WO2019153711A1 - 一种烤箱及一种智能烤箱及一种具有食材识别的智能设备 - Google Patents

一种烤箱及一种智能烤箱及一种具有食材识别的智能设备 Download PDF

Info

Publication number
WO2019153711A1
WO2019153711A1 PCT/CN2018/102303 CN2018102303W WO2019153711A1 WO 2019153711 A1 WO2019153711 A1 WO 2019153711A1 CN 2018102303 W CN2018102303 W CN 2018102303W WO 2019153711 A1 WO2019153711 A1 WO 2019153711A1
Authority
WO
WIPO (PCT)
Prior art keywords
food
heated
heating
oven
temperature
Prior art date
Application number
PCT/CN2018/102303
Other languages
English (en)
French (fr)
Inventor
娄军
周晔
王俊
孙拥军
Original Assignee
上海达显智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201820236235.4U external-priority patent/CN208015766U/zh
Priority claimed from CN201821343021.3U external-priority patent/CN209153277U/zh
Application filed by 上海达显智能科技有限公司 filed Critical 上海达显智能科技有限公司
Publication of WO2019153711A1 publication Critical patent/WO2019153711A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/06Roasters; Grills; Sandwich grills
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy

Definitions

  • the utility model relates to the field of ovens, in particular to an oven and a smart oven which are heated quickly.
  • the oven has become an increasingly necessary cooking equipment in the home, but the existing ovens need to be pre-heat treated.
  • the temperature in the oven is raised to a certain temperature before the ingredients can be put in, if not Preheating, if the ingredients are too long in the case of slow temperature rise, it will seriously affect the taste and taste of the ingredients. This process will undoubtedly increase waiting time and affect the user experience.
  • the reason why the oven needs to be warmed up is that there is too much useless space inside the oven, and the heat loss is severe, which causes the temperature rise in the oven to be too slow.
  • the utility model provides an oven and a smart oven, so as to solve the problem that the unused space inside the existing oven is too large and the heat loss is serious, thereby causing a slow heating speed.
  • an oven comprising:
  • a cooking chamber having an open front surface, the cooking chamber being provided with an effective heating zone, the effective heating zone being formed by a partitioning member cooperating with an inner surface of the cooking chamber or being integrally formed;
  • the partitioning member is disposed at a surface boundary of the cooking chamber to divide the cooking chamber, the partitioning member forming a heated inner surface layer adjacent to a surface of the food material region and a surface of the cooking chamber, the heating The space surrounded by the inner surface layer constitutes the effective heating zone, and the effective heating zone is smaller than the cooking chamber, and the food is cooked in the effective heating zone;
  • a heater disposed in the effective heating zone to heat the effective heating zone and the food
  • a door mounted on the oven body to open or close the oven body.
  • the cooking chamber includes a lower inner surface, an upper inner surface, a rear inner surface, a left inner surface, and a right inner surface
  • the partition member is disposed at an apex where the three inner surfaces intersect and/ Or the intersection of the inner surfaces at the intersection of two and two, the surface of the partitioning member and the inner surface of the cooking chamber forming the heated inner surface layer to reduce the space of ineffective heating outside the effective heating zone in the cooking chamber .
  • the partition member is welded or glued to an inner surface of the cooking chamber, and a separation point between the partition member and the cooking chamber is a ridge line of a cooking chamber in which the partition member is located / Between 1/2 and 1/8 of the length of the inner surface of the cooking room.
  • the heated inner surface layer includes a side inner surface layer of the partition member connected between the upper inner surface and the lower inner surface, the upper inner surface, the lower inner surface, the side inner surface layer, and the door
  • the inner surface forms a heated inner surface layer that covers the region of the food material.
  • the partition member is a solid structure filled at a surface boundary of the cooking chamber
  • a baffle structure having a thickness of not less than 1 mm forms an isolated space between the partition member and an inner surface of the cooking chamber.
  • the heat insulating space between the partition member and the inner surface of the cooking chamber is filled with a material filling, and the filler is a poor conductor of heat.
  • the partition member is ceramic, alloy, steel plate, aluminum, glass or insulating cotton.
