WO2019163274A1 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
WO2019163274A1
WO2019163274A1 PCT/JP2018/046758 JP2018046758W WO2019163274A1 WO 2019163274 A1 WO2019163274 A1 WO 2019163274A1 JP 2018046758 W JP2018046758 W JP 2018046758W WO 2019163274 A1 WO2019163274 A1 WO 2019163274A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
semiconductor light
layer
substrate
Prior art date
Application number
PCT/JP2018/046758
Other languages
English (en)
French (fr)
Inventor
信一郎 能崎
瀧川 信一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2020502051A priority Critical patent/JP7072047B2/ja
Priority to US16/975,648 priority patent/US11398715B2/en
Priority to DE112018007163.4T priority patent/DE112018007163T5/de
Publication of WO2019163274A1 publication Critical patent/WO2019163274A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/02365Fixing laser chips on mounts by clamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02484Sapphire or diamond heat spreaders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02492CuW heat spreaders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • H01S5/2215Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides using native oxidation of semiconductor layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Definitions

  • the present disclosure relates to a semiconductor light emitting element, and more particularly, to a semiconductor light emitting element having a plurality of light emitting element portions.
  • this application is the 2016 New Energy and Industrial Technology Development Organization, "High-brightness and high-efficiency next-generation laser technology development / New light source and element technology development for next-generation processing / for high-efficiency processing”
  • a semiconductor light emitting element such as a semiconductor laser element that can be easily coupled with an optical system is employed as a light source.
  • it is essential to reduce the thermal resistance of the semiconductor light emitting device.
  • multi-emitter formation in which a plurality of light emitting element portions (that is, emitters) are provided is employed.
  • a multi-emitter semiconductor light emitting device by providing a plurality of light emitting device portions, the light emitting device portions serving as heat sources can be dispersed, so that the thermal resistance can be reduced.
  • a temperature difference is generated between the plurality of light emitting element portions. Becomes non-uniform. As a result, the wavelength uniformity of the light source is lowered, so that the color reproducibility of the projector is lowered.
  • FIG. 10 is a configuration diagram of a conventional semiconductor array laser device described in Patent Document 1.
  • the semiconductor array laser device described in Patent Document 1 the p-side electrode 1001 and the n-side constituting the upper and lower surfaces of a laser chip 1000 having a plurality of light emitting element portions arranged in an array.
  • Two heat sinks 1009 and 1010 are arranged on the electrode 1007 with a solder layer 1008 interposed therebetween.
  • the heat dissipation effect is improved compared to the case where the laser chip 1000 is supported by only one heat sink.
  • the thickness of the central portion of the substrate 1006 of the laser chip 1000 is reduced.
  • a concave shape is formed on the surface of the substrate 1006 on the n-side electrode 1007 side.
  • the thermal resistance in the central portion of the laser chip 1000 that is relatively high in temperature can be reduced, so that the temperature during the operation of the laser chip 1000 can be made uniform.
  • the semiconductor array laser device described in Patent Document 1 attempts to equalize the emission wavelength of each light emitting element by equalizing the temperature during operation of the laser chip 1000.
  • the present disclosure is to solve such a problem, and an object of the present disclosure is to improve the uniformity of emission wavelengths in a plurality of light emitting element portions in a semiconductor light emitting element having a plurality of light emitting element portions.
  • one embodiment of a semiconductor light emitting device includes a substrate and three or more arranged above the main surface of the substrate and arranged along the main surface, each emitting light
  • Each of the three or more light emitting element units is arranged in order from the substrate side above the substrate, and a first conductivity type cladding layer, and In An In composition ratio in the active layer of the light emitting element portion located on the center side in the arrangement direction among the three or more light emitting element portions, It is smaller than the In composition ratio in the active layer of the light emitting element portion located on both end sides in the direction.
  • the In composition ratio of the active layer is made different depending on the light emitting element portion, when the semiconductor light emitting element is operated with a weak output that can ignore the influence of the heat generation in the active layer on the emission wavelength, As the In composition ratio decreases, the emission wavelength shifts to the short wavelength side. On the other hand, when the temperature of the active layer increases, the emission wavelength shifts to the long wavelength side. Therefore, by arranging the active layer having a relatively small In composition ratio in the region on the center side in the arrangement direction where the temperature is relatively high during operation, the uniformity of the emission wavelength between the light emitting element portions can be improved. As a result, a semiconductor light emitting device with high wavelength uniformity during operation can be realized.
  • the heat dissipation configuration may be any configuration that can perform the same level of heat dissipation to each light emitting element portion, and is not necessarily described in Patent Document 1.
  • a configuration in which heat sinks are provided on both sides of the element is not required.
  • the heat dissipation configuration can be simplified and reduced in cost.
  • the active layer has a quantum well structure including a well layer and a barrier layer, and a center side in the arrangement direction of the three or more light emitting device portions.
  • the In composition ratio in the well layer of the light emitting element portion located in the region may be smaller than the In composition ratio in the well layer of the light emitting element portion located on both end sides in the arrangement direction.
  • the active layer has a quantum well structure composed of a well layer and a barrier layer as described above, the well layer having a relatively small In composition ratio is disposed in the central region in the arrangement direction where the temperature is relatively high during operation.
  • the non-uniformity of the emission wavelength between the light emitting element portions can be reduced.
  • a semiconductor light emitting device with high wavelength uniformity during operation can be realized.
  • an off angle of the substrate is a region where a light emitting device portion located on a central side in the arrangement direction of the three or more light emitting device portions is disposed. However, it may be smaller than the region where the light emitting element portions located on both end sides in the arrangement direction are arranged.
  • the smaller the off angle of the substrate the smaller the In composition ratio in the semiconductor layer laminated on the substrate.
  • the semiconductor light emitting device in which the semiconductor layer is laminated on the substrate it is possible to easily realize a configuration in which the In composition ratio in the active layer is smaller at the center side in the arrangement direction than at both end sides.
  • the emission wavelengths in the plurality of light emitting element portions can be made uniform.
  • FIG. 1 is a schematic cross-sectional view of the semiconductor light emitting element according to the first embodiment.
  • FIG. 2 is a graph showing the distribution of the In composition ratio of the well layer of the active layer according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing an example of a mounting form of the semiconductor light emitting element according to the first embodiment.
  • FIG. 4 is a graph showing the distribution of the emission wavelength of the semiconductor light emitting device according to the first embodiment with respect to the position of the active layer.
  • FIG. 5 is a graph showing the distribution of the emission wavelength of the semiconductor light emitting device according to the comparative example with respect to the position of the active layer.
  • FIG. 6A is a schematic cross-sectional view showing a first step of the method for manufacturing the semiconductor light emitting element according to Embodiment 1.
  • FIG. 6B is a schematic cross-sectional view showing a second step of the method for manufacturing the semiconductor light emitting element according to Embodiment 1.
  • FIG. 6C is a schematic cross-sectional view showing a third step of the method for manufacturing the semiconductor light emitting element according to Embodiment 1.
  • FIG. 6D is a schematic cross-sectional view showing a fourth step of the method for manufacturing the semiconductor light emitting element according to Embodiment 1.
  • FIG. 6E is a schematic cross-sectional view showing a fifth step of the method for manufacturing the semiconductor light emitting element according to Embodiment 1.
  • FIG. 6A is a schematic cross-sectional view showing a first step of the method for manufacturing the semiconductor light emitting element according to Embodiment 1.
  • FIG. 6B is a schematic cross-sectional view showing a second step of the method for manufacturing the semiconductor light
  • FIG. 6F is a schematic cross-sectional view showing a sixth step of the method for manufacturing the semiconductor light emitting element according to Embodiment 1.
  • FIG. 6G is a schematic cross-sectional view showing a seventh step of the method for manufacturing the semiconductor light emitting element according to Embodiment 1.
  • FIG. 6H is a schematic cross-sectional view showing an eighth step of the method for manufacturing the semiconductor light emitting element according to Embodiment 1.
  • FIG. FIG. 6I is a schematic cross-sectional view showing a ninth step of the method for manufacturing the semiconductor light emitting element according to Embodiment 1.
  • FIG. 7 is a schematic cross-sectional view of the semiconductor light emitting device according to the second embodiment.
  • FIG. 8A is a schematic cross-sectional view showing a first step in the method for manufacturing a semiconductor light emitting element according to Embodiment 2.
  • FIG. 8B is a schematic cross-sectional view showing a second step of the method for manufacturing the semiconductor light emitting element according to Embodiment 2.
  • FIG. 8C is a schematic cross-sectional view showing a third step of the method for manufacturing the semiconductor light emitting element according to Embodiment 2.
  • FIG. 8D is a schematic cross-sectional view showing a fourth step of the method for manufacturing the semiconductor light emitting element according to Embodiment 2.
  • FIG. 8E is a schematic cross-sectional view showing a fifth step of the method for manufacturing the semiconductor light emitting element according to Embodiment 2.
  • FIG. 8A is a schematic cross-sectional view showing a first step in the method for manufacturing a semiconductor light emitting element according to Embodiment 2.
  • FIG. 8B is a schematic cross-sectional view showing a second step of the method for manufacturing the
  • FIG. 8F is a schematic cross-sectional view showing a sixth step of the method for manufacturing the semiconductor light emitting element according to Embodiment 2.
  • FIG. 8G is a schematic cross-sectional view showing a seventh step of the method for manufacturing the semiconductor light emitting element according to Embodiment 2.
  • FIG. 8H is a schematic cross-sectional view showing an eighth step of the method for manufacturing the semiconductor light emitting element according to Embodiment 2.
  • FIG. 8I is a schematic cross-sectional view showing a ninth step of the method for manufacturing the semiconductor light emitting element according to the second embodiment.
  • FIG. 9 is a schematic diagram of a projection apparatus according to the third embodiment.
  • FIG. 10 is a block diagram of a conventional semiconductor array laser device.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute space recognition, but are based on the stacking order in the stacking configuration. Is used as a term defined by the relative positional relationship. The terms “upper” and “lower” are used not only when two components are spaced apart from each other and there is another component between the two components. This is also applied to the case where they are arranged in contact with each other.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor light emitting device 100 according to the present embodiment.
  • FIG. 2 is a graph showing the distribution of the In composition ratio of the well layer of the active layer 103 according to the present embodiment. 2 also shows a cross section of the semiconductor light emitting element 100 at a position corresponding to the horizontal axis of the graph. The position on the horizontal axis of the graph shown in FIG. 2 corresponds to the position in the horizontal direction of the cross-sectional view shown above. For example, the position where the horizontal axis of the graph of FIG.
  • the In composition ratio of the well layer of the active layer 103 is also simply referred to as “In composition ratio of the active layer”.
  • the semiconductor light emitting element 100 is an array type light emitting element having three or more light emitting element portions each including a light emitting layer made of a semiconductor.
  • the semiconductor light emitting element 100 is a laser element having a light emitting side end face and a light reflecting side end face (both end faces are not shown) that form a resonator.
  • FIG. 1 a cross section perpendicular to the resonance direction of the semiconductor light emitting device 100 is shown.
  • the semiconductor light emitting device 100 includes a substrate 101 and an array unit 120.
  • the semiconductor light emitting device 100 further includes a first conductive side electrode 109.
  • the substrate 101 is a base material of the semiconductor light emitting device 100.
  • the substrate 101 is an n-type GaAs substrate having a thickness of 80 ⁇ m.
  • the array unit 120 has three or more light emitting element units that are arranged along the main surface above the main surface of the substrate 101 and each emit light.
  • the array unit 120 includes three light emitting element units 130a, 130b, and 130c. Note that the number of light emitting element portions included in the array portion 120 is not limited to three, and may be three or more.
  • the direction in which the array unit 120 is arranged (horizontal direction in FIG. 1) is referred to as an arrangement direction.
  • Each of the three light emitting element portions 130a, 130b, and 130c is arranged in order from the substrate 101 side above the substrate 101, the first conductivity type cladding layer 102, the active layer 103 containing In, and the second conductivity type.
  • the three light emitting element portions 130a, 130b, and 130c have contact layers 105a, 105b, and 105c and second conductive side electrodes 107a, 107b, and 107c, respectively.
  • Each of the three light emitting element portions 130a, 130b, and 130c further includes an insulating layer 106 and a pad electrode 108.
  • the first conductivity type cladding layer 102 is a cladding layer disposed above the substrate 101.
  • the configuration of the first conductivity type cladding layer 102 is not limited to this.
  • the thickness of the first conductivity type cladding layer 102 may be greater than 1 ⁇ m, and the composition is n-type (Al x Ga 1-x ) 1-y In y P (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • the active layer 103 is a light emitting layer disposed above the first conductivity type cladding layer 102.
  • the In composition ratio in the active layer 103 of the light emitting element portion located on the center side in the arrangement direction is the same as that of the light emitting element portion located on both ends in the arrangement direction It is smaller than the In composition ratio in the active layer 103.
  • the In composition ratio in the active layer 103 of the light emitting element portion 130b located on the center side in the arrangement direction is the light emitting element portion located on both end sides in the arrangement direction. It is smaller than the In composition ratio in the active layer 103 of 130a and 130c.
  • the In composition ratio of the well layer of the active layer 103 in the light emitting element portion 130b is 0.500 (that is, 50.0%), and the In layer of the well layer of the active layer 103 in the light emitting element portions 130a and 130c.
  • the composition ratio is 0.502 (that is, 50.2%).
  • the semiconductor light emitting device 100 can emit red laser light having a wavelength of about 640 nm.
  • the configuration of the active layer 103 is not limited to this, and includes a well layer made of InGaP and (Al x Ga 1-x ) 1-y In y P (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1). Any quantum well active layer in which barrier layers are alternately stacked may be used.
  • the light emitting portions 110a, 110b, and 110c that are regions of the active layer 103 that serve as current paths, that is, the regions below the ridge portions 132a, 132b, and 132c emit light.
  • the active layer 103 may include a guide layer formed on at least one of the upper and lower sides of the quantum well active layer.
  • the second conductivity type clad layer 104 is a clad layer disposed above the active layer 103.
  • the configuration of the second conductivity type cladding layer 104 is not limited to this.
  • the thickness of the second conductivity type cladding layer 104 may be not less than 0.5 ⁇ m and not more than 1.0 ⁇ m, and the composition is p-type (Al x Ga 1-x ) 1-y In y P (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) may be sufficient.
  • the contact layers 105a, 105b and 105c are layers disposed above the second conductivity type cladding layer 104 and are in ohmic contact with the second conductivity side electrodes 107a, 107b and 107c, respectively.
  • the contact layers 105a, 105b and 105c are layers made of p-type GaAs having a thickness of 100 nm. Note that the configuration of the contact layers 105a, 105b, and 105c is not limited to this.
  • the contact layers 105a, 105b, and 105c may have a thickness of 100 nm or more and 500 nm or less.
