in the refrigerant flow path.
  • the flake ice production apparatus of this embodiment is an apparatus for producing flake ice obtained by processing ice produced from an aqueous solution (also referred to as brine) containing a solute into a flake shape.
  • the ice produced here is ice that has been solidified so that the concentration of the solute contained in the brine-in is substantially uniform, and that satisfies at least the following conditions (a) and (b) ( (Hereinafter also referred to as “hybrid ice”).
  • the temperature at the completion of melting is less than 0 ° C.
  • the rate of change in the solute concentration of the aqueous solution (brine) in which the ice has melted during the melting process is within 30%.
  • brine means an aqueous solution containing one or more solutes and having a low freezing point.
  • Specific examples of the brine include a sodium chloride aqueous solution (brine), a calcium chloride aqueous solution, a magnesium chloride aqueous solution, and an ethylene glycol aqueous solution.
  • the thermal conductivity of brine (brine) containing salt as a solute is about 0.58 W / m K, but the thermal conductivity of flake ice frozen from brine containing salt as a solute is about 2.2 W / m K. is there. That is, since the thermal conductivity of flake ice (solid) is higher than that of brine (liquid), flake ice (solid) can cool the article to be cooled earlier.
  • the flake ice production apparatus included in the flake ice production system can generate ice having a high cooling capacity (hybrid ice) that satisfies the above conditions (a) and (b).
  • This flake ice making apparatus sprays brine containing a solute to form a mist, freezes it by bringing it into contact with the inner wall of a drum that has been pre-cooled to a temperature below the freezing point of the brine, and directly onto the inner wall of the drum. Adhere to produce hybrid ice.
  • FIG. 5 is a cross-sectional perspective view showing an embodiment of the flake ice manufacturing apparatus 200.
  • the flake ice manufacturing apparatus 200 includes a drum 21, a rotating shaft 22, an injection unit 23, a scraper 24, a blade 25, a flake ice discharge port 26, an upper bearing member 27, an injection control unit 28, and heat protection.
  • a cover 29, a geared motor 30, a rotary joint 31, a refrigerant flow path 34, a rotation control unit 37, a bush 38, and a refrigerant supply unit 39 are provided.
  • the drum 21 is arranged coaxially with the inner cylinder 32 so as to surround the inner cylinder 32 and a bowl-shaped and cylindrical metal plate (hereinafter referred to as “inner cylinder”) 32. And a spiral refrigerant flow path 34 provided between the inner cylinder 32 and the outer cylinder 33.
  • the inner cylinder 32 is preferably made of copper or a copper alloy.
  • the refrigerant flow path 34 is formed in a spiral shape by a flow path wall 36 provided between the inner cylinder 32 and the outer cylinder 33.
  • the flow path wall 36 is formed in a spiral shape.
  • the channel wall 36 is not limited to the pitch and the inclination angle as shown in FIG.
  • the width of the flow path wall 36 matches the distance between the inner cylinder 32 and the outer cylinder 33. Therefore, the inner periphery of the flow path wall 36 is joined to the outer surface of the inner cylinder 32.
  • the outer periphery of the flow path wall 36 is joined to the inner surface of the outer cylinder 33.
  • Outward flanges 32 a and 32 b are provided at each end edge of the inner cylinder 32.
  • the flanges 32 a and 32 b straddle the inner cylinder 32 and the outer cylinder 33 and close each end of the refrigerant flow path 34.
  • Refrigerant is supplied to the refrigerant flow path 34 from the refrigerant supply unit 39 via the refrigerant pipe 45.
  • the inner peripheral surface of the inner cylinder 32 is frozen by the refrigerant.
  • the rotary shaft 22 is arranged on the central axis of the drum 21 and rotates around the material axis as a central axis using a geared motor 30 installed above the upper bearing member 27 as a power source.
  • the rotation speed of the geared motor 30 is controlled by the rotation control unit 37.
  • the injection unit 23 is composed of a plurality of pipes having nozzles 23a for injecting brine toward the wall surface of the inner cylinder 32 at the tip.
  • the plurality of pipes constituting the injection unit 23 extend radially from the rotary shaft 22 in the radial direction of the drum 21.
  • the injection unit 23 rotates together with the rotation shaft 22.
  • the brine sprayed from the nozzle 23a adheres to the wall surface of the inner cylinder 32 frozen by the refrigerant, and freezes rapidly without giving time to separate the solute and the solvent.
  • the scraper 24 is composed of a plurality of arms each having a blade 25 for stripping off the hybrid ice generated on the inner peripheral surface of the inner cylinder 32 at the tip.
  • the scraper 24 extends in the radial direction of the drum 21 and rotates together with the rotating shaft 22.
  • the plurality of arms constituting the scraper 24 are mounted so as to be symmetric with respect to the rotating shaft 22.
  • the scraper 24 of the flake ice manufacturing apparatus 200 shown in FIG. 1 is comprised by two arms, the number of arms is not specifically limited.
  • the blade 25 attached to the tip of the arm is made of a member having a length substantially equal to the entire length (total height) of the inner cylinder 32, and a plurality of saw teeth 25 a are formed at the end facing the inner peripheral surface of the inner cylinder 32. Is formed.
  • the hybrid ice generated on the inner peripheral surface of the inner cylinder 32 becomes flake ice by being peeled off by the blade 25.
  • the flake ice falls from the flake ice outlet 26.
  • the flake ice that has fallen from the flake ice discharge port 26 is stored in a flake ice storage tank 44 (see FIG. 6) disposed directly below the flake ice manufacturing apparatus 200.
  • the amount of flake ice produced may be adjusted by adjusting the amount of brine sprayed from the spraying unit 23. That is, the amount of the flake ice produced can be increased by increasing the amount of brine ejected from the ejection unit 23. Conversely, the amount of flake ice produced can be reduced by reducing the amount of brine ejected from the ejection unit 23.
  • the upper bearing member 27 has a shape in which the pan is inverted, and seals the upper surface of the drum 21.
  • a bush 38 that supports the rotating shaft 22 is fitted in the central portion of the upper bearing member 27.
  • the rotary shaft 22 is supported only by the upper bearing member 27, and the lower end portion of the rotary shaft 22 is not pivotally supported. That is, since there is no obstacle below the drum 21 when the flake ice peeled off by the blade 25 falls, the lower surface of the drum 21 becomes a flake ice discharge port 26 for discharging the flake ice.
  • the injection control unit 28 adjusts the amount of brine injected from the injection unit 23 when the injection unit 23 injects brine.
  • a specific method for adjusting the amount of brine to be ejected from the ejection unit 23 is not particularly limited.
  • the amount of brine to be injected may be adjusted by adjusting the number of pipes that inject brine and the number of pipes that do not inject brine.
  • the amount of brine to be injected may be adjusted by increasing or decreasing the amount of brine sent to the plurality of pipes for injecting brine.
  • the injection control unit 28 performs variable control of the injection pressure when the injection unit 23 injects brine.
  • the volume of the brine adhering to the inner peripheral surface of the inner cylinder 32 can be controlled. That is, the brine particles adhering to the inner peripheral surface of the inner cylinder 32 are larger when the brine is jetted in a liquid state with a weak pressure than when the brine is jetted in a mist form with a strong pressure. For this reason, the hybrid ice generated by jetting brine in a liquid state with a weak pressure is less susceptible to the temperature of the air inside the drum 21 than the temperature of the inner peripheral surface of the inner cylinder 32.
  • the hybrid ice produced by jetting the brine in a liquid state at a weak pressure is less likely to melt than when it is produced by jetting the brine in a mist at a strong pressure.
  • the specific method by which the injection control unit 28 variably controls the injection pressure of the brine is not particularly limited.
  • the injection pressure may be variably controlled by adjusting the diameters of the injection ports (not shown) of a plurality of pipes for injecting brine.
  • the thermal protection cover 29 has a cylindrical shape and seals the side surface of the drum 21.
  • the refrigerant supply unit 39 supplies the refrigerant that freezes the inner peripheral surface of the inner cylinder 32 to the refrigerant flow path 34 via the refrigerant pipe 45.
  • the refrigerant supplied to the refrigerant flow path 34 circulates between the refrigerant flow path 34 and the refrigerant supply unit 39 via the refrigerant pipe 45 (see FIG. 6). Thereby, the refrigerant
  • the spiral flow path wall 36 is fitted on the inner cylinder 32. Therefore, at least one of the flanges 32 a and 32 b is not fixed to the inner cylinder 32.
  • a shape retainer 50 as shown in FIG. 4 is fitted into the inner surface of the inner cylinder 32 in which the flow path wall 36 is fitted.
  • the shape-retaining tool 50 is provided so as to extend the bar 51 on the outside of the plurality of bars 51 arranged radially, a ring part 52 connecting the tip parts of the bars 51, and the ring part 52. And a fixing portion 53.
  • the fixing portion 53 includes a screw-shaped portion (not numbered) and a nut member (not numbered) that advances and retreats on the tip side of the screw-shaped portion.
  • a plurality of such shape holders 50 are fitted from one end side to the other end side of the inner cylinder 32, although not shown.
  • the shape retainer 50 is placed in the inner cylinder 32 in a state where the nut member is turned and the fixing portion 53 is shortened.
  • the fixing portion 53 is extended so that the nut member is turned at a predetermined position and the tip of the fixing portion 53 presses the inner surface of the inner cylinder 32.
  • the inner surface of the inner cylinder 32 is made a perfect circle by the shape retainer 50. In such an operation, the shape retainer 50 can be easily fixed in the inner cylinder 32 by setting the inner cylinder 32 in the recumbent posture.
  • the flow path wall 36 and the inner cylinder 32 are spot welded at a plurality of locations.
  • the flow path wall 36 is positioned, that is, not displaced.
  • the inner cylinder 32 is being fixed by the shape retainer 50 at the time of spot welding, it maintains a perfect circle, without thermally deforming.