  • the effective heating zone is a box body formed by an integrally formed structure, and the joint of each wall of the box body is an obtuse or rounded structure, or a sphere-like body having no obvious box wall
  • the inner surface of the casing is the heated inner surface layer.
  • the heated inner surface layer is a mirror-finished or quasi-mirror structure provided by surface polishing, or the surface is provided with a heat reflective coating to repeatedly reflect heat in the effective heating zone, and raise the temperature. Speed up.
  • the heater is a quartz tube and/or a graphite heating tube.
  • the outer surface of the cooking chamber is provided with a thermal insulation interlayer, and the thermal insulation interlayer is a poor conductor of heat.
  • the invention also provides a smart oven, which is an oven, an oven and an oven integrated machine or a micro-steaming integrated machine, comprising a casing, wherein the chamber is provided with an effective heating zone for heating food.
  • the effective heating zone is smaller than the casing, and the smart oven further comprises:
  • a temperature sensor disposed on the inner wall of the casing for measuring the temperature of the food to be heated
  • a collecting device for collecting food images/food videos of the food to be heated
  • a model identification device connected to the collection device, directly receiving the food image, or converting the received food video into a food image, extracting feature points of the food image through an algorithm model, and performing feature point matching to identify the food to be heated Types of;
  • control device wherein an input end of the control device is coupled to the temperature sensor and the matching device to actively select a heating mode according to the obtained temperature and type of the food to be heated, and the output end of the control device is connected to the heater according to
  • the actively selected heating mode or the passively selected heating mode controls the heater to heat the heated foodstuff, and during the heating process, the control device dynamically adjusts the output power or the work of the heater according to the current temperature of the food to be heated fed back by the temperature sensor. Time to achieve closed-loop control of the heating process of the food to be heated.
  • the model identification device incorporates a trained neural network model for offline recognition, and the training set of the neural network model includes a set of food and/or food container images of big data,
  • the trained neural network model identifies the category attribute and/or the item volume of the item based on the feature points of the captured food image and/or the feature points of the container image.
  • the model identification device further estimates the weight of the food material according to the identified food material volume or area, and the control device actively selects the heating mode according to the temperature, category attribute, volume or area size and weight of the food item to be heated. And the heating time required to control the actively selected or passively selected heating mode according to the category attribute, volume size or area and weight, and the heating power or heating time required to control the heating mode in a closed loop according to the feedback temperature.
  • the collecting device is a plurality of cameras, the camera is disposed inside the chamber, and the interior of the chamber is further provided with a heat-insulating, moisture-proof, transparent glass plate.
  • the glass plate conceals the camera in a sealed cavity formed by the glass plate and the top corner of the chamber to isolate the temperature/humidity generated by the food to be heated or the heater from the camera.
  • an illumination lamp used in cooperation with the camera is further installed in the chamber, and the installation aperture of the illumination lamp and the camera is less than 3 mm, when the camera is to take an image for heating the food.
  • the illuminating lamp supplements the light source to be heated to the image material to be heated.
  • a weighing sensor for weighing the heated foodstuff, the weighing sensor being disposed at the bottom of the casing and below the heating placement zone;
  • the load cell is coupled to an input of the control device, and the control device also actively selects a heating mode depending on the weight, temperature, and type of foodstuff to be heated.
  • a plurality of temperature/humidity sensors are further provided, the temperature/humidity sensor being disposed on an inner wall of the casing to detect the temperature/humidity of the surface of the food to be heated, and/or to detect the inside of the chamber.
  • Temperature/humidity the chamber is further provided with a humidifying portion, and the control device further controls the humidifying portion to operate according to the currently detected temperature/humidity, so that the chamber or/and the food to be heated are kept The humidity is fixed.
  • the chamber is provided with an indicator light for emitting a marking point to the placement area of the food item to be heated, and the indicator hole has a mounting aperture of less than 3 mm, and the indicator light is used to indicate the need
  • the food material for heating and temperature testing is placed at a reference position, or the placement area is provided with an identifier for prompting the food material to be placed at the reference position for heating and temperature testing.