  • the insulating layer 106 is disposed above the second conductivity type cladding layer 104, and insulates the pad electrode 108 from the second conductivity type cladding layer 104 and the contact layers 105a, 105b, and 105c.
  • the insulating layer 106 includes an upper surface of the second conductivity type cladding layer 104 other than the ridge portions 132a, 132b, and 132c, a side surface of the second conductivity type cladding layer 104 of the ridge portions 132a, 132b, and 132c, contact layers 105a, 105b, and And the side surface of 105c.
  • the insulating layer 106 may cover part of the upper surface of the contact layers 105a, 105b, and 105c.
  • the insulating layer 106 has openings for contacting the contact layers 105a, 105b, and 105c and the second conductive side electrodes 107a, 107b, and 107c above the ridge portions 132a, 132b, and 132c, respectively. .
  • the opening of the insulating layer 106 may have a slit shape.
  • the insulating layer 106 is a layer made of SiO 2 with a thickness of 300 nm. Note that the structure of the insulating layer 106 is not limited thereto. The thickness of the insulating layer 106 may be 100 nm or more and 1000 nm or less.
  • the second conductive side electrodes 107a, 107b and 107c are electrodes disposed above the contact layers 105a, 105b and 105c, respectively, and are in ohmic contact with the contact layers 105a, 105b and 105c.
  • the second conductive side electrodes 107a, 107b and 107c are disposed above the ridge portions 132a, 132b and 132c, respectively. That is, the second conductive side electrodes 107 a, 107 b and 107 c are arranged in the opening of the insulating layer 106. Note that the second conductive side electrodes 107 a, 107 b and 107 c may also be disposed above the insulating layer 106.
  • the second conductive side electrodes 107a, 107b and 107c are in contact with the contact layers 105a, 105b and 105c in the openings of the insulating layer 106.
  • the second conductive side electrodes 107a, 107b, and 107c are stacked films in which Cr, Pt, and Au are sequentially stacked from the contact layers 105a, 105b, and 105c side, respectively.
  • the configuration of the second conductive side electrodes 107a, 107b, and 107c is not limited to this.
  • the second conductive side electrodes 107a, 107b and 107c may be, for example, a single layer film or a multilayer film formed of at least one of Cr, Ti, Ni, Pd, Pt and Au.
  • the pad electrode 108 is a pad-like electrode disposed above the second conductive side electrodes 107a, 107b and 107c.
  • the pad electrode 108 is a laminated film in which Ti and Au are laminated in order from the second conductive side electrodes 107 a, 107 b and 107 c, and the ridge portions 132 a, 132 b and 132 c, and the insulating layer 106 are formed. Arranged above.
  • the configuration of the pad electrode 108 is not limited to this.
  • the pad electrode 108 may be a laminated film of Ti, Pt and Au, Ni and Au, for example.
  • the first conductive side electrode 109 is an electrode disposed below the substrate 101.
  • the first conductive side electrode 109 is a laminated film in which an AuGeNi alloy and Au are laminated in order from the substrate 101 side.
  • the configuration of the first conductive side electrode 109 is not limited to this.
  • the first conductive side electrode 109 may be formed of another conductive material.
  • FIG. 3 is a schematic cross-sectional view showing an example of a mounting form of the semiconductor light emitting device 100 according to the present embodiment.
  • the semiconductor light emitting device 100 is mounted on a package 115 via a submount 113 in an example of a mounting form.
  • the semiconductor light emitting element 100 is mounted on the submount 113 on the surface on the pad electrode 108 side.
  • the submount 113 is a member having a polyhedral shape, and the semiconductor light emitting element 100 is fixed to one surface.
  • the submount 113 has a rectangular parallelepiped shape.
  • the submount 113 is formed of a material having higher thermal conductivity than each semiconductor layer of the semiconductor light emitting device 100 and functions as a heat sink for the semiconductor light emitting device 100.
  • the semiconductor light emitting element 100 is fixed to the submount 113 via the metal layer 112 and the element side adhesive layer 111. Further, the submount 113 is bonded to the package 115 via the package side adhesive layer 114.
  • the submount 113 is formed of polycrystalline diamond having a thickness of 300 ⁇ m.
  • the material for forming the submount 113 is not limited to this, and may be AlN, SiC, CuW, copper diamond, silver diamond, or the like.
  • the metal layer 112 is a conductive member to which a wire for supplying power to the pad electrode 108 is connected.
  • the metal layer 112 has a thickness of 5 ⁇ m and is a laminated film in which Ti, Pt, and Au are laminated in this order from the submount 113 side.
  • the configuration of the metal layer 112 is not limited to this.
  • the metal layer 112 may be, for example, a single layer film or a multilayer film having a thickness of 1 ⁇ m to 10 ⁇ m and having at least one of Ti, Ni, Pt, and Au.
  • the element side adhesive layer 111 is a conductive adhesive member that adheres the submount 113 and the semiconductor light emitting element 100.
  • the element side adhesive layer 111 is formed of AuSn having a thickness of 2 ⁇ m.
  • the material for forming the element-side adhesive layer 111 is not limited to this, and other conductive adhesive materials may be used.
  • the thickness of the element side adhesive layer 111 is not limited to 2 ⁇ m, and may be determined as appropriate.
  • the package side adhesive layer 114 is a member that adheres the submount 113 and the package 115.
  • the package side adhesive layer 114 is formed of AuSn having a thickness of 2 ⁇ m.
  • the material for forming the package side adhesive layer 114 is not limited to this, and may be another adhesive material.
  • the thickness of the package side adhesive layer 114 is not limited to 2 ⁇ m, and may be determined as appropriate.
  • the package 115 is a member on which the semiconductor light emitting element 100 is mounted.
  • the package 115 may be a CAN package, for example.
  • the package 115 is made of Cu, Fe, or the like, for example.
  • the semiconductor light emitting device 100 is mounted on the submount 113 that functions as a heat sink on the surface close to each light emitting portion, the heat generated from the semiconductor light emitting device 100 can be efficiently subsidized. It can be dissipated to the mount 113.
  • FIGS. 4 and 5 are graphs showing the distribution of the emission wavelength of each semiconductor light emitting device according to the present embodiment and the comparative example with respect to the position of the active layer.
  • the semiconductor light emitting device 100A according to the comparative example is a semiconductor light emitting device that is different from the semiconductor light emitting device 100 according to the present embodiment in that the active layer 103A having a uniform In composition ratio is included, and is identical in other points.
  • 4 and 5 show a graph (c) showing the distribution of the emission wavelength (that is, the peak wavelength of spontaneous emission light) of each semiconductor light emitting element during low output operation, and the distribution of the emission wavelength during high output operation.
  • a graph (d) shown is shown.
  • the low output operation means an operation with a low output so that the influence of heat generation in each semiconductor light emitting element can be ignored
  • the high output operation means a normal operation such as when operating at a rated output.
  • Means movement. 4 and 5 are a cross-sectional view of each semiconductor light emitting device, a graph (a) showing the distribution of the In composition ratio of the well layer of each active layer, and a normal operation (that is, high output) of each semiconductor light emitting device.
  • a graph (b) showing the distribution of the temperature of the active layer during operation is also shown.
  • the position of the horizontal axis of each graph shown in FIGS. 4 and 5 corresponds to the horizontal position of the cross-sectional view shown above, as in FIG.
  • the In composition ratio in the active layer 103A is uniform.
  • the emission wavelength is uniform over the entire area of the active layer 103A, as shown in the graph (c) of FIG.
  • the influence of heat generation cannot be ignored during normal operation.
  • the graph (b) of FIG. 4 and FIG. 5 in the light emitting element portion located on the center side in the arrangement direction of each semiconductor light emitting element, the light emitting element portion located on both end sides in the arrangement direction. The thermal interference from other light emitting element portions adjacent in the arrangement direction is received.
  • the temperature of the active layer in the light emitting element portion located on the center side in the arrangement direction is higher than the temperature of the active layer in the light emitting element portion located on both end sides in the arrangement direction.
  • the active layer of each semiconductor light emitting element according to the present embodiment and the comparative example as shown in the graph (b) of FIG. 4 and FIG. 5, the active layer of the light emitting element portion located on the center side in the arrangement direction is used.
  • the temperature is about 3 ° C. higher than the active layer in the light emitting element portion located on both end sides in the arrangement direction.
  • the active layer 103A during normal operation has such a temperature distribution, as shown in the graph (d) of FIG. 5, the active layer 103A of the semiconductor light emitting device 100A according to the comparative example is caused by the temperature rise.
  • the shift amount of the emitted light wavelength varies depending on the position of the three light emitting element portions in the arrangement direction. Thereby, the emission wavelength becomes non-uniform with respect to the position of the active layer 103A.
  • the In composition ratio in the active layer 103 of the light emitting element portion 130 b located on the center side in the arrangement direction is the both end portions in the arrangement direction. It is smaller than the In composition ratio in the active layer 103 of the light emitting element portions 130a and 130c located on the side.
  • the emission wavelength is not relative to the position of the active layer 103 as shown in the graph (c) of FIG. It becomes uniform.
  • the active layer 103 of the light emitting element portion 130b located on the center side in the arrangement direction is the light emitting element portion located on both end sides in the arrangement direction.
  • the temperature becomes higher than that of the active layer 103 of 130a and 130c.
  • the amount of shift of the emission wavelength toward the longer wavelength side is larger in the active layer 103 of the light emitting element portion 130b located on the center side in the arrangement direction. This is due to a temperature difference between the active layer 103 of the light emitting element portion 130b located on the center side in the arrangement direction and the active layer 103 of the light emitting element portions 130a and 130c located on both end sides in the arrangement direction.
  • At least part of the difference in the shift amount of the emission wavelength can be offset by the difference in the emission wavelength caused by the In composition ratio. Therefore, as shown in the graph (d) of FIG. 4, the uniformity of the emission wavelength in the three light emitting element portions 130a, 130b, and 130c of the semiconductor light emitting element 100 can be improved.
  • the heat dissipation configuration may be any configuration that can perform the same level of heat dissipation to each light emitting element portion, and is not necessarily as described in Patent Document 1.
  • a configuration in which heat sinks are provided on both sides of the element is not required.
  • the heat dissipation configuration can be simplified and the cost can be reduced.
  • the active layer 103 has a quantum well structure including a well layer and a barrier layer, and the In composition ratio in the well layer of the light emitting element portion 130b located on the center side in the arrangement direction is It is smaller than the In composition ratio in the well layers of the light emitting element portions 130a and 130c located on both end sides in the direction. Thereby, the uniformity of the emission wavelength can be enhanced in the active layer 103 having the quantum well structure.
  • FIGS. 6A to 6I are schematic cross-sectional views showing the respective steps of the method for manufacturing the semiconductor light emitting device 100 according to the present embodiment.
  • a substrate 101 having a flat main surface is prepared.
  • the crystal axis ((100) axis) of the substrate 101 is perpendicular to the main surface of the substrate 101 as shown by the arrow in FIG. 6A.
  • a resist 122 is applied to the main surface of the substrate 101.
  • the thickness of the resist 122 is changed at each position on the substrate 101 by adjusting the exposure amount when the resist 122 is formed. Accordingly, the thickness of the resist 122 is linearly changed to a lower right side (that is, with a constant inclination) on both end sides in the horizontal direction in FIG. 6B, and the resist 122 is changed on the central side in the horizontal direction in FIG. 6B.
  • the thickness is uniform.
  • the main surface of the substrate 101 is etched by a thickness corresponding to the thickness of the resist 122 located above the substrate 101 by removing the resist 122 by etching.
  • the thickness of the substrate 101 to be removed by etching increases as the thickness of the formed resist 122 decreases.
  • the inclination of the main surface of the substrate 101 with respect to the crystal axis, that is, the off-angle is large in the regions 101a and 101c on both ends of the main surface, and the center of the main surface A small substrate 101 can be formed in the side region 101b.
  • a first conductivity type cladding layer 102, an active layer 103, a second conductivity type cladding layer 104, and a contact layer 105 are formed on the main surface of the substrate 101 in this order from the substrate 101 side.
  • the inclination of the upper surface of the substrate 101 as shown in FIG. 6C is not shown for simplification of the drawing.
  • each layer is formed by metal organic chemical vapor deposition (MOCVD).
  • MOCVD metal organic chemical vapor deposition
  • the light emitting element portions 130a and 130c are formed at a position where the light emitting element portion 130b is formed in a later process (horizontal center in FIG. 6D).
  • the In composition ratio of the active layer 103 can be reduced from the position (both ends in the horizontal direction in FIG. 6D).
  • a mask 123 made of SiO 2 or the like is formed on the contact layer 105.
  • the resonance direction i.e., FIG. Three strip-shaped masks 123 extending in a direction perpendicular to the paper surface of 6E are formed.
  • the contact layer 105 and the second conductivity type cladding layer 104 are etched using the mask 123 formed in a band shape, and then the mask 123 is removed by wet etching, Ridge portions 132a, 132b and 132c are formed.
  • Ridge portions 132a, 132b and 132c are formed.
  • etching of the contact layer 105 and the second conductivity type cladding layer 104 for example, dry etching by a reactive ion etching (RIE) method using a chlorine-based gas such as Cl 2 may be used.
  • RIE reactive ion etching
  • the mask 123 is preferably removed by wet etching such as hydrofluoric acid.
  • the insulating layer 106 is formed on the second conductivity type cladding layer 104 and the contact layers 105a, 105b and 105c.
  • As the insulating layer 106 300 nm thick SiO 2 is formed by plasma CVD.
  • FIG. 6G only the insulating layer 106 on the contact layers 105a, 105b, and 105c is removed to expose the upper surfaces of the contact layers 105a, 105b, and 105c. Photolithography and wet etching can be used to remove the insulating layer 106.
  • second conductive side electrodes 107a, 107b, and 107c are formed on the contact layers 105a, 105b, and 105c, respectively, using a vacuum deposition method and a lift-off method.
  • a pad electrode 108 is formed so as to cover the second conductive side electrodes 107 a, 107 b and 107 c and the insulating layer 106.
  • a resist is patterned on a portion where the pad electrode 108 is not formed by photolithography or the like, the pad electrode 108 is formed on the entire upper surface of the substrate 101 by a vacuum deposition method or the like, and an unnecessary portion is formed using a lift-off method. Remove.
  • a pad electrode 108 having a predetermined shape is formed.
  • the first conductive side electrode 109 is formed on the lower surface of the substrate 101 (the lower surface in FIG. 6I). Thereby, as shown in FIG. 6I, the semiconductor light emitting device 100 can be formed.
  • the off-angle of the substrate 101 is a region where the light emitting element portion 130b located on the center side in the arrangement direction among the three light emitting element portions 130a, 130b, and 130c is disposed.
  • the region 101b is smaller than the regions 101a and 101c in which the light emitting element portions 130a and 130c located on both end sides in the arrangement direction are disposed.
  • the smaller the off angle of the substrate 101 the smaller the In composition ratio in the semiconductor layer stacked on the substrate 101.
  • a configuration in which the In composition ratio in the active layer 103 is smaller at the center side in the arrangement direction than at both end sides can be easily realized.
  • Embodiment 2 A semiconductor light emitting device according to the second embodiment will be described.
  • the semiconductor light emitting device according to the present embodiment is different from the semiconductor light emitting device 100 according to the first embodiment in the material and the In distribution in the active layer, and is identical in other points.
  • the semiconductor light emitting device according to the present embodiment will be described focusing on differences from the semiconductor light emitting device 100 according to the first embodiment.
  • FIG. 7 is a schematic cross-sectional view of the semiconductor light emitting device 200 according to the present embodiment.
  • FIG. 7 also shows a graph showing the distribution of the In composition ratio of the well layer of the active layer 203 according to this embodiment.
  • the position of the horizontal axis of the graph shown in FIG. 7 corresponds to the horizontal position of the cross-sectional view shown above. For example, the position where the horizontal axis of the graph of FIG.
  • each semiconductor layer is formed of a nitride-based semiconductor.
  • the semiconductor light emitting device 200 includes a substrate 201 and an array unit 220.