  • the inner periphery of the flow path wall 36 and the inner cylinder 32 are continuously welded so that the refrigerant path 35 is in a liquid-tight state. Even during this welding, the inner cylinder 32 is not thermally deformed because it is fixed by the shape retainer 50.
  • the flow path wall 36 is fitted by the outer cylinder 33.
  • a closed space surrounded by the inner cylinder 32, the flow path wall 36, and the outer cylinder 33 is a refrigerant flow path 34.
  • the outer periphery of the flow path wall 36 and the outer cylinder 33 are continuously welded.
  • the other flange 32 b is fixed to the inner cylinder 32. Both flanges 32 a and 32 b are also fixed to the outer cylinder 33 and close the refrigerant flow path 34.
  • the inner cylinder 32, the flow path wall 36, and the outer cylinder 33 are welded to leave a welding mark (not shown).
  • the entire drum 21 is annealed to remove the stress. Finally, the drum 21 is completed by scraping the inner surface of the inner cylinder 32 so that the inner surface of the inner cylinder 32 becomes a perfect circle.
  • FIG. 6 is a schematic diagram showing an outline of the flake ice production system 300.
  • the flake ice production system 300 includes a brine storage tank 40, a pump 41, a brine pipe 42, a brine tank 43, a flake ice storage tank 44, a refrigerant pipe 45, a freezing point adjustment unit 46, and a flake ice production apparatus. 200.
  • the brine storage tank 40 stores brine as a raw material for hybrid ice.
  • the brine stored in the brine storage tank 40 is supplied to the injection unit 23 via the brine pipe 42 by operating the pump 41.
  • the brine supplied to the injection unit 23 becomes a raw material for generating hybrid ice.
  • the brine tank 43 supplies the brine to the brine storage tank 40 when the brine stored in the brine storage tank 40 decreases. Note that the brine that has flowed down without being frozen on the inner peripheral surface of the inner cylinder 32 is stored in the brine storage tank 40 and is supplied again to the injection unit 23 via the brine pipe 42 when the pump 41 is operated.
  • the flake ice storage tank 44 is disposed immediately below the flake ice manufacturing apparatus 200 and stores the flake ice that has fallen from the flake ice discharge port 26 of the flake ice manufacturing apparatus 200.
  • the freezing point adjustment unit 46 adjusts the freezing point of the brine supplied from the brine tank 43 to the brine storage tank 40. For example, when the brine is salt water, the freezing point of the salt water varies depending on the concentration. For this reason, the freezing point adjustment unit 46 adjusts the concentration of the salt water stored in the brine storage tank 40.
  • the operation of the flake ice production system 300 including the flake ice production apparatus 200 will be described on the assumption that the brine is salt water.
  • the refrigerant is supplied from the refrigerant supply unit 39 to the refrigerant flow path 34 formed in the drum 21. Since the refrigerant flow path 34 is formed in a spiral shape, the refrigerant flows down while turning and hardly receives flow resistance. Therefore, if the temperature of the inner peripheral surface of the inner cylinder 32 is set to be about ⁇ 10 ° C. lower than the freezing point of the salt water, the flake ice manufacturing apparatus 200 efficiently freezes the salt water adhering to the inner peripheral surface of the inner cylinder 32. Can be made.
  • the pump 41 supplies brine, which is brine, to the injection unit 23 from the brine storage tank 40 via the brine pipe 42.
  • brine which is brine
  • the injection unit 23 injects salt water toward the inner peripheral surface of the inner cylinder 32.
  • the salt water freezes instantly and becomes hybrid ice immediately before it is given time to separate the salt as a solute and the water as a solvent. In this way, hybrid ice is generated.
  • the hybrid ice generated on the inner peripheral surface of the inner cylinder 32 is peeled off by the scraper 24 descending the inner cylinder 32.
  • the hybrid ice peeled off by the scraper 24 falls from the flake ice discharge port 26 as flake ice.
  • the flake ice that has fallen from the flake ice discharge port 26 is stored in a flake ice storage tank 44 disposed immediately below the flake ice manufacturing apparatus 200.
  • the salt water that has flown down the inner peripheral surface of the inner cylinder 32 without being frozen into hybrid ice is stored in the brine storage tank 40 and is injected through the brine pipe 42 by operating the pump 41. It is supplied again to the section 23. Note that when the brine in the brine storage tank 40 decreases, the brine is supplied from the brine tank 43 to the brine storage tank 40.
  • the ice slurry manufacturing apparatus mixes flake ice and brine thus manufactured at a predetermined ratio to manufacture an ice slurry.
  • flake ice (solid) By adding flake ice (solid) to the ice slurry, the constituent ratio of flake ice (solid) and brine (liquid) contained in the ice slurry can be easily adjusted. Since the ice slurry has fluidity, it can come into contact with the article to be frozen more uniformly than the state of hard flake ice.
  • This ice slurry satisfies the conditions that (a) the temperature at the completion of melting is less than 0 ° C., and (b) the rate of change in the solute concentration of brine in which the ice melted during the melting process is within 30%.
  • the ice slurry can take a large amount of latent heat from the surroundings when it melts, but the temperature does not rise while the hybrid ice remains, without completely melting. Therefore, the article to be frozen can be kept frozen for a long time.
  • the brine is exemplified by salt water (sodium chloride aqueous solution) or magnesium chloride aqueous solution in the above embodiment, but is not particularly limited.
  • salt water sodium chloride aqueous solution
  • magnesium chloride aqueous solution in the above embodiment, but is not particularly limited.
  • an aqueous calcium chloride solution, ethylene glycol or the like can be employed.
  • the refrigerant flow path 34 is formed by being surrounded by the inner cylinder 32, the outer cylinder 33, and the flow path wall 36.
  • the refrigerant flow path 34 may be configured by a hook-shaped member that spirally winds the outer surface of the inner cylinder 32.
  • the shape retainer 50 is used when the flow path wall 36 for forming the coolant flow path 34 is welded to the inner cylinder 32 or the outer cylinder 33.
  • the inner cylinder 32 and the outer cylinder 33 may be welded without using the shape retainer 50 as long as the inner cylinder 32 and the outer cylinder 33 have rigidity that does not cause thermal deformation.
  • the flow path wall 36 and the inner cylinder 32 and the outer cylinder 33 may be integrated by an adhesive instead of welding.
  • the shape retainer 50 is not limited to the type shown in FIG. 5, A various type can be used.
  • the flake ice manufacturing apparatus 200 to which the present invention is applied only needs to have the following configuration, and can take various embodiments.
  • the flake ice manufacturing apparatus 200 to which the present invention is applied is A cylindrical metal plate (inner cylinder) 32 having an inner surface for freezing the brine sprayed from the nozzle to make ice, A scraper 24 that scrapes off the ice formed on the inner surface of the metal plate 32; A spiral refrigerant flow path 34 provided on the outer surface of the metal plate 32; It has.
  • the spiral refrigerant flow path 34 is provided on the outer surface of the metal plate 32, so that the refrigerant flows smoothly in the refrigerant flow path 34, and the inner surface of the metal plate 32 is It is cooled efficiently.
  • the refrigerant flow path 34 includes a metal plate 32, an outer cylinder 33 disposed so as to surround the metal plate 32, a spiral flow path wall 36 provided between the metal plate 32 and the outer cylinder 33, It is surrounded by According to the flake ice manufacturing apparatus 200, the spiral channel is provided in a space surrounded by the cylindrical metal plate 32, the outer cylinder 33, and the spiral channel wall 36.
  • the flake ice manufacturing apparatus to which the present invention is applied includes flanges 32 a and 32 b facing outward at both ends of the metal plate 32. According to the flake ice manufacturing apparatus 200, when the refrigerant flow path 34 is provided between the cylindrical metal plate 32 and the outer cylinder 33, both ends of the refrigerant flow path 34 are closed by the flanges 32a and 32b.
  • the metal plate 32, the outer cylinder 33, and the flow path wall 36 are welded in a liquid-tight manner. According to the flake ice manufacturing apparatus 200, it is possible to prevent the refrigerant from leaking out of the refrigerant flow path 34 formed by the metal plate 32, the outer cylinder 33, and the flow path wall 36.
  • a rotation shaft 22 that holds and rotates the scraper 24 on the central axis of the metal plate 32 is provided. According to the flake ice manufacturing apparatus 200, the scraper 24 is held by the rotating shaft 22, whereby the scraper 24 is rotated by rotating the rotating shaft 22.
  • the metal plate 32 is made of copper or a copper alloy. According to the flake ice manufacturing apparatus 200, the cold heat of the refrigerant can be efficiently transferred to the inner surface of the metal plate 32 by making the metal plate 32 made of copper or copper alloy.
  • a cylindrical metal plate 32 provided with outward flanges 32 a and 32 b at both ends, an outer cylinder 33 disposed so as to surround the metal plate 32, and between the metal plate 32 and the outer cylinder 33.
  • a flake ice manufacturing apparatus in which a spiral coolant channel 34 is formed surrounded by a spiral channel wall 36, A step of externally fitting the flow path wall 36 to the outside of the metal plate 32 not provided with at least one of the flanges 32a and 32b; Welding the metal plate 32 and the flow path wall 36; A step of fitting the outer cylinder 33 to the flow path wall 36; Welding the flow path wall 36 and the outer cylinder 33; Attaching the flanges 32a and 32b to the metal plate 32; The process of annealing the whole, Is included.
  • the spiral flow path wall 36 is fitted from one end side of the cylindrical metal plate 32 not provided with the flange, and the metal plate 32 and the flow path wall are fitted. 36 can be welded together. And the outer cylinder 33 fits the flow-path wall 36, and the flow-path wall 36 and the outer cylinder 33 can be welded. By welding the metal plate 32, the flow path wall 36, and the outer cylinder 33, the refrigerant flow path 34 is liquid-tight.
  • the metal plate 32 is fixed to the shape retainer 50 and is not thermally deformed when the metal plate 32 is welded. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Confectionery (AREA)

