WO2019163240A1 - 放射線撮像装置及び放射線撮像システム - Google Patents

放射線撮像装置及び放射線撮像システム Download PDF

Info

Publication number
WO2019163240A1
WO2019163240A1 PCT/JP2018/043952 JP2018043952W WO2019163240A1 WO 2019163240 A1 WO2019163240 A1 WO 2019163240A1 JP 2018043952 W JP2018043952 W JP 2018043952W WO 2019163240 A1 WO2019163240 A1 WO 2019163240A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
detection element
signal
detection
imaging apparatus
Prior art date
Application number
PCT/JP2018/043952
Other languages
English (en)
French (fr)
Inventor
渡辺 実
健太郎 藤吉
亮介 三浦
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2019163240A1 publication Critical patent/WO2019163240A1/ja
Priority to US16/929,699 priority Critical patent/US11487027B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time

Definitions

  • the present invention relates to a radiation imaging apparatus and a radiation imaging system.
  • a radiation detection device that combines a pixel for acquiring a radiation image, a conversion element that converts radiation into an electrical signal, a switching element such as a thin film transistor, and the like, and a drive circuit and a readout circuit. It's being used. As one of them, it is considered to incorporate a function for detecting irradiation information in a radiation detection apparatus. This function is a function for detecting the start timing of the incidence of radiation from a radiation source, or detecting the radiation dose or integrated dose. This function also enables automatic exposure control (AEC) in which the integrated irradiation amount is monitored, and when the integrated irradiation amount reaches an appropriate amount, the detection device controls the radiation source and terminates the irradiation.
  • AEC automatic exposure control
  • Some radiation detection devices have a scintillator that converts radiation into light and a photoelectric conversion element.
  • a signal from a photoelectric conversion element (detection photoelectric conversion element) for starting radiation irradiation, measuring an irradiation dose or an integrated dose is read out through a signal line
  • the signal line is a photoelectric for acquiring a radiographed image. Wiring is performed in the vicinity of a pixel having a conversion element (photoelectric conversion element for image). For this reason, a non-negligible capacitance is formed between the signal line and the captured image acquisition pixel.
  • the signal of the image photoelectric conversion element is transmitted to the signal line through the capacitance (hereinafter referred to as crosstalk) due to this capacitance. It is difficult to accurately measure the measurement value for detection of
  • characteristics such as leakage current and dark current change as the temperature changes.
  • an offset level characteristic generated when the thin film transistor or the photoelectric conversion element is driven changes.
  • the radiation imaging apparatus described in Patent Document 1 includes a first detection element and a second detection element that convert radiation into an electrical signal, and the first detection element is connected to a first signal line, The two detection elements are connected to the second signal line.
  • Japanese Patent Application Laid-Open No. 2004-26883 discloses a cross signal based on a signal from a first detection element output via a first signal line and a signal from a second detection element output via a second signal line. It is disclosed to correct a change in characteristics due to the influence of talk and temperature.
  • a radiation imaging apparatus includes an imaging region having a plurality of detection elements each including a conversion element for converting radiation into an electrical signal, a first signal line, and the first signal line.
  • a signal processing circuit for processing a signal output via one signal line wherein the plurality of detection elements include a first detection element and a second detection element connected to the first signal line. And the sensitivity of the first detection element with respect to radiation and the sensitivity of the second detection element with respect to radiation are set different from each other, and the signal processing circuit is connected to the first signal line.
  • Information on irradiation of radiation to the imaging region is generated based on signals from the detection element and the second detection element.
  • a radiation imaging apparatus having a configuration that is advantageous for reducing the influence of crosstalk on a signal from a radiation detection element.
  • FIG. 1 is an equivalent circuit diagram of a radiation imaging apparatus according to Embodiment 1 of the present invention.
  • amendment element in Embodiment 1 of this invention is a timing chart in Embodiment 1 of the present invention. It is a timing chart in Embodiment 1 of the present invention. It is a timing chart in Embodiment 1 of the present invention. It is the equivalent circuit schematic of the radiation imaging device in Embodiment 2 of this invention. It is a timing chart in Embodiment 2 of the present invention.
  • the figure which shows the schematic cross section of the example of mounting of the radiation imaging device by this invention. 1 is a schematic diagram of a radiation imaging system.
  • radiation is a beam having energy of the same degree or more, for example, X-rays, ⁇ -rays, ⁇ -rays, etc., which are beams formed by particles (including photons) emitted by radiation decay, Lines, particle beams, cosmic rays, etc. are also included.
  • the electromagnetic wave has a wavelength range from light such as visible light and infrared light to radiation such as X-ray, ⁇ -ray, ⁇ -ray, and ⁇ -ray.
  • the radiation detection apparatus has an imaging region in which pixels 1, a detection element 4 for radiation detection, and a correction element 5 for correction are arranged in a matrix on a substrate. Further, the radiation imaging apparatus includes a read circuit 12 for reading a signal from a signal line, a signal processing circuit 13 for processing the read signal, a drive circuit 10 for providing a drive signal to the control line, and a power supply circuit 11. Have.
  • FIG. 1 shows pixels of 5 rows and 5 columns in the imaging region, which represents a partial region in the radiation detection apparatus.
  • the imaging region there are a pixel 1 for acquiring an image, a detection element 4 for radiation detection for measuring the start of radiation irradiation and a dose, and a correction for correcting a signal from the detection element 4.
  • Element 5 is included.
  • the pixel 1, the detection element 4, and the correction element 5 have a conversion element that converts radiation into an electrical signal.
  • the electrical signal from the detection element 4 is used to detect radiation irradiation or irradiation intensity (irradiation amount) on the imaging region, or radiation irradiation start / end while radiation is being irradiated.
  • AEC automatic exposure control
  • such an area including the detection element 4 is arranged while dividing the imaging area into a 3 ⁇ 3 or 5 ⁇ 5 matrix, and irradiation information of radiation irradiated to each area Can be detected for each region.
  • pixel addition binning
  • signals from a plurality of detection elements 4 and a plurality of correction elements 5 are added and read in order to increase the sensitivity of detecting the radiation dose irradiated to each region.
  • the two-dimensional layout is not limited to the present embodiment. It is possible to change the addition number of pixels, arbitrarily shift the arrangement position of the detection region, or increase the number of detection elements.
  • the pixel 1 and the detection element 4 can have substantially the same structure. In this case, when the AEC function is used, the pixel 1 and the detection element 4 are used for image acquisition and dose measurement, respectively. When the AEC function is not used, the detection element 4 is also a pixel for acquiring an image. It may be used as 1.
  • the detection element 4 can detect irradiation information during radiation irradiation.
  • the correction element 5 is an element that detects radiation in order to correct crosstalk included when the output from the detection element 4 is read.
  • the detection element 4 is driven by the first control line 6.
  • a signal is read from the detection element 4, and the signal is transferred to the reading circuit 12 via the signal line 3.
  • the correction element 5 is controlled by the second control line 7.
  • a signal is read from the correction element 5, and the signal is transferred to the reading circuit 12 via the signal line 3.
  • the signal from the detection element 4 connected to the first control line 6 is corrected with the signal from the correction element 5 connected to the second control line 7.
  • the first control line 6 and the second control line 7 may be provided separately from the control line for controlling the pixel 1, and the detection element 4 and the correction element 5 may be driven separately from the image pixel. Good.
  • the detection element 4 and the correction element 5 are arranged in the imaging region with an interval of one pixel, but may be arranged adjacent to each other in the direction of the signal line 3.
  • a plurality of pairs of detection elements 4 and correction elements 5 are arranged in the direction of the signal line 3 with a certain interval, and the detection elements and correction elements are irradiated with digitally added data or analog added values, respectively. The amount may be measured.
  • signals from a plurality of detection elements 4 or a plurality of correction elements may be collectively output to the signal line 3 by simultaneously driving a plurality of first control lines 6 and second control lines 7. .
  • the detection element 4 and the correction element 5 are formed in the same size as the pixel 1 for image acquisition.
  • the detection element 4 and the correction element 5 may be formed in a smaller size than the image acquisition pixel 1.
  • the missing portion of the image signal can be reduced by arranging the detection element 4 and the correction element 5 in the gap between the pixels 1.
  • the first control line 6 and the second control line 7 are preferably arranged separately as dedicated lines for controlling the detection element 4 and the correction element 5.
  • the signal line 3 may be arranged in the imaging region as a dedicated line for the detection element 4 and the correction element 5.
  • FIG. 2A is a plan view of the detection element 4 for detecting radiation in the present embodiment.
  • a scintillator (not shown) that converts radiation into light is provided above the detection element 4. The light converted by the scintillator is converted into electric charge by the photoelectric conversion element and transferred to the signal line through the switch.
  • Various wirings such as a photoelectric conversion element 20 for detection, a thin film transistor (hereinafter, TFT) 21, a power supply line, and a signal line are arranged in the detection element.
  • TFT thin film transistor
  • a signal from the photoelectric conversion element 20 for detection is transferred to the signal line 3 via the TFT 21.
  • the TFT 21 is ON / OFF controlled by the control wiring 6.
  • the upper electrode of the photoelectric conversion element 20 for detection is a common electrode 115 connected to the bias line 8 for applying a constant voltage.
  • the lower electrode of the photoelectric conversion element 20 is an individual electrode 111 for each element.
  • the signal line 3 extends to the readout circuit 12 in the imaging region, and there is a place where it overlaps two-dimensionally with the image photoelectric conversion element included in the image acquisition pixel 1.
  • the image photoelectric conversion element has the same structure as the detection photoelectric conversion element, and the lower electrode is an individual electrode. With such a structure, a capacitance corresponding to the overlap area is formed between the individual electrode of the image photoelectric conversion element and the signal line 3. Through this capacitance, the charge accumulated in the photoelectric conversion element for image is transmitted to the signal line 3 based on the charge conservation law, and crosstalk occurs.
  • FIG. 2B is a cross-sectional view taken along the line A-A ′ in FIG. 2A.
  • a photoelectric conversion element 20 for detection is arranged, and in the lower part, a TFT 11 which is a switch for transferring charges accumulated in the photoelectric conversion element to the signal line 3 is arranged.
  • an insulating substrate such as a glass substrate or a plastic substrate is used as the substrate 100.
  • a TFT 11 which is a switch element is formed on the substrate 100.
  • the TFT 11 includes a gate electrode 101, a source electrode 105, a drain electrode 106, an insulating layer 102, a first semiconductor layer 103, and a first impurity semiconductor layer 104.
  • the photoelectric conversion element 20 includes an individual electrode 111, a second impurity semiconductor layer 112, a second semiconductor layer 113, a third impurity semiconductor layer 114, a common electrode 115, and a protective film 116.
  • the drain electrode 106 is connected to the individual electrode 111 by a contact.
  • the common electrode 115 is connected to the bias line 8.