  • the semiconductor light emitting device 200 further includes a first conductive side electrode 209.
  • the substrate 201 is a base material of the semiconductor light emitting element 200.
  • the substrate 201 is an n-type GaN substrate having a thickness of 80 ⁇ m.
  • the array unit 220 has three or more light emitting element units that are arranged along the main surface above the main surface of the substrate 201 and each emit light.
  • the array unit 220 includes three light emitting element units 230a, 230b, and 230c. Note that the number of light emitting element portions included in the array portion 220 is not limited to three, and may be three or more.
  • Each of the three light emitting element portions 230a, 230b, and 230c includes a first conductivity type cladding layer 202, an active layer 203 containing In, and a second conductivity type, which are arranged above the substrate 201 in order from the substrate 201 side.
  • the three light emitting element portions 230a, 230b, and 230c have contact layers 205a, 205b, and 205c and second conductive side electrodes 207a, 207b, and 207c, respectively.
  • Each of the three light emitting element portions 230a, 230b, and 230c further includes an insulating layer 206 and a pad electrode 208.
  • the first conductivity type cladding layer 202 is a cladding layer disposed above the substrate 201.
  • the configuration of the first conductivity type cladding layer 202 is not limited to this.
  • the thickness of the first conductivity type cladding layer 202 may be greater than 1 ⁇ m, and the composition may be n-type Al x Ga 1-x N (0 ⁇ x ⁇ 1).
  • the active layer 203 is a light emitting layer disposed above the first conductivity type cladding layer 202.
  • the active layer 203 includes a well layer made of undoped In x Ga 1-x N (x ⁇ 0.1800) having a thickness of 5 nm and a barrier layer made of undoped GaN having a thickness of 100 nm.
  • the quantum well active layers are alternately stacked.
  • the In composition ratio in the active layer 203 of the light emitting element portion located on the center side in the arrangement direction is the same as that of the light emitting element portion located on both end sides in the arrangement direction. It is smaller than the In composition ratio in the active layer 203.
  • the In composition ratio in the active layer 203 of the light emitting element portion 230b located on the center side in the arrangement direction is the light emitting element portion located on both end sides in the arrangement direction. It is smaller than the In composition ratio in the active layer 203 of 230a and 230c.
  • the In composition ratio of the well layer of the active layer 203 in the light emitting part 210b of the light emitting element part 230b is 0.1800 (that is, 18.00%), and the light emitting part 210a and the light emitting element of the light emitting element part 230a
  • the In composition ratio of the well layer of the active layer 203 in the light emitting portion 210c of the portion 230c is 0.1815 (that is, 18.15%).
  • the In composition ratio in the well layer of the active layer 203 continuously increases from the center side in the arrangement direction toward both end portions.
  • the semiconductor light emitting device 200 can emit blue laser light having a wavelength of about 450 nm.
  • the configuration of the active layer 203 is not limited to this, and a quantum well active layer in which well layers made of In x Ga 1-x N (0 ⁇ x ⁇ 1) and barrier layers made of GaN are alternately stacked. If it is.
  • Light emitting portions 210a, 210b, and 210c which are regions in the active layer 203 that serve as current paths, that is, regions below the ridge portions 232a, 232b, and 232c, emit light.
  • the active layer 203 may include a guide layer formed at least one above and below the quantum well active layer.
  • the second conductivity type cladding layer 204 is a cladding layer disposed above the active layer 203.
  • the configuration of the second conductivity type cladding layer 204 is not limited to this.
  • the thickness of the second conductivity type cladding layer 104 may be not less than 0.5 ⁇ m and not more than 1.0 ⁇ m, and the composition is p-type Al x Ga 1-x N (0 ⁇ x ⁇ 1). Also good.
  • the contact layers 205a, 205b and 205c are layers disposed above the second conductivity type cladding layer 204 and are in ohmic contact with the second conductivity side electrodes 207a, 207b and 207c, respectively.
  • the contact layers 205a, 205b and 205c are layers made of p-type GaN having a thickness of 100 nm. Note that the configuration of the contact layers 205a, 205b, and 205c is not limited to this.
  • the contact layers 205a, 205b and 205c may have a thickness of 100 nm or more and 500 nm or less.
  • the insulating layer 206 is disposed above the second conductivity type cladding layer 204 and insulates the pad electrode 108 from the second conductivity type cladding layer 204 and the contact layers 205a, 205b, and 205c.
  • the insulating layer 206 includes an upper surface of the second conductivity type cladding layer 204 other than the ridge portions 232a, 232b, and 232c, a side surface of the second conductivity type cladding layer 204 of the ridge portions 232a, 232b, and 232c, contact layers 205a, 205b, and 205c is covered.
  • the insulating layer 106 may cover part of the upper surface of the contact layers 205a, 205b, and 205c.
  • the insulating layer 206 has openings for contacting the contact layers 205a, 205b, and 205c and the second conductive side electrodes 207a, 207b, and 207c above the ridge portions 232a, 232b, and 232c, respectively. .
  • the opening of the insulating layer 206 may have a slit shape.
  • the insulating layer 206 is a layer made of SiO 2 with a thickness of 300 nm. Note that the structure of the insulating layer 206 is not limited thereto. The thickness of the insulating layer 206 may be 100 nm or more and 1000 nm or less.
  • the second conductive side electrodes 207a, 207b, and 207c are electrodes that are disposed above the contact layers 205a, 205b, and 205c, respectively, and are in ohmic contact with the contact layers 205a, 205b, and 205c.
  • the second conductive side electrodes 207a, 207b and 207c have the same configuration as the second conductive side electrodes 107a, 107b and 107c according to Embodiment 1, respectively.
  • the pad electrode 208 is a pad-like electrode disposed above the second conductive side electrodes 207a, 207b and 207c.
  • the pad electrode 208 has the same configuration as the pad electrode 108 according to the first embodiment.
  • the first conductive side electrode 209 is an electrode disposed below the substrate 201.
  • the first conductive side electrode 209 has the same configuration as the first conductive side electrode 109 according to the first embodiment.
  • the In composition ratio of the well layer of the active layer 203 has the distribution as described above, so that it is the same as the semiconductor light emitting device 100 according to the first embodiment.
  • the uniformity of the emission wavelength between the light emitting element portions can be improved.
  • a low-cost semiconductor light emitting element 200 having a simplified configuration can be realized.
  • FIGS. 8A to 8I are schematic cross-sectional views showing the respective steps of the method for manufacturing the semiconductor light emitting device 200 according to the present embodiment.
  • a substrate 201 having a flat main surface is prepared.
  • the crystal axis ((100) axis) of the substrate 201 is perpendicular to the main surface of the substrate 201 as shown by the arrow in FIG. 8A.
  • a resist 222 is applied to the main surface of the substrate 201.
  • the thickness of the resist 222 is changed at each position on the substrate 201 by adjusting the exposure amount when the resist 222 is formed.
  • the thickness of the resist 222 is reduced from the horizontal center side in FIG. 8B toward both end portions.
  • the main surface of the substrate 201 can be etched by a thickness corresponding to the thickness of the resist 222 positioned above the substrate 201 by removing the resist 222 by etching.
  • the smaller the thickness of the formed resist 222 the larger the thickness of the substrate 201 removed by etching.
  • FIG. 8C it is possible to form the substrate 201 whose inclination with respect to the crystal axis of the main surface of the substrate 201, that is, the off-angle, becomes larger as approaching both end portions of the substrate 201. Therefore, it is possible to form the substrate 201 having a large off-angle in the regions 201a and 201c on both end portions of the main surface and a small in the region 201b on the central side of the main surface.
  • a first conductivity type cladding layer 202, an active layer 203, a second conductivity type cladding layer 204, and a contact layer 205 are formed on the main surface of the substrate 201 in this order from the substrate 201 side.
  • the inclination of the upper surface of the substrate 201 as shown in FIG. 8C is not displayed for simplification of the drawing.
  • each process shown in FIGS. 8D to 8I is the same as each process shown in FIGS. 6D to 6I. Therefore, detailed description of each process will be omitted below.
  • the contact layer 205 and the second conductivity type cladding layer 204 are etched using the mask 223 formed in a band shape, and then the mask 223 is removed by wet etching, Ridge portions 232a, 232b and 232c are formed.
  • the contact layers 205a, 205b, and 205c disposed in the ridge portions 232a, 232b, and 232c, respectively, remain in the contact layer 205, and the film thicknesses of the portions other than the ridge portions of the second conductivity type cladding layer 204 are reduced. Reduced.
  • an insulating layer 206 is formed on the second conductivity type cladding layer 204 and the contact layers 205a, 205b and 205c. Subsequently, as shown in FIG. 8G, only the insulating layer 206 on the contact layers 205a, 205b, and 205c is removed to expose the upper surfaces of the contact layers 205a, 205b, and 205c.
  • second conductive side electrodes 207a, 207b and 207c are formed on the contact layers 205a, 205b and 205c, respectively.
  • a pad electrode 208 is formed so as to cover the second conductive side electrodes 207a, 207b and 207c and the insulating layer 206.
  • the first conductive side electrode 209 is formed on the lower surface of the substrate 201 (the lower surface in FIG. 8I). Thereby, as shown in FIG. 8I, the semiconductor light emitting device 200 can be formed.
  • the off angle of the substrate 201 is the central side in the arrangement direction of the three light emitting element portions 230a, 230b, and 230c, as in the semiconductor light emitting element 100 according to the first embodiment.
  • the region 201b where the light emitting element part 230b located in the region is arranged is smaller than the regions 201a and 201c where the light emitting element parts 230a and 230c located on both ends in the arrangement direction are arranged. For this reason, in the semiconductor light emitting device 200 in which the laminated structure is laminated on the substrate 201, a configuration in which the In composition ratio in the active layer 203 is smaller at the center side in the arrangement direction than at both end sides can be easily realized.
  • the well layer and the barrier layer of the active layer are made of undoped In x Ga 1-x N (x ⁇ 0.3000) and undoped GaN, respectively.
  • the In composition ratio of the well layer of the active layer in the light emitting element portion located on the center side in the arrangement direction is the well layer of the active layer in the light emitting element portion located on both end sides in the arrangement direction. Smaller than the In composition ratio.
  • the In composition ratio of the well layer in the light emitting portion located on the center side in the arrangement direction is 0.3000 (that is, 30.00%), and the light emitting portion located on both end sides in the arrangement direction.
  • the In composition ratio of the well layer is 0.3015 (that is, 30.15%).
  • the In composition ratio in the well layer of the active layer is continuously increased from the center side in the arrangement direction toward both end portions. To increase.
  • the In composition ratio of the well layer of the active layer has the distribution as described above, so that the emission wavelength between the light emitting device portions is similar to that of the semiconductor light emitting device 200. Uniformity can be improved. Also in the present modification, as in the first embodiment, a low-cost semiconductor light emitting element having a simplified configuration can be realized.
  • the projection apparatus (projector) according to the present embodiment includes the semiconductor light emitting element according to the first embodiment, the second embodiment, and a modification thereof. The following describes the projection apparatus according to the present embodiment with reference to FIG.
  • FIG. 9 is a schematic diagram of the projection apparatus 300 according to the present embodiment.
  • the projection apparatus 300 is an example of an image display apparatus using a semiconductor light emitting element.
  • a semiconductor light emitting module 300R that emits red laser light
  • a semiconductor light emitting module 300G that emits green laser light
  • a semiconductor light emitting module 300B that emits blue laser light.
  • the semiconductor light emitting modules 300R, 300G, and 300B the semiconductor light emitting element 100 according to the first embodiment, the semiconductor light emitting element according to the modification of the second embodiment, and the semiconductor according to the second embodiment, respectively.
  • a light emitting element 200 is used.
  • packages 115R, 115G, and 115B similar to the package 115 shown in the mounting form of the first embodiment are used, respectively.
  • the projection apparatus 300 includes lenses 302R, 302G and 302B, a mirror 303R, a dichroic mirror 303G and a dichroic mirror 303B, a spatial modulation element 304, and a projection lens 305.
  • the lenses 302R, 302G, and 302B are, for example, collimating lenses, and are disposed in front of the semiconductor light emitting modules 300R, 300G, and 300B, respectively.
  • the mirror 303R reflects the red laser light emitted from the semiconductor light emitting module 300R.
  • the dichroic mirror 303G reflects the green laser light emitted from the semiconductor light emitting module 300G and transmits the red laser light emitted from the semiconductor light emitting module 300R.
  • the dichroic mirror 303B reflects the blue laser light emitted from the semiconductor light emitting module 300B, transmits the red laser light emitted from the semiconductor light emitting module 300R, and transmits the green laser light emitted from the semiconductor light emitting module 300G. To do.
  • the spatial modulation element 304 is configured to output red laser light from the semiconductor light emitting module 300R, green laser light from the semiconductor light emitting module 300G, and blue laser from the semiconductor light emitting module 300B according to an input image signal input to the projection apparatus 300.
  • a red image, a green image, and a blue image are formed using light.
  • a liquid crystal panel or a DMD (digital mirror device) using a MEMS (microelectric mechanical system) can be used as the spatial modulation element 304.
  • the projection lens 305 projects the image formed by the spatial modulation element 304 onto the screen 306.
  • the laser beams emitted from the semiconductor light emitting modules 300R, 300G, and 300B are made substantially parallel light by the lenses 302R, 302G, and 302B, respectively, and then the mirror 303R, the dichroic mirror 303G, and The light enters the dichroic mirror 303B.
  • the mirror 303R reflects the red laser beam emitted from the semiconductor light emitting module 300R in the 45 ° direction.
  • the dichroic mirror 303G transmits the red laser light from the semiconductor light emitting module 300R reflected by the mirror 303R and reflects the green laser light emitted from the semiconductor light emitting module 300G in the 45 ° direction.
  • the dichroic mirror 303B transmits the red laser light from the semiconductor light emitting module 300R reflected by the mirror 303R and the green laser light from the semiconductor light emitting module 300G reflected by the dichroic mirror 303G and is emitted from the semiconductor light emitting module 300B.
  • the blue laser beam is reflected in the 45 ° direction.
  • the red, green, and blue laser lights reflected by the mirror 303R, the dichroic mirror 303G, and the dichroic mirror 303B are incident on the spatial modulation element 304 in a time-sharing manner (for example, red, green, and blue are sequentially switched at a switching period of 120 Hz).
  • the spatial modulation element 304 displays a red image when a red laser beam is incident, displays a green image when a green laser beam is incident, and emits a blue laser beam. When incident, a blue image is displayed.
  • the red, green, and blue laser lights spatially modulated by the spatial modulation element 304 are converted into a red image, a green image, and a blue image, and are projected onto the screen 306 through the projection lens 305.
  • each of the red image, the green image, and the blue image projected onto the screen 306 in a time-sharing manner is a single color, but since it is switched at high speed, an image of a color in which these images are mixed, That is, it is recognized as a color image.
  • the semiconductor light emitting modules 300R, 300G, and 300B use the semiconductor light emitting elements according to the above embodiments and their modifications, so that the light is emitted from a plurality of light emitting units.
  • the coupling efficiency of laser light is high. For this reason, the high-intensity and high-definition projection apparatus 300 can be realized.
  • each semiconductor light-emitting element has three light-emitting element units, but the number of light-emitting element units is not limited to three.
  • Each semiconductor light emitting element may have three or more light emitting element portions.
  • the first conductivity type of each semiconductor layer is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It is good also as a type.
  • each active layer has a quantum well structure, but the structure of each active layer is not limited to the quantum well structure.
  • the semiconductor light emitting element is a laser element including a resonator, but may be a super luminescent diode.
  • current confinement is realized using a ridge structure, but means for realizing current confinement is not limited to this, and an electrode stripe structure Alternatively, an embedded structure or the like may be used.
  • the semiconductor light emitting element of the present disclosure can be applied to a projection apparatus or the like as a light source with high emission wavelength uniformity, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

