JP2020078772A - Electrodeionization device and method for producing deionized water using the same - Google Patents

Electrodeionization device and method for producing deionized water using the same Download PDF

Info

Publication number
JP2020078772A
JP2020078772A JP2018212420A JP2018212420A JP2020078772A JP 2020078772 A JP2020078772 A JP 2020078772A JP 2018212420 A JP2018212420 A JP 2018212420A JP 2018212420 A JP2018212420 A JP 2018212420A JP 2020078772 A JP2020078772 A JP 2020078772A
Authority
JP
Japan
Prior art keywords
exchange resin
chamber
water
ion exchange
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018212420A
Other languages
Japanese (ja)
Other versions
JP7275536B2 (en
Inventor
加藤 晃久
Akihisa Kato
晃久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2018212420A priority Critical patent/JP7275536B2/en
Publication of JP2020078772A publication Critical patent/JP2020078772A/en
Application granted granted Critical
Publication of JP7275536B2 publication Critical patent/JP7275536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide an electrodeionization device suitable for efficiently and highly removing boron.SOLUTION: A desalination chamber 15 of an electrodeionization device of this embodiment is filled with an ion exchange resin, and an upper region 15A and a lower region 15C of the desalination chamber 15 is filled with ion exchange resin having a normal particle size, that is, an ion exchange resin 21 having an average particle size more than 0.4 mm, and meanwhile, an intermediate region 15B of the desalination chamber 15 is filled with an ion exchange resin 22 having a smaller particle size, specifically, an average particle size of 0.1 to 0.4 mm. The intermediate region 15B is filled with the ion exchange resin 22 having a small particle size in a range of 33 to 66% of a height [H] of the desalination chamber 15 from a water inlet of the desalination chamber 15.SELECTED DRAWING: Figure 1

Description

本発明は、電気脱イオン装置及びこれを用いた脱イオン水の製造方法に関し、特にホウ素を高度に除去するのに好適な電気脱イオン装置、及びこの電気脱イオン装置を用いた脱イオン水の製造方法に関する。   The present invention relates to an electric deionization apparatus and a method for producing deionized water using the same, and in particular, an electric deionization apparatus suitable for highly removing boron, and deionized water using this electric deionization apparatus. It relates to a manufacturing method.

従来、半導体等の電子産業分野で用いられている超純水は、基本的に、前処理システム、一次純水システム及び一次純水を処理するサブシステムで構成される超純水製造装置で原水を処理することにより製造されている。特に電子産業分野用の超純水では、ホウ素濃度を0.1ppt以下にまで抑制することが要求されることもあり、これに伴い一次純水システムでの処理水のホウ素濃度を低減する必要性が高まっている。   Conventionally, ultrapure water used in the field of electronics such as semiconductors is basically processed by an ultrapure water production system consisting of a pretreatment system, a primary pure water system, and a subsystem for processing the primary pure water. It is manufactured by processing. Particularly in ultrapure water for the electronics industry, it may be required to control the boron concentration to 0.1 ppt or less, and accordingly, it is necessary to reduce the boron concentration of treated water in the primary pure water system. Is increasing.

この一次純水システムは、上述したような超純水の用途に限らず、サブシステムを伴うことなく、医薬用や食品用などの純水製造装置としても利用可能な汎用的なシステムであり、そのシステム構成としては、1段又は2段構成の逆浸透膜(RO膜)装置と電気脱イオン装置とを備えるものが一般的である。この一次純水システムでは、RO膜装置はシリカや塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。さらに電気脱イオン交換装置ではその他の各種無機あるいは有機性のアニオン及びカチオンの除去を行う。したがって、超純水(二次純水)のホウ素濃度を低下させるには、一次純水システムの電気脱イオン装置でのホウ素の除去率を高くすることが重要である。   This primary pure water system is not limited to the use of ultrapure water as described above, is a general-purpose system that can be used as a pure water production apparatus for medicines, foods, etc. without accompanying subsystems, The system configuration generally includes a one-stage or two-stage reverse osmosis membrane (RO membrane) device and an electric deionization device. In this primary pure water system, the RO membrane device removes silica and salts, as well as ionic and colloidal TOC. Further, in the electric deionization exchange device, various other inorganic or organic anions and cations are removed. Therefore, in order to reduce the boron concentration of ultrapure water (secondary pure water), it is important to increase the removal rate of boron in the electrodeionization device of the primary pure water system.

ここで、電気脱イオン装置とは、一般に陰極及び陽極間にカチオン交換膜とアニオン交換膜とを交互に配置し、これらカチオン交換膜及びアニオン交換膜により区画形成することで脱塩室及び濃縮室を形成し、この脱塩室及び前記濃縮室にイオン交換樹脂を充填したものである。   Here, the electric deionization device generally means that a cation exchange membrane and an anion exchange membrane are alternately arranged between the cathode and the anode, and the cation exchange membrane and the anion exchange membrane are partitioned to form a desalting chamber and a concentrating chamber. And the desalting chamber and the concentrating chamber are filled with an ion exchange resin.

この電気脱イオン装置の従来の例を図5に示す。図5において、電気脱イオン装置1は、電極(陽極11、陰極12)の間に複数のアニオン交換膜(A膜)13及びカチオン交換膜(C膜)14を交互に配列して脱塩室15と濃縮室16とを交互に形成したものであり、脱塩室15にはイオン交換樹脂が充填されている。また、濃縮室16と、陽極室17及び陰極室18にも、イオン交換体、活性炭又は金属等の電気導電体が充填されている。   A conventional example of this electric deionization apparatus is shown in FIG. In FIG. 5, the electric deionization apparatus 1 has a desalting chamber in which a plurality of anion exchange membranes (A membranes) 13 and cation exchange membranes (C membranes) 14 are alternately arranged between electrodes (anode 11 and cathode 12). 15 and the concentrating chamber 16 are alternately formed, and the desalting chamber 15 is filled with an ion exchange resin. The concentration chamber 16, the anode chamber 17 and the cathode chamber 18 are also filled with an electric conductor such as an ion exchanger, activated carbon or metal.

このような電気脱イオン装置1において、原水W0は脱塩室15の入口側から導入され、脱塩室15の出口側から生産水(脱イオン水)W1が取り出される。この生産水W1の一部は、濃縮室16に脱塩室15の通水方向とは逆方向に向流一過式で通水され、濃縮室16の流出水(濃縮排水)W2は系外へ排出される。すなわち、この電気脱イオン装置1では、脱塩室15と濃縮室16とが交互に並設され、脱塩室15の生産水取り出し側に濃縮室16の流入口が設けられており、脱塩室15の原水流入側に濃縮室16の流出口が設けられている。また、生産水W1の一部は陽極室17の入口側に送給され、陽極室17の流出水は、陰極室18の入口側へ送給され、陰極室18の流出水は排水W3として系外へ排出されるか、あるいは全部または一部を回収して再利用する。   In such an electric deionization apparatus 1, the raw water W0 is introduced from the inlet side of the deionization chamber 15, and the product water (deionized water) W1 is taken out from the outlet side of the deionization chamber 15. A part of the product water W1 is passed through the concentrating chamber 16 in a countercurrent transient direction in the direction opposite to the water flowing direction of the desalting chamber 15, and the outflow water (concentrated wastewater) W2 of the concentrating chamber 16 is outside the system. Is discharged to. That is, in this electric deionization apparatus 1, the desalting chambers 15 and the concentrating chambers 16 are alternately arranged side by side, and the inlet of the concentrating chamber 16 is provided on the production water take-out side of the demineralizing chamber 15, so that the desalting chamber 15 is desalted. An outlet of the concentrating chamber 16 is provided on the raw water inflow side of the chamber 15. Further, a part of the product water W1 is fed to the inlet side of the anode chamber 17, the outflow water of the anode chamber 17 is fed to the inlet side of the cathode chamber 18, and the outflow water of the cathode chamber 18 is used as drainage W3. It is either discharged outside or collected in whole or in part for reuse.

