WO2019159317A1 - 電力変換装置およびこれを用いた空気調和装置 - Google Patents

電力変換装置およびこれを用いた空気調和装置 Download PDF

Info

Publication number
WO2019159317A1
WO2019159317A1 PCT/JP2018/005446 JP2018005446W WO2019159317A1 WO 2019159317 A1 WO2019159317 A1 WO 2019159317A1 JP 2018005446 W JP2018005446 W JP 2018005446W WO 2019159317 A1 WO2019159317 A1 WO 2019159317A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
inverter
conversion device
booster circuit
Prior art date
Application number
PCT/JP2018/005446
Other languages
English (en)
French (fr)
Inventor
健太 湯淺
晃弘 津村
▲高▼田 茂生
真作 楠部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/958,466 priority Critical patent/US11509232B2/en
Priority to DE112018007088.3T priority patent/DE112018007088T5/de
Priority to PCT/JP2018/005446 priority patent/WO2019159317A1/ja
Priority to JP2019571909A priority patent/JP7012754B2/ja
Publication of WO2019159317A1 publication Critical patent/WO2019159317A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power converter that rectifies and transforms an AC voltage using a transformer circuit having a switching element, and an air conditioner using the power converter.
  • the inverter device cannot output a voltage higher than the power supply voltage.
  • the output voltage is saturated.
  • the current of the compressor increases, and the motor efficiency decreases and the loss of the inverter device increases, so the conversion efficiency of the inverter device decreases.
  • the operating range may be narrowed due to the demagnetization resistance of the magnet used in the motor of the compressor and the restrictions on the allowable current and allowable temperature of the semiconductor used in the inverter device.
  • Patent Document 1 discloses that the DC voltage command value for the booster circuit is set so as to increase in proportion to the rotational speed of the motor.
  • the present invention has been made in view of the above-described problem, and suppresses a surge voltage caused by the wiring length and can boost the voltage to a desired DC voltage, and an air conditioner using the same The purpose is to provide.
  • the power converter of the present invention includes a rectifier that rectifies an AC voltage supplied from an AC power supply, a booster circuit that boosts the voltage rectified by the rectifier, a smoothing capacitor that smoothes the output voltage of the booster circuit, A power module that converts a DC voltage smoothed by the smoothing capacitor into an AC voltage, and a snubber capacitor that absorbs a surge voltage superimposed on the DC voltage input to the power module, the snubber capacitor, It is mounted on the power module.
  • the input voltage to the inverter is absorbed by the snubber capacitor while the surge voltage input to the power module is absorbed by the snubber capacitor included in the power module while suppressing the surge voltage caused by the wiring length. Therefore, the voltage can be boosted to a desired DC voltage.
  • FIG. 1 is a circuit diagram illustrating an example of a configuration of a power conversion device according to a first embodiment. It is the schematic for demonstrating the inductance of the wiring in the power converter device of FIG. It is a graph which shows an example of the input voltage of an inverter when a snubber capacitor is not mounted. It is a graph which shows an example of the input voltage of an inverter when a snubber capacitor is mounted. It is the schematic for demonstrating mounting of the power converter device of FIG. 6 is a schematic diagram illustrating an example of a configuration of an air-conditioning apparatus according to Embodiment 2.
  • FIG. 1 is a circuit diagram illustrating an example of a configuration of a power conversion device according to a first embodiment. It is the schematic for demonstrating the inductance of the wiring in the power converter device of FIG. It is a graph which shows an example of the input voltage of an inverter when a snubber capacitor is not mounted. It is a graph which shows an example of the input voltage of
  • Embodiment 1 FIG.
  • the power conversion device according to the first embodiment generates an alternating current having a set frequency from a three-phase alternating current power supply and supplies the alternating current to a load such as a compressor or a blower motor in the air conditioner.
  • FIG. 1 is a circuit diagram showing an example of the configuration of the power conversion device 1 according to the first embodiment.
  • the power converter 1 converts AC power into DC power and then converts it back into AC power.
  • a three-phase AC power source 2 is connected to the input side, and a load 3 is connected to the output side. It is connected.
  • the power conversion device 1 includes a module 10, a reactor 20, a smoothing capacitor 30, and a snubber capacitor 15B.
  • the module 10 includes a rectifier 11, a switching element 12, a backflow prevention element 13, an inverter 14, and a snubber capacitor 15A in a package. Further, the booster circuit 4 is constituted by the reactor 20, the switching element 12, and the backflow prevention element 13.
  • the rectifier 11 is connected to the three-phase AC power source 2 and rectifies an AC voltage such as AC (Alternating Current) 200 V or AC 400 V supplied from the three-phase AC power source 2 to convert it into a DC voltage.
  • the rectifier 11 is configured by, for example, a three-phase full-wave rectifier in which six diodes are bridge-connected. The rectifier 11 outputs the rectified voltage to the booster circuit 4.
  • the booster circuit 4 boosts the voltage rectified by the rectifier 11 to an arbitrary voltage.
  • the reactor 20 constituting the booster circuit 4 is connected to the output terminal of the rectifier 11.
  • the backflow prevention element 13 is connected to the reactor 20 in series.
  • the switching element 12 is connected between the reactor 20 and the backflow prevention element 13.
  • the switching element 12 performs a switching operation that is turned ON or OFF based on a switching signal supplied from the converter control unit 50.
  • the switching element 12 and the backflow prevention element 13 use a wide band gap semiconductor such as a silicon carbide (SiC) element, a gallium nitride (GaN) element, or a diamond element having a larger band gap than a silicon (Si) element. It is configured.
  • the switching element 12 is not limited to this, and may be configured using a semiconductor element such as a MOSFET (Metal-Oxide-Semiconductor, Field-Effect Transistor) or IGBT (Insulated Gate Bipolar Transistor).
  • the backflow prevention element 13 may be configured using, for example, a backflow prevention diode such as a fast recovery diode.
  • the smoothing capacitor 30 smoothes the output voltage from the booster circuit 4.
  • the inverter 14 includes a plurality of switching elements 14a, and converts the DC voltage smoothed by the smoothing capacitor 30 into an AC voltage that is a PWM (Pulse Width Modulation) voltage.
  • PWM Pulse Width Modulation