Abstract

Provided are: a flake ice production apparatus in which a refrigerant flows smoothly within a refrigerant circuit; and a method for producing a flake ice production apparatus. This flake ice production apparatus 200 comprises: a cylindrical metal plate (inner cylinder) 32 having an inner surface on which brine sprayed from a nozzle 23a is frozen to produce ice; a scraper for scraping off the ice formed on the inner surface of the metal plate 32; and a helical refrigerant circuit 34 provided to the outer surface of the metal plate 32. The refrigerant circuit 34 is formed so as to be surrounded by: the metal plate 32; an outer cylinder 33 positioned so as to surround said metal plate 32; and a helical flowpath wall 36 provided between the metal plate 32 and the outer cylinder 33.

Description

フレークアイス製造装置及びフレークアイス製造装置の製造方法Flake ice manufacturing apparatus and manufacturing method of flake ice manufacturing apparatus
 本発明は、フレークアイス製造装置及びフレークアイス製造装置の製造方法に関する。 The present invention relates to a flake ice manufacturing apparatus and a manufacturing method of the flake ice manufacturing apparatus.
 食品等の鮮度を保持したり、蓄冷剤を冷却したりするために、氷を薄片状に加工したフレークアイスが使用されている。従来より、フレークアイスを製造するための装置が種々提案されている。 In order to maintain the freshness of foods, etc., or to cool the regenerator, flake ice processed into flakes is used. Conventionally, various apparatuses for producing flake ice have been proposed.
 例えば、特許文献1には、同軸に配置された竪型の内筒及び外筒と、この内筒の中心軸に配置されて回転するシャフトと、このシャフトに軸方向に間隔を空けて取り付けられた複数枚の板状のスクレーパとを備えたシャーベット氷製造装置(フレークアイス製造装置)が記載されている。このシャーベット氷製造装置は、内筒とシャフトとの間が原水流路とされている。このシャーベット氷製造装置は、内筒と外筒の間が冷媒流路とされている。 For example, in Patent Document 1, a saddle-shaped inner cylinder and an outer cylinder arranged coaxially, a shaft arranged on the central axis of the inner cylinder and rotating, and an axially spaced interval are attached to the shaft. In addition, a sherbet ice manufacturing apparatus (flake ice manufacturing apparatus) including a plurality of plate-shaped scrapers is described. In this sherbet ice manufacturing apparatus, a raw water flow path is formed between the inner cylinder and the shaft. In this sherbet ice manufacturing apparatus, a refrigerant flow path is provided between the inner cylinder and the outer cylinder.
 このシャーベット氷製造装置は、原水流路に供給された原水が、冷媒流路に供給された冷媒によって冷却されることで、内筒の内面に氷を生成する。このシャーベット氷製造装置は、シャフトが回転することによって、スクレーパが回転する。このシャーベット氷製造装置は、内筒の内面に生成された氷を回転するスクレーパが掻き取ることで、フレークアイスを製造する。 This sherbet ice production device generates ice on the inner surface of the inner cylinder by cooling the raw water supplied to the raw water flow path with the refrigerant supplied to the refrigerant flow path. In this sherbet ice manufacturing apparatus, the scraper rotates as the shaft rotates. This sherbet ice manufacturing apparatus manufactures flake ice by scraping a scraper that rotates ice generated on the inner surface of the inner cylinder.
登録実用新案第3208296号公報Registered Utility Model No. 3208296
 特許文献1に開示されたシャーベット氷製造装置は、内筒と外筒との間に冷媒流路を設け、内筒の内面に生成された氷がスクレーパによって掻き取られる。したがって、内筒は、変形しやすい状態となる。特許文献1では、明記されていないが、内筒と外筒との間に複数のリング状のスペーサが必要である。このようなシャーベット氷製造装置の内筒は、スペーサによって変形しにくくなる。 In the sherbet ice manufacturing apparatus disclosed in Patent Document 1, a refrigerant flow path is provided between an inner cylinder and an outer cylinder, and ice generated on the inner surface of the inner cylinder is scraped off by a scraper. Therefore, the inner cylinder is easily deformed. Although not specified in Patent Document 1, a plurality of ring-shaped spacers are required between the inner cylinder and the outer cylinder. The inner cylinder of such a sherbet ice manufacturing apparatus is hardly deformed by the spacer.
 スペーサは、冷媒流路を仕切るため、冷媒流路内を冷媒が流れるように、貫通穴が形成される。しかし、冷媒は、スペーサによって冷媒流路内をスムーズに流れない。つまり、スペーサは、冷媒流路の流動抵抗を大きくする。したがって、冷媒流路にスペーサが備えたフレークアイス製造装置は、冷媒の冷却能力を低下させる一因となる。 The spacer is formed with a through-hole so that the refrigerant flows through the refrigerant flow path in order to partition the refrigerant flow path. However, the refrigerant does not flow smoothly in the refrigerant flow path due to the spacer. That is, the spacer increases the flow resistance of the refrigerant flow path. Therefore, the flake ice manufacturing apparatus provided with the spacer in the refrigerant flow path contributes to a decrease in the cooling capacity of the refrigerant.
 本発明は、冷媒が冷媒流路内をスムーズに流れるようにしたフレークアイス製造装置及びフレークアイス製造装置の製造方法を提供することを目的とする。 An object of the present invention is to provide a flake ice production apparatus and a production method of the flake ice production apparatus in which the refrigerant smoothly flows in the refrigerant flow path.
 本発明に係るフレークアイス製造装置は、
 ノズルから噴射されたブラインを凍結させて製氷する内面を有する筒状の金属プレートと、
 前記金属プレートの内面に製氷された氷を掻き取るスクレーパと、
 前記金属プレートの外面に設けられた螺旋状の冷媒流路と、
 を備えている。
The flake ice manufacturing apparatus according to the present invention is
A cylindrical metal plate having an inner surface for freezing the brine sprayed from the nozzle to make ice,
A scraper that scrapes off the ice produced on the inner surface of the metal plate;
A spiral refrigerant flow path provided on the outer surface of the metal plate;
It has.
 本発明に係るフレークアイス製造装置の一態様は、
 前記冷媒流路は、前記金属プレートと、当該金属プレートを囲むように配置された外筒と、前記金属プレートと外筒との間に設けられた螺旋状の流路壁と、に囲まれて形成される。
One aspect of the flake ice manufacturing apparatus according to the present invention is:
The coolant channel is surrounded by the metal plate, an outer cylinder arranged to surround the metal plate, and a spiral channel wall provided between the metal plate and the outer cylinder. It is formed.
 本発明に係るフレークアイス製造装置は、前記金属プレートの両端部に外向きのフランジを備えていてよい。 The flake ice manufacturing apparatus according to the present invention may include outward flanges at both ends of the metal plate.
 本発明に係るフレークアイス製造装置の一態様において、前記金属プレートと前記外筒と前記流路壁とは、液密に溶接されていてよい。 In one aspect of the flake ice manufacturing apparatus according to the present invention, the metal plate, the outer cylinder, and the flow path wall may be welded in a liquid-tight manner.
 本発明に係るフレークアイス製造装置は、前記金属プレートの中心軸に前記スクレーパを保持して回転させる回転軸を備えていてよい。
 本発明に係るフレークアイス製造装置の前記金属プレートは、銅製又は銅合金製であってよい。
The flake ice manufacturing apparatus according to the present invention may include a rotating shaft that holds and rotates the scraper on the central axis of the metal plate.
The metal plate of the flake ice manufacturing apparatus according to the present invention may be made of copper or a copper alloy.
 本発明に係るフレークアイス製造装置の製造方法は、
 両端部に外向きのフランジを設けた筒状の金属プレートと、当該金属プレートを囲むように配置された外筒と、前記金属プレートと外筒との間に設けられた螺旋状の流路壁と、に囲まれて螺旋状の冷媒流路を形成したフレークアイス製造装置の製造方法であって、
 少なくとも一方の前記フランジを備えていない前記金属プレートの外側に前記流路壁を外嵌する工程と、
 前記金属プレートと前記流路壁とを溶接する工程と、
 前記流路壁に前記外筒を外嵌する工程と、
 前記流路壁と前記外筒とを溶接する工程と、
 前記金属プレートに前記フランジを取り付ける工程と、
 全体を焼きなます工程と、
 を含んでいる。
The manufacturing method of the flake ice manufacturing apparatus according to the present invention,
A cylindrical metal plate having outward flanges at both ends, an outer cylinder disposed so as to surround the metal plate, and a spiral flow path wall provided between the metal plate and the outer cylinder And a manufacturing method of a flake ice manufacturing apparatus in which a spiral refrigerant flow path is formed surrounded by,
Externally fitting the flow path wall to the outside of the metal plate not provided with at least one of the flanges;
Welding the metal plate and the flow path wall;
Externally fitting the outer cylinder to the flow path wall;
Welding the flow path wall and the outer cylinder;
Attaching the flange to the metal plate;
The process of annealing the whole,
Is included.
 本発明に係るフレークアイス製造装置の製造方法の一態様は、
 前記金属プレートと前記流路壁とを溶接する前に、前記金属プレート内に保形具を嵌め込む工程と、
 前記流路壁と前記外筒とを溶接した後に、前記保形具を外す工程と、
 を含んでいる。
One aspect of the manufacturing method of the flake ice manufacturing apparatus according to the present invention is:
Before welding the metal plate and the flow path wall, fitting a shape retainer in the metal plate;
Removing the shape retainer after welding the flow path wall and the outer cylinder;
Is included.
 本発明によれば、冷媒が冷媒流路内をスムーズに流れるようにしたフレークアイス製造装置及びフレークアイス製造装置の製造方法を提供することができる。 According to the present invention, it is possible to provide a flake ice production apparatus and a production method of the flake ice production apparatus in which the refrigerant smoothly flows in the refrigerant flow path.