このように、濃縮室16に生産水を脱塩室15と向流一過式で通水することにより、生産水取り出し側ほど濃縮室16内の濃縮水のイオン濃度が低いものとなり、イオン濃度拡散による脱塩室15への影響が小さくなり、イオンの除去率を高めることができるのである。   In this way, by flowing the product water through the demineralization chamber 15 in the concentrating chamber 16 in a countercurrent transient manner, the ion concentration of the concentrated water in the concentrating chamber 16 becomes lower toward the product water extraction side. The influence of the diffusion on the desalting chamber 15 is reduced, and the ion removal rate can be increased.

近年、二次純水の要求水質が上がり、より高いイオン交換除去率が求められている。例えば、ホウ素1ng/L以下(除去率99.97%以上)、シリカ濃度50ng/L以下という厳しい要求水質が求められ、これに伴い一次純水システムの電気脱イオン装置でのホウ素の除去率を高くすることが求められている。   In recent years, the required water quality of secondary pure water has increased, and a higher ion exchange removal rate has been demanded. For example, strict required water quality of 1 ng/L or less (removal rate 99.97% or more) of boron and 50 ng/L or less of silica is required, and accordingly, the removal rate of boron in the electric deionization device of the primary pure water system is It is required to be high.

この対策として、電気脱イオン装置の脱塩室の厚さを薄くすることで、弱イオンであるシリカやホウ素の除去率を向上させることが提案されている。また、平均粒径が0.1〜0.4mmの小さい粒径のイオン交換樹脂を用いることでシリカやホウ素の除去率を向上させることも提案されている(特許文献1)。   As a countermeasure against this, it has been proposed to reduce the thickness of the deionization chamber of the electric deionization apparatus to improve the removal rate of silica and boron, which are weak ions. It has also been proposed to improve the removal rate of silica and boron by using an ion exchange resin having a small average particle diameter of 0.1 to 0.4 mm (Patent Document 1).

特開2017−176969号公報JP, 2017-176969, A

しかしながら、電気脱イオン装置の脱塩室の厚さを薄くしたとしても、ある程度以上の高さ(長さ)の脱塩室としなければ、十分シリカやホウ素の除去率の向上が得られず、さらに、処理水量及び流量を一定とすると、より多くの脱塩室を形成しなければならず、電気脱イオン装置の製造コストが高くなり実用性に劣る、という問題点がある。   However, even if the thickness of the deionization chamber of the electric deionization apparatus is reduced, unless the deionization chamber has a height (length) above a certain level, the removal rate of silica and boron cannot be sufficiently improved, Furthermore, if the amount and flow rate of treated water are constant, more demineralization chambers must be formed, which increases the manufacturing cost of the electric deionization apparatus and impairs its practicality.

また、特許文献1に記載されているように小粒径のイオン交換樹脂を用いた電気脱イオン装置では、原水を脱塩室に流通した際の圧損が大きくなるため、高圧で原水を通水しなければならず、電気脱イオン装置の密封性を向上させる必要があり、さらに電気脱イオン装置の耐久性が低下する、という問題点がある。   Further, as described in Patent Document 1, in an electric deionization apparatus using an ion exchange resin having a small particle size, pressure loss when the raw water flows through the desalting chamber becomes large, so that the raw water is passed at a high pressure. Therefore, it is necessary to improve the sealing property of the electrodeionization device, and further, the durability of the electrodeionization device is reduced.

本発明は上記課題に鑑みてなされたものであり、効率良くホウ素を高度に除去するのに好適な電気脱イオン装置を提供することを目的とする。また、本発明は、この電気脱イオン装置を用いたホウ素を高度に除去した脱イオン水の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an electric deionization apparatus suitable for efficiently removing boron to a high degree. Another object of the present invention is to provide a method for producing deionized water in which boron is highly removed by using this electric deionization device.

上記目的を達成するために第一に本発明は、陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、この区画された脱塩室にイオン交換樹脂が充填され、濃縮水が前記濃縮室に通水されるとともに、原水が被処理水として前記脱塩室に流通されて生産水として取り出す電気脱イオン装置において、前記脱塩室の通水入口から該脱塩室の高さに対して33〜66%の範囲に平均粒径が0.1〜0.4mmのイオン交換樹脂が充填されている、電気脱イオン装置を提供する(発明1)。   In order to achieve the above-mentioned object, firstly, the present invention has a concentrating chamber and a desalting chamber partitioned by an ion exchange membrane between an anode and a cathode, and the partitioned desalting chamber is filled with an ion exchange resin. In the electric deionization apparatus, in which concentrated water is passed through the concentration chamber and raw water is circulated as water to be treated in the desalination chamber and is taken out as production water, the desalination is performed through a water inlet of the desalination chamber. Provided is an electric deionization apparatus in which an ion exchange resin having an average particle size of 0.1 to 0.4 mm is filled in a range of 33 to 66% with respect to the height of a chamber (Invention 1).

かかる発明(発明1)によれば、ホウ素やシリカなどの除去の困難な弱イオン成分を高度に除去した脱イオン水を得ることが可能となる。これは以下のような理由による。ホウ素やシリカなどは、塩化物などの強イオン性のアニオンがある程度除去された後イオン化して除去されていく。このため、ホウ素やシリカを除去するためには、塩化物イオン等の除去しやすい強イオン性の成分が除去されるまでの時間、すなわちある程度の樹脂層高が必要となる。一方、平均粒径が0.1〜0.4mmと小粒径のイオン交換樹脂は、高いイオン除去性能を発揮するが、原水の流通圧の圧損が大きくなる。これらのことから、脱塩室の入り口側に小粒径のイオン交換樹脂を配置してもホウ素やシリカなどは通過してしまい、その高いイオン除去性能を発揮することができないことがわかる。そこで、塩化物イオン等の除去しやすい強イオン性の成分が除去される樹脂層高を考慮した結果、通水入口から該脱塩室の高さ方向の33〜66%の範囲に小粒径のイオン交換樹脂を充填することにより、ホウ素やシリカなどの除去の困難な弱イオン成分の高度除去と、原水を流通した際の圧損の低減の両方を効率的に発揮することができることを見い出した。これらに基づき、本発明に想到した。   According to this invention (Invention 1), it is possible to obtain deionized water in which weak ion components such as boron and silica that are difficult to remove are highly removed. This is for the following reasons. Boron, silica, etc. are ionized and removed after the strongly ionic anions such as chlorides are removed to some extent. For this reason, in order to remove boron and silica, it takes a certain amount of time to remove easily ionic components such as chloride ions that are easily removed, that is, a certain height of the resin layer. On the other hand, an ion exchange resin having a small particle diameter of 0.1 to 0.4 mm exhibits high ion removal performance, but the pressure loss of the circulating pressure of raw water becomes large. From these, it can be seen that even if an ion exchange resin having a small particle size is arranged on the inlet side of the desalting chamber, boron, silica, etc. pass through, and the high ion removal performance cannot be exhibited. Then, as a result of considering the height of the resin layer from which strong ionic components such as chloride ions that are easy to remove are taken into consideration, as a result, the small particle size is within the range of 33 to 66% in the height direction of the desalination chamber from the water inlet. It has been found that by filling the ion exchange resin of No. 1, it is possible to efficiently perform both the high removal of weak ionic components such as boron and silica, which are difficult to remove, and the reduction of pressure loss when circulating the raw water. .. Based on these, the present invention was conceived.