  • the source electrode 105 of the TFT 11 forms part of the signal line 3, and when the TFT 11 is turned on, the electric charge of the photoelectric conversion element 20 is transferred to the signal line 3 as an electric signal.
  • a thick insulating film 109 is disposed between the individual electrode 111 below the photoelectric conversion element 20 and the signal line 3 (source electrode 105). This insulating film reduces the parasitic capacitance formed between the individual electrode 111 and the signal line 3 (source electrode 105).
  • FIG. 3A is a plan view of the correction element 5 in the present embodiment.
  • FIG. 3A shows the TFT 21, the photoelectric conversion element 20 disposed above the TFT 21, and the light shielding region 22 formed further above.
  • FIG. 3B is a cross-sectional view taken along the line B-B ′ in FIG. 3A.
  • the light shielding region 22 shown in FIG. 3A corresponds to the light shielding layer 122 shown in FIG. 3B.
  • As the light shielding member for forming the light shielding layer 122 an organic film of a color such as black or red having a role of shielding visible light having a wavelength sensitive to the photoelectric conversion element 20 may be used.
  • the light-shielding region it is possible to ensure the placement accuracy by arranging the photosensitive material using a photolithographic method. Further, it is desirable that the photoelectric conversion element 20 be completely covered in order to prevent leakage light.
  • the bias line 14 is formed of a light-shielding metal film
  • the number of processes is increased by forming a light shielding member by covering the entire surface of the photoelectric conversion element 20 with the bias line 14 without newly forming an organic film. It may be possible to form correction pixels without any problem.
  • FIG. 4A is a diagram showing a different example of the correction element in the first embodiment of the present invention.
  • the correction element 5 has a sensitivity to radiation and generates a signal.
  • the sensitivity is lower than that of the detection element 4, the crosstalk can be removed by obtaining the difference and obtaining the output. it can.
  • FIG. 4B is a cross-sectional view taken along the line C-C ′ in FIG. 4A.
  • the light shielding region 22 shown in FIG. 4A corresponds to the light shielding layer 122 shown in FIG. 4B.
  • a part of the light shielding layer 122 has an opening.
  • the detection accuracy is improved by providing a certain opening on the surface of the correction element 5 where light enters.
  • the linearity of the output from the correction element 5 is improved by providing a certain opening and discharging a little output. To do.
  • the amount of crosstalk can be reduced, and the measurement accuracy of the radiation dose obtained from the difference between the detection element 4 and the correction element 5 is increased.
  • the bias line 14 is formed of a light-shielding metal film
  • the photoelectric conversion element 20 is not formed by an organic film light-shielding layer, and the bias line 14 wiring material is used.
  • a light shielding region is formed so as to cover with an opening.
  • FIG. 5A is a timing chart in an example using the correction element shown in FIGS. 3A and 3B.
  • the drive circuit 10 provides a signal for driving the detection element and the correction element to the first control line 6 and the second control line 7.
  • Vg1 represents a drive signal applied to the first control line 6
  • Vg2 represents a drive signal applied to the second control line 7.
  • SH represents a sample and hold operation
  • RES represents a reset operation for resetting charges accumulated in the IC and the line
  • Output 1 represents a signal read from the detection element 4
  • Output 2 represents a signal read from the correction element 5.
  • the output Output that is finally read is a difference obtained by subtracting Output2 from Output1.
  • the drive circuit 10 sequentially applies drive signals Vg1 and Vg2 to the control line, and the radiation incident timing can be detected.
  • a signal output to the signal line 3 before irradiation with radiation is an offset component generated by the detection element 4 and the correction element 5. Since no radiation is incident, Output1 and Output2 are almost the same amount, and the difference output (Out1-Out2) is almost zero.
  • Irradiation may be stopped by detecting the incident timing of radiation from the generated information or by detecting that a predetermined dose is achieved.
  • the cumulative dose of radiation is predicted based on the generated information, a determination is made at the stage when the radiation stop timing can be predicted, and preparation for a reading operation from the image pixel is started. good.
  • the signal from the detection element is corrected by the signal obtained from the correction element by setting the sensitivity of the detection element and the correction element to be different from each other.
  • the correction can be made by setting the sensitivity of the correction element to the electromagnetic wave lower than the sensitivity of the detection element to the electromagnetic wave.
  • the method of reducing the sensitivity is not limited to providing a light shielding portion. You may adjust so that a sensitivity may be lowered
  • FIG. 5B is a timing chart in an example using a correction element partially shielded from light as shown in FIGS. 4A and 4B.
  • a large charge is generated in the detection element 4 and a small charge is generated in the correction element 5.
  • the control signals Vg1 and Vg2 By sequentially reading out this signal using the control signals Vg1 and Vg2 and outputting the difference (Out1-Out2), it is possible to accurately grasp the start of radiation irradiation.
  • the radiation dose can also be read with high accuracy, and the accumulated dose can be obtained by acquiring in advance information on the relationship between the difference output between the detection element and the correction element and the irradiation dose.
  • the correction element with a certain sensitivity, it is possible to prevent a decrease in the correction accuracy due to the influence of deterioration of the linearity characteristic at the time of low output, which is not good for pixels having no sensitivity.
  • the detection element 4 and the correction element 5 of the present embodiment are driven by the drive circuit 10 will be described with reference to FIG.
  • the correction element shown in FIGS. 3A and 3B is used.
  • the sampling interval periodically performed can be shortened to improve the time resolution. Therefore, the dose is first determined by sampling at a fixed period (Speed1), and if sufficient sensitivity is obtained, the control line is turned ON / OFF faster (Speed2) to increase the sampling time resolution.
  • Speed1 a fixed period
  • Speed2 the control line is turned ON / OFF faster
  • the time resolution is increased, the time for accumulating charges with respect to irradiation of radiation by the detection element 4 is shortened, so that the amount of generated charges is reduced.
  • the amount of crosstalk when signals are read from the detection element 4 and the correction element 5 is reduced, but by taking the difference between the two signals, the radiation dose can be accurately corrected and read. In addition, it is possible to improve the determination accuracy of the dose by increasing the time resolution.
  • the offset generated from the TFT, the dark current generated from the photoelectric conversion element, and the like change. Also, the offset output may change over time.
  • offset components such as offset and dark current and their temporal changes become the same amount, and correction can be performed accurately by subtraction. It becomes possible.
  • the drive speed As an example of changing the drive speed, an example was given in which the time resolution was increased when the radiation dose was large. However, when the radiation dose was small, the drive speed was slowed down to accumulate charge in the photoelectric conversion element. May be. Further, when a large number of detection elements are arranged in the radiation imaging apparatus, the detection elements to be read may be narrowed down to those in the region where signals are to be read, and the driving speed may be changed to further increase the time resolution. When switching the driving speed, the driving speeds of the first control line 6 and the second control line 7 are switched together. By changing the drive speed at the timing when the offset and crosstalk amount at the time of reading from the detection element 4 and the offset and crosstalk amount at the time of reading from the correction element 5 are the same, it becomes possible to correct with high accuracy. .
  • Embodiment 2 Next, Embodiment 2 of the present invention will be described. Note that a description of the same parts as those in the first embodiment is omitted.
  • a radiation detection apparatus according to Embodiment 2 will be described with reference to FIG. The difference from the first embodiment is that there are a plurality of pairs of detection elements 4 and correction elements 5, and each is connected to a different signal line.
  • the first detection element 4 and the first correction element 5 are connected to the first signal line 31.
  • the second correction element 5 is arranged adjacent to the left side of the same row where the first detection element 4 is arranged, and the second detection element 4 is arranged adjacent to the left side of the first correction element 5. It is arranged.
  • the second detection element 4 and the second correction element 5 are connected to the same second signal line 32.
  • the detection elements 4 and the correction elements 5 arranged in the same row are controlled by the same control line. When the first control line 6 is driven, a signal is simultaneously transferred from the first detection element 4 and the second correction element 5 arranged in the same row to the readout circuit.
  • one row of pixels 1 connected to the first control line 6, the detection element 4 and the correction element 5 are driven simultaneously, and one row of pixels connected to the second control line 7. 1.
  • the detection element 4 and the correction element 5 are driven simultaneously.
  • the first control line 6 and the second control line 7 may be provided separately from the control line for controlling the pixel, and the detection element 4 and the correction element 5 may be driven separately from the pixel.
  • Vg 1 represents a drive signal applied to the first control line 6, and Vg 2 represents a drive signal applied to the second control line 7.
  • SH represents a sample and hold operation
  • Output 1 represents a signal read from the detection element 4
  • Output 2 represents a signal read from the correction element 5.
  • the left and right column outputs that are finally read are expressed as a difference obtained by subtracting Output 1 and Output 2 (Out 1 -Out 2).
  • Sig1 represents a state of signal reading from the first detection element and the first correction element in the right column in FIG. 6, and Sig2 represents from the second correction element 5 and the second detection element 4 in the left column. The state of reading of the signal is shown.
  • a plurality of photoelectric conversion elements and TFTs are formed in a sensor substrate 6011, and a flexible circuit substrate 6010 on which a shift register SR1 and a detection integrated circuit IC are mounted is connected.
  • the opposite side of the flexible circuit board 6010 to which the sensor board 6011 is connected is connected to the circuit boards PCB1 and PCB2.
  • a plurality of sensor substrates 6011 are bonded to one surface of a base 6012 to constitute a large photoelectric conversion device.
  • a lead plate 6013 is mounted on the other surface of the base 6012 to protect the memory 6014 in the processing circuit 6018 from X-rays.
  • a scintillator (phosphor layer) 6030 (made of CsI or the like) for converting X-rays into visible light is deposited on the sensor substrate 6011. The whole is housed in a case 6020 made of carbon fiber.
  • X-rays 6060 generated by the X-ray tube 6050 pass through the chest 6062 of the patient or subject 6061 and enter the image sensor 6040 on which a scintillator (phosphor layer) is mounted.
  • This incident X-ray includes information inside the body of the patient 6061.
  • the scintillator emits light in response to the incidence of X-rays.
  • the radiation imaging device included in the image sensor obtains electrical information by photoelectrically converting this light by the photoelectric conversion element of the radiation imaging device.
  • This information is converted into a digital image and processed by an image processor 6070 serving as a signal processing unit and provided for observation on a display 6080 serving as a display device in a control room. Further, this information can be transferred to a remote place by a transmission processing device such as a telephone line 6090, and can be displayed on a display 6081 serving as a display device such as a doctor room in another place or stored in a recording device such as an optical disk. It is also possible for a doctor to make a diagnosis. Moreover, it can also record on the film 6110 used as a recording medium by the film processor 6100 used as a recording device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