半導体発光素子(100)は、基板(101)と、基板(101)の主面の上方において、主面に沿って配列され、各々が光を出射する三つ以上の発光素子部(130a、130b及び130c)を有するアレイ部(120)と、を備え、三つ以上の発光素子部(130a、130b及び130c)の各々は、基板(101)の上方に、基板(101)側から順に配置される、第1導電型クラッド層(102)と、Inを含む活性層(103)と、第2導電型クラッド層(104)と、を有し、三つ以上の発光素子部(130a、130b及び130c)のうち配列方向の中央側に位置する発光素子部(130b)の活性層(103)におけるIn組成比は、配列方向の両方の端部側に位置する発光素子部(130a及び130c)の活性層(103)におけるIn組成比より小さい。

Description

半導体発光素子
 本開示は、半導体発光素子に関し、特に、複数の発光素子部を有する半導体発光素子に関する。
 なお、本願は、平成28年度、国立研究開発法人新エネルギー・産業技術総合開発機構 「高輝度・高効率次世代レーザー技術開発/次々世代加工に向けた新規光源・要素技術開発/高効率加工用GaN系高出力・高ビーム品質半導体レーザーの開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願である。
 近年、プロジェクションマッピングの流行、及び、スタジアムなどの大型施設でのプロジェクタの利用拡大に伴い、高出力なプロジェクタの開発が進められている。高出力なプロジェクタを実現するために、光学系との結合が容易な半導体レーザ素子などの半導体発光素子が光源として採用されている。半導体発光素子の高出力化の実現のためには、半導体発光素子の低熱抵抗化が必須である。半導体発光素子の低熱抵抗化の実現のための手段として、複数の発光素子部(つまりエミッタ)を設けるマルチエミッタ化が採用されている。マルチエミッタ化された半導体発光素子では、複数の発光素子部を設けることによって熱源となる発光素子部を分散し得るため、低熱抵抗化が可能となる。このようなマルチエミッタ化された半導体発光素子において、高出力動作を行うと、複数の発光素子部間に温度差が発生するため、当該温度差に起因して、複数の発光素子部における発光波長が不均一となる。その結果、光源の波長均一性が低下するため、プロジェクタの色再現性が低下する。
 このような複数のエミッタ間における温度差を低減する従来技術について図10を用いて説明する。図10は、特許文献1に記載された従来の半導体アレイレーザ装置の構成図である。図10に示されるように、特許文献1に記載された半導体アレイレーザ装置では、アレイ状に配列された複数の発光素子部を有するレーザチップ1000の上下面を構成するp側電極1001及びn側電極1007に、ハンダ層1008を介して、それぞれ二つのヒートシンク1009及び1010を配置している。これにより、特許文献1に記載された半導体アレイレーザ装置では、一つのヒートシンクだけでレーザチップ1000を支持する場合より放熱効果を向上させようとしている。さらに、特許文献1に記載された半導体アレイレーザ装置では、レーザチップ1000の基板1006の中央部における厚さを削減している。言い換えると、基板1006のn側電極1007側の面に凹形状を形成している。これにより、レーザチップ1000のうち比較的高温となる中央部における熱抵抗を低減できるため、レーザチップ1000の動作時の温度を均一化できる。このように、特許文献1に記載された半導体アレイレーザ装置では、レーザチップ1000における動作時の温度を均一化することで、各発光素子部における発光波長を均一化しようとしている。
特開平4-192483号公報
 特許文献1に記載された半導体アレイレーザ装置では、基板1006側の面だけでなく、レーザチップ1000の活性層側の面(図10に示されるp側電極1001側の面)を介した放熱経路が前提となっている。そのため、レーザチップ1000の上下面を二つのヒートシンク1009及び1010で挟み込むパッケージが必須となり、パッケージ及び実装に要するコストが増大する。また、基板1006の凹形状とヒートシンク1010の凸形状を精密に一致させるのは技術的に困難である。基板1006の凹形状とヒートシンク1010の凸形状との間にずれが生じることで、それらの間に挿入されるハンダ層1008の厚みが大きくなる場合には、温度均一化の効果を得られないことがあり得る。このように、特許文献1に記載された半導体アレイレーザ装置では、各発光素子部における発光波長を均一化できないことがある。
 本開示は、このような課題を解決するものであり、複数の発光素子部を有する半導体発光素子において、複数の発光素子部における発光波長の均一性を高めることを目的とする。
 上記課題を解決するために、本開示に係る半導体発光素子の一態様は、基板と、前記基板の主面の上方において、前記主面に沿って配列され、各々が光を出射する三つ以上の発光素子部を有するアレイ部と、を備え、前記三つ以上の発光素子部の各々は、前記基板の上方に、前記基板側から順に配置される、第1導電型クラッド層と、Inを含む活性層と、第2導電型クラッド層と、を有し、前記三つ以上の発光素子部のうち配列方向の中央側に位置する発光素子部の前記活性層におけるIn組成比は、前記配列方向の両方の端部側に位置する発光素子部の前記活性層におけるIn組成比より小さい。
 このように活性層のIn組成比を発光素子部に応じて異ならせると、活性層における発熱の発光波長への影響を無視できる程度に微弱な出力で半導体発光素子を動作させる場合、活性層におけるIn組成比が小さくなるにしたがって、発光波長は短波長側へシフトする。一方、活性層の温度が上昇すると発光波長は長波長側へシフトする。そのため、In組成比が比較的小さい活性層を、動作時に比較的高温となる配列方向の中央側の領域に配置することで、各発光素子部間の発光波長の均一性を高めることができる。これにより動作時における波長均一性が高い半導体発光素子を実現できる。さらに、本開示に係る半導体発光素子の一態様において、放熱構成は、各発光素子部に対して同程度の放熱を行うことができる構成であればよく、必ずしも特許文献1に記載されたような素子の両面にヒートシンクを設ける構成を必要としない。例えば、本開示に係る半導体発光素子の基板の一方の主面側だけにヒートシンクを設ける放熱構成でも上記の発光波長均一化の効果を得られる。したがって、本開示によれば、放熱構成を簡素化かつ低コスト化できる。
 また、本開示に係る半導体発光素子の一態様において、前記活性層は、井戸層と障壁層とからなる量子井戸構造を有し、前記三つ以上の発光素子部のうち前記配列方向の中央側に位置する発光素子部の前記井戸層におけるIn組成比は、前記配列方向の両方の端部側に位置する発光素子部の前記井戸層におけるIn組成比より小さくてもよい。
 このように活性層が井戸層と障壁層とからなる量子井戸構造を有する場合、In組成比が比較的小さい井戸層を、動作時に比較的高温となる配列方向の中央側の領域に配置することで、各発光素子部間の発光波長の不均一性を低減できる。これにより動作時における波長均一性が高い半導体発光素子を実現できる。
 また、本開示に係る半導体発光素子の一態様において、前記基板のオフ角は、前記三つ以上の発光素子部のうち前記配列方向の中央側に位置する発光素子部が配置される領域の方が、前記配列方向の両方の端部側に位置する発光素子部が配置される領域より小さくてもよい。
 このような半導体発光素子において、基板のオフ角が小さいほど、基板上に積層される半導体層におけるIn組成比が小さくなる。このため、上記基板上に半導体層が積層された半導体発光素子では、配列方向の中央側において、両方の端部側より活性層におけるIn組成比が少ない構成を容易に実現できる。
 本開示によれば、複数の発光素子部を有する半導体発光素子において、複数の発光素子部における発光波長を均一化できる。
図1は、実施の形態1に係る半導体発光素子の模式的な断面図である。 図2は、実施の形態1に係る活性層の井戸層のIn組成比の分布を示すグラフである。 図3は、実施の形態1に係る半導体発光素子の実装形態の一例を示す模式的な断面図である。 図4は、実施の形態1に係る半導体発光素子の発光波長の活性層の位置に対する分布を示すグラフである。 図5は、比較例に係る半導体発光素子の発光波長の活性層の位置に対する分布を示すグラフである。 図6Aは、実施の形態1に係る半導体発光素子の製造方法の第1工程を示す模式的な断面図である。 図6Bは、実施の形態1に係る半導体発光素子の製造方法の第2工程を示す模式的な断面図である。 図6Cは、実施の形態1に係る半導体発光素子の製造方法の第3工程を示す模式的な断面図である。 図6Dは、実施の形態1に係る半導体発光素子の製造方法の第4工程を示す模式的な断面図である。 図6Eは、実施の形態1に係る半導体発光素子の製造方法の第5工程を示す模式的な断面図である。 図6Fは、実施の形態1に係る半導体発光素子の製造方法の第6工程を示す模式的な断面図である。 図6Gは、実施の形態1に係る半導体発光素子の製造方法の第7工程を示す模式的な断面図である。 図6Hは、実施の形態1に係る半導体発光素子の製造方法の第8工程を示す模式的な断面図である。 図6Iは、実施の形態1に係る半導体発光素子の製造方法の第9工程を示す模式的な断面図である。 図7は、実施の形態2に係る半導体発光素子の模式的な断面図である。 図8Aは、実施の形態2に係る半導体発光素子の製造方法の第1工程を示す模式的な断面図である。 図8Bは、実施の形態2に係る半導体発光素子の製造方法の第2工程を示す模式的な断面図である。 図8Cは、実施の形態2に係る半導体発光素子の製造方法の第3工程を示す模式的な断面図である。 図8Dは、実施の形態2に係る半導体発光素子の製造方法の第4工程を示す模式的な断面図である。 図8Eは、実施の形態2に係る半導体発光素子の製造方法の第5工程を示す模式的な断面図である。 図8Fは、実施の形態2に係る半導体発光素子の製造方法の第6工程を示す模式的な断面図である。 図8Gは、実施の形態2に係る半導体発光素子の製造方法の第7工程を示す模式的な断面図である。 図8Hは、実施の形態2に係る半導体発光素子の製造方法の第8工程を示す模式的な断面図である。 図8Iは、実施の形態2に係る半導体発光素子の製造方法の第9工程を示す模式的な断面図である。 図9は、実施の形態3に係る投影装置の模式図である。 図10は、従来の半導体アレイレーザ装置の構成図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに接する状態で配置される場合にも適用される。
 (実施の形態1)
 実施の形態1に係る半導体発光素子について説明する。
 [1-1.全体構成]
 まず、本実施の形態に係る半導体発光素子の全体構成について図1及び図2を用いて説明する。図1は、本実施の形態に係る半導体発光素子100の模式的な断面図である。図2は、本実施の形態に係る活性層103の井戸層のIn組成比の分布を示すグラフである。なお、図2には、グラフの横軸に対応する位置における半導体発光素子100の断面が併せて示されている。図2に示されるグラフの横軸における位置は、その上方に示される断面図の水平方向における位置に対応する。例えば、図2のグラフの横軸が0μmの位置は、断面図の活性層103の左端の位置に対応し、グラフの横軸が200μmの位置は、断面図の活性層103の右端の位置に対応する。また、図2及び以下では、活性層103の井戸層のIn組成比を単に「活性層のIn組成比」ともいう。
 半導体発光素子100は、各々が半導体からなる発光層を含む三つ以上の発光素子部を有するアレイ型の発光素子である。本実施の形態では、半導体発光素子100は、共振器を形成する光出射側端面及び光反射側端面(両端面とも図示せず)を有するレーザ素子である。図1においては、半導体発光素子100の共振方向に垂直な断面が示されている。
 図1に示されるように、半導体発光素子100は、基板101と、アレイ部120と、を備える。本実施の形態では、半導体発光素子100は、さらに、第1導電側電極109を備える。
 基板101は、半導体発光素子100の基材である。本実施の形態では、基板101は、厚さ80μmのn型のGaAs基板である。
 アレイ部120は、基板101の主面の上方において、主面に沿って配列され、各々が光を出射する三つ以上の発光素子部を有する。本実施の形態では、図1に示されるように、アレイ部120は、三つの発光素子部130a、130b及び130cを有する。なお、アレイ部120が有する発光素子部の個数は三つに限定されず、三つ以上であればよい。以下、アレイ部120が配列される方向(図1の水平方向)を配列方向という。
 三つの発光素子部130a、130b及び130cの各々は、基板101の上方に、基板101側から順に配置される、第1導電型クラッド層102と、Inを含む活性層103と、第2導電型クラッド層104と、を有する。本実施の形態では、三つの発光素子部130a、130b及び130cは、それぞれ、コンタクト層105a、105b及び105cと、第2導電側電極107a、107b及び107cと、を有する。三つの発光素子部130a、130b及び130cの各々は、さらに、絶縁層106と、パッド電極108と、を有する。
 第1導電型クラッド層102は、基板101の上方に配置されるクラッド層であり、本実施の形態では、厚さ1μmのn型の(AlGa1-x1-yInP(x=0.6、y=0.5)からなるクラッド層である。なお、第1導電型クラッド層102の構成はこれに限定されない。第1導電型クラッド層102の厚さは、1μmより大きくてもよく、組成は、n型の(AlGa1-x1-yInP(0<x<1、0<y<1)であってもよい。