  • an outer surface of the housing is provided with a human-computer interaction component, including but not limited to a touch display screen and a voice component, and the control device includes a main control panel and a person Machine interaction display board;
  • the human-machine interaction display panel actively selects a heating mode according to the obtained temperature of the food to be heated and the type of the foodstuff, or obtains a passively selected heating mode by the human-machine interaction component, and sends the heating mode to the main a control panel, wherein the main control panel controls the heater to heat the food to be heated according to the heating mode;
  • the human-machine interaction display board and the main control board are integrated into a single integrated structure or separated by a line, and the human-machine interaction display board also feeds back the temperature of the food to be heated to the main control in real time.
  • the plate is such that during heating, the main control board dynamically adjusts the output power of the heater according to the feedback temperature to achieve closed-loop control of the heating process of the food to be heated.
  • an intelligent sensing device is further included, the smart sensing device includes a plurality of trigger circuits for detecting a state of a door switch, and the trigger circuit is disposed on the door body and/or the box body.
  • the trigger circuit turns on and activates the control device, the collecting device, the related sensor, the heater and/or the fan, and realizes that the smart oven automatically recognizes and automatically heats the food to be heated by closing the door. .
  • an intelligent sensing device for collecting a state of a door switch, and a door body disposed at an opening of the case;
  • the smart sensing device includes a trigger circuit for detecting a door switch state and controlling on/off, the trigger circuit is disposed on the door body and/or the box body, and the triggering is performed when the door body is closed The circuit is switched on and activated with the smart oven.
  • the trigger circuit is connected to the control board, and when the trigger circuit is closed, the smart oven is activated.
  • the heater is a heating wire, a magnetron, a quartz tube, a carbon fiber tube or a steam heating assembly.
  • the present invention also discloses a smart device with food material identification, comprising a casing, wherein the chamber is provided with a food heating placement zone, and further comprises:
  • a temperature sensor disposed on an inner wall of the casing for detecting a temperature of the foodstuff/chamber to be heated
  • a collecting device for collecting food images/food videos of the food to be heated
  • a model identification device connected to the collection device, directly receiving the food image, or converting the received food video into a food image, extracting feature points of the food image through an algorithm model, and performing feature point matching to identify the food to be heated Types of;
  • control device wherein an input end of the control device is coupled to the temperature sensor and the model identification device to actively select a heating mode according to the obtained temperature/humidity and type of the foodstuff/chamber to be heated, the output of the control device Connecting with the heating component, controlling the smart device to heat the foodstuff according to the actively selected heating mode or the passively selected heating mode, and during the heating process, the control device feeds back the current temperature of the foodstuff/chamber to be heated according to the temperature sensor Dynamically adjust the output power or working time of the smart device to achieve closed-loop control of the heating process of the food to be heated.
  • the model identification device incorporates a trained neural network model for offline recognition, and the training set of the neural network model includes a set of food and/or food container images of big data,
  • the trained neural network model identifies the category attribute and/or the item volume of the item based on the feature points of the captured food image and/or the feature points of the container image.
  • the model identification device further estimates the weight of the food material according to the identified food material volume or area, and the control device actively selects heating according to the temperature/humidity, category attribute and volume size of the foodstuff/chamber to be heated.
  • an intelligent sensing device is further included, the smart sensing device includes a plurality of trigger circuits for detecting a state of a door switch, and the trigger circuit is disposed on the door body and/or the box body.
  • the trigger circuit turns on and activates the control device, the collecting device, the related sensor, the heating component and/or the fan, so that the smart device automatically recognizes and automatically heats the food to be heated by closing the door.
  • This scheme sets the inner surface of the oven to a heat-reflecting structure (such as a mirror or quasi-mirror structure), which can effectively reflect the heat of the heater to the food material area in front of the heater, and simply heats the oven in comparison with the existing oven.
  • the air temperature can effectively increase the temperature rise rate and reduce the warm-up time.
  • the inner wall of the oven can reflect the heat of the heater, it can reduce the heat conduction to the outside and reduce the heat loss, thereby further accelerating the temperature rise in the oven.
  • the heating space includes a food material region and a heated inner surface layer covering the food material region to form an effective heating performance zone.
  • the existing oven structure such as the corner of the adjacent side wall of the oven is generally not utilized, but Invisibly increases the space that needs to be heated. How to reduce the invalid heating interval and improve the effective heating performance?