放射線を電気信号に変換するための変換素子を各々が含む複数の検出素子を有する撮像領域と、第1の信号線と、前記第1の信号線を介して出力される信号を処理する信号処理回路とを含み、前記複数の検出素子は前記第1の信号線に接続される第1の検出素子と第2の検出素子とを含み、放射線に対する前記第1の検出素子の感度と放射線に対する前記第2の検出素子の感度とは異なるように設定され、前記信号処理回路は、前記第1の信号線に接続される第1の検出素子と第2の検出素子とからの信号に基づいて前記撮像領域への放射線の照射に関する情報を生成することを特徴とする。

Description

放射線撮像装置及び放射線撮像システム
 本発明は、放射線撮像装置及び放射線撮像システムに関する。
 放射線画像を取得するための画素、放射線を電気信号に変換する変換素子、薄膜トランジスタ等のスイッチ素子などが2次元状に配置された撮像領域と、駆動回路や読出し回路とを組み合わせた放射線検出装置が利用されている。その一つとして、放射線検出装置に照射情報を検出する機能を内蔵させることが検討されている。この機能は、放射線源から放射線が照射される入射開始のタイミングを検出したり、放射線の照射量や積算照射量を検出する機能である。この機能により、積算照射量を監視し、積算照射量が適正量に達した時点で検出装置が放射線源を制御し照射を終了させる自動露出制御(AEC)も可能となる。
 放射線検出装置には放射線を光に変換するシンチレーターと光電変換素子とを持つものがある。放射線の照射開始、照射量や積算照射量の測定をするための光電変換素子(検知用の光電変換素子)からの信号を、信号線を通じて読み出す場合、信号線は放射線の撮影画像取得用の光電変換素子(画像用の光電変換素子)のある画素近傍に配線される。このため、信号線と撮影画像取得用の画素との間で無視できない容量が形成される。この容量により、検知用の光電変換素子からの情報だけを把握したくても、画像用の光電変換素子の信号が前記容量を介して信号線に伝達されてしまい(以下、クロストーク)、放射線の検出のための測定値を正確に測定することが難しい。また、放射線検出素子に薄膜トランジスタや光電変換素子を用いた場合、温度が変化するとリーク電流やダーク電流といった特性が変化する。また、同様に温度が変化すると、薄膜トランジスタや光電変換素子を駆動させたときに発生するオフセットレベル特性などが変化する。
 特許文献1に記載された放射線撮像装置は、放射線を電気信号に変換する第1の検出素子と第2の検出素子とを備え、第1の検出素子は第1の信号線に接続され、第2の検出素子は第2の信号線に接続されている。特許文献1には、第1の信号線を介して出力される第1の検出素子からの信号と第2の信号線を介して出力される第2の検出素子からの信号に基づいて、クロストークの影響と温度による特性の変化を補正することが開示されている。
特開2016-220116
 しかしながら、特許文献1の方法では第1の信号線と第2の信号線にそれぞれ影響するクロストーク量が異なるので、クロストークの影響を補正するのには限界があることが分かった。
 上記課題を解決するために、本発明の放射線撮像装置は、放射線を電気信号に変換するための変換素子を各々が含む複数の検出素子を有する撮像領域と、第1の信号線と、前記第1の信号線を介して出力される信号を処理する信号処理回路とを含み、前記複数の検出素子は前記第1の信号線に接続される第1の検出素子と第2の検出素子とを含み、放射線に対する前記第1の検出素子の感度と放射線に対する前記第2の検出素子の感度とは異なるように設定され、前記信号処理回路は、前記第1の信号線に接続される第1の検出素子と第2の検出素子とからの信号に基づいて前記撮像領域への放射線の照射に関する情報を生成することを特徴とする。
 本発明により、放射線検出素子からの信号に対するクロストークによる影響を低減するのに有利な構成の放射線撮像装置を提供することができる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の実施形態1における放射線撮像装置の等価回路図である。 本発明の実施形態1における放射線検出用の検出素子の概略平面を示す図。 本発明の実施形態1における放射線検出用の検出素子の概略断面を示す図。 本発明の実施形態1における補正素子の概略平面を示す図。 本発明の実施形態1における補正素子の概略断面を示す図。 本発明の実施形態1における補正素子の概略平面を示す図。 本発明の実施形態1における補正素子の概略断面を示す図。 本発明の実施形態1におけるタイミングチャートである。 本発明の実施形態1におけるタイミングチャートである。 本発明の実施形態1におけるタイミングチャートである。 本発明の実施形態2における放射線撮像装置の等価回路図である。 本発明の実施形態2におけるタイミングチャートである。 本発明による放射線撮像装置の実装例の概略平面を示す図。 本発明による放射線撮像装置の実装例の概略断面を示す図。 放射線撮像システムの概略図。
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。なお、本願明細書において放射線は、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギーを有するビーム、例えばX線や粒子線、宇宙線なども、含まれるものとする。また、電磁波は可視光,赤外光等の光から、X線,α線,β線,γ線等の放射線までの波長領域のものをいうものとする。
 (実施形態1)
 先ず、本発明の実施形態1について図1により説明する。本実施形態における放射線検出装置は、基板上に行列状に画素1、放射線検出用の検出素子4や補正用の補正素子5が配置された撮像領域を有する。さらに、この放射線撮像装置は、信号線からの信号を読み出すための読出し回路12、読み出された信号を処理する信号処理回路13、制御線へ駆動信号を提供する駆動回路10、電源回路11を有する。
 図1は、撮像領域に5行5列の画素等を示しているが、これは放射線検出装置内の一部の領域を表したものである。撮像領域の中には、画像を取得するための画素1と、放射線の照射開始や照射量を測定するための放射線検出用の検出素子4と、検出素子4からの信号を補正するための補正素子5が含まれている。画素1、検出素子4及び補正素子5は放射線を電気信号に変換する変換素子を有している。検出素子4からの電気信号は放射線が照射されている途中で、撮像領域への放射線の照射もしくは照射強度(照射量)、もしくは放射線の照射開始・終了を検出するために使用される。このような検出素子4を撮像領域に配置することで、放射線撮像装置に自動露出制御(AEC)機能を放射線撮像装置に内蔵することも可能となる。
 実際の放射線撮像装置では、このような検出素子4を含む領域が、撮像領域を3×3や5×5のマトリックスに区切った中に配置されており、各領域に照射される放射線の照射情報を領域毎に検出することが可能となっている。また、各領域に照射される放射線の照射量を検出する感度を高めるために、複数の検出素子4や複数の補正素子5からの信号を加算して読み出す画素加算(ビニング)が行われてもよい。このように、二次元的なレイアウトについては、本実施形態に制限されるものではない。画素の加算数を変更したり検知領域の配置位置を任意にずらしたり検知素子の数を増やしたりすることができる。
 画素1と検出素子4とは略同一の構造とできる。この場合、AEC機能を使用するときは画素1と検出素子4はそれぞれ画像取得用と照射量の測定用に使用し、AEC機能を用いない場合は、検出素子4も全て画像取得するための画素1として使用しても良い。
 検出素子4は、放射線照射中に照射情報を検知することができる。また、補正素子5は検出素子4からの出力を読み出した際に含まれるクロストークを補正するために放射線を検出する素子である。検出素子4は第1の制御線6により駆動される。検出素子4が第1の制御線6により駆動されると、検出素子4から信号が読み出され、信号は信号線3を介して読出し回路12に転送される。補正素子5は第2の制御線7により制御される。補正素子5が第2の制御線7により駆動されると、補正素子5から信号が読み出され、信号は信号線3を介して読出し回路12に転送される。
 本実施例では第1の制御線6に接続されている検出素子4からの信号を、第2の制御線7に接続されている補正素子5からの信号で補正する。なお、第1の制御線6及び第2の制御線7を、画素1を制御するための制御線と別に設けて、検出素子4と補正素子5とを画像用の画素と別に駆動してもよい。
 検出素子4からの信号を出力する際、全面もしくは部分的に照射された放射線により、画素1の持つ変換素子の電極にも電荷が蓄積される。この電荷が、画素1の変換素子の電極と検出素子4が接続されている信号線3との間にある寄生容量を介してクロストークによる信号として信号線3に伝達される。また、補正素子5からの出力を読み出すときも同様に、画素1から寄生容量を介してクロストークによる信号が信号線3に伝達される。この2つのクロストークによる信号は同じ信号線3に対する信号なので、略同量である。検出素子4と補正素子5からの2つの信号の差分を取ることにより、放射線検出のための検出素子4からの信号からクロストークによる信号を低減することが可能になる。更に、検出素子4と補正素子5とを同じ信号線から読み出すことで、信号線の経路にある素子のオフセットのばらつきやゲインのバラツキなどの影響を軽減できる。