  • a load 3 such as a compressor motor in the air conditioner is connected to the inverter 14, and an AC voltage having a set frequency is supplied to the load 3.
  • the inverter 14 is controlled by the inverter control unit 40.
  • switching element 14a used for inverter 14 it is not restricted to the example mentioned above, For example, wide band gap semiconductors, such as silicon carbide (SiC), may be used.
  • Snubber capacitors 15 ⁇ / b> A and 15 ⁇ / b> B are provided to absorb a surge voltage superimposed on the voltage input to the inverter 14.
  • the snubber capacitor 15 ⁇ / b> A is connected in parallel to the inverter 14. Further, the snubber capacitor 15 ⁇ / b> A is disposed in the vicinity of the inverter 14.
  • the snubber capacitor 15B is connected in parallel to the smoothing capacitor 30.
  • the power conversion device 1 further includes an inverter control unit 40, a converter control unit 50, a reactor current detection unit 60, a bus voltage detection unit 70, and a load current detection unit 80.
  • the reactor current detection unit 60 detects the reactor current flowing through the reactor 20 and supplies it to the converter control unit 50.
  • Bus voltage detector 70 detects the output voltage accumulated in smoothing capacitor 30 and supplies it to inverter controller 40 and converter controller 50.
  • the load current detection unit 80 detects the output current from the inverter 14 and supplies it to the inverter control unit 40.
  • the inverter control unit 40 Based on the output voltage detected by the bus voltage detection unit 70 and the output current detected by the load current detection unit 80, the inverter control unit 40 sets the rotation speed of the motor, which is the load 3 to be controlled, as the target rotation speed. Thus, PWM control is performed on the inverter 14.
  • the inverter control unit 40 is configured with various functions by executing software on an arithmetic device such as a microcomputer, or configured with hardware such as a circuit device that realizes various functions.
  • the converter controller 50 Based on the output voltage detected by the bus voltage detector 70 and the reactor current detected by the reactor current detector 60, the converter controller 50 switches the switching element so that the output voltage from the booster circuit 4 becomes the target command voltage. 12 generates a switching signal.
  • the converter control unit 50 is implemented by executing software on an arithmetic device such as a microcomputer, or is configured by hardware such as a circuit device that implements various functions.
  • the operation is controlled by the converter control unit 50 so that the reactor current becomes constant.
  • the switching element 12 when the switching element 12 is turned on, the DC voltage rectified by the rectifier 11 is applied to the reactor 20, and conduction is blocked by the backflow prevention element 13.
  • the switching element 12 when the switching element 12 is turned off, the backflow prevention element 13 is conducted, and a voltage in the reverse direction to that when the switching element 12 is turned on is induced in the reactor 20.
  • the energy accumulated in the reactor 20 when the switching element 12 is turned on is transferred to the smoothing capacitor 30 side.
  • the output voltage from the booster circuit 4 is controlled by controlling the on-duty of the switching element 12 by the converter control unit 50.
  • the output voltage boosted by the booster circuit 4 is accumulated in the smoothing capacitor 30, and the smoothing capacitor 30 smoothes the output voltage.
  • the output voltage smoothed by the smoothing capacitor 30 is converted into a three-phase AC voltage by the inverter 14. Then, the converted AC voltage is supplied to the load 3.
  • the operation of the switching element 14 a in the inverter 14 is controlled by the inverter control unit 40.
  • the inverter control unit 40 generates a switching signal based on the detection results by the bus voltage detection unit 70 and the load current detection unit 80, and supplies the switching signal to the switching element 14a of the inverter 14.
  • Converter control unit 50 generates a switching signal based on detection results by bus voltage detection unit 70 and reactor current detection unit 60, and supplies the switching signal to switching element 12.
  • the surge voltage V increases as the wiring length increases, as shown in Equation (1). That is, in the first embodiment, when a switching operation is performed by the switching element 12, a surge voltage V corresponding to the wiring length is generated, and a voltage on which the surge voltage V is superimposed is input to the inverter 14. .
  • the switching element 14a of the inverter 14 is required to have a withstand voltage performance against the excessive voltage.
  • a withstand voltage value for the input voltage is set.
  • the switching element 14a is damaged and the apparatus fails. Therefore, conventionally, it is necessary to adjust the boosting amount in the boosting circuit 4 so that the surge voltage V does not exceed the withstand voltage of the switching element 14a.
  • FIG. 2 is a schematic diagram for explaining the inductance L of the wiring in the power conversion device 1 of FIG. As shown in FIG. 2, the wiring connecting the inverter 14 and the smoothing capacitor 30 has inductances L A to L D , respectively.
  • the snubber capacitor 15B is capable of absorbing a surge voltage caused by the inductance L A. Also, the snubber capacitor 15A can be in addition to the surge voltage caused by the inductance L A, also absorb a surge voltage generated due to the inductance L B ⁇ L D.
  • the snubber capacitor 15 ⁇ / b> A is disposed in the vicinity of the inverter 14. Thereby, the wiring which connects snubber capacitor 15A and inverter 14 becomes short, and the surge voltage which originates in connection wiring can be controlled.
  • FIG. 3 is a graph showing an example of the input voltage of the inverter 14 when the snubber capacitors 15A and 15B are not mounted.
  • FIG. 4 is a graph showing an example of the input voltage of the inverter 14 when the snubber capacitors 15A and 15B are mounted. 3 and 4 show an example in which the input voltage setting values indicated by the solid lines are the same value.
  • the inverter 14 receives a voltage on which a surge voltage generated by the switching operation of the switching element 12 is superimposed.
  • the set value of the input voltage is set so that the maximum value of the input voltage on which the surge voltage is superimposed does not exceed the allowable voltage of the inverter 14.
  • the set value of the input voltage is set so that the maximum value of the input voltage on which the surge voltage is superimposed does not exceed the allowable voltage of the inverter 14, but the surge voltage is compared with the example shown in FIG. Is suppressed. For this reason, the input voltage can be increased as shown by the dotted line, and therefore, the set value of the input voltage can be set higher than the example shown in FIG.