上記発明(発明1)においては、前記平均粒径0.1〜0.4mmのイオン交換樹脂の充填高さが、前記脱塩室の高さの10〜33%であることが好ましい(発明2)。   In the above invention (Invention 1), the filling height of the ion exchange resin having the average particle diameter of 0.1 to 0.4 mm is preferably 10 to 33% of the height of the desalting chamber (Invention 2). ).

かかる発明(発明2)によれば、通水入口から該脱塩室の高さ方向の33〜66の範囲で、10〜33%の高さで小粒径のイオン交換樹脂を充填することにより、ホウ素やシリカなどの除去の困難な弱イオン成分の高度除去と、原水を流通した際の圧損の低減の両方をより効率的に発揮することができる。   According to this invention (Invention 2), by filling the ion exchange resin with a small particle size at a height of 10 to 33% in the range of 33 to 66 in the height direction of the desalination chamber from the water inlet. It is possible to more efficiently exhibit both the high degree removal of weak ionic components such as boron and silica, which are difficult to remove, and the reduction in pressure loss when the raw water is circulated.

上記発明(発明1,2)においては、前記生産水の一部が濃縮水として脱塩室の流れ方向と向流方向に濃縮室に流通されることが好ましい(発明3)。   In the above inventions (Inventions 1 and 2), it is preferable that a part of the produced water is circulated as concentrated water in the concentration chamber in the flow direction and the countercurrent direction of the desalting chamber (Invention 3).

かかる発明(発明3)によれば、電気脱イオン装置の脱塩室と濃縮室におけるイオンの濃度勾配の格差を緩和することができるので、ホウ素除去率をさらに向上させることができる。   According to the invention (Invention 3), the difference in the ion concentration gradient between the deionization chamber and the concentration chamber of the electric deionization apparatus can be reduced, and thus the boron removal rate can be further improved.

上記発明(発明1〜3)においては、前記脱塩室の厚さが2.5〜20mmであることが好ましい(発明4)。   In the said invention (invention 1-3), it is preferable that the thickness of the said desalination chamber is 2.5-20 mm (invention 4).

かかる発明(発明4)によれば、脱塩室を比較的厚く形成することにより、濃縮室の数及びイオン交換膜の数が削減され、もって電気抵抗を減らすことができるので、電気脱イオン装置の高寿命化を図ることができる。   According to this invention (Invention 4), by forming the deionization chamber to be relatively thick, the number of concentration chambers and the number of ion-exchange membranes can be reduced, and the electrical resistance can be reduced. It is possible to extend the life of the.

上記発明(発明1〜4)においては、前記平均粒径0.1〜0.4mmのイオン交換樹脂の充填箇所以外には、平均粒径0.4mmを超えるイオン交換樹脂、又は両者の混合樹脂が充填されていることが好ましい(発明5)。   In the above inventions (Inventions 1 to 4), an ion exchange resin having an average particle size of more than 0.4 mm, or a mixed resin of both of them, except for a portion filled with the ion exchange resin having an average particle size of 0.1 to 0.4 mm. Is preferably filled (Invention 5).

かかる発明(発明5)によれば、小粒径のイオン交換樹脂層以外は、粒径の大きなイオン交換樹脂を配置しているので、ホウ素やシリカなどの除去の困難な弱イオン成分の高度除去と、原水を流通した際の圧損の低減の両方をより効率的に発揮することができる。   According to the invention (Invention 5), since the ion-exchange resin having a large particle size is arranged except for the ion-exchange resin layer having a small particle size, it is possible to highly remove weak ionic components such as boron and silica which are difficult to remove. Also, it is possible to more efficiently exhibit both the reduction of pressure loss when the raw water is distributed.

上記発明(発明1〜5)においては、前記脱塩室内に充填されるイオン交換樹脂がアニオン交換樹脂とカチオン交換樹脂であり、前記アニオン交換樹脂と前記カチオン交換樹脂との割合が60:40〜90:10(乾燥重量比)であることが好ましい(発明6)。特に上記発明(発明6)においては、前記アニオン交換樹脂及びカチオン交換樹脂が、両者の混合樹脂、又はアニオン交換樹脂とカチオン交換樹脂をそれぞれ単層で積層したものであることが好ましい(発明7)。   In the said invention (invention 1-5), the ion exchange resin with which the said desalination chamber is filled is an anion exchange resin and a cation exchange resin, and the ratio of the said anion exchange resin and the said cation exchange resin is 60:40-. It is preferably 90:10 (dry weight ratio) (Invention 6). Particularly, in the above invention (Invention 6), it is preferable that the anion exchange resin and the cation exchange resin are a mixed resin of the both, or an anion exchange resin and a cation exchange resin each laminated in a single layer (Invention 7). .

かかる発明(発明6,7)によれば、アニオン交換樹脂を多く充填することにより、ホウ素やシリカなどのなどの陰イオンを効率良く除去することができる。   According to such inventions (Inventions 6 and 7), by filling a large amount of anion exchange resin, anions such as boron and silica can be efficiently removed.

また、第二に本発明は、前記発明1〜7のいずれかに記載の電気脱イオン装置の濃縮室に濃縮水を流通するとともに、脱塩室に被処理水としての原水を通水して、生産水を取り出す脱イオン水の製造方法を提供する(発明8)。   Secondly, the present invention allows concentrated water to flow through the concentration chamber of the electric deionization apparatus according to any one of the above inventions 1 to 7 and allows raw water as water to be treated to pass through the deionization chamber. The present invention provides a method for producing deionized water for taking out produced water (Invention 8).

かかる発明(発明8)によれば、ホウ素を高度に除去した脱イオン水を製造することができる。   According to this invention (Invention 8), deionized water from which boron is highly removed can be produced.

本発明の電気脱イオン装置によれば、該電気脱イオン装置の脱塩室の通水入口から該脱塩室の高さ方向の33〜66%の範囲に平均粒径が0.1〜0.4mmのイオン交換樹脂を充填しているので、ホウ素やシリカなどの除去の困難な弱イオン成分を高度に除去した脱イオン水を製造することが可能となる。   According to the electric deionization apparatus of the present invention, the average particle size is 0.1 to 0 within a range of 33 to 66% in the height direction of the deionization chamber from the water inlet of the deionization chamber of the electric deionization device. Since it is filled with an ion exchange resin of 0.4 mm, it becomes possible to produce deionized water in which weak ion components such as boron and silica, which are difficult to remove, are highly removed.

本発明の一実施形態による電気脱イオン装置の脱塩室のイオン交換樹脂の充填状態を概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a state of filling an ion exchange resin in a deionization chamber of an electric deionization apparatus according to an embodiment of the present invention. 実施例1の電気脱イオン装置の脱塩室のイオン交換樹脂の充填状態を概略的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a state in which a deionization chamber of the electric deionization apparatus of Example 1 is filled with an ion exchange resin. 比較例1の電気脱イオン装置の脱塩室のイオン交換樹脂の充填状態を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a filling state of an ion exchange resin in a deionization chamber of the electric deionization apparatus of Comparative Example 1. 比較例2の電気脱イオン装置の脱塩室のイオン交換樹脂の充填状態を概略的に示す断面図である。6 is a cross-sectional view schematically showing a state of filling an ion-exchange resin in a deionization chamber of the electric deionization apparatus of Comparative Example 2. FIG. 電気脱イオン装置の一般的な構造を模式的に示す断面図である。It is sectional drawing which shows the general structure of an electric deionization apparatus typically.

