WO2019163125A1 - 電動機駆動装置及び冷凍サイクル適用機器 - Google Patents

電動機駆動装置及び冷凍サイクル適用機器 Download PDF

Info

Publication number
WO2019163125A1
WO2019163125A1 PCT/JP2018/006932 JP2018006932W WO2019163125A1 WO 2019163125 A1 WO2019163125 A1 WO 2019163125A1 JP 2018006932 W JP2018006932 W JP 2018006932W WO 2019163125 A1 WO2019163125 A1 WO 2019163125A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
connection
switching
current
electric motor
Prior art date
Application number
PCT/JP2018/006932
Other languages
English (en)
French (fr)
Inventor
慎也 豊留
和徳 畠山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880089239.7A priority Critical patent/CN111727557B/zh
Priority to JP2020501980A priority patent/JP6929434B2/ja
Priority to PCT/JP2018/006932 priority patent/WO2019163125A1/ja
Publication of WO2019163125A1 publication Critical patent/WO2019163125A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present invention relates to an electric motor drive device and a refrigeration cycle application device including the same.
  • an electric motor drive device that includes a connection switching device that switches a stator winding of an electric motor to one of a plurality of different connection states, an inverter that drives the electric motor, and a control unit that controls the inverter.
  • a connection switching device that switches a stator winding of an electric motor to one of a plurality of different connection states
  • an inverter that drives the electric motor
  • a control unit that controls the inverter.
  • connection switching device when switching the winding, the connection switching device is operated. However, if the connection switching device is defective, a sudden voltage or current change occurs, and the motor is damaged due to overvoltage. There is a risk of demagnetizing the motor due to overcurrent.
  • the present invention has been made in view of the above, and provides a motor drive device that can prevent damage to the motor due to overvoltage, demagnetization of the motor due to overcurrent, and the like even when the connection switching device is defective.
  • the purpose is to do.
  • the electric motor drive device is An electric motor drive device for driving an electric motor having three-phase windings, A connection switching device for switching the connection state of the windings of the motor in response to a switching signal; An inverter for applying an alternating voltage having a variable frequency and voltage value to the motor; A current detection unit that detects a three-phase alternating current flowing in the motor; and a three-phase two-phase conversion unit that converts the three-phase alternating current into a torque current component and an excitation current component; and the inverter and the connection switching A control device for controlling the device, The inverter stops when the amount of harmonic components of at least one of the torque current component and the excitation current component is larger than when there is no failure in the connection switching device.
  • the present invention it is possible to detect a malfunction of the connection switching device, and therefore it is possible to prevent the motor from being damaged due to overvoltage, the demagnetization of the motor due to overcurrent, and the like.
  • (A) And (b) is a wiring diagram which shows the connection switching apparatus in a failure state.
  • (A) And (b) is a figure which shows the connection state of a coil
  • (A) And (b) is a figure which shows the waveform of an inverter output current when a winding is in the state of Fig.10 (a), and the waveform of an exciting current component and a torque current component.
  • (A) And (b) is a figure which shows the waveform of an inverter output current when a coil
  • FIG. 10 shows the figure which showed simply the impedance seen from each phase when a coil
  • (A)-(c) shows the figure which showed simply the impedance seen from each phase when a coil
  • 6 is a functional block diagram illustrating an example of a control device used in Embodiment 2.
  • FIG. It is a figure which shows the electric motor drive device of Embodiment 3 of this invention.
  • FIG. 10 is a wiring diagram showing a current detection element together with a stator winding and a connection switching device of an electric motor in Embodiment 3.
  • FIG. 9 is a functional block diagram illustrating an example of a control device used in a third embodiment. It is a block diagram which shows the structural example of the failure detection part 130c of FIG. (A) And (b) is a figure which shows the connection state of a coil
  • FIG. (A) And (b) shows the waveform of the winding current when the winding is in the state of FIG. 23 (a), and the waveform of the winding current when the winding is in the state of FIG. 23 (b).
  • FIG. It is a figure which shows the determination method of the aspect of a failure in Embodiment 3 in a table format. It is a figure which shows the electric motor drive device of Embodiment 4 of this invention.
  • An example of a refrigeration cycle application device is an air conditioner.
  • the present invention is applied to a motor drive device that drives a compressor of an air conditioner.
  • the refrigeration cycle 900 in FIG. 1 can be operated for heating or cooling by switching the four-way valve 902.
  • the refrigerant is pressurized and sent out by the compressor 904, and passes through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910, and the four-way valve 902. Return to the compressor 904.
  • the refrigerant is pressurized and sent out by the compressor 904, and passes through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906, and the four-way valve 902. Return to the compressor 904.
  • the indoor heat exchanger 906 acts as a condenser to release heat
  • the outdoor heat exchanger 910 acts as an evaporator to absorb heat
  • the outdoor heat exchanger 910 acts as a condenser to release heat
  • the indoor heat exchanger 906 acts as an evaporator to absorb heat.
  • the expansion valve 908 expands the refrigerant by reducing the pressure.
  • the compressor 904 is driven by an electric motor 7 that is controlled at a variable speed.
  • FIG. FIG. 2 is a schematic wiring diagram showing the electric motor drive device 2 according to the first embodiment of the present invention together with the electric motor 7.
  • the illustrated electric motor drive device 2 is for driving the electric motor 7, and includes AC power input terminals 3 a and 3 b, a reactor 8, a rectifier circuit 10, a capacitor 20, an inverter 30, and a connection switching device 60. , Control power generation circuit 80, bus current detection means 85, failure indicator 87, and control device 100.
  • the control device 100 may be configured with, for example, a microcomputer (microcomputer) having a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like, or may be configured with dedicated hardware. Below, it demonstrates as what is comprised with the microcomputer.
  • the AC power input terminals 3a and 3b are connected to an external AC power supply 4, and an AC voltage is applied from the AC power supply 4 to the AC power input terminals 3a and 3b.
  • the applied voltage has an amplitude (effective value) of 100 V, 200 V, and the like, and a frequency of 50 Hz, 60 Hz, or the like.
  • the rectifier circuit 10 receives AC power from the AC power supply 4 via the input terminals 3 a and 3 b and the reactor 8 and rectifies the AC power.
  • the rectifier circuit 10 is a full-wave rectifier circuit formed by bridge-connecting rectifier elements 11 to 14 such as diodes.
  • the capacitor 20 smoothes the DC voltage rectified by the rectifier circuit 10 and outputs a DC voltage V20.
  • the inverter 30 includes an inverter main circuit 310 and a drive circuit 350, and an input terminal of the inverter main circuit 310 is connected to the electrode of the capacitor 20.
  • a line connecting the output of the rectifier circuit 10, the electrode of the capacitor 20, and the input terminal of the inverter main circuit 310 is referred to as a DC bus.
  • the inverter 30 is controlled by the control device 100 so that the switching elements 311 to 316 of the six arms of the inverter main circuit 310 are turned on and off to generate a three-phase alternating current having a variable frequency and a variable voltage value. 7 is supplied. Rectifying elements 321 to 326 for reflux are connected in parallel to the switching elements 311 to 316.
  • the motor 7 is a three-phase permanent magnet synchronous motor, and an end portion of a three-phase stator winding is drawn out of the motor 7 and is either a star connection (Y connection) or a delta connection ( ⁇ connection). Switching to is possible. This switching is performed by the connection switching device 60.
  • FIG. 4 shows the stator winding and connection switching device 60 of the electric motor 7 in more detail.
  • the first ends 71a, 72a, 73a of the three-phase windings 71, 72, 73 of the electric motor 7 including the U phase, the V phase, and the W phase are external terminals 71c, 72c, 73c, respectively.
  • the second ends 71b, 72b, 73b of the U-phase, V-phase, and W-phase windings 71, 72, and 73 are connected to the external terminals 71d, 72d, and 73d, respectively. Connection is possible.
  • the U-phase, V-phase, and W-phase output lines 331, 332, and 333 of the inverter 30 are connected to the external terminals 71c, 72c, and 73c.
  • the connection switching device 60 includes switchers 61, 62, and 63.
  • the switching devices 61, 62, 63 electromagnetic contactors whose contacts are electromagnetically opened and closed are used.
  • the electromagnetic contactor includes what is called a relay.
  • the electromagnetic contactor is configured as shown in FIG. 5, for example, and takes different connection states when current is passed through the exciting coils 611, 621, and 631 and when current is not passed.
  • the exciting coils 611, 621, and 631 are connected so that a current from a switching power supply V60 described later flows when the semiconductor switch 604 is ON. Opening / closing of the semiconductor switch 604 is controlled by a switching signal Sc output from the control device 100.
  • the switching signal Sc output from the control device 100 may be supplied to the exciting coils 611, 621, 631. This is possible when the control device 100 (for example, configured by a microcomputer) is configured to allow a sufficient current to flow as the signal Sc.
  • the common contact 61c of the switch 61 is connected to the terminal 71d via the connection line 61e, the normally closed contact 61b is connected to the neutral point node 64, and the normally open contact 61a is the V-phase output line of the inverter 30. 332 is connected.
  • the common contact 62c of the switch 62 is connected to the terminal 72d via the connection line 62e, the normally closed contact 62b is connected to the neutral point node 64, and the normally open contact 62a is the W-phase output line of the inverter 30. 333.
  • the common contact 63c of the switch 63 is connected to the terminal 73d through the connection line 63e, the normally closed contact 63b is connected to the neutral point node 64, and the normally open contact 63a is the U-phase output line of the inverter 30. 331.
  • the switching devices 61, 62, 63 are switched to the normally closed contact side as shown in the drawing, that is, the common contacts 61c, 62c, 63c are normally connected.
  • the closed contacts 61b, 62b, and 63b are connected.
  • the electric motor 7 is in a Y-connection state.
  • the switchers 61, 62, 63 are switched to the normally open contact side, that is, the common contacts 61c, 62c, 63c It is in a state connected to the normally open contacts 61a, 62a, 63a. In this state, the electric motor 7 is in the ⁇ connection state.
  • the state switched to the normally closed contact side is referred to as a Y connection switching state
  • the state switched to the normally open contact side is referred to as a ⁇ connection switching state.
  • the switches 61, 62, and 63 are called U-phase, V-phase, and W-phase switches, respectively.
  • FIG. 6A shows the connection state of the stator windings 71, 72, and 73 when the Y connection is used
  • FIG. 6B shows the connection state of the stator windings 71, 72, and 73 when the ⁇ connection is used.
  • V Y V Y
  • the flowing current I Y
  • V ⁇ V ⁇
  • I ⁇ I Y
  • the motor is used at the Y connection and the ⁇ connection. Are supplied with the same power. That is, when the electric power supplied to the electric motor is equal to each other, the current is larger in the ⁇ connection and the voltage required for driving is lower.
  • connection state it is conceivable to select the connection state according to the load conditions. For example, it is conceivable to operate at a low speed with a Y connection when the load is low and to operate at a high speed with a ⁇ connection when the load is high. By doing in this way, the efficiency at the time of a low load can be improved and the high output at the time of a high load is also attained.
  • an electric motor 7 for driving a compressor of an air conditioner a synchronous motor using a permanent magnet as a rotor is widely used in order to meet the demand for energy saving. Further, in recent air conditioners, when the difference between the room temperature and the set temperature is large, the motor 7 is rotated at a high speed to quickly approach the set temperature, and when the room temperature is close to the set temperature, the motor 7 is slowed down. In this case, the proportion of the time that is operated at a low speed is large.
  • the counter electromotive force increases as the rotational speed increases, and the voltage required for driving increases. As described above, the counter electromotive force is higher in the Y connection than in the ⁇ connection.
  • connection state it is conceivable to switch the connection state according to the rotation speed. For example, when high-speed operation is required, a ⁇ connection state is set. In this way, the voltage required for driving can be reduced to 1 / ⁇ 3 (compared to the Y connection). For this reason, it is not necessary to reduce the number of windings, and it is not necessary to use the flux-weakening control.
  • the current value can be reduced to 1 / ⁇ 3 compared to the ⁇ connection by setting the Y connection state.
  • the winding can be designed to be suitable for driving at a low speed in the Y-connection state, and the current value can be reduced as compared with the case where the Y-connection is used over the entire speed range. .
  • the loss of the inverter 30 can be reduced, and the efficiency can be increased.
  • connection switching device is provided to enable such switching.
  • the control power generation circuit 80 receives and reduces the voltage between both electrodes of the capacitor 20, that is, the bus voltage V20, generates the control power V100 and the switching power supply V60, supplies the control power V100 to the control device 100, and performs switching.
  • the power supply V60 is supplied to the connection switching device 60.
  • the voltage value of the control power supply V100 is 5V
  • the voltage value of the switching power supply V60 is 12V.
  • the switching power supply V60 supplies the current flowing through the exciting coils 611, 621, and 631 of the switching devices 61, 62, and 63.
  • the bus current detection means 85 detects the bus current, that is, the input current Idc of the inverter 30.
  • the bus current detection means 85 includes a shunt resistor inserted into the DC bus, and supplies an analog signal indicating the detection result to the control device 100. This signal (detection signal) is converted into a digital signal by an A / D converter (not shown) in the control device 100 and used for processing inside the control device 100.
  • the failure indicator 87 displays a failure of the connection switching device 60 according to the display control signal Sfc from the control device 100.
  • the control device 100 controls the switching of the connection state by the connection switching device 60 and the operation of the inverter 30 as described above. In order to control the inverter 30, the control device 100 generates PWM signals Sm1 to Sm6 and supplies them to the inverter 30.
  • the inverter 30 includes the drive circuit 350 in addition to the inverter main circuit 310 as described above.
  • the drive circuit 350 generates the drive signals Sr1 to Sr6 based on the PWM signal, and the drive signals Sr1 to Sr6.
  • the switching elements 311 to 316 are controlled to be turned on and off, so that a three-phase AC voltage having a variable frequency and a variable voltage is applied to the motor 7.
  • the drive signals Sr1 to Sr6 are voltage levels necessary for controlling the switching elements 311 to 316, for example, It is a signal having a magnitude of + 15V to ⁇ 15V.
  • the PWM signals Sm1 to Sm6 have the ground potential of the control device 100 as a reference potential, whereas the drive signals Sr1 to Sr6 have potentials at the negative terminals (emitter terminals) of the corresponding switching elements, respectively. Is a reference potential.
  • the control apparatus 100 has the operation control part 102, the inverter control part 110, and the failure detection part 130, as shown in FIG.
  • the operation control unit 102 receives information Temp indicating a room temperature (temperature of the air-conditioning target space) detected by a temperature sensor (not shown), receives an instruction Ctr from an operation unit (not shown), for example, a remote controller, and operates each part of the air conditioner. To control.
  • the instruction from the operation unit includes information indicating the set temperature, operation mode selection, operation start and end instructions, and the like.
  • the operation control unit 102 determines, for example, whether the stator winding of the electric motor 7 is Y-connected or ⁇ -connected and the target rotational speed, and based on the determination, the switching signal Sc and the frequency command value ⁇ *. Is output. For example, if the difference between the room temperature and the set temperature is large, decide to use ⁇ connection, set the target rotational speed to a relatively high value, and after starting, a frequency command that gradually increases to the frequency corresponding to the target rotational speed The value ⁇ * is output.
  • the state is maintained until the room temperature approaches the set temperature.
  • the motor is stopped once and switched to the Y connection, and the target rotation is relatively low.
  • the frequency command value ⁇ * that gradually increases to the frequency corresponding to the number is output.
  • control for maintaining the room temperature close to the set temperature is performed thereafter. This control includes frequency adjustment, motor stop, restart, and the like.
  • the operation control unit 102 also performs a process of immediately stopping the inverter 30 when a failure of the connection switching device 60 is detected by the failure detection unit 130, as will be described later.
  • the process of stopping the inverter 30 is performed by giving a signal (stop signal) St for stopping the inverter 30 to the inverter control unit 110.
  • the inverter control unit 110 includes a current restoration unit 111, a three-phase two-phase conversion unit 112, an excitation current command control unit 113, a voltage command calculation unit 114, an electrical angle phase calculation unit 115, a two-phase three-phase conversion unit 116, and PWM generation. Part 117.
  • the current restoration unit 111 restores the phase currents i u , i v , i w flowing through the electric motor 7 based on the current value Idc detected by the bus current detection means 85.
  • the phase current of the electric motor 7 here is a current that flows into the electric motor via the output lines 331, 332, and 333 of the inverter 30, and is also referred to as an inverter output current.
  • the current restoration unit 111 samples the DC current Idc detected by the bus current detection unit 85 at a timing determined based on the PWM signal from the PWM generation unit 117, so that the phase currents i u , i v , i w To restore.
  • the process of restoring the phase current in this way is an aspect of detecting the phase current.
  • the three-phase / two-phase conversion unit 112 uses the current values i u , i v , i w restored by the current restoration unit 111 as the excitation current using the electrical angle phase ⁇ generated by the electrical angle phase calculation unit 115 described later. It is converted into a dq-axis current value represented by a component (d-axis current) id and a torque current component (q-axis current) iq .
  • Exciting current command control unit 113 based on the torque current component i q, the most efficiency is improved optimum excitation current command value for driving the electric motor 7 (d-axis current command value) is obtained i d *.
  • the exciting current component i d, or the exciting current command value i d and the frequency command value omega * based on The same effect can be obtained even if * is obtained.
  • the excitation current command control unit 113 Based on the torque current component i q (or the excitation current component id or the frequency command value ⁇ * ), the excitation current command control unit 113 outputs a torque that is greater than or equal to a predetermined value (or maximum), that is, the current value is less than or equal to a predetermined value.
  • An excitation current command value i d * is output such that the current phase angle ⁇ m (not shown) is (or minimum).
  • the voltage command calculation unit 114 includes an excitation current component (d-axis current) id and a torque current component (q-axis current) i q obtained from the three-phase to two-phase conversion unit 112, a frequency command value ⁇ *, and an excitation current. Based on the excitation current command value i d * obtained from the command control unit 113, voltage command values V d * and V q * are output.
  • FIG. 8 is a diagram illustrating a configuration example of the voltage command calculation unit 114 of FIG. 8 includes a frequency estimation unit 1141, subtraction units 1142, 1144, and 1146, and control units 1143, 1145, and 1147.
  • the frequency estimator 1141 determines the excitation current component i d and the torque current component i q , the excitation voltage command value (d-axis voltage command value) V d *, and the torque voltage command value (q-axis voltage command value) V q * . Based on this, the frequency of the electric motor 7 is estimated, and the frequency estimated value ⁇ est is generated.
  • the subtraction unit 1142 obtains a difference ( ⁇ * ⁇ est ) between the frequency command value ⁇ * and the frequency estimation value ⁇ est generated by the frequency estimation unit 1141. Based on the difference ( ⁇ * ⁇ est ) obtained by the subtractor 1142, the control unit 1143 performs torque such that the frequency estimated value ⁇ est matches the frequency command value ⁇ * by proportional integral (PI) control, for example.
  • the current command value (q-axis current command value) i q * is output.
  • Subtraction unit 1144 obtains the excitation current command value i d * and the difference between the exciting current component i d (i d * -i d ).