  • the snubber capacitors 15A and 15B By mounting the snubber capacitors 15A and 15B, the surge voltage superimposed on the voltage input to the inverter 14 is suppressed. Further, since the snubber capacitor 15A is arranged in the vicinity of the switching element 14a of the inverter 14, the surge voltage generated due to the wiring length and applied to the switching element 14a is suppressed as much as possible. Therefore, in the power converter 1, the set value of the voltage applied to the inverter 14 can be increased according to the suppression amount of the surge voltage, and the power converter 1 can load the load 3 such as a more efficient motor. Electric power for driving can be supplied to the load 3.
  • FIG. 5 is a schematic diagram for explaining the implementation of the power conversion device 1 of FIG. 1.
  • the module 10 of the power conversion device 1 is mounted on the substrate 5.
  • the snubber capacitor 15 ⁇ / b> A is mounted in the module 10 and is disposed in the vicinity of the switching element 14 a of the inverter 14.
  • the module 10 is provided with a heat sink 10A as a cooling means for cooling elements and the like in the module 10. Therefore, the heat sink 10A can radiate the switching element 14a and the like in the module 10, and can also radiate the snubber capacitor 15A.
  • the cooling of the elements in the module 10 is not limited to the method using the heat sink 10A, and any method may be used as long as it has a cooling function.
  • the snubber capacitor 15B is mounted on the substrate 5. Since the snubber capacitor 15B is directly mounted on the substrate 5, the heat generated by the snubber capacitor 15B can be radiated to the outside air.
  • the snubber capacitor 15A is mounted in the module 10, and the snubber capacitor 15B is mounted on the substrate 5.
  • absorption of surge voltage can be shared by the two snubber capacitors 15A and 15B.
  • each of the snubber capacitors 15A and 15B can be reduced in size.
  • the surge voltage superimposed on the voltage input to the inverter 14 is absorbed by the snubber capacitor 15A.
  • the set value of the input voltage to the inverter 14 can be increased and the voltage can be boosted to a desired voltage.
  • the snubber capacitor 15A and the inverter 14 are included in the module 10, so that the snubber capacitor 15A is disposed in the vicinity of the inverter 14. Therefore, the surge voltage resulting from the connection wiring between the snubber capacitor 15A and the inverter 14 can be suppressed.
  • a snubber capacitor 15B is further mounted outside the module 10. Thereby, absorption of surge voltage can be shared by the two snubber capacitors 15A and 15B, and each of the snubber capacitors 15A and 15B can be downsized.
  • the switching element 14a and the like in the module 10 can be radiated and the snubber capacitor 15A can be radiated.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
  • the power conversion device 1 described in the first embodiment is applied to an air conditioner will be described.
  • FIG. 6 is a schematic diagram illustrating an example of the configuration of the air-conditioning apparatus 100 according to Embodiment 2.
  • the air conditioning apparatus 100 in FIG. 6 performs cooling operation and heating operation by a heat pump method.
  • the air conditioner 100 includes an outdoor unit 100A including a compressor 101, a refrigerant flow switching device 102, an outdoor heat exchanger 103, and an expansion device 104, and an indoor unit 100B including an indoor heat exchanger 105. It consists of and.
  • the compressor 101, the refrigerant flow switching device 102, the outdoor heat exchanger 103, the expansion device 104, and the indoor heat exchanger 105 are sequentially connected by the refrigerant pipe, whereby the refrigerant circulates in the refrigerant pipe.
  • a refrigerant circuit is formed.
  • the compressor 101 includes a compression element 101a that compresses the refrigerant, and a motor M as a load 3 that is connected to the compression element 101a and that is supplied with power by the power conversion device 1.
  • the power conversion device 1 is the power conversion device according to the first embodiment described above, receives power supply from the three-phase AC power supply 2, supplies the converted power to the motor M, and rotates the motor M.
  • the refrigerant flow switching device 102 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows.
  • the outdoor heat exchanger 103 performs heat exchange between the refrigerant and outside air.
  • the outdoor heat exchanger 103 functions as a condenser during the cooling operation and functions as an evaporator during the heating operation.
  • the expansion device 104 expands the refrigerant.
  • the indoor heat exchanger 105 performs heat exchange between the refrigerant and the indoor air in the air-conditioning target space.
  • the indoor heat exchanger 105 functions as an evaporator during cooling operation and functions as a condenser during heating operation.
  • the compression element 101a of the compressor 101 connected to the motor M compresses the low-temperature and low-pressure refrigerant, and the compressor 101 discharges the high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows into the outdoor heat exchanger 103 that functions as a condenser via the refrigerant flow switching device 102.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 103 is condensed while dissipating heat by exchanging heat with the outside air, and flows out of the outdoor heat exchanger 103 as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 103 is expanded and depressurized by the expansion device 104, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 105 that functions as an evaporator.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 105 cools the indoor air by exchanging heat with the air in the air-conditioning target space to absorb heat and evaporate, thereby becoming a low-temperature and low-pressure gas refrigerant.
  • Out of the exchanger 105 The low-temperature and low-pressure gas refrigerant flowing out of the indoor heat exchanger 105 is sucked into the compressor 101 via the refrigerant flow switching device 102 and compressed again. Thereafter, the above-described operation is repeated.
  • the example which applied the power converter device 1 which concerns on Embodiment 1 to the compressor 101 of the air conditioning apparatus 100 was shown, it is not restricted to this, For example, with respect to the outdoor heat exchanger 103 It may be applied to a power source for driving a fan (not shown) that blows air.
  • the power conversion device 1 may be applied to, for example, a heat pump device, a refrigeration device, and other refrigeration cycle devices in general.
  • the compressor 101 provided in the refrigerant circuit is driven by the electric power supplied from the power conversion apparatus 1. Therefore, similarly to the first embodiment, the surge voltage can be suppressed, and a more efficient motor can be used as the motor M that drives the compressor 101.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