本発明に係るフレークアイス製造装置に備えられたドラムの一実施形態を示す一部断面斜視図である。It is a partial cross section perspective view which shows one Embodiment of the drum with which the flake ice manufacturing apparatus which concerns on this invention was equipped. 本発明に係るフレークアイス製造装置に備えられた流路壁の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the flow-path wall with which the flake ice manufacturing apparatus which concerns on this invention was equipped. 本発明に係るフレークアイス製造装置に備えられたドラムの一実施形態を示す断面正面図である。It is a cross-sectional front view which shows one Embodiment of the drum with which the flake ice manufacturing apparatus which concerns on this invention was equipped. 本発明に係るフレークアイス製造装置に備えられたドラムの製造途中の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment in the middle of manufacture of the drum with which the flake ice manufacturing apparatus which concerns on this invention was equipped. 本発明に係るフレークアイス製造装置の概要を示す断面斜視図である。It is a section perspective view showing the outline of the flake ice manufacturing device concerning the present invention. 本発明に係るフレークアイス製造装置を含むフレークアイス製造システムの概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the flake ice manufacturing system containing the flake ice manufacturing apparatus which concerns on this invention.
 本実施形態のフレークアイス製造装置は、溶質を含有する水溶液(ブラインともいう)から生成した氷をフレーク(薄片)状に加工したフレークアイスを製造する装置である。ただし、ここで生成される氷は、ブラインインに含有される溶質の濃度が略均一となるように凝固させた氷であって、少なくとも以下の(a)及び(b)の条件を満たす氷(以下「ハイブリッドアイス」とも呼ぶ)のことをいう。
 (a)融解完了時の温度が0℃未満である
 (b)融解過程で氷が融解した水溶液(ブライン)の溶質濃度の変化率が30%以内である
The flake ice production apparatus of this embodiment is an apparatus for producing flake ice obtained by processing ice produced from an aqueous solution (also referred to as brine) containing a solute into a flake shape. However, the ice produced here is ice that has been solidified so that the concentration of the solute contained in the brine-in is substantially uniform, and that satisfies at least the following conditions (a) and (b) ( (Hereinafter also referred to as “hybrid ice”).
(A) The temperature at the completion of melting is less than 0 ° C. (b) The rate of change in the solute concentration of the aqueous solution (brine) in which the ice has melted during the melting process is within 30%.
 ここで、「ブライン」とは、1種類又は2種類以上の溶質を含有する、凝固点の低い水溶液を意味する。ブラインの具体例としては、例えば、塩化ナトリウム水溶液(塩水)や塩化カルシウム水溶液、塩化マグネシウム水溶液、エチレングリコール水溶液等がある。 Here, “brine” means an aqueous solution containing one or more solutes and having a low freezing point. Specific examples of the brine include a sodium chloride aqueous solution (brine), a calcium chloride aqueous solution, a magnesium chloride aqueous solution, and an ethylene glycol aqueous solution.
 食塩を溶質とするブライン(塩水)の熱伝導率は、約0.58W/m Kであるが、食塩を溶質とするブラインが凍結したフレークアイスの熱伝導率は約2.2W/m Kである。即ち、熱伝導率は、ブライン(液体)よりもフレークアイス(固体)の方が高いため、フレークアイス(固体)の方が被冷却品を早く冷却することができることになる。 The thermal conductivity of brine (brine) containing salt as a solute is about 0.58 W / m K, but the thermal conductivity of flake ice frozen from brine containing salt as a solute is about 2.2 W / m K. is there. That is, since the thermal conductivity of flake ice (solid) is higher than that of brine (liquid), flake ice (solid) can cool the article to be cooled earlier.
 このようなブラインを容器に溜めて外部から冷却しても、ハイブリッドアイスと同等の性質を有する氷を製造することはできない。これは、冷却速度が十分でないことに起因すると考えられる。 Even if such brine is stored in a container and cooled from the outside, ice having the same properties as hybrid ice cannot be produced. This is considered to be due to the insufficient cooling rate.
 しかしながら、フレークアイス製造システムに含まれるフレークアイス製造装置では、上記(a)及び(b)の条件を満たす冷却能の高い氷(ハイブリッドアイス)を生成することができる。このフレークアイス製造装置は、溶質を含有するブラインを噴射することで霧状にし、これをブラインの凝固点以下の温度に予め冷却されたドラムの内壁に接触させることによって凍結させ、そのままドラムの内壁に付着させ、ハイブリッドアイスを生成する。 However, the flake ice production apparatus included in the flake ice production system can generate ice having a high cooling capacity (hybrid ice) that satisfies the above conditions (a) and (b). This flake ice making apparatus sprays brine containing a solute to form a mist, freezes it by bringing it into contact with the inner wall of a drum that has been pre-cooled to a temperature below the freezing point of the brine, and directly onto the inner wall of the drum. Adhere to produce hybrid ice.
 図5は、フレークアイス製造装置200の一実施形態を示す断面斜視図である。フレークアイス製造装置200は、ドラム21と、回転軸22と、噴射部23と、スクレーパ24と、ブレード25と、フレークアイス排出口26と、上部軸受部材27と、噴射制御部28と、防熱保護カバー29と、ギヤードモータ30と、ロータリージョイント31と、冷媒流路34と、回転制御部37と、ブッシュ38と、冷媒供給部39とを備える。 FIG. 5 is a cross-sectional perspective view showing an embodiment of the flake ice manufacturing apparatus 200. The flake ice manufacturing apparatus 200 includes a drum 21, a rotating shaft 22, an injection unit 23, a scraper 24, a blade 25, a flake ice discharge port 26, an upper bearing member 27, an injection control unit 28, and heat protection. A cover 29, a geared motor 30, a rotary joint 31, a refrigerant flow path 34, a rotation control unit 37, a bush 38, and a refrigerant supply unit 39 are provided.
 図1乃至図3に示すように、ドラム21は、竪型で筒状の金属プレート(以下、「内筒」という。)32と、この内筒32を囲むように内筒32と同軸に配置された竪型の外筒33と、内筒32と外筒33との間に設けられた螺旋状の冷媒流路34とで構成される。内筒32は、好ましくは、銅製又は銅合金製とされる。 As shown in FIGS. 1 to 3, the drum 21 is arranged coaxially with the inner cylinder 32 so as to surround the inner cylinder 32 and a bowl-shaped and cylindrical metal plate (hereinafter referred to as “inner cylinder”) 32. And a spiral refrigerant flow path 34 provided between the inner cylinder 32 and the outer cylinder 33. The inner cylinder 32 is preferably made of copper or a copper alloy.
 冷媒流路34は、内筒32と外筒33との間に設けられた流路壁36によって螺旋状に形成される。流路壁36は、図2に示すように、螺旋状に形成されている。流路壁36は、図2に示したようなピッチや傾斜角度に限定されず、図示しない種々のピッチや傾斜角度を採用できることはいうまでもない。流路壁36の幅は、内筒32と外筒33の間隔に一致する。したがって、流路壁36の内周は、内筒32の外面に接合する。流路壁36の外周は、外筒33の内面に接合する。 The refrigerant flow path 34 is formed in a spiral shape by a flow path wall 36 provided between the inner cylinder 32 and the outer cylinder 33. As shown in FIG. 2, the flow path wall 36 is formed in a spiral shape. Needless to say, the channel wall 36 is not limited to the pitch and the inclination angle as shown in FIG. The width of the flow path wall 36 matches the distance between the inner cylinder 32 and the outer cylinder 33. Therefore, the inner periphery of the flow path wall 36 is joined to the outer surface of the inner cylinder 32. The outer periphery of the flow path wall 36 is joined to the inner surface of the outer cylinder 33.
 内筒32の各端縁には外向きのフランジ32a,32bが設けられている。フランジ32a,32bは、内筒32と外筒33とに跨り、冷媒流路34の各端部を閉じる。冷媒流路34には、冷媒供給部39から冷媒配管45を介して冷媒が供給される。冷媒によって内筒32の内周面が冷凍される。 Outward flanges 32 a and 32 b are provided at each end edge of the inner cylinder 32. The flanges 32 a and 32 b straddle the inner cylinder 32 and the outer cylinder 33 and close each end of the refrigerant flow path 34. Refrigerant is supplied to the refrigerant flow path 34 from the refrigerant supply unit 39 via the refrigerant pipe 45. The inner peripheral surface of the inner cylinder 32 is frozen by the refrigerant.
 回転軸22は、ドラム21の中心軸上に配置され、上部軸受部材27の上方に設置されたギヤードモータ30を動力源とし、中心軸として材軸回りに回転する。ギヤードモータ30の回転速度は、回転制御部37によって制御される。 The rotary shaft 22 is arranged on the central axis of the drum 21 and rotates around the material axis as a central axis using a geared motor 30 installed above the upper bearing member 27 as a power source. The rotation speed of the geared motor 30 is controlled by the rotation control unit 37.
 噴射部23は、内筒32の壁面に向けてブラインを噴射するノズル23aを先端部に有する複数のパイプで構成される。噴射部23を構成する複数のパイプは、回転軸22からドラム21の半径方向に放射状に延出している。噴射部23は、回転軸22と共に回転する。ノズル23aから噴射されたブラインは、冷媒によって冷凍された内筒32の壁面に付着し、溶質と溶媒とに分離する時間も与えられずに急速に凍結する。 The injection unit 23 is composed of a plurality of pipes having nozzles 23a for injecting brine toward the wall surface of the inner cylinder 32 at the tip. The plurality of pipes constituting the injection unit 23 extend radially from the rotary shaft 22 in the radial direction of the drum 21. The injection unit 23 rotates together with the rotation shaft 22. The brine sprayed from the nozzle 23a adheres to the wall surface of the inner cylinder 32 frozen by the refrigerant, and freezes rapidly without giving time to separate the solute and the solvent.
 スクレーパ24は、内筒32の内周面に生成されたハイブリッドアイスを剥取るブレード25を先端部に備える複数のアームによって構成される。スクレーパ24は、ドラム21の半径方向に延出し、回転軸22と共に回転する。スクレーパ24を構成する複数のアームは、回転軸22に関して対称となるように装着されている。図1に示すフレークアイス製造装置200のスクレーパ24は、2本のアームによって構成されているが、アームの本数は特に限定されない。 The scraper 24 is composed of a plurality of arms each having a blade 25 for stripping off the hybrid ice generated on the inner peripheral surface of the inner cylinder 32 at the tip. The scraper 24 extends in the radial direction of the drum 21 and rotates together with the rotating shaft 22. The plurality of arms constituting the scraper 24 are mounted so as to be symmetric with respect to the rotating shaft 22. Although the scraper 24 of the flake ice manufacturing apparatus 200 shown in FIG. 1 is comprised by two arms, the number of arms is not specifically limited.
 アームの先端に装着されているブレード25は、内筒32の全長(全高)に略等しい長さを有する部材からなり、内筒32の内周面に対向する端部には複数の鋸歯25aが形成されている。 The blade 25 attached to the tip of the arm is made of a member having a length substantially equal to the entire length (total height) of the inner cylinder 32, and a plurality of saw teeth 25 a are formed at the end facing the inner peripheral surface of the inner cylinder 32. Is formed.