  • the patent can process the existing ineffective heating interval, for example, processing the corners of the adjacent side walls of the oven, and setting a new heating space, in which the existing useless space is processed to form an optimal effective heating.
  • the performance area such as setting the partitioning member to occupy the useless space at the corner, reduces the useless space inside the oven and greatly improves the heating effect.
  • the heating space may be to thermally isolate the existing useless space (such as the corner) by a partition.
  • a new heated inner surface layer may be integrally disposed and placed directly in the cooking chamber.
  • the surface of the reflector is a mirror or quasi-mirror structure capable of reflecting heat.
  • the partition member occupies a useless space at the corner, which reduces the internal space of the oven.
  • the partition member has a function of reflecting heat. The heat that is directed to the partition member can be reflected to the food material region at the intermediate position of the oven to further accelerate the temperature of the food material.
  • a layer of thermal insulation interlayer is disposed on the outer layer of the oven, and a tin foil layer is disposed on both sides of the interlayer.
  • the tin foil layer radiates a small amount of external heat to the tank, and on the other hand, the thermal insulation interlayer can be used.
  • Mineral wool or insulation cotton material effectively isolates the temperature inside the oven from the outside world, reduces heat loss, and shortens the warm-up time or neglects the steps.
  • the solution is coated on the inner surface of the door body with a coating capable of reflecting heat. As far as possible, the internal temperature is not lost to the outside, and the heat is reflected back to the food area to reduce or omit the warm-up time.
  • This scheme introduces a graphite (carbon fiber) heating tube, which can further accelerate the internal heating rate, thereby reducing or omitting the warm-up time.
  • the solution is coated with an anti-oil coating on the inner wall of the box. Since the coating does not affect the heat reflection effect and prevents the oil from sticking to the inner wall of the box, the user experience can be better improved.
  • the automatic localization function of the ingredients in the scheme greatly simplifies the cooking process, and at the same time, according to the identified types of ingredients, weights and the like, the corresponding cooking program can be automatically selected and various pictures/videos of the consumers are provided.
  • the cooking tutorial, the nutritional ratio of various ingredients, and other functions greatly enhance the cooking experience.
  • the voice interaction function in this solution can provide long-distance voice interaction and control, and can also perform related voice control through various smart speakers and smart home devices, further facilitating consumers.
  • Figure 1 is a schematic view showing the side structure of the utility model
  • Figure 5 is a schematic structural view of an embodiment of the present invention.
  • Figure 6 is a schematic view showing the structure of a smart oven
  • Figure 7 is a schematic diagram of a smart oven circuit
  • Figure 8 is another circuit schematic of the smart oven.
  • the utility model provides an oven, comprising:
  • a cooking chamber in which a heating space is provided, provided in the body and having an open front surface;
  • a door rotatably mounted on the body to open or close the cooking chamber
  • a heater to provide heating of the heating space
  • the heat reflecting structure is formed at least one of an inner surface of the heating space and the inner surface of the door such that heat of the heater is reflected to the food material region of the cooking chamber.
  • the inner surface of the main body is made of a mirror-finished metal material, and the upper surface and the lower surface of the main body are heaters, wherein the heater is a heating wire, a magnetron, a quartz heater or a graphite heating tube, and the main body is a hexahedron.
  • the structure has an angle between every two front joints.
  • the joint between the upper surface and the side surface and the joint position of the lower surface and the side surface are disposed with a partition member having a thickness of not less than 1 mm.
  • the position of the partition member is disposed at the joint of the three inner surfaces of the inner wall of the main body, for example, at the vertex position where the upper inner surface, the rear inner surface, and the left inner surface meet, at the upper inner surface and the rear At an apex position where the inner surface and the right inner surface meet, a vertex position where the lower inner surface, the rear inner surface, and the left inner surface meet, and an apex position where the lower inner surface, the rear inner surface, and the right inner surface meet, There is a filler with poor thermal conductivity between the partition member and the inner surface of the main body, which may be an air layer or an insulating cotton.
  • the partition member is fixed at the apex of the joint by welding or gluing, and the position of the joint is specific. Therefore, the maximum distance of the partition member is not more than 1/2 of the length of the ridge line at the intersection of the two surfaces, and is not less than 1/8 of the length of the ridge line at the intersection of the two surfaces.