電力変換装置は、交流電源から供給された交流電圧を整流する整流器と、整流器で整流された電圧を昇圧する昇圧回路と、昇圧回路の出力電圧を平滑化する平滑コンデンサと、平滑コンデンサで平滑化された直流電圧を交流電圧に変換するパワーモジュールと、パワーモジュールに入力される直流電圧に重畳されたサージ電圧を吸収するスナバコンデンサとを備え、スナバコンデンサは、パワーモジュールに実装されている。

Description

電力変換装置およびこれを用いた空気調和装置
 本発明は、スイッチング素子を有する変圧回路を用いて交流電圧を整流して変圧する電力変換装置およびこれを用いた空気調和装置に関するものである。
 従来、冷凍空気調和装置の圧縮機およびファンなどのモータを駆動する大容量のインバータ装置では、三相全波整流回路によってインバータ駆動用の直流母線電圧を生成する方式が用いられている。冷凍空気調和装置では、定格冷暖房運転時のエネルギー消費効率(COP;Coefficient Of Performance)および1年を通した通年エネルギー消費効率(APF;Annual Performance Factor)を高めるようにしている。そのため、圧縮機用のモータは、冷凍空気調和装置の定格運転で用いる回転数付近で誘起電圧が電源電圧と同程度となるように設計されることが多い。
 この場合、冷凍空気調和装置は、過負荷運転時などの定格運転時の回転数を超えるような高速回転域でモータを駆動させるようにすると、インバータ装置は、電源電圧以上の電圧を出力できないため、出力電圧が飽和する。これにより、圧縮機の電流が増大し、モータ効率の低下およびインバータ装置の損失の増加が生じるため、インバータ装置の変換効率が低下する。また、圧縮機のモータに使用している磁石の減磁耐力、ならびに、インバータ装置に使用している半導体の許容電流および許容温度の制約により、運転範囲が狭くなることがある。
 そこで、インバータ装置の出力電圧範囲を拡大するための昇圧回路を有する電力変換装置が提案されている(例えば、特許文献1参照)。特許文献1には、昇圧回路に対する直流電圧指令値をモータの回転数に比例して大きくなるように設定することが開示されている。
特許第3308993号公報
 しかしながら、特許文献1に記載された方法では、モータ回転数が大きくなるにしたがって、必要となる直流電圧が高くなる。電力変換装置によって電圧をより高く昇圧する場合、スイッチング動作によって発生するサージ電圧が大きくなる。このとき、昇圧された電圧は、サージ電圧の大きさを含めて許容値の範囲内に抑える必要がある。そのため、サージ電圧が発生すると、昇圧された電圧の設定値が抑えられることになるので、昇圧回路は、電圧を所望の直流電圧に昇圧することができない。一方、サージ電圧は、回路中の配線長が長くなるにしたがって大きくなる。そのため、配線長に起因するサージ電圧を抑制する必要がある。
 本発明は、上記課題に鑑みてなされたものであって、配線長に起因するサージ電圧を抑制し、電圧を所望の直流電圧に昇圧することができる電力変換装置およびこれを用いた空気調和装置を提供することを目的とする。
 本発明の電力変換装置は、交流電源から供給された交流電圧を整流する整流器と、前記整流器で整流された電圧を昇圧する昇圧回路と、前記昇圧回路の出力電圧を平滑化する平滑コンデンサと、前記平滑コンデンサで平滑化された直流電圧を交流電圧に変換するパワーモジュールと、前記パワーモジュールに入力される前記直流電圧に重畳されたサージ電圧を吸収するスナバコンデンサとを備え、前記スナバコンデンサは、前記パワーモジュールに実装されているものである。
 本発明によれば、パワーモジュールに内包されるスナバコンデンサにより、配線長に起因するサージ電圧を抑制しつつ、パワーモジュールに入力されるサージ電圧をスナバコンデンサによって吸収することにより、インバータへの入力電圧の設定値を高くすることができるため、電圧を所望の直流電圧に昇圧することができる。
実施の形態1に係る電力変換装置の構成の一例を示す回路図である。 図1の電力変換装置における配線のインダクタンスについて説明するための概略図である。 スナバコンデンサが実装されていない場合の、インバータの入力電圧の一例を示すグラフである。 スナバコンデンサが実装されている場合の、インバータの入力電圧の一例を示すグラフである。 図1の電力変換装置の実装について説明するための概略図である。 実施の形態2に係る空気調和装置の構成の一例を示す概略図である。
実施の形態1.
 以下、本発明の実施の形態1に係る電力変換装置について説明する。本実施の形態1に係る電力変換装置は、三相交流電源から設定周波数の交流電流を生成し、例えば空気調和装置における圧縮機または送風機のモータ等の負荷に対して供給するものである。
[電力変換装置1の構成]
 図1は、本実施の形態1に係る電力変換装置1の構成の一例を示す回路図である。図1に示すように、電力変換装置1は、交流電力を直流電力に変換した後に再び交流電力に変換するものであり、入力側に三相交流電源2が接続され、出力側に負荷3が接続されている。電力変換装置1は、モジュール10、リアクタ20、平滑コンデンサ30およびスナバコンデンサ15Bを備えている。
 モジュール10は、整流器11、スイッチング素子12、逆流防止素子13、インバータ14およびスナバコンデンサ15Aをパッケージ内に内包したものである。また、リアクタ20、スイッチング素子12および逆流防止素子13により、昇圧回路4が構成されている。
 整流器11は、三相交流電源2に接続され、三相交流電源2から供給されるAC(Alternating Current)200VまたはAC400V等の交流電圧を整流して直流電圧に変換する。整流器11は、例えば、6個のダイオードをブリッジ接続した三相全波整流器で構成されている。整流器11は、整流した電圧を昇圧回路4に対して出力する。
 昇圧回路4は、整流器11で整流された電圧を、任意の電圧に昇圧する。昇圧回路4を構成するリアクタ20は、整流器11の出力端に接続されている。逆流防止素子13は、リアクタ20に直列接続されている。スイッチング素子12は、リアクタ20と逆流防止素子13との間に接続されている。
 スイッチング素子12は、コンバータ制御部50から供給されるスイッチング信号に基づきONまたはOFFとなるスイッチング動作を行う。スイッチング素子12および逆流防止素子13は、例えば、シリコン(Si)素子と比較してバンドギャップが大きい炭化ケイ素(SiC)素子、窒化ガリウム(GaN)素子、ダイヤモンド素子等のワイドバンドギャップ半導体を用いて構成されている。
 なお、これに限られず、スイッチング素子12は、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)またはIGBT(Insulated Gate Bipolar Transistor)等の半導体素子を用いて構成されてもよい。また、逆流防止素子13は、例えば、ファーストリカバリダイオード等の逆流防止ダイオードを用いて構成されてもよい。
 平滑コンデンサ30は、昇圧回路4からの出力電圧を平滑化するものである。インバータ14は、複数のスイッチング素子14aで構成され、平滑コンデンサ30によって平滑された直流電圧をPWM(Pulse Width Modulation)電圧である交流電圧に変換する。インバータ14に用いられるスイッチング素子14aとして、例えば、上述したスイッチング素子12と同様に、IGBT等の半導体素子が用いられる。
 インバータ14には、例えば、空気調和装置における圧縮機のモータ等の負荷3が接続され、負荷3に対して設定周波数の交流電圧を供給する。インバータ14は、インバータ制御部40によって制御される。なお、インバータ14に用いられるスイッチング素子14aとしては、上述した例に限られず、例えば、炭化ケイ素(SiC)等のワイドバンドギャップ半導体が用いられてもよい。
 スナバコンデンサ15Aおよび15Bは、インバータ14に入力される電圧に重畳されるサージ電圧を吸収するために設けられている。スナバコンデンサ15Aは、インバータ14に対して並列に接続されている。また、スナバコンデンサ15Aは、インバータ14の近傍に配置される。スナバコンデンサ15Bは、平滑コンデンサ30に対して並列に接続されている。