 内筒32の内周面に生成されたハイブリッドアイスは、ブレード25によって剥取られることによりフレークアイスとなる。フレークアイスは、フレークアイス排出口26から落下する。フレークアイス排出口26から落下したフレークアイスは、フレークアイス製造装置200の直下に配置されたフレークアイス貯留タンク44(図6参照)内に貯えられる。 The hybrid ice generated on the inner peripheral surface of the inner cylinder 32 becomes flake ice by being peeled off by the blade 25. The flake ice falls from the flake ice outlet 26. The flake ice that has fallen from the flake ice discharge port 26 is stored in a flake ice storage tank 44 (see FIG. 6) disposed directly below the flake ice manufacturing apparatus 200.
 また、噴射部23から噴射されるブラインの量を調節することにより、製造されるフレークアイスの量を調節してもよい。即ち、噴射部23から噴射されるブラインの量を増やすことにより、製造されるフレークアイスの量を増やすことができる。また反対に、噴射部23から噴射されるブラインの量を減らすことにより、製造されるフレークアイスの量を減らすことができる。 Also, the amount of flake ice produced may be adjusted by adjusting the amount of brine sprayed from the spraying unit 23. That is, the amount of the flake ice produced can be increased by increasing the amount of brine ejected from the ejection unit 23. Conversely, the amount of flake ice produced can be reduced by reducing the amount of brine ejected from the ejection unit 23.
 上部軸受部材27は、鍋を逆さにした形状からなり、ドラム21の上面を封止している。上部軸受部材27の中心部には、回転軸22を支持するブッシュ38が嵌装されている。なお、回転軸22は、上部軸受部材27にのみ支持され、回転軸22の下端部は軸支されていない。即ち、ドラム21の下方には、ブレード25によって剥ぎ取られたフレークアイスが落下する際に障害となる物がないため、ドラム21の下面はフレークアイスを排出するフレークアイス排出口26となる。 The upper bearing member 27 has a shape in which the pan is inverted, and seals the upper surface of the drum 21. A bush 38 that supports the rotating shaft 22 is fitted in the central portion of the upper bearing member 27. The rotary shaft 22 is supported only by the upper bearing member 27, and the lower end portion of the rotary shaft 22 is not pivotally supported. That is, since there is no obstacle below the drum 21 when the flake ice peeled off by the blade 25 falls, the lower surface of the drum 21 becomes a flake ice discharge port 26 for discharging the flake ice.
 噴射制御部28は、噴射部23によるブラインの噴射時に、噴射部23から噴射されるブラインの量を調節する。なお、噴射部23から噴射させるブラインの量を調節する具体的な手法は特に限定されない。例えば、噴射部23を構成する複数のパイプの夫々について、ブラインを噴射させるパイプの数とブラインを噴射させないパイプの数とを調節することにより、噴射されるブラインの量を調節してもよい。また例えば、ブラインを噴射させる複数のパイプに送り込むブラインの量を増減させることにより、噴射されるブラインの量を調節してもよい。 The injection control unit 28 adjusts the amount of brine injected from the injection unit 23 when the injection unit 23 injects brine. A specific method for adjusting the amount of brine to be ejected from the ejection unit 23 is not particularly limited. For example, for each of the plurality of pipes constituting the injection unit 23, the amount of brine to be injected may be adjusted by adjusting the number of pipes that inject brine and the number of pipes that do not inject brine. Further, for example, the amount of brine to be injected may be adjusted by increasing or decreasing the amount of brine sent to the plurality of pipes for injecting brine.
 また、噴射制御部28は、噴射部23によるブラインの噴射時に、噴射圧力の可変制御を実行する。ブラインの噴射圧力を可変制御できるようにすることにより、内筒32の内周面に付着するブラインの体積をコントロールすることができる。即ち、ブラインを強い圧力で霧状に噴射させた場合に比べ、ブラインを弱い圧力で液状に噴射させた場合の方が、内筒32の内周面に付着するブラインの粒子が大きくなる。このため、ブラインを弱い圧力で液状に噴射させることにより生成されるハイブリッドアイスは、内筒32の内周面の温度よりも高いドラム21内部の空気の温度の影響を受け難くなる。 Also, the injection control unit 28 performs variable control of the injection pressure when the injection unit 23 injects brine. By making it possible to variably control the injection pressure of the brine, the volume of the brine adhering to the inner peripheral surface of the inner cylinder 32 can be controlled. That is, the brine particles adhering to the inner peripheral surface of the inner cylinder 32 are larger when the brine is jetted in a liquid state with a weak pressure than when the brine is jetted in a mist form with a strong pressure. For this reason, the hybrid ice generated by jetting brine in a liquid state with a weak pressure is less susceptible to the temperature of the air inside the drum 21 than the temperature of the inner peripheral surface of the inner cylinder 32.
 これにより、ブラインを弱い圧力で液状に噴射させることにより生成されるハイブリッドアイスは、ブラインを強い圧力で霧状に噴射させることにより生成される場合よりも溶け難いものとなる。なお、噴射制御部28がブラインの噴射圧力を可変制御する具体的な手法は特に限定されない。例えば、ブラインを噴射させる複数のパイプの噴射口(図示なし)の口径を調節することにより噴射圧力を可変制御してもよい。 Thus, the hybrid ice produced by jetting the brine in a liquid state at a weak pressure is less likely to melt than when it is produced by jetting the brine in a mist at a strong pressure. The specific method by which the injection control unit 28 variably controls the injection pressure of the brine is not particularly limited. For example, the injection pressure may be variably controlled by adjusting the diameters of the injection ports (not shown) of a plurality of pipes for injecting brine.
 防熱保護カバー29は、円筒形状からなり、ドラム21の側面を封止している。
 冷媒供給部39は、冷媒流路34に対して、内筒32の内周面を冷凍する冷媒を、冷媒配管45を介して供給する。
The thermal protection cover 29 has a cylindrical shape and seals the side surface of the drum 21.
The refrigerant supply unit 39 supplies the refrigerant that freezes the inner peripheral surface of the inner cylinder 32 to the refrigerant flow path 34 via the refrigerant pipe 45.
 冷媒流路34に供給される冷媒は、冷媒流路34と冷媒供給部39との間を、冷媒配管45を介して循環する(図6参照)。これにより、冷媒流路34に供給された冷媒を冷凍能が高い状態で維持させることができる。 The refrigerant supplied to the refrigerant flow path 34 circulates between the refrigerant flow path 34 and the refrigerant supply unit 39 via the refrigerant pipe 45 (see FIG. 6). Thereby, the refrigerant | coolant supplied to the refrigerant | coolant flow path 34 can be maintained in a state with high refrigerating capacity.
 ここで、ドラム21の製造方法について説明する。まず、内筒32に螺旋状の流路壁36を外嵌する。したがって、少なくとも一方のフランジ32a,32bは、内筒32に固定されていない。ここでは、一方のフランジ32aが内筒32に固定され、他方のフランジ32bが内筒32に固定されていないとする。流路壁36が嵌められた内筒32の内面に、図4に示すような保形具50を嵌め込む。 Here, a method for manufacturing the drum 21 will be described. First, the spiral flow path wall 36 is fitted on the inner cylinder 32. Therefore, at least one of the flanges 32 a and 32 b is not fixed to the inner cylinder 32. Here, it is assumed that one flange 32 a is fixed to the inner cylinder 32 and the other flange 32 b is not fixed to the inner cylinder 32. A shape retainer 50 as shown in FIG. 4 is fitted into the inner surface of the inner cylinder 32 in which the flow path wall 36 is fitted.
 保形具50は、放射状に配置された複数本のバー51と、このバー51の先端部を連結するリング部52と、このリング部52の外側で、バー51を延長するように設けられた固定部53とを備えている。固定部53は、ネジ状部(採番せず)と、ネジ状部の先端側で進退するナット部材(採番せず)とを備えている。このような保形具50は、図示しないが、内筒32の一端側から他端側まで複数個嵌め込まれる。 The shape-retaining tool 50 is provided so as to extend the bar 51 on the outside of the plurality of bars 51 arranged radially, a ring part 52 connecting the tip parts of the bars 51, and the ring part 52. And a fixing portion 53. The fixing portion 53 includes a screw-shaped portion (not numbered) and a nut member (not numbered) that advances and retreats on the tip side of the screw-shaped portion. A plurality of such shape holders 50 are fitted from one end side to the other end side of the inner cylinder 32, although not shown.
 保形具50は、ナット部材が回されて固定部53が短めにされた状態で、内筒32内に入れられる。固定部53は、所定位置においてナット部材が回されて固定部53の先端が内筒32の内面を押圧するように延ばされる。内筒32の内面は、保形具50によって真円とされる。このような作業は、内筒32が横臥姿勢とされることで、保形具50を内筒32内に容易に固定することができる。 The shape retainer 50 is placed in the inner cylinder 32 in a state where the nut member is turned and the fixing portion 53 is shortened. The fixing portion 53 is extended so that the nut member is turned at a predetermined position and the tip of the fixing portion 53 presses the inner surface of the inner cylinder 32. The inner surface of the inner cylinder 32 is made a perfect circle by the shape retainer 50. In such an operation, the shape retainer 50 can be easily fixed in the inner cylinder 32 by setting the inner cylinder 32 in the recumbent posture.
 次に、流路壁36と内筒32とを複数個所でスポット溶接する。このスポット溶接によって、流路壁36は、位置決めされる、すなわち位置ずれしない。また、スポット溶接に際して、内筒32は、保形具50によって固定されているので熱変形することなく、真円を維持する。次に、冷媒経路35が液密状態となるように、流路壁36の内周と内筒32とを連続的に溶接する。この溶接に際しても、内筒32は、保形具50によって固定されているので熱変形しない。 Next, the flow path wall 36 and the inner cylinder 32 are spot welded at a plurality of locations. By this spot welding, the flow path wall 36 is positioned, that is, not displaced. Moreover, since the inner cylinder 32 is being fixed by the shape retainer 50 at the time of spot welding, it maintains a perfect circle, without thermally deforming. Next, the inner periphery of the flow path wall 36 and the inner cylinder 32 are continuously welded so that the refrigerant path 35 is in a liquid-tight state. Even during this welding, the inner cylinder 32 is not thermally deformed because it is fixed by the shape retainer 50.