 図1に示す例では、検出素子4と補正素子5は、画素1つ分の間隔を空けて撮像領域に配置されているが、信号線3の方向に隣接して配置しても良い。また、検出素子4と補正素子5を対としたものを信号線3の方向に一定の間隔をあけて複数対配置し、検出素子及び補正素子をそれぞれディジタル加算したデータもしくはアナログ加算した値により照射量を測定しても良い。その際、第1の制御線6や第2の制御線7を複数本同時に駆動することにより複数の検出素子4又は複数の補正素子からの信号をそれぞれまとめて信号線3へ出力させても良い。
 また、図1の例では、検出素子4と補正素子5とが画像取得用の画素1と同じサイズで形成されている。しかし、画像取得用の画素1より検出素子4と補正素子5とを小さなサイズで形成しても良い。この場合は、画素1の隙間に検出素子4と補正素子5とを配置することにより画像信号の欠損する部分を低減することができる。その際、第1の制御線6や第2の制御線7は、検出素子4や補正素子5の制御のための専用線として別個に配置すると良い。専用線にすることにより画素1の制御とは別個に検出素子4及び補正素子5を制御することができる。同じく、信号線3は検出素子4及び補正素子5のための専用線として撮像領域に配置しても良い。
 図2Aは、本実施形態における放射線検出用の検出素子4の平面図である。検出素子4の上部には放射線を光に変換するシンチレーター(不図示)が設けられている。シンチレーターで変換された光は、光電変換素子で電荷に変換されてスイッチを介して信号線へ転送される。検出素子には検知用の光電変換素子20や薄膜トランジスタ(以下、TFT)21や電源線、信号線などの各種の配線が配置されている。検知用の光電変換素子20からの信号はTFT21を介して信号線3に転送される。TFT21は制御配線6によりON-OFFの制御がされる。検知用の光電変換素子20の上部電極は一定の電圧を印加するためのバイアス線8と接続されている共通電極115である。光電変換素子20の下部電極は素子毎の個別電極111となっている。信号線3は撮像領域において読出し回路12まで延びており、画像取得用の画素1に含まれる画像用の光電変換素子と二次元的にオーバーラップしている箇所がある。画像用の光電変換素子も検知用の光電変換素子と同様な構造を有しており、下部電極が個別電極となっている。このような構造により画像用の光電変換素子の個別電極と信号線3との間にオーバーラップ面積に応じた容量が形成される。この容量を介して、電荷保存則に基づき、画像用光電変換素子に蓄積された電荷が、信号線3に伝達されてクロストークとなる。
 上記説明では、画像用の光電変換素子と信号線3がオーバーラップしている例を説明した。しかし、オーバーラップしていなくても画像用の光電変換素子20と信号線3との間に空間的に相互に結合する寄生容量があれば光電変換素子20から信号線3に対するクロストークが発生する。
 これらのクロストークは、信号線3に対して容量結合する全ての画素1から信号線3に対して伝達されるため、膨大な信号量となる。この結果、信号線3に接続される検出素子4からの信号を正しく読み出す際の誤差が大きくなってしまう。この誤差は、検出素子4を撮像領域に複数ちりばめて接続し、検出素子4からの信号量を増やすことで相対的に小さくすることは可能であるが、取り除くことは困難である。
 図2Bは、図2AにおけるA-A’断面図である。図の上部には検知用の光電変換素子20が、下部には光電変換素子に蓄積された電荷を信号線3へ転送するためのスイッチであるTFT11が配置されている。本実施形態において基板100としてガラス基板やプラスチック基板等の絶縁基板を用いる。基板100の上にスイッチ素子であるTFT11が形成される。TFT11はゲート電極101、ソース電極105、ドレイン電極106、絶縁層102、第1の半導体層103、第1の不純物半導体層104を含む。光電変換素子20は個別電極111、第2の不純物半導体層112、第2の半導体層113、第3の不純物半導体層114、共通電極115、保護膜116を含む。ドレイン電極106はコンタクトにより個別電極111に接続されている。共通電極115はバイアス線8に接続されている。TFT11のソース電極105は信号線3の一部をなしており、TFT11がオンになることにより光電変換素子20の電荷は電気信号として信号線3に転送される。
 図2A、図2Bは検出素子4を示すが、信号線3と光電変換素子20との位置関係は画素1の光電変換素子と同様であるので、画素1と信号線3との間の寄生容量について図2Bにより説明する。光電変換素子20の下部の個別電極111と、信号線3(ソース電極105)との間に、厚膜の絶縁膜109が配置されている。この絶縁膜は、個別電極111と信号線3(ソース電極105)との間で形成される寄生容量を低減する。しかしながら、絶縁膜の誘電率と厚さや面積に応じた寄生容量が存在し、その寄生容量のために発生するクロストークによる信号が個別電極111から信号線3(105)に伝達されてしまう。個別電極111と信号線3(105)が上下でオーバーラップしておらず左右にずれて配置されていたとしても、寄生容量を除去することは困難である。電荷に基づいて発生するクロストークは寄生容量に相応の量だけ、信号線3(105)に書き込まれる。このため、補正素子5を用いてクロストークの補正を行う。
 図3Aは、本実施形態における補正素子5の平面図である。図3Aには、TFT21とその上部に配置された光電変換素子20と、更に上部に形成された遮光領域22が示されている。
 図3Bは、図3AにおけるB-B’断面図である。図3Aに示した遮光領域22は、図3Bに示す遮光層122に相当する。この遮光層122を形成する遮光部材には、光電変換素子20に感度を有する波長の可視光を遮光する役割を有する、黒や赤といった色の有機膜を用いると良い。また、遮光領域を配置する際に、感光性を有する材料を用いてフォトリソグラフィー法により配置をすると、配置精度が確保でき良い。また、漏れ光を防止するために光電変換素子20を完全に覆うような構成が望ましい。また、バイアス線14が遮光性を有する金属膜で形成されている場合は、有機膜を新たに形成せずバイアス線14により光電変換素子20の全面を覆って遮光部材とすると、プロセス数を増やすことなく補正画素を形成することが可能で良い。
 図4Aは、本発明の実施形態1における補正素子の異なる例を示した図である。上部に形成された遮光領域22には一部開口がある。図3Aと比較し、補正素子5が放射線に対する感度を有し信号を発生することになるが、検出素子4よりは感度が小さいため、差分して出力を得ることによりクロストークを除去することができる。
 図4Bは、図4AにおけるC-C’断面図である。図4Aに示した遮光領域22は、図4Bに示す遮光層122に相当する。図3Bと異なり、この例では遮光層122の一部に開口を有している。補正素子5の光が入る面に一定の開口を設けることで、検知精度が良くなるケースがある。補正素子5からの出力が極端に小さく、光電変換素子では良好なリニアリティー特性が得られない場合などは、一定の開口を設け少し出力を吐き出させることで、補正素子5からの出力のリニアリティーが向上する。この結果、クロストーク分を低減することができ、検出素子4と補正素子5との差分から得られる放射線量の測定精度が上がる。図3A及び図3Bの例と同様に、バイアス線14が遮光性を有する金属膜で形成されている場合は、有機膜による遮光層を形成せずバイアス線14の配線材料により、光電変換素子20に開口を設けつつ覆うような遮光領域を形成する。バイアス線のための配線材料を利用することによりプロセス数を増やすことなく補正画素を形成することが可能で良い。
 図5Aは、図3A及び図3Bに示す補正素子を用いた例におけるタイミングチャートである。駆動回路10は第1の制御線6及び第2の制御線7に検出素子及び補正素子を駆動する信号を提供する。Vg1は第1の制御線6に印加する駆動信号を、Vg2は第2の制御線7に印加する駆動信号を表している。また、SHはサンプルホールド動作を、RESはIC及び線に蓄積された電荷をリセットするリセット動作を、Output1は検出素子4から読み出した信号を、Output2は補正素子5から読出した信号を表している。最終的に読み出される出力Outは、この例ではOutput1からOutput2を減算した差分である。放射線が入射される前から駆動回路10からは順次駆動信号であるVg1とVg2が制御線に与えられており、放射線の入射タイミングを検知することが可能となる。放射線が照射される前に信号線3に出力される信号は、検出素子4や補正素子5で発生するオフセット成分となる。放射線が入射されていないため、Output1とOutput2はほぼ同量であり、差分出力(Out1-Out2)はほぼゼロとなる。
 放射線が入射されると、検出素子4には大きな電荷が発生する。補正素子5には遮光されているためにオフセットに相当する電荷が発生する。この信号をVg1とVg2の制御信号により順次読出し、差分(Out1-Out2)を出力することにより放射線の照射開始を精度良く把握することが可能となる。また、放射線の照射量も精度良く読み出すことが可能で、積算線量を求めることも可能となる。信号を読み出す際に、信号線3に発生するクロストーク量が検出素子及び補正素子からの出力に加算され、X線が照射されていない時よりも出力は高くなる。しかし、検出素子4からの信号を読み出す際の信号線3に対するクロストーク量と補正素子5から信号を読み出す際の信号線3に対するクロストーク量は、時間的にほぼ同期間で読み出すためほぼ同量なので、減算によって除去することが可能となる。
 差分出力(Out1-Out2)に基づいて放射線の照射に関する情報を生成する。生成された情報により放射線の入射タイミングを検出したり、所定の照射量に達成することを検出することにより、照射を停止して良い。また、AECとして使用する場合は、生成された情報に基づいて放射線の累積線量を予測し、放射線の停止タイミングを予測できた段階で判定を行い、画像用画素からの読出し動作の準備を開始すると良い。