 電力変換装置1は、さらに、インバータ制御部40、コンバータ制御部50、リアクタ電流検出部60、母線電圧検出部70および負荷電流検出部80を備えている。リアクタ電流検出部60は、リアクタ20に流れるリアクタ電流を検出し、コンバータ制御部50に供給する。母線電圧検出部70は、平滑コンデンサ30に蓄積される出力電圧を検出し、インバータ制御部40およびコンバータ制御部50に供給する。負荷電流検出部80は、インバータ14からの出力電流を検出し、インバータ制御部40に供給する。
 インバータ制御部40は、母線電圧検出部70で検出された出力電圧および負荷電流検出部80で検出された出力電流に基づき、制御対象の負荷3であるモータの回転数が目標の回転数となるように、インバータ14に対してPWM制御を行う。インバータ制御部40は、マイクロコンピュータなどの演算装置上でソフトウェアを実行することにより各種機能が実現され、もしくは各種機能を実現する回路デバイスなどのハードウェア等で構成されている。
 コンバータ制御部50は、母線電圧検出部70で検出された出力電圧およびリアクタ電流検出部60で検出されたリアクタ電流に基づき、昇圧回路4からの出力電圧が目標指令電圧となるように、スイッチング素子12に対するスイッチング信号を生成する。コンバータ制御部50は、マイクロコンピュータなどの演算装置上でソフトウェアを実行することにより各種機能が実現され、もしくは各種機能を実現する回路デバイスなどのハードウェア等で構成されている。
[電力変換装置1の動作]
 次に、本実施の形態1に係る電力変換装置1の動作について説明する。図1に示すように、三相交流電源2から電力変換装置1に対して交流電圧が給電されると、給電された交流電圧が整流器11に供給される。整流器11は、供給された交流電圧を整流し、直流電圧を出力する。整流器11から出力された直流電圧は昇圧回路4に供給される。昇圧回路4は、供給された直流電圧を設定電圧に昇圧し、出力電圧Vdcを出力する。
 昇圧回路4では、リアクタ電流が一定となるように動作がコンバータ制御部50によって制御される。昇圧回路4において、スイッチング素子12がONした場合には、整流器11によって整流された直流電圧がリアクタ20に印加され、逆流防止素子13によって導通が阻止される。一方、スイッチング素子12がOFFした場合には、逆流防止素子13が導通し、リアクタ20には、スイッチング素子12のON時と逆向きの電圧が誘導される。このとき、スイッチング素子12のON時にリアクタ20に蓄積されたエネルギーが、平滑コンデンサ30側に移送される。この場合、スイッチング素子12のオンデューティがコンバータ制御部50によって制御されることにより、昇圧回路4からの出力電圧が制御される。
 昇圧回路4によって昇圧された出力電圧は、平滑コンデンサ30に蓄積され、平滑コンデンサ30は、出力電圧を平滑化する。平滑コンデンサ30によって平滑化された出力電圧は、インバータ14によって三相交流電圧に変換される。そして、変換された交流電圧が負荷3に供給される。
 インバータ14におけるスイッチング素子14aの動作は、インバータ制御部40によって制御されている。インバータ制御部40は、母線電圧検出部70および負荷電流検出部80による検出結果に基づきスイッチング信号を生成し、インバータ14のスイッチング素子14aに供給する。
 昇圧回路4におけるスイッチング素子12の動作は、コンバータ制御部50によって制御されている。コンバータ制御部50は、母線電圧検出部70およびリアクタ電流検出部60による検出結果に基づきスイッチング信号を生成し、スイッチング素子12に供給する。
[サージ電圧の抑制]
 次に、本実施の形態1に係る電力変換装置1によるサージ電圧の抑制方法について説明する。一般に、スイッチング動作が行われる場合、スイッチング動作に伴ってサージ電圧が発生する。このとき発生するサージ電圧は、式(1)に基づき算出される。ここで、Lは、基板パターンおよびモジュール10内の配線が有するインダクタンスを示す。di/dtは、配線を流れる電流の変化量を示す。
   サージ電圧V=L×di/dt  ・・・(1)
 回路中の配線長が長くなるにしたがって配線のインダクタンスLが大きくなることから、式(1)に示すように、配線長が長いほどサージ電圧Vが大きくなる。すなわち、本実施の形態1において、スイッチング素子12によりスイッチング動作が行われた場合、配線長に応じたサージ電圧Vが発生し、インバータ14には、サージ電圧Vが重畳された電圧が入力される。
 ここで、配線によるサージ電圧Vが大きくなる、すなわちインバータ14に入力される電圧が過大となる場合、インバータ14のスイッチング素子14aには、過大電圧に対する耐圧性能が要求される。スイッチング素子14aには、入力される電圧に対する耐圧値が設定されているが、耐圧値を超えるサージ電圧Vがインバータ14に印加された場合、スイッチング素子14aは破損し、装置が故障する。そのため、従来は、サージ電圧Vがスイッチング素子14aの耐圧を超えないように、昇圧回路4における昇圧量を調整する必要がある。
 しかしながら、インバータ14に入力される電圧の最大値がスイッチング素子14aの耐圧を超えないようにするためには、昇圧量の設定値を下げる必要がある。したがって、高効率なモータを採用することができない。また、インバータ14に入力される電圧の最大値がスイッチング素子14aの耐圧を超えない場合であっても、サージ電圧Vが大きいほど発生するノイズが大きくなるため、ノイズ対策に要する費用の増加、あるいは電力変換装置1に誤動作が生じる虞がある。
 そこで、本実施の形態1では、インバータ14に入力される電圧に含まれるサージ電圧Vを抑制するために、スナバコンデンサ15Aおよび15Bを設けている。図2は、図1の電力変換装置1における配線のインダクタンスLについて説明するための概略図である。図2に示すように、インバータ14と平滑コンデンサ30とを接続する配線は、それぞれインダクタンスL~Lを有している。
 このように配線上にインダクタンスL~Lが分布していると考えた場合、スナバコンデンサ15Bは、インダクタンスLに起因して発生するサージ電圧を吸収することができる。また、スナバコンデンサ15Aは、インダクタンスLに起因して発生するサージ電圧に加えて、インダクタンスL~Lに起因して発生するサージ電圧をも吸収することができる。
 なお、スナバコンデンサ15Aは、インバータ14の近傍に配置される。これにより、スナバコンデンサ15Aとインバータ14とを接続する配線が短くなり、接続配線に起因して発生するサージ電圧を抑制することができる。
 図3は、スナバコンデンサ15Aおよび15Bが実装されていない場合の、インバータ14の入力電圧の一例を示すグラフである。図4は、スナバコンデンサ15Aおよび15Bが実装されている場合の、インバータ14の入力電圧の一例を示すグラフである。図3および図4は、実線で示す入力電圧の設定値が同一値である場合の例を示す。
 図3に示すように、スナバコンデンサ15Aおよび15Bが実装されていない場合、インバータ14には、スイッチング素子12のスイッチング動作によって発生するサージ電圧が重畳された電圧が入力される。この場合、サージ電圧が重畳された入力電圧の最大値がインバータ14の許容電圧を超えないように、入力電圧の設定値が設定される。
 これに対して、図4に示すように、スナバコンデンサ15Aおよび15Bが実装されている場合、インバータ14に入力される電圧に重畳されたサージ電圧が抑制される。この場合も、サージ電圧が重畳された入力電圧の最大値がインバータ14の許容電圧を超えないように、入力電圧の設定値が設定されるが、図3に示す例と比較して、サージ電圧が抑制されている。そのため、入力電圧は、点線で示すように上昇させることができるので、入力電圧の設定値は、図3に示す例と比較して高く設定することができる。
