WO2019159870A1 - Electric deionization device and method for producing deionized water - Google Patents

Electric deionization device and method for producing deionized water Download PDF

Info

Publication number
WO2019159870A1
WO2019159870A1 PCT/JP2019/004792 JP2019004792W WO2019159870A1 WO 2019159870 A1 WO2019159870 A1 WO 2019159870A1 JP 2019004792 W JP2019004792 W JP 2019004792W WO 2019159870 A1 WO2019159870 A1 WO 2019159870A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
exchange resin
water
electrodeionization apparatus
ion exchange
Prior art date
Application number
PCT/JP2019/004792
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 晃久
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018023244A external-priority patent/JP6614252B2/en
Priority claimed from JP2018067359A external-priority patent/JP6614266B2/en
Priority claimed from JP2018089981A external-priority patent/JP2019195755A/en
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2019159870A1 publication Critical patent/WO2019159870A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/54Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to an electrodeionization apparatus, and more particularly to an electrodeionization apparatus in which a concentration chamber and a desalination chamber are defined by an ion exchange membrane between an anode and a cathode.
  • the present invention relates to an electrodeionization apparatus capable of highly removing boron in water to be treated and a method for producing deionized water using the electrodeionization apparatus.
  • the present invention provides an electrodeionization device capable of highly removing boron in water to be treated and suppressing a voltage increase when a high current is applied, and deionized water using the electrodeionization device. It relates to a manufacturing method.
  • an electrodeionization apparatus In an electrodeionization apparatus, generally, a cation exchange membrane and an anion exchange membrane are alternately arranged between a cathode and an anode, and a demineralization chamber and a concentration chamber are formed between the cation exchange membrane and the anion exchange membrane.
  • a salt chamber is filled with an ion exchanger (Patent Documents 1 and 2).
  • ion exchange membranes such as cation exchange membranes and anion exchange membranes
  • ion exchange membranes include heterogeneous membranes formed by adding a binder such as polystyrene to powdered ion exchange resin, and homogeneous membranes formed by polymerization of styrene-divinylbenzene or the like. Furthermore, a film obtained by graft polymerization of monomers having various anion exchange functions or cation exchange functions is used.
  • FIG. 6 is an exploded view showing the basic configuration of this electrodeionization apparatus.
  • a cathode electrode plate 2 is disposed along the cathode-side end plate 1, and a frame-like cathode spacer 3 is superimposed on the peripheral edge of the cathode electrode plate 2.
  • a cation exchange membrane 4 a frame frame 5 for forming a desalting chamber, an anion exchange membrane 6, and a frame frame 7 for forming a concentration chamber are superposed in this order.
  • a large number of the cation exchange membrane 4, the frame-like frame 5 for forming a desalting chamber, the anion exchange membrane 6, and the frame-like frame 7 for forming a concentration chamber are superposed as a unit. That is, the film 4, the frame 5, the film 6, and the frame 7 are laminated repeatedly in succession.
  • An anode electrode plate 9 is overlaid on the final anion exchange membrane 6 via a frame-like anode spacer 8, and an anode side end plate 10 is overlaid thereon to form a laminate. This laminate is tightened with bolts or the like.
  • the inner space of the desalination chamber frame 5 is a desalination chamber, and this desalination chamber is filled with an ion exchanger 5R such as an ion exchange resin.
  • the inside of the concentration chamber frame 7 is a concentration chamber. Although this concentrating chamber is an empty chamber, an ion exchange resin, a mesh spacer, or the like may be disposed.
  • a direct current is passed between the anode 9 and the cathode 2, and the water to be treated (raw water) is passed through the raw water inflow line 11 into the demineralization chamber, and the concentrated water is supplied to the concentrated water.
  • Water is passed through the inflow line 12 into the concentration chamber.
  • the treated water that has flowed into the demineralization chamber flows down the packed bed of ion exchange resin. At that time, impurity ions in the treated water are removed to form deionized water (product water), which is a deionized water outflow line. It flows out through thirteen.
  • the concentrated water passed through the concentration chamber receives impurity ions moving through the ion exchange membranes 4 and 6 when flowing down the concentration chamber, and the concentrated water outflow line as concentrated water that has concentrated the impurity ions. 14 flows out.
  • Electrode water is circulated through the electrode chambers via introduction lines 15 and 16 and extraction lines 17 and 18, respectively.
  • Concentrated water flowing out from the concentrated water outflow line 14 is discarded or partially recycled.
  • Such an electrodeionization apparatus is used as a pure water production apparatus used in various industries such as semiconductor chip production, power plant operation, petrochemical use, pharmaceutical production, and the like.
  • a high pressure of about 0.3 to 1.0 MPa is applied to the line through which the production water flows.
  • the device since the device has a complex structure in which ion exchange resins and ion exchange membranes are alternately stacked, even if the device is packaged with a strong fastening force, a slight misalignment or distortion occurs locally. As a result, pressure is applied to the member, causing breakage of the member (for example, breakage of the end plate) and water leakage. This problem is more likely to occur as the operating pressure increases.
  • Patent Document 2 describes that the above-described water leakage is prevented by providing a coil spring so as to press the end plates in the approaching direction. However, the structure is complicated and sufficient effects are not necessarily obtained. I can't.
  • Patent Document 3 a concentration chamber and a desalination chamber are partitioned by an ion exchange membrane between an anode and a cathode, concentrated water is circulated to the concentration chamber, and raw water is circulated to the desalination chamber as treated water.
  • an electrodeionization apparatus in which a part of the production water is taken out as production water and circulated in the concentration chamber as a concentrated water in the flow direction and the countercurrent direction of the demineralization chamber, the ion exchange resin filled in the demineralization chamber An electrodeionization apparatus having an average diameter of 0.2 to 0.3 mm and an ion exchange resin filling height of 40 to 80 mm is described.
  • boron removal efficiency is increased by using an ion exchange resin having an average particle size as small as 0.2 to 0.3 mm.
  • an electrodeionization apparatus when raw water is passed through a desalting chamber and concentrated water is passed through a concentrating chamber and a current is passed between the cathode and the anode, the concentrating chamber passes through the anion exchange membrane and the cation exchange membrane from the desalting chamber.
  • Deionized water (pure water) is obtained from the demineralization chamber by moving ions to The concentrated water enriched with ions flowing through the concentration chamber is discarded or partially recycled.
  • Such an electrodeionization apparatus is used as an ultrapure water production apparatus used in various industries, for example, semiconductor production.
  • boron is required to have a water quality of 1 ng / L or less (removal rate of 99.97% or more) and silica of 50 ⁇ g / L or less.
  • an electrodeionization apparatus current density 500mA / dm 2 or more (in particular 800 mA / dm 2 or more, further 1000 mA / dm 2 or more)
  • electrodeionization apparatus When operating at, electrodeionization apparatus The tendency of the electrical resistance value to increase is intensified. That is, when the voltage value for flowing the necessary current increases and reaches the operation limit (600 V), the current cannot be secured thereafter. For example, the current density during operation below 500mA / dm 2 in life 4 years, 800 mA / dm In 2 2 years or less, becomes less 1000 mA / dm 2 in 1 year.
  • the electrodeionization apparatus is operated at a current density of about 420 mA / dm 2 or less in order to make the service life of the electrode deionization apparatus 5 years or more, the boron removal rate is only about 99.95%.
  • the reason why the electric resistance increases as the current density during operation of the electrodeionization device increases and the voltage for passing the necessary current gradually increases is as follows. That is, when the electrodeionization apparatus is operated, dissociation of water (H 2 O ⁇ H + + OH ⁇ ) occurs at the interface between the anion exchange resin and the cation exchange resin or at the interface between the anion exchange membrane and the cation exchange resin. The higher the density, the more active the water dissociation. The more active the water dissociation, the more elution of the PSA (polystyrene sulfonic acid) component from the cation exchange resin. And it is estimated that among PSA components, components having relatively large molecular weights adhere and accumulate little by little on the ion exchange membrane, and the electrical resistance of the electrodeionization apparatus increases.
  • PSA polystyrene sulfonic acid
  • An object of the first invention is to provide an electrodeionization apparatus capable of preventing water leakage from a demineralization chamber with a relatively simple configuration.
  • the electrodeionization apparatus of the first aspect of the present invention is an electrodeionization apparatus comprising an anode and a cathode, and a concentration chamber and a demineralization chamber formed by arranging an ion exchange membrane between the anode and the cathode.
  • a pressure release portion for discharging pressure from the desalting chamber is provided.
  • the desalination chamber and the concentration chamber are arranged by arranging the ion exchange membrane, a desalination chamber frame surrounding the desalination chamber, and a concentration chamber frame surrounding the concentration chamber between the anode and the cathode.
  • a chamber is formed, and the pressure release portion includes a groove provided on at least one surface of the desalination chamber frame on the anode side and the cathode side.
  • the groove includes a first groove that circulates in the desalination chamber and a second groove that communicates the first groove with the outside of the electrodeionization apparatus.
  • the groove is provided so as to communicate the inner peripheral edge and the outer peripheral edge of the desalination chamber frame.
  • the groove communicates with the bottom surface of the electrodeionization device, and the electrodeionization device is installed on a water receiving tray.
  • the desalination chamber and the concentration chamber are arranged by arranging the ion exchange membrane, a desalination chamber frame surrounding the desalination chamber, and a concentration chamber frame surrounding the concentration chamber between the anode and the cathode.
  • a groove provided from an inner peripheral edge of the desalting chamber frame to a middle part between the inner peripheral edge and the outer peripheral edge, and the outside of the electrodeionization apparatus and the groove are provided. A hole for communication is provided.
  • a concentration chamber pressure release unit that discharges pressure from the concentration chamber is provided separately from the concentrated water extraction line from the concentration chamber.
  • the electrodeionization apparatus includes a pressure release unit that discharges the pressure in the desalting chamber separately from the demineralized water extraction line from the desalting chamber, so that an excessive increase in pressure in the desalting chamber is prevented. This prevents damage to the electrodeionization device and water leakage from the desalination chamber.
  • a concentration chamber and a desalination chamber are partitioned between an anode and a cathode by an ion exchange membrane, concentrated water is circulated to the concentration chamber, and raw water is desalted as treated water.
  • concentrated water is circulated to the concentration chamber
  • raw water is desalted as treated water.
  • an electrodeionization apparatus in which a part of the production water is circulated in the chamber and taken out as production water, and a part of the production water is circulated in the concentration chamber as the concentrated water in the flow direction and the countercurrent direction of the demineralization chamber.
  • the resin filling height is 400 to 2000 mm
  • the ion exchange resin filled in the desalting chamber includes an average diameter of 0.1 to 0.4 mm.
  • Deionized water is produced using this electrodeionization device.
  • the removal rate of boron, silica, etc. is improved by increasing the ion exchange resin filling height of the desalting chamber to 400 to 2000 mm.
  • the surface area of the ion exchange resin is increased, so that electric resistance is reduced and current can be secured even when the applied voltage is lowered. (In other words, the necessary voltage for operation with the same current is reduced), so that the power cost can be reduced.
  • the present inventor has found that the voltage increase is suppressed by setting the ratio of the anion exchange resin to the cation exchange resin to 65 to 35:35 to 65.
  • the third invention is based on such knowledge.
  • a concentration chamber and a desalination chamber are partitioned by an ion exchange membrane between an anode and a cathode, concentrated water is circulated to the concentration chamber, and raw water is desalted as treated water.
  • Deionized water is produced using this electrodeionization device.
  • the ratio of anion exchange resin: cation exchange resin filled in the demineralization chamber is set to 65 to 35:35 to 65, so that a high current having a current density of 50 A / m 2 or more is applied.
  • the voltage rise is prevented or suppressed.
  • the removal rate of boron, silica, etc. improves by applying a high current in this way.
  • FIG. 4 a is a perspective view of a desalting chamber frame according to yet another embodiment.
  • 4b is a perspective view of an electrodeionization apparatus using the frame of FIG. 4a.
  • FIG. 5a is a perspective view of a desalination chamber frame according to yet another embodiment.
  • FIG. 5b is a perspective view of an electrodeionization apparatus using the frame of FIG. 5a. It is a disassembled perspective view of an electrodeionization apparatus.
  • FIG. 1 is a perspective view of a demineralization chamber frame used in the electrodeionization apparatus of the first invention.
  • the frame 20 has a plate shape with an outer peripheral edge having a rectangular shape, and includes a first through portion 21 serving as a desalting chamber, a second through portion 22 serving as a water inlet for introducing concentrated water, and a passage for discharging concentrated water.
  • a first groove 26 that circulates so as to surround the first through portion 21 is provided between the outer peripheral edge and the inner peripheral edge of both the plate surfaces of the frame 20. Further, at the lower part of the frame 20, a second groove 27 that extends from the first groove 26 to the outer peripheral edge of the lower end portion of the frame 20 is provided.
  • the electrodeionization apparatus 30 of the present invention is configured in the same manner as the electrodeionization apparatus of FIG. 6 except that this demineralization chamber frame 20 is used.
  • This double-sided adhesive tape or adhesive exhibits an excellent sealing effect even when the flatness of the plate surface of the frame 20 is lower than when a gasket material such as a rubber sheet or an O-ring is used.
  • FIG. 2 is a perspective view showing a laminated form of the desalination chamber frame 20 and the end plates 1 and 10, the concentration chamber frame 7, the cathode spacer 3, and the anode spacer 8.
  • the end plates 1 and 10 are provided with water passage holes (not shown) as in FIG.
  • the second groove 27 constitutes a pressure release hole that opens toward the bottom surface of the electrodeionization device 30.
  • the electrodeionization apparatus 30 of this embodiment although the mesh etc. are not provided in the concentration chamber and it is an empty room, it is not limited to this.
  • the electrodeionization device 30 is placed on the water receiving tray 40. Although illustration is omitted, the water receiving tray 40 is provided with a platform for the apparatus 30 and a drain outlet, and a drain hose is connected to the drain outlet.
  • this electrodeionization apparatus 30 water is passed in the same manner as the electrodeionization apparatus of FIG. 6, and the raw water is subjected to electrodeionization treatment.
  • this electric deionization apparatus 30 when the pressure in the demineralization chamber rises, a part of the water in the demineralization chamber tries to ooze out along the plate surface of the frame 20. , 27 flows out of the electrodeionization device 30, so that an excessive increase in the pressure in the demineralization chamber is prevented. Further, it is possible to prevent water from leaking from other than the second groove 27. Furthermore, damage to the electrodeionization apparatus 30 is also prevented.
  • the circumferential groove 26 may be omitted, and the groove 28 or 29 may be provided so as to communicate the desalting chamber and the outside of the electrodeionization apparatus in a short circuit.
  • the groove 28 is provided in the vertical direction between the lower side portion of the first penetrating portion 21 and the bottom side portion of the frame 20 ⁇ / b> A.
  • the electrodeionization apparatus using the frame 20A is preferably placed on the water receiving tray 40 in the same manner as the electrodeionization apparatus 30 in FIG.
  • the groove 29 is provided in the lateral direction so as to connect the inner peripheral edge in the vertical direction of the through portion 21 and the outer peripheral edge in the vertical direction of the frame 20B.
  • the groove 29 has a slope that becomes lower toward the outer peripheral edge side.
  • the electrodeionization apparatus 30 ⁇ / b> B using the frame 20 ⁇ / b> B has a hose 31 connected to the end of the groove 29, and discharges water released from the desalination chamber through the hose 31. It is configured to do.
  • the desalination chamber frame 20C shown in FIG. 5a has, as a pressure release portion, a hole 33 that penetrates the frame 20C in the thickness direction, and a groove 32 that communicates the inner peripheral edge of the penetration portion 21 with the hole 33. .
  • holes are provided in the concentration chamber frame 7, the spacer 3, and the end plate 1 at positions where they overlap with the holes 33. Water flows out of the electrodeionization apparatus 30C. Drainage is performed through a hose 34 connected to this hole.