  • Control unit 1145 based on the determined at the subtraction unit 1144 difference (i d * -i d), for example, a proportional integral (PI) control, the exciting current component i d is equal to the exciting current command value i d * Such an excitation voltage command value V d * is output.
  • PI proportional integral
  • the subtraction unit 1146 obtains a difference (i q * ⁇ i q ) between the torque current command value i q * and the torque current component i q . Based on the difference (i q * ⁇ i q ) obtained by the subtraction unit 1146, the control unit 1147 matches the torque current component i q with the torque current command value i q * , for example, by proportional integration (PI) control.
  • PI proportional integration
  • the electrical angle phase calculation unit 115 integrates the frequency estimation value ⁇ est generated by the voltage command calculation unit 114 to obtain the electrical angle phase ⁇ .
  • the two-phase / three-phase converter 116 converts the excitation voltage command value V d * and the torque voltage command value V q * (the voltage command value of the two-phase coordinate system) obtained by the voltage command calculator 114 into the electrical angle phase calculator 115. Is converted into an output voltage command value (three-phase voltage command value) V u * , V v * , V w * of the three-phase coordinate system using the electrical angle phase ⁇ obtained by the above-mentioned output.
  • the PWM generator 117 generates and outputs PWM signals Sm1 to Sm6 based on the three-phase voltage command values V u * , V v * , and V w * obtained from the two-phase three-phase converter 116.
  • the PWM signals Sm1 to Sm6 are used to turn on / off the switching elements 311 to 316 of each arm of the inverter 30 so that the output voltage of the inverter 30 matches the three-phase voltage command values V u * , V v * , and V w *. Is a signal for controlling
  • the drive circuit 350 generates drive signals Sr1 to Sr6 based on the PWM signals Sm1 to Sm6.
  • the stop signal St that is a signal for stopping the inverter 30 is given to, for example, the PWM generation unit 117.
  • the PWM generation unit 117 Upon receiving the stop signal St, the PWM generation unit 117 immediately stops outputting the PWM signals Sm1 to Sm6.
  • the failure detection unit 130 includes inverter output currents i u , i v , i w restored by the current restoration unit 111, excitation current component id and torque current component i q output from the three-phase two-phase conversion unit 112, and A failure of the connection switching device 60 is detected based on the switching signal Sc.
  • the connection switching device 60 may be simply referred to as the switching device 60.
  • FIGS. 9A and 9B show examples of different failures.
  • the switches 62 and 63 are in the ⁇ connection switching state, while the switch 61 is in the Y connection switching state. This occurs when the switch 61 is in the ⁇ connection switching state due to a failure even though the switching signal Sc is in the Y connection designated state (Low), or when the switching signal Sc is ⁇ This is a case where the switchers 62 and 63 are in the Y connection switching state due to a failure although the connection is in the designated state (High). In that case, the windings 71, 72, 73 are connected as shown in FIG.
  • the switches 62 and 63 are in the ⁇ connection switching state, while the switch 61 is in the Y connection switching state. This occurs when the switch 61 is in the Y connection switching state due to a failure even though the switching signal Sc is in a state (High) for designating ⁇ connection, or when the switch signal Sc is This is a case where the switchers 62 and 63 are in the ⁇ connection switching state due to a failure although the Y connection is in the designated state (Low). In that case, the windings 71, 72, 73 are connected as shown in FIG.
  • the states shown in FIGS. 9A and 10A are expressed as “U phase only ⁇ ”, and the states shown in FIGS. 9B and 10B are expressed as “U phase”. Only Y ”state is expressed.
  • the failure state in addition to the states shown in FIGS. 9A and 9B and FIGS. 10A and 10B, the “V phase only ⁇ ” state, the “W phase only ⁇ ” state, There are six states in total, that is, a state of “V phase only Y” and a “W phase only Y” state.
  • the above “state” is not only the connection state of the windings but also the state of the switching device 60. Therefore, for example, the expression “U phase only ⁇ ” is used for both the connection state of the windings and the switching state of the switching device 60.
  • the inverter output current becomes unbalanced, the exciting current component i d and a torque current component i q obtained by converting the inverter output current is many harmonic components Will be included.
  • the inverter output current, the excitation current component id and the torque current component i q corresponding thereto are shown in FIG. As shown in (a) and (b).
  • the inverter output currents i u , i v , i w and the corresponding excitation current components i d and torque The current component i q is as shown in FIGS. 12 (a) and 12 (b).
  • the inverter output current is unbalanced, and the excitation current component id and the torque current component iq have many harmonics. It can be seen that the wave component is included.
  • This harmonic component is mainly a second harmonic component.
  • the harmonic component referred to here is a component having a frequency that is an integral multiple of the fundamental wave of the inverter output currents i u , i v , i w before conversion in the three-phase / two-phase converter 112.
  • the failure detection unit 130 detects a failure based on the harmonic component included in the excitation current component id and the torque current component iq , and determines the failure mode based on the relationship between the magnitudes of the inverter output currents. To identify.
  • the failure is detected by giving a switching signal Sc to the switching device 60 to specify the switching state, operating the inverter 30 to apply a voltage from the inverter 30 to the electric motor 7, and based on the value of the current flowing through the electric motor at that time. Do it.
  • Failure detection is typically performed when the switching device 60 is switched. For example, the failure is detected based on the current of each phase immediately after switching the value or state of the switching signal Sc from the state where the motor 7 is in either the Y-connection state or the ⁇ -connection state and no abnormality is detected. Done. However, the failure detection may be performed also when the operation of the electric motor driving device is started.
  • the failure detection unit 130 includes a harmonic detection unit 131, an unbalance detection unit 132, and a failure determination unit 133, for example, as shown in FIG.
  • Harmonics detection unit 131 detects a failure of the switching device 60 from the harmonic component of the exciting current component i d and a torque current component i q obtained by conversion in the three-to-two phase converter 112. Harmonics detection unit 131 extracts a harmonic component from each of the exciting current component i d and a torque current component i q, for at least one of the exciting current component i d and a torque current component i q, the amount of harmonic components It is determined whether or not it is larger than that in the normal state, and a signal Sdf indicating the determination result is sent to the failure determination unit 133.
  • Extraction of the harmonic component can be performed by, for example, high-pass filtering, band-pass filtering, or FFT (Fast Fourier Transform).
  • Normal time means a time when there is no failure in the switching device 60. Whether or not it is larger than normal is, for example, whether or not the amount of harmonic components in normal is larger than the upper limit of a possible value range (variation range) or a threshold set to a value larger than that. judge. For example, the threshold value is set to twice the above upper limit value.
  • the harmonic detection unit 131 outputs a signal Sdf indicating the result of failure detection.
  • the signal Sdf for at least one of the exciting current component i d and a torque current component i q, when the amount of the harmonic component is greater than that in the normal, the first value, for example High next, else , The second value, for example, Low.
  • the unbalance detection unit 132 specifies the failure mode based on the inverter output currents i u , i v , i w and the switching signal Sc, and outputs a signal Sfa indicating the specified failure mode. For example, the unbalance detection unit 132 specifies the switching state of the switching device 60 based on the relationship between the magnitudes Imu, Imv, and Imw of the inverter output currents i u , i v , and i w , The failure mode of the switching device 60 is specified based on the switching signal Sc.
  • the magnitudes Imu, Imv, Imw of the inverter output currents i u , i v , i w for example, the maximum value for each predetermined period, the effective value for each predetermined period, or for each predetermined period
  • An average value of absolute values of can be used.
  • FIGS. 14A to 14C show paths of currents flowing from the external terminals 71c, 72c, and 73c when the winding is in the “U phase only ⁇ ” connection state shown in FIG. That is, FIG. 14 (a) shows the path of the current i u flowing from the external terminal 71c of the U-phase, FIG. 14 (b) shows the path of the current i v flowing from the V-phase external terminal 72c, FIG. 14 (c) shows the path of the current i w flowing from the W-phase external terminal 73c. 14A to 14C, Z represents the impedance of the winding of each phase.
  • FIGS. 15A to 15C show paths of currents flowing from the external terminals 71c, 72c, and 73c when the winding is in the “U phase only Y” connection state shown in FIG. 10B. That is, FIG. 15 (a) shows the path of the current i u flowing from the external terminal 71c of the U-phase, FIG. 15 (b) shows the path of the current i v flowing from the V-phase external terminal 72c, FIG. 15 (c) shows the path of the current i w flowing from the W-phase external terminal 73c. 15A to 15C, Z represents the impedance of the winding of each phase.
  • the unbalance detection unit 132 specifies the connection state of the windings using the relationship between the magnitudes of the inverter output currents i u , i v , i w when the switching device 60 fails,
  • the switching state of the switching device 60 is specified by
  • the unbalance detection unit 132 obtains the magnitudes Imu, Imv, Imw of the inverter output currents i u , i v , i w restored by the current restoration unit 111.
  • the unbalance detection unit 132 determines whether or not the obtained magnitudes Imu, Imv, and Imw of the inverter output current satisfy any of the following conditions CP1 to CP6.
  • CP4: Imw> Imu Imv Condition
  • CP5: Imu> Imv Imw Condition
  • Imv> Imu Imw
  • the difference in the magnitudes of the currents is considered to be a threshold value (first value) in consideration of variations in winding impedance, inverter output current errors, current measurement errors, calculation errors, and the like. If the difference is equal to or greater than the threshold, it is determined that there is a magnitude relationship. That is, when the magnitudes of the two currents are represented by Ia and Ib,
  • the unbalance detection unit 132 determines the switching state as follows.
  • the switching device 60 determines that the “U phase only ⁇ ” is in the switching state. This state is referred to as a first switching state CS1.
  • the condition CP2 is satisfied, it is determined that the connecting device is in the “V phase only ⁇ ” switching state. This state is referred to as a second switching state CS2.
  • the condition CP3 is satisfied, it is determined that the connection device is in the “W phase only ⁇ ” switching state. This state is referred to as a third switching state CS3.
  • condition CP4 When the condition CP4 is satisfied, it is determined that the connecting device is in the “U phase only Y” switching state. This state is referred to as a fourth switching state CS4.
  • condition CP5 When the condition CP5 is satisfied, it is determined that the connection device is in the “V phase only Y” switching state. This state is referred to as a fifth switching state CS5.
  • condition CP6 When the condition CP6 is satisfied, it is determined that the connecting device is in the “W phase only Y” switching state. This state is referred to as a sixth switching state CS6.
  • the determination about the switching state based on the magnitude of the current can be summarized as follows. That is, if the current of one phase is smaller than the current of one of the other two phases and larger than the current of the other phase, the unbalance detection unit 132 determines that the switch of the one phase is It is in the ⁇ connection switching state, and the other two phase switch is determined to be in the Y connection switching state, and the current of one phase is smaller than the current of one of the other two phases. If the current of the other phase is equal, the unbalance detection unit 132 indicates that the one-phase switch is in the Y-connection switching state and the other two-phase switching devices are in the ⁇ -connection switching state. judge.
  • the unbalance detection unit 132 determines that the one phase switch is in the ⁇ connection switching state and the other two phase switch is in the Y connection switching state, and the current of one phase is The current of one phase of the other two phases is smaller by at least the first threshold (It1), and the difference between the current of the one phase and the current of the other phase is smaller than the first threshold (It1). If not, the unbalance detection unit 132 determines that the one-phase switch is in the Y-connection switching state, and the other two-phase switching devices are in the ⁇ -connection switching state.
  • the switching state of the switching device 60 is specified as described above.
  • the unbalance detection unit 132 determines the value of the switching signal Sc and which of the above conditions CP1 to CP6 is satisfied, that is, The following determination is made based on the identified switching state.
  • the unbalance detection unit 132 causes the V phase switch 62 and the W phase switch 63 to fail. It is determined that This is because the switching devices 62 and 63 are in the Y connection switching state even though the switching signal Sc is High and the ⁇ connection is designated thereby. Such a failure mode is referred to as a first mode Ma1.
  • the unbalance detection unit 132 causes the U-phase switch 61 and the W-phase switch 63 to fail. It is determined that This is because the switching devices 61 and 63 are in the Y connection switching state even though the switching signal Sc is High and the ⁇ connection is designated by this. Such a failure mode is referred to as a second mode Ma2.
  • the unbalance detection unit 132 When the switching signal Sc is High and the condition CP3 is satisfied (when “only W phase is ⁇ ”), the unbalance detection unit 132 is caused by the failure of the U-phase switch 61 and the V-phase switch 62. It is determined that This is because the switching devices 61 and 62 are in the switching state for the Y connection even though the switching signal Sc is High and the ⁇ connection is thereby designated. Such a failure mode is referred to as a third mode Ma3.
  • the unbalance detection unit 132 determines that the U phase switch 61 has failed. This is because the switch 61 is in the switching state for the Y connection even though the switching signal Sc is High and the ⁇ connection is designated by this. Such a failure mode is referred to as a fourth mode Ma4.
  • the unbalance detection unit 132 determines that the V phase switch 62 has failed. This is because the switching device 62 is in the Y connection switching state even though the switching signal Sc is High and the ⁇ connection is designated thereby. Such a failure mode is referred to as a fifth mode Ma5.
  • the unbalance detection unit 132 determines that the W phase switching unit 63 has failed. This is because the switching device 63 is in the Y connection switching state even though the switching signal Sc is High and the ⁇ connection is designated thereby. Such a failure mode is referred to as a sixth mode Ma6.
  • the unbalance detecting unit 132 determines that the U phase switching device 61 has failed. This is because the switching device 61 is in the ⁇ connection switching state even though the switching signal Sc is Low and the Y connection is thereby designated. Such a failure mode is referred to as a seventh mode Ma7.
  • the unbalance detection unit 132 determines that the V-phase switch 62 has failed. This is because the switching device 62 is in the ⁇ connection switching state even though the switching signal Sc is Low and the Y connection is designated thereby. Such a failure mode is referred to as an eighth mode Ma8.
  • the unbalance detection unit 132 determines that the W phase switching unit 63 has failed. This is because the switching device 63 is in the ⁇ connection switching state even though the switching signal Sc is Low and the Y connection is thereby designated. Such a failure mode is referred to as a ninth mode Ma9.
  • the unbalance detection unit 132 detects that the V phase switch 62 and the W phase switch 63 fail. It is determined that This is because the switching devices 62 and 63 are in the ⁇ connection switching state even though the switching signal Sc is Low and the Y connection is thereby designated. Such a failure mode is referred to as a tenth mode Ma10.
  • the unbalance detection unit 132 detects that the U phase switch 61 and the W phase switch 63 fail. It is determined that This is because the switching devices 61 and 63 are in the ⁇ connection switching state even though the switching signal Sc is Low and the Y connection is designated thereby. Such a failure mode is referred to as an eleventh mode Ma11.
  • the unbalance detection unit 132 detects that the U-phase switch 61 and the V-phase switch 62 have failed. It is determined that This is because the switching devices 61 and 62 are in the ⁇ connection switching state although the switching signal Sc is Low and the Y connection is designated by this. Such a failure mode is referred to as a twelfth mode Ma12.
  • the process of identifying the failed switcher can be summarized as follows. That is, when the Y connection is specified by the switching signal Sc, the unbalance detection unit 132 determines that the switch in the ⁇ connection switching state is out of order, and the ⁇ connection is specified by the switching signal Sc. If the switch is in the Y connection switching state, it is determined that the switch has failed.
  • the above determination is shown in FIG. As can be seen from the above description and FIG. 16, there are twelve failure modes Ma1-Ma12, and the signal Sfa indicates which of the twelve modes Ma1-Ma12 the failure is.
  • the unbalance detection unit 132 sends a signal Sfa indicating the determination result to the failure determination unit 133.
  • the failure determination unit 133 outputs a signal indicating the result of the failure determination based on the signal Sfa and the signal Sdf and a signal indicating the failed switch.
  • the failure determination unit 133 may output a signal indicating the connection designated by the switching signal Sc when a failure is detected, together with a signal indicating the failed switch.
  • the failure determination unit 133 determines that the switching device 60 has a failure. When it is determined that there is a failure, the failure determination unit 133 sends a failure detection signal Sdg to the operation control unit 102.
  • the operation control unit 102 When the failure detection signal Sdg is sent, the operation control unit 102 outputs the inverter stop signal St. In response to the stop signal St, the PWM generator 117 stops outputting the PWM signals Sm1 to Sm6. As a result, the inverter 30 stops outputting the AC voltage.
  • the failure determination unit 133 If the signal Sdf is High, the failure determination unit 133 generates a display control signal Sfc indicating the switch that has failed based on the signal Sfa, and supplies the display control signal Sfc to the failure indicator 87. For example, when the signal Sfa indicates the failure mode Ma1, a signal indicating that the V-phase switch 62 and the W-phase switch 63 are broken is generated as the display control signal Sfc.
  • the failure determination unit 133 may also output a signal indicating the connection designated by the switching signal Sc when a failure is detected.
  • the failure indicator 87 displays the failed switch according to the display control signal Sfc indicating the failed switch. In repairing, it is possible to identify the switch that has failed by looking at the display of the failure indicator 87, and therefore repair can be performed promptly.
  • the failure indicator 87 displays the switching state when the failure is detected. If the switching state when a failure is detected is also displayed, the failure can be repaired more quickly.
  • the failure detection signal Sdg may be High. In that case, although the failed switching device cannot be specified, the inverter can be stopped by detecting the failure, so that the motor can be prevented from being damaged and demagnetized.
  • the failure switching device 60 it is possible to quickly detect when the switching device 60 breaks down, stop the inverter, and prevent damage to the motor and demagnetization. Further, if the failure mode or the failed switching device is displayed on the failure indicator, the failure switching device can be easily identified and repaired quickly.
  • Embodiment 2 the inverter output currents i u , i v , i w are restored from the DC current Idc on the input side of the inverter 30, but current detection is performed on the output lines 331, 332, 333 of the inverter 30.
  • An element may be provided, and the inverter output currents i u , i v , i w may be detected by the current detection element. In this case, the current detected by the current detection element is converted into a current restoring unit. It may be used instead of the current restored in 111.
  • FIG. 17 is a schematic wiring diagram showing the electric motor drive device 2 b of the second embodiment together with the electric motor 7.
  • the motor drive device 2b shown in FIG. 17 is generally the same as the motor drive device 2 shown in FIG.
  • the bus current detection means 85 is not provided, but current detection elements 91, 92, and 93 are provided instead, and a control device 100 b is provided instead of the control device 100.
  • the current detection elements 91, 92, 93 are provided so as to detect the inverter output current, that is, the current flowing through the inverter output lines 331, 332, 333. Signals obtained by detection by the current detection elements 91, 92, and 93 are converted into digital signals by an A / D converter (not shown) in the control device 100b and used for processing inside the control device 100b.
  • FIG. 18 shows the control device 100b of FIG.