以下、本発明の一実施形態による電気脱イオン装置について添付図面を参照して説明する。   Hereinafter, an electrodeionization apparatus according to an exemplary embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態による電気脱イオン装置の脱塩室におけるイオン交換樹脂の充填状態を概略的に示している。本実施形態の電気脱イオン装置自体は、上述した図5に示す電気脱イオン装置と同じ構成を有し、脱塩室15のイオン交換樹脂の充填構造のみが相違するので、その詳細な説明を省略する。図1において、脱塩室15には、イオン交換樹脂が充填されており、脱塩室15の上側領域15A及び下側領域15Cには、通常の粒径のイオン交換樹脂、すなわち平均粒径0.4mmを超えるイオン交換樹脂21が充填されている一方、脱塩室15の中間領域15Bには、これより小粒径、具体的には平均粒径が0.1〜0.4mmのイオン交換樹脂22が充填されている。小粒径のイオン交換樹脂22の平均粒径が0.4mmを超えると、小粒径のイオン交換樹脂22を用いることによる効果が得られない一方、小粒径のイオン交換樹脂22の平均粒径が0.1mm未満では、取扱い性が低下するばかりか、通水抵抗が大きくなり過ぎる。なお、平均粒径0.4mmを超えるイオン交換樹脂21としては、具体的には0.5〜2.0mm、特に0.5〜1.0mm程度の平均粒径を有するものを用いることができる。   FIG. 1 schematically shows a state of filling with an ion exchange resin in a deionization chamber of an electric deionization apparatus according to an embodiment of the present invention. The electric deionization apparatus itself of this embodiment has the same configuration as the electric deionization apparatus shown in FIG. 5 described above, and only the structure for filling the ion exchange resin in the deionization chamber 15 is different. Therefore, a detailed description thereof will be given. Omit it. In FIG. 1, the deionization chamber 15 is filled with an ion exchange resin, and the upper region 15A and the lower region 15C of the deionization chamber 15 have an ion exchange resin having a normal particle size, that is, an average particle size of 0. While the ion exchange resin 21 having a diameter of more than 4 mm is filled, the intermediate region 15B of the desalting chamber 15 has a smaller particle size, specifically, an average particle size of 0.1 to 0.4 mm. The resin 22 is filled. When the average particle size of the small particle size ion exchange resin 22 exceeds 0.4 mm, the effect of using the small particle size ion exchange resin 22 cannot be obtained, while the average particle size of the small particle size ion exchange resin 22 is not obtained. If the diameter is less than 0.1 mm, not only the handleability is lowered, but also the water resistance becomes too large. As the ion exchange resin 21 having an average particle size of more than 0.4 mm, specifically, one having an average particle size of 0.5 to 2.0 mm, particularly 0.5 to 1.0 mm can be used. ..

このようなイオン交換装置の脱塩室15において、小粒径のイオン交換樹脂22が充填される中間領域15Bは、脱塩室15の通水入口から脱塩室15の高さ[H]に対して33〜66%の範囲に小粒径のイオン交換樹脂22を充填することにより形成される。前記小粒径のイオン交換樹脂22が充填される位置が、通水入口から脱塩室15の高さ方向の33%より上部では、ホウ素やシリカなどの除去の困難な弱イオン成分がイオン交換膜にまで移動するだけの時間が確保できず、小粒径のイオン交換樹脂22を配置する効果が十分でない。一方、前記小粒径のイオン交換樹脂22が充填される位置が、通水入口から脱塩室15の高さ方向の66%より下部では、イオン除去性能が高い小粒径のイオン交換樹脂22の性能を効率良く発揮できない。   In the deionization chamber 15 of such an ion exchange device, the intermediate region 15B filled with the ion exchange resin 22 having a small particle size is located at a height [H] of the deionization chamber 15 from the water inlet of the deionization chamber 15. On the other hand, it is formed by filling the ion exchange resin 22 having a small particle size in the range of 33 to 66%. At a position where the ion exchange resin 22 having a small particle size is filled above 33% in the height direction of the desalination chamber 15 from the water inlet, weak ion components such as boron and silica that are difficult to remove are ion-exchanged. The time for moving to the membrane cannot be secured, and the effect of arranging the ion exchange resin 22 having a small particle size is not sufficient. On the other hand, when the position where the small particle size ion exchange resin 22 is filled is lower than 66% in the height direction of the desalination chamber 15 from the water inlet, the small particle size ion exchange resin 22 having high ion removal performance is provided. The performance of can not be exhibited efficiently.

また、小粒径のイオン交換樹脂22が充填される中間領域15Bの高さ[h]は、脱塩室15の高さ[H]の10〜33%であることが好ましい。中間領域15Bの高さ[h]が10%未満では、ホウ素やシリカなどの除去の困難な弱イオン成分を十分に除去することができない一方、33%を超えても、それ以上の弱イオン成分除去効果の向上が得られないばかりか、原水Wを流通した際の圧損が大きくなるため好ましくない。ここで電気脱イオン装置における脱塩室15の高さ[H]は、一般に400〜800mm程度である。なお、脱塩室15の幅は30〜60mm程度である。   The height [h] of the intermediate region 15B filled with the ion exchange resin 22 having a small particle size is preferably 10 to 33% of the height [H] of the deionization chamber 15. If the height [h] of the intermediate region 15B is less than 10%, weak ion components such as boron and silica, which are difficult to remove, cannot be sufficiently removed. Not only the removal effect cannot be improved, but also the pressure loss when the raw water W is distributed becomes large, which is not preferable. Here, the height [H] of the deionization chamber 15 in the electric deionization apparatus is generally about 400 to 800 mm. The width of the deionization chamber 15 is about 30 to 60 mm.

また、脱塩室15の厚さは2.5〜20mm、特に10〜15mmであることが好ましい。本実施形態のように小粒径のイオン交換樹脂22を脱塩室15の通水入口から脱塩室15の高さ方向の33〜66%の範囲に配置することにより、脱塩室15を厚くしてもホウ素やシリカなどの除去の困難な弱イオン成分を高度に除去することができるので、脱イオン水W1の製造量を固定した場合における脱塩室15の数を削減することができる。これによりアニオン交換膜及びカチオン交換膜の数を削減することができるだけでなく、電気脱イオン装置の高寿命の運転が可能となる、という効果を奏する。なお、電気脱イオン装置における脱塩室15の数は、1〜200個、特に40〜80個程度とすることが好ましい。   The thickness of the desalting chamber 15 is preferably 2.5 to 20 mm, particularly 10 to 15 mm. By disposing the ion exchange resin 22 having a small particle size in the range of 33 to 66% in the height direction of the desalting chamber 15 from the water inlet of the desalting chamber 15 as in this embodiment, the desalting chamber 15 is Since it is possible to highly remove weak ionic components such as boron and silica that are difficult to remove even if the thickness is increased, it is possible to reduce the number of the desalting chambers 15 when the production amount of the deionized water W1 is fixed. .. As a result, not only the number of anion exchange membranes and cation exchange membranes can be reduced, but also a long life operation of the electric deionization device can be achieved. The number of the deionization chambers 15 in the electric deionization apparatus is preferably 1 to 200, particularly 40 to 80.