  • the size of the water flow line constituting the pressure discharge part from the desalination chamber is preferably a coyo that is smaller than the water flow line of the production water.
  • the pressure release water passage line is preferably as small as possible. Moreover, you may attach a thing like a relief valve (safety valve), or a valve to the connection part of a desalination chamber cell and a hose as needed.
  • a pressure releasing part similar to the above may be provided in the concentration chamber.
  • Example 1 An electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode to alternately form a concentration chamber and a desalting chamber is configured as shown in FIGS. 5a and 5b. Produced. The number of desalting chambers was 50. This electrodeionization apparatus was installed so that the water flow direction of the demineralization chamber and the concentration chamber was vertical. The desalting chamber and the concentration chamber were filled with an ion exchange resin described later. The filling height of the ion exchange resin in the desalting chamber and the concentration chamber was 60 mm, and the width was 40 mm. In addition, a safety valve was installed at the connection portion between the pressure release portion and the hose 34, and the set value was set to 0.5 MPa.
  • the desalting chamber was filled with an anion exchange resin and a cation exchange resin having an average particle size of 0.3 mm in an anion exchange resin: cation exchange resin ratio (dry weight ratio) of 60:40.
  • the output of the feed water pump was increased to increase the demineralization chamber inlet pressure to a maximum of 0.8 MPa.
  • Example 1 An electrodeionization apparatus having the same structure as that of Example 1 was manufactured except that a demineralization chamber frame having no grooves 32 and holes 33 was used.
  • the present invention can prevent a local pressure load and prevent water leakage and member damage.
  • FIG. 7 is a schematic cross-sectional view of an electrodeionization apparatus showing an embodiment of the second invention.
  • a plurality of anion exchange membranes (A membranes) 73 and cation exchange membranes (C membranes) 74 are alternately arranged between electrodes (anode 71, cathode 72), and a concentrating chamber 75 and a desalting chamber. 76 are alternately formed, and the desalting chamber 76 is filled with an ion exchange resin.
  • a membranes anion exchange membranes
  • C membranes cation exchange membranes
  • the concentration chamber 75, the anode chamber 77, and the cathode chamber 78 are also filled with an electric conductor such as an ion exchanger, activated carbon, or metal.
  • Raw water is introduced from the inlet side of the desalting chamber 76, and product water is taken out from the outlet side of the desalting chamber 76.
  • a portion of this product water is passed through the concentrating chamber 75 in a counter-current and transient manner in the direction opposite to the direction of water passing through the desalting chamber 76, and the outflow water from the concentrating chamber 75 is discharged out of the system. That is, in this electric deionization apparatus, the concentrating chambers 75 and the desalting chambers 76 are alternately arranged in parallel, and the inlet of the concentrating chamber 75 is provided on the product water take-out side of the desalting chamber 76, An outflow port of the concentrating chamber 75 is provided on the raw water inflow side of 76.
  • a part of the production water is fed to the inlet side of the anode chamber 77, the effluent water of the anode chamber 77 is fed to the inlet side of the cathode chamber 78, and the effluent water of the cathode chamber 78 is discharged out of the system as drainage. Discharged.
  • the concentration chamber 75 by passing the production water through the concentration chamber 75 in a counter-current and transient manner with the desalination chamber 76, the concentration of the concentrated water in the concentration chamber 75 becomes lower on the production water take-out side, and due to concentration diffusion.
  • the influence on the desalting chamber 76 is reduced, and the removal rate of ions such as boron can be increased.
  • the ion exchange resin filling height in the desalting chamber 76 is set to 400 to 2000 mm. Since the ion exchange resin filling height of the desalting chamber 76 is increased in this way, the adsorption band length is large, and difficult-to-removed anions such as boron and silica can be sufficiently removed.
  • the ion exchange resin an ion exchange resin having an average particle size of 0.1 to 0.4 mm and a small particle size is filled to increase the contact efficiency between the ion exchange resin and the water to be treated. The removal performance is further improved.
  • the average diameter (average particle diameter) and the resin ratio of the ion exchange resin are values in a regenerated (OH type, H type) wet state, the average diameter is a weight average, and the resin ratio is also a weight. It is a ratio.
  • the ion exchange resin filling height of the desalting chamber is preferably 400 to 800 mm, particularly preferably 400 to 600 mm. If the height of the resin layer is excessively large, the water flow differential pressure due to the resin increases, and the amount of water collected may decrease, or the apparatus itself may become considerably large due to the problem of the strength of the apparatus.
  • the ion-exchange resin filling height of the desalting chamber is preferably 400 to 800 mm, and the width is preferably 30 to 60 mm.
  • the ion exchange resin with a small particle size has the effect of lowering the operating voltage as well as the purpose of improving the performance of removing difficult ions such as boron and silica.
  • an ion exchange resin having a small average particle size is used, the surface area of ions increases, so the electric resistance decreases, allowing a higher voltage upper limit for determining the operating life and enabling a longer operating life. .
  • the average particle diameter of this ion exchange resin can also be measured by using a sieve, it is preferable to adopt the catalog value of the ion exchange resin manufacturer.
  • the average particle size of the small particle size ion exchange resin filled in the desalting chamber 76 exceeds 0.4 mm, the effect of the present invention by using the small particle size ion exchange resin cannot be sufficiently obtained.
  • an ion exchange resin having an average particle size smaller than 0.1 mm may not be preferable in terms of handleability and water resistance.
  • All of the ion exchange resins filled in the desalting chamber may have an average particle diameter of 0.1 to 0.4 mm, an ion exchange resin having an average particle diameter of 0.1 to 0.4 mm, and an average particle diameter. However, it may be filled with both ion exchange resins outside this range.
  • the proportion of the ion exchange resin having an average particle size of 0.1 to 0.4 mm in the ion exchange resin in the desalting chamber is preferably about 1 to 100%, particularly about 10 to 30%.
  • An ion exchange resin having an average particle size of 0.1 to 0.4 mm hereinafter sometimes referred to as ion exchange resin A
  • ion exchange resin B an ion exchange resin having an average particle size exceeding 0.4 mm
  • the ion exchange resin A may be filled in the vertical center of the desalting chamber, and the ion exchange resin B may be filled in the upper and lower portions of the desalting chamber.
  • the upper limit of the average particle diameter of the ion exchange resin B is not particularly set, usually an ion exchange resin having an average particle diameter of 1 mm or less can be used.
  • the mixed resin filled in the desalting chamber 76 may be the same in all locations within the range of the mixing ratio described above, or may be different on the inlet side and the outlet side in the water passage direction of the desalting chamber. Good.
  • the concentration chamber is also filled with an ion exchange resin.
  • the ion exchange resin filled in the concentration chamber is also the same as the ion exchange resin filled in the desalting chamber 76.
  • an ion exchange resin having an average particle size of 0.1 to 0.6 mm is preferable.
  • the ion exchange resin filled in the concentration chamber is also preferably a mixed resin of an anion exchange resin and a cation exchange resin.
  • a mixed resin of anion exchange resin: cation exchange resin 40 to 70:60 to 30, preferably 50 to 70:50 to 30 is preferable.
  • the thickness of the concentration chamber is preferably equal to the thickness of the desalting chamber.
  • the thickness of the desalting chamber 76 may be increased to 2.5 to 20 mm.
  • the number of ion exchange membranes and concentration chambers can be reduced. Further, by reducing the ion exchange membrane, the electric resistance can be reduced, and operation with a longer life can be achieved.
  • the number of desalting chambers is preferably about 1 to 200, particularly about 40 to 100.
  • Water to be treated is passed through the desalination chamber of the electric deionizer, and a part of the treated water (outflow water from the desalination chamber), for example, about 10 to 30% is passed to the concentration chamber, Passing water in the reverse direction is preferable for obtaining a high boron removal rate. Further, the water flow rate at that time is about 50 to 150 m / h for the desalination chamber and about 10 to 30 m / h for the concentration chamber from the viewpoint of boron removal rate and treatment efficiency. It is preferable.
  • the current density is preferably 50 A / m 2 or more in order to obtain a high boron and silica removal rate.
  • This electrodeionization apparatus is particularly preferably used as an electrodeionization apparatus provided in the subsequent stage of the RO membrane separation apparatus of the pure water production apparatus, and RO permeated water having a boron concentration of about 10 to 20 ppb from the RO membrane separation apparatus is used in the present invention. In this way, treated water having a boron concentration of 1 ppt or less can be efficiently obtained.
  • Electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode to alternately form a concentration chamber and a desalination chamber (thickness of the desalination chamber and the concentration chamber is 10 mm).
  • the number of desalting chambers 100) was set so that the water passing direction of the desalting chamber and the concentration chamber was the vertical direction.
  • the desalting chamber and the concentration chamber were filled with an ion exchange resin as follows. The filling height of the ion exchange resin in the desalting chamber and the concentration chamber was 600 mm, and the width was 350 mm.
  • an anion exchange resin and a cation exchange resin having an average particle size of 0.3 mm over an upper and lower range of 100 mm at the center in the vertical direction of the desalting chamber are anion exchange resin: cation exchange resin.
  • 50:50 mixed resin was filled.
  • the upper and lower portions of the desalting chamber were filled with an anion exchange resin / cation exchange resin mixed resin (mixing ratio 50:50) having an average particle diameter of 0.6 mm over a range of 250 mm above and below.
  • the boron concentration of the obtained treated water was 0.001 ⁇ g / L or less, and a boron removal rate of 99.97% could be achieved.
  • Example 3 Comparative Example 2
  • the filling height of the ion exchange resin in the desalting chamber is 400 mm (Example 3) or 300 mm (Comparative Example 2), and the range of the ion exchange resin having an average particle size of 0.6 mm in the desalting chamber is shown.
  • the treated water was passed through the electrodeionization apparatus having the same configuration as in Example 2 except that the conditions were as described in Example 1 under the same conditions (however, in Example 3, the concentration of treated water boron was 3.4 ⁇ g / L). Watered. The results are shown in Table 2.
  • Example 3 The ion exchange resin filling height of the desalting chamber is 600 mm, but all of the ion exchange resins are those having an average particle diameter of 0.6 mm (anion exchange resin / cation exchange resin mixed resin, mixing ratio is 50:50). Except that, the test was performed under the same conditions as in Example 2.
  • the raw water may be directly passed through the concentration chamber 75.
  • the mixed resin filled in the desalting chamber 76 may be the same in all locations within the range of the mixing ratio described above, or may be different on the inlet side and the outlet side in the water passage direction of the desalting chamber. Good.
  • organic substances such as PSA are eluted from the ion exchange resin as compared with a low current.
  • the eluted organic matter adheres to the surface of the nearby ion exchange resin and increases the electrical resistance.
  • the attached organic matter is peeled off when the ion exchange resin is regenerated and repeatedly swelled and contracted, so that the voltage does not increase if the ion exchange resin swells and contracts.
  • anion exchange resin / cation exchange resin ratio (A / C ratio) is higher than 65/35 (for example, A / C ratio 75/25), it becomes difficult for current to flow through the ion exchange resin, and swelling shrinkage due to regeneration. Is less likely to occur. As a result, the organic substance remains attached to the ion exchange resin, becomes a resistance when a current flows, and the voltage gradually increases.
  • the ratio of anion exchange resin / cation exchange resin in the range of 65 to 35:35 to 65, it becomes easier for current to flow through the ion exchange resin, and the organic matter is peeled off due to expansion and contraction of the ion exchange resin. Voltage rise is prevented or suppressed.
  • the demineralization chamber 76 is filled with an ion exchange resin having an average particle diameter of 0.2 to 0.8 mm and a small particle diameter to increase the contact efficiency between the ion exchange resin and the water to be treated. It is preferable to improve the removal performance of difficult-to-removed anions.
  • the average diameter (average particle diameter) and the resin ratio of the ion exchange resin are values in a regenerated (OH type, H type) wet state, the average diameter is a weight average, and the resin ratio is also It is a weight ratio.
  • the ion exchange resin with a small particle size has the effect of lowering the operating voltage as well as the purpose of improving the performance of removing difficult ions such as boron and silica.
  • an ion exchange resin having a small average particle size is used, the surface area of ions increases, so the electric resistance decreases, allowing a higher voltage upper limit for determining the operating life and enabling a longer operating life. .
  • the average particle diameter of this ion exchange resin can also be measured by using a sieve, it is preferable to adopt the catalog value of the ion exchange resin manufacturer.
  • the concentration chamber is also filled with an ion exchange resin.
  • the ion exchange resin filled in the concentration chamber is also desalted.
  • an ion exchange resin having an average particle size of 0.2 to 0.8 mm is preferable.
  • the ion exchange resin filled in the concentration chamber is also preferably a mixed resin of an anion exchange resin and a cation exchange resin.
  • a mixed resin of anion exchange resin: cation exchange resin 40 to 70:60 to 30, preferably 50 to 70:50 to 30 is preferable.
  • the thickness of the concentration chamber is preferably equal to the thickness of the desalting chamber.
  • the thickness of the desalting chamber 76 may be increased to 2.5 to 20 mm for the purpose of cost reduction.
  • the number of ion exchange membranes and concentration chambers can be reduced.
  • the electric resistance can be reduced, and operation with a longer life can be achieved.
  • the number of desalting chambers is preferably about 1 to 200, particularly about 40 to 100.
  • the water to be treated is passed through the demineralization chamber of the electrodeionization apparatus, and a part of the treated water (the outflow water of the demineralization chamber), for example, about 10 to 30% is supplied to the concentration chamber.
  • a part of the treated water for example, about 10 to 30% is supplied to the concentration chamber.
  • the water flow rate at that time is about 50 to 150 m / h for the desalination chamber and about 10 to 30 m / h for the concentration chamber from the viewpoint of boron removal rate and treatment efficiency. It is preferable.
  • the current density is preferably 50 A / m 2 or more, particularly 50 to 200 A / m 2, particularly 75 to 125 A / m 2 , in order to obtain a high boron and silica removal rate.
  • the electrodeionization apparatus of the third invention is particularly preferably used as an electrodeionization apparatus provided at the subsequent stage of the RO membrane separation apparatus of the pure water production apparatus, and RO permeated water having a boron concentration of about 10 to 20 ppb from the RO membrane separation apparatus. Can be treated with the electrodeionization apparatus of the third invention to efficiently obtain treated water having a boron concentration of 1 ppt or less.
  • Electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode to alternately form a concentration chamber and a desalination chamber (thickness of the desalination chamber and the concentration chamber is 10 mm).
  • the number of desalting chambers 4
  • the desalting chamber and the concentration chamber were filled with an ion exchange resin as follows.
  • the filling height of the ion exchange resin in the desalting chamber and the concentration chamber was 600 mm, and the width was 400 mm.
  • the desalting chamber was filled with a mixed resin of the following anion exchange resin and cation exchange resin (anion exchange resin: cation exchange resin ratio 50:50).
  • Anion exchange resin Dowex Monosphere 650C, particle size 650 ⁇ m
  • Cation exchange resin Dowex Monosphere 550A particle size 590 ⁇ m
  • the boron concentration of the obtained treated water was 0.001 ⁇ g / L, and the boron removal rate was 99.97%.
  • the voltage increase rate was 0.4 V / year as shown in FIG.
  • Example 5 treated water under the same conditions as in Example 4 except that the anion exchange resin / cation exchange resin ratio (A / C ratio) of the ion exchange resin in the desalting chamber and the current density were as shown in Table 1. I passed water. The results are shown in Table 3 and FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

On a plate surface of a frame 20 for a desalination chamber, a groove 26 is provided to the periphery of the frame 20, and a groove 27 connecting the groove 26 to the bottom edge of the frame 20 is provided. This electric deionization device is constructed by stacking the frame for the desalination chamber, a frame for a concentration chamber, a spacer for an anode, a spacer for a cathode, and an end plate. The desalination chamber is filled with an ion exchange resin. As the pressure in the desalination chamber increases, a portion of water in the desalination chamber flows along the plate surface of the frame 20 so as to permeate same. Since this water flows out of the electric deionization device 30 through the grooves 26, 27, the pressure in the desalination chamber is prevented from increasing excessively.