  • the control device 100b of FIG. 18 is generally the same as the control device 100 of FIG. 7, but an inverter control unit 110b is provided instead of the inverter control unit 110.
  • the inverter control unit 110b is generally the same as the inverter control unit 110, but the current restoration unit 111 is not provided, and the current values detected by the current detection elements 91, 92, 93 are directly three-phase to two-phase conversion unit 112. And the failure detection unit 130.
  • the three-phase / two-phase conversion unit 112 and the failure detection unit 130 are current values detected by the current detection elements 91, 92, 93 instead of the current values i u , i v , i w output from the current restoration unit 111. Using i u , i v , and i w , processing similar to that described in the first embodiment is performed.
  • the operation of the electric motor drive device 2b of the second embodiment is the same as that of the electric motor drive device 2 of the first embodiment.
  • Embodiment 3 the failure of the switching device 60 is detected based on the currents i u , i v and i w flowing from the inverter 30 to the electric motor 7. Instead, the current flowing through the winding of the electric motor 7 may be detected, and the failure of the switching device 60 may be detected based on the detection result.
  • detection of the current flowing through the winding of the electric motor 7 means that the current flowing through the winding of the electric motor 7 is detected both in the case of Y connection and ⁇ connection.
  • the currents i u , i v and i w flowing from the inverter 30 to the motor 7 are equal to the current flowing in the winding of the motor 7, but in the case of ⁇ connection, the winding of the motor 7 Is not equal to the current flowing through
  • FIG. 19 is a schematic wiring diagram showing the electric motor drive device 2 c of the third embodiment together with the electric motor 7.
  • the electric motor drive device 2c shown in FIG. 19 is generally the same as the electric motor drive device 2 shown in FIG.
  • the bus current detection means 85 is not provided, but current detection elements 96, 97, and 98 are provided instead, and a control device 100 c is provided instead of the control device 100.
  • the current detection elements 96, 97, 98 are provided so as to detect the winding current of the motor, that is, the current flowing through the U-phase, V-phase, and W-phase windings 71, 72, 73 of the motor. That is, in the third embodiment, the current detection elements 96, 97, and 98 are provided at positions where the current flowing through the winding can be detected regardless of whether the connection state is Y connection or ⁇ connection.
  • Signals obtained by detection by the current detection elements 96, 97, and 98 are converted into digital signals by an A / D converter (not shown) in the control device 100c and used for processing inside the control device 100c.
  • FIG. 20 shows the stator windings 71, 72, 73 and the connection switching device 60 of the electric motor 7 and the current detection elements 96, 97, 98 in more detail.
  • the first current detection element 96 is connected to the external terminal 71 d to which the end 71 b of the U-phase winding 71 is connected and the common contact 61 c of the switch 61.
  • the second current detection element 97 is connected to the external terminal 72d connected to the end 72b of the V-phase winding 72 and the common contact 62c of the switch 62.
  • the third current detection element 98 is provided to detect the current flowing through 62e, and the third current detection element 98 connects the external terminal 73d to which the end 73b of the W-phase winding 73 is connected and the common contact 63c of the switch 63. It is provided to detect the current flowing through the line 63e.
  • FIG. 21 shows the control device 100c of FIG.
  • the control device 100c of FIG. 21 is generally the same as the control device 100 of FIG. 7, but an inverter control unit 110c is provided instead of the inverter control unit 110.
  • the inverter control unit 110c is generally the same as the inverter control unit 110, but a three-phase / two-phase conversion unit 112c and a failure detection unit 130c are provided instead of the three-phase / two-phase conversion unit 112 and the failure detection unit 130 of FIG. Further, the current restoring unit 111 is not provided.
  • the winding currents i cu , i cv , and i cw detected by the current detection elements 96, 97, and 98 are input to the three-phase / two-phase conversion unit 112 c and the failure detection unit 130 c.
  • the three-phase to two-phase conversion unit 112b uses the winding currents i cu , i cv , and i cw as the excitation current component i d and the torque current component i q using the electrical angle phase ⁇ generated by the electrical angle phase calculation unit 115. Convert to
  • the failure of the switching device 60 is detected.
  • the failure to be detected in the third embodiment and the timing at which the failure is detected are the same as those in the first embodiment.
  • the failure detection unit 130c a description will be mainly given of portions different from the failure detection unit 130 of the first embodiment.
  • 19 includes a harmonic detection unit 131, an unbalance detection unit 132c, and a failure determination unit 133c, for example, as shown in FIG.
  • Harmonics detection unit 131 like the harmonics detection unit 131 of the first embodiment, to extract the harmonic component from each of the exciting current component i d and a torque current component i q, the exciting current component i d and a torque current component for at least one of i q, the amount of the harmonic component is determined whether more than that in the normal, sends a signal Sdf indicating the determination result to the malfunction determining unit 133.
  • Unbalance detector 132c Based on the winding currents i cu , i cv , i cw, and the switching signal Sc, the unbalance detection unit 132 c specifies the failure mode and outputs a signal Sfb indicating the specified failure mode.
  • Unbalance detector 132c is, for example, allow the winding current i cu, i cv, the magnitude of the sum of the instantaneous values of each two of the i cw (winding current i cu, i cv, duplicates from i cw When three sets of two selected in the above are formed, the magnitude of the sum of instantaneous values of two winding currents constituting each of the three sets) and the magnitude of the winding current
  • the switching state of the switching device 60 is specified based on the switching state, and the failure mode of the switching device 60 is specified based on the specified switching state and the switching signal Sc.
  • FIGS. 23 (a) and 23 (b) are diagrams similar to FIGS. 10 (a) and 10 (b), but the winding currents are indicated by symbols i cu , i cv , and i cw .
  • the current i cv and the current i cw are in a reverse phase relationship as shown in FIG.
  • the magnitude Isvw becomes zero.
  • the magnitude of the sum of the instantaneous values for example, the maximum value of the sum (instantaneous value) for each predetermined period, the effective value for each predetermined period, or the average value of the absolute values for each predetermined period Can be used.
  • the V phase winding current i cv and the W phase winding current i cw are normal. is similar, size Imcu winding current i cu of U-phase is zero.
  • the magnitude of the winding current for example, a maximum value for each predetermined period, an effective value for each predetermined period, or an average value of absolute values for each predetermined period can be used.
  • Unbalance detector 132c is in failure of the switching device 60 described above, the winding current i cu, i cv, i cw size Imcu, Imcv, Imcw, and the winding current i cu, i cv, the i cw Based on the magnitudes Imcu, Imcv, and Imcw of the sum of two instantaneous values of each of them, the connection state of the winding is specified, and thereby the switching state of the switching device 60 is specified.
  • Unbalance detector 132c firstly, the current detected by the detection elements 96, 97, 98 the winding current i cu, i cv, i cw size Imcu, Imcv, Imcw, and the winding current i cu, i cv, the size of the sum of instantaneous values of each two of the i cw isvw, Isuw, seeking Isuv.
  • the unbalance detection unit 132c determines that the obtained winding current magnitudes Imcu, Imcv, Immcw, and the sum magnitudes of two instantaneous values of the winding currents, Isvw, Isuw, Isuv, are as follows: It is determined whether or not any of the conditions CQ1 to CQ6 is satisfied.
  • Condition CQ1: Isvw 0
  • Condition CQ2: Isuw 0
  • Condition CQ3: Isuv 0
  • Condition CQ4: Imcu 0
  • Condition CQ5: Imcv 0
  • Condition CQ6: Imcw 0
  • the magnitude is set to a threshold value (third If it is smaller than (threshold), it is considered to be zero.
  • the unbalance detection unit 132c makes the following determination regarding the switching state.
  • the connecting device determines that the “U phase only ⁇ ” is in the switching state. This state is referred to as a first switching state CS1.
  • connection apparatus determines that the state is in the “V phase only ⁇ ” switching state. This state is referred to as a second switching state CS2.
  • the connecting device determines that the state is the “W phase only ⁇ ” switching state. This state is referred to as a third switching state CS3.
  • connection apparatus determines that the “U phase only Y” switching state is set. This state is referred to as a fourth switching state CS4.
  • connection device determines that the switching state is “V phase only Y”. This state is referred to as a fifth switching state CS5.
  • the wiring device determines that the state is in the “W phase only Y” switching state. This state is referred to as a sixth switching state CS6.
  • the unbalance detection unit 132c indicates that the one-phase switch is in the ⁇ connection switching state. If it is determined that the other two phase switching devices are in the Y-connection switching state, and the current magnitude of one phase is equal to zero, the unbalance detection unit 132c determines that the one phase switching device is It is determined that it is in the Y connection switching state, and the other two-phase switches are in the ⁇ connection switching state.
  • an amount equal to zero means that the difference from zero is smaller than the threshold value. Therefore, it can be paraphrased as follows.
  • the unbalance detection unit 132c indicates that the one-phase switch is ⁇ -connected. If it is determined that the other two phase switching units are in the Y connection switching state and the current magnitude of one phase is smaller than the threshold value (third threshold value), the unbalance is detected. The unit 132c determines that the one-phase switch is in the Y-connection switching state and the other two-phase switching devices are in the ⁇ -connection switching state. The switching state of the switching device 60 is specified as described above.
  • additional conditions may be set for each of the conditions CQ1 to CQ6 in order to prevent erroneous determination while the inverter output voltage immediately after startup is not sufficiently high.
  • the condition that at least one of the winding currents is not zero may be an additional condition of the above conditions CQ1 to CQ3.
  • the magnitudes of the winding currents Imcu, Imcv, and Imcw are taken into account in consideration of measurement errors, calculation errors, and the like. If it is smaller than the threshold (third threshold), it is regarded as zero.
  • the unbalance detection unit 132c determines whether the value of the switching signal Sc and any of the above conditions CQ1 to CQ6 is satisfied, that is, The following determination is made based on the identified switching state.
  • the unbalance detection unit 132c causes the V-phase switch 62 and the W-phase switch 63 to fail. It is determined that This is because the switching devices 62 and 63 are in the Y connection switching state even though the switching signal Sc is High and the ⁇ connection is designated thereby. Such a failure mode is referred to as a first mode Mb1.
  • the unbalance detection unit 132c causes the U phase switch 61 and the W phase switch 63 to fail. It is determined that This is because the switching devices 61 and 63 are in the Y connection switching state even though the switching signal Sc is High and the ⁇ connection is designated by this. Such a failure mode is referred to as a second mode Mb2.
  • the unbalance detection unit 132c causes the U-phase switch 61 and the V-phase switch 62 to fail. It is determined that This is because the switching devices 61 and 62 are in the Y connection switching state even though the switching signal Sc is High and the ⁇ connection is designated thereby. Such a failure mode is referred to as a third mode Mb3.
  • the unbalance detection unit 132c determines that the U phase switch 61 has failed. This is because the switch 61 is in the switching state for the Y connection even though the switching signal Sc is High and the ⁇ connection is designated by this. Such a failure mode is referred to as a fourth mode Mb4.
  • the unbalance detection unit 132c determines that the V phase switch 62 has failed. This is because the switch 62 is in the switching state for the Y connection even though the switching signal Sc is High and the ⁇ connection is designated by this. Such a failure mode is referred to as a fifth mode Mb5.
  • the unbalance detection unit 132c determines that the W phase switch 63 has failed. This is because the switch 63 is in the switching state for the Y connection even though the switching signal Sc is High and the ⁇ connection is designated by this. Such a failure mode is referred to as a sixth mode Mb6.
  • the unbalance detection unit 132c determines that the U phase switch 61 is out of order. This is because the switching device 61 is in the ⁇ connection switching state even though the switching signal Sc is Low and the Y connection is thereby designated. Such a failure mode is referred to as a seventh mode Mb7.
  • the unbalance detecting unit 132c determines that the V phase switching unit 62 has failed. This is because the switching device 62 is in the ⁇ connection switching state even though the switching signal Sc is Low and the Y connection is designated thereby. Such a failure mode is referred to as an eighth mode Mb8.
  • the unbalance detection unit 132c determines that the W phase switching unit 63 has failed. This is because the switching device 63 is in the ⁇ connection switching state even though the switching signal Sc is Low and the Y connection is thereby designated. Such a failure mode is referred to as a ninth mode Mb9.
  • the unbalance detection unit 132c causes the V phase switch 62 and the W phase switch 63 to fail. It is determined that This is because the switching devices 62 and 63 are in the ⁇ connection switching state even though the switching signal Sc is Low and the Y connection is thereby designated.
  • Such a failure mode is referred to as a tenth mode Mb10.
  • the unbalance detection unit 132c is caused by the failure of the U-phase switch 61 and the W-phase switch 63. It is determined that This is because the switching devices 61 and 63 are in the ⁇ connection switching state even though the switching signal Sc is Low and the Y connection is designated thereby.
  • Such a failure mode is referred to as an eleventh mode Mb11.
  • the unbalance detection unit 132c is caused by the failure of the U-phase switch 61 and the V-phase switch 62. It is determined that This is because the switching devices 61 and 62 are in the ⁇ connection switching state although the switching signal Sc is Low and the Y connection is designated by this. Such a failure mode is referred to as a twelfth mode Mb12.
  • the process of identifying the failed switcher can be summarized as follows. That is, when the Y connection is designated by the switching signal Sc, the unbalance detection unit 132c determines that the switch in the ⁇ connection switching state has failed, and the ⁇ connection is designated by the switching signal Sc. If the switch is in the Y connection switching state, it is determined that the switch has failed.
  • the above determination is shown in FIG. As can be seen from the above description and FIG. 25, there are twelve failure modes Mb1 to Mb12, and the signal Sfb indicates which of these twelve failure modes Mb1 to Mb12.
  • the unbalance detection unit 132c sends a signal Sfb indicating the above determination result to the failure determination unit 133c.
  • the failure determination unit 133c outputs a signal indicating the result of the failure determination based on the signal Sfb and the signal Sdf and a signal indicating the failed switcher.
  • the failure determination unit 133c may output a signal indicating the connection designated by the switching signal Sc when a failure is detected, together with a signal indicating the switch that has failed.
  • the failure determination unit 133c switches to the switching device 60. It is determined that there is a failure. When it is determined that there is a failure, the failure determination unit 133c sends a failure detection signal Sdg to the operation control unit 102.
  • the operation control unit 102 When the failure detection signal Sdg is sent, the operation control unit 102 outputs the inverter stop signal St. In response to the stop signal St, the PWM generator 117 stops outputting the PWM signals Sm1 to Sm6. As a result, the inverter 30 stops outputting the AC voltage.
  • the failure determination unit 133c If the signal Sdf is High, the failure determination unit 133c generates a display control signal Sfc indicating a switch that has failed based on the signal Sfb, and supplies the display control signal Sfc to the failure indicator 87. For example, when the signal Sfb indicates the failure mode Mb1, a signal indicating that the V-phase switch 62 and the W-phase switch 63 are broken is generated as the display control signal Sfc.
  • the failure determination unit 133c may also output a signal indicating the connection designated by the switching signal Sc when a failure is detected.
  • the failure indicator 87 displays the failed switch according to the display control signal Sfc indicating the failed switch. In repairing, it is possible to identify the switch that has failed by looking at the display of the failure indicator 87, and therefore repair can be performed promptly.
  • the failure indicator 87 displays the switching state when the failure is detected. If the switching state when a failure is detected is also displayed, the failure can be repaired more quickly.
  • the failure detection signal Sdg may be High. In that case, although the failed switching device cannot be specified, the inverter can be stopped by detecting the failure, so that the motor can be prevented from being damaged and demagnetized.
  • the failure switching device 60 it is possible to quickly detect when the switching device 60 breaks down, stop the inverter, and prevent damage to the motor and demagnetization. Further, if the failure mode or the failed switching device is displayed on the failure indicator, the failure switching device can be easily identified and repaired quickly.
  • Embodiment 4 FIG.
  • a changeover switch is used as a changer of the connection changeover device 60.
  • each switch may be configured by a combination of a normally closed switch and a normally open switch.
  • a configuration example of the connection switching device in that case is shown in FIG.
  • a combination of a normally closed switch 615 and a normally open switch 616 is used instead of the changeover switch of the changer 61, and a normally closed switch 625 and a normally open switch 626 are used instead of the changeover switch of the changer 62.
  • the combination of the normally closed switch 635 and the normally open switch 636 is used instead of the selector switch of the selector 63.
  • each switcher when configured by a combination of a normally closed switch and a normally open switch, an electromagnetic contactor can be used as each switch.
  • the magnetic contactor is suitable because it has a small conduction loss when turned on.
  • each switch when each switch is configured by a combination of a normally closed switch and a normally open switch, each switch includes silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga2O3), diamond, and the like.
  • SiC silicon carbide
  • GaN gallium nitride
  • Ga2O3 gallium oxide
  • diamond and the like.
  • WBG semiconductor wide band gap semiconductor
  • the present invention is applied to an electric motor drive device that can switch the stator winding of the electric motor to Y connection or ⁇ connection.
  • the present invention can also be applied to an electric motor drive device in which connection switching is performed by another method.
  • the present invention can also be applied to an electric motor drive device that uses two or more winding portions as windings for each phase and can be switched to either parallel connection or series connection. In this case, both ends of each of the two or more winding portions constituting the winding of each phase can be connected to the outside of the electric motor, and the connection state is switched by the connection switching device.
  • the current becomes unbalanced and is included in at least one of the exciting current component and the torque current component obtained by converting the three-phase current to the dq axis.
  • Many harmonic components are included. If the amount of such harmonic components is large compared to the normal state, it can be determined that there is a failure in the connection switching device.
  • diodes or the like are generally used as the rectifier elements 11 to 14 of the rectifier circuit 10; It may be configured to perform rectification by turning it on according to the polarity of the voltage (input AC voltage) supplied from the AC power supply 4.
  • the switching elements 311 to 316 of the inverter main circuit 310 are assumed to be IGBTs (Insulated Gate Bipolar Transistors) or MOSFETs. However, as the switching elements 311 to 316, any switching element can be used. Such a thing may be used. In the case of the MOSFET, since it has a parasitic diode in structure, the same effect can be obtained without connecting the rectifying elements (321 to 326) for recirculation in parallel.
  • the rectifying elements 11 to 14 and the switching elements 311 to 316 not only silicon (Si) but also silicon carbide (SiC), gallium nitride (GaN), diamond, etc. which are wide band gap semiconductors are used. By configuring with, it becomes possible to further reduce the loss.
  • the present invention is suitable for an electric motor drive device including a connection switching device that switches connection of an electric motor, and a refrigeration cycle application device including the motor drive device.
  • a refrigeration cycle application device including the motor drive device.
  • an air conditioner has been described as an example of a refrigeration cycle application device, the present invention is not limited thereto, and can be applied to, for example, a refrigerator, a freezer, a heat pump water heater, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