 活性層103は、第1導電型クラッド層102の上方に配置される発光層である。本実施の形態では、活性層103は、厚さ10nmのアンドープのInGa1-xP(x=0.500又はx=0.502)からなる井戸層と、厚さ100nmのアンドープの(AlGa1-x1-yInP(x=0.4、y=0.5)からなる障壁層とが交互に積層された量子井戸活性層である。
 半導体発光素子100の三つ以上の発光素子部のうち配列方向の中央側に位置する発光素子部の活性層103におけるIn組成比は、配列方向の両方の端部側に位置する発光素子部の活性層103におけるIn組成比より小さい。本実施の形態では、図2に示されるように、配列方向の中央側に位置する発光素子部130bの活性層103におけるIn組成比は、配列方向の両方の端部側に位置する発光素子部130a及び130cの活性層103におけるIn組成比より小さい。具体的には、発光素子部130bにおける活性層103の井戸層のIn組成比は、0.500(つまり50.0%)であり、発光素子部130a及び130cにおける活性層103の井戸層のIn組成比は、0.502(つまり50.2%)である。言い換えると、発光素子部130bにおける活性層103の井戸層の組成は、アンドープのInGa1-xP(x=0.5)であり、発光素子部130a及び130cにおける活性層103の井戸層の組成は、アンドープのInGa1-xP(x=0.502)である。
 このような活性層103を備えることにより、半導体発光素子100は、波長が約640nmの赤色レーザ光を出射できる。なお、活性層103の構成はこれに限定されず、InGaPからなる井戸層と、(AlGa1-x1-yInP(0<x<1、0<y<1)からなる障壁層とが交互に積層された量子井戸活性層であればよい。活性層103のうち電流通路となる領域、つまり、リッジ部132a、132b及び132cの下方の領域である発光部110a、110b及び110cが発光する。また、活性層103は、量子井戸活性層の上方及び下方の少なくとも一方に形成されたガイド層を含んでもよい。
 第2導電型クラッド層104は、図1に示されるように、活性層103の上方に配置されたクラッド層であり、本実施の形態では、厚さ0.5μmのp型の(AlGa1-x1-yInP(x=0.6、y=0.5)からなる層である。なお、第2導電型クラッド層104の構成はこれに限定されない。第2導電型クラッド層104の厚さは、0.5μm以上、1.0μm以下であってもよく、組成は、p型の(AlGa1-x1-yInP(0<x<1、0<y<1)であってもよい。
 コンタクト層105a、105b及び105cは、第2導電型クラッド層104の上方に配置され、それぞれ第2導電側電極107a、107b及び107cとオーミック接触する層である。本実施の形態では、コンタクト層105a、105b及び105cは、厚さ100nmのp型のGaAsからなる層である。なお、コンタクト層105a、105b及び105cの構成はこれに限定されない。コンタクト層105a、105b及び105cの厚さは、100nm以上、500nm以下であってもよい。
 絶縁層106は、第2導電型クラッド層104の上方に配置され、パッド電極108と第2導電型クラッド層104及びコンタクト層105a、105b及び105cとの間を絶縁する層である。絶縁層106は、リッジ部132a、132b及び132c以外の第2導電型クラッド層104の上面と、リッジ部132a、132b及び132cの第2導電型クラッド層104の側面と、コンタクト層105a、105b及び105cの側面と、を覆う。なお、絶縁層106は、コンタクト層105a、105b及び105cの上面の一部を覆ってもよい。また、絶縁層106は、リッジ部132a、132b及び132cの上方に、それぞれ、コンタクト層105a、105b及び105cと、第2導電側電極107a、107b及び107cと、を接触させるための開口部を有する。なお、絶縁層106の開口部は、スリット状の形状を有してもよい。本実施の形態では、絶縁層106は、厚さ300nmのSiOからなる層である。なお、絶縁層106の構成はこれに限定されない。絶縁層106の厚さは、100nm以上、1000nm以下であってもよい。
 第2導電側電極107a、107b及び107cは、それぞれコンタクト層105a、105b及び105cの上方に配置され、コンタクト層105a、105b及び105cとオーミック接触する電極である。第2導電側電極107a、107b及び107cは、それぞれリッジ部132a、132b及び132cの上方に配置される。つまり、第2導電側電極107a、107b及び107cは、絶縁層106の開口部に配置される。なお、第2導電側電極107a、107b及び107cは、絶縁層106の上方にも配置されてもよい。第2導電側電極107a、107b及び107cは、絶縁層106の開口部において、コンタクト層105a、105b及び105cと接触する。本実施の形態では、第2導電側電極107a、107b及び107cは、それぞれコンタクト層105a、105b及び105c側から順にCr、Pt及びAuが積層された積層膜である。第2導電側電極107a、107b及び107cの構成はこれに限定されない。第2導電側電極107a、107b及び107cは、例えば、Cr、Ti、Ni、Pd、Pt及びAuの少なくとも一つで形成された単層膜又は多層膜であってもよい。
 パッド電極108は、第2導電側電極107a、107b及び107cの上方に配置されたパッド状の電極である。本実施の形態では、パッド電極108は、第2導電側電極107a、107b及び107c側から順にTi及びAuが積層された積層膜であり、リッジ部132a、132b及び132c、並びに、絶縁層106の上方に配置される。パッド電極108の構成はこれに限定されない。パッド電極108は、例えば、Ti、Pt及びAu、Ni及びAuなどの積層膜であってもよい。
 第1導電側電極109は、基板101の下方に配置される電極である。本実施の形態では、第1導電側電極109は、基板101側から順にAuGeNi合金及びAuが積層された積層膜である。第1導電側電極109の構成はこれに限定されない。第1導電側電極109は、他の導電材料で形成されてもよい。
 [1-2.実装形態]
 次に、本実施の形態に係る半導体発光素子100の実装形態について、図3を用いて説明する。図3は、本実施の形態に係る半導体発光素子100の実装形態の一例を示す模式的な断面図である。
 図3に示されるように、半導体発光素子100は、実装形態の一例において、パッケージ115にサブマウント113を介して実装される。図3に示される例では、半導体発光素子100は、パッド電極108側の面においてサブマウント113に実装される。
 サブマウント113は、多面体状の形状を有する部材であり、一つの面に半導体発光素子100が固定される。本実施の形態では、サブマウント113は、直方体状の形状を有する。サブマウント113は、半導体発光素子100の各半導体層より熱伝導率が高い材料で形成され、半導体発光素子100のヒートシンクとして機能する。サブマウント113には、金属層112及び素子側接着層111を介して半導体発光素子100が固定される。また、サブマウント113は、パッケージ側接着層114を介してパッケージ115に接着される。本実施の形態では、サブマウント113は、厚さ300μmの多結晶ダイヤモンドで形成される。なお、サブマウント113を形成する材料は、これに限定されず、例えば、AlN、SiC、CuW、銅ダイヤモンド、銀ダイヤモンドなどでもよい。
 金属層112は、パッド電極108に電力を供給するワイヤなどが接続される導電性部材である。本実施の形態では、金属層112は、5μmの厚さを有し、サブマウント113側から順にTi、Pt及びAuが積層された積層膜である。金属層112の構成はこれに限定されない。金属層112は、例えば、1μm以上10μm以下の厚さを有し、Ti、Ni、Pt及びAuの少なくとも一つを有する単層膜又は積層膜であってもよい。
 素子側接着層111は、サブマウント113と半導体発光素子100とを接着する導電性接着部材である。本実施の形態では、素子側接着層111は、2μmの厚さを有するAuSnで形成される。素子側接着層111を形成する材料は、これに限定されず、他の導電性接着材料であってもよい。素子側接着層111の厚さも2μmに限定されず、適宜決定されればよい。
 パッケージ側接着層114は、サブマウント113とパッケージ115とを接着する部材である。本実施の形態では、パッケージ側接着層114は、2μmの厚さを有するAuSnで形成される。パッケージ側接着層114を形成する材料は、これに限定されず、他の接着材料であってもよい。パッケージ側接着層114の厚さも2μmに限定されず、適宜決定されればよい。
 パッケージ115は、半導体発光素子100が実装される部材である。パッケージ115は、例えば、CANパッケージなどであってもよい。本実施の形態では、パッケージ115は、例えば、Cu、Feなどで形成される。
 以上のように、本実装形態においては、半導体発光素子100の各発光部に近い側の面にヒートシンクとして機能するサブマウント113に実装されるため、半導体発光素子100から発生した熱を効率よくサブマウント113に放散することができる。
 [1-3.作用及び効果]
 次に、本実施の形態に係る半導体発光素子100の作用及び効果について、図4及び図5を用いて説明する。図4及び図5は、それぞれ本実施の形態及び比較例に係る各半導体発光素子の発光波長の活性層の位置に対する分布を示すグラフである。比較例に係る半導体発光素子100Aは、In組成比が均一な活性層103Aを有する点において、本実施の形態に係る半導体発光素子100と相違し、その他の点において一致する半導体発光素子である。図4及び図5には、各半導体発光素子の低出力動作時における発光波長(つまり、自然放出光のピーク波長)の分布を示すグラフ(c)と、高出力動作時の発光波長の分布を示すグラフ(d)とが示されている。なお、ここで、低出力動作とは、各半導体発光素子における発熱の影響が無視できる程度に出力が低い動作を意味し、高出力動作とは、例えば、定格出力で動作する場合などの通常の動作を意味する。図4及び図5には、各半導体発光素子の断面図と、各活性層の井戸層のIn組成比の分布を示すグラフ(a)と、各半導体発光素子の通常の動作時(つまり高出力動作時)の活性層の温度の分布を示すグラフ(b)と、が併せて示されている。図4及び図5に示される各グラフの横軸の位置は、図2と同様に、その上方に示される断面図の水平方向の位置に対応する。
 図5のグラフ(a)に示されるように、比較例に係る半導体発光素子100Aでは、活性層103AにおけるIn組成比が均一である。このような構成では、活性層103Aにおいて発生する熱の影響を無視できる低出力動作時には、図5のグラフ(c)に示されるように、発光波長は、活性層103Aの全域にわたって均一である。しかしながら、通常動作時には、発熱の影響が無視できなくなる。図4及び図5のグラフ(b)に示されるように、各半導体発光素子の配列方向の中央側に位置する発光素子部においては、配列方向の両方の端部側に位置する発光素子部より、配列方向において隣接する他の発光素子部からの熱干渉を受ける。このような熱干渉を、図3に示されるような実装形態によって部分的に削減することは可能であるが、完全に取り除くことは非常に困難である。このため、通常動作時においては、配列方向の中央側に位置する発光素子部における活性層の温度が、配列方向の両方の端部側に位置する発光素子部における活性層の温度より高くなる。本実施の形態及び比較例に係る各半導体発光素子の活性層においては、図4及び図5のグラフ(b)に示されるように、配列方向の中央側に位置する発光素子部の活性層の方が、配列方向の両方の端部側に位置する発光素子部における活性層より、温度が3℃程度高くなる。
 通常動作時の活性層103Aがこのような温度分布を有することにより、図5のグラフ(d)に示されるように、比較例に係る半導体発光素子100Aの活性層103Aにおいては、温度上昇に起因する発光波長のシフト量が、三つの発光素子部の配列方向における位置に応じて異なる。これにより、発光波長が活性層103Aの位置に対して不均一となる。
 一方、本実施の形態では、図4のグラフ(a)に示されるように、配列方向の中央側に位置する発光素子部130bの活性層103におけるIn組成比は、配列方向の両方の端部側に位置する発光素子部130a及び130cの活性層103におけるIn組成比より小さい。これにより、本実施の形態に係る半導体発光素子100における熱の影響が無視できる低出力動作時には、図4のグラフ(c)に示されるように、発光波長は活性層103の位置に対して不均一となる。しかしながら、通常動作時には、上述のとおり、半導体発光素子100において、配列方向の中央側に位置する発光素子部130bの活性層103の方が、配列方向の両方の端部側に位置する発光素子部130a及び130cの活性層103より温度が高くなる。このため、配列方向の中央側に位置する発光素子部130bの活性層103の方が、発光波長の長波長側へのシフト量が大きくなる。これにより、配列方向の中央側に位置する発光素子部130bの活性層103と、配列方向の両方の端部側に位置する発光素子部130a及び130cの活性層103との、温度差に起因する発光波長のシフト量の差の少なくとも一部を、In組成比に起因する発光波長の差によって相殺できる。したがって、図4のグラフ(d)に示されるように、半導体発光素子100の三つの発光素子部130a、130b及び130cにおける発光波長の均一性を高めることができる。
 さらに、本実施の形態に係る半導体発光素子100において、放熱構成は、各発光素子部に対して同程度の放熱を行うことができる構成であればよく、必ずしも特許文献1に記載されたような素子の両面にヒートシンクを設ける構成を必要としない。例えば、図3に示されるような半導体発光素子100の基板101の一方の主面側だけにサブマウント113などのヒートシンクを設ける放熱構成でも上記の発光波長均一化の効果を得られる。したがって、本実施の形態によれば、放熱構成を簡素化かつ低コスト化できる。