Description

電気脱イオン装置及び脱イオン水の製造方法Electrodeionization apparatus and method for producing deionized water
 本発明は、電気脱イオン装置に係り、詳しくは陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画形成された電気脱イオン装置に関する。 The present invention relates to an electrodeionization apparatus, and more particularly to an electrodeionization apparatus in which a concentration chamber and a desalination chamber are defined by an ion exchange membrane between an anode and a cathode.
 本発明は、被処理水中のホウ素を高度に除去することができる電気脱イオン装置と、この電気脱イオン装置を用いた脱イオン水の製造方法に関する。 The present invention relates to an electrodeionization apparatus capable of highly removing boron in water to be treated and a method for producing deionized water using the electrodeionization apparatus.
 本発明は、被処理水中のホウ素を高度に除去することができると共に、高電流印加時における電圧上昇を抑制することができる電気脱イオン装置と、この電気脱イオン装置を用いた脱イオン水の製造方法に関する。 The present invention provides an electrodeionization device capable of highly removing boron in water to be treated and suppressing a voltage increase when a high current is applied, and deionized water using the electrodeionization device. It relates to a manufacturing method.
 [第1発明の背景技術]
電気脱イオン装置は、一般に陰極及び陽極間にカチオン交換膜とアニオン交換膜とを交互に配置し、これらカチオン交換膜及びアニオン交換膜との間に脱塩室及び濃縮室を形成し、この脱塩室にイオン交換体を充填したものである(特許文献1,2)。
[Background of the first invention]
In an electrodeionization apparatus, generally, a cation exchange membrane and an anion exchange membrane are alternately arranged between a cathode and an anode, and a demineralization chamber and a concentration chamber are formed between the cation exchange membrane and the anion exchange membrane. A salt chamber is filled with an ion exchanger (Patent Documents 1 and 2).
 カチオン交換膜やアニオン交換膜などのイオン交換膜としては、粉末状のイオン交換樹脂にポリスチレンなどの結合剤を加えて製膜する不均質膜、スチレン-ジビニルベンゼン等の重合によって製膜する均質膜、さらには各種アニオン交換機能あるいはカチオン交換機能を有する単量体をグラフト重合により製膜したものなどが用いられている。 Examples of ion exchange membranes such as cation exchange membranes and anion exchange membranes include heterogeneous membranes formed by adding a binder such as polystyrene to powdered ion exchange resin, and homogeneous membranes formed by polymerization of styrene-divinylbenzene or the like. Furthermore, a film obtained by graft polymerization of monomers having various anion exchange functions or cation exchange functions is used.
 図6はこの電気脱イオン装置の基本的な構成を示す分解図である。 FIG. 6 is an exploded view showing the basic configuration of this electrodeionization apparatus.
 陰極側のエンドプレート1に沿って陰極電極板2が配置され、この陰極電極板2の周縁部に枠状の陰極用スペーサ3が重ね合わされる。この陰極用スペーサ3に引き続いてカチオン交換膜4、脱塩室形成用の枠状フレーム5、アニオン交換膜6及び濃縮室形成用の枠状フレーム7がこの順に重ね合わされる。このカチオン交換膜4、脱塩室形成用の枠状フレーム5、アニオン交換膜6及び濃縮室形成用の枠状フレーム7を1単位として多数重ね合わされる。即ち、膜4、フレーム5、膜6、フレーム7が連続して繰り返し積層される。最後のアニオン交換膜6に対し枠状の陽極用スペーサ8を介して陽極電極板9が重ね合わされ、その上に陽極側エンドプレート10が重ね合わされて積層体とされる。この積層体はボルト等によって締め付けられる。 A cathode electrode plate 2 is disposed along the cathode-side end plate 1, and a frame-like cathode spacer 3 is superimposed on the peripheral edge of the cathode electrode plate 2. Subsequently to the cathode spacer 3, a cation exchange membrane 4, a frame frame 5 for forming a desalting chamber, an anion exchange membrane 6, and a frame frame 7 for forming a concentration chamber are superposed in this order. A large number of the cation exchange membrane 4, the frame-like frame 5 for forming a desalting chamber, the anion exchange membrane 6, and the frame-like frame 7 for forming a concentration chamber are superposed as a unit. That is, the film 4, the frame 5, the film 6, and the frame 7 are laminated repeatedly in succession. An anode electrode plate 9 is overlaid on the final anion exchange membrane 6 via a frame-like anode spacer 8, and an anode side end plate 10 is overlaid thereon to form a laminate. This laminate is tightened with bolts or the like.
 上記の脱塩室用フレーム5の内側スペースが脱塩室となっており、この脱塩室にはイオン交換樹脂等のイオン交換体5Rが充填される。濃縮室用フレーム7の内側が濃縮室となっている。この濃縮室内は空室となっているが、イオン交換樹脂やメッシュスペーサなどが配置されてもよい。 The inner space of the desalination chamber frame 5 is a desalination chamber, and this desalination chamber is filled with an ion exchanger 5R such as an ion exchange resin. The inside of the concentration chamber frame 7 is a concentration chamber. Although this concentrating chamber is an empty chamber, an ion exchange resin, a mesh spacer, or the like may be disposed.
 この電気脱イオン装置にあっては、陽極9と陰極2の間に直流電流を通じ、且つ被処理水(原水)を原水流入ライン11を通して脱塩室内に通水させ、また、濃縮水を濃縮水流入ライン12を通して濃縮室内に通水させる。脱塩室内に流入してきた被処理水はイオン交換樹脂の充填層を流下し、その際、該被処理水中の不純物イオンが除かれて脱イオン水(生産水)となり、これが脱イオン水流出ライン13を経て流出する。 In this electrodeionization apparatus, a direct current is passed between the anode 9 and the cathode 2, and the water to be treated (raw water) is passed through the raw water inflow line 11 into the demineralization chamber, and the concentrated water is supplied to the concentrated water. Water is passed through the inflow line 12 into the concentration chamber. The treated water that has flowed into the demineralization chamber flows down the packed bed of ion exchange resin. At that time, impurity ions in the treated water are removed to form deionized water (product water), which is a deionized water outflow line. It flows out through thirteen.
 一方、濃縮室内に通水された濃縮水は濃縮室内を流下するときに、イオン交換膜4,6を介して移動してくる不純物イオンを受け取り、不純物イオンを濃縮した濃縮水として濃縮水流出ライン14より流出する。電極室にはそれぞれ導入ライン15,16及び取出ライン17,18を介して電極水が流通される。 On the other hand, the concentrated water passed through the concentration chamber receives impurity ions moving through the ion exchange membranes 4 and 6 when flowing down the concentration chamber, and the concentrated water outflow line as concentrated water that has concentrated the impurity ions. 14 flows out. Electrode water is circulated through the electrode chambers via introduction lines 15 and 16 and extraction lines 17 and 18, respectively.
 濃縮水流出ライン14から流出した濃縮水は、廃棄されるか、あるいは部分的にリサイクルされる。このような電気脱イオン装置は、種々の産業、例えば半導体チップの製造、発電所の運転、石油化学用途、医薬品製造などに用いる純水製造装置として利用されている。 Concentrated water flowing out from the concentrated water outflow line 14 is discarded or partially recycled. Such an electrodeionization apparatus is used as a pure water production apparatus used in various industries such as semiconductor chip production, power plant operation, petrochemical use, pharmaceutical production, and the like.
 電気脱イオン装置にあっては、生産水を通水するラインに約0.3~1.0MPaほどの高い圧力がかかる。また、装置の中にイオン交換樹脂やイオン交換膜が交互に積層される複雑な構造となっている為、強い締結力で装置をパッケージ化していても僅かなズレや歪みなどが生じると局所的に圧力がかかり、部材の破損(例えばエンドプレートの破損など)や水漏れが発生する。この問題は、運転圧力が大きくなるほど起こりやすくなる。 In the case of an electrodeionization apparatus, a high pressure of about 0.3 to 1.0 MPa is applied to the line through which the production water flows. In addition, since the device has a complex structure in which ion exchange resins and ion exchange membranes are alternately stacked, even if the device is packaged with a strong fastening force, a slight misalignment or distortion occurs locally. As a result, pressure is applied to the member, causing breakage of the member (for example, breakage of the end plate) and water leakage. This problem is more likely to occur as the operating pressure increases.
 特許文献2には、エンドプレート同士を接近方向に押圧するようにコイルバネを設けることにより、上記の水漏れを防ぐことが記載されているが、構造が複雑となると共に、必ずしも十分な効果が得られない。 Patent Document 2 describes that the above-described water leakage is prevented by providing a coil spring so as to press the end plates in the approaching direction. However, the structure is complicated and sufficient effects are not necessarily obtained. I can't.
特開2003-275769号公報JP 2003-275769 A 特開2012-61388号公報JP 2012-61388 A
 [第2発明の背景技術]
 近年、超純水製造において、ホウ素については、例えば1ppt以下という厳しい水質が求められるようになってきている。
[Background of the Second Invention]
In recent years, in the production of ultrapure water, strict water quality of, for example, 1 ppt or less has been demanded for boron.
 特許文献3には陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、濃縮水が該濃縮室に流通され、原水が被処理水として脱塩室に流通され、生産水として取り出され、生産水の一部が濃縮水として濃縮室に脱塩室の流れ方向と向流方向に流通される電気脱イオン装置において、該脱塩室に充填されるイオン交換樹脂の平均直径が0.2~0.3mmであり、イオン交換樹脂充填高さ40~80mmである電気脱イオン装置が記載されている。 In Patent Document 3, a concentration chamber and a desalination chamber are partitioned by an ion exchange membrane between an anode and a cathode, concentrated water is circulated to the concentration chamber, and raw water is circulated to the desalination chamber as treated water. In an electrodeionization apparatus in which a part of the production water is taken out as production water and circulated in the concentration chamber as a concentrated water in the flow direction and the countercurrent direction of the demineralization chamber, the ion exchange resin filled in the demineralization chamber An electrodeionization apparatus having an average diameter of 0.2 to 0.3 mm and an ion exchange resin filling height of 40 to 80 mm is described.
 この電気脱イオン装置では、イオン交換樹脂として平均粒径が0.2~0.3mmと小さいものを用いることにより、ホウ素除去効率を高くしてる。 In this electrodeionization apparatus, boron removal efficiency is increased by using an ion exchange resin having an average particle size as small as 0.2 to 0.3 mm.
特開2017-176968号公報JP 2017-176968 A
  [第3発明の背景技術]
電気脱イオン装置において、脱塩室に原水を通過させるとともに濃縮室に濃縮水を通過させ、陰極及び陽極間に電流を流すと、脱塩室からアニオン交換膜及びカチオン交換膜を通って濃縮室へとイオンが移動することにより、脱塩室から脱イオン水(純水)が得られる。濃縮室を流れるイオンが濃縮された濃縮水は廃棄されるか、あるいは部分的にリサイクルされる。このような電気脱イオン装置は、種々の産業、例えば半導体製造などに用いる超純水製造装置として利用されている。
[Background of the Third Invention]
In an electrodeionization apparatus, when raw water is passed through a desalting chamber and concentrated water is passed through a concentrating chamber and a current is passed between the cathode and the anode, the concentrating chamber passes through the anion exchange membrane and the cation exchange membrane from the desalting chamber. Deionized water (pure water) is obtained from the demineralization chamber by moving ions to The concentrated water enriched with ions flowing through the concentration chamber is discarded or partially recycled. Such an electrodeionization apparatus is used as an ultrapure water production apparatus used in various industries, for example, semiconductor production.
 近年、超純水の要求水質が上がり、より高いイオン除去率が求められている。例えばホウ素は1ng/L以下(除去率99.97%以上)、シリカは50μg/L以下という水質が求められている。 In recent years, the required water quality of ultrapure water has increased, and a higher ion removal rate has been demanded. For example, boron is required to have a water quality of 1 ng / L or less (removal rate of 99.97% or more) and silica of 50 μg / L or less.
 電気脱イオン装置において、生産水量を減少させずに除去性能を向上させるためには印加電流を高くするのが効率的である。例えば栗田工業株式会社製「KCDI-UPz」は、電流を10Aと高く印加することによって高いイオン除去性能を得ている。 In the electrodeionization apparatus, it is efficient to increase the applied current in order to improve the removal performance without reducing the production water volume. For example, “KCDI-UPz” manufactured by Kurita Kogyo Co., Ltd. obtains high ion removal performance by applying a current as high as 10 A.
 しかし、高電流を印加すると経年的な電圧上昇が大きくなり、早期に直流電源器の電圧上限に到達してしまい、装置の運転寿命が短くなる。近年は水質に加えて装置寿命もより長期化が求められており、両方を両立することは難しい。 However, when a high current is applied, the voltage increase with time increases and the voltage upper limit of the DC power supply is reached at an early stage, thereby shortening the operating life of the apparatus. In recent years, in addition to water quality, the life of the apparatus is required to be longer, and it is difficult to achieve both.
 特許文献4の0007段落及び0010段落に記載の通り、電気脱イオン装置を電流密度500mA/dm以上(特に800mA/dm以上、さらには1000mA/dm以上)で運転すると、電気脱イオン装置の電気抵抗値が上昇する傾向が激しくなる。すなわち必要な電流を流すための電圧値が上がってしまい、運転限界(600V)に達すると、その後は電流が確保できなくなる。例えば、運転時の電流密度が500mA/dmでは寿命が4年以下、800mA/dmでは2年以下、1000mA/dmでは1年以下となってしまう。電気脱イオン装置の耐用年数を5年以上とするために電流密度420mA/dm程度以下で運転すると、ホウ素除去率は99.95%程度にしかならない。 As described in 0007 paragraph and 0010 paragraph of Patent Document 4, an electrodeionization apparatus current density 500mA / dm 2 or more (in particular 800 mA / dm 2 or more, further 1000 mA / dm 2 or more) When operating at, electrodeionization apparatus The tendency of the electrical resistance value to increase is intensified. That is, when the voltage value for flowing the necessary current increases and reaches the operation limit (600 V), the current cannot be secured thereafter. For example, the current density during operation below 500mA / dm 2 in life 4 years, 800 mA / dm In 2 2 years or less, becomes less 1000 mA / dm 2 in 1 year. When the electrodeionization apparatus is operated at a current density of about 420 mA / dm 2 or less in order to make the service life of the electrode deionization apparatus 5 years or more, the boron removal rate is only about 99.95%.
 電気脱イオン装置の運転時の電流密度が高くなるほど電気抵抗が増加し、必要な電流を流すための電圧が次第に高くなる理由は、次の通りであると考えられる。すなわち、電気脱イオン装置の運転時にはアニオン交換樹脂とカチオン交換樹脂の界面、またはアニオン交換膜とカチオン交換樹脂との界面において水の解離(HO→H+OH)が発生するが、電流密度が高いほどその水解離は盛んになり、この水解離が盛んになるほど、カチオン交換樹脂からのPSA(ポリスチレンスルホン酸)成分の溶出が多くなる。そして、PSA成分のうち比較的分子量の大きい成分が、イオン交換膜に少しずつ付着・蓄積し、電気脱イオン装置の電気抵抗が上昇すると推測される。 The reason why the electric resistance increases as the current density during operation of the electrodeionization device increases and the voltage for passing the necessary current gradually increases is as follows. That is, when the electrodeionization apparatus is operated, dissociation of water (H 2 O → H + + OH ) occurs at the interface between the anion exchange resin and the cation exchange resin or at the interface between the anion exchange membrane and the cation exchange resin. The higher the density, the more active the water dissociation. The more active the water dissociation, the more elution of the PSA (polystyrene sulfonic acid) component from the cation exchange resin. And it is estimated that among PSA components, components having relatively large molecular weights adhere and accumulate little by little on the ion exchange membrane, and the electrical resistance of the electrodeionization apparatus increases.
 特許文献4の0011段落には、電気脱イオン装置に充填するイオン交換樹脂(混合樹脂)におけるカチオン交換樹脂とアニオン交換樹脂の比率はPSA成分溶出の点からはアニオン交換樹脂の比率が多いほど少なくなる一方、アニオン交換樹脂が増えすぎるとカチオン成分の除去率が低下するため、アニオン交換樹脂比率を80~60%にする、と記載されている。 In paragraph 0011 of Patent Document 4, the ratio of the cation exchange resin and the anion exchange resin in the ion exchange resin (mixed resin) filled in the electrodeionization apparatus is smaller as the ratio of the anion exchange resin is larger from the viewpoint of elution of the PSA component. On the other hand, it is described that when the amount of anion exchange resin increases excessively, the removal rate of the cation component decreases, so that the anion exchange resin ratio is 80 to 60%.
特開2018-1106号公報JP-A-2018-1106
 [第1発明の概要]
 第1発明は、比較的簡易な構成によって脱塩室からの漏水を防止することができる電気脱イオン装置を提供することを目的とする。
[Outline of the first invention]
An object of the first invention is to provide an electrodeionization apparatus capable of preventing water leakage from a demineralization chamber with a relatively simple configuration.
 第1本発明の電気脱イオン装置は、陽極及び陰極と、該陽極と陰極との間にイオン交換膜を配列することにより形成された濃縮室及び脱塩室とを有する電気脱イオン装置において、該脱塩室からの生産水の取出ラインとは別に、該脱塩室内から圧力を放出する圧力放出部を備えたことを特徴とする。 The electrodeionization apparatus of the first aspect of the present invention is an electrodeionization apparatus comprising an anode and a cathode, and a concentration chamber and a demineralization chamber formed by arranging an ion exchange membrane between the anode and the cathode. In addition to the production water take-out line from the desalting chamber, a pressure release portion for discharging pressure from the desalting chamber is provided.
 一態様では、前記陽極と陰極との間に前記イオン交換膜と、脱塩室を囲む脱塩室用フレームと、濃縮室を囲む濃縮室用フレームとを配列することにより前記脱塩室及び濃縮室が形成されており、前記圧力放出部として、該脱塩室用フレームの陽極側及び陰極側の少なくとも一方の面に設けられた溝を備える。 In one aspect, the desalination chamber and the concentration chamber are arranged by arranging the ion exchange membrane, a desalination chamber frame surrounding the desalination chamber, and a concentration chamber frame surrounding the concentration chamber between the anode and the cathode. A chamber is formed, and the pressure release portion includes a groove provided on at least one surface of the desalination chamber frame on the anode side and the cathode side.
 一態様では、前記溝として、脱塩室を周回する第1の溝と、該第1の溝を電気脱イオン装置外に連通する第2の溝とを備える。 In one aspect, the groove includes a first groove that circulates in the desalination chamber and a second groove that communicates the first groove with the outside of the electrodeionization apparatus.