  • the position of the partition member is preferably the right food. The area is such that heat is reflected to the food area to increase the temperature rise rate.
  • the apex in the main body of the oven is a space that is difficult to use.
  • the solution occupies or blocks the space at the vertex position to form an effective heating performance zone.
  • the space of the heating performance zone is smaller than the space of the inner surface of the main body, and the utilization rate is low.
  • the space is reduced to increase the temperature rise rate in the oven.
  • the oven in this scheme has been confirmed by actual experiments. After adding partition members in the oven, the temperature rise rate can be increased by 15% to 40% compared with the conventional oven.
  • the temperature rise rate in the oven can be increased by 15%, when all the partition members occupy the largest cooking room, that is, when all the blocks
  • the temperature rise rate in the oven can be increased by 40%.
  • a heater which is a quartz tube and/or a graphite heating tube which is heated at a faster rate to further increase the temperature rise rate of the oven.
  • the position of the partition member is disposed at the boundary between the two inner surfaces, occupying the space at the ridge line in the box, and the specific position is preferably disposed at an angle between the upper surface and the rear surface, the upper surface and the left and right sides.
  • the angular position of the joint of the side surface, and the angle between the joint of the lower surface and the rear surface, the angle between the joint of the lower surface and the left and right sides, the position of the joint is specifically: upper surface and left surface, right
  • the angle of the partition member is the area where the food material is placed, so that the heat inside can be reflected to the food material area, and the temperature rise rate of the food is accelerated.
  • the joint member of the joint of the left surface and the rear surface connected to the lower surface needs to be specially adjusted so that the partition member occupies the lower surface as little as possible, so the partition member and the lower surface are The angle is 60 ° ⁇ 10 °.
  • the partition member is disposed in the same manner as above, and the surface of the partition member faces the food material area to reflect heat.
  • a filler having poor thermal conductivity between the partition member and the inner surface of the main body may be an air layer or an insulating cotton.
  • the solution of this embodiment and the solution in the embodiment can complement each other, and the position of the partition member 2 is determined according to actual conditions.
  • this embodiment provides another structural form of the partition member.
  • the partition member 2 is between two opposite surfaces in the oven body, for example, between the upper and lower inner surfaces, and the partition member 2 is one side. a concave structure, and one end of the partition member 2 is connected to the upper inner surface, and the other side is connected to the lower inner surface, and the number of the partition members 2 is two, respectively on the left inner surface and the right inner surface, the main body After the upper and lower inner surfaces are communicated by the partition member 2, the space at the joint of the inner surface of the main body is partitioned or filled, so that the heating space is reduced, and the heating time can be effectively shortened.
  • the number of the partition members 2 is not limited to two, and three may be provided.
  • the third partition member is disposed on the rear inner surface of the inner surface of the main body, further reducing the useless space at the joint and increasing the temperature rise rate.
  • the partition member 2 is not limited to be disposed between the upper and lower inner surfaces, and may be between the left and right inner surfaces.
  • the upper inner surface may be selected according to the situation.
  • the partition member 2 is provided on any one, two or three inner surfaces of the lower inner surface or the rear inner surface, thereby achieving the purpose of reducing the ineffective heating space and increasing the temperature rise rate.
  • this embodiment provides another oven structure. Compared with the above several embodiments, in this embodiment, there is no need to additionally provide a partition member.
  • the oven in this embodiment is formed by an integrated molding structure.
  • the cooking chamber is integrated into a structure with a small useless space at the joint of the box wall.
  • the connection between the side wall of the box body and the upper and lower sides is an obtuse angle structure, and of course, a rounded structure or no obvious connection mark can be used.
  • a heat reflecting structure is further disposed on the inner surface of the heating space and the inner surface of the door, and the heat reflecting structure is industrially or chemically polished for the inside of the oven.
  • the inside of the oven is formed with a mirror structure or a quasi-mirror structure capable of reflecting heat. After using a mirror or quasi-mirror structure capable of reflecting heat, the temperature rise rate of the oven can be increased by more than 10%.
  • the heat reflective structure is not limited to this implementation, and the inner surface of the cooking chamber may be coated with a heat reflective coating to achieve the purpose of reflecting heat.