 また、本実施の形態では、活性層103は、井戸層と障壁層とからなる量子井戸構造を有し、配列方向の中央側に位置する発光素子部130bの井戸層におけるIn組成比は、配列方向の両方の端部側に位置する発光素子部130a及び130cの井戸層におけるIn組成比より小さい。これにより、量子井戸構造を有する活性層103において、発光波長の均一性を高めることができる。
 [1-4.製造方法]
 次に、本実施の形態に係る半導体発光素子100の製造方法について、図6A~図6Iを用いて説明する。図6A~図6Iは、それぞれ、本実施の形態に係る半導体発光素子100の製造方法の各工程を示す模式的な断面図である。
 まず、図6Aに示されるように平坦な主面を有する基板101を準備する。ここで、基板101の結晶軸((100)軸))は、図6Aの矢印で示されるように、基板101の主面に垂直である。
 次に、図6Bに示されるように、基板101の主面にレジスト122を塗布する。ここで、レジスト122形成時の露光量を調節することで、レジスト122の厚さを基板101上の各位置で変化させる。これにより、図6Bの水平方向の両方の端部側においてレジスト122の厚さを右肩下がりに直線的に(つまり、一定の傾きで)変化させ、図6Bの水平方向の中央側においてレジスト122の厚さを一様にしている。
 次に、図6Cに示されるように、エッチングによってレジスト122を除去することで、基板101の上方に位置するレジスト122の厚さに応じた厚さだけ基板101の主面をエッチングする。この場合、形成されたレジスト122の厚さが小さいほど、エッチングによって除去される基板101の厚さは大きくなる。これにより、図6Cに示されるように、基板101の主面の結晶軸に対する傾き、つまり、オフ角が、当該主面の両方の端部側の領域101a及び101cにおいて大きく、当該主面の中央側の領域101bにおいて小さい基板101を形成できる。
 次に、図6Dに示されるように、基板101の主面上に、基板101側から順に、第1導電型クラッド層102、活性層103、第2導電型クラッド層104及びコンタクト層105を形成する。なお、図6D及び後述する図6E~図6Iでは、図面の簡単化のため、図6Cに示されるような基板101の上面の傾斜を表示しない。本実施の形態では、有機金属気相成長法(MOCVD)により各層の成膜を行う。ここで、基板101のオフ角が小さいほど、基板101上に積層される半導体層におけるIn組成比が小さくなる。このため、基板101上に、上記各半導体層が積層された場合、後工程で発光素子部130bが形成される位置(図6Dの水平方向の中央)において、発光素子部130a及び130cが形成される位置(図6Dの水平方向の両方の端部側)より、活性層103のIn組成比を小さくできる。
 次に、図6Eに示されるように、コンタクト層105上に、SiOなどからなるマスク123を形成する。本実施の形態では、プラズマCVDにより、コンタクト層105上に厚さ300nm程度のSiO膜を形成し、当該SiO膜をフォトリソグラフィー及びエッチングを用いてパターニングすることによって、共振方向(つまり、図6Eの紙面に垂直な方向)に延びる三つの帯状のマスク123を形成する。
 次に、図6Fに示されるように、帯状に形成されたマスク123を用いて、コンタクト層105及び第2導電型クラッド層104をエッチングし、続いてマスク123をウェットエッチングによって除去することで、リッジ部132a、132b及び132cを形成する。これにより、コンタクト層105のうち、リッジ部132a、132b及び132cにそれぞれ配置されるコンタクト層105a、105b及び105cだけが残り、第2導電型クラッド層104の各リッジ部以外の部分の膜厚が削減される。コンタクト層105及び第2導電型クラッド層104のエッチングとしては、例えば、Clなどの塩素系ガスを用いた反応性イオンエッチング(RIE)法によるドライエッチングを用いるとよい。また、マスク123は、フッ酸などのウェットエッチングによって除去するとよい。
 次に、第2導電型クラッド層104、コンタクト層105a、105b及び105c上に絶縁層106を形成する。絶縁層106としては、プラズマCVDにより、厚さ300nmのSiOを形成する。続いて、図6Gに示されるようにコンタクト層105a、105b及び105c上の絶縁層106のみを除去して、コンタクト層105a、105b及び105cの上面を露出させる。絶縁層106の除去には、フォトリソグラフィーとウェットエッチングを用いることができる。
 次に、真空蒸着法及びリフトオフ法を用いて、図6Hに示されるように、コンタクト層105a、105b及び105c上に、それぞれ第2導電側電極107a、107b及び107cを形成する。続いて、第2導電側電極107a、107b及び107c並びに絶縁層106を覆うようにパッド電極108を形成する。具体的には、フォトリソグラフィーなどによって、パッド電極108を形成しない部分にレジストをパターニングし、基板101の上方の全面に真空蒸着法などによってパッド電極108を形成し、リフトオフ法を用いて不要な部分を除去する。これにより、所定形状のパッド電極108を形成する。また、パッド電極108と同様に、基板101の下面(図6Iの下側面)に第1導電側電極109を形成する。これにより、図6Iに示されるように、半導体発光素子100を形成できる。
 また、本実施の形態に係る半導体発光素子100では、基板101のオフ角は、三つの発光素子部130a、130b及び130cのうち配列方向の中央側に位置する発光素子部130bが配置される領域101bの方が、配列方向の両方の端部側に位置する発光素子部130a及び130cが配置される領域101a、101cより小さい。このような半導体発光素子100において、基板101のオフ角が小さいほど、基板101上に積層される半導体層におけるIn組成比が小さくなる。このため、基板101上に積層構造体が積層された半導体発光素子100では、配列方向の中央側において、両方の端部側より活性層103におけるIn組成比が少ない構成を容易に実現できる。
 (実施の形態2)
 実施の形態2に係る半導体発光素子について説明する。本実施の形態に係る半導体発光素子は、材質及び活性層におけるIn分布において実施の形態1に係る半導体発光素子100と相違し、その他の点において一致する。以下、本実施の形態に係る半導体発光素子について、実施の形態1に係る半導体発光素子100との相違点を中心に説明する。
 [2-1.全体構成]
 まず、本実施の形態に係る半導体発光素子の全体構成について図7を用いて説明する。図7は、本実施の形態に係る半導体発光素子200の模式的な断面図である。図7には、本実施の形態に係る活性層203の井戸層のIn組成比の分布を示すグラフが併せて示されている。図7に示されるグラフの横軸の位置は、その上方に示される断面図の水平方向の位置に対応する。例えば、図7のグラフの横軸が0μmの位置は、断面図の活性層203の左端の位置に対応し、グラフの横軸が200μmの位置は、断面図の活性層203の右端の位置に対応する。
 本実施の形態に係る半導体発光素子200は、その各半導体層が窒化物系の半導体によって形成される。図7に示されるように、半導体発光素子200は、基板201と、アレイ部220と、を備える。本実施の形態では、半導体発光素子200は、さらに、第1導電側電極209を備える。
 基板201は、半導体発光素子200の基材である。本実施の形態では、基板201は、厚さ80μmのn型のGaN基板である。
 アレイ部220は、基板201の主面の上方において、主面に沿って配列され、各々が光を出射する三つ以上の発光素子部を有する。本実施の形態では、図7に示されるように、アレイ部220は、三つの発光素子部230a、230b及び230cを有する。なお、アレイ部220が有する発光素子部の個数は三つに限定されず、三つ以上であればよい。
 三つの発光素子部230a、230b及び230cの各々は、基板201の上方に、基板201側から順に配置される、第1導電型クラッド層202と、Inを含む活性層203と、第2導電型クラッド層204と、を有する。本実施の形態では、三つの発光素子部230a、230b及び230cは、それぞれ、コンタクト層205a、205b及び205cと、第2導電側電極207a、207b及び207cと、を有する。三つの発光素子部230a、230b及び230cの各々は、さらに、絶縁層206と、パッド電極208と、を有する。
 第1導電型クラッド層202は、基板201の上方に配置されるクラッド層であり、本実施の形態では、厚さ1μmのn型のAlGa1-xN(x=0.05)からなるクラッド層である。なお、第1導電型クラッド層202の構成はこれに限定されない。第1導電型クラッド層202の厚さは、1μmより大きくてもよく、組成は、n型のAlGa1-xN(0<x<1)であってもよい。
 活性層203は、第1導電型クラッド層202の上方に配置される発光層である。本実施の形態では、活性層203は、厚さ5nmのアンドープのInGa1-xN(x≧0.1800)からなる井戸層と、厚さ100nmのアンドープのGaNからなる障壁層とが交互に積層された量子井戸活性層である。
 半導体発光素子200の三つ以上の発光素子部のうち配列方向の中央側に位置する発光素子部の活性層203におけるIn組成比は、配列方向の両方の端部側に位置する発光素子部の活性層203におけるIn組成比より小さい。本実施の形態では、図7に示されるように、配列方向の中央側に位置する発光素子部230bの活性層203におけるIn組成比は、配列方向の両方の端部側に位置する発光素子部230a及び230cの活性層203におけるIn組成比より小さい。具体的には、発光素子部230bの発光部210bにおける活性層203の井戸層のIn組成比は、0.1800(つまり18.00%)であり、発光素子部230aの発光部210a及び発光素子部230cの発光部210cにおける活性層203の井戸層のIn組成比は、0.1815(つまり18.15%)である。また、本実施の形態では、活性層203の井戸層におけるIn組成比は、配列方向の中央側から両方の端部側に近づくにしたがって連続的に増加する。
 このような活性層203を備えることにより、半導体発光素子200は、波長が約450nmの青色レーザ光を出射できる。
 なお、活性層203の構成はこれに限定されず、InGa1-xN(0<x<1)からなる井戸層と、GaNからなる障壁層とが交互に積層された量子井戸活性層であればよい。活性層203のうち電流通路となる領域、つまり、リッジ部232a、232b及び232cの下方の領域である発光部210a、210b及び210cが発光する。また、活性層203は、量子井戸活性層の上方及び下方の少なくとも一方に形成されたガイド層を含んでもよい。
 第2導電型クラッド層204は、図1に示されるように、活性層203の上方に配置されたクラッド層であり、本実施の形態では、厚さ0.5μmのp型のAlGa1-xN(x=0.05)からなる層である。なお、第2導電型クラッド層204の構成はこれに限定されない。第2導電型クラッド層104の厚さは、0.5μm以上、1.0μm以下であってもよく、組成は、p型のAlGa1-xN(0<x<1)であってもよい。
 コンタクト層205a、205b及び205cは、第2導電型クラッド層204の上方に配置され、それぞれ第2導電側電極207a、207b及び207cとオーミック接触する層である。本実施の形態では、コンタクト層205a、205b及び205cは、厚さ100nmのp型のGaNからなる層である。なお、コンタクト層205a、205b及び205cの構成はこれに限定されない。コンタクト層205a、205b及び205cの厚さは、100nm以上、500nm以下であってもよい。
 絶縁層206は、第2導電型クラッド層204の上方に配置され、パッド電極108と第2導電型クラッド層204及びコンタクト層205a、205b及び205cとの間を絶縁する層である。絶縁層206は、リッジ部232a、232b及び232c以外の第2導電型クラッド層204の上面と、リッジ部232a、232b及び232cの第2導電型クラッド層204の側面と、コンタクト層205a、205b及び205cの側面と、を覆う。なお、絶縁層106は、コンタクト層205a、205b及び205cの上面の一部を覆ってもよい。また、絶縁層206は、リッジ部232a、232b及び232cの上方に、それぞれ、コンタクト層205a、205b及び205cと、第2導電側電極207a、207b及び207cと、を接触させるための開口部を有する。なお、絶縁層206の開口部は、スリット状の形状を有してもよい。本実施の形態では、絶縁層206は、厚さ300nmのSiOからなる層である。なお、絶縁層206の構成はこれに限定されない。絶縁層206の厚さは、100nm以上、1000nm以下であってもよい。
 第2導電側電極207a、207b及び207cは、それぞれコンタクト層205a、205b及び205cの上方に配置され、コンタクト層205a、205b及び205cとオーミック接触する電極である。第2導電側電極207a、207b及び207cは、それぞれ実施の形態1に係る第2導電側電極107a、107b及び107cと同様の構成を有する。
 パッド電極208は、第2導電側電極207a、207b及び207cの上方に配置されたパッド状の電極である。パッド電極208は、実施の形態1に係るパッド電極108と同様の構成を有する。
 第1導電側電極209は、基板201の下方に配置される電極である。第1導電側電極209は、実施の形態1に係る第1導電側電極109と同様の構成を有する。
 以上のように、本実施の形態に係る半導体発光素子200では、活性層203の井戸層のIn組成比が上述のような分布を有することにより、実施の形態1に係る半導体発光素子100と同様に、発光素子部間の発光波長の均一性を高めることができる。また、本実施の形態においても、実施の形態1と同様に、簡素化された構成を有し、低コストな半導体発光素子200を実現できる。