 一態様では、前記溝は、脱塩室用フレームの内周縁と外周縁とを連通するように設けられている。 In one aspect, the groove is provided so as to communicate the inner peripheral edge and the outer peripheral edge of the desalination chamber frame.
 一態様では、前記溝は前記電気脱イオン装置の底面に連通しており、該電気脱イオン装置が水受けトレー上に設置されている。 In one aspect, the groove communicates with the bottom surface of the electrodeionization device, and the electrodeionization device is installed on a water receiving tray.
 一態様では、前記陽極と陰極との間に前記イオン交換膜と、脱塩室を囲む脱塩室用フレーム及び濃縮室を囲む濃縮室用フレームとを配列することにより前記脱塩室及び濃縮室が形成されており、前記圧力放出部として、前記脱塩室フレームの内周縁から内周縁と外周縁との間の途中部分まで設けられた溝と、前記電気脱イオン装置外と該溝とを連通する孔を備える。 In one aspect, the desalination chamber and the concentration chamber are arranged by arranging the ion exchange membrane, a desalination chamber frame surrounding the desalination chamber, and a concentration chamber frame surrounding the concentration chamber between the anode and the cathode. As the pressure release part, a groove provided from an inner peripheral edge of the desalting chamber frame to a middle part between the inner peripheral edge and the outer peripheral edge, and the outside of the electrodeionization apparatus and the groove are provided. A hole for communication is provided.
 一態様では、前記濃縮室からの濃縮水取出ラインとは別に、該濃縮室内から圧力を放出する濃縮室用圧力放出部を備える。 In one aspect, a concentration chamber pressure release unit that discharges pressure from the concentration chamber is provided separately from the concentrated water extraction line from the concentration chamber.
 [第1発明の効果]
第1発明の電気脱イオン装置は、脱塩室からの脱塩水取出ラインとは別に、脱塩室内の圧力を放出する圧力放出部を備えているので、脱塩室内の過度な圧力上昇が防止され、電気脱イオン装置の破損や脱塩室からの漏水が防止される。
[Effect of the first invention]
The electrodeionization apparatus according to the first aspect of the present invention includes a pressure release unit that discharges the pressure in the desalting chamber separately from the demineralized water extraction line from the desalting chamber, so that an excessive increase in pressure in the desalting chamber is prevented. This prevents damage to the electrodeionization device and water leakage from the desalination chamber.
 [第2発明の概要]
 第2発明は、上記特許文献3よりもホウ素除去性能をさらに向上させた電気脱イオン装置と、この電気脱イオン装置を用いた脱イオン水の製造方法を提供することを課題とする。
[Outline of the second invention]
It is an object of the second invention to provide an electrodeionization apparatus having further improved boron removal performance than that of Patent Document 3, and a method for producing deionized water using the electrodeionization apparatus.
 第2発明の電気脱イオン装置は、陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、濃縮水が該濃縮室に流通され、原水が被処理水として脱塩室に流通され、生産水として取り出され、生産水の一部が濃縮水として濃縮室に脱塩室の流れ方向と向流方向に流通される電気脱イオン装置において、該脱塩室のイオン交換樹脂充填高さが400~2000mmであり、該脱塩室に充填されるイオン交換樹脂が平均直径0.1~0.4mmのものを含むことを特徴とする。 In the electrodeionization apparatus of the second invention, a concentration chamber and a desalination chamber are partitioned between an anode and a cathode by an ion exchange membrane, concentrated water is circulated to the concentration chamber, and raw water is desalted as treated water. In an electrodeionization apparatus in which a part of the production water is circulated in the chamber and taken out as production water, and a part of the production water is circulated in the concentration chamber as the concentrated water in the flow direction and the countercurrent direction of the demineralization chamber. The resin filling height is 400 to 2000 mm, and the ion exchange resin filled in the desalting chamber includes an average diameter of 0.1 to 0.4 mm.
 この電気脱イオン装置を用いて脱イオン水が製造される。 Deionized water is produced using this electrodeionization device.
 [第2発明の効果]
 第2発明の電気脱イオン装置では、脱塩室のイオン交換樹脂充填高さを400~2000mmと大きくしたことにより、ホウ素、シリカ等の除去率が向上する。
[Effect of the second invention]
In the electrodeionization apparatus of the second invention, the removal rate of boron, silica, etc. is improved by increasing the ion exchange resin filling height of the desalting chamber to 400 to 2000 mm.
 なお、平均粒径が0.1~0.4mmと小さいイオン交換樹脂を用いると、イオン交換樹脂の表面積が大きくなるため、電気抵抗が小さくなり、印加電圧を低くしても電流が確保される(即ち、同電流で運転するための必要電圧が低下する)ようになるので、電力コストを低減することができる。 If an ion exchange resin having a small average particle size of 0.1 to 0.4 mm is used, the surface area of the ion exchange resin is increased, so that electric resistance is reduced and current can be secured even when the applied voltage is lowered. (In other words, the necessary voltage for operation with the same current is reduced), so that the power cost can be reduced.
 [第3発明の概要]
 第3発明は、高電流印加でも電圧上昇が抑制された、ホウ素除去性能に優れる電気脱イオン装置と、この電気脱イオン装置を用いた脱イオン水の製造方法を提供することを課題とする。
[Outline of the third invention]
It is an object of the third invention to provide an electrodeionization apparatus excellent in boron removal performance in which a voltage increase is suppressed even when a high current is applied, and a method for producing deionized water using the electrodeionization apparatus.
 本発明者は、鋭意検討を重ねた結果、アニオン交換樹脂とカチオン交換樹脂との比率を65~35:35~65とすることにより、電圧上昇が抑制されることを見出した。 As a result of intensive studies, the present inventor has found that the voltage increase is suppressed by setting the ratio of the anion exchange resin to the cation exchange resin to 65 to 35:35 to 65.
 第3発明は、かかる知見に基づく。第3発明の電気脱イオン装置は、陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、濃縮水が該濃縮室に流通され、原水が被処理水として脱塩室に流通され、生産水として取り出され、脱塩室にはアニオン交換樹脂とカチオン交換樹脂との混合樹脂が充填されている電気脱イオン装置において、該脱塩室内の混合樹脂中のアニオン交換樹脂とカチオン交換樹脂の混合割合は、アニオン交換樹脂:カチオン交換樹脂=65~35:35~65であることを特徴とする。 The third invention is based on such knowledge. In the electrodeionization apparatus of the third invention, a concentration chamber and a desalination chamber are partitioned by an ion exchange membrane between an anode and a cathode, concentrated water is circulated to the concentration chamber, and raw water is desalted as treated water. An anion exchange resin in a mixed resin in the demineralization chamber in an electrodeionization apparatus in which the demineralization chamber is filled with a mixed resin of an anion exchange resin and a cation exchange resin. The mixing ratio of cation exchange resin and anion exchange resin is characterized by anion exchange resin: cation exchange resin = 65 to 35:35 to 65.
 この電気脱イオン装置を用いて脱イオン水が製造される。 Deionized water is produced using this electrodeionization device.
 [第3発明の効果]
 第3発明の電気脱イオン装置では、脱塩室内に充填するアニオン交換樹脂:カチオン交換樹脂比率を65~35:35~65としたことにより、電流密度50A/m以上の高電流を印加しても電圧上昇が防止あるいは抑制される。また、このように高電流印加することにより、ホウ素、シリカ等の除去率が向上する。
[Effect of the third invention]
In the electrodeionization apparatus of the third invention, the ratio of anion exchange resin: cation exchange resin filled in the demineralization chamber is set to 65 to 35:35 to 65, so that a high current having a current density of 50 A / m 2 or more is applied. However, the voltage rise is prevented or suppressed. Moreover, the removal rate of boron, silica, etc. improves by applying a high current in this way.
実施の形態に係る電気脱イオン装置の脱塩室用フレームの斜視図である。It is a perspective view of the frame for demineralization chambers of the electrodeionization apparatus concerning an embodiment. 実施の形態に係る電気脱イオン装置の斜視図である。It is a perspective view of the electrodeionization apparatus concerning an embodiment. 別の実施の形態に係る脱塩室用フレームの斜視図である。It is a perspective view of the frame for desalination rooms concerning another embodiment. 図4aはさらに別の実施の形態に係る脱塩室用フレームの斜視図である。図4bは図4aのフレームを用いた電気脱イオン装置の斜視図である。FIG. 4 a is a perspective view of a desalting chamber frame according to yet another embodiment. 4b is a perspective view of an electrodeionization apparatus using the frame of FIG. 4a. 図5aはさらに別の実施の形態に係る脱塩室用フレームの斜視図である。図5bは図5aのフレームを用いた電気脱イオン装置の斜視図である。FIG. 5a is a perspective view of a desalination chamber frame according to yet another embodiment. FIG. 5b is a perspective view of an electrodeionization apparatus using the frame of FIG. 5a. 電気脱イオン装置の分解斜視図である。It is a disassembled perspective view of an electrodeionization apparatus. 実施の形態に係る電気脱イオン装置の模式的な断面図である。It is typical sectional drawing of the electrodeionization apparatus which concerns on embodiment. 実施例における脱塩室のイオン交換樹脂充填例を示す脱塩室の正面図である。It is a front view of the desalting chamber which shows the example of ion exchange resin filling of the desalting chamber in an Example. 実施例及び比較例の結果を示すグラフである。It is a graph which shows the result of an Example and a comparative example.
 [第1発明の実施形態]
 以下、図面を参照して実施の形態について説明する。図1は、第1発明の電気脱イオン装置で用いられる脱塩室用フレームの斜視図である。このフレーム20は、外周縁が長方形状の板状であり、脱塩室となる第1貫通部21と、濃縮水導入用の通水口となる第2貫通部22と、濃縮水排出用の通水口となる第3貫通部23と、第1貫通部21の図1における右端から上方に延出するように設けられた、原水導入用の通水口となる第4貫通部24と、第1貫通部21の左端から下方に延出するように設けられた、脱塩水取出用の通水口となる第5貫通部25とを有する。
[First Embodiment]
Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a perspective view of a demineralization chamber frame used in the electrodeionization apparatus of the first invention. The frame 20 has a plate shape with an outer peripheral edge having a rectangular shape, and includes a first through portion 21 serving as a desalting chamber, a second through portion 22 serving as a water inlet for introducing concentrated water, and a passage for discharging concentrated water. The 3rd penetration part 23 used as a water opening, the 4th penetration part 24 used as the water supply opening for raw water introduction provided so that it may extend upward from the right end in Drawing 1 of the 1st penetration part 21, and the 1st penetration It has the 5th penetration part 25 used as a water outlet for taking out demineralized water provided so that it might extend from the left end of part 21 below.
 このフレーム20の双方の板面のうち、フレーム20の外周縁と内周縁との間に、第1貫通部21を取り囲むように周回する第1の溝26が設けられている。また、フレーム20の下部にあっては、第1の溝26からフレーム20の下端部の外周縁にまで達する第2の溝27が設けられている。 A first groove 26 that circulates so as to surround the first through portion 21 is provided between the outer peripheral edge and the inner peripheral edge of both the plate surfaces of the frame 20. Further, at the lower part of the frame 20, a second groove 27 that extends from the first groove 26 to the outer peripheral edge of the lower end portion of the frame 20 is provided.
 本発明の電気脱イオン装置30は、この脱塩室用フレーム20を用いたこと以外は図6の電気脱イオン装置と同様にして構成される。なお、脱塩室用フレーム20と、それに重なり合うイオン交換膜又は濃縮室用フレームもしくは電極用スペーサとの間は、両面接着テープ又は接着剤によってシールされることが好ましい。この両面接着テープ又は接着剤は、ゴムシートやOリング等のガスケット材を用いる場合に比べ、フレーム20の板面の平坦性が低い場合であっても、優れたシール効果を発揮する。 The electrodeionization apparatus 30 of the present invention is configured in the same manner as the electrodeionization apparatus of FIG. 6 except that this demineralization chamber frame 20 is used. In addition, it is preferable to seal between the desalination chamber frame 20 and the ion exchange membrane, the concentration chamber frame, or the electrode spacer overlapping each other with a double-sided adhesive tape or an adhesive. This double-sided adhesive tape or adhesive exhibits an excellent sealing effect even when the flatness of the plate surface of the frame 20 is lower than when a gasket material such as a rubber sheet or an O-ring is used.
 図2はこの脱塩室用フレーム20とエンドプレート1,10、濃縮室用フレーム7、陰極用スペーサ3、陽極用スペーサ8の積層形態を示す斜視図である。なお、エンドプレート1,10には図6と同様に各水の通水孔(図示略)が設けられている。前記第2の溝27は電気脱イオン装置30の底面に向って開放する圧力放出孔を構成している。なお、この実施の形態の電気脱イオン装置30にあっては、濃縮室内にはメッシュ等は設けられておらず、空室となっているが、これに限定されない。この電気脱イオン装置30は、水受けトレー40上に載置されている。図示は省略するが、水受けトレー40には装置30の載せ台や排水口が設けられ、この排水口に排水ホースが接続されている。 FIG. 2 is a perspective view showing a laminated form of the desalination chamber frame 20 and the end plates 1 and 10, the concentration chamber frame 7, the cathode spacer 3, and the anode spacer 8. The end plates 1 and 10 are provided with water passage holes (not shown) as in FIG. The second groove 27 constitutes a pressure release hole that opens toward the bottom surface of the electrodeionization device 30. In addition, in the electrodeionization apparatus 30 of this embodiment, although the mesh etc. are not provided in the concentration chamber and it is an empty room, it is not limited to this. The electrodeionization device 30 is placed on the water receiving tray 40. Although illustration is omitted, the water receiving tray 40 is provided with a platform for the apparatus 30 and a drain outlet, and a drain hose is connected to the drain outlet.
 この電気脱イオン装置30は、図6の電気脱イオン装置と同様に通水が行われ、原水が電気脱イオン処理される。この電気脱イオン装置30にあっては、脱塩室内の圧力が上昇すると、脱塩室内の水の一部がフレーム20の板面に沿って浸み出そうとするが、この水は溝26,27を通って電気脱イオン装置30から流出するので、脱塩室内の圧力の過度な上昇が防止される。また、第2の溝27以外から水が漏れることも防止される。さらに、電気脱イオン装置30の損傷も防止される。なお、この電気脱イオン装置30の場合、脱塩室内の圧力が著しくなった場合のみ脱塩室から水が溝26,27へ流出し、それ以外のときは脱塩室から溝26,27へは水は流出しない。 In this electrodeionization apparatus 30, water is passed in the same manner as the electrodeionization apparatus of FIG. 6, and the raw water is subjected to electrodeionization treatment. In this electric deionization apparatus 30, when the pressure in the demineralization chamber rises, a part of the water in the demineralization chamber tries to ooze out along the plate surface of the frame 20. , 27 flows out of the electrodeionization device 30, so that an excessive increase in the pressure in the demineralization chamber is prevented. Further, it is possible to prevent water from leaking from other than the second groove 27. Furthermore, damage to the electrodeionization apparatus 30 is also prevented. In the case of this electric deionization apparatus 30, water flows out from the desalting chamber to the grooves 26 and 27 only when the pressure in the desalting chamber becomes significant, and from the desalting chamber to the grooves 26 and 27 in other cases. Does not drain water.
 図3,4aに示す脱塩室フレーム20A,20Bのように、周回溝26を省略し、脱塩室内と電気脱イオン装置外とを短絡的に連通するように溝28又は29を設けてもよい。図3では、溝28は第1貫通部21の下辺部とフレーム20Aの底辺部との間に上下方向に設けられている。このフレーム20Aを用いた電気脱イオン装置は、図2の電気脱イオン装置30と同様に水受けトレー40上に載置されることが好ましい。 As in the desalting chamber frames 20A and 20B shown in FIGS. 3 and 4a, the circumferential groove 26 may be omitted, and the groove 28 or 29 may be provided so as to communicate the desalting chamber and the outside of the electrodeionization apparatus in a short circuit. Good. In FIG. 3, the groove 28 is provided in the vertical direction between the lower side portion of the first penetrating portion 21 and the bottom side portion of the frame 20 </ b> A. The electrodeionization apparatus using the frame 20A is preferably placed on the water receiving tray 40 in the same manner as the electrodeionization apparatus 30 in FIG.
 図4aでは、溝29は、貫通部21の上下方向の内周縁とフレーム20Bの上下方向の外周縁とを結ぶように横方向に設けられている。この実施の形態では、溝29は、外周縁側ほど低位となる勾配を有している。 In FIG. 4a, the groove 29 is provided in the lateral direction so as to connect the inner peripheral edge in the vertical direction of the through portion 21 and the outer peripheral edge in the vertical direction of the frame 20B. In this embodiment, the groove 29 has a slope that becomes lower toward the outer peripheral edge side.
 図4bの通り、このフレーム20Bを用いた電気脱イオン装置30Bは、溝29の末端に接続されたホース31を有しており、脱塩室から放出される水を該ホース31を介して排出するよう構成している。 As shown in FIG. 4 b, the electrodeionization apparatus 30 </ b> B using the frame 20 </ b> B has a hose 31 connected to the end of the groove 29, and discharges water released from the desalination chamber through the hose 31. It is configured to do.
 図5aに示す脱塩室用フレーム20Cは、圧力放出部として、フレーム20Cを厚み方向に貫通する孔33と、貫通部21の内周縁と孔33とを連通する溝32とを有している。このフレーム20Cを用いた電気脱イオン装置30Cにあっては、濃縮室用フレーム7、スペーサ3、エンドプレート1にも孔33と重なり合う位置に孔が設けられ、各孔を通って脱塩室からの水が電気脱イオン装置30C外に流出するよう構成されている。この孔に接続されたホース34を介して排水が行われる。 The desalination chamber frame 20C shown in FIG. 5a has, as a pressure release portion, a hole 33 that penetrates the frame 20C in the thickness direction, and a groove 32 that communicates the inner peripheral edge of the penetration portion 21 with the hole 33. . In the electrodeionization apparatus 30C using this frame 20C, holes are provided in the concentration chamber frame 7, the spacer 3, and the end plate 1 at positions where they overlap with the holes 33. Water flows out of the electrodeionization apparatus 30C. Drainage is performed through a hose 34 connected to this hole.
 脱塩室からの圧力放出部を構成する通水ラインの大きさは生産水の通水ラインより小さいものとするコヨが好ましい。この圧力放出用通水ラインはなるべく小径であることが好ましい。また、必要に応じて、リリーフ弁(安全弁)の様なものや、バルブを脱塩室セルとホースとの接続部に取り付けても良い。 The size of the water flow line constituting the pressure discharge part from the desalination chamber is preferably a coyo that is smaller than the water flow line of the production water. The pressure release water passage line is preferably as small as possible. Moreover, you may attach a thing like a relief valve (safety valve), or a valve to the connection part of a desalination chamber cell and a hose as needed.