 次に、流路壁36を外筒33によって外嵌する。内筒32と流路壁36と外筒33とに囲まれた閉鎖空間が冷媒流路34となる。この冷媒流路34を気密にするため、この流路壁36の外周と外筒33とを連続的に溶接する。次に、内筒32に他方のフランジ32bを固定する。両フランジ32a,32bは、外筒33とも固定され、冷媒流路34を塞ぐ。なお、内筒32と流路壁36と外筒33とは、溶接されることで、溶接痕(図示せず)が残る。 Next, the flow path wall 36 is fitted by the outer cylinder 33. A closed space surrounded by the inner cylinder 32, the flow path wall 36, and the outer cylinder 33 is a refrigerant flow path 34. In order to make the refrigerant flow path 34 airtight, the outer periphery of the flow path wall 36 and the outer cylinder 33 are continuously welded. Next, the other flange 32 b is fixed to the inner cylinder 32. Both flanges 32 a and 32 b are also fixed to the outer cylinder 33 and close the refrigerant flow path 34. The inner cylinder 32, the flow path wall 36, and the outer cylinder 33 are welded to leave a welding mark (not shown).
 このようにしてドラム21が組み立てられた後、ドラム21全体を焼き鈍し、応力を除去する。最後に、内筒32の内面が真円となるように、内筒32の内面を削り出すことで、ドラム21が完成する。 After the drum 21 is assembled in this way, the entire drum 21 is annealed to remove the stress. Finally, the drum 21 is completed by scraping the inner surface of the inner cylinder 32 so that the inner surface of the inner cylinder 32 becomes a perfect circle.
 図6は、フレークアイス製造システム300の概要を示す模式図である。フレークアイス製造システム300は、ブライン貯留タンク40と、ポンプ41と、ブライン配管42と、ブラインタンク43と、フレークアイス貯留タンク44と、冷媒配管45と、凍結点調節部46と、フレークアイス製造装置200とを含むように構成されている。 FIG. 6 is a schematic diagram showing an outline of the flake ice production system 300. The flake ice production system 300 includes a brine storage tank 40, a pump 41, a brine pipe 42, a brine tank 43, a flake ice storage tank 44, a refrigerant pipe 45, a freezing point adjustment unit 46, and a flake ice production apparatus. 200.
 ブライン貯留タンク40は、ハイブリッドアイスの原料となるブラインを貯える。ブライン貯留タンク40に貯えられたブラインは、ポンプ41を作動させることにより、ブライン配管42を介して噴射部23に供給される。噴射部23に供給されたブラインは、ハイブリッドアイスを生成するための原料となる。 The brine storage tank 40 stores brine as a raw material for hybrid ice. The brine stored in the brine storage tank 40 is supplied to the injection unit 23 via the brine pipe 42 by operating the pump 41. The brine supplied to the injection unit 23 becomes a raw material for generating hybrid ice.
 ブラインタンク43は、ブライン貯留タンク40内に貯留されたブラインが少なくなると、ブライン貯留タンク40に対しブラインを供給する。なお、内筒32の内周面で凍結することなく流下したブラインは、ブライン貯留タンク40に貯えられ、ポンプ41が作動されることによって再びブライン配管42を介して噴射部23に供給される。 The brine tank 43 supplies the brine to the brine storage tank 40 when the brine stored in the brine storage tank 40 decreases. Note that the brine that has flowed down without being frozen on the inner peripheral surface of the inner cylinder 32 is stored in the brine storage tank 40 and is supplied again to the injection unit 23 via the brine pipe 42 when the pump 41 is operated.
 フレークアイス貯留タンク44は、フレークアイス製造装置200の直下に配置され、フレークアイス製造装置200のフレークアイス排出口26から落下したフレークアイスを貯える。 The flake ice storage tank 44 is disposed immediately below the flake ice manufacturing apparatus 200 and stores the flake ice that has fallen from the flake ice discharge port 26 of the flake ice manufacturing apparatus 200.
 凍結点調節部46は、ブラインタンク43からブライン貯留タンク40に供給されるブラインの凍結点を調節する。例えばブラインが塩水である場合には、塩水の凍結点は濃度によって異なる。このため、凍結点調節部46は、ブライン貯留タンク40に貯えられている塩水の濃度を調節する。 The freezing point adjustment unit 46 adjusts the freezing point of the brine supplied from the brine tank 43 to the brine storage tank 40. For example, when the brine is salt water, the freezing point of the salt water varies depending on the concentration. For this reason, the freezing point adjustment unit 46 adjusts the concentration of the salt water stored in the brine storage tank 40.
 ここで、フレークアイス製造装置200を含むフレークアイス製造システム300の動作について、ブラインが塩水であることを前提として説明する。 Here, the operation of the flake ice production system 300 including the flake ice production apparatus 200 will be described on the assumption that the brine is salt water.
 まず、フレークアイス製造装置200において、冷媒供給部39からドラム21に形成された冷媒流路34に冷媒が供給される。冷媒流路34が螺旋状に形成されていることで、冷媒は、旋回しながら流れ落ち、流動抵抗を受けにくい。したがってフレークアイス製造装置200は、内筒32の内周面の温度を塩水の凍結点より-10℃程度低くなるように設定すると、内筒32の内周面に付着した塩水を効率的に凍結させることができる。 First, in the flake ice manufacturing apparatus 200, the refrigerant is supplied from the refrigerant supply unit 39 to the refrigerant flow path 34 formed in the drum 21. Since the refrigerant flow path 34 is formed in a spiral shape, the refrigerant flows down while turning and hardly receives flow resistance. Therefore, if the temperature of the inner peripheral surface of the inner cylinder 32 is set to be about −10 ° C. lower than the freezing point of the salt water, the flake ice manufacturing apparatus 200 efficiently freezes the salt water adhering to the inner peripheral surface of the inner cylinder 32. Can be made.
 内筒32の内周面が冷媒によって冷凍されると、ポンプ41は、ブライン貯留タンク40からブライン配管42を介して、噴射部23にブラインである塩水を供給する。噴射部23に塩水が供給されると、噴射部23は、内筒32の内周面に向けて塩水を噴射する。噴射部23から噴射された塩水は、内筒32の内周面に接触すると、溶質である塩と溶媒である水とに分離する時間を与えられる間もなく瞬時に凍結しハイブリッドアイスとなる。このようにしてハイブリッドアイスが生成される。 When the inner peripheral surface of the inner cylinder 32 is frozen by the refrigerant, the pump 41 supplies brine, which is brine, to the injection unit 23 from the brine storage tank 40 via the brine pipe 42. When salt water is supplied to the injection unit 23, the injection unit 23 injects salt water toward the inner peripheral surface of the inner cylinder 32. When the salt water sprayed from the spraying portion 23 comes into contact with the inner peripheral surface of the inner cylinder 32, the salt water freezes instantly and becomes hybrid ice immediately before it is given time to separate the salt as a solute and the water as a solvent. In this way, hybrid ice is generated.
 内筒32の内周面に生成されたハイブリッドアイスは、内筒32内を下降するスクレーパ24によって剥ぎ取られる。スクレーパ24によって剥ぎ取られたハイブリッドアイスは、フレークアイスとしてフレークアイス排出口26から落下する。フレークアイス排出口26から落下したフレークアイスは、フレークアイス製造装置200の直下に配置されたフレークアイス貯留タンク44内に貯えられる。 The hybrid ice generated on the inner peripheral surface of the inner cylinder 32 is peeled off by the scraper 24 descending the inner cylinder 32. The hybrid ice peeled off by the scraper 24 falls from the flake ice discharge port 26 as flake ice. The flake ice that has fallen from the flake ice discharge port 26 is stored in a flake ice storage tank 44 disposed immediately below the flake ice manufacturing apparatus 200.
 また上述したように、凍結してハイブリッドアイスになることなく内筒32の内周面を流下した塩水は、ブライン貯留タンク40に貯えられ、ポンプ41を作動させることによりブライン配管42を介して噴射部23に再び供給される。なお、ブライン貯留タンク40内の塩水が少なくなると、ブラインタンク43からブライン貯留タンク40に塩水が供給される。 Further, as described above, the salt water that has flown down the inner peripheral surface of the inner cylinder 32 without being frozen into hybrid ice is stored in the brine storage tank 40 and is injected through the brine pipe 42 by operating the pump 41. It is supplied again to the section 23. Note that when the brine in the brine storage tank 40 decreases, the brine is supplied from the brine tank 43 to the brine storage tank 40.
 氷スラリー製造装置は、このようにして製造されたフレークアイスとブラインとを所定の比率で混合させて氷スラリーを製造する。氷スラリーに、フレークアイス(個体)を加えることにより、氷スラリーに含まれるフレークアイス(個体)とブライン(液体)との構成比率を容易に調整することもできる。氷スラリーは、流動性を有するため、硬いフレークアイスの状態よりも被冷凍品に対し万遍なく接触することができる。 The ice slurry manufacturing apparatus mixes flake ice and brine thus manufactured at a predetermined ratio to manufacture an ice slurry. By adding flake ice (solid) to the ice slurry, the constituent ratio of flake ice (solid) and brine (liquid) contained in the ice slurry can be easily adjusted. Since the ice slurry has fluidity, it can come into contact with the article to be frozen more uniformly than the state of hard flake ice.
 この氷スラリーは、(a)融解完了時の温度が0℃未満、かつ、(b)融解過程で氷が融解したブラインの溶質濃度の変化率が30%以内という条件を満たしている。氷スラリーは、融解する際に大量の潜熱を周囲から奪うことができるが、融解が完全に完了せずにハイブリッドアイスが残存している間は温度が上昇することがない。従って、長時間に亘って被冷凍品を冷凍し続けることができる。 This ice slurry satisfies the conditions that (a) the temperature at the completion of melting is less than 0 ° C., and (b) the rate of change in the solute concentration of brine in which the ice melted during the melting process is within 30%. The ice slurry can take a large amount of latent heat from the surroundings when it melts, but the temperature does not rise while the hybrid ice remains, without completely melting. Therefore, the article to be frozen can be kept frozen for a long time.
 以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。また本発明の要旨を逸脱しない範囲内であれば種々の変更や上記実施の形態の組み合わせを施してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations described in the above-described embodiments, and is considered within the scope of the matters described in the claims. Other embodiments and modifications are also included. Further, various modifications and combinations of the above embodiments may be made within the scope not departing from the gist of the present invention.