 [2-2.製造方法]
 次に、本実施の形態に係る半導体発光素子200の製造方法について、図8A~図8Iを用いて説明する。図8A~図8Iは、それぞれ、本実施の形態に係る半導体発光素子200の製造方法の各工程を示す模式的な断面図である。
 まず、図8Aに示されるように平坦な主面を有する基板201を準備する。ここで、基板201の結晶軸((100)軸))は、図8Aの矢印で示されるように、基板201の主面に垂直である。
 次に、図8Bに示されるように、基板201の主面にレジスト222を塗布する。ここで、レジスト222形成時の露光量を調節することで、レジスト222の厚さを基板201上の各位置で変化させる。これにより、図8Bの水平方向の中央側から、両方の端部側に近づくにしたがってレジスト222の厚さを減少させている。
 次に、図8Cに示されるように、エッチングによってレジスト222を除去することで、基板201の上方に位置するレジスト222の厚さに応じた厚さだけ基板201の主面をエッチングできる。この場合、形成されたレジスト222の厚さが小さいほど、エッチングによって除去される基板201の厚さは大きくなる。これにより、図8Cに示されるように、基板201主面の結晶軸に対する傾き、つまり、オフ角が、基板201の両方の端部側に近づくほど大きくなる基板201を形成できる。したがって、オフ角が、主面の両方の端部側の領域201a及び201cにおいて大きく、当該主面の中央側の領域201bにおいて小さい基板201を形成できる。
 次に、図8Dに示されるように、基板201の主面上に、基板201側から順に、第1導電型クラッド層202、活性層203、第2導電型クラッド層204及びコンタクト層205を形成する。なお、図8D及び後述する図8E~図8Iでは、図面の簡単化のため、図8Cに示されるような基板201の上面の傾斜を表示しない。また、図8D~図8Iに示される各工程は、図6D~図6Iに示される各工程と同様であるため、以下では各工程の詳細な説明を省略する。
 次に、図8Eに示されるように、コンタクト層205上に、SiOなどからなる三つの帯状のマスク223を形成する。
 次に、図8Fに示されるように、帯状に形成されたマスク223を用いて、コンタクト層205及び第2導電型クラッド層204をエッチングし、続いてマスク223をウェットエッチングによって除去することで、リッジ部232a、232b及び232cを形成する。これにより、コンタクト層205のうち、リッジ部232a、232b及び232cにそれぞれ配置されるコンタクト層205a、205b及び205cだけが残り、第2導電型クラッド層204の各リッジ部以外の部分の膜厚が削減される。
 次に、第2導電型クラッド層204、コンタクト層205a、205b及び205c上に絶縁層206を形成する。続いて、図8Gに示されるようにコンタクト層205a、205b及び205c上の絶縁層206のみを除去して、コンタクト層205a、205b及び205cの上面を露出させる。
 次に、図8Hに示されるように、コンタクト層205a、205b及び205c上に、それぞれ第2導電側電極207a、207b及び207cを形成する。続いて、第2導電側電極207a、207b及び207c並びに絶縁層206を覆うようにパッド電極208を形成する。次に、基板201の下面(図8Iの下側面)に第1導電側電極209を形成する。これにより、図8Iに示されるように、半導体発光素子200を形成できる。
 本実施の形態に係る半導体発光素子200でも、実施の形態1に係る半導体発光素子100と同様に、基板201のオフ角は、三つの発光素子部230a、230b及び230cのうち配列方向の中央側に位置する発光素子部230bが配置される領域201bの方が、配列方向の両方の端部側に位置する発光素子部230a及び230cが配置される領域201a及び201cより小さい。このため、基板201上に積層構造体が積層された半導体発光素子200では、配列方向の中央側において、両方の端部側より活性層203におけるIn組成比が少ない構成を容易に実現できる。
 [2-3.変形例]
 次に本実施の形態に係る半導体発光素子200の変形例について説明する。本変形例は、半導体層の組成及び発光波長において半導体発光素子200と相違し、その他の点において一致する。以下、本変形例について、半導体発光素子200との相違点を中心に説明する。
 本変形例に係る半導体発光素子は、波長が約520nmの緑色のレーザ光を出射する。このような発光波長を実現するために、本変形例に係る第1導電型クラッド層及び第2導電型クラッド層は、それぞれ、n型のAlGa1-xN(x=0.2)及びp型のAlGa1-xN(x=0.2)からなる。また、活性層の井戸層及び障壁層は、それぞれアンドープのInGa1-xN(x≧0.3000)、及び、アンドープのGaNからなる。本実施の形態においても、配列方向の中央側に位置する発光素子部における活性層の井戸層のIn組成比は、配列方向の両方の端部側に位置する発光素子部における活性層の井戸層のIn組成比より小さい。具体的には、配列方向の中央側に位置する発光部における井戸層のIn組成比は、0.3000(つまり30.00%)であり、配列方向の両方の端部側に位置する発光部における井戸層のIn組成比は、0.3015(つまり30.15%)である。また、本変形例に係る半導体発光素子においても、半導体発光素子200と同様に、活性層の井戸層におけるIn組成比は、配列方向の中央側から両方の端部側に近づくにしたがって連続的に増加する。
 このように、本変形例に係る半導体発光素子では、活性層の井戸層のIn組成比が上述のような分布を有することにより、半導体発光素子200と同様に、発光素子部間の発光波長の均一性を高めることができる。また、本変形例においても、実施の形態1と同様に、簡素化された構成を有し、低コストな半導体発光素子を実現できる。
 (実施の形態3)
 実施の形態3に係る投影装置について説明する。本実施の形態に係る投影装置(プロジェクタ)は、実施の形態1、実施の形態2及びその変形例に係る半導体発光素子を備える。以下の、本実施の形態に係る投影装置について図9を用いて説明する。
 図9は、本実施の形態に係る投影装置300の模式図である。図9に示すように、投影装置300は、半導体発光素子を用いた画像表示装置の一例である。本実施の形態における投影装置300では、光源として、例えば、赤色のレーザ光を出射する半導体発光モジュール300R、緑色のレーザ光を出射する半導体発光モジュール300G及び青色のレーザ光を出射する半導体発光モジュール300Bが用いられる。例えば、半導体発光モジュール300R、300G及び300Bにおいて、それぞれ、上記実施の形態1に係る半導体発光素子100、上記実施の形態2の変形例に係る半導体発光素子、及び、上記実施の形態2に係る半導体発光素子200が用いられる。半導体発光モジュール300R、300G及び300Bにおいて、それぞれ、実施の形態1の実装形態で示されたパッケージ115と同様のパッケージ115R、115G及び115Bが用いられる。
 投影装置300は、レンズ302R、302G及び302Bと、ミラー303R、ダイクロイックミラー303G及びダイクロイックミラー303Bと、空間変調素子304と、投射レンズ305と、を備える。
 レンズ302R、302G及び302Bは、例えばコリメートレンズであり、それぞれ、半導体発光モジュール300R、300G及び300Bの前方に配置される。
 ミラー303Rは、半導体発光モジュール300Rから出射した赤色のレーザ光を反射する。ダイクロイックミラー303Gは、半導体発光モジュール300Gから出射した緑色のレーザ光を反射し、かつ、半導体発光モジュール300Rから出射した赤色のレーザ光を透過する。ダイクロイックミラー303Bは、半導体発光モジュール300Bから出射した青色のレーザ光を反射し、かつ、半導体発光モジュール300Rから出射した赤色のレーザ光を透過するとともに半導体発光モジュール300Gから出射した緑色のレーザ光を透過する。
 空間変調素子304は、投影装置300に入力される入力画像信号にしたがって、半導体発光モジュール300Rからの赤色のレーザ光、半導体発光モジュール300Gからの緑色のレーザ光及び半導体発光モジュール300Bからの青色のレーザ光を用いて、赤色画像、緑色画像及び青色画像を形成する。空間変調素子304としては、例えば液晶パネル又はMEMS(マイクロエレクトリックメカニカルシステム)を用いたDMD(デジタルミラーデバイス)等を用いることができる。
 投射レンズ305は、空間変調素子304で形成された画像をスクリーン306に投影する。
 このように構成された投影装置300では、半導体発光モジュール300R、300G及び300Bから出射したレーザ光は、それぞれ、レンズ302R、302G及び302Bでほぼ平行光にされた後、ミラー303R、ダイクロイックミラー303G及びダイクロイックミラー303Bに入射する。
 ミラー303Rは、半導体発光モジュール300Rから出射した赤色のレーザ光を45°方向に反射する。ダイクロイックミラー303Gは、ミラー303Rで反射された半導体発光モジュール300Rからの赤色のレーザ光を透過するとともに、半導体発光モジュール300Gから出射した緑色のレーザ光を45°方向に反射する。ダイクロイックミラー303Bは、ミラー303Rで反射された半導体発光モジュール300Rからの赤色のレーザ光及びダイクロイックミラー303Gで反射された半導体発光モジュール300Gからの緑色のレーザ光を透過するとともに、半導体発光モジュール300Bから出射した青色のレーザ光を45°方向に反射する。
 ミラー303R、ダイクロイックミラー303G及びダイクロイックミラー303Bによって反射した、赤色、緑色及び青色のレーザ光は、時分割(例えば120Hzの切り替え周期で赤→緑→青が順次切り替わる)で空間変調素子304に入射する。この場合、空間変調素子304では、赤色のレーザ光が入射されたときは赤色用の画像を表示し、緑色のレーザ光が入射されたときは緑色用の画像を表示し、青色のレーザ光が入射されたときは青色用の画像を表示する。
 このように、空間変調素子304によって空間変調を受けた赤色、緑色及び青色のレーザ光は、赤色画像、緑色画像及び青色画像となって、投射レンズ305を通して、スクリーン306に投影される。この場合、時分割でスクリーン306に投影された赤色画像、緑色画像及び青色画像の各々は、単色であるが、高速に切り替わるため、人間の目には、これの画像が混ざった色の画像、すなわちカラー画像として認識される。
 以上、本実施の形態における投影装置300では、半導体発光モジュール300R、300G及び300Bとして、上記実施の形態及びそれらの変形例に係る半導体発光素子を用いているため、複数の発光部から出射されるレーザ光の結合効率が高い。このため、高輝度で、高精細な投影装置300を実現できる。
 (変形例など)
 以上、本開示に係る半導体レーザ素子及び投影装置について、実施の形態1~3及び実施の形態2の変形例に基づいて説明したが、本開示は、上記実施の形態及び変形例に限定されるものではない。
 例えば、上記各実施の形態及びその変形例では、各半導体発光素子は、三つの発光素子部を有するが、発光素子部の個数は、三つに限定されない。各半導体発光素子は、三つ以上の発光素子部を有してよい。
 また、上記各実施の形態及びその変形例では、各半導体層の第1導電型をn型、第2導電型をp型としたが、第1導電型をp型、第2導電型をn型としてもよい。
 また、上記各実施の形態及びその変形例では、各活性層は、量子井戸構造を有したが、各活性層の構造は、量子井戸構造に限定されない。
 また、上記各実施の形態及びその変形例では、半導体発光素子は、共振器を備えるレーザ素子であったが、スーパールミネッセントダイオードであってもよい。
 また、上記各実施の形態及びその変形例に係る半導体発光素子においては、リッジ構造を用いて電流狭窄を実現したが、電流狭窄を実現するための手段は、これに限定されず、電極ストライプ構造、埋め込み型構造などを使用してもよい。
 また、上記実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示の半導体発光素子は、例えば、発光波長均一性の高い光源として投影装置などに適用できる。
 100、100A、200 半導体発光素子
 101、201、1006 基板
 101a、101b、101c、201a、201b、201c 領域
 102、202 第1導電型クラッド層
 103、103A、203 活性層
 104、204 第2導電型クラッド層
 105、105a、105b、105c、205、205a、205b、205c コンタクト層
 106、206 絶縁層
 107a、107b、107c、207a、207b、207c 第2導電側電極
 108、208 パッド電極
 109、209 第1導電側電極
 110a、110b、110c、210a、210b、210c 発光部
 111 素子側接着層
 112 金属層
 113 サブマウント
 114 パッケージ側接着層
 115、115B、115G、115R パッケージ
 120、220 アレイ部
 122、222 レジスト
 123、223 マスク
 130a、130b、130c、230a、230b、230c 発光素子部
 132a、132b、132c、232a、232b、232c リッジ部
 300 投影装置
 300B、300G、300R 半導体発光モジュール
 302B、302G、302R レンズ
 303B、303G ダイクロイックミラー
 303R ミラー
 304 空間変調素子
 305 投射レンズ
 306 スクリーン
 1000 レーザチップ
 1001 p側電極
 1007 n側電極
 1008 ハンダ層
 1009、1010 ヒートシンク