  • a heater is further disposed in the cooking chamber.
  • the heater is a quartz tube with a relatively fast temperature rise speed, a graphite (carbon fiber) heating tube or a combination of the two, and a heat reflecting structure is used when the heater is in a short time.
  • the heat-reflecting structure After releasing a large amount of heat, since the heat-reflecting structure has the property of reflecting heat, the heat-reflecting structure reflects the heat of the surface thereof to the food in the center of the cooking chamber, and the heat in the oven is repeatedly reflected in the oven to increase the temperature inside the oven. The speed is quickly increased and maintained in a more stable state.
  • the heater in this embodiment is not limited to use the quartz tube and the graphite heating tube to heat the oven, and may also have other structures such as electric heating wires. And the heater is arranged at the top, the side wall and/or the bottom. The position and quantity of the heater are not limited, and can be arranged according to the specific structure and design of the oven.
  • the material of the partition member is a metal plate such as aluminum, aluminum alloy or stainless steel, and a ceramic plate may also be used, and a surface of the metal plate or the ceramic plate is coated with a heat reflective paint to perform heat reflection.
  • the partition member can also directly adopt a heat-insulating member with poor thermal conductivity, and the material can be heat-insulating foam, etc., the surface of the heat-insulating member is coated with a heat-reflecting coating, and the heat in the oven is difficult to penetrate the heat-insulating member. And ask the heat reflective coating on the surface of the insulation to reflect the heat back into the oven to increase the temperature rise.
  • a casing is arranged outside the casing, and a heat insulation layer is arranged between the casing and the casing, and a tin foil layer is arranged on one side or both sides of the heat insulation layer.
  • the tin foil layer radiates a small amount of external heat to the casing.
  • the insulation interlayer can be made of mineral wool or insulation cotton, which effectively isolates the temperature inside the oven from the outside world, reduces heat loss, and shortens the warm-up time or neglects the steps.
  • the insulation layer is made of mineral wool or insulating cotton, or other materials with poor thermal conductivity.
  • the door of the oven is where heat is easily lost, so the door can be left with a small window.
  • Other places also use a mirror design or a circular, trapezoidal, or right-angled mirror design to reflect heat to the heated area of the food.
  • the panel can be made of metal or glass.
  • the panel is placed on the door.
  • the door can be realized in a single layer or in multiple layers.
  • the layers are filled with gas or other insulating materials in the glass.
  • the innermost layer of the door body is coated with a heat reflective coating. When the number of layers is large, the heat reflective structure may be coated on other glass layers to reduce heat loss.
  • the structural shape of the partition member in the above various embodiments is not limited.
  • the contact faces are all right angles, and thus the cross section of the partition member may be a right-angled triangle or a right-angled fan, or Other structural shapes, which function to occupy unused space, reduce the heating space, while the surface thereof can reflect heat to the food material area. Therefore, any other structural changes that achieve this goal fall into the protection of this program.
  • the present invention provides a smart oven, which may be only an oven, an oven and an oven, or a micro-steamer, including a housing, and the chamber is provided with a heating chamber for heating the food.
  • the effective heating zone is formed by the inner surface of the partitioning member and the inner surface of the cooking chamber or the integral molding process.
  • the oven is enabled to perform automation functions without preheating.
  • a plurality of sensors for collecting detailed parameters are also added, and the specific scheme is as follows.
  • the schematic diagram of the oven structure in this embodiment is shown in FIG. 6.
  • the schematic diagram is as shown in FIG. 7, and includes a housing 1, a cooking component 2, a temperature/humidity sensor 3, a food material identification device 4, a control panel 5, and a door body.
  • the cooking component 2 is for cooking the foodstuff in the smart oven
  • the control panel is a circuit board
  • the cooking component 2 includes, but is not limited to, the heater 21, the steam component 22, the hot air component 23, the food material rotating component 24, and the light control component 25
  • the cooking assembly 2 is disposed in the housing 1 according to the physical space structure of the smart oven.
  • the heater 21 may be disposed at the top, the bottom and the side wall of the housing 1, and the steam member 22 is disposed at the bottom of the housing 1.