 上記と同様の圧力放出部を濃縮室に設けてもよい。 A pressure releasing part similar to the above may be provided in the concentration chamber.
 以下、実施例を挙げて第1発明を具体的に説明する。 Hereinafter, the first invention will be specifically described with reference to examples.
[実施例1]
 陽極と陰極との間に複数のアニオン交換膜とカチオン交換膜とを交互に配列して、濃縮室と脱塩室を交互に形成した電気脱イオン装置を図5a,5bの構成となるように製作した。脱塩室の枚数は50枚とした。この電気脱イオン装置を脱塩室及び濃縮室の通水方向が鉛直方向となるように設置した。脱塩室及び濃縮室に、後述のイオン交換樹脂を充填した。脱塩室及び濃縮室のイオン交換樹脂の充填高さは60mm、幅は40mmとした。また、圧力放出部とホース34との接続部に安全弁を設置し、設定値を0.5MPaとした。
[Example 1]
An electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode to alternately form a concentration chamber and a desalting chamber is configured as shown in FIGS. 5a and 5b. Produced. The number of desalting chambers was 50. This electrodeionization apparatus was installed so that the water flow direction of the demineralization chamber and the concentration chamber was vertical. The desalting chamber and the concentration chamber were filled with an ion exchange resin described later. The filling height of the ion exchange resin in the desalting chamber and the concentration chamber was 60 mm, and the width was 40 mm. In addition, a safety valve was installed at the connection portion between the pressure release portion and the hose 34, and the set value was set to 0.5 MPa.
 脱塩室には、平均粒径0.3mmのアニオン交換樹脂とカチオン交換樹脂とを、アニオン交換樹脂:カチオン交換樹脂の比率(乾燥重量比)を60:40の比率で充填した。濃縮室には、上記アニオン交換樹脂及びカチオン交換樹脂をアニオン交換樹脂:カチオン交換樹脂=60:40(乾燥重量比)の混合比で充填した。 The desalting chamber was filled with an anion exchange resin and a cation exchange resin having an average particle size of 0.3 mm in an anion exchange resin: cation exchange resin ratio (dry weight ratio) of 60:40. The concentration chamber was filled with the anion exchange resin and the cation exchange resin at a mixing ratio of anion exchange resin: cation exchange resin = 60: 40 (dry weight ratio).
 この電気脱イオン装置に電流値10A、電流密度1200mA/dmで電流を流し運転した状態で、給水のポンプの出力を上げ、最大0.8MPaまで脱塩室入口圧力を上昇させた。 In a state where the electric deionizer was operated by supplying a current at a current value of 10 A and a current density of 1200 mA / dm 2 , the output of the feed water pump was increased to increase the demineralization chamber inlet pressure to a maximum of 0.8 MPa.
 原水入口圧力を上げていくと、0.5MPaまで上げたところで圧力放出部のホース34に水が流れ出した。そのまま圧力を上げていった結果、0.8MPaでは0.5L/hの流出が確認されたが、装置の他の部分からの水漏れ、破損はなかった。 When the raw water inlet pressure was increased, water flowed out to the hose 34 of the pressure release part when the pressure was increased to 0.5 MPa. As a result of increasing the pressure as it was, an outflow of 0.5 L / h was confirmed at 0.8 MPa, but there was no water leakage or breakage from other parts of the apparatus.
[比較例1]
 溝32及び孔33を有しない脱塩室フレームを用いたこと以外は、実施例1と全て同じ構造の電気脱イオン装置を製作した。
[Comparative Example 1]
An electrodeionization apparatus having the same structure as that of Example 1 was manufactured except that a demineralization chamber frame having no grooves 32 and holes 33 was used.
 実施例1と同様に通水を行ったところ、入口圧力が0.6MPaを越えた時に装置からの水漏れが確認された。装置を解体し調べたところ、脱塩室フレームに沿って水が漏れていたことが分かった。 When water was passed in the same manner as in Example 1, water leakage from the apparatus was confirmed when the inlet pressure exceeded 0.6 MPa. When the device was disassembled and examined, water was found leaking along the desalination chamber frame.
 以上より、本発明により、局所的な圧力の負荷を防ぎ、水漏れや部材破損を防止できることが認められた。 From the above, it was confirmed that the present invention can prevent a local pressure load and prevent water leakage and member damage.
 [第2発明の実施形態]
 図7は第2発明の実施の形態を示す電気脱イオン装置の模式的な断面図である。この電気脱イオン装置は、電極(陽極71、陰極72)の間に複数のアニオン交換膜(A膜)73及びカチオン交換膜(C膜)74を交互に配列して濃縮室75と脱塩室76とを交互に形成したものであり、脱塩室76には、イオン交換樹脂が充填されている。
[Second Embodiment]
FIG. 7 is a schematic cross-sectional view of an electrodeionization apparatus showing an embodiment of the second invention. In this electrodeionization apparatus, a plurality of anion exchange membranes (A membranes) 73 and cation exchange membranes (C membranes) 74 are alternately arranged between electrodes (anode 71, cathode 72), and a concentrating chamber 75 and a desalting chamber. 76 are alternately formed, and the desalting chamber 76 is filled with an ion exchange resin.
 また、濃縮室75と、陽極室77及び陰極室78にも、イオン交換体、活性炭又は金属等の電気導電体が充填されている。 The concentration chamber 75, the anode chamber 77, and the cathode chamber 78 are also filled with an electric conductor such as an ion exchanger, activated carbon, or metal.
 原水は脱塩室76の入口側から導入され、脱塩室76の出口側から生産水が取り出される。この生産水の一部は、濃縮室75に脱塩室76の通水方向とは逆方向に向流一過式で通水され、濃縮室75の流出水は系外へ排出される。即ち、この電気脱イオン装置では、濃縮室75と脱塩室76とが交互に並設され、脱塩室76の生産水取り出し側に濃縮室75の流入口が設けられており、脱塩室76の原水流入側に濃縮室75の流出口が設けられている。また、生産水の一部は陽極室77の入口側に送給され、陽極室77の流出水は、陰極室78の入口側へ送給され、陰極室78の流出水は排水として系外へ排出される。 Raw water is introduced from the inlet side of the desalting chamber 76, and product water is taken out from the outlet side of the desalting chamber 76. A portion of this product water is passed through the concentrating chamber 75 in a counter-current and transient manner in the direction opposite to the direction of water passing through the desalting chamber 76, and the outflow water from the concentrating chamber 75 is discharged out of the system. That is, in this electric deionization apparatus, the concentrating chambers 75 and the desalting chambers 76 are alternately arranged in parallel, and the inlet of the concentrating chamber 75 is provided on the product water take-out side of the desalting chamber 76, An outflow port of the concentrating chamber 75 is provided on the raw water inflow side of 76. A part of the production water is fed to the inlet side of the anode chamber 77, the effluent water of the anode chamber 77 is fed to the inlet side of the cathode chamber 78, and the effluent water of the cathode chamber 78 is discharged out of the system as drainage. Discharged.
 このように、濃縮室75に生産水を脱塩室76と向流一過式で通水することにより、生産水取り出し側ほど濃縮室75内の濃縮水の濃度が低いものとなり、濃度拡散による脱塩室76への影響が小さくなり、ホウ素等のイオンの除去率を高めることができる。 In this way, by passing the production water through the concentration chamber 75 in a counter-current and transient manner with the desalination chamber 76, the concentration of the concentrated water in the concentration chamber 75 becomes lower on the production water take-out side, and due to concentration diffusion. The influence on the desalting chamber 76 is reduced, and the removal rate of ions such as boron can be increased.
 この電気脱イオン装置では、脱塩室76におけるイオン交換樹脂充填高さを400~2000mmとする。このように脱塩室76のイオン交換樹脂充填高さを大きくしているため、吸着帯長さが大きく、ホウ素やシリカといった難除去のアニオンも十分に除去することができる。また、イオン交換樹脂として平均粒径が0.1~0.4mmと小粒径のイオン交換樹脂を充填し、イオン交換樹脂と被処理水との接触効率を高くしているので、難除去アニオンの除去性能がさらに向上する。なお、本発明において、イオン交換樹脂の平均直径(平均粒径)および樹脂比率は再生型(OH型、H型)の湿潤状態での値であり、平均直径は重量平均で、樹脂比率も重量比率である。 In this electrodeionization apparatus, the ion exchange resin filling height in the desalting chamber 76 is set to 400 to 2000 mm. Since the ion exchange resin filling height of the desalting chamber 76 is increased in this way, the adsorption band length is large, and difficult-to-removed anions such as boron and silica can be sufficiently removed. In addition, as the ion exchange resin, an ion exchange resin having an average particle size of 0.1 to 0.4 mm and a small particle size is filled to increase the contact efficiency between the ion exchange resin and the water to be treated. The removal performance is further improved. In the present invention, the average diameter (average particle diameter) and the resin ratio of the ion exchange resin are values in a regenerated (OH type, H type) wet state, the average diameter is a weight average, and the resin ratio is also a weight. It is a ratio.
 脱塩室のイオン交換樹脂充填高さは、特に400~800mm、とりわけ400~600mmであるのが好ましい。樹脂層高が過度に大きくなると、樹脂による通水差圧が高くなり採水量が減ってしまう可能性や、装置の強度の問題で装置自体がかなり大型化してしまう可能性がある。脱塩室に被処理水を上下方向に通水する場合、脱塩室のイオン交換樹脂充填高さは400~800mmであり、幅は30~60mmであることが好ましい。 The ion exchange resin filling height of the desalting chamber is preferably 400 to 800 mm, particularly preferably 400 to 600 mm. If the height of the resin layer is excessively large, the water flow differential pressure due to the resin increases, and the amount of water collected may decrease, or the apparatus itself may become considerably large due to the problem of the strength of the apparatus. When the water to be treated is passed vertically through the desalting chamber, the ion-exchange resin filling height of the desalting chamber is preferably 400 to 800 mm, and the width is preferably 30 to 60 mm.
 小粒径のイオン交換樹脂はホウ素、シリカなどの難除去性のイオン除去性能向上目的だけでなく、運転電圧を下げる効果も有する。イオン交換樹脂として平均粒径の小さいものを用いると、イオンの表面積が大きくなるため、電気抵抗が小さくなり、運転寿命を決定する電圧上限に余裕を持たせ、より高寿命の運転が可能になる。 The ion exchange resin with a small particle size has the effect of lowering the operating voltage as well as the purpose of improving the performance of removing difficult ions such as boron and silica. When an ion exchange resin having a small average particle size is used, the surface area of ions increases, so the electric resistance decreases, allowing a higher voltage upper limit for determining the operating life and enabling a longer operating life. .
 なお、このイオン交換樹脂の平均粒径は、篩を用いることにより測定することもできるが、イオン交換樹脂メーカーのカタログ値を採用するのが好ましい。 In addition, although the average particle diameter of this ion exchange resin can also be measured by using a sieve, it is preferable to adopt the catalog value of the ion exchange resin manufacturer.
 脱塩室76に充填する小粒径のイオン交換樹脂の平均粒径が0.4mmを超えると、小粒径のイオン交換樹脂を用いることによる本発明の効果を十分に得ることができない。一方、平均粒径が0.1mmより小さいイオン交換樹脂は、取り扱い性や通水抵抗の面で好ましくない場合がある。 When the average particle size of the small particle size ion exchange resin filled in the desalting chamber 76 exceeds 0.4 mm, the effect of the present invention by using the small particle size ion exchange resin cannot be sufficiently obtained. On the other hand, an ion exchange resin having an average particle size smaller than 0.1 mm may not be preferable in terms of handleability and water resistance.
 脱塩室に充填されるイオン交換樹脂は、そのすべてが平均粒径0.1~0.4mmであってもよく、平均粒径0.1~0.4mmのイオン交換樹脂と、平均粒径がこの範囲外のイオン交換樹脂との双方が充填されてもよい。脱塩室のイオン交換樹脂に占める平均粒径0.1~0.4mmのイオン交換樹脂の割合は1~100%特に10~30%程度が好ましい。平均粒径0.1~0.4mmのイオン交換樹脂(以下、イオン交換樹脂Aということがある。)と、平均粒径0.4mm超のイオン交換樹脂(以下、イオン交換樹脂Bということがある。)とを混合して脱塩室に充填してもよく、脱塩室内に別々に充填してもよい。例えば、脱塩室の上下方向の中央部にイオン交換樹脂Aを充填し、脱塩室の上部及び下部にイオン交換樹脂Bを充填してもよい。なお、イオン交換樹脂Bの平均粒径の上限は特に設定されるものではないが、通常は平均粒径1mm以下のイオン交換樹脂を用いることができる。 All of the ion exchange resins filled in the desalting chamber may have an average particle diameter of 0.1 to 0.4 mm, an ion exchange resin having an average particle diameter of 0.1 to 0.4 mm, and an average particle diameter. However, it may be filled with both ion exchange resins outside this range. The proportion of the ion exchange resin having an average particle size of 0.1 to 0.4 mm in the ion exchange resin in the desalting chamber is preferably about 1 to 100%, particularly about 10 to 30%. An ion exchange resin having an average particle size of 0.1 to 0.4 mm (hereinafter sometimes referred to as ion exchange resin A) and an ion exchange resin having an average particle size exceeding 0.4 mm (hereinafter referred to as ion exchange resin B). May be mixed and filled in the desalting chamber, or may be filled separately in the desalting chamber. For example, the ion exchange resin A may be filled in the vertical center of the desalting chamber, and the ion exchange resin B may be filled in the upper and lower portions of the desalting chamber. In addition, although the upper limit of the average particle diameter of the ion exchange resin B is not particularly set, usually an ion exchange resin having an average particle diameter of 1 mm or less can be used.
 脱塩室76に充填するアニオン交換樹脂とカチオン交換樹脂の混合樹脂の混合割合は、アニオン交換樹脂:カチオン交換樹脂=40~80:60~20、特に50~80:50~20の範囲であることが好ましい。脱塩室76に充填される混合樹脂は、上記の混合割合の範囲おいて、すべての箇所において同一であってもよく、脱塩室の通水方向の入口側と出口側で異なっていてもよい。 The mixing ratio of the mixed resin of anion exchange resin and cation exchange resin filled in the desalting chamber 76 is in the range of anion exchange resin: cation exchange resin = 40 to 80:60 to 20, particularly 50 to 80:50 to 20. It is preferable. The mixed resin filled in the desalting chamber 76 may be the same in all locations within the range of the mixing ratio described above, or may be different on the inlet side and the outlet side in the water passage direction of the desalting chamber. Good.
 高いホウ素除去率を実現するために、濃縮室にもイオン交換樹脂を充填することが好ましく、この場合、濃縮室に充填するイオン交換樹脂もまた、脱塩室76に充填するイオン交換樹脂と同様の理由から、平均粒径0.1~0.6mmのイオン交換樹脂であることが好ましい。 In order to achieve a high boron removal rate, it is preferable that the concentration chamber is also filled with an ion exchange resin. In this case, the ion exchange resin filled in the concentration chamber is also the same as the ion exchange resin filled in the desalting chamber 76. For this reason, an ion exchange resin having an average particle size of 0.1 to 0.6 mm is preferable.
 濃縮室に充填するイオン交換樹脂もまた、アニオン交換樹脂とカチオン交換樹脂の混合樹脂が好ましい。特に、アニオン交換樹脂:カチオン交換樹脂=40~70:60~30、好ましくは50~70:50~30の混合樹脂であることが好ましい。濃縮室の厚さは、脱塩室の厚さと同等とすることが好ましい。 The ion exchange resin filled in the concentration chamber is also preferably a mixed resin of an anion exchange resin and a cation exchange resin. In particular, a mixed resin of anion exchange resin: cation exchange resin = 40 to 70:60 to 30, preferably 50 to 70:50 to 30 is preferable. The thickness of the concentration chamber is preferably equal to the thickness of the desalting chamber.
 コストダウンを目的として脱塩室76の厚みを2.5~20mmまで厚くしても良い。脱塩室を厚くすることによりイオン交換膜や濃縮室を削減することができる。また、イオン交換膜を削減することで電気抵抗を減らすことができ、より高寿命の運転が可能になる。脱塩室の数は、1~200特に40~100程度が好ましい。 For the purpose of cost reduction, the thickness of the desalting chamber 76 may be increased to 2.5 to 20 mm. By increasing the thickness of the desalting chamber, the number of ion exchange membranes and concentration chambers can be reduced. Further, by reducing the ion exchange membrane, the electric resistance can be reduced, and operation with a longer life can be achieved. The number of desalting chambers is preferably about 1 to 200, particularly about 40 to 100.
 電気脱イオン装置の脱塩室に被処理水を通水し、処理水(脱塩室の流出水)の一部、例えば10~30%程度を濃縮室に、脱塩室の通水方向と逆方向に通水することが、高いホウ素除去率を得る上で好ましい。また、その際の通水速度としては、ホウ素除去率と処理効率の面から、脱塩室の通水LVは50~150m/h、濃縮室の通水LVは10~30m/h程度であることが好ましい。 Water to be treated is passed through the desalination chamber of the electric deionizer, and a part of the treated water (outflow water from the desalination chamber), for example, about 10 to 30% is passed to the concentration chamber, Passing water in the reverse direction is preferable for obtaining a high boron removal rate. Further, the water flow rate at that time is about 50 to 150 m / h for the desalination chamber and about 10 to 30 m / h for the concentration chamber from the viewpoint of boron removal rate and treatment efficiency. It is preferable.
 電流密度は50A/m以上とすることが高いホウ素、シリカ除去率とするために好ましい。 The current density is preferably 50 A / m 2 or more in order to obtain a high boron and silica removal rate.
 この電気脱イオン装置は、特に、純水製造装置のRO膜分離装置の後段に設ける電気脱イオン装置として好ましく用いられ、RO膜分離装置からのホウ素濃度10~20ppb程度のRO透過水を本発明の電気脱イオン装置で処理してホウ素濃度1ppt以下の処理水を効率的に得ることができる。 This electrodeionization apparatus is particularly preferably used as an electrodeionization apparatus provided in the subsequent stage of the RO membrane separation apparatus of the pure water production apparatus, and RO permeated water having a boron concentration of about 10 to 20 ppb from the RO membrane separation apparatus is used in the present invention. In this way, treated water having a boron concentration of 1 ppt or less can be efficiently obtained.
 以下に実施例を挙げて第2発明をより具体的に説明する。 Hereinafter, the second invention will be described more specifically with reference to examples.
[実施例2]
 陽極と陰極との間に複数のアニオン交換膜とカチオン交換膜とを交互に配列して、濃縮室と脱塩室を交互に形成した電気脱イオン装置(脱塩室及び濃縮室の厚さ10mm、脱塩室数=100)を脱塩室及び濃縮室の通水方向が鉛直方向となるように設置した。脱塩室及び濃縮室に、以下の通りイオン交換樹脂を充填した。脱塩室及び濃縮室のイオン交換樹脂の充填高さは600mm、幅は350mmとした。
[Example 2]
Electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode to alternately form a concentration chamber and a desalination chamber (thickness of the desalination chamber and the concentration chamber is 10 mm). The number of desalting chambers = 100) was set so that the water passing direction of the desalting chamber and the concentration chamber was the vertical direction. The desalting chamber and the concentration chamber were filled with an ion exchange resin as follows. The filling height of the ion exchange resin in the desalting chamber and the concentration chamber was 600 mm, and the width was 350 mm.
 表1及び図8の通り、脱塩室の上下方向の中央部には、上下100mmの範囲にわたって、平均粒径0.3mmのアニオン交換樹脂とカチオン交換樹脂とを、アニオン交換樹脂:カチオン交換樹脂の比率50:50の混合樹脂を充填した。脱塩室の上部及び下部には、それぞれ上下250mmの範囲にわたって平均粒径0.6mmのアニオン交換樹脂/カチオン交換樹脂混合樹脂(混合比率は50:50)を充填した。 As shown in Table 1 and FIG. 8, an anion exchange resin and a cation exchange resin having an average particle size of 0.3 mm over an upper and lower range of 100 mm at the center in the vertical direction of the desalting chamber are anion exchange resin: cation exchange resin. 50:50 mixed resin was filled. The upper and lower portions of the desalting chamber were filled with an anion exchange resin / cation exchange resin mixed resin (mixing ratio 50:50) having an average particle diameter of 0.6 mm over a range of 250 mm above and below.
 濃縮室には、平均粒径0.55mmの上記アニオン交換樹脂及びカチオン交換樹脂をアニオン交換樹脂:カチオン交換樹脂=50:50の混合比で充填した。 The concentration chamber was filled with the anion exchange resin and cation exchange resin having an average particle size of 0.55 mm in a mixing ratio of anion exchange resin: cation exchange resin = 50: 50.
 この電気脱イオン装置に電流密度100A/mで電流を流し、ホウ素濃度3.5μg/Lの被処理水を、脱塩室にLV=65m/hrで下向流通水し、脱塩室の流出水の5%を濃縮室にLV=6m/hrで上向流通水し、残部を処理水として取り出した。 A current is supplied to this electrodeionization apparatus at a current density of 100 A / m 2 , and water to be treated having a boron concentration of 3.5 μg / L is circulated downwardly into the desalting chamber at LV = 65 m / hr. 5% of the effluent water was circulated upward into the concentration chamber at LV = 6 m / hr, and the remainder was taken out as treated water.
 得られた処理水(脱塩室流出水)のホウ素濃度は表2の通り、0.001μg/L以下であり、ホウ素除去率99.97%を達成することができた。 As shown in Table 2, the boron concentration of the obtained treated water (desalination chamber effluent) was 0.001 μg / L or less, and a boron removal rate of 99.97% could be achieved.
[実施例3,比較例2]
 実施例2において、脱塩室のイオン交換樹脂の充填高さを400mm(実施例3)又は300mm(比較例2)とし、脱塩室内の平均粒径0.6mmのイオン交換樹脂の範囲を表1の通りとしたこと以外は実施例2と同一の構成とされた電気脱イオン装置に、同一条件(ただし、実施例3は被処理水ホウ素濃度3.4μg/L)で被処理水を通水した。結果を表2に示す。
[Example 3, Comparative Example 2]
In Example 2, the filling height of the ion exchange resin in the desalting chamber is 400 mm (Example 3) or 300 mm (Comparative Example 2), and the range of the ion exchange resin having an average particle size of 0.6 mm in the desalting chamber is shown. The treated water was passed through the electrodeionization apparatus having the same configuration as in Example 2 except that the conditions were as described in Example 1 under the same conditions (however, in Example 3, the concentration of treated water boron was 3.4 μg / L). Watered. The results are shown in Table 2.
[比較例3]
 脱塩室のイオン交換樹脂充填高さは600mmであるが、イオン交換樹脂としてすべて平均粒径0.6mmのもの(アニオン交換樹脂/カチオン交換樹脂混合樹脂。混合比は50:50)を充填したこと以外は実施例2と同一条件にて試験を行った。
[Comparative Example 3]
The ion exchange resin filling height of the desalting chamber is 600 mm, but all of the ion exchange resins are those having an average particle diameter of 0.6 mm (anion exchange resin / cation exchange resin mixed resin, mixing ratio is 50:50). Except that, the test was performed under the same conditions as in Example 2.
 結果を表2に示す。 The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<結果・考察>
 表2の通り、樹脂層高が400mm以上と高く、且つ平均粒径0.1~0.4mmのイオン交換樹脂を使用することにより、高いホウ素除去性能が得られること認められる。
<Results and discussion>
As shown in Table 2, it is recognized that high boron removal performance can be obtained by using an ion exchange resin having a resin layer height as high as 400 mm or more and an average particle size of 0.1 to 0.4 mm.
 [第3発明の実施形態]
 第3発明の実施の形態では、図7に示した第2発明の電気脱イオン装置と同一の電気脱イオン装置を用いる。
[Third Embodiment]
In the embodiment of the third invention, the same electrodeionization apparatus as the electrodeionization apparatus of the second invention shown in FIG. 7 is used.
 ただし、濃縮室75に原水を直接に通水してもよい。 However, the raw water may be directly passed through the concentration chamber 75.
 第3発明では、脱塩室76に充填するアニオン交換樹脂とカチオン交換樹脂の混合樹脂の混合割合は、アニオン交換樹脂:カチオン交換樹脂=65~35:35~65、特に60~50:40~50の範囲であることが好ましい。脱塩室76に充填される混合樹脂は、上記の混合割合の範囲おいて、すべての箇所において同一であってもよく、脱塩室の通水方向の入口側と出口側で異なっていてもよい。 In the third invention, the mixing ratio of the mixed resin of anion exchange resin and cation exchange resin filled in the desalting chamber 76 is anion exchange resin: cation exchange resin = 65 to 35:35 to 65, particularly 60 to 50:40 to A range of 50 is preferred. The mixed resin filled in the desalting chamber 76 may be the same in all locations within the range of the mixing ratio described above, or may be different on the inlet side and the outlet side in the water passage direction of the desalting chamber. Good.
 前述の通り、高電流印加の場合、低電流時と比べてイオン交換樹脂からPSAなどの有
機物が溶出する。溶出した有機物は近くのイオン交換樹脂表面に付着し、電気抵抗を上昇させる原因になる。付着した有機物は、イオン交換樹脂が再生されることにより膨潤・収縮を繰り返す際に剥がれ落ちるため、イオン交換樹脂の膨潤収縮が行われれば電圧上昇をもたらさない。
As described above, when a high current is applied, organic substances such as PSA are eluted from the ion exchange resin as compared with a low current. The eluted organic matter adheres to the surface of the nearby ion exchange resin and increases the electrical resistance. The attached organic matter is peeled off when the ion exchange resin is regenerated and repeatedly swelled and contracted, so that the voltage does not increase if the ion exchange resin swells and contracts.
 しかし、アニオン交換樹脂/カチオン交換樹脂比率(A/C比)が65/35よりも高くなる(例えばA/C比75/25)と、イオン交換樹脂に電流が流れにくくなり、再生による膨潤収縮が生じにくくなる。この結果、有機物はイオン交換樹脂に付着したままとなり、電流が流れる際の抵抗になり、電圧が次第に上昇するようになる。アニオン交換樹脂/カチオン交換樹脂比率を65~35:35~65の範囲とすることにより、イオン交換樹脂に電流が流れやすくなり、イオン交換樹脂の膨張・収縮が生じることにより付着有機物が剥離し、電圧上昇が防止又は抑制される。 However, when the anion exchange resin / cation exchange resin ratio (A / C ratio) is higher than 65/35 (for example, A / C ratio 75/25), it becomes difficult for current to flow through the ion exchange resin, and swelling shrinkage due to regeneration. Is less likely to occur. As a result, the organic substance remains attached to the ion exchange resin, becomes a resistance when a current flows, and the voltage gradually increases. By setting the ratio of anion exchange resin / cation exchange resin in the range of 65 to 35:35 to 65, it becomes easier for current to flow through the ion exchange resin, and the organic matter is peeled off due to expansion and contraction of the ion exchange resin. Voltage rise is prevented or suppressed.
 この電気脱イオン装置では、脱塩室76に、平均粒径が0.2~0.8mmと小粒径のイオン交換樹脂を充填し、イオン交換樹脂と被処理水との接触効率を高くし、難除去アニオンの除去性能向上を図ることが好ましい。なお、第3発明において、イオン交換樹脂の平均直径(平均粒径)および樹脂比率は再生型(OH型、H型)の湿潤状態での値であり、平均直径は重量平均で、樹脂比率も重量比率である。 In this electrodeionization apparatus, the demineralization chamber 76 is filled with an ion exchange resin having an average particle diameter of 0.2 to 0.8 mm and a small particle diameter to increase the contact efficiency between the ion exchange resin and the water to be treated. It is preferable to improve the removal performance of difficult-to-removed anions. In the third invention, the average diameter (average particle diameter) and the resin ratio of the ion exchange resin are values in a regenerated (OH type, H type) wet state, the average diameter is a weight average, and the resin ratio is also It is a weight ratio.
 小粒径のイオン交換樹脂はホウ素、シリカなどの難除去性のイオン除去性能向上目的だけでなく、運転電圧を下げる効果も有する。イオン交換樹脂として平均粒径の小さいものを用いると、イオンの表面積が大きくなるため、電気抵抗が小さくなり、運転寿命を決定する電圧上限に余裕を持たせ、より高寿命の運転が可能になる。 The ion exchange resin with a small particle size has the effect of lowering the operating voltage as well as the purpose of improving the performance of removing difficult ions such as boron and silica. When an ion exchange resin having a small average particle size is used, the surface area of ions increases, so the electric resistance decreases, allowing a higher voltage upper limit for determining the operating life and enabling a longer operating life. .
 なお、このイオン交換樹脂の平均粒径は、篩を用いることにより測定することもできるが、イオン交換樹脂メーカーのカタログ値を採用するのが好ましい。 In addition, although the average particle diameter of this ion exchange resin can also be measured by using a sieve, it is preferable to adopt the catalog value of the ion exchange resin manufacturer.
 第3発明の電気脱イオン装置は、高いホウ素除去率を実現するために、濃縮室にもイオン交換樹脂を充填することが好ましく、この場合、濃縮室に充填するイオン交換樹脂もまた、脱塩室76に充填するイオン交換樹脂と同様の理由から、平均粒径0.2~0.8mmのイオン交換樹脂であることが好ましい。 In the electrodeionization apparatus of the third invention, in order to achieve a high boron removal rate, it is preferable that the concentration chamber is also filled with an ion exchange resin. In this case, the ion exchange resin filled in the concentration chamber is also desalted. For the same reason as the ion exchange resin filled in the chamber 76, an ion exchange resin having an average particle size of 0.2 to 0.8 mm is preferable.
 濃縮室に充填するイオン交換樹脂もまた、アニオン交換樹脂とカチオン交換樹脂の混合樹脂が好ましい。特に、アニオン交換樹脂:カチオン交換樹脂=40~70:60~30、好ましくは50~70:50~30の混合樹脂であることが好ましい。濃縮室の厚さは、脱塩室の厚さと同等とすることが好ましい。 The ion exchange resin filled in the concentration chamber is also preferably a mixed resin of an anion exchange resin and a cation exchange resin. In particular, a mixed resin of anion exchange resin: cation exchange resin = 40 to 70:60 to 30, preferably 50 to 70:50 to 30 is preferable. The thickness of the concentration chamber is preferably equal to the thickness of the desalting chamber.
 第3発明では、コストダウンを目的として脱塩室76の厚みを2.5~20mmまで厚くしても良い。脱塩室を厚くすることによりイオン交換膜や濃縮室を削減することができる。また、イオン交換膜を削減することで電気抵抗を減らすことができ、より高寿命の運転が可能になる。脱塩室の数は、1~200特に40~100程度が好ましい。 In the third invention, the thickness of the desalting chamber 76 may be increased to 2.5 to 20 mm for the purpose of cost reduction. By increasing the thickness of the desalting chamber, the number of ion exchange membranes and concentration chambers can be reduced. Further, by reducing the ion exchange membrane, the electric resistance can be reduced, and operation with a longer life can be achieved. The number of desalting chambers is preferably about 1 to 200, particularly about 40 to 100.
 第3発明では、電気脱イオン装置の脱塩室に被処理水を通水し、処理水(脱塩室の流出水)の一部、例えば10~30%程度を濃縮室に、脱塩室の通水方向と逆方向に通水することが、高いホウ素除去率を得る上で好ましい。また、その際の通水速度としては、ホウ素除去率と処理効率の面から、脱塩室の通水LVは50~150m/h、濃縮室の通水LVは10~30m/h程度であることが好ましい。 In the third invention, the water to be treated is passed through the demineralization chamber of the electrodeionization apparatus, and a part of the treated water (the outflow water of the demineralization chamber), for example, about 10 to 30% is supplied to the concentration chamber. In order to obtain a high boron removal rate, it is preferable to pass water in the direction opposite to the water flow direction. Further, the water flow rate at that time is about 50 to 150 m / h for the desalination chamber and about 10 to 30 m / h for the concentration chamber from the viewpoint of boron removal rate and treatment efficiency. It is preferable.
 電流密度は50A/m以上特に50~200A/mとりわけ75~125A/mとすることが高いホウ素、シリカ除去率とするために好ましい。 The current density is preferably 50 A / m 2 or more, particularly 50 to 200 A / m 2, particularly 75 to 125 A / m 2 , in order to obtain a high boron and silica removal rate.
 第3発明の電気脱イオン装置は、特に、純水製造装置のRO膜分離装置の後段に設ける電気脱イオン装置として好ましく用いられ、RO膜分離装置からのホウ素濃度10~20ppb程度のRO透過水を第3発明の電気脱イオン装置で処理してホウ素濃度1ppt以下の処理水を効率的に得ることができる。 The electrodeionization apparatus of the third invention is particularly preferably used as an electrodeionization apparatus provided at the subsequent stage of the RO membrane separation apparatus of the pure water production apparatus, and RO permeated water having a boron concentration of about 10 to 20 ppb from the RO membrane separation apparatus. Can be treated with the electrodeionization apparatus of the third invention to efficiently obtain treated water having a boron concentration of 1 ppt or less.
 以下に実施例を挙げて第3発明をより具体的に説明する。 Hereinafter, the third invention will be described more specifically with reference to examples.
[実施例4]
 陽極と陰極との間に複数のアニオン交換膜とカチオン交換膜とを交互に配列して、濃縮室と脱塩室を交互に形成した電気脱イオン装置(脱塩室及び濃縮室の厚さ10mm、脱塩室数=4)を脱塩室及び濃縮室の通水方向が鉛直方向となるように設置した。脱塩室及び濃縮室に、以下の通りイオン交換樹脂を充填した。脱塩室及び濃縮室のイオン交換樹脂の充填高さは600mm、幅は400mmとした。
[Example 4]
Electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode to alternately form a concentration chamber and a desalination chamber (thickness of the desalination chamber and the concentration chamber is 10 mm). The number of desalting chambers = 4) was set so that the water passing direction of the desalting chamber and the concentration chamber was the vertical direction. The desalting chamber and the concentration chamber were filled with an ion exchange resin as follows. The filling height of the ion exchange resin in the desalting chamber and the concentration chamber was 600 mm, and the width was 400 mm.
 脱塩室には、下記のアニオン交換樹脂とカチオン交換樹脂との混合樹脂(アニオン交換樹脂:カチオン交換樹脂の比率50:50)を充填した。 The desalting chamber was filled with a mixed resin of the following anion exchange resin and cation exchange resin (anion exchange resin: cation exchange resin ratio 50:50).
  アニオン交換樹脂:ダウエックス モノスフィア650C 粒径650μm
  カチオン交換樹脂:ダウエックス モノスフィア550A 粒径590μm
Anion exchange resin: Dowex Monosphere 650C, particle size 650 μm
Cation exchange resin: Dowex Monosphere 550A particle size 590 μm
 濃縮室には、上記アニオン交換樹脂及びカチオン交換樹脂をアニオン交換樹脂:カチオン交換樹脂=60:40の混合比で充填した。 The concentration chamber was filled with the anion exchange resin and the cation exchange resin in a mixing ratio of anion exchange resin: cation exchange resin = 60: 40.
 この電気脱イオン装置に電流密度100A/mで電流を流し、Na濃度500μg/L、CO濃度1mg/L、ホウ素濃度3μg/Lの被処理水を、脱塩室にLV=2.5m/hrで下向流通水し、脱塩室の流出水の15%を濃縮室にLV=1.0m/hrで上向流通水し、残部を処理水として取り出した(生産水量1.0m/h)。 A current is passed through this electrodeionization apparatus at a current density of 100 A / m 2 , water to be treated having a Na concentration of 500 μg / L, a CO 2 concentration of 1 mg / L, and a boron concentration of 3 μg / L, and LV = 2.5 m in the demineralization chamber. / Hr, downward circulated water, 15% of the desalination chamber effluent was circulated upward in the concentration chamber at LV = 1.0 m / hr, and the remainder was taken as treated water (production water volume 1.0 m 3 / H).
 得られた処理水(脱塩室流出水)のホウ素濃度は表1の通り、0.001μg/Lであり、ホウ素除去率99.97%であった。また、電圧上昇率は図9の通り、0.4V/年であった。 As shown in Table 1, the boron concentration of the obtained treated water (desalination chamber effluent) was 0.001 μg / L, and the boron removal rate was 99.97%. The voltage increase rate was 0.4 V / year as shown in FIG.
[実施例5,比較例4~6]
 実施例4において、脱塩室のイオン交換樹脂のアニオン交換樹脂/カチオン交換樹脂比率(A/C比)及び電流密度を表1の通りとしたこと以外は実施例4と同一条件で被処理水を通水した。結果を表3及び図9に示す。
[Example 5, Comparative Examples 4 to 6]
In Example 4, treated water under the same conditions as in Example 4 except that the anion exchange resin / cation exchange resin ratio (A / C ratio) of the ion exchange resin in the desalting chamber and the current density were as shown in Table 1. I passed water. The results are shown in Table 3 and FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<結果・考察>
 表3及び図9の通り、第3発明によると、電圧上昇が抑制され、高いホウ素除去性能が得られる。
<Results and discussion>
As shown in Table 3 and FIG. 9, according to the third invention, voltage increase is suppressed and high boron removal performance is obtained.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2018年2月13日付で出願された日本特許出願2018-23244、2018年3月30日付で出願された日本特許出願2018-67359及び2018年5月8日付で出願された日本特許出願2018-89981に基づいており、その全体が引用により援用される。 This application includes Japanese patent applications 2018-23244 filed on February 13, 2018, Japanese patent applications 2018-67359 filed on March 30, 2018, and Japanese patent applications filed on May 8, 2018. Based on application 2018-89981, which is incorporated by reference in its entirety.
 1,10 エンドプレート
 5,20,20A~20C 脱塩室フレーム
 21~25 貫通部
 26,27,28,32 溝
 33 孔
 31,34 ホース
 40 水受けトレー
 71 陽極
 72 陰極
 73 アニオン交換膜
 74 カチオン交換膜
 75 濃縮室
 76 脱塩室
1,10 End plate 5,20,20A-20C Desalination chamber frame 21-25 Penetration 26,27,28,32 Groove 33 Hole 31,34 Hose 40 Water receiving tray 71 Anode 72 Cathode 73 Anion exchange membrane 74 Cation exchange Membrane 75 Concentration chamber 76 Desalination chamber