上側領域15A及び下側領域15Cには、平均粒径0.4mmを超えるイオン交換樹脂が充填されるが、小粒径のイオン交換樹脂を30容積%以下、特に10容積%以下程度含んでいてもよい。   The upper region 15A and the lower region 15C are filled with an ion exchange resin having an average particle size of more than 0.4 mm, but the ion exchange resin having a small particle size is contained in an amount of 30% by volume or less, particularly 10% by volume or less. Good.

上述したような構成の脱塩室15を備えた本実施形態の電気脱イオン装置において、脱塩室の上側領域15A、中間領域15B及び下側領域15Cに充填されるイオン交換樹脂は、アニオン交換樹脂とカチオン交換樹脂の両方であることが好ましい。   In the electric deionization apparatus of the present embodiment including the deionization chamber 15 having the above-described configuration, the ion exchange resin filled in the upper region 15A, the intermediate region 15B and the lower region 15C of the deionization chamber is anion exchange. It is preferably both a resin and a cation exchange resin.

この場合、脱塩室15に充填するアニオン交換樹脂とカチオン交換樹脂の混合割合は、アニオン交換樹脂:カチオン交換樹脂=50:50〜90:10(乾燥重量比)、特に50:50〜80:20(乾燥重量比)の範囲であることが好ましい。この脱塩室15に充填されるアニオン交換樹脂とカチオン交換樹脂は、混合樹脂とすることが好ましいが、上記範囲内の乾燥重量比となるようにアニオン交換樹脂の層とカチオン交換樹脂の層とをそれぞれ積層した構造としてもよい。また、混合樹脂とする場合、アニオン交換樹脂とカチオン交換樹脂とをすべての箇所で上記の割合で同一としてもよいし、脱塩室15の通水方向の入口側と出口側で異ならせてもよい。例えば、脱塩室15の通水方向の入り口側(図示上側)から通水長さのうち1/2〜1/3の領域においては、アニオン交換樹脂:カチオン交換樹脂=70:30〜80:20(乾燥重量比)の混合樹脂を充填し、その他の箇所(出口側)にはアニオン交換樹脂:カチオン交換樹脂=40:60〜60:40(乾燥重量比)の混合樹脂を充填するなどしてもよい。アニオン交換樹脂をこのように入口側に十分な量を充填することにより、入口側でアニオンが効果的に除去され、アルカリ雰囲気となるので、炭酸、シリカ、ホウ素がよりイオン化しやすくなり、電気脱イオン装置で除去されやすくなる、という効果を奏する。なお、脱塩室15の中間領域15Bに充填される小粒径のイオン交換樹脂22は、これらアニオン交換樹脂とカチオン交換樹脂のそれぞれが上述の平均粒径を満たすようにすればよい。   In this case, the mixing ratio of the anion exchange resin and the cation exchange resin filled in the desalting chamber 15 is anion exchange resin:cation exchange resin=50:50 to 90:10 (dry weight ratio), particularly 50:50 to 80: It is preferably in the range of 20 (dry weight ratio). The anion exchange resin and the cation exchange resin filled in the desalting chamber 15 are preferably a mixed resin, but the anion exchange resin layer and the cation exchange resin layer are provided so that the dry weight ratio is within the above range. It may have a structure in which each is laminated. Further, in the case of using a mixed resin, the anion exchange resin and the cation exchange resin may be the same at the above-mentioned ratios at all positions, or may be different on the inlet side and the outlet side of the desalting chamber 15 in the water flow direction. Good. For example, in a region of 1/2 to 1/3 of the water flow length from the inlet side (upper side in the drawing) of the desalination chamber 15 in the water flow direction, anion exchange resin:cation exchange resin=70:30 to 80: 20 (dry weight ratio) of the mixed resin is filled, and other portions (outlet side) are filled with anion exchange resin:cation exchange resin=40:60 to 60:40 (dry weight ratio) of the mixed resin. May be. By filling a sufficient amount of the anion exchange resin on the inlet side in this way, the anions are effectively removed on the inlet side and an alkaline atmosphere is created, so that carbonic acid, silica, and boron are more easily ionized, and electrical desorption is performed. This has the effect of being easily removed by the ion device. The ion exchange resin 22 having a small particle size, which is filled in the intermediate region 15B of the desalting chamber 15, may be such that each of the anion exchange resin and the cation exchange resin satisfies the above-mentioned average particle size.

なお、ホウ素除去率をさらに向上させるためには、濃縮室にもイオン交換樹脂を充填することがこのましい。この場合、濃縮室に充填するイオン交換樹脂として小粒径のイオン交換樹脂を用いてもよい。   In order to further improve the boron removal rate, it is preferable to fill the concentration chamber with an ion exchange resin. In this case, an ion exchange resin having a small particle size may be used as the ion exchange resin with which the concentration chamber is filled.

また、濃縮室に充填するイオン交換樹脂のアニオン交換樹脂とカチオン交換樹脂の比率は特に制限はないが、アニオン交換樹脂:カチオン交換樹脂=40:60〜70:30、特に50:50〜70:30(乾燥重量比)の混合樹脂とすることが好ましい。このような濃縮室の厚さは、脱塩室15の厚さと同等とすることができる。   The ratio of the anion exchange resin to the cation exchange resin of the ion exchange resin filled in the concentrating chamber is not particularly limited, but anion exchange resin:cation exchange resin=40:60 to 70:30, particularly 50:50 to 70: A mixed resin of 30 (dry weight ratio) is preferable. The thickness of such a concentrating chamber can be made equal to the thickness of the desalting chamber 15.

次に上述したような構成の脱塩室15を備えた電気脱イオン装置を用いた脱イオン水の製造方法について説明する。まず、RO処理水などの処理原水W0を電気脱イオン装置で処理する。これにより原水W0が脱塩室15に導入され、まず脱塩室15の上側領域15Aにおいて、平均粒径0.4mmを超えるイオン交換樹脂21で塩化物イオン等の除去しやすい強イオン性の成分が除去される。この上側領域15Aは、脱塩室15の高さ[H]の流入側から33%の範囲が確保されているので、この間にホウ素やシリカなどの除去の困難な弱イオン成分がアニオン交換膜側に移動し、中間領域15Bで小粒径のイオン交換樹脂22によりイオン化した弱イオン成分が除去される。そして、最後に脱塩室15の高さ[H]の流出側から34%の範囲が確保された下側領域15Cにおいて、除去しれきれなかった塩化物イオン、ホウ素やシリカなどが除去される。これにより、ホウ素を高度に除去した生産水(脱イオン水)W1を製造することができる。このときの脱塩室15の通水LVは50〜150m/h程度とすることが好ましい。   Next, a method for producing deionized water using the electric deionization apparatus provided with the deionization chamber 15 having the above-described configuration will be described. First, treated raw water W0 such as RO treated water is treated with an electric deionization device. As a result, the raw water W0 is introduced into the desalting chamber 15, and first in the upper region 15A of the desalting chamber 15, a strong ionic component such as chloride ions that is easily removed by the ion exchange resin 21 having an average particle size of 0.4 mm or more. Are removed. Since the upper region 15A has a range of 33% from the inflow side of the height [H] of the desalting chamber 15, weak ion components such as boron and silica, which are difficult to remove during this period, are on the anion exchange membrane side. And the weak ion component ionized by the ion exchange resin 22 having a small particle size is removed in the intermediate region 15B. Then, finally, in the lower region 15C where a range of 34% from the outflow side of the height [H] of the deionization chamber 15 is secured, chloride ions, boron, silica, and the like that could not be completely removed are removed. Thereby, the production water (deionized water) W1 from which boron is highly removed can be manufactured. At this time, the water flow LV in the desalination chamber 15 is preferably about 50 to 150 m/h.