 以上説明したように、検出素子と補正素子との放射線に対する感度を互いに異なるように設定することにより、補正素子から得られた信号により検出素子からの信号を補正する。変換素子として光電変換素子を使用する場合は、補正素子の電磁波に対する感度を検出素子の電磁波に対する感度より低く設定することにより補正をすることができる。感度を低くする方法は遮光部分を設けることには限らない。補正素子の光電変換素子に印加されるバイアス電圧を低下させることにより感度を低くするように調整してもよい。
 図5Bは、図4A及び図4Bに示す、一部だけ遮光された補正素子を用いた例におけるタイミングチャートである。放射線が入射されると、検出素子4には大きな電荷が発生し、補正素子5には小さな電荷が発生する。この信号をVg1とVg2の制御信号により順次読出し、差分(Out1-Out2)を出力することにより放射線の照射開始を精度良く把握することが可能となる。また、放射線の照射量も精度良く読み出すことが可能で、検出素子と補正素子の差分出力と照射線量の関係の情報を予め取得しておくことで、積算線量を求めることも可能となる。この例では、補正素子に一定の感度を持たせることで、感度を持たない画素が苦手とする低出力時のリニアリティー特性の悪化などの影響による補正精度の低下を防止することが可能となる。
 本実施形態の検出素子4と補正素子5とを駆動回路10により駆動する場合の別の例を図5(c)により説明する。補正素子には図3A及び図3Bに示すものを用いる。放射線の照射開始段階で、放射線の照射量が大きく、十分なSNRや感度が得られていると判断できた場合は、周期的に行うサンプリング間隔を短くし時間分解能を高めることができる。そこで、最初に一定周期のサンプリングにより照射量判定を行い(Speed1)、十分な感度が得られている場合は制御線をON/OFFする周期を速くし(Speed2)、サンプリングの時間分解能を上げる。時間分解能を上げると、検出素子4で放射線の照射に対し電荷を蓄積する時間が短くなるため、発生する電荷量は小さくなる。また、同様に検出素子4や補正素子5から信号を読み出す際のクロストーク量も小さくなるが、双方の信号の差分を取ることで、精度良く放射線照射量を補正し読み出すことが可能となる。また時間分解能を上げることにより照射量の判定精度の向上を図ることができる。
 TFTの駆動速度や光電変換素子の蓄積時間を変化させると、TFTから発生するオフセットや光電変換素子から発生する暗電流などが変化する。また、オフセット出力は時間的にも変化することがある。しかし、同一信号線に接続された検出素子4と補正素子5を同じ周期で駆動させることで、オフセットや暗電流などのオフセット成分やその時間変化が同じ量となり、減算により精度良く補正することが可能となる。
 駆動速度を変更する例として、放射線の照射量が多い場合に時間分解能を高めた例を示したが、放射線の照射量が少ないときは光電変換素子に電荷を蓄積するために駆動速度を遅くしてもよい。また、放射線撮像装置に多数の検出素子が配置されている場合、読み出すべき検出素子を、信号を読み出したい領域のものに絞り込み、さらに時間分解能を高めるために駆動速度を変更してもよい。駆動速度を切り替える場合は第1の制御線6と第2の制御線7の駆動速度を一緒に切り替える。検出素子4からの読出し時のオフセットやクロストーク量と補正素子5からの読出し時のオフセットやクロストーク量が同じになるタイミングで駆動速度を変更することにより、精度良く補正することが可能となる。
 (実施形態2)
 次に、本発明の実施形態2について説明する。なお、実施形態1と重複する部分に関しては、説明を省略する。実施形態2における放射線検出装置について図6により説明する。実施形態1と異なる点は、検出素子4と補正素子5とのペアが複数あり、それぞれが別の信号線に接続されている点である。
 図6に示すように第1の検出素子4と第1の補正素子5とが第1の信号線31に接続されている。第1の検出素子4が配置されている同じ行の左側に隣接する形で第2の補正素子5が配置され、第1の補正素子5の左側に隣接する形で第2の検出素子4を配置している。第2の検出素子4と第2の補正素子5とは同じ第2の信号線32に接続されている。同じ行に配置された検出素子4と補正素子5は同じ制御線により制御される。第1の制御線6を駆動すると、同じ行に配置された、第1の検出素子4と第2の補正素子5から同時に読出し回路に信号が転送される。また、第2の制御線7を駆動すると、同じく同じ行に配置された第1の補正素子5と第2の検出素子4から同時に読出し回路に信号が転送される。同じ信号線からのそれぞれ信号の差分を出力することで、放射線の照射時間が異なる2つの信号を読み出すことができる。同じ読み出し時間で2倍の信号を得ることができるので時間分解能を2倍に上げることが可能となる。
 本実施例では第1の制御線6に接続されている1行分の画素1、検出素子4及び補正素子5が同時に駆動され、第2の制御線7に接続されている1行分の画素1、検出素子4及び補正素子5が同時に駆動される。しかし、第1の制御線6及び第2の制御線7を、画素を制御するための制御線と別に設けて、検出素子4と補正素子5とを画素と別に駆動してもよい。
 図6の例では、放射線源の出力が小さく、立ち上がりのパルスがなまってゆっくりと立ち上がるような場合、時間差による補正によるクロストークの低減に効果的な補正を行うことができる。信号がゆっくり立ち上がる場合は検出素子4からの信号読出し時と補正素子5からの信号読出し時とでタイミングが違うためにクロストーク量が異なり、補正精度が低下する。このような時に、時間分解能を上げることで補正精度の低下を防止することが可能となる。また、時間的に前後して読み出した信号を平均化することで、放射線の立ち上がりがなまっても誤差を低減することが可能となる。右列の信号の時間差分出力と、左列の信号の時間差分出力は、制御線を駆動するタイミングをずらして、時間的に半周期ずらしても良く、同時に読出し異なる時間帯からの出力と認識させても良い。
 図7に示すタイミングチャートにより動作を説明する。補正素子として図3に示すものを用いる。ここでVg1は第1の制御線6に印加する駆動信号を、Vg2は第2の制御線7に印加する駆動信号を表している。また、SHはサンプルホールド動作を、Output1は検出素子4から読み出した信号を、Output2は補正素子5から読出した信号を表している。最終的に読み出される左右列の出力は、Output1とOutput2の減算された差分(Out1-Out2)として表される。Sig1は、図6における右列の第1の検出素子及び第1の補正素子からの信号の読み出しの様子を表し、Sig2は、左列の第2の補正素子5及び第2の検出素子4からの信号の読み出しの様子を表している。左右列ともに、検出素子4からの出力とその後で読み出される補正素子5からの出力の差分(Out1とOut2の差分)をOut1-Out2として読み出す。Sig1とSig2とのそれぞれからのOut1-Out2の和を求めることで、図5A、図5Bの例の2倍の時間分解能で信号Outを出力することが可能となる。このように、検出素子4と補正素子5を同一制御線及び同一信号線に対に配置することで、時間分解能を上げて補正精度を高めることが可能となる。
 (実装例)
 次に放射線撮像装置の実装例について図8A及び図8Bにより説明する。光電変換素子とTFTはセンサ基板6011内に複数個形成され、シフトレジスタSR1と検出用集積回路ICが実装されたフレキシブル回路基板6010が接続されている。フレキシブル回路基板6010のセンサ基板6011が接続されているのと逆側は回路基板PCB1、PCB2に接続されている。前記センサ基板6011の複数枚が基台6012の一方の面に接着され大型の光電変換装置を構成する。基台6012の他方の面には処理回路6018内のメモリ6014をX線から保護するため鉛板6013が実装されている。センサ基板6011の上にはX線を可視光に変換するためのシンチレーター(蛍光体層)6030(CsIなどからなる。)が蒸着されている。全体はカーボンファイバー製のケース6020に収納されている。
 次に図9により本発明による放射線検出装置が組み込まれた放射線撮像システムを例示的に説明する。X線チューブ6050で発生したX線6060は患者あるいは被験者6061の胸部6062を透過し、シンチレーター(蛍光体層)を実装したイメージセンサ6040に入射される。この入射したX線には患者6061の体内部の情報が含まれている。X線の入射に対応してシンチレーターは発光する。イメージセンサの有する放射線撮像装置は、放射線撮像装置の光電変換素子によりこの光を光電変換して、電気的情報を得る。この情報はディジタルに変換され信号処理部となるイメージプロセッサ6070により画像処理され制御室の表示装置となるディスプレイ6080で観察するために提供される。また、この情報は電話回線6090等の伝送処理装置により遠隔地へ転送でき、別の場所のドクタールームなど表示装置となるディスプレイ6081に表示もしくは光ディスク等の記録装置に保存することができ、遠隔地の医師が診断することも可能である。また記録装置となるフィルムプロセッサ6100により記録媒体となるフィルム6110に記録することもできる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2018年2月21日提出の日本国特許出願特願2018-029053を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (11)