Claims (13)

  1.  陽極及び陰極と、該陽極と陰極との間にイオン交換膜を配列することにより形成された濃縮室及び脱塩室とを有する電気脱イオン装置において、
     該脱塩室からの生産水の取出ラインとは別に、該脱塩室内から圧力を放出する圧力放出部を備えたことを特徴とする電気脱イオン装置。
    In an electrodeionization apparatus having an anode and a cathode, and a concentration chamber and a desalting chamber formed by arranging an ion exchange membrane between the anode and the cathode,
    An electrodeionization apparatus comprising a pressure release unit for releasing pressure from the desalting chamber separately from a production water extraction line from the desalting chamber.
  2.  前記陽極と陰極との間に前記イオン交換膜と、脱塩室を囲む脱塩室用フレームと、濃縮室を囲む濃縮室用フレームとを配列することにより前記脱塩室及び濃縮室が形成されており、
     前記圧力放出部として、該脱塩室用フレームの陽極側及び陰極側の少なくとも一方の面に設けられた溝を備えたことを特徴とする請求項1の電気脱イオン装置。
    The desalination chamber and the concentration chamber are formed by arranging the ion exchange membrane, a desalination chamber frame surrounding the desalination chamber, and a concentration chamber frame surrounding the concentration chamber between the anode and the cathode. And
    2. The electrodeionization apparatus according to claim 1, further comprising a groove provided on at least one of the anode side and the cathode side of the demineralization chamber frame as the pressure release unit.
  3.  前記溝として、脱塩室を周回する第1の溝と、該第1の溝を電気脱イオン装置外に連通する第2の溝とを備えたことを特徴とする請求項2の電気脱イオン装置。 The electrode deionization according to claim 2, wherein the groove comprises a first groove that circulates in the demineralization chamber and a second groove that communicates the first groove with the outside of the electrodeionization apparatus. apparatus.
  4.  前記溝は、脱塩室用フレームの内周縁と外周縁とを連通するように設けられていることを特徴とする請求項2の電気脱イオン装置。 3. The electrodeionization apparatus according to claim 2, wherein the groove is provided so as to communicate the inner peripheral edge and the outer peripheral edge of the demineralization chamber frame.
  5.  前記溝は前記電気脱イオン装置の底面に連通しており、該電気脱イオン装置が水受けトレー上に設置されていることを特徴とする請求項3又は4の電気脱イオン装置。 5. The electrodeionization apparatus according to claim 3 or 4, wherein the groove communicates with a bottom surface of the electrodeionization apparatus, and the electrodeionization apparatus is installed on a water receiving tray.
  6.  前記陽極と陰極との間に前記イオン交換膜と、脱塩室を囲む脱塩室用フレーム及び濃縮室を囲む濃縮室用フレームとを配列することにより前記脱塩室及び濃縮室が形成されており、
     前記圧力放出部として、前記脱塩室フレームの内周縁から内周縁と外周縁との間の途中部分まで設けられた溝と、前記電気脱イオン装置外と該溝とを連通する孔を備えたことを特徴とする請求項1の電気脱イオン装置。
    The desalination chamber and the concentration chamber are formed by arranging the ion exchange membrane, a desalination chamber frame surrounding the desalination chamber, and a concentration chamber frame surrounding the concentration chamber between the anode and the cathode. And
    As the pressure release portion, a groove provided from the inner peripheral edge of the desalting chamber frame to a middle portion between the inner peripheral edge and the outer peripheral edge, and a hole for communicating the outside with the electrodeionization apparatus and the groove are provided. The electrodeionization apparatus of Claim 1 characterized by the above-mentioned.
  7.  前記濃縮室からの濃縮水取出ラインとは別に、該濃縮室内から圧力を放出する濃縮室用圧力放出部を備えたことを特徴とする請求項1~6のいずれかの電気脱イオン装置。 The electrodeionization apparatus according to any one of claims 1 to 6, further comprising a concentration chamber pressure release unit that releases pressure from the concentration chamber, in addition to the concentrated water extraction line from the concentration chamber.
  8.  陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、
     濃縮水が該濃縮室に流通され、原水が被処理水として脱塩室に流通され、生産水として取り出され、
     生産水の一部が濃縮水として濃縮室に脱塩室の流れ方向と向流方向に流通される電気脱イオン装置において、
     該脱塩室のイオン交換樹脂充填高さが400~2000mmであり、
     該脱塩室に充填されるイオン交換樹脂が平均直径0.1~0.4mmのものを含むことを特徴とする電気脱イオン装置。
    A concentration chamber and a desalination chamber are partitioned by an ion exchange membrane between the anode and the cathode,
    Concentrated water is circulated to the concentrating chamber, raw water is circulated to the desalting chamber as treated water, taken out as production water,
    In the electrodeionization apparatus in which part of the production water is circulated in the concentration chamber as the concentrated water in the flow direction and the countercurrent direction of the demineralization chamber,
    The ion exchange resin filling height of the desalting chamber is 400 to 2000 mm,
    An electrodeionization apparatus characterized in that the ion exchange resin filled in the desalting chamber contains an average diameter of 0.1 to 0.4 mm.
  9.  請求項8において、脱塩室にはアニオン交換樹脂とカチオン交換樹脂との混合樹脂が充填されており、
     該脱塩室内の混合樹脂中のアニオン交換樹脂とカチオン交換樹脂の混合割合は、アニオン交換樹脂:カチオン交換樹脂=40~80:60~20であることを特徴とする電気脱イオン装置。
    In claim 8, the desalting chamber is filled with a mixed resin of an anion exchange resin and a cation exchange resin,
    An electrodeionization apparatus characterized in that the mixing ratio of the anion exchange resin and the cation exchange resin in the mixed resin in the demineralization chamber is anion exchange resin: cation exchange resin = 40 to 80:60 to 20.
  10.  陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、
     濃縮水が該濃縮室に流通され、原水が被処理水として脱塩室に流通され、生産水として取り出され、
     脱塩室にはアニオン交換樹脂とカチオン交換樹脂との混合樹脂が充填されている電気脱イオン装置において、
     該脱塩室内の混合樹脂中のアニオン交換樹脂とカチオン交換樹脂の混合割合は、アニオン交換樹脂:カチオン交換樹脂=65~35:35~65であることを特徴とする電気脱イオン装置。
    A concentration chamber and a desalination chamber are partitioned by an ion exchange membrane between the anode and the cathode,
    Concentrated water is circulated to the concentrating chamber, raw water is circulated to the desalting chamber as treated water, taken out as production water,
    In the electrodeionization apparatus in which the desalination chamber is filled with a mixed resin of an anion exchange resin and a cation exchange resin,
    An electrodeionization apparatus characterized in that the mixing ratio of the anion exchange resin and the cation exchange resin in the mixed resin in the demineralization chamber is anion exchange resin: cation exchange resin = 65 to 35:35 to 65.
  11.  請求項10において、前記脱塩室内の混合樹脂中のアニオン交換樹脂とカチオン交換樹脂の混合割合は、アニオン交換樹脂:カチオン交換樹脂=60~50:40~50であることを特徴とする電気脱イオン装置。 11. The electrodeionization method according to claim 10, wherein a mixing ratio of the anion exchange resin and the cation exchange resin in the mixed resin in the desalting chamber is anion exchange resin: cation exchange resin = 60 to 50:40 to 50. Ion device.
  12.  請求項8~11のいずれかの電気脱イオン装置を用いた脱イオン水の製造方法。 A method for producing deionized water using the electrodeionization apparatus according to any one of claims 8 to 11.
  13.  請求項12において、印加電流値が50A/m以上であることを特徴とする脱イオン水の製造方法。 The method for producing deionized water according to claim 12, wherein an applied current value is 50 A / m 2 or more.
PCT/JP2019/004792 2018-02-13 2019-02-12 Electric deionization device and method for producing deionized water WO2019159870A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018023244A JP6614252B2 (en) 2018-02-13 2018-02-13 Electrodeionization equipment
JP2018-023244 2018-02-13
JP2018-067359 2018-03-30
JP2018067359A JP6614266B2 (en) 2018-03-30 2018-03-30 Electrodeionization apparatus and method for producing deionized water
JP2018089981A JP2019195755A (en) 2018-05-08 2018-05-08 Electric deionization unit and method of producing deionized water
JP2018-089981 2018-05-08