電動機(7)の巻線の結線状態を切替える結線切替装置(60)と、電動機(7)に周波数及び電圧値が可変の交流電圧を印加するインバータ(30)を備える電動機駆動装置において、電動機(7)に流れる3相交流電流をd-q軸に変換することで得られるトルク電流成分と励磁電流成分の少なくとも一方について、高調波成分の量が、結線切替装置に故障がないときに比べて多いときにインバータが停止する(130)。結線切替装置の不具合を検出することができ、従って、過電圧による電動機の損傷、過電流による電動機の減磁等を防ぐことができる。

Description

電動機駆動装置及び冷凍サイクル適用機器
 本発明は、電動機駆動装置、及びそれを備えた冷凍サイクル適用機器に関する。
 従来から、電動機の固定子巻線を複数の異なる結線状態のいずれかに切替える結線切替装置と、上記電動機を駆動するインバータと、上記インバータを制御する制御部とを備える電動機駆動装置が知られている(例えば、特許文献1)。
特許第4619826号
 特許文献1に記載された技術では、巻線を切替える際に結線切替装置を動作させるが、結線切替装置に不具合があると、急激な電圧或いは電流の変化が発生し、過電圧による電動機の損傷、過電流による電動機の減磁などを招く恐れがある。
 本発明は、上記に鑑みてなされたものであって、結線切替装置に不具合がある場合にも、過電圧による電動機の損傷、過電流による電動機の減磁等を防ぐことができる電動機駆動装置を提供することを目的とする。
 本発明に係る電動機駆動装置は、
 3相の巻線を有する電動機を駆動する電動機駆動装置であって、
 切替信号に応じて前記電動機の巻線の結線状態を切替える結線切替装置と、
 前記電動機に周波数及び電圧値が可変の交流電圧を印加するインバータと、
 前記電動機に流れる3相交流電流を検出する電流検出部、及び前記3相交流電流を、トルク電流成分と励磁電流成分とに変換する3相2相変換部を有し、前記インバータ及び前記結線切替装置を制御する制御装置とを備え、
 前記トルク電流成分及び前記励磁電流成分の少なくとも一方について、高調波成分の量が、前記結線切替装置に故障がないときに比べて多いときに前記インバータが停止する。
 本発明によれば、結線切替装置の不具合を検出することができ、従って、過電圧による電動機の損傷、過電流による電動機の減磁等を防ぐことができる。
空気調和機の冷凍サイクルの一例を示す概略図である。 本発明の実施の形態1の電動機駆動装置を示す図である。 図2のインバータの構成を示す図である。 図1の電動機の巻線と結線切替装置とを詳細に示す配線図である。 図2の結線切替装置の切替器の詳細を示す配線図である。 (a)及び(b)は、電動機の異なる結線状態における巻線を概念的に示す図である。 実施の形態1で用いられる制御装置の一例を示す機能ブロック図である。 図7の電圧指令演算部の構成例を示すブロック図である。 (a)及び(b)は、故障状態にある結線切替装置を示す配線図である。 (a)及び(b)は、結線切替が故障しているときの、巻線の接続状態を示す図である。 (a)及び(b)は、巻線が図10(a)の状態にあるときのインバータ出力電流の波形、及び励磁電流成分及びトルク電流成分の波形を示す図である。 (a)及び(b)は、巻線が図10(b)の状態にあるときのインバータ出力電流の波形、及び励磁電流成分及びトルク電流成分の波形を示す図である。 図7の故障検出部130の構成例を示すブロック図である。 (a)~(c)は、巻線が図10(a)の状態にあるときの各相から見たインピーダンスを簡易的に示した図を示す。 (a)~(c)は、巻線が図10(b)の状態にあるときの各相から見たインピーダンスを簡易的に示した図を示す。 実施の形態1における、故障の態様の判定方法を表形式で示す図である。 本発明の実施の形態2の電動機駆動装置を示す図である。 実施の形態2で用いられる制御装置の一例を示す機能ブロック図である。 本発明の実施の形態3の電動機駆動装置を示す図である。 実施の形態3における、電流検出素子を、電動機の固定子巻線及び結線切替装置とともに示す配線図である。 実施の形態3で用いられる制御装置の一例を示す機能ブロック図である。 図21の故障検出部130cの構成例を示すブロック図である。 (a)及び(b)は、実施の形態3において、結線切替が故障しているときの、巻線の接続状態及び巻線に流れる電流を示す図である。 (a)及び(b)は、巻線が図23(a)の状態にあるときの巻線電流の波形、及び巻線が図23(b)の状態にあるときの巻線電流の波形を示す図である。 実施の形態3における、故障の態様の判定方法を表形式で示す図である。 本発明の実施の形態4の電動機駆動装置を示す図である。
 以下に添付図面を参照し、本発明の実施の形態に係る電動機駆動装置、及びそれを備えた冷凍サイクル適用機器について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。
 冷凍サイクル適用機器の一例は、空気調和機であり、以下の実施の形態は、本発明を、空気調和機の圧縮機を駆動する電動機の駆動装置に適用したものである。
 最初に、空気調和機の一例における冷凍サイクルを、図1を参照して説明する。
 図1の冷凍サイクル900は四方弁902の切替動作により暖房運転又は冷房運転をすることができる。
 暖房運転時には、実線矢印で示すように、冷媒が圧縮機904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機904に戻る。冷房運転時には、破線矢印で示すように、冷媒が圧縮機904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機904に戻る。
 暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。圧縮機904は可変速制御される電動機7によって駆動される。
実施の形態1.
 図2は、本発明の実施の形態1の電動機駆動装置2を、電動機7とともに示す概略配線図である。
 図示の電動機駆動装置2は、電動機7を駆動するためのものであり、交流電源入力端子3a、3bと、リアクトル8と、整流回路10と、コンデンサ20と、インバータ30と、結線切替装置60と、制御電源生成回路80と、母線電流検出手段85と、故障表示器87と、制御装置100とを有する。
 制御装置100は例えばCPU(Central Processing Unit)を備えたマイコン(マイクロコンピュータ)、或いはDSP(Digital Signal Processor)等で構成されていても良く、専用のハードウェアで構成されていても良い。以下では、マイコンで構成されているものとして説明する。
 交流電源入力端子3a、3bは、外部の交流電源4に接続され、交流電源入力端子3a、3bには交流電源4から交流電圧が印加される。印加される電圧は例えば振幅(実効値)が100V、200V等であり、周波数が50Hz、60Hz等である。
 整流回路10は、交流電源4から入力端子3a、3b及びリアクトル8を介して交流電力を受けて整流する。整流回路10は、ダイオード等の整流素子11~14をブリッジ接続することで形成された全波整流回路である。
 コンデンサ20は、整流回路10で整流された直流電圧を平滑化して、直流電圧V20を出力する。
 インバータ30は、図3に示すように、インバータ主回路310と、駆動回路350とを有し、インバータ主回路310の入力端子がコンデンサ20の電極に接続されている。
 整流回路10の出力、コンデンサ20の電極、インバータ主回路310の入力端子を結ぶ線を直流母線と言う。
 インバータ30は、制御装置100に制御されて、インバータ主回路310の6つのアームのスイッチング素子311~316がオン、オフ動作し、周波数可変で電圧値が可変の3相交流電流を生成し、電動機7に供給する。スイッチング素子311~316には、還流用の整流素子321~326が並列接続されている。
 電動機7は、3相永久磁石同期電動機であり、3相の固定子巻線の端部が電動機7の外部に引き出されており、スター結線(Y結線)及びデルタ結線(Δ結線)のいずれかへの切替えが可能なものである。この切替えは、結線切替装置60により行われる。
 図4に、電動機7の固定子巻線及び結線切替装置60をより詳細に示す。
 図示のように、電動機7の、U相、V相、W相から成る3つの相の巻線71、72、73の第1の端部71a、72a、73aがそれぞれ外部端子71c、72c、73cに接続され、U相、V相、W相の巻線71、72、73の第2の端部71b、72b、73bがそれぞれ外部端子71d、72d、73dに接続され、電動機7の外部との接続が可能となっている。外部端子71c、72c、73cには、インバータ30のU相、V相、W相の出力線331、332、333が接続されている。
 結線切替装置60は、図示の例では、切替器61、62、63で構成されている。切替器61、62、63としては、電磁的に接点が開閉する電磁接触器が用いられている。電磁接触器には、リレーと呼ばれるものが含まれる。電磁接触器は、例えば図5に示すように構成されており、励磁コイル611、621、631に電流が流されているときと、電流が流されていないときとで、異なる接続状態を取る。
 励磁コイル611、621、631は、半導体スイッチ604がONのときに、後述の切替電源V60からの電流を流すように接続される。半導体スイッチ604の開閉は、制御装置100から出力される切替信号Scにより制御される。
 なお、制御装置100から出力される切替信号Scを励磁コイル611、621、631に供給しても良い。これは、制御装置100(例えばマイコンで構成される)が、信号Scとして十分な電流を流すことができるように構成されている場合に可能である。
 切替器61の共通接点61cは、接続線61eを介して端子71dに接続され、常閉接点61bは、中性点ノード64に接続され、常開接点61aは、インバータ30のV相の出力線332に接続されている。
 切替器62の共通接点62cは、接続線62eを介して端子72dに接続され、常閉接点62bは、中性点ノード64に接続され、常開接点62aは、インバータ30のW相の出力線333に接続されている。
 切替器63の共通接点63cは、接続線63eを介して端子73dに接続され、常閉接点63bは、中性点ノード64に接続され、常開接点63aは、インバータ30のU相の出力線331に接続されている。
 励磁コイル611、621、631に電流が流れていないときは、切替器61、62、63が図示のように、常閉接点側に切替わった状態、即ち、共通接点61c、62c、63cが常閉接点61b、62b、63bに接続された状態にある。この状態では、電動機7は、Y結線状態にある。
 励磁コイル611、621、631に電流が流れているときは、切替器61、62、63が図示とは逆に、常開接点側に切替わった状態、即ち、共通接点61c、62c、63cが常開接点61a、62a、63aに接続された状態にある。この状態では、電動機7は、Δ結線状態にある。
 以下では、切替器61、62、63の各々に関し、常閉接点側に切り替わった状態を、Y結線用切替状態と言い、常開接点側に切り替わった状態を、Δ結線用切替状態という。
 また切替器61、62、63はそれぞれU相、V相、W相の切替器と呼ばれる。
 ここで、電動機7としてY結線及びΔ結線のいずれかへの切替えが可能なものを用いることの利点について図6(a)及び(b)を用いて以下説明する。
 図6(a)はY結線としたときの固定子巻線71、72、73の接続状態、図6(b)はΔ結線としたときの固定子巻線71、72、73の接続状態をそれぞれ概念的に示す。
 Y結線時の線間電圧をV、流れ込む電流をIとし、Δ結線時の線間電圧をVΔ、流れ込む電流をIΔとし、各相の巻線に掛かる電圧が互いに等しいとすると、
 VΔ=V/√3  (1)
の関係があり、このとき、
 IΔ=√3×I  (2)
の関係がある。
 Y結線時の電圧V及び電流Iと、Δ結線時の電圧VΔ及び電流IΔとが式(1)及び(2)の関係を有するとき、Y結線時とΔ結線時とで電動機に供給される電力が互いに等しい。
 つまり電動機に供給される電力が互いに等しいとき、Δ結線の方が電流は大きく、駆動に必要な電圧が低い。
 以上の性質を利用し、負荷条件等に応じて結線状態を選択することが考えられる。例えば、低負荷時には、Y結線で低速運転し、高負荷時には、Δ結線で高速運転することが考えられる。このようにすることで、低負荷時の効率を向上させ、高負荷時の高出力化も可能となる。
 以下この点につき、空調機の圧縮機を駆動する電動機の場合について、さらに詳しく述べる。
 空調機の圧縮機駆動用の電動機7としては、省エネルギー化の要求に応えるため、回転子に永久磁石を用いた同期電動機が広く用いられている。また、近年の空気調和機においては、室温と設定温度との差が大きいときは、電動機7を高速で回転させることで設定温度に早く近づけ、室温が設定温度に近いときは、電動機7を低速で回転させて室温を維持するようにしており、このようにする場合、低速で運転される時間の占める割合が大きい。
 同期電動機を用いた場合、回転数が上がると逆起電力が増加し、駆動に必要な電圧値が増加する。この逆起電力は、上記のようにY結線の方がΔ結線に比べて高い。
 高速での逆起電力を抑制するために、永久磁石の磁力を小さくしたり、固定子巻線の巻き数を減らすことが考えられる。しかし、そのようにすると、同一出力トルクを得るための電流が増加するため、電動機7及びインバータ30に流れる電流が増加し、効率が低下する。
 そこで、回転数に応じて結線状態を切替えることが考えられる。例えば、高速での運転が必要な場合には、Δ結線状態とする。こうすることで、駆動に必要な電圧を(Y結線に比べ)1/√3にすることができる。このため、巻線の巻数を減らす必要もなく、また弱め磁束制御を用いる必要もなくなる。
 一方、低速回転では、Y結線状態とすることでΔ結線に比べて電流値を1/√3にできる。さらに、巻線をY結線状態で低速での駆動に適したように設計することが可能となり、Y結線を速度範囲の全域にわたり使用する場合に比べて、電流値を低減することが可能となる。この結果、インバータ30の損失を低減することができ、効率を高めることが可能となる。
 以上説明したように、負荷条件に応じて結線状態を切替えることには意義があり、結線切替装置が設けられるのは、このような切替えを可能にするためである。
 制御電源生成回路80は、コンデンサ20の両電極間の電圧、即ち母線電圧V20を受けて降圧し、制御電源V100及び切替電源V60を生成し、制御電源V100を制御装置100に供給するとともに、切替電源V60を結線切替装置60に供給する。例えば、制御電源V100の電圧値は5V、切替電源V60の電圧値は12Vである。切替電源V60は、切替器61、62、63の、上記の励磁コイル611、621、631に流れる電流を供給する。
 母線電流検出手段85は、母線電流、即ち、インバータ30の入力電流Idcを検出する。母線電流検出手段85は、直流母線に挿入されたシャント抵抗を含み、検出結果を示すアナログ信号を制御装置100に供給する。この信号(検出信号)は、制御装置100で図示しないA/D変換部によりデジタル信号に変換されて制御装置100の内部での処理に用いられる。
 故障表示器87は、制御装置100からの表示制御信号Sfcに応じて結線切替装置60の故障を表示する。
 制御装置100は、上記のように、結線切替装置60による結線状態の切替えを制御するとともに、インバータ30の動作を制御する。インバータ30の制御のため、制御装置100は、PWM信号Sm1~Sm6を生成して、インバータ30に供給する。
 インバータ30は、上記のようにインバータ主回路310のほかに、駆動回路350を備えており、該駆動回路350がPWM信号に基づいて駆動信号Sr1~Sr6を生成して、駆動信号Sr1~Sr6によりスイッチング素子311~316のオン、オフを制御し、これにより、周波数可変で電圧可変の3相交流電圧が電動機7に印加されるようにする。
 PWM信号Sm1~Sm6が論理回路の信号レベルの大きさ(0~5V)のものであるのに対し、駆動信号Sr1~Sr6は、スイッチング素子311~316を制御するのに必要な電圧レベル、例えば+15V~-15Vの大きさを持つ信号である。また、PWM信号Sm1~Sm6が、制御装置100の接地電位を基準電位とするものであるのに対し、駆動信号Sr1~Sr6は、それぞれ対応するスイッチング素子の負側の端子(エミッタ端子)の電位を基準電位とするものである。
 制御装置100は、図7に示すように、運転制御部102、インバータ制御部110及び故障検出部130を有する。
 運転制御部102は、図示しない温度センサで検出された室温(空調対象空間の温度)を示す情報Tempを受け、図示しない操作部、例えばリモコンからの指示Ctrを受け、空気調和機の各部の動作を制御する。操作部からの指示には、設定温度を示す情報、運転モードの選択、運転開始及び終了の指示等が含まれる。
 運転制御部102は、例えば、電動機7の固定子巻線をY結線とするかΔ結線とするかの決定及び目標回転数の決定を行い、決定に基づいて切替信号Sc及び周波数指令値ωを出力する。例えば室温と設定温度との差が大きいときはΔ結線とすることを決め、目標回転数を比較的高い値に設定し、起動後上記の目標回転数に対応する周波数まで徐々に上昇する周波数指令値ωを出力する。
 目標回転数に対応する周波数に達したら、室温が設定温度に近づくまで、その状態を維持し、室温が設定温度に近くなったら、一旦電動機を停止させ、Y結線に切替え、比較的低い目標回転数に対応する周波数まで徐々に上昇する周波数指令値ωを出力する。目標回転数に対応する周波数に達したら、その後、室温が設定温度に近い状態を維持するための制御を行う。この制御には、周波数の調整、電動機の停止、再起動等が含まれる。