 このように、スナバコンデンサ15Aおよび15Bが実装されることにより、インバータ14に入力される電圧に重畳されるサージ電圧が抑制される。また、スナバコンデンサ15Aがインバータ14のスイッチング素子14aの近傍に配置されることにより、配線長に起因して発生し、スイッチング素子14aに印加されるサージ電圧が極力抑制される。そのため、電力変換装置1では、サージ電圧の抑制量に応じて、インバータ14に印加される電圧の設定値を高くすることができ、電力変換装置1は、より効率的なモータ等の負荷3を駆動させるための電力を負荷3に供給することができる。
[スナバコンデンサ15Aおよび15Bの実装]
 図5は、図1の電力変換装置1の実装について説明するための概略図である。図5に示すように、電力変換装置1のモジュール10は、基板5上に実装されている。スナバコンデンサ15Aは、モジュール10内に実装され、インバータ14のスイッチング素子14aの近傍に配置されている。
 モジュール10には、モジュール10内の素子等を冷却するための冷却手段としてのヒートシンク10Aが設けられている。そのため、ヒートシンク10Aは、モジュール10内のスイッチング素子14a等の放熱を行うとともに、スナバコンデンサ15Aの放熱をも行うことができる。なお、モジュール10内の素子の冷却は、ヒートシンク10Aを用いた方式に限られず、冷却する機能を有するものであれば、いずれの方式が用いられてもよい。
 また、スナバコンデンサ15Bは、基板5上に実装されている。スナバコンデンサ15Bは、基板5上に直接実装されるため、スナバコンデンサ15Bによる発熱は、外部の空気へ放熱することができる。
 このように、本実施の形態1では、スナバコンデンサ15Aがモジュール10内に実装されるとともに、スナバコンデンサ15Bが基板5上に実装される。これにより、サージ電圧の吸収を2つのスナバコンデンサ15Aおよび15Bに分担させることができる。また、2つのスナバコンデンサ15Aおよび15Bが実装されるため、それぞれのスナバコンデンサ15Aおよび15Bを小型化することができる。
 以上のように、本実施の形態1に係る電力変換装置1では、スナバコンデンサ15Aによってインバータ14に入力される電圧に重畳されたサージ電圧が吸収される。これにより、インバータ14への入力電圧の設定値を高くし、電圧を所望の電圧に昇圧することができる。
 また、スナバコンデンサ15Aとインバータ14とがモジュール10に内包されることにより、スナバコンデンサ15Aがインバータ14の近傍に配置される。そのため、スナバコンデンサ15Aとインバータ14との接続配線に起因するサージ電圧を抑制することができる。
 さらに、本実施の形態1では、モジュール10の外部にスナバコンデンサ15Bがさらに実装される。これにより、サージ電圧の吸収を2つのスナバコンデンサ15Aおよび15Bに分担させることができるとともに、それぞれのスナバコンデンサ15Aおよび15Bを小型化することができる。
 さらにまた、本実施の形態1において、モジュール10には、ヒートシンク10Aが設けられるため、モジュール10内のスイッチング素子14a等の放熱を行うとともに、スナバコンデンサ15Aの放熱をも行うことができる。
実施の形態2.
 次に、本発明の実施の形態2について説明する。本実施の形態2では、実施の形態1で説明した電力変換装置1を空気調和装置に適用した例について説明する。
[空気調和装置100の構成]
 図6は、本実施の形態2に係る空気調和装置100の構成の一例を示す概略図である。図6の空気調和装置100は、ヒートポンプ方式により、冷房運転および暖房運転を行うものである。
 図6に示すように、空気調和装置100は、圧縮機101、冷媒流路切替装置102、室外熱交換器103および膨張装置104を備える室外機100Aと、室内熱交換器105を備える室内機100Bとで構成されている。空気調和装置100では、圧縮機101、冷媒流路切替装置102、室外熱交換器103、膨張装置104および室内熱交換器105が冷媒配管によって順次接続されることにより、冷媒配管内を冷媒が循環する冷媒回路が形成されている。
 このうち、圧縮機101は、冷媒を圧縮する圧縮要素101aと、圧縮要素101aに連結された、電力変換装置1により電力が供給される負荷3としてのモータMとを有している。電力変換装置1は、上述した実施の形態1に係る電力変換装置であり、三相交流電源2から電力供給を受け、変換された電力をモータMに供給してモータMを回転駆動させる。
 冷媒流路切替装置102は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。室外熱交換器103は、冷媒と外部の空気との間で熱交換を行う。室外熱交換器103は、冷房運転時に凝縮器として機能し、暖房運転時に蒸発器として機能する。膨張装置104は、冷媒を膨張させる。室内熱交換器105は、冷媒と空調対象空間の室内空気との間で熱交換を行う。室内熱交換器105は、冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する。
[空気調和装置100の動作]
 次に、本実施の形態2に係る空気調和装置100の動作について、図6を参照して説明する。ここでは、冷房運転を例にとって説明する。冷房運転を行う場合、冷媒流路切替装置102は、圧縮機101から吐出された冷媒が室外熱交換器103に向かい、室内熱交換器105から流出した冷媒が圧縮機101に向かうように、流路を予め切り替えているものとする。このとき、室外熱交換器103は凝縮器として機能し、室内熱交換器105は蒸発器として機能する。
 電力変換装置1によって圧縮機101のモータMが回転駆動することによって、モータMに連結した圧縮機101の圧縮要素101aが低温低圧の冷媒を圧縮し、圧縮機101は高温高圧のガス冷媒を吐出する。圧縮機101から吐出された高温高圧のガス冷媒は、冷媒流路切替装置102を経由して、凝縮器として機能する室外熱交換器103へ流入する。
 室外熱交換器103に流入した高温高圧のガス冷媒は、外部の空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室外熱交換器103から流出する。室外熱交換器103から流出した高圧の液冷媒は、膨張装置104によって膨張および減圧され、低温低圧の気液二相冷媒となり、蒸発器として機能する室内熱交換器105へ流入する。
 室内熱交換器105に流入した低温低圧の気液二相冷媒は、空調対象空間の空気と熱交換して吸熱および蒸発することにより室内空気を冷却し、低温低圧のガス冷媒となって室内熱交換器105から流出する。室内熱交換器105から流出した低温低圧のガス冷媒は、冷媒流路切替装置102を経由して圧縮機101に吸入され、再び圧縮される。以下、上述した動作が繰り返される。
 なお、図6においては、空気調和装置100の圧縮機101に、実施の形態1に係る電力変換装置1を適用した例を示したが、これに限られず、例えば、室外熱交換器103に対して送風する図示しないファンの駆動用電源に適用してもよい。また、電力変換装置1は、例えば、ヒートポンプ装置、冷凍装置およびその他の冷凍サイクル装置一般に適用してもよい。
 以上のように、本実施の形態2に係る空気調和装置100では、電力変換装置1から供給される電力により、冷媒回路に設けられた圧縮機101を駆動させる。そのため、実施の形態1と同様に、サージ電圧を抑制することができ、圧縮機101を駆動させるモータMとして、より高効率なモータを用いることができる。
 1 電力変換装置、2 三相交流電源、3 負荷、4 昇圧回路、5 基板、10 モジュール、10A ヒートシンク、11 整流器、12 スイッチング素子、13 逆流防止素子、14 インバータ、14a スイッチング素子、15A、15B スナバコンデンサ、20 リアクタ、30 平滑コンデンサ、40 インバータ制御部、50 コンバータ制御部、60 リアクタ電流検出部、70 母線電圧検出部、80 負荷電流検出部、100 空気調和装置、100A 室外機、100B 室内機、101 圧縮機、101a 圧縮要素、102 冷媒流路切替装置、103 室外熱交換器、104 膨張装置、105 室内熱交換器。