Claims (3)

  1.  基板と、
     前記基板の主面の上方において、前記主面に沿って配列され、各々が光を出射する三つ以上の発光素子部を有するアレイ部と、を備え、
     前記三つ以上の発光素子部の各々は、前記基板の上方に、前記基板側から順に配置される、第1導電型クラッド層と、Inを含む活性層と、第2導電型クラッド層と、を有し、
     前記三つ以上の発光素子部のうち配列方向の中央側に位置する発光素子部の前記活性層におけるIn組成比は、前記配列方向の両方の端部側に位置する発光素子部の前記活性層におけるIn組成比より小さい
     半導体発光素子。
  2.  前記活性層は、井戸層と障壁層とからなる量子井戸構造を有し、
     前記三つ以上の発光素子部のうち前記配列方向の中央側に位置する発光素子部の前記井戸層におけるIn組成比は、前記配列方向の両方の端部側に位置する発光素子部の前記井戸層におけるIn組成比より小さい
     請求項1記載の半導体発光素子。
  3.  前記基板のオフ角は、前記三つ以上の発光素子部のうち前記配列方向の中央側に位置する発光素子部が配置される領域の方が、前記配列方向の両方の端部側に位置する発光素子部が配置される領域より小さい
     請求項1又は2記載の半導体発光素子。
PCT/JP2018/046758 2018-02-26 2018-12-19 半導体発光素子 WO2019163274A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020502051A JP7072047B2 (ja) 2018-02-26 2018-12-19 半導体発光素子
US16/975,648 US11398715B2 (en) 2018-02-26 2018-12-19 Semiconductor light emitting device
DE112018007163.4T DE112018007163T5 (de) 2018-02-26 2018-12-19 Lichtemittierende halbleitervorrichtung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018031645 2018-02-26
JP2018-031653 2018-02-26
JP2018-031645 2018-02-26
JP2018031653 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163274A1 true WO2019163274A1 (ja) 2019-08-29

Family

ID=67687615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046758 WO2019163274A1 (ja) 2018-02-26 2018-12-19 半導体発光素子

Country Status (4)

Country Link
US (1) US11398715B2 (ja)
JP (1) JP7072047B2 (ja)
DE (1) DE112018007163T5 (ja)
WO (1) WO2019163274A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017130594A1 (de) * 2017-12-19 2019-06-19 Osram Opto Semiconductors Gmbh Halbleiterlaser, betriebsverfahren für einen halbleiterlaser und methode zur bestimmung des optimalen füllfaktors eines halbleiterlasers
JP7232239B2 (ja) * 2018-02-26 2023-03-02 パナソニックホールディングス株式会社 半導体発光装置
US11962122B2 (en) * 2018-07-30 2024-04-16 Panasonic Holdings Corporation Semiconductor light emitting device and external resonance type laser device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192483A (ja) * 1990-11-26 1992-07-10 Mitsubishi Electric Corp 半導体アレイレーザ装置
JPH07169993A (ja) * 1993-12-15 1995-07-04 Sharp Corp 半導体構造体および半導体発光素子
JP2008198759A (ja) * 2007-02-13 2008-08-28 Seiko Epson Corp レーザ光源、レーザ光源装置、照明装置、モニタ装置、及び画像表示装置
WO2017144613A1 (de) * 2016-02-25 2017-08-31 Osram Opto Semiconductors Gmbh Laserbarren mit gräben
JP2017208543A (ja) * 2016-05-13 2017-11-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 半導体チップの製造方法、および半導体チップ

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2169134B (en) * 1984-11-16 1988-11-16 Canon Kk Multibeam emitting device
JPS61231789A (ja) * 1985-04-08 1986-10-16 Matsushita Electric Ind Co Ltd 半導体レ−ザ装置
JPH0821749B2 (ja) * 1985-09-12 1996-03-04 工業技術院長 集積型半導体レ−ザ
DE3685755T2 (de) * 1986-09-23 1993-02-04 Ibm Streifenlaser mit transversalem uebergang.
FR2642228A1 (fr) * 1989-01-20 1990-07-27 Menigaux Louis Procede de fabrication d'un dispositif semi-conducteur quasi plat susceptible d'effet laser multi-longueurs d'onde et dispositif correspondant
US5436192A (en) * 1989-03-24 1995-07-25 Xerox Corporation Method of fabricating semiconductor structures via photo induced evaporation enhancement during in situ epitaxial growth
EP0641053A1 (en) * 1993-08-30 1995-03-01 AT&T Corp. Method and apparatus for control of lasing wavelength in distributed feedback lasers
JP3081094B2 (ja) * 1993-10-15 2000-08-28 トヨタ自動車株式会社 半導体レーザ及びその製造方法
DE4432410B4 (de) * 1994-08-31 2007-06-21 ADC Telecommunications, Inc., Eden Prairie Optoelektronisches Multi-Wellenlängen-Bauelement
JP3374878B2 (ja) * 1994-09-02 2003-02-10 三菱電機株式会社 半導体エッチング方法
JPH08237203A (ja) * 1995-02-23 1996-09-13 Fujitsu Ltd 光フィルタアレイ、光送信機及び光送信システム
US5812576A (en) * 1996-08-26 1998-09-22 Xerox Corporation Loss-guided semiconductor lasers
KR100204569B1 (ko) * 1996-08-28 1999-06-15 정선종 편광 제어된 표면 방출 레이저 어레이의 구조 및 그 제조 방법
JP3792331B2 (ja) * 1997-01-27 2006-07-05 富士通株式会社 光半導体装置の製造方法、回折格子の形成方法
US6265289B1 (en) * 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
US6744800B1 (en) * 1998-12-30 2004-06-01 Xerox Corporation Method and structure for nitride based laser diode arrays on an insulating substrate
CA2284946A1 (en) * 1999-10-04 2001-04-04 Institut National D'optique Laser diode array assembly made from a ridged monolithic substrate
WO2002067334A1 (en) * 2001-02-20 2002-08-29 University Of Maryland, Baltimore County Multiple quantum well broad spectrum gain medium and method for forming same
US6731850B1 (en) * 2001-11-16 2004-05-04 Fox-Tek Single-waveguide integrated wavelength demux photodetector and method of making it
KR100918328B1 (ko) * 2002-02-21 2009-09-22 소니 가부시끼 가이샤 반도체 발광 장치 및 그를 이용한 광디스크 장치
JP2004214226A (ja) * 2002-12-26 2004-07-29 Toshiba Corp 半導体レーザ装置
US7462882B2 (en) * 2003-04-24 2008-12-09 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device, method of fabricating it, and semiconductor optical apparatus
US8368183B2 (en) * 2004-11-02 2013-02-05 Sharp Kabushiki Kaisha Nitride semiconductor device
WO2007097411A1 (ja) * 2006-02-23 2007-08-30 Rohm Co., Ltd. 2波長半導体発光装置及びその製造方法
JP4341685B2 (ja) * 2007-02-22 2009-10-07 セイコーエプソン株式会社 光源装置及びプロジェクタ
KR100953559B1 (ko) * 2007-12-13 2010-04-21 한국전자통신연구원 파장 가변 반도체 레이저 장치
JP2010108993A (ja) * 2008-10-28 2010-05-13 Sanyo Electric Co Ltd バー状半導体レーザ素子およびその製造方法
DE102009013909A1 (de) * 2009-03-19 2010-09-23 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil
US9829780B2 (en) * 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
GB2476250A (en) * 2009-12-16 2011-06-22 Univ Sheffield Optical device and fabrication method involving selective quantum well intermixing
JP5370262B2 (ja) * 2010-05-18 2013-12-18 豊田合成株式会社 半導体発光チップおよび基板の加工方法
DE102010045782B4 (de) * 2010-09-17 2018-09-06 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines kantenemittierenden Halbleiterlasers und kantenemittierender Halbleiterlaser
JP5750581B2 (ja) * 2011-06-20 2015-07-22 パナソニックIpマネジメント株式会社 光照射装置
DE102013104273A1 (de) * 2013-04-26 2014-10-30 Osram Opto Semiconductors Gmbh Anordnung mit säulenartiger Struktur und einer aktiven Zone
DE102017108949B4 (de) * 2016-05-13 2021-08-26 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterchip
DE102017109812A1 (de) * 2016-05-13 2017-11-16 Osram Opto Semiconductors Gmbh Licht emittierender Halbleiterchip und Verfahren zur Herstellung eines Licht emittierenden Halbleiterchips
CN111149265B (zh) * 2017-09-28 2021-09-10 苹果公司 使用量子阱混合技术的激光架构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04192483A (ja) * 1990-11-26 1992-07-10 Mitsubishi Electric Corp 半導体アレイレーザ装置
JPH07169993A (ja) * 1993-12-15 1995-07-04 Sharp Corp 半導体構造体および半導体発光素子
JP2008198759A (ja) * 2007-02-13 2008-08-28 Seiko Epson Corp レーザ光源、レーザ光源装置、照明装置、モニタ装置、及び画像表示装置
WO2017144613A1 (de) * 2016-02-25 2017-08-31 Osram Opto Semiconductors Gmbh Laserbarren mit gräben
JP2017208543A (ja) * 2016-05-13 2017-11-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 半導体チップの製造方法、および半導体チップ

Also Published As

Publication number Publication date
JPWO2019163274A1 (ja) 2021-02-04
JP7072047B2 (ja) 2022-05-19
DE112018007163T5 (de) 2020-11-26
US11398715B2 (en) 2022-07-26
US20200412102A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
US20100302775A1 (en) Light-emitting device and display
WO2019163274A1 (ja) 半導体発光素子
JP2013235987A (ja) 発光装置、スーパールミネッセントダイオード、およびプロジェクター
US8746899B2 (en) Light emitting apparatus, illuminator, and projector
JP2015162566A (ja) 発光装置およびその製造方法、並びにプロジェクター
JP2011048226A (ja) プロジェクター
JP2010166036A (ja) 半導体レーザ装置および表示装置
JP5299251B2 (ja) 発光装置およびプロジェクター
JP5359817B2 (ja) 発光装置、およびプロジェクター
JP5429479B2 (ja) 発光装置、およびプロジェクター
US8304786B2 (en) Light emission device, light emission device driving method, and projector
US11545812B2 (en) Semiconductor laser element
JP6551678B2 (ja) 発光装置およびプロジェクター
US11803115B2 (en) Light-emitting device and projector
US20230139048A1 (en) Light-emitting device and projector
JP5304540B2 (ja) 発光装置およびプロジェクター
JP2013143479A (ja) 発光装置およびその製造方法、並びにプロジェクター
JP5344173B2 (ja) 発光装置およびプロジェクター
JP2015130409A (ja) 発光デバイス、発光モジュール、プロジェクター、通信機器、発光デバイスの製造方法及び発光モジュールの製造方法
JP2013055180A (ja) 発光装置、照明装置およびプロジェクター
JP2011086867A (ja) 発光素子、およびプロジェクター
JP2017224703A (ja) 発光装置およびプロジェクター
JP2011108741A (ja) 発光素子、およびプロジェクター
JP2011040526A (ja) 発光素子、発光装置、およびプロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502051

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18906917

Country of ref document: EP

Kind code of ref document: A1