 運転制御部102はまた、後述のように、故障検出部130により結線切替装置60の故障が検出されたときには、インバータ30を直ちに停止させる処理を行う。インバータ30を停止させる処理は、インバータ30を停止させる信号(停止信号)Stをインバータ制御部110に与えることで行われる。
 インバータ制御部110は、電流復元部111、3相2相変換部112、励磁電流指令制御部113、電圧指令演算部114、電気角位相演算部115、2相3相変換部116、及びPWM生成部117を有する。
 電流復元部111は母線電流検出手段85で検出された電流値Idcに基づいて電動機7に流れる相電流i、i、iを復元する。ここで言う電動機7の相電流は、インバータ30の出力線331、332、333を介して電動機に流れ込む電流であり、インバータ出力電流とも言う。電流復元部111は、母線電流検出手段85で検出される直流電流Idcを、PWM生成部117からのPWM信号に基づいて定められるタイミングでサンプリングすることで、相電流i、i、iを復元する。
 このように相電流の復元する処理は、相電流の検出の一態様である。
 3相2相変換部112は、電流復元部111により復元された電流値i、i、iを、後述の電気角位相演算部115で生成される電気角位相θを用いて励磁電流成分(d軸電流)id及びトルク電流成分(q軸電流)iで表わされるd-q軸の電流値に変換する。
 励磁電流指令制御部113は、トルク電流成分iを基にして、電動機7を駆動するために最も効率が良くなる最適な励磁電流指令値(d軸電流指令値)i を求める。
 なお、図7においてはトルク電流成分iを基にして励磁電流指令値i を求めているが、励磁電流成分i、或いは周波数指令値ωを基にして励磁電流指令値i を求めても同様の効果を得ることができる。
 励磁電流指令制御部113は、トルク電流成分i(又は、励磁電流成分i若しくは周波数指令値ω)に基づいて、出力トルクが所定値以上(あるいは最大)、すなわち電流値が所定値以下(あるいは最小)となる電流位相角β(図示せず)となるような励磁電流指令値i を出力する。
 電圧指令演算部114は、3相2相変換部112より得られた励磁電流成分(d軸電流)i及びトルク電流成分(q軸電流)iと、周波数指令値ωと、励磁電流指令制御部113より得られた励磁電流指令値i とに基づいて、電圧指令値V 及びV を出力する。
 図8は、図7の電圧指令演算部114の構成例を示す図である。図8に示される電圧指令演算部114は、周波数推定部1141と、減算部1142、1144、1146と、制御部1143、1145、1147とを有する。
 周波数推定部1141は、励磁電流成分i及びトルク電流成分iと、励磁電圧指令値(d軸電圧指令値)V 及びトルク電圧指令値(q軸電圧指令値)V とに基づいて、電動機7の周波数を推定して、周波数推定値ωestを生成する。
 減算部1142は、周波数指令値ωと周波数推定部1141により生成された周波数推定値ωestとの差分(ω-ωest)を求める。
 制御部1143は、減算部1142で求められた差分(ω-ωest)に基づいて、例えば比例積分(PI)制御により、周波数推定値ωestが周波数指令値ωに一致するようなトルク電流指令値(q軸電流指令値)i を出力する。
 減算部1144は、励磁電流指令値i と励磁電流成分iとの差分(i -i)を求める。
 制御部1145は、減算部1144で求められた差分(i -i)に基づいて、例えば比例積分(PI)制御により、励磁電流成分iが励磁電流指令値i に一致するような励磁電圧指令値V を出力する。
 減算部1146は、トルク電流指令値i とトルク電流成分iとの差分(i -i)を求める。
 制御部1147は、減算部1146で求められた差分(i -i)に基づいて、例えば比例積分(PI)制御により、トルク電流成分iがトルク電流指令値i に一致するようなq軸電圧指令値V を出力する。
 電気角位相演算部115は、電圧指令演算部114で生成された周波数推定値ωestを積分して電気角位相θを求める。
 2相3相変換部116は電圧指令演算部114により得られた励磁電圧指令値V 、及びトルク電圧指令値V (2相座標系の電圧指令値)を電気角位相演算部115により得られた電気角位相θを用いて3相座標系の出力電圧指令値(3相電圧指令値)V 、V 、V に変換して出力する。
 PWM生成部117は2相3相変換部116より得られる3相電圧指令値V 、V 、V をもとにPWM信号Sm1~Sm6を生成して出力する。PWM信号Sm1~Sm6は、インバータ30の出力電圧が3相電圧指令値V 、V 、V に一致するように、インバータ30の各アームのスイッチング素子311~316のオンオフのタイミングを制御する信号である。
 駆動回路350は、PWM信号Sm1~Sm6を基に駆動信号Sr1~Sr6を生成する。
 上記のインバータ30を停止させる信号である停止信号Stは、例えばPWM生成部117に与えられ、PWM生成部117は、停止信号Stを受けると、直ちにPWM信号Sm1~Sm6の出力を停止する。
 故障検出部130は、電流復元部111で復元されたインバータ出力電流i、i、i、3相2相変換部112から出力された励磁電流成分i及びトルク電流成分i、並びに切替信号Scに基づいて結線切替装置60の故障を検出する。なお、以下では結線切替装置60を単に切替装置60と言うことがある。
 以下、故障検出部130による検出の対象となる故障について説明する。
 図9(a)及び(b)には異なる故障の例が示してある。
 図9(a)に示される例では、切替器62、63がΔ結線用切替状態にあるのに対し、切替器61がY結線用切替状態にある。
 このようになるのは、切替信号ScがY結線を指定状態(Low)であるにも拘わらず、切替器61が故障のためにΔ結線用切替状態にある場合、或いは、切替信号ScがΔ結線を指定状態(High)であるにも拘わらず、切替器62、63が故障のためにY結線用切替状態にある場合である。
 その場合、巻線71、72、73は図10(a)に示すように接続された状態となる。
 図9(b)に示される例では、切替器62、63がΔ結線用切替状態にあるのに対し、切替器61がY結線用切替状態にある。
 このようになるのは、切替信号ScがΔ結線を指定する状態(High)であるにも拘わらず、切替器61が故障のためにY結線用切替状態にある場合、或いは、切替信号ScがY結線を指定状態(Low)であるにも拘わらず、切替器62、63が故障のためにΔ結線用切替状態にある場合である。
 その場合、巻線71、72、73は図10(b)に示すように接続された状態となる。
 以下では、図9(a)及び図10(a)に示される状態を「U相のみΔ」の状態と表現し、図9(b)及び図10(b)に示される状態を「U相のみY」の状態と表現する。故障の状態としては、図9(a)及び(b)、並びに図10(a)及び(b)に示される状態に加えて、「V相のみΔ」の状態、「W相のみΔ」の状態、「V相のみY」の状態、及び「W相のみY」状態があり、全部で6つの状態がある。
 上記の「状態」は、巻線の接続状態であるとともに、切替装置60の状態でもある。従って、例えば「U相のみΔ」と言う表現は、巻線の接続状態についても、切替装置60の切替状態についても用いられる。
 このような6つの状態のいずれかになると、インバータ出力電流が不平衡になり、インバータ出力電流を変換することで得られる励磁電流成分i及びトルク電流成分iには多くの高調波成分が含まれることになる。
 例えば、図9(a)及び図10(a)に示される「U相のみΔ」の状態では、インバータ出力電流と、これに対応する励磁電流成分i及びトルク電流成分iは、図11(a)及び(b)に示す如くとなる。
 また、図9(b)及び図10(b)に示される「U相のみY」の状態では、インバータ出力電流i、i、iと、これに対応する励磁電流成分i及びトルク電流成分iは、図12(a)及び(b)に示す如くとなる。
 図11(a)及び(b)、並びに図12(a)及び(b)から、インバータ出力電流が不平衡になっていること、及び励磁電流成分i及びトルク電流成分iに多くの高調波成分が含まれることが分かる。この高調波成分は主として第2次高調波成分である。ここで言う高調波成分は、3相2相変換部112における変換の前のインバータ出力電流i、i、iの基本波の整数倍の周波数の成分である。
 故障検出部130は、励磁電流成分i及びトルク電流成分iに含まれる高調波成分に基づいて、故障を検出するとともに、インバータ出力電流の大きさ相互間の関係に基づいて、故障の態様の特定を行う。
 故障の検出は、切替装置60に切替信号Scを与えて切替状態を指定するとともに、インバータ30を動作させてインバータ30から電動機7に電圧を印加し、その際に電動機に流れる電流の値に基づいて行う。
 故障の検出は、典型的には、切替装置60が切替えられたときに行われる。例えば、電動機7がY結線状態又はΔ結線状態のいずれかにあり、異常が検知されなかった状態から、切替信号Scの値乃至状態を切り替えた直後の各相の電流に基づいて故障の検出が行われる。しかし、電動機駆動装置の動作が開始したときにも故障の検出を行うこととしても良い。
 故障検出部130は、例えば図13に示されるように、高調波検出部131と、不平衡検出部132と、故障判定部133とを有する。
 高調波検出部131は3相2相変換部112における変換で得られた励磁電流成分i及びトルク電流成分iの高調波成分から切替装置60の故障を検出する。
 高調波検出部131は、励磁電流成分i及びトルク電流成分iの各々から高調波成分を抽出し、励磁電流成分i及びトルク電流成分iの少なくとも一方について、高調波成分の量が正常時に比べて多いか否かの判定をし、判定結果を示す信号Sdfを故障判定部133に送る。
 高調波成分の抽出は、例えば、高域通過フィルタリング、帯域通過フィルタリング、或いはFFT(Fast Fourier Transform)により行い得る。
 「正常時」とは切替装置60に故障がない時を意味する。
 正常時に比べて多いか否かは、例えば、正常時における高調波成分の量が取り得る値の範囲(ばらつきの範囲)の上限又はそれより多い値に設定される閾値よりも多いか否かで判定する。閾値は例えば、上記の上限の値の2倍に設定される。
 高調波検出部131は、故障検出の結果を示す信号Sdfを出力する。例えば、信号Sdfは、励磁電流成分i及びトルク電流成分iの少なくとも一方について、高調波成分の量が、正常時に比べて多いときに、第1の値、例えばHighとなり、そうでないときに、第2の値、例えばLowとなる。
 不平衡検出部132は、インバータ出力電流i、i、iと、切替信号Scとに基づいて、故障の態様を特定し、特定した故障の態様を示す信号Sfaを出力する。
 不平衡検出部132は、例えば、インバータ出力電流i、i、iの大きさImu、Imv、Imw相互間の関係に基づいて切替装置60の切替状態を特定し、特定した切替状態と、切替信号Scとに基づいて、切替装置60の故障の態様を特定する。
 インバータ出力電流i、i、iの大きさImu、Imv、Imwとしては、例えば予め定められた期間毎の最大値、予め定められた期間毎の実効値、或いは予め定められた期間毎の絶対値の平均値を用いることができる。
 巻線が図10(a)に示される「U相のみΔ」の接続状態にあるとき、外部端子71c、72c、73cから流れ込む電流の経路を図14(a)~(c)に示す。
 即ち、図14(a)は、U相の外部端子71cから流れ込む電流iの経路を示し、図14(b)は、V相の外部端子72cから流れ込む電流iの経路を示し、図14(c)は、W相の外部端子73cから流れ込む電流iの経路を示す。
 図14(a)~(c)で、Zは各相の巻線のインピーダンスを表す。
 図14(a)~(c)から、U相の外部端子71cから見たインピーダンスZu、V相の外部端子72cから見たインピーダンスZv、及びW相の外部端子73cから見たインピーダンスZwの間には、
 Zw>Zu>Zv
の関係があることが分かる。
 この場合、(印加される電圧が同じであれば)インバータ出力電流の大きさImu、Imv、Imw相互間には、
 Imv>Imu>Imw
の関係がある。
 同様に、「V相のみΔ」の接続状態では、Imw>Imv>Imuの関係があり、「W相のみΔ」の接続状態では、Imu>Imw>Imvの関係がある。
 巻線が図10(b)に示される「U相のみY」の接続状態にあるとき、外部端子71c、72c、73cから流れ込む電流の経路を図15(a)~(c)に示す。
 即ち、図15(a)は、U相の外部端子71cから流れ込む電流iの経路を示し、図15(b)は、V相の外部端子72cから流れ込む電流iの経路を示し、図15(c)は、W相の外部端子73cから流れ込む電流iの経路を示す。
 図15(a)~(c)で、Zは各相の巻線のインピーダンスを表す。
 図15(a)~(c)から、U相の外部端子71cから見たインピーダンスZu、V相の外部端子72cから見たインピーダンスZv、及びW相の外部端子73cから見たインピーダンスZwの間には、
 Zu=Zv>Zw
の関係があることが分かる。
 この場合、(印加される電圧が同じであれば)インバータ出力電流の大きさはImu、Imv、Imw相互間には、
 Imw>Imu=Imv
の関係がある。
 同様に、「V相のみY」の接続状態では、Imu>Imv=Imwの関係があり、「W相のみY」の接続状態では、Imv>Imu=Imwの関係がある。
 不平衡検出部132は、上記した切替装置60の故障時における、インバータ出力電流i、i、iの大きさ相互間の関係を利用して、巻線の接続状態を特定し、これにより切替装置60の切替状態を特定する。
 不平衡検出部132はまず、電流復元部111で復元されたインバータ出力電流i、i、iの大きさImu、Imv、Imwを求める。
 不平衡検出部132は次に、求められたインバータ出力電流の大きさImu、Imv、Imwが、以下の条件CP1~CP6のいずれかを満たすか否かの判定を行う。
条件CP1: Imv>Imu>Imw
条件CP2: Imw>Imv>Imu
条件CP3: Imu>Imw>Imv
条件CP4: Imw>Imu=Imv
条件CP5: Imu>Imv=Imw
条件CP6: Imv>Imu=Imw
 但し2つの電流の大きさの比較においては、巻線のインピーダンスのばらつき、インバータ出力電流の誤差、電流の測定誤差、計算誤差等を考慮して、電流の大きさの差が閾値(第1の閾値)よりも小さい場合には等しいとみなし、差が閾値以上であるときに限り大小関係があるものと判定する。即ち、2つの電流の大きさをIa、Ibで表すとき、
 |Ia-Ib|<It1
 (但し、It1は閾値)
 であればIaはIbに等しいとして扱い、
 Ib≦Ia-It1であれば、IbはIaより小さいとして扱い、
 Ib≧Ia+It1であれば、IbはIaより大きいとして扱う。
 不平衡検出部132は、条件CP1~CP6のいずれが満たされたかに基づいて、切替状態について、以下のように判定を行う。
 条件CP1が満たされた場合には、切替装置60は「U相のみΔ」の切替状態にあると判定する。この状態を第1の切替状態CS1と言う。
 同様に、条件CP2が満たされた場合には、結線装置は「V相のみΔ」の切替状態にあると判定する。この状態を第2の切替状態CS2と言う。
 条件CP3が満たされた場合には、結線装置は「W相のみΔ」の切替状態にあると判定する。この状態を第3の切替状態CS3と言う。
 条件CP4が満たされた場合には、結線装置は「U相のみY」の切替状態にあると判定する。この状態を第4の切替状態CS4と言う。
 条件CP5が満たされた場合には、結線装置は「V相のみY」の切替状態にあると判定する。この状態を第5の切替状態CS5と言う。
 条件CP6が満たされた場合には、結線装置は「W相のみY」の切替状態にあると判定する。この状態を第6の切替状態CS6と言う。
 上記の電流の大きさに基づく切替状態についての判定は以下のように要約することができる。
 即ち、一つの相の電流が他の2つの相のうちの一方の相の電流よりも小さく、他方の相の電流よりも大きければ、不平衡検出部132は、上記一つの相の切替器はΔ結線用切替状態にあり、他の2つの相の切替器はY結線用切替状態にあると判定し、一つの相の電流が他の2つの相のうちの一方の相の電流よりも小さく、他方の相の電流と等しければ、不平衡検出部132は、上記一つの相の切替器はY結線用切替状態にあり、他の2つの相の切替器はΔ結線用切替状態にあると判定する。
 上記のように、ある量が他の量より大きいとは、差が閾値以上であることを意味し、ある量が他の量に等しいとは、上記他の量との差が閾値よりも小さいことを意味する。
 従って、以下のように言い換えることができる。
 一つの相の電流が他の2つの相のうちの一方の相の電流よりも少なくとも第1の閾値(It1)だけ小さく、他方の相の電流よりも少なくとも第1の閾値(It1)だけ大きければ、不平衡検出部132は、上記一つの相の切替器はΔ結線用切替状態にあり、他の2つの相の切替器はY結線用切替状態にあると判定し、一つの相の電流が他の2つの相のうちの一方の相の電流よりも少なくとも第1の閾値(It1)だけ小さく、前記一つの相の電流と他方の相の電流との差が第1の閾値(It1)よりも小さければ、不平衡検出部132は、上記一つの相の切替器はY結線用切替状態にあり、他の2つの相の切替器はΔ結線用切替状態にあると判定する。
 以上のようにして切替装置60の切替状態が特定される。
 上記の条件CP1~CP6のうちのいずれかが満たされた場合には、不平衡検出部132は、切替信号Scの値と上記の条件CP1~CP6のうちのいずれが満たされたかの判定結果、即ち、特定された切替状態とに基づいて以下の判定をする。