Claims (5)

  1.  交流電源から供給された交流電圧を整流する整流器と、
     前記整流器で整流された電圧を昇圧する昇圧回路と、
     前記昇圧回路の出力電圧を平滑化する平滑コンデンサと、
     前記平滑コンデンサで平滑化された直流電圧を交流電圧に変換するパワーモジュールと、
     前記パワーモジュールに入力される前記直流電圧に重畳されたサージ電圧を吸収するスナバコンデンサと
    を備え、
     前記スナバコンデンサは、前記パワーモジュールに実装されている
    電力変換装置。
  2.  前記パワーモジュールの外部に実装された補助スナバコンデンサをさらに備える
    請求項1に記載の電力変換装置。
  3.  前記パワーモジュールを冷却する冷却手段をさらに有する
    請求項1または2に記載の電力変換装置。
  4.  前記昇圧回路および前記パワーモジュールには、スイッチング素子が用いられ、
     前記昇圧回路および前記パワーモジュールの前記スイッチング素子の少なくとも一方は、ワイドバンドギャップ半導体によって形成されている
    請求項1~3のいずれか一項に記載の電力変換装置。
  5.  請求項1~4のいずれか一項に記載の電力変換装置と、
     前記電力変換装置から供給される電力により駆動する圧縮機、室内熱交換器、膨張装置および室内熱交換器を冷媒配管で順次接続して冷媒を循環させる冷媒回路と
    を備える空気調和装置。
PCT/JP2018/005446 2018-02-16 2018-02-16 電力変換装置およびこれを用いた空気調和装置 WO2019159317A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/958,466 US11509232B2 (en) 2018-02-16 2018-02-16 Power converter and air-conditioning apparatus using the same
DE112018007088.3T DE112018007088T5 (de) 2018-02-16 2018-02-16 Leistungswandler und diesen verwendende klimaanlagenvorrichtung
PCT/JP2018/005446 WO2019159317A1 (ja) 2018-02-16 2018-02-16 電力変換装置およびこれを用いた空気調和装置
JP2019571909A JP7012754B2 (ja) 2018-02-16 2018-02-16 電力変換装置およびこれを用いた空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005446 WO2019159317A1 (ja) 2018-02-16 2018-02-16 電力変換装置およびこれを用いた空気調和装置

Publications (1)

Publication Number Publication Date
WO2019159317A1 true WO2019159317A1 (ja) 2019-08-22

Family

ID=67619281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005446 WO2019159317A1 (ja) 2018-02-16 2018-02-16 電力変換装置およびこれを用いた空気調和装置

Country Status (4)