 例えば、上述した実施形態では、ブラインは、上述した実施形態では塩水(塩化ナトリウム水溶液)や塩化マグネシウム水溶液を例示したが、特に限定されない。具体的には、例えば塩化カルシウム水溶液、エチレングリコール等を採用することができる。これにより、溶質又は濃度の違いに応じて凝固点の異なる複数種類のブラインを用意することも可能となる。 For example, in the embodiment described above, the brine is exemplified by salt water (sodium chloride aqueous solution) or magnesium chloride aqueous solution in the above embodiment, but is not particularly limited. Specifically, for example, an aqueous calcium chloride solution, ethylene glycol or the like can be employed. Thereby, it is also possible to prepare a plurality of types of brines having different freezing points according to differences in solute or concentration.
 上述した実施形態では、冷媒流路34は、内筒32と外筒33と流路壁36とに囲まれて形成された。しかし、冷媒流路34は、内筒32の外面を螺旋状に巻き付く樋状部材によって構成してもよい。 In the above-described embodiment, the refrigerant flow path 34 is formed by being surrounded by the inner cylinder 32, the outer cylinder 33, and the flow path wall 36. However, the refrigerant flow path 34 may be configured by a hook-shaped member that spirally winds the outer surface of the inner cylinder 32.
 上述した実施形態では、冷媒流路34を形成するための流路壁36を内筒32や外筒33に溶接するに際して、保形具50を使用した。しかし、内筒32や外筒33が熱変形しない剛性を有していれば、保形具50を使用することなく、溶接してもよい。さらに、流路壁36と内筒32や外筒33とは、溶接ではなく、接着剤などによって一体化してもよい。また、保形具50は、図5に示したタイプに限定されず、種々のタイプを使用することができる。 In the embodiment described above, the shape retainer 50 is used when the flow path wall 36 for forming the coolant flow path 34 is welded to the inner cylinder 32 or the outer cylinder 33. However, the inner cylinder 32 and the outer cylinder 33 may be welded without using the shape retainer 50 as long as the inner cylinder 32 and the outer cylinder 33 have rigidity that does not cause thermal deformation. Furthermore, the flow path wall 36 and the inner cylinder 32 and the outer cylinder 33 may be integrated by an adhesive instead of welding. Moreover, the shape retainer 50 is not limited to the type shown in FIG. 5, A various type can be used.
 以上まとめると、本発明が適用されるフレークアイス製造装置200は、次のような構成を取れば足り、各種各様な実施形態を取ることができる。 In summary, the flake ice manufacturing apparatus 200 to which the present invention is applied only needs to have the following configuration, and can take various embodiments.
 即ち、本発明が適用されるフレークアイス製造装置200は、
 ノズルから噴射されたブラインを凍結させて製氷する内面を有する筒状の金属プレート(内筒)32と、
 金属プレート32の内面に製氷された氷を掻き取るスクレーパ24と、
 金属プレート32の外面に設けられた螺旋状の冷媒流路34と、
 を備えている。
That is, the flake ice manufacturing apparatus 200 to which the present invention is applied is
A cylindrical metal plate (inner cylinder) 32 having an inner surface for freezing the brine sprayed from the nozzle to make ice,
A scraper 24 that scrapes off the ice formed on the inner surface of the metal plate 32;
A spiral refrigerant flow path 34 provided on the outer surface of the metal plate 32;
It has.
 このフレークアイス製造装置200によれば、金属プレート32の外面に螺旋状の冷媒流路34が設けられていることにより、冷媒が冷媒流路34内をスムーズに流動し、金属プレート32の内面が効率的に冷却される。 According to the flake ice manufacturing apparatus 200, the spiral refrigerant flow path 34 is provided on the outer surface of the metal plate 32, so that the refrigerant flows smoothly in the refrigerant flow path 34, and the inner surface of the metal plate 32 is It is cooled efficiently.
 本発明が適用されるフレークアイス製造装置200において、
 冷媒流路34は、金属プレート32と、当該金属プレート32を囲むように配置された外筒33と、金属プレート32と外筒33との間に設けられた螺旋状の流路壁36と、に囲まれて形成される。
 このフレークアイス製造装置200によれば、螺旋状の流路が筒状の金属プレート32と外筒33と螺旋状の流路壁36によって囲まれた空間に設けられる。
In the flake ice manufacturing apparatus 200 to which the present invention is applied,
The refrigerant flow path 34 includes a metal plate 32, an outer cylinder 33 disposed so as to surround the metal plate 32, a spiral flow path wall 36 provided between the metal plate 32 and the outer cylinder 33, It is surrounded by
According to the flake ice manufacturing apparatus 200, the spiral channel is provided in a space surrounded by the cylindrical metal plate 32, the outer cylinder 33, and the spiral channel wall 36.
 本発明が適用されるフレークアイス製造装置は、金属プレート32の両端部に外向きのフランジ32a,32bを備えている。
 このフレークアイス製造装置200によれば、筒状の金属プレート32と外筒33との間に冷媒流路34が設けられる場合において、冷媒流路34の両端がフランジ32a,32bによって塞がれる。
The flake ice manufacturing apparatus to which the present invention is applied includes flanges 32 a and 32 b facing outward at both ends of the metal plate 32.
According to the flake ice manufacturing apparatus 200, when the refrigerant flow path 34 is provided between the cylindrical metal plate 32 and the outer cylinder 33, both ends of the refrigerant flow path 34 are closed by the flanges 32a and 32b.
 本発明が適用されるフレークアイス製造装置200において、
 金属プレート32と外筒33と流路壁36とは、液密に溶接されている。
 このフレークアイス製造装置200によれば、金属プレート32と外筒33と流路壁36によって形成される冷媒流路34内から冷媒が漏出しないようにすることができる。
In the flake ice manufacturing apparatus 200 to which the present invention is applied,
The metal plate 32, the outer cylinder 33, and the flow path wall 36 are welded in a liquid-tight manner.
According to the flake ice manufacturing apparatus 200, it is possible to prevent the refrigerant from leaking out of the refrigerant flow path 34 formed by the metal plate 32, the outer cylinder 33, and the flow path wall 36.
 本発明が適用されるフレークアイス製造装置200において、
 金属プレート32の中心軸にスクレーパ24を保持して回転させる回転軸22を備えている。
 このフレークアイス製造装置200によれば、スクレーパ24が回転軸22に保持されることによって、回転軸22が回転することでスクレーパ24が回転する。
In the flake ice manufacturing apparatus 200 to which the present invention is applied,
A rotation shaft 22 that holds and rotates the scraper 24 on the central axis of the metal plate 32 is provided.
According to the flake ice manufacturing apparatus 200, the scraper 24 is held by the rotating shaft 22, whereby the scraper 24 is rotated by rotating the rotating shaft 22.
 本発明が適用されるフレークアイス製造装置200において、
 金属プレート32は、銅製又は銅合金製である。
 このフレークアイス製造装置200によれば、金属プレート32が銅製又は銅合金製とされることにより、冷媒の冷熱が金属プレート32の内面に効率的に伝熱されるようにすることができる。
In the flake ice manufacturing apparatus 200 to which the present invention is applied,
The metal plate 32 is made of copper or a copper alloy.
According to the flake ice manufacturing apparatus 200, the cold heat of the refrigerant can be efficiently transferred to the inner surface of the metal plate 32 by making the metal plate 32 made of copper or copper alloy.
 本発明が適用されるフレークアイス製造装置200の製造方法は、
 両端部に外向きのフランジ32a,32bを設けた筒状の金属プレート32と、当該金属プレート32を囲むように配置された外筒33と、金属プレート32と外筒33との間に設けられた螺旋状の流路壁36と、に囲まれて螺旋状の冷媒流路34を形成したフレークアイス製造装置の製造方法であって、
 少なくとも一方のフランジ32a,32bを備えていない金属プレート32の外側に流路壁36を外嵌する工程と、
 金属プレート32と流路壁36とを溶接する工程と、
 流路壁36に外筒33を外嵌する工程と、
 流路壁36と外筒33とを溶接する工程と、
 金属プレート32にフランジ32a,32bを取り付ける工程と、
 全体を焼きなます工程と、
 を含んでいる。
The manufacturing method of the flake ice manufacturing apparatus 200 to which the present invention is applied,
A cylindrical metal plate 32 provided with outward flanges 32 a and 32 b at both ends, an outer cylinder 33 disposed so as to surround the metal plate 32, and between the metal plate 32 and the outer cylinder 33. A flake ice manufacturing apparatus in which a spiral coolant channel 34 is formed surrounded by a spiral channel wall 36,
A step of externally fitting the flow path wall 36 to the outside of the metal plate 32 not provided with at least one of the flanges 32a and 32b;
Welding the metal plate 32 and the flow path wall 36;
A step of fitting the outer cylinder 33 to the flow path wall 36;
Welding the flow path wall 36 and the outer cylinder 33;
Attaching the flanges 32a and 32b to the metal plate 32;
The process of annealing the whole,
Is included.
 本発明が適用されるフレークアイス製造装置200の製造方法によれば、フランジを備えていない筒状の金属プレート32の一端側から螺旋状の流路壁36を嵌め込み、金属プレート32と流路壁36とを溶接することができる。そして、流路壁36を外筒33が外嵌し、流路壁36と外筒33とを溶接することができる。金属プレート32と流路壁36と外筒33とを溶接されることで、冷媒流路34が液密にされる。 According to the manufacturing method of the flake ice manufacturing apparatus 200 to which the present invention is applied, the spiral flow path wall 36 is fitted from one end side of the cylindrical metal plate 32 not provided with the flange, and the metal plate 32 and the flow path wall are fitted. 36 can be welded together. And the outer cylinder 33 fits the flow-path wall 36, and the flow-path wall 36 and the outer cylinder 33 can be welded. By welding the metal plate 32, the flow path wall 36, and the outer cylinder 33, the refrigerant flow path 34 is liquid-tight.
 本発明に係るフレークアイスの製造装置の製造方法において、
 金属プレート32と流路壁36とを溶接する前に、金属プレート32内に保形具50を嵌め込む工程と、
 流路壁36と外筒33とを溶接した後に、保形具50を外す工程と、
 を含んでいる。
 このフレークアイス製造装置の製造方法によれば、金属プレート32内に保形具50が嵌め込まれることにより、金属プレート32の溶接に際して、金属プレート32が保形具50に固定されて熱変形しないようにすることができる。
In the manufacturing method of the apparatus for manufacturing flake ice according to the present invention,
Before the metal plate 32 and the flow path wall 36 are welded, the step of fitting the shape retainer 50 into the metal plate 32;
Removing the shape retainer 50 after welding the flow path wall 36 and the outer cylinder 33;
Is included.
According to the manufacturing method of this flake ice manufacturing apparatus, when the shape retainer 50 is fitted into the metal plate 32, the metal plate 32 is fixed to the shape retainer 50 and is not thermally deformed when the metal plate 32 is welded. Can be.
21:ドラム、22:回転軸、23:噴射部、23a:ノズル、24:スクレーパ、32:金属プレート(内筒)、32a,32b:フランジ、33:外筒、34:冷媒流路、36:流路壁、50:保形具、200:フレークアイス製造装置、300:フレークアイス製造システム
 