Publications (1)

Publication Number Publication Date
WO2019159870A1 true WO2019159870A1 (en) 2019-08-22

Family

ID=67619399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004792 WO2019159870A1 (en) 2018-02-13 2019-02-12 Electric deionization device and method for producing deionized water

Country Status (2)

Country Link
TW (1) TW201936255A (en)
WO (1) WO2019159870A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117241Y1 (en) * 1969-07-10 1976-05-10
JPS5522356A (en) * 1978-08-08 1980-02-18 Asahi Glass Co Ltd Electric dialyzer
JPS58132505U (en) * 1982-03-02 1983-09-07 バブコツク日立株式会社 electrodialysis tank
JPS62168508A (en) * 1986-01-20 1987-07-24 Fujitsu General Ltd Electrodialytic type apparatus for producing pure water
JP2008510600A (en) * 2004-08-20 2008-04-10 グローバル リサーチ テクノロジーズ,エルエルシー Removal of carbon dioxide from the air
JP2011177293A (en) * 2010-02-26 2011-09-15 Sanyo Electric Co Ltd Air sterilization device
JP2016150304A (en) * 2015-02-17 2016-08-22 栗田工業株式会社 Electric deionizer and pure water producing apparatus
JP2017176968A (en) * 2016-03-29 2017-10-05 栗田工業株式会社 Electric deionization apparatus, and production method of deionization water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117241Y1 (en) * 1969-07-10 1976-05-10
JPS5522356A (en) * 1978-08-08 1980-02-18 Asahi Glass Co Ltd Electric dialyzer
JPS58132505U (en) * 1982-03-02 1983-09-07 バブコツク日立株式会社 electrodialysis tank
JPS62168508A (en) * 1986-01-20 1987-07-24 Fujitsu General Ltd Electrodialytic type apparatus for producing pure water
JP2008510600A (en) * 2004-08-20 2008-04-10 グローバル リサーチ テクノロジーズ,エルエルシー Removal of carbon dioxide from the air
JP2011177293A (en) * 2010-02-26 2011-09-15 Sanyo Electric Co Ltd Air sterilization device
JP2016150304A (en) * 2015-02-17 2016-08-22 栗田工業株式会社 Electric deionizer and pure water producing apparatus
JP2017176968A (en) * 2016-03-29 2017-10-05 栗田工業株式会社 Electric deionization apparatus, and production method of deionization water

Also Published As

Publication number Publication date
TW201936255A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
JP3773190B2 (en) Electric deionized water production equipment
CN1104937C (en) Modular apparatus for demineralization of liquids
KR100754680B1 (en) Composite porous ion-exchanger, method of manufacturing the ion-exchanger, deionization module using the ion-exchanger, and electric deionized water manufacturing device
JP3508647B2 (en) Electrodeionization equipment
JP5383310B2 (en) Deionization module and electric deionized water production apparatus
KR101138382B1 (en) Electric type deionized water production apparatus operating method, electric type deionized water production system, and electric type deionized water production apparatus
WO2004002898A1 (en) Electric deionizer
TW200303782A (en) Electrodeionization water producing apparatus and method of producing deionized water using same
JP2017176968A (en) Electric deionization apparatus, and production method of deionization water
WO2018092395A1 (en) Electric de-ionization device and de-ionized water production method
JP4250922B2 (en) Ultrapure water production system
WO2019159870A1 (en) Electric deionization device and method for producing deionized water
KR102054944B1 (en) Electrodeionization with excellent boron removal efficiency
JP2020078772A (en) Electrodeionization device and method for producing deionized water using the same
JP4819026B2 (en) Electric deionized water production apparatus and deionized water production method
JP6614266B2 (en) Electrodeionization apparatus and method for producing deionized water
JP5940387B2 (en) Electric deionized water production apparatus and deionized water production method
JP6614252B2 (en) Electrodeionization equipment
WO2020005843A1 (en) 3d printed spacers for ion-exchange device
WO2010104007A1 (en) Deionization module and electric device for producing deionized water
JP2021037469A (en) Electric deionizing device and manufacturing method of deionized water
JP2019195755A (en) Electric deionization unit and method of producing deionized water
US20240002265A1 (en) Electrodeionization device and method for producing deionized water
KR20200101453A (en) Electric deionized water production device
JP2001225078A (en) Electric regeneration type deionized water making apparatus and deionized water making method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754088

Country of ref document: EP

Kind code of ref document: A1