特に、本実施形態においては、図5に示すように濃縮室16と脱塩室15とが交互に並設され、脱塩室15の生産水(脱イオン水)W1の取り出し側が濃縮室16の流入口となっているとともに脱塩室15の原水流入側が濃縮室16の流出口となっている。これにより、濃縮室16に脱イオン水W1の一部(例えば10〜30%程度)を濃縮水として脱塩室15に対して向流一過式で通水することにより、脱塩室15の取り出し側ほど濃縮室16内の濃縮水中のイオン濃度が低いものとなるので、濃度拡散による脱塩室15への影響が小さくなり、イオン除去率、特にホウ素の除去率を大きく向上することができる。このときの濃縮室の通水LVは10〜300m/h程度とすることが好ましい。   In particular, in the present embodiment, as shown in FIG. 5, the concentrating chambers 16 and the desalting chambers 15 are alternately arranged side by side, and the take-out side of the product water (deionized water) W1 from the desalting chambers 15 is the concentrating chamber 16. The raw water inflow side of the desalination chamber 15 serves as an inflow port and the outflow port of the concentrating chamber 16. As a result, a part (for example, about 10 to 30%) of the deionized water W1 is passed through the concentrating chamber 16 as the concentrated water in a countercurrent transient manner with respect to the demineralizing chamber 15. Since the ion concentration in the concentrated water in the concentrating chamber 16 becomes lower toward the take-out side, the influence of the concentration diffusion on the desalting chamber 15 becomes smaller, and the ion removal rate, particularly the boron removal rate can be greatly improved. .. The water flow LV in the concentrating chamber at this time is preferably about 10 to 300 m/h.

このようにして電気脱イオン装置1を運転してRO処理水を原水W0として処理することにより、ホウ素除去率を99.9%以上程度にまで高めることができる。なお、運転電流密度50A/m以上とすることが高いホウ素、シリカ除去率とするためには好ましい。 In this way, by operating the electric deionization apparatus 1 to treat the RO-treated water as the raw water W0, the boron removal rate can be increased to about 99.9% or more. The operating current density of 50 A/m 2 or more is preferable in order to obtain a high boron and silica removal rate.

以上、本発明の一実施形態について添付図面を参照して説明してきたが、本発明は、電気脱イオン装置1の脱塩室15のイオン交換樹脂を上述したように充填すれば前記実施形態に限定されず、種々の変更実施が可能である。例えば、濃縮室16に脱イオン水W1を脱塩室15に対して向流一過式で通水せずに同方向に通水してもよいし、アニオン交換樹脂とカチオン交換樹脂の比率は、要求される水質や原水W0の水質に応じて適宜設定することができる。   Although one embodiment of the present invention has been described above with reference to the accompanying drawings, the present invention is not limited to the above embodiment if the ion exchange resin in the deionization chamber 15 of the electric deionization apparatus 1 is filled as described above. Without being limited, various modifications can be made. For example, the deionized water W1 may be passed through the concentrating chamber 16 in the same direction as the deionization chamber 15 in a countercurrent transient manner without passing, or the ratio of the anion exchange resin to the cation exchange resin may be changed. It can be appropriately set according to the required water quality or the water quality of the raw water W0.

以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

〔実施例1〕
電気脱イオン装置1、イオン交換樹脂として以下のものを使用した。
電気脱イオン装置:KCDI−UPz(栗田工業(株)製)、図5に示すように脱塩室15を通水した脱イオン水W1の一部を対向流で濃縮水として濃縮室16に通水する方式を採用。脱塩室15の高さ[H]600mm、脱塩室15の厚み10mm、脱塩室15のセル枚数100枚。
[Example 1]
The following were used as the electric deionization apparatus 1 and the ion exchange resin.
Electrodeionization device: KCDI-UPz (manufactured by Kurita Water Industries Co., Ltd.), as shown in FIG. Uses a watering method. The height [H] of the desalting chamber 15 is 600 mm, the thickness of the desalting chamber 15 is 10 mm, and the number of cells in the desalting chamber 15 is 100.

上記の電気脱イオン装置1において、図2に示すように脱塩室15の通水入口から脱塩室15の高さに対して40〜60%の範囲に小粒径のイオン交換樹脂22として平均粒径が0.3mmのイオン交換樹脂22(アニオン交換樹脂/カチオン交換樹脂=50/50(乾燥重量比))を100mmの高さに充填するとともに、上側領域15A及び下側領域15Cに平均粒径0.6mmのイオン交換樹脂21(アニオン交換樹脂/カチオン交換樹脂=50/50(乾燥重量比))を上側領域15A及び下側領域15Cに充填して、電気脱イオン装置1を構成した。   In the above electric deionization apparatus 1, as shown in FIG. 2, as the ion exchange resin 22 having a small particle size in the range of 40 to 60% with respect to the height of the desalination chamber 15 from the water inlet of the desalination chamber 15. Ion exchange resin 22 (anion exchange resin/cation exchange resin=50/50 (dry weight ratio)) having an average particle size of 0.3 mm is filled to a height of 100 mm, and the upper region 15A and the lower region 15C are averaged. The ion exchange resin 21 (anion exchange resin/cation exchange resin=50/50 (dry weight ratio)) having a particle diameter of 0.6 mm was filled in the upper region 15A and the lower region 15C to configure the electric deionization apparatus 1. .

栃木県下都賀郡野木町の市水(原水)を凝集・加圧浮上装置、ろ過装置及び活性炭塔からなる前処理システムで処理した後、2段RO膜装置により処理した。この2段RO処理水(原水)W0のシリカ濃度は1μg/L以下であり、ホウ素濃度は約3.5μg/Lであった。続いて、この被処理水(原水)W0を上述した電気脱イオン装置1に通水し、運転電流密度100A/mで運転した。なお、この電気脱イオン装置における通水LVは100m/hであり、水回収率90%とした。 City water (raw water) in Nogi-cho, Shimotsuga-gun, Tochigi Prefecture was treated with a pretreatment system consisting of a flocculation/pressure flotation device, a filtration device and an activated carbon tower, and then treated with a two-stage RO membrane device. The silica concentration of this two-stage RO-treated water (raw water) W0 was 1 μg/L or less, and the boron concentration was about 3.5 μg/L. Subsequently, the water to be treated (raw water) W0 was passed through the electric deionization apparatus 1 described above and operated at an operating current density of 100 A/m 2 . The water flow LV in this electric deionization apparatus was 100 m/h, and the water recovery rate was 90%.

この電気脱イオン装置により製造した生産水(脱イオン水)W1のホウ素濃度を測定し、ホウ素除去率を計算した。結果を小粒径樹脂の有無、小粒径樹脂の充填位置とともに表1に示す。   The boron concentration of the product water (deionized water) W1 produced by this electric deionization device was measured, and the boron removal rate was calculated. The results are shown in Table 1 together with the presence or absence of the small particle size resin and the filling position of the small particle size resin.

〔実施例2〕
実施例1において、平均粒径が0.3mmのイオン交換樹脂22(アニオン交換樹脂/カチオン交換樹脂=50/50(乾燥重量比))を脱塩室15の通水入口から脱塩室15の高さに対して35〜50%の範囲に充填した以外は同様にして電気脱イオン装置1を構成した。
[Example 2]
In Example 1, an ion exchange resin 22 (anion exchange resin/cation exchange resin=50/50 (dry weight ratio)) having an average particle diameter of 0.3 mm was passed from the water inlet of the desalination chamber 15 to the desalination chamber 15. An electric deionization apparatus 1 was constructed in the same manner except that the filling amount was 35 to 50% of the height.