 
21: Drum, 22: Rotating shaft, 23: Injection part, 23a: Nozzle, 24: Scraper, 32: Metal plate (inner cylinder), 32a, 32b: Flange, 33: Outer cylinder, 34: Refrigerant flow path, 36: Channel wall, 50: Shape retainer, 200: Flake ice production apparatus, 300: Flake ice production system

Claims (8)

  1.  ノズルから噴射されたブラインを凍結させて製氷する内面を有する筒状の金属プレートと、
     前記金属プレートの内面に製氷された氷を掻き取るスクレーパと、
     前記金属プレートの外面に設けられた螺旋状の冷媒流路と、
     を備えているフレークアイス製造装置。
    A cylindrical metal plate having an inner surface for freezing the brine sprayed from the nozzle to make ice,
    A scraper that scrapes off the ice produced on the inner surface of the metal plate;
    A spiral refrigerant flow path provided on the outer surface of the metal plate;
    Flake ice making device equipped with.
  2.  前記冷媒流路は、前記金属プレートと、当該金属プレートを囲むように配置された外筒と、前記金属プレートと外筒との間に設けられた螺旋状の流路壁と、に囲まれて形成される、
     請求項1に記載のフレークアイス製造装置。
    The coolant channel is surrounded by the metal plate, an outer cylinder arranged to surround the metal plate, and a spiral channel wall provided between the metal plate and the outer cylinder. It is formed,
    The flake ice manufacturing apparatus of Claim 1.
  3.  前記金属プレートの両端部に外向きのフランジを備えている、
     請求項1又は2に記載のフレークアイス製造装置。
    Provided with outward flanges at both ends of the metal plate,
    The flake ice manufacturing apparatus of Claim 1 or 2.
  4.  前記金属プレートと前記外筒と前記流路壁とは、液密に溶接されている、
     請求項2又は3に記載のフレークアイス製造装置。
    The metal plate, the outer cylinder, and the flow path wall are liquid-tightly welded,
    The flake ice manufacturing apparatus of Claim 2 or 3.
  5.  前記金属プレートの中心軸に前記スクレーパを保持して回転させる回転軸を備えている、
     請求項1乃至4のうちいずれか1項に記載のフレークアイス製造装置。
    A rotating shaft that holds and rotates the scraper on the central axis of the metal plate;
    The flake ice manufacturing apparatus of any one of Claims 1 thru | or 4.
  6.  前記金属プレートは、銅製又は銅合金製である、
     請求項1乃至5のうちいずれか1項に記載のフレークアイス製造装置。
    The metal plate is made of copper or copper alloy,
    The flake ice manufacturing apparatus of any one of Claims 1 thru | or 5.
  7.  両端部に外向きのフランジを設けた筒状の金属プレートと、当該金属プレートを囲むように配置された外筒と、前記金属プレートと外筒との間に設けられた螺旋状の流路壁と、に囲まれて螺旋状の冷媒流路を形成したフレークアイス製造装置の製造方法であって、
     少なくとも一方の前記フランジを備えていない前記金属プレートの外側に前記流路壁を外嵌する工程と、
     前記金属プレートと前記流路壁とを溶接する工程と、
     前記流路壁に前記外筒を外嵌する工程と、
     前記流路壁と前記外筒とを溶接する工程と、
     前記金属プレートに前記フランジを取り付ける工程と、
     全体を焼きなます工程と、
     を含んでいるフレークアイス製造装置の製造方法。
    A cylindrical metal plate having outward flanges at both ends, an outer cylinder disposed so as to surround the metal plate, and a spiral flow path wall provided between the metal plate and the outer cylinder And a manufacturing method of a flake ice manufacturing apparatus in which a spiral refrigerant flow path is formed surrounded by,
    Externally fitting the flow path wall to the outside of the metal plate not provided with at least one of the flanges;
    Welding the metal plate and the flow path wall;
    Externally fitting the outer cylinder to the flow path wall;
    Welding the flow path wall and the outer cylinder;
    Attaching the flange to the metal plate;
    The process of annealing the whole,
    A method of manufacturing a flake ice manufacturing apparatus comprising:
  8.  前記金属プレートと前記流路壁とを溶接する前に、前記金属プレート内に保形具を嵌め込む工程と、
     前記流路壁と前記外筒とを溶接した後に、前記保形具を外す工程と、
     を含んでいる請求項7に記載のフレークアイス製造装置の製造方法。
     
     
    Before welding the metal plate and the flow path wall, fitting a shape retainer in the metal plate;
    Removing the shape retainer after welding the flow path wall and the outer cylinder;
    The manufacturing method of the flake ice manufacturing apparatus of Claim 7 containing.

PCT/JP2019/002261 2018-02-22 2019-01-24 Flake ice production apparatus and method for producing flake ice production apparatus WO2019163386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018029383A JP2019143905A (en) 2018-02-22 2018-02-22 Flake ice production device and production method of flake ice production device
JP2018-029383 2018-02-22

Publications (1)

Publication Number Publication Date
WO2019163386A1 true WO2019163386A1 (en) 2019-08-29

Family

ID=67688027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002261 WO2019163386A1 (en) 2018-02-22 2019-01-24 Flake ice production apparatus and method for producing flake ice production apparatus

Country Status (2)

Country Link
JP (1) JP2019143905A (en)
WO (1) WO2019163386A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4375593A1 (en) 2021-07-20 2024-05-29 Blanctec International Co., Ltd. Ice-making device and ice-making method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159459A1 (en) * 2002-02-28 2003-08-28 Brunner Roger Patrick Auger-type ice making apparatus with improved evaporator
JP2008286469A (en) * 2007-05-17 2008-11-27 Hoshizaki Electric Co Ltd Refrigerating device and ice making machine using the same
JP2009168407A (en) * 2008-01-18 2009-07-30 Hoshizaki Electric Co Ltd Drum type ice making machine
JP3209011U (en) * 2016-12-06 2017-03-02 太平冷機株式会社 Fluid ice production apparatus and fluid ice production system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159459A1 (en) * 2002-02-28 2003-08-28 Brunner Roger Patrick Auger-type ice making apparatus with improved evaporator
JP2008286469A (en) * 2007-05-17 2008-11-27 Hoshizaki Electric Co Ltd Refrigerating device and ice making machine using the same
JP2009168407A (en) * 2008-01-18 2009-07-30 Hoshizaki Electric Co Ltd Drum type ice making machine
JP3209011U (en) * 2016-12-06 2017-03-02 太平冷機株式会社 Fluid ice production apparatus and fluid ice production system

Also Published As

Publication number Publication date
JP2019143905A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6243092B2 (en) Ice making device, moving body, flake ice production device, flake ice production method
JP2018021753A5 (en)
JP4976879B2 (en) Ice making equipment
US1020759A (en) Ice-machine.
WO2017086462A1 (en) Ice making device, moving body, flake ice production device, and flake ice production method
WO2019163386A1 (en) Flake ice production apparatus and method for producing flake ice production apparatus
CN103764871B (en) For processing the method for plastic-substrates and for processing the device of at least partly regeneration of solution
JP6699928B2 (en) Freezing method
US11353254B2 (en) State change control device and state change control method
CN104006594A (en) Tube ice making machine applicable to both fresh water and seawater, and ice making process thereof
JP5420149B2 (en) Conveyor screw for use as a surface scraper in cooling and refrigeration units
JP6719737B2 (en) Slurry ice making equipment
WO2019163387A1 (en) Flake ice production apparatus
JP7056901B2 (en) Ice and how to make ice
JP7148112B2 (en) Refrigeration equipment and refrigeration system
WO2019082918A1 (en) Refrigeration device and refrigeration method
WO2018110506A1 (en) Production device and production method for flake ice
JP2011251241A (en) Hot melt applicator
KR101512665B1 (en) Apparatus and method for manufacturing ice
JP6886696B2 (en) Ice machine
RU2222202C2 (en) Method and apparatus for producing of particles from food material, in particular, from chocolate
JP2020128830A (en) Flake ice manufacturing device and method of manufacturing spiral refrigerant channel
JP2018059694A (en) Ice making device
JP2018191591A (en) Defrosting apparatus, and defrosting method
KR200480661Y1 (en) Powder ice manufacture apparatus of rotating drum type

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757455

Country of ref document: EP

Kind code of ref document: A1