 切替信号ScがHighであり、条件CP1が満たされたとき(「U相のみΔ」のとき)、不平衡検出部132は、V相の切替器62及びW相の切替器63が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器62及び63がY結線用切替状態になっているためである。このような故障の態様を第1の態様Ma1と呼ぶ。
 切替信号ScがHighであり、条件CP2が満たされたとき(「V相のみΔ」のとき)、不平衡検出部132は、U相の切替器61及びW相の切替器63が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器61及び63がY結線用切替状態になっているためである。このような故障の態様を第2の態様Ma2と呼ぶ。
 切替信号ScがHighであり、条件CP3が満たされたとき(「W相のみΔ」のとき)、不平衡検出部132は、U相の切替器61及びV相の切替器62が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器61及び62がY結線用の切替状態になっているためである。このような故障の態様を第3の態様Ma3と呼ぶ。
 切替信号ScがHighであり、条件CP4が満たされたとき(「U相のみY」のとき)、不平衡検出部132は、U相の切替器61が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器61がY結線用の切替状態になっているためである。このような故障の態様を第4の態様Ma4と呼ぶ。
 切替信号ScがHighであり、条件CP5が満たされたとき(「V相のみY」のとき)、不平衡検出部132は、V相の切替器62が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器62がY結線用切替状態になっているためである。このような故障の態様を第5の態様Ma5と呼ぶ。
 切替信号ScがHighであり、条件CP6が満たされたとき(「W相のみY」のとき)、不平衡検出部132は、W相の切替器63が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器63がY結線用切替状態になっているためである。このような故障の態様を第6の態様Ma6と呼ぶ。
 切替信号ScがLowであり、条件CP1が満たされたとき(「U相のみΔ」のとき)、不平衡検出部132は、U相の切替器61が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器61がΔ結線用切替状態になっているためである。このような故障の態様を第7の態様Ma7と呼ぶ。
 切替信号ScがLowであり、条件CP2が満たされたとき(「V相のみがΔ」のとき)、不平衡検出部132は、V相の切替器62が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器62がΔ結線用切替状態になっているためである。このような故障の態様を第8の態様Ma8と呼ぶ。
 切替信号ScがLowであり、条件CP3が満たされたとき(「W相のみΔ」のとき)、不平衡検出部132は、W相の切替器63が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器63がΔ結線用切替状態になっているためである。このような故障の態様を第9の態様Ma9と呼ぶ。
 切替信号ScがLowであり、条件CP4が満たされたとき(「U相のみY」のとき)、不平衡検出部132は、V相の切替器62及びW相の切替器63が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器62及び63がΔ結線用切替状態になっているためである。このような故障の態様を第10の態様Ma10と呼ぶ。
 切替信号ScがLowであり、条件CP5が満たされたとき(「V相のみY」のとき)、不平衡検出部132は、U相の切替器61及びW相の切替器63が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器61及び63がΔ結線用切替状態になっているためである。このような故障の態様を第11の態様Ma11と呼ぶ。
 切替信号ScがLowであり、条件CP6が満たされたとき(「W相のみY」のとき)、不平衡検出部132は、U相の切替器61及びV相の切替器62が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器61及び62がΔ結線用切替状態になっているためである。このような故障の態様を第12の態様Ma12と呼ぶ。
 上記の、切替状態と切替信号Scとに基づいて、故障している切替器を特定する処理は、以下のように要約することができる。
 即ち、不平衡検出部132は、切替信号ScによりY結線が指定されているときは、Δ結線用切替状態にある切替器が故障していると判定し、切替信号ScによりΔ結線が指定されているときは、Y結線用切替状態にある切替器が故障していると判定する。
 以上の判定を図16に示す。
 上記の説明及び図16から分かるように、12通りの故障の態様Ma1~Ma12があり、信号Sfaは、故障が12通りの態様Ma1~Ma12のどれであるかを示す。
 不平衡検出部132は、上記の判定結果を示す信号Sfaを故障判定部133へ送る。
 故障判定部133は、信号Sfaと信号Sdfを元に故障判定の結果を示す信号並びに故障している切替器を示す信号を出力する。なお、故障判定部133は、故障している切替器を示す信号とともに、故障が検出されたときに切替信号Scで指定されていた結線を示す信号を出力することとしても良い。
 故障判定部133は、例えば、信号SdfがHighであり、信号Sfaが、故障の態様Ma1~Ma12のいずれかを示すものであれば、切替装置60に故障があると判定する。
 故障があると判定したときは、故障判定部133は、故障検出信号Sdgを運転制御部102に送る。
 運転制御部102は、故障検出信号Sdgが送られてきたら、インバータ停止信号Stを出力する。停止信号Stに応じてPWM生成部117はPWM信号Sm1~Sm6の出力を停止する。その結果、インバータ30は、交流電圧の出力を停止する。
 故障判定部133は、信号SdfがHighであれば、信号Sfaに基づいて故障している切替器を示す表示制御信号Sfcを生成して、故障表示器87に供給する。
 例えば、信号Sfaが故障の態様Ma1を示しているときは、表示制御信号SfcとしてV相の切替器62及びW相の切替器63が故障していることを示す信号を生成する。
 故障判定部133は、故障が検出されたときに切替信号Scで指定されていた結線を示す信号をも出力しても良い。
 故障表示器87は、故障している切替器を示す表示制御信号Sfcに応じて故障している切替器を表示する。
 修理に当たっては、故障表示器87の表示を見ることで故障している切替器を特定することができ、従って、修理を速やかに行うことができる。
 また、故障が検出されたときに切替信号Scで指定されていた結線を示す信号も出力される場合には、故障表示器87は、故障が検出されたときの切替状態を表示する。故障が検出されたときの切替状態も表示されれば、故障の修理をより迅速に行うことができる。
 なお、信号Sfaが態様Ma1~Ma12のいずれをも示していなくても、信号SdfがHighであれば、故障検出信号SdgをHighとしても良い。その場合、故障している切替器の特定はできないが、故障の検知により、インバータを停止させることができるので、電動機の損傷、減磁を回避することができる。
 以上のように実施の形態1によれば、切替装置60が故障したときに速やかに検知し、インバータを停止させることができ、電動機の損傷、減磁を防止することができる。
 また故障の態様又は故障した切替器が故障表示器に表示されるようにすれば、故障した切替器の特定が容易となり、修理を迅速に行うことができる。
実施の形態2.
 上記の実施の形態1では、インバータ30の入力側の直流電流Idcからインバータ出力電流i、i、iを復元する構成としているが、インバータ30の出力線331、332、333に電流検出素子を設け、該電流検出素子でインバータ出力電流i、i、iを検出するような構成としても良く、そうする場合には、上記電流検出素子で検出された電流を、電流復元部111で復元された電流の代わりに用いれば良い。
 図17は、実施の形態2の電動機駆動装置2bを、電動機7とともに示す概略配線図である。
 図17に示される電動機駆動装置2bは、図2に示される電動機駆動装置2と概して同じである。但し、母線電流検出手段85が設けられておらず、代わりに、電流検出素子91、92、93が設けられており、また制御装置100の代わりに制御装置100bが設けられている。
 電流検出素子91、92、93は、インバータ出力電流、即ちインバータ出力線331、332、333に流れる電流を検出するように設けられている。電流検出素子91、92、93での検出で得られる信号は、制御装置100bで図示しないA/D変換部によりデジタル信号に変換されて制御装置100bの内部での処理に用いられる。
 図18は、図17の制御装置100bを示す。
 図18の制御装置100bは、図7の制御装置100と概して同じであるが、インバータ制御部110の代わりにインバータ制御部110bが設けられている。
 インバータ制御部110bはインバータ制御部110と概して同じであるが、電流復元部111が設けられておらず、電流検出素子91、92、93で検出された電流値が直接3相2相変換部112及び故障検出部130に入力されている。
 3相2相変換部112及び故障検出部130は、電流復元部111から出力される電流値i、i、iの代わりに、電流検出素子91、92、93で検出された電流値i、i、iを用いて、それぞれ実施の形態1で説明したのと同様の処理を行う。
 上記以外の点で、実施の形態2の電動機駆動装置2bの動作は、実施の形態1の電動機駆動装置2と同じである。
実施の形態3.
 実施の形態1及び2では、インバータ30から電動機7に流れ込む電流i、i、iに基づいて、切替装置60の故障の検出を行っている。代わりに、電動機7の巻線に流れる電流を検出し、検出結果に基づいて、切替装置60の故障の検出を行っても良い。
 ここで、「電動機7の巻線に流れる電流の検出」は、Y結線の場合にも、Δ結線の場合にも、電動機7の巻線に流れる電流を検出することを意味する。インバータ30から電動機7に流れ込む電流i、i、iには、Y結線の場合には、電動機7の巻線に流れる電流に等しいが、Δ結線の場合には、電動機7の巻線に流れる電流に等しくない。
 図19は、実施の形態3の電動機駆動装置2cを、電動機7とともに示す概略配線図である。
 図19に示される電動機駆動装置2cは、図2に示される電動機駆動装置2と概して同じである。但し、母線電流検出手段85が設けられておらず、代わりに、電流検出素子96、97、98が設けられており、制御装置100の代わりに、制御装置100cが設けられている。
 電流検出素子96、97、98は、電動機の巻線電流、即ち電動機のU相、V相、W相の巻線71、72、73に流れる電流を検出するように設けられている。即ち、実施の形態3では、結線状態がY結線であってもΔ結線であっても、巻線に流れる電流を検出できる位置に電流検出素子96、97、98が設けられている。
 電流検出素子96、97、98での検出で得られる信号は、制御装置100cで図示しないA/D変換部によりデジタル信号に変換されて制御装置100cの内部での処理に用いられる。
 図20は、電動機7の固定子巻線71、72、73及び結線切替装置60と、電流検出素子96、97、98とをより詳細に示す。
 図19及び図20に示す構成では、第1の電流検出素子96が、U相の巻線71の端部71bが接続された外部端子71dと切替器61の共通接点61cとを結ぶ接続線61eに流れる電流を検出するように設けられ、第2の電流検出素子97が、V相の巻線72の端部72bが接続された外部端子72dと切替器62の共通接点62cとを結ぶ接続線62eに流れる電流を検出するように設けられ、第3の電流検出素子98が、W相の巻線73の端部73bが接続された外部端子73dと切替器63の共通接点63cとを結ぶ接続線63eに流れる電流を検出するように設けられている。
 図21は、図19の制御装置100cを示す。
 図21の制御装置100cは、図7の制御装置100と概して同じであるが、インバータ制御部110の代わりにインバータ制御部110cが設けられている。
 インバータ制御部110cはインバータ制御部110と概して同じであるが、図7の3相2相変換部112及び故障検出部130の代わりに3相2相変換部112c及び故障検出部130cが設けられ、また電流復元部111が設けられていない。
 また、電流検出素子96、97、98で検出された巻線電流icu、icv、icwが、3相2相変換部112cと故障検出部130cとに入力されている。
 3相2相変換部112bは、巻線電流icu、icv、icwを、電気角位相演算部115で生成される電気角位相θを用いて励磁電流成分i及びトルク電流成分iに変換する。
 図19の故障検出部130cは、巻線電流icu、icv、icw、3相2相変換部112cから出力される励磁電流成分i及びトルク電流成分i、並びに切替信号Scに基づいて切替装置60の故障を検出する。実施の形態3で検出の対象となる故障及び故障の検出が行われるタイミング等は、実施の形態1と同じである。以下では、故障検出部130cに関し、主として、実施の形態1の故障検出部130と異なる部分について説明する。
 図19の故障検出部130cは例えば図22に示すように、高調波検出部131と、不平衡検出部132cと、故障判定部133cとを有する。
 高調波検出部131は、実施の形態1の高調波検出部131と同じく、励磁電流成分i及びトルク電流成分iの各々から高調波成分を抽出し、励磁電流成分i及びトルク電流成分iの少なくとも一方について、高調波成分の量が正常時に比べて多いか否かの判定をし、判定結果を示す信号Sdfを故障判定部133に送る。
 不平衡検出部132cは、巻線電流icu、icv、icwと、切替信号Scとに基づいて、故障の態様を特定し、特定した故障の態様を示す信号Sfbを出力する。
 不平衡検出部132cは、例えば、巻線電流icu、icv、icwのうちの2つずつの瞬時値の和の大きさ(巻線電流icu、icv、icwから重複を許して選ばれた2つから成る組を3個形成したときの、該3個の組の各々を構成する2つの巻線電流の瞬時値の和の大きさ)と、巻線電流の大きさとに基づいて切替装置60の切替状態を特定し、特定した切替状態と、切替信号Scとに基づいて、切替装置60の故障の態様を特定する。
 図23(a)及び(b)は、図10(a)及び(b)と同様の図であるが巻線電流が符号icu、icv、icwで示されている。
 図23(a)に示される「U相のみΔ」の接続状態では、電流icvと電流icwとは図24(a)に示すように、逆相関係にあり、両者の瞬時値の和の大きさIsvwはゼロになる。
 瞬時値の和の大きさとしては、例えば和(瞬時値)の予め定められた期間毎の最大値、予め定められた期間毎の実効値、或いは予め定められた期間毎の絶対値の平均値を用いることができる。
 図24(a)で示すのと同様に、「V相のみΔ」の接続状態では、電流icuの瞬時値と電流icwの瞬時値との和の大きさIsuwがゼロになり、「W相のみΔ」の接続状態では、電流icuの瞬時値と電流icvの瞬時値との和の大きさIsuvがゼロになる。
 図23(b)に示される「U相のみY」の接続状態では、図24(b)に示すように、V相の巻線電流icv及びW相の巻線電流icwは正常時と同様であるが、U相の巻線電流icuの大きさImcuがゼロとなる。
 巻線電流の大きさとしては、例えば予め定められた期間毎の最大値、予め定められた期間毎の実効値、或いは予め定められた期間毎の絶対値の平均値を用いることができる。
 図24(b)で示すのと同様に、「V相のみY」の接続状態では、V相の巻線電流の大きさImcvがゼロとなり、「W相のみY」の接続状態では、W相の巻線電流の大きさImcwがゼロとなる。
 不平衡検出部132cは、上記した切替装置60の故障時における、巻線電流icu、icv、icwの大きさImcu、Imcv、Imcw、及び巻線電流icu、icv、icwのうちの2つずつの瞬時値の和の大きさImcu、Imcv、Imcwに基づいて、巻線の接続状態を特定し、これにより切替装置60の切替状態を特定する。
 不平衡検出部132cはまず、電流検出素子96、97、98で検出された巻線電流icu、icv、icwの大きさImcu、Imcv、Imcw、及び巻線電流icu、icv、icwのうちの2つずつの瞬時値の和の大きさIsvw、Isuw、Isuvを求める。
 不平衡検出部132cは次に、求められた巻線電流の大きさImcu、Imcv、Imcw、及び巻線電流のうちの2つずつの瞬時値の和の大きさIsvw、Isuw、Isuvが、以下の条件CQ1~CQ6のいずれかを満たすか否かの判定を行う。
条件CQ1: Isvw=0
条件CQ2: Isuw=0
条件CQ3: Isuv=0
条件CQ4: Imcu=0
条件CQ5: Imcv=0
条件CQ6: Imcw=0
 但し巻線電流icu、icv、icwのうちの2つずつの瞬時値の和の大きさがゼロと等しいか否かの判定においては、測定誤差、計算誤差等を考慮に入れて、該和の大きさが閾値(第2の閾値)よりも小さければゼロであるものとみなす。
 同様に、巻線電流icu、icv、icwの大きさがゼロと等しいか否かの判定においては、測定誤差、計算誤差等を考慮に入れて、該大きさが閾値(第3の閾値)よりも小さければゼロであるものとみなす。