  1.  放射線を電気信号に変換するための変換素子を各々が含む複数の検出素子を有する撮像領域と、
     第1の信号線と、
     前記第1の信号線を介して出力される信号を処理する信号処理回路と、を有し、
     前記複数の検出素子は前記第1の信号線に接続される第1の検出素子と第2の検出素子とを含み、
     放射線に対する前記第1の検出素子の感度と放射線に対する前記第2の検出素子の感度とは異なるように設定され、
     前記信号処理回路は、前記第1の信号線に接続される第1の検出素子と第2の検出素子とからの信号に基づいて前記撮像領域への放射線の照射に関する情報を生成することを特徴とする放射線撮像装置。
  2.  前記放射線撮像装置は、放射線を光に変換するシンチレーターを有し、
     前記変換素子は、該光を電気信号に変換する光電変換素子を含むことを特徴とする請求項1に記載の放射線撮像装置。
  3.  前記第2の検出素子は前記シンチレーターと前記変換素子との間に遮光部材が配置されていることを特徴とする請求項2に記載の放射線撮像装置。
  4.  前記第2の検出素子は前記シンチレーターと前記変換素子との間に前記変換素子にバイアス電圧を印加するためのバイアス線が配置され、該バイアス線により前記遮光部材を形成することを特徴とする請求項3に記載の放射線撮像装置。
  5.  前記第1の検出素子に含まれる変換素子に印加されるバイアス電圧と前記第2の検出素子に含まれる変換素子に印加されるバイアス電圧とは互いに異なる電圧であることを特徴とする請求項1乃至4のいずれか1項に記載の放射線撮像装置。
  6.  前記信号処理回路は前記第1の検出素子からの信号と前記第2の検出素子からの信号との差に基づいて前記放射線の照射に関する情報を生成することを特徴とする請求項1乃至5のいずれか1項に記載の放射線撮像装置。
  7.  前記放射線の照射に関する情報は、放射線の照射の開始、放射線の照射の終了、放射線の照射強度、及び放射線の照射量のうちの少なくとも一つを含むことを特徴とする請求項1乃至6のいずれか1項に記載の放射線撮像装置。
  8.  前記信号処理回路は、前記放射線の照射に関する情報に基づいて放射線源を制御するための信号を出力することを特徴とする請求項1乃至7のいずれか1項に記載の放射線撮像装置。
  9.  前記複数の検出素子を駆動する駆動回路と、前記駆動回路から前記複数の検出素子を駆動するための信号を前記複数の検出素子に提供する複数の制御線とをさらに含み、
     前記駆動回路は前記第1の検出素子と前記第2の検出素子とを周期的に駆動することを特徴とする請求項1乃至8のいずれか1項に記載の放射線撮像装置。
  10.  前記複数の制御線は第1の制御線と第2の制御線とを含み、
     前記複数の検出素子は第2の信号線に接続される第3の検出素子と第4の検出素子とを含み、
     前記信号処理回路は前記第2の信号線を介して出力される信号を処理し、前記第2の信号線に接続される第3の検出素子と第4の検出素子とからの信号に基づいて放射線の照射に関する情報を生成し、
     前記第1の検出素子と前記第3の検出素子とは前記第1の制御線により駆動され、
     前記第2の検出素子と前記第4の検出素子とは前記第2の制御線により駆動されることを特徴とする請求項9に記載の放射線撮像装置。
  11.  請求項1乃至10のいずれか1項に記載の放射線撮像装置と、
     前記放射線撮像装置からの信号を処理する信号処理部と、を備えることを特徴とする放射線撮像システム。
PCT/JP2018/043952 2018-02-21 2018-11-29 放射線撮像装置及び放射線撮像システム WO2019163240A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/929,699 US11487027B2 (en) 2018-02-21 2020-07-15 Radiation imaging apparatus and radiation imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018029053A JP7079113B2 (ja) 2018-02-21 2018-02-21 放射線撮像装置及び放射線撮像システム
JP2018-029053 2018-02-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/929,699 Continuation US11487027B2 (en) 2018-02-21 2020-07-15 Radiation imaging apparatus and radiation imaging system