Country Link
US (1) US11509232B2 (ja)
JP (1) JP7012754B2 (ja)
DE (1) DE112018007088T5 (ja)
WO (1) WO2019159317A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084726A1 (ja) * 2021-11-12 2023-05-19 三菱電機株式会社 電力変換装置及び冷凍サイクル適用機器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049299A1 (ja) * 2017-09-08 2019-03-14 三菱電機株式会社 電力変換装置、圧縮機、送風機、および空気調和装置
US11418141B2 (en) * 2019-09-18 2022-08-16 Eaton Intelligent Power Limited Hybrid drive apparatus
US12025328B2 (en) * 2020-03-19 2024-07-02 Mitsubishi Electric Corporation Outdoor unit of air-conditioning apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285274A (ja) * 1998-03-26 1999-10-15 Mitsubishi Electric Corp インバータ装置
JP2003219661A (ja) * 2002-01-24 2003-07-31 Toshiba Mach Co Ltd サーボアンプ
JP2015207739A (ja) * 2014-04-23 2015-11-19 株式会社豊田中央研究所 スナバ回路内蔵モジュール
JP2016009697A (ja) * 2014-06-23 2016-01-18 株式会社デンソー スイッチングモジュール
WO2017042889A1 (ja) * 2015-09-08 2017-03-16 三菱電機株式会社 電力変換装置及びこの電力変換装置を備えた空気調和装置
WO2017051639A1 (ja) * 2015-09-24 2017-03-30 三菱電機株式会社 電力変換装置
JP2017184367A (ja) * 2016-03-29 2017-10-05 日立ジョンソンコントロールズ空調株式会社 電力変換装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3308993B2 (ja) 1992-09-21 2002-07-29 株式会社日立製作所 電動機駆動装置及びこれを用いた空気調和機
IL125328A0 (en) * 1998-07-13 1999-03-12 Univ Ben Gurion Modular apparatus for regulating the harmonics of current drawn from power lines
JP5351107B2 (ja) * 2010-07-23 2013-11-27 三菱電機株式会社 コンデンサの冷却構造およびインバータ装置
WO2013132528A1 (ja) * 2012-03-05 2013-09-12 富士電機株式会社 電力変換装置
KR101386830B1 (ko) * 2012-05-29 2014-04-29 엘에스산전 주식회사 역률보상회로
WO2015049736A1 (ja) * 2013-10-02 2015-04-09 三菱電機株式会社 Crスナバ回路
JP2015089245A (ja) * 2013-10-31 2015-05-07 Ntn株式会社 車両駆動モータ用インバータ装置
KR102314037B1 (ko) * 2014-06-09 2021-10-15 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 공기조화기
US9998007B2 (en) * 2014-09-05 2018-06-12 Mitsubishi Electric Corporation Boost converter with flying capacitor and refrigeration circuit
WO2016098160A1 (ja) * 2014-12-15 2016-06-23 三菱電機株式会社 電力変換装置、圧縮機、送風機、および空気調和機
WO2017163451A1 (ja) * 2016-03-25 2017-09-28 東芝キヤリア株式会社 ヒートポンプ機器
JP7303087B2 (ja) * 2019-10-15 2023-07-04 ファナック株式会社 平滑コンデンサ部及びスナバコンデンサを有するモータ駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285274A (ja) * 1998-03-26 1999-10-15 Mitsubishi Electric Corp インバータ装置
JP2003219661A (ja) * 2002-01-24 2003-07-31 Toshiba Mach Co Ltd サーボアンプ
JP2015207739A (ja) * 2014-04-23 2015-11-19 株式会社豊田中央研究所 スナバ回路内蔵モジュール
JP2016009697A (ja) * 2014-06-23 2016-01-18 株式会社デンソー スイッチングモジュール
WO2017042889A1 (ja) * 2015-09-08 2017-03-16 三菱電機株式会社 電力変換装置及びこの電力変換装置を備えた空気調和装置
WO2017051639A1 (ja) * 2015-09-24 2017-03-30 三菱電機株式会社 電力変換装置
JP2017184367A (ja) * 2016-03-29 2017-10-05 日立ジョンソンコントロールズ空調株式会社 電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084726A1 (ja) * 2021-11-12 2023-05-19 三菱電機株式会社 電力変換装置及び冷凍サイクル適用機器

Also Published As

Publication number Publication date
US11509232B2 (en) 2022-11-22
JP7012754B2 (ja) 2022-01-28
JPWO2019159317A1 (ja) 2020-12-03
DE112018007088T5 (de) 2020-11-12
US20200358365A1 (en) 2020-11-12

Similar Documents

Publication Publication Date Title
US8164292B2 (en) Motor controller of air conditioner
JP7012754B2 (ja) 電力変換装置およびこれを用いた空気調和装置
JP5558529B2 (ja) モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫
AU2011377665B2 (en) Heat pump device, heat pump system, and inverter control method
JP6279089B2 (ja) 電力変換装置及び冷凍サイクル装置
JP4937281B2 (ja) モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫
JP5855025B2 (ja) 逆流防止手段、電力変換装置及び冷凍空気調和装置
JP6132912B2 (ja) 逆流防止装置、電力変換装置及び冷凍空気調和装置
JP6305546B2 (ja) 電動機駆動装置及びこれを用いた空気調和装置あるいは冷凍空調装置
JP6143566B2 (ja) 電力変換装置及びこれを用いた空気調和装置
WO2014162519A1 (ja) 電力変換装置及び冷凍空気調和装置
JP6355819B2 (ja) 電力変換装置及び冷凍サイクル装置
JP5984470B2 (ja) 電力変換装置、圧縮機、送風機、空気調和装置、及び冷蔵庫
WO2016098160A1 (ja) 電力変換装置、圧縮機、送風機、および空気調和機
JP2003079152A (ja) 直流電源装置、直流電源負荷装置
WO2017109848A1 (ja) 電力変換装置、及び、この電力変換装置を備えた空気調和装置
KR20140096627A (ko) 전력변환장치 및 이를 포함하는 공기조화기
JP2013183571A (ja) 電力変換装置並びにそれを備えた圧縮機、送風機、空気調和機及び冷蔵庫
WO2022091185A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP6132911B2 (ja) 逆流防止装置、電力変換装置、モータ駆動装置及び冷凍空気調和装置
WO2015002248A1 (ja) 電力変換装置及び冷凍空気調和装置
JP7309070B2 (ja) 電力変換装置
WO2022091184A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP6173435B2 (ja) 逆流防止装置、電力変換装置及び冷凍空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571909

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18906633

Country of ref document: EP

Kind code of ref document: A1