この電気脱イオン装置により、実施例1と同様の条件により、脱イオン水W1を製造し、この脱イオン水W1のホウ素濃度を測定し、ホウ素除去率を計算した。結果を小粒径樹脂の有無、小粒径樹脂の充填位置とともに表1にあわせて示す。   With this electric deionization apparatus, deionized water W1 was produced under the same conditions as in Example 1, the boron concentration of this deionized water W1 was measured, and the boron removal rate was calculated. The results are shown in Table 1 together with the presence or absence of the small particle size resin and the filling position of the small particle size resin.

〔比較例1〕
実施例1において、図3に示すように平均粒径が0.3mmのイオン交換樹脂22(アニオン交換樹脂/カチオン交換樹脂=50/50(乾燥重量比))を脱塩室15の通水入口から脱塩室15の高さに対して0〜20%の範囲(入口側から20%)に充填した以外は同様にして電気脱イオン装置1を構成した。
[Comparative Example 1]
In Example 1, as shown in FIG. 3, an ion exchange resin 22 (anion exchange resin/cation exchange resin=50/50 (dry weight ratio)) having an average particle diameter of 0.3 mm was used as a water inlet of the desalting chamber 15. Therefore, the electric deionization apparatus 1 was constructed in the same manner except that the deionization chamber 15 was filled in the range of 0 to 20% (20% from the inlet side) with respect to the height.

この電気脱イオン装置により、実施例1と同様の条件により、脱イオン水W1を製造し、この脱イオン水W1のホウ素濃度を測定し、ホウ素除去率を計算した。結果を小粒径樹脂の有無、小粒径樹脂の充填位置とともに表1にあわせて示す。   With this electric deionization apparatus, deionized water W1 was produced under the same conditions as in Example 1, the boron concentration of this deionized water W1 was measured, and the boron removal rate was calculated. The results are shown in Table 1 together with the presence or absence of the small particle size resin and the filling position of the small particle size resin.

〔比較例2〕
実施例1において、図4に示すように脱塩室15の全域に平均粒径0.6mmのイオン交換樹脂21(アニオン交換樹脂/カチオン交換樹脂=50/50(乾燥重量比))を充填した以外は同様にして電気脱イオン装置1を構成した。
[Comparative Example 2]
In Example 1, as shown in FIG. 4, the entire desalting chamber 15 was filled with an ion exchange resin 21 (anion exchange resin/cation exchange resin=50/50 (dry weight ratio)) having an average particle size of 0.6 mm. The electrical deionization apparatus 1 was configured in the same manner except for the above.

この電気脱イオン装置により、実施例1と同様の条件により、脱イオン水W1を製造し、この脱イオン水W1のホウ素濃度を測定し、ホウ素除去率を計算した。結果を小粒径樹脂の有無、小粒径樹脂の充填位置とともに表1にあわせて示す。   With this electric deionization apparatus, deionized water W1 was produced under the same conditions as in Example 1, the boron concentration of this deionized water W1 was measured, and the boron removal rate was calculated. The results are shown in Table 1 together with the presence or absence of the small particle size resin and the filling position of the small particle size resin.

Figure 2020078772
Figure 2020078772

表1から明らかなとおり、小粒径のイオン交換樹脂22を脱塩室15の通水入口から脱塩室の高さ[H]に対して33〜66%の範囲に、該脱塩室15の高さ[H]の10〜33%の高さに充填した実施例1及び実施例2の電気脱イオン装置は、99.9%以上の高いホウ素除去率を得られることが確認できた。なお、実施例1及び実施例2の電気脱イオン装置は、小粒径のイオン交換樹脂22を充填していない比較例2と比べて通水時の差圧も大きく増加することはなかった。   As is clear from Table 1, the ion-exchange resin 22 having a small particle size is used in a range of 33 to 66% with respect to the height [H] of the desalting chamber from the water inlet of the desalting chamber 15. It was confirmed that the electric deionization apparatus of Example 1 and Example 2 filled with the height [H] of 10 to 33% can obtain a high boron removal rate of 99.9% or more. In the electrodeionization apparatus of Examples 1 and 2, the differential pressure during water passage did not increase significantly as compared with Comparative Example 2 in which the ion exchange resin 22 having a small particle size was not filled.

1 電気脱イオン装置
11 陽極
12 陰極
13 アニオン交換膜
14 カチオン交換膜
15 脱塩室
15A 上側領域
15B 中間領域
15C 下側領域
16 濃縮室
17 陽極室
18 陰極室
W0 原水
W1 生産水(脱イオン水)
W2 濃縮排水
W3 排水
H 脱塩室15の高さ
h 中間領域15Bの高さ
1 Electrodeionization Device 11 Anode 12 Cathode 13 Anion Exchange Membrane 14 Cation Exchange Membrane 15 Desalination Chamber 15A Upper Region 15B Intermediate Region 15C Lower Region 16 Concentration Chamber 17 Anode Chamber 18 Cathode Chamber W0 Raw Water W1 Production Water (Deionized Water)
W2 Concentrated drainage W3 Drainage H Height of deionization chamber 15 Height of intermediate area 15B

Claims (8)

陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、この区画された脱塩室にイオン交換樹脂が充填され、濃縮水が前記濃縮室に通水されるとともに、原水が被処理水として前記脱塩室に流通されて生産水として取り出す電気脱イオン装置において、
前記脱塩室の通水入口から該脱塩室の高さに対して33〜66%の範囲に平均粒径が0.1〜0.4mmのイオン交換樹脂が充填されている、電気脱イオン装置。
A concentration chamber and a deionization chamber are partitioned by an ion exchange membrane between the anode and the cathode, the deionization chamber thus partitioned is filled with an ion exchange resin, and concentrated water is passed through the concentration chamber, In the electric deionization device in which raw water is circulated as water to be treated in the desalting chamber and taken out as production water,
Electrodeionization in which an ion exchange resin having an average particle size of 0.1 to 0.4 mm is filled in a range of 33 to 66% with respect to the height of the desalination chamber from a water inlet of the desalination chamber. apparatus.
前記平均粒径0.1〜0.4mmのイオン交換樹脂の充填高さが、前記脱塩室の高さの10〜33%である、請求項1に記載の電気脱イオン装置。   The electric deionization apparatus according to claim 1, wherein a filling height of the ion exchange resin having an average particle diameter of 0.1 to 0.4 mm is 10 to 33% of a height of the deionization chamber. 前記生産水の一部が濃縮水として脱塩室の流れ方向と向流方向に濃縮室に流通される、請求項1又は2に記載の電気脱イオン装置。   The electric deionization apparatus according to claim 1 or 2, wherein a part of the produced water is passed as concentrated water to the concentration chamber in a flow direction and a counterflow direction of the deionization chamber. 前記脱塩室の厚さが2.5〜20mmである、請求項1〜3のいずれか1項に記載の電気脱イオン装置。   The electrodeionization device according to any one of claims 1 to 3, wherein the deionization chamber has a thickness of 2.5 to 20 mm. 前記平均粒径0.1〜0.4mmのイオン交換樹脂の充填箇所以外には、平均粒径0.4mmを超えるイオン交換樹脂、又は両者の混合樹脂が充填されている、請求項1〜4のいずれか1項に記載の電気脱イオン装置。   An ion exchange resin having an average particle size of more than 0.4 mm, or a mixed resin of the two is filled at a place other than the area where the ion exchange resin having an average particle size of 0.1 to 0.4 mm is filled. The electrodeionization device according to any one of 1. 前記脱塩室内に充填されるイオン交換樹脂がアニオン交換樹脂とカチオン交換樹脂であり、前記アニオン交換樹脂と前記カチオン交換樹脂との割合が60:40〜90:10(乾燥重量比)である、請求項1〜5のいずれか1項に記載の電気脱イオン装置。   The ion exchange resin filled in the desalting chamber is an anion exchange resin and a cation exchange resin, and the ratio of the anion exchange resin to the cation exchange resin is 60:40 to 90:10 (dry weight ratio), The electrodeionization device according to any one of claims 1 to 5. 前記アニオン交換樹脂及びカチオン交換樹脂が、両者の混合樹脂、又はアニオン交換樹脂とカチオン交換樹脂をそれぞれ単層で積層した、請求項6に記載の電気脱イオン装置。   The electric deionization apparatus according to claim 6, wherein the anion exchange resin and the cation exchange resin are a mixed resin of the both, or the anion exchange resin and the cation exchange resin are laminated in a single layer. 前記請求項1〜7のいずれか1項に記載の電気脱イオン装置の濃縮室に濃縮水を流通するとともに、脱塩室に被処理水としての原水を通水して、生産水を取り出す、脱イオン水の製造方法。   Concentrated water is circulated through the concentration chamber of the electric deionization apparatus according to any one of claims 1 to 7, and raw water as water to be treated is passed through the deionization chamber to take out product water. Method for producing deionized water.
JP2018212420A 2018-11-12 2018-11-12 Electrodeionization apparatus and method for producing deionized water using the same Active JP7275536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018212420A JP7275536B2 (en) 2018-11-12 2018-11-12 Electrodeionization apparatus and method for producing deionized water using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018212420A JP7275536B2 (en) 2018-11-12 2018-11-12 Electrodeionization apparatus and method for producing deionized water using the same