Publications (1)

Publication Number Publication Date
WO2019163240A1 true WO2019163240A1 (ja) 2019-08-29

Family

ID=67687499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043952 WO2019163240A1 (ja) 2018-02-21 2018-11-29 放射線撮像装置及び放射線撮像システム

Country Status (3)

Country Link
US (1) US11487027B2 (ja)
JP (1) JP7079113B2 (ja)
WO (1) WO2019163240A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7157699B2 (ja) 2019-05-29 2022-10-20 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法および当該方法を実行させるプログラム
JP7410678B2 (ja) 2019-09-19 2024-01-10 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP7438720B2 (ja) * 2019-11-13 2024-02-27 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP7397635B2 (ja) 2019-11-22 2023-12-13 キヤノン株式会社 放射線検出装置、放射線検出システム、制御方法及びプログラム
JP7344769B2 (ja) 2019-11-22 2023-09-14 キヤノン株式会社 放射線検出装置及び出力方法
KR20220097967A (ko) * 2019-11-29 2022-07-08 엘지전자 주식회사 방사선 디텍터 및 이를 이용한 방사선 촬영 방법
JP2022022844A (ja) 2020-07-08 2022-02-07 キヤノン株式会社 放射線撮像装置
JP7449260B2 (ja) 2021-04-15 2024-03-13 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2022164433A (ja) 2021-04-16 2022-10-27 キヤノン株式会社 放射線撮像装置および放射線撮像システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212645A (ja) * 2014-05-01 2015-11-26 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP2016039463A (ja) * 2014-08-06 2016-03-22 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2016220116A (ja) * 2015-05-22 2016-12-22 キヤノン株式会社 放射線撮像装置及び放射線撮像システム