 不平衡検出部132cは、条件CQ1~CQ6のいずれが満たされたかに基づいて、切替状態について、以下のような判定を行う。
 条件CQ1が満たされた場合には、結線装置は、「U相のみΔ」の切替状態にあると判定する。この状態を第1の切替状態CS1と言う。
 同様に、条件CQ2が満たされた場合には、結線装置は、「V相のみΔ」の切替状態にあると判定する。この状態を第2の切替状態CS2と言う。
 条件CQ3が満たされた場合には、結線装置は、「W相のみΔ」の切替状態にあると判定する。この状態を第3の切替状態CS3と言う。
 条件CQ4が満たされた場合には、結線装置は、「U相のみY」の切替状態にあると判定する。この状態を第4の切替状態CS4と言う。
 条件CQ5が満たされた場合には、結線装置は、「V相のみY」の切替状態にあると判定する。この状態を第5の切替状態CS5と言う。
 条件CQ6が満たされた場合には、結線装置は、「W相のみY」の切替状態にあると判定する。この状態を第6の切替状態CS6と言う。
 上記の電流の大きさ及び電流の瞬時値の和の大きさに基づく切替状態についての判定は以下のように要約することができる。
 即ち、一つの相以外の他の2つの相の電流の瞬時値の和の大きさがゼロに等しければ、不平衡検出部132cは、上記一つの相の切替器はΔ結線用切替状態にあり、他の2つの相の切替器はY結線用切替状態にあると判定し、一つの相の電流の大きさがゼロに等しければ、不平衡検出部132cは、上記一つの相の切替器はY結線用切替状態にあり、他の2つの相の切替器はΔ結線用切替状態にあると判定する。
 上記のように、ある量がゼロに等しいとは、ゼロとの差が閾値よりも小さいことを意味する。従って、以下のように言い換えることができる。
 一つの相以外の他の2つの相の電流の瞬時値の和の大きさが閾値(第2の閾値)よりも小さければ、不平衡検出部132cは、上記一つの相の切替器はΔ結線用切替状態にあり、他の2つの相の切替器はY結線用切替状態にあると判定し、一つの相の電流の大きさが閾値(第3の閾値)よりも小さければ、不平衡検出部132cは、上記一つの相の切替器はY結線用切替状態にあり、他の2つの相の切替器はΔ結線用切替状態にあると判定する。
 以上のようにして切替装置60の切替状態が特定される。
 なお、起動直後のインバータ出力電圧が十分に高くなっていない間の誤判定を防ぐために、条件CQ1~CQ6の各々に対して付加条件を設定しても良い。
 例えば、巻線電流の少なくとも一つの大きさがゼロでないことを、上記の条件CQ1~CQ3の付加条件としても良い。
 即ち、「Imcu≠0」、「Imcv≠0」、及び「Imcw≠0」の少なくとも一つが満たされ、かつ「Isvw=0」が満たされたときに条件CQ1が満たされると判定し、
 「Imcu≠0」、「Imcv≠0」、及び「Imcw≠0」の少なくとも一つが満たされ、かつ「Isuw=0」が満たされたときに条件CQ2が満たされると判定し、
 「Imcu≠0」、「Imcv≠0」、及び「Imcw≠0」の少なくとも一つが満たされ、かつ「Isuw=0」が満たされたときに条件CQ3が満たされると判定しても良い。
 また、他の巻線電流の少なくとも一つの大きさがゼロでないことを、上記の条件CQ4~CQ6の付加条件としても良い。
 即ち、「Imcv≠0」、及び「Imcw≠0」の少なくとも一つが満たされ、かつ「Imcu=0」が満たされたときに条件CQ4が満たされると判定し、
 「Imcu≠0」、及び「Imcw≠0」の少なくとも一つが満たされ、かつ「Imcv=0」が満たされたときに条件CQ5が満たされると判定し、
 「Imcu≠0」、及び「Imcv≠0」の少なくとも一つが満たされ、かつ「Imcw=0」が満たされたときに条件CQ6が満たされると判定しても良い。
 これらの場合にも、上記と同様に、巻線電流の大きさImcu、Imcv、Imcwがゼロと等しいか否かの判定においては、測定誤差、計算誤差等を考慮に入れて、該大きさが閾値(第3の閾値)よりも小さければゼロであるものとみなす。
 上記の条件CQ1~CQ6のうちのいずれかが満たされた場合には、不平衡検出部132cは、切替信号Scの値と上記の条件CQ1~CQ6のうちのいずれが満たされたかの判定結果、即ち、特定された切替状態とに基づいて以下の判定をする。
 切替信号ScがHighであり、条件CQ1が満たされたとき(「U相のみΔ」のとき)、不平衡検出部132cは、V相の切替器62及びW相の切替器63が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器62及び63がY結線用切替状態になっているためである。このような故障の態様を第1の態様Mb1と呼ぶ。
 切替信号ScがHighであり、条件CQ2が満たされたとき(「V相のみΔ」のとき)、不平衡検出部132cは、U相の切替器61及びW相の切替器63が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器61及び63がY結線用切替状態になっているためである。このような故障の態様を第2の態様Mb2と呼ぶ。
 切替信号ScがHighであり、条件CQ3が満たされたとき(「W相のみΔ」のとき)、不平衡検出部132cは、U相の切替器61及びV相の切替器62が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器61及び62がY結線用切替状態になっているためである。このような故障の態様を第3の態様Mb3と呼ぶ。
 切替信号ScがHighであり、条件CQ4が満たされたとき(「U相のみY」のとき)、不平衡検出部132cは、U相の切替器61が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器61がY結線用の切替状態になっているためである。このような故障の態様を第4の態様Mb4と呼ぶ。
 切替信号ScがHighであり、条件CQ5が満たされたとき(「V相のみY」のとき)、不平衡検出部132cは、V相の切替器62が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器62がY結線用の切替状態になっているためである。このような故障の態様を第5の態様Mb5と呼ぶ。
 切替信号ScがHighであり、条件CQ6が満たされたとき(「W相のみY」のとき)、不平衡検出部132cは、W相の切替器63が故障していると判定する。切替信号ScがHighであって、これによりΔ結線が指定されているにも拘わらず、切替器63がY結線用の切替状態になっているためである。このような故障の態様を第6の態様Mb6と呼ぶ。
 切替信号ScがLowであり、条件CQ1が満たされたとき(「U相のみΔ」のとき)、不平衡検出部132cは、U相の切替器61が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器61がΔ結線用切替状態になっているためである。このような故障の態様を第7の態様Mb7と呼ぶ。
 切替信号ScがLowであり、条件CQ2が満たされたとき(「V相のみΔ」のとき)、不平衡検出部132cは、V相の切替器62が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器62がΔ結線用切替状態になっているためである。このような故障の態様を第8の態様Mb8と呼ぶ。
 切替信号ScがLowであり、条件CQ3が満たされたとき(「W相のみΔ」のとき)、不平衡検出部132cは、W相の切替器63が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器63がΔ結線用切替状態になっているためである。このような故障の態様を第9の態様Mb9と呼ぶ。
 切替信号ScがLowであり、条件CQ4が満たされたとき(「U相のみY」のとき)、不平衡検出部132cは、V相の切替器62及びW相の切替器63が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器62及び63がΔ結線用切替状態になっているためである。このような故障の態様を第10の態様Mb10と呼ぶ。
 切替信号ScがLowであり、条件CQ5が満たされたとき(「V相のみY」のとき)、不平衡検出部132cは、U相の切替器61及びW相の切替器63が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器61及び63がΔ結線用切替状態になっているためである。このような故障の態様を第11の態様Mb11と呼ぶ。
 切替信号ScがLowであり、条件CQ6が満たされたとき(「W相のみY」のとき)、不平衡検出部132cは、U相の切替器61及びV相の切替器62が故障していると判定する。切替信号ScがLowであって、これによりY結線が指定されているにも拘わらず、切替器61及び62がΔ結線用切替状態になっているためである。このような故障の態様を第12の態様Mb12と呼ぶ。
 上記の、切替状態と切替信号Scとに基づいて、故障している切替器を特定する処理は、以下のように要約することができる。
 即ち、不平衡検出部132cは、切替信号ScによりY結線が指定されているときは、Δ結線用切替状態にある切替器が故障していると判定し、切替信号ScによりΔ結線が指定されているときは、Y結線用切替状態にある切替器が故障していると判定する。
 以上の判定を図25に示す。
 上記の説明及び図25から分かるように、12通りの故障の態様Mb1~Mb12があり、信号Sfbは、この12通りの故障の態様Mb1~Mb12のどれであるかを示す。
 不平衡検出部132cは、上記の判定結果を示す信号Sfbを故障判定部133cへ送る。
 故障判定部133cは、実施の形態1の故障判定部133と同様に、信号Sfbと信号Sdfを元に故障判定の結果を示す信号並びに故障している切替器を示す信号を出力する。なお、故障判定部133cは、故障している切替器を示す信号とともに、故障が検出されたときに切替信号Scで指定されていた結線を示す信号を出力することとしても良い。
 故障判定部133cは、実施の形態1で説明したのと同様に、例えば、信号SdfがHighであり、信号Sfbが、故障の態様Mb1~Mb12のいずれかを示すものであれば、切替装置60に故障があると判定する。
 故障があると判定したときは、故障判定部133cは、故障検出信号Sdgを運転制御部102に送る。
 運転制御部102は、故障検出信号Sdgが送られてきたら、インバータ停止信号Stを出力する。停止信号Stに応じてPWM生成部117はPWM信号Sm1~Sm6の出力を停止する。その結果、インバータ30は、交流電圧の出力を停止する。
 故障判定部133cは、信号SdfがHighであれば、信号Sfbに基づいて故障している切替器を示す表示制御信号Sfcを生成して、故障表示器87に供給する。
 例えば、信号Sfbが故障の態様Mb1を示しているときは、表示制御信号SfcとしてV相の切替器62及びW相の切替器63が故障していることを示す信号を生成する。
 故障判定部133cは、故障が検出されたときに切替信号Scで指定されていた結線を示す信号をも出力しても良い。
 故障表示器87は、故障している切替器を示す表示制御信号Sfcに応じて故障している切替器を表示する。
 修理に当たっては、故障表示器87の表示を見ることで故障している切替器を特定することができ、従って、修理を速やかに行うことができる。
 また、故障が検出されたときに切替信号Scで指定されていた結線を示す信号も出力される場合には、故障表示器87は、故障が検出されたときの切替状態を表示する。故障が検出されたときの切替状態も表示されれば、故障の修理をより迅速に行うことができる。
 なお、信号Sfbが態様Mb1~Mb12のいずれをも示していなくても、信号SdfがHighであれば、故障検出信号SdgをHighとしても良い。その場合、故障している切替器の特定はできないが、故障の検知により、インバータを停止させることができるので、電動機の損傷、減磁を回避することができる。
 以上のように実施の形態3によれば、切替装置60が故障したときに速やかに検知し、インバータを停止させることができ、電動機の損傷、減磁を防止することができる。
 また故障の態様又は故障した切替器が故障表示器に表示されるようにすれば、故障した切替器の特定が容易となり、修理を迅速に行うことができる。
実施の形態4.
 図2の構成では結線切替装置60の切替器として、切替スイッチを用いている。代わりに、常閉スイッチと常開スイッチとの組み合わせで各切替器を構成してもよい。その場合の結線切替装置の構成例を図26に示す。
 図26の構成では、切替器61の切替スイッチの代わりに常閉スイッチ615と常開スイッチ616との組合せが用いられ、切替器62の切替スイッチの代わりに常閉スイッチ625と常開スイッチ626との組合せが用いられ、切替器63の切替スイッチの代わりに常閉スイッチ635と常開スイッチ636との組合せが用いられている。
 図示のように、常閉スイッチ615、625、635が閉じ(オンしており)、常開スイッチ616、626、636が開いた(オフしている)状態では、電動機はY結線されており、図示とは逆に、常閉スイッチ615、625、635が開き、常開スイッチ616、626、636が閉じた状態では、電動機はΔ結線されている。
 図26に示すように、各切替器を常閉スイッチと常開スイッチとの組合せで構成する場合にも、各スイッチとして、電磁接触器を用いることができる。電磁接触器は、オン時の導通損失が小さいので好適である。
 図26に示すように、各切替器を常閉スイッチと常開スイッチとの組合せで構成する場合、各スイッチとして、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga2O3)、ダイヤモンド等で構成されるワイドバンドギャップ半導体(WBG半導体)で構成された半導体スイッチを用いてもよい。これらは、オン抵抗が小さく、低損失で素子発熱も少ない。これらはまた、切替え動作を速やかに行うことができる。
変形例.
 実施の形態1~4では、電動機の固定子巻線をY結線又はΔ結線に切替え得る電動機駆動装置に本発明を適用している。
 本発明は、結線の切替えが他の方法で行われる電動機駆動装置にも適用できる。
 例えば各相の巻線として2以上の巻線部分から成るものを用い、並列結線及び直列結線のいずれかに切替え得る電動機駆動装置にも適用できる。
 この場合、各相の巻線を構成する2以上の巻線部分の各々の両端部を、電動機の外部に接続可能として、結線切替装置で結線状態を切替える。
 そのような場合にも、結線切替装置に故障があると、電流が不平衡になり、3相電流をd-q軸に変換することで得られる励磁電流成分及びトルク電流成分の少なくとも一方に含まれる高調波成分が多く含まれることになる。そのような高調波成分の量が正常時と比べて多ければ、結線切替装置に故障があると判定することができる。
 上記の実施の形態1~4において、整流回路10の整流素子11~14としては、ダイオードなどを用いることが一般的であるが、例えばMOSFET(metal-oxide-semiconductor field-effect-transistor)等を用いて、交流電源4から供給される電圧(入力交流電圧)の極性に合わせてオン状態とすることで整流を行うように構成しても良い。
 インバータ主回路310のスイッチング素子311~316としては、IGBT(Insulated Gate Bipolar Transistor)或いはMOSFETを想定しているが、スイッチング素子311~316としては、スイッチングを行うことが可能な素子であれば、どのようなものを用いても良い。なお、MOSFETの場合は、構造上寄生ダイオードを有するため環流用の整流素子(321~326)を並列接続しなくても同様の効果を得ることができる。
 整流素子11~14及びスイッチング素子311~316を構成する材料については、ケイ素(Si)だけでなく、ワイドバンドギャップ半導体である炭化ケイ素(SiC)、窒化ガリウム(GaN)、ダイヤモンド等を用いたもので構成することにより、損失をより少なくすることが可能となる。
 なお、以上の実施の形態で説明した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能である。
 以上のように、本発明は、電動機の結線を切替える結線切替装置を備えた電動機駆動装置、及びそれを備えた冷凍サイクル適用機器に適している。
 冷凍サイクル適用機器の一例として空気調和機を挙げたが、本発明はこれに限定されず、例えば冷蔵庫、冷凍庫、ヒートポンプ給湯器などにも適用できる。
  2、2b、2c 電動機駆動装置、 4 交流電源、 7 電動機、 8 リアクトル、 10 整流回路、 20 コンデンサ、 30 インバータ、 60 結線切替装置、 80 制御電源生成回路、 85 母線電流検出手段、 87 故障表示器、 91、92、93、96、97、98 電流検出素子、 100、100b、100c 制御装置、 102 運転制御部、 110、110b、110c インバータ制御部、 111 電流復元部、 112、112c 3相2相変換部、 113 励磁電流指令制御部、 114 電圧指令演算部、 115 電気角位相演算部、 116 2相3相変換部、 117 PWM生成部、 130、130c 故障検出部、 131 高調波検出部、 132、132c 不平衡検出部、 133、133c 故障判定部、 900 冷凍サイクル、 902 四方弁、 904 圧縮機、 906 室内熱交換器、 908 膨張弁、 910 室外熱交換器、 1141 周波数推定部、 1142、1144、1146 減算部、 1143、1145、1147 制御部。