Publications (2)

Publication Number Publication Date
JP2020078772A true JP2020078772A (en) 2020-05-28
JP7275536B2 JP7275536B2 (en) 2023-05-18

Family

ID=70801225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212420A Active JP7275536B2 (en) 2018-11-12 2018-11-12 Electrodeionization apparatus and method for producing deionized water using the same

Country Status (1)

Country Link
JP (1) JP7275536B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021107060A1 (en) 2020-04-03 2021-10-07 Semiconductor Energy Laboratory Co., Ltd. Arylamine compound, material for hole transport layer, material for hole injection layer, light-emitting device, light-emitting device, electronic device and lighting device
WO2022118577A1 (en) * 2020-12-04 2022-06-09 オルガノ株式会社 Electric deionized water production apparatus and method for producing deionized water
WO2023233848A1 (en) * 2022-06-01 2023-12-07 オルガノ株式会社 Electrical deionized water production device and operation method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001345A (en) * 2000-06-19 2002-01-08 Asahi Glass Co Ltd Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor
JP2005508729A (en) * 2001-05-29 2005-04-07 ユナイテッド・ステイツ・フィルター・コーポレイション Electrodeionization apparatus and electrodeionization method
JP2008036486A (en) * 2006-08-02 2008-02-21 Kurita Water Ind Ltd Electric deionizer
JP2009541032A (en) * 2006-06-22 2009-11-26 シーメンス ウォーター テクノロジース コーポレイション Water treatment with low scale generation capacity
JP2010284639A (en) * 2009-05-14 2010-12-24 Japan Organo Co Ltd Electric apparatus for producing deionized water and method for operating the apparatus
JP2015136685A (en) * 2014-01-24 2015-07-30 三菱レイヨンアクア・ソリューションズ株式会社 Device for treating water to be treated, device for producing purified water, and method for treating water to be treated
JP2017176968A (en) * 2016-03-29 2017-10-05 栗田工業株式会社 Electric deionization apparatus, and production method of deionization water
WO2018146318A1 (en) * 2017-02-13 2018-08-16 Merck Patent Gmbh A method for producing ultrapure water

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001345A (en) * 2000-06-19 2002-01-08 Asahi Glass Co Ltd Electrically regenerative method for manufacturing deionized water, its manufacturing apparatus and ion exchange layer used therefor
JP2005508729A (en) * 2001-05-29 2005-04-07 ユナイテッド・ステイツ・フィルター・コーポレイション Electrodeionization apparatus and electrodeionization method
JP2009541032A (en) * 2006-06-22 2009-11-26 シーメンス ウォーター テクノロジース コーポレイション Water treatment with low scale generation capacity
JP2008036486A (en) * 2006-08-02 2008-02-21 Kurita Water Ind Ltd Electric deionizer
JP2010284639A (en) * 2009-05-14 2010-12-24 Japan Organo Co Ltd Electric apparatus for producing deionized water and method for operating the apparatus
JP2015136685A (en) * 2014-01-24 2015-07-30 三菱レイヨンアクア・ソリューションズ株式会社 Device for treating water to be treated, device for producing purified water, and method for treating water to be treated
JP2017176968A (en) * 2016-03-29 2017-10-05 栗田工業株式会社 Electric deionization apparatus, and production method of deionization water
WO2018146318A1 (en) * 2017-02-13 2018-08-16 Merck Patent Gmbh A method for producing ultrapure water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021107060A1 (en) 2020-04-03 2021-10-07 Semiconductor Energy Laboratory Co., Ltd. Arylamine compound, material for hole transport layer, material for hole injection layer, light-emitting device, light-emitting device, electronic device and lighting device
WO2022118577A1 (en) * 2020-12-04 2022-06-09 オルガノ株式会社 Electric deionized water production apparatus and method for producing deionized water
KR20230110359A (en) 2020-12-04 2023-07-21 오르가노 가부시키가이샤 Electric deionized water production device and method for producing deionized water
WO2023233848A1 (en) * 2022-06-01 2023-12-07 オルガノ株式会社 Electrical deionized water production device and operation method therefor

Also Published As

Publication number Publication date
JP7275536B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
US6929748B2 (en) Apparatus and method for continuous electrodeionization
JP4978098B2 (en) Electrodeionization equipment
KR101563169B1 (en) Pure water production apparatus and pure water production method
US7699968B2 (en) Water purifying system
JP6011655B2 (en) Electrodeionization device and pure water production device
JP6728876B2 (en) Electric deionization device and method for producing deionized water
WO2015012054A1 (en) Method and device for treating boron-containing water
JP3969221B2 (en) Method and apparatus for producing deionized water
JP7275536B2 (en) Electrodeionization apparatus and method for producing deionized water using the same
WO2018092395A1 (en) Electric de-ionization device and de-ionized water production method
WO2004071968A1 (en) Electric deionization apparatus and method of operating the same
JP2014000575A (en) Apparatus and method for producing purified water
JP4993136B2 (en) Pure water production apparatus and pure water production method
JP4250922B2 (en) Ultrapure water production system
JP2008068198A (en) Electrodeionization apparatus
JP5158393B2 (en) Pure water production apparatus and pure water production method
JP2009297670A (en) Electric deionized water making apparatus
JP6848231B2 (en) Electric deionizer and its operation method
JP6614266B2 (en) Electrodeionization apparatus and method for producing deionized water
JP4552273B2 (en) Electrodeionization equipment
JPH10323673A (en) Deionized water-producing method
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP6807250B2 (en) Water treatment equipment
JP2006051423A (en) Electric deionization system, electric deionization method, and pure water production device
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7275536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150