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1593159B1 (en) 2003-02-14 2013-05-29 Canon Kabushiki Kaisha Radiation image pickup device
JP4323827B2 (ja) 2003-02-14 2009-09-02 キヤノン株式会社 固体撮像装置及び放射線撮像装置
JP4266656B2 (ja) 2003-02-14 2009-05-20 キヤノン株式会社 固体撮像装置及び放射線撮像装置
JP4418720B2 (ja) 2003-11-21 2010-02-24 キヤノン株式会社 放射線撮像装置及び方法、並びに放射線撮像システム
JP4845352B2 (ja) 2004-06-15 2011-12-28 キヤノン株式会社 放射線撮像装置、その製造方法及び放射線撮像システム
US7557355B2 (en) 2004-09-30 2009-07-07 Canon Kabushiki Kaisha Image pickup apparatus and radiation image pickup apparatus
JP5043374B2 (ja) 2005-07-11 2012-10-10 キヤノン株式会社 変換装置、放射線検出装置、及び放射線検出システム
JP5043373B2 (ja) 2005-07-11 2012-10-10 キヤノン株式会社 変換装置、放射線検出装置、及び放射線検出システム
JP5043380B2 (ja) 2005-07-25 2012-10-10 キヤノン株式会社 放射線検出装置および放射線検出システム
JP5159065B2 (ja) 2005-08-31 2013-03-06 キヤノン株式会社 放射線検出装置、放射線撮像装置および放射線撮像システム
JP2007201246A (ja) 2006-01-27 2007-08-09 Canon Inc 光電変換装置及び放射線撮像装置
JP5173234B2 (ja) 2006-05-24 2013-04-03 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP5196739B2 (ja) 2006-06-09 2013-05-15 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP5406473B2 (ja) 2007-07-19 2014-02-05 キヤノン株式会社 放射線検出装置
JP5235350B2 (ja) 2007-08-07 2013-07-10 キヤノン株式会社 撮像装置及び放射線撮像システム
JP5489542B2 (ja) 2008-07-01 2014-05-14 キヤノン株式会社 放射線検出装置及び放射線撮像システム
JP5702704B2 (ja) * 2010-11-26 2015-04-15 富士フイルム株式会社 放射線画像検出装置、及び放射線画像撮影システム
JP5954983B2 (ja) 2011-12-21 2016-07-20 キヤノン株式会社 撮像装置及び放射線撮像システム、並びに撮像装置の製造方法
JP6057511B2 (ja) 2011-12-21 2017-01-11 キヤノン株式会社 撮像装置及び放射線撮像システム
JP2014003542A (ja) 2012-06-20 2014-01-09 Canon Inc 検出装置、検出システム及び検出装置の駆動方法
JP2014110352A (ja) 2012-12-03 2014-06-12 Canon Inc 検出装置の製造方法
JP2014110353A (ja) 2012-12-03 2014-06-12 Canon Inc 検出装置及び放射線検出システム
JP6463136B2 (ja) 2014-02-14 2019-01-30 キヤノン株式会社 放射線検出装置及び放射線検出システム
JP6585910B2 (ja) * 2014-05-01 2019-10-02 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6339853B2 (ja) 2014-05-01 2018-06-06 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6442163B2 (ja) 2014-06-02 2018-12-19 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP6595803B2 (ja) 2014-06-13 2019-10-23 キヤノン株式会社 放射線撮像装置、放射線撮像システムおよびその制御方法
US9948871B2 (en) 2014-07-25 2018-04-17 Canon Kabushiki Kaisha Radiation imaging apparatus and radiation imaging system
JP6491434B2 (ja) 2014-08-12 2019-03-27 キヤノン株式会社 放射線撮像装置及び放射線検出システム
JP6555909B2 (ja) 2015-03-20 2019-08-07 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP6626301B2 (ja) 2015-09-28 2019-12-25 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
JP6649775B2 (ja) 2016-01-13 2020-02-19 キヤノン株式会社 放射線撮像装置、その駆動方法及び放射線撮像システム
JP6415488B2 (ja) 2016-07-08 2018-10-31 キヤノン株式会社 放射線撮像システム
JP6929104B2 (ja) 2017-04-05 2021-09-01 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
JP6990986B2 (ja) 2017-04-27 2022-01-12 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
JP6853729B2 (ja) 2017-05-08 2021-03-31 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
JP6788547B2 (ja) 2017-05-09 2020-11-25 キヤノン株式会社 放射線撮像装置、その制御方法、制御装置、及び、放射線撮像システム
WO2019012846A1 (ja) 2017-07-10 2019-01-17 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP7045834B2 (ja) 2017-11-10 2022-04-01 キヤノン株式会社 放射線撮像システム
JP7198003B2 (ja) 2018-06-22 2022-12-28 キヤノン株式会社 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法およびプログラム
EP3661190B1 (en) 2018-11-27 2024-05-22 Canon Kabushiki Kaisha Radiation imaging apparatus and radiation imaging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212645A (ja) * 2014-05-01 2015-11-26 キヤノン株式会社 放射線撮像装置および放射線撮像システム
JP2016039463A (ja) * 2014-08-06 2016-03-22 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2016220116A (ja) * 2015-05-22 2016-12-22 キヤノン株式会社 放射線撮像装置及び放射線撮像システム

Also Published As

Publication number Publication date
JP7079113B2 (ja) 2022-06-01
JP2019141357A (ja) 2019-08-29
US20200348424A1 (en) 2020-11-05
US11487027B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2019163240A1 (ja) 放射線撮像装置及び放射線撮像システム
JP6570315B2 (ja) 放射線撮像装置及び放射線撮像システム
EP2168370B1 (en) Radiation detecting apparatus and radiation imaging system
JP4965931B2 (ja) 放射線撮像装置、放射線撮像システム、その制御方法、及び制御プログラム
JP6442163B2 (ja) 放射線撮像装置および放射線撮像システム
US20090323897A1 (en) Radiation imaging apparatus, its control method, and radiation imaging system
EP1441237B1 (en) Radiographic detector array for automatic exposure control
WO2018186020A1 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
WO2019181494A1 (ja) 放射線撮像装置および放射線撮像システム
JP4383899B2 (ja) 放射線撮像装置及び放射線撮像システム
US10921466B2 (en) Radiation imaging apparatus and radiation imaging system
US11693131B2 (en) Radiation imaging apparatus and radiation imaging system
JP4739060B2 (ja) 放射線撮像装置、放射線撮像システム、及びその制御方法
JP5509032B2 (ja) 放射線画像検出器
JP2004170216A (ja) 放射線検出装置
JP6719324B2 (ja) 放射線撮像装置及び放射線撮像システム
JP7190360B2 (ja) 放射線撮像装置および放射線撮像システム
JP2002158340A (ja) 放射線撮像装置、光電変換装置及び放射線撮像システム
JP6929327B2 (ja) 放射線撮像装置及び放射線撮像システム
US20230258828A1 (en) Radiation imaging apparatus and radiation imaging system
JP2023119569A (ja) 放射線撮像装置、および、放射線撮像システム
CN116602693A (zh) 放射线摄像装置和放射线摄像***
JP2019161614A (ja) 放射線検出器
JP2020089656A (ja) 放射線撮像装置及びその制御方法
JP2018195949A (ja) 放射線撮像装置及び放射線撮像システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907229

Country of ref document: EP

Kind code of ref document: A1