Claims (12)

  1.  3相の巻線を有する電動機を駆動する電動機駆動装置であって、
     切替信号に応じて前記電動機の巻線の結線状態を切替える結線切替装置と、
     前記電動機に周波数及び電圧値が可変の交流電圧を印加するインバータと、
     前記電動機に流れる3相交流電流を検出する電流検出部、及び前記3相交流電流を、トルク電流成分と励磁電流成分とに変換する3相2相変換部を有し、前記インバータ及び前記結線切替装置を制御する制御装置とを備え、
     前記トルク電流成分及び前記励磁電流成分の少なくとも一方について、高調波成分の量が、前記結線切替装置に故障がないときに比べて多いときに前記インバータが停止する
     電動機駆動装置。
  2.  前記トルク電流成分及び前記励磁電流成分の少なくとも一方について、前記高調波成分の量が、前記結線切替装置に故障がないときの前記高調波成分の量の最大値の2倍以上であるときに、前記インバータが停止する
     請求項1に記載の電動機駆動装置。
  3.  前記結線切替装置が、スター結線とデルタ結線との切替を行うものであり、
     前記結線切替装置が、前記3相の巻線にそれぞれ対応して設けられた3つの切替器を有し、
     前記3相交流電流の不平衡に基づいて、前記3つの切替器のうちのどれが故障しているかを示す信号を生成する
     請求項1又は2に記載の電動機駆動装置。
  4.  前記電動機に流れる前記3相交流電流として、前記電流検出部は、前記インバータから前記電動機の巻線に流れ込む電流を検出する請求項3に記載の電動機駆動装置。
  5.  前記3相のうちの一つの相の電流が他の2つの相のうちの一方の相の電流よりも少なくとも第1の閾値だけ小さく他方の相の電流よりも少なくとも前記第1の閾値だけ大きければ、前記一つの相の切替器はデルタ結線用切替状態にあり、他の2つの相の切替器はスター結線用切替状態にあることを示す信号を生成し、
     前記3相のうちの一つの相の電流が他の2つの相のうちの一方の相の電流よりも少なくとも前記第1の閾値だけ小さく、前記一つの相の電流と他方の相の電流との差が前記第1の閾値よりも小さければ、前記一つの相の切替器はスター結線用切替状態にあり、前記他の2つの相の切替器はデルタ結線用切替状態にあることを示す信号を生成し、
     切替信号によりスター結線が指定されているときにデルタ結線用切替状態にある切替器が故障していることを示す信号を生成し、
     切替信号によりデルタ結線が指定されているときにスター結線用切替状態にある切替器が故障していることを示す信号を生成する
     請求項4に記載の電動機駆動装置。
  6.  前記電動機に流れる前記3相交流電流として、前記電流検出部は、前記電動機の巻線に流れる電流を検出する請求項3に記載の電動機駆動装置。
  7.  前記3相のうちの一つの相以外の他の2つの相の電流の瞬時値の和の大きさが第2の閾値よりも小さければ、前記一つの相の切替器はデルタ結線用切替状態にあり、他の2つの相の切替器はスター結線用切替状態にあることを示す信号を生成し、
     前記3相のうちの一つの相の電流の大きさが第3の閾値よりも小さければ、前記一つの相の切替器はスター結線用切替状態にあり、他の2つの相の切替器はデルタ結線用切替状態にあることを示す信号を生成し、
     切替信号によりスター結線が指定されているときにデルタ結線用切替状態にある切替器が故障していることを示す信号を生成し、
     切替信号によりデルタ結線が指定されているときにスター結線用切替状態にある切替器が故障していることを示す信号を生成する
     請求項6に記載の電動機駆動装置。
  8.  前記結線切替装置が故障していることを表示する故障表示器をさらに有する
     請求項1から7のいずれか1項に記載の電動機駆動装置。
  9.  前記結線切替装置が、複数の電磁接触器を有し、
     前記複数の電磁接触器の各々は、励磁コイルと、前記励磁コイルに流れる電流により駆動される接点とを有する
     請求項1から8のいずれか1項に記載の電動機駆動装置。
  10.  前記結線切替装置が、複数の半導体スイッチを有し、
     前記複数の半導体スイッチの各々は、制御端子を有し、該制御端子に入力される信号より制御される
     請求項1から8のいずれか1項に記載の電動機駆動装置。
  11.  前記半導体スイッチは、ワイドバンドギャップ半導体で構成されている請求項10に記載の電動機駆動装置。
  12.  請求項1から11のいずれか1項に記載の電動機駆動装置を備える冷凍サイクル適用機器。
PCT/JP2018/006932 2018-02-26 2018-02-26 電動機駆動装置及び冷凍サイクル適用機器 WO2019163125A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880089239.7A CN111727557B (zh) 2018-02-26 2018-02-26 电动机驱动装置以及制冷环路应用设备
JP2020501980A JP6929434B2 (ja) 2018-02-26 2018-02-26 電動機駆動装置及び冷凍サイクル適用機器
PCT/JP2018/006932 WO2019163125A1 (ja) 2018-02-26 2018-02-26 電動機駆動装置及び冷凍サイクル適用機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006932 WO2019163125A1 (ja) 2018-02-26 2018-02-26 電動機駆動装置及び冷凍サイクル適用機器

Publications (1)

Publication Number Publication Date
WO2019163125A1 true WO2019163125A1 (ja) 2019-08-29

Family

ID=67688022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006932 WO2019163125A1 (ja) 2018-02-26 2018-02-26 電動機駆動装置及び冷凍サイクル適用機器

Country Status (3)

Country Link
JP (1) JP6929434B2 (ja)
CN (1) CN111727557B (ja)
WO (1) WO2019163125A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176761A1 (ja) * 2020-03-03 2021-09-10 株式会社日立製作所 機器監視装置及び機器監視方法
WO2022195772A1 (ja) * 2021-03-17 2022-09-22 三菱電機株式会社 モータ駆動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148490A (ja) * 2006-12-12 2008-06-26 Toshiba Corp 回転機駆動システム及び洗濯機並びに回転機の巻線切替え結果確認方法
WO2009084354A1 (ja) * 2007-12-27 2009-07-09 Kabushiki Kaisha Yaskawa Denki 3相交流電動機の巻線切替装置
JP2013207919A (ja) * 2012-03-28 2013-10-07 Asmo Co Ltd 3相交流電動機に備えた巻線切換装置、3相交流電動機に備えた巻線切換装置の切換スイッチング素子のショート故障検出方法及び3相交流電動機に備えた巻線切換装置の切換スイッチング素子のオープン故障検出方法
WO2016088265A1 (ja) * 2014-12-05 2016-06-09 株式会社安川電機 車両のモータ診断システム、車両、モータ、モータ診断方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674258B2 (en) * 2001-06-21 2004-01-06 Matsushita Electric Industrial Co., Ltd. Motor driver and motor drive method
JP4023249B2 (ja) * 2002-07-25 2007-12-19 ダイキン工業株式会社 圧縮機内部状態推定装置及び空気調和装置
JP4722069B2 (ja) * 2007-03-15 2011-07-13 三菱電機株式会社 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP5569606B1 (ja) * 2013-02-01 2014-08-13 株式会社安川電機 インバータ装置および電動機ドライブシステム
JP2016220318A (ja) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 発電設備監視システム、発電設備監視方法、およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148490A (ja) * 2006-12-12 2008-06-26 Toshiba Corp 回転機駆動システム及び洗濯機並びに回転機の巻線切替え結果確認方法
WO2009084354A1 (ja) * 2007-12-27 2009-07-09 Kabushiki Kaisha Yaskawa Denki 3相交流電動機の巻線切替装置
JP2013207919A (ja) * 2012-03-28 2013-10-07 Asmo Co Ltd 3相交流電動機に備えた巻線切換装置、3相交流電動機に備えた巻線切換装置の切換スイッチング素子のショート故障検出方法及び3相交流電動機に備えた巻線切換装置の切換スイッチング素子のオープン故障検出方法
WO2016088265A1 (ja) * 2014-12-05 2016-06-09 株式会社安川電機 車両のモータ診断システム、車両、モータ、モータ診断方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176761A1 (ja) * 2020-03-03 2021-09-10 株式会社日立製作所 機器監視装置及び機器監視方法
JP2021141667A (ja) * 2020-03-03 2021-09-16 株式会社日立製作所 機器監視装置及び機器監視方法
JP7340482B2 (ja) 2020-03-03 2023-09-07 株式会社日立製作所 機器監視装置及び機器監視方法
WO2022195772A1 (ja) * 2021-03-17 2022-09-22 三菱電機株式会社 モータ駆動装置
JP7433513B2 (ja) 2021-03-17 2024-02-19 三菱電機株式会社 モータ駆動装置

Also Published As

Publication number Publication date
JP6929434B2 (ja) 2021-09-01
CN111727557B (zh) 2023-04-21
CN111727557A (zh) 2020-09-29
JPWO2019163125A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
JP6991336B2 (ja) 電動機駆動装置及び冷凍サイクル適用機器
WO2019087243A1 (ja) 電動機駆動装置、冷凍サイクル装置、空気調和機、給湯機、及び冷蔵庫
WO2019026125A1 (ja) 電動機駆動装置及び冷凍サイクル適用機器
JP2021106501A (ja) モータ駆動装置及び冷凍サイクル適用機器
US11711040B2 (en) Motor driving apparatus and refrigeration cycle equipment
CN112272917B (zh) 电机驱动装置及制冷循环应用设备
US11424698B2 (en) Motor control device and air-conditioning device
JP6929434B2 (ja) 電動機駆動装置及び冷凍サイクル適用機器
US11329587B2 (en) Motor driving apparatus, refrigeration cycle system, air conditioner, water heater, and refrigerator
US11264924B2 (en) Motor driving apparatus and refrigeration cycle equipment
JP7325526B2 (ja) 電動機駆動装置、冷凍サイクル装置、空気調和機、給湯機、及び冷蔵庫
WO2022180746A1 (ja) 電動機駆動装置及び冷凍サイクル適用機器
JPWO2019239539A1 (ja) モータ駆動装置、モータ駆動装置の制御装置、モータ駆動装置の制御方法、及び空気調和機
WO2023079672A1 (ja) モータ駆動装置及び冷凍サイクル適用機器
CN115485967A (zh) 电动机驱动装置、制冷循环装置、空调机、热水器以及冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907445

Country of ref document: EP

Kind code of ref document: A1