  • the hot air member 23 is disposed on the peripheral side wall of the casing 1, and the food material rotating member 24 is also disposed on the peripheral side wall of the casing 1, and the control ends of the heater 21, the steam member 22, the hot air member 23, and the food material rotating member 24 are respectively Connected to the circuit board 5 signal, the circuit board 5 controls the cooking component 2 to heat the food to be heated according to the actual heating mode.
  • the heater 21 of the smart oven includes different heating elements such as a quartz tube, a light tube, and a graphene (carbon fiber) heating source, and different heating elements are selected according to different product series.
  • a carbon fiber heating element is used.
  • the smart oven of this example may also be an oven-to-oven integrated machine. Therefore, the heater 21 of this example further includes a magnetron.
  • the heating element is disposed at the top and the bottom of the casing 1, and the heater is disposed in the casing 1.
  • the side wall; the circuit board 5 controls the heating element or heater to operate according to the cooking mode selected by the user.
  • the food material identification device 4 of the present example includes a plurality of cameras, and a plurality of cameras are disposed inside or outside the chamber of the casing 1.
  • the MIPI/USB interface can be used.
  • the camera of this example is preferably a wide-angle camera.
  • the wide-angle camera is connected with a circuit board integrated with an existing image recognition algorithm, and the existing image recognition algorithm recognizes the image of the food to be heated collected by the wide-angle camera, and can automatically identify the meat (ribs, steak, Chicken legs, chicken wings, etc.), pasta (bread, cake, pizza, egg tarts, etc.), seafood (fish, shrimp, etc.), vegetables (sweet, corn, potatoes, etc.) and other common ingredients, in addition, for packaging
  • the foodstuff can also identify the two-dimensional code or barcode on the package to identify the type of the foodstuff, and then perform corresponding intelligent control; in other embodiments, the type of the food to be heated can also be identified by other means.
  • the position of the camera is set at the top corner of the top of the oven, and the camera can obtain a larger viewing angle at the top corner, so the number can be at least one, of course, as needed.
  • a camera is arranged at two or three vertex positions to achieve the purpose of obtaining the image of the food in multiple directions, thereby improving the accuracy of the parameters.
  • the transparent transparent heat insulation board is used to separate the camera from the inside, so that the temperature/humidity generated by the absorption of the food to be heated is isolated from the camera, that is, the camera passes through the screen.
  • the hot transparent glass plate separates the camera from the inside of the chamber; in addition, a fan component can be added to the sealed cavity to dissipate heat generated by the camera during operation.
  • An illumination lamp is further disposed in the box body, preferably disposed on the same side of the camera or at the top of the box body.
  • the mounting holes of the camera and the illumination lamp are no more than 3 mm, and the illumination lamp is started together with the camera. Used to extract clear pictures of the ingredients for the camera.
  • the illumination lamp is preferably a white light, although other colors can also serve the purpose of illumination, but it will affect the judgment of the ingredients.
  • the position of the camera is not limited to the internal vertices in the above, and may be disposed at the top or the side wall, and the specific position is not specifically limited.
  • the position of the illumination lamp is set on the camera side or the top of the oven. The purpose is to prevent backlighting or shadowing of the food when the camera is photographed. Therefore, the position of the lamp and the camera can be appropriately adjusted without affecting the photographing effect.
  • the circuit board 5 is packaged between the inner wall and the outer wall of the casing 1 and is in signal connection with the cooking component 2, the temperature/humidity sensor 3 and the food identifying device 4 for selecting a heating mode according to the temperature, humidity and type of the food to be heated, and The cooking component 2 is controlled to heat the food to be heated according to the heating mode.
  • the position of the camera can also be set outside the cabinet, and can be set on the upper part of the door body, the door frame or the door sill.
  • the food can be placed in the range of the camera to extract the sample of the food material, and the smart device identifies the food.
  • the lamp used in conjunction with the camera is preferably an LED light source with a color temperature of about 5500K to 6500K, so that the light can be uniformly irradiated on the surface of the food, and the lamp needs to be insulated by using 1-3 layers of high temperature glass, the outermost layer. The glass also needs to be scattered.
  • the system needs to use the software to correct the color temperature. It can also be modified by adding a filter. If the correction is not good, the accuracy of the identification of the ingredients will be reduced.
  • the specific solution is set according to the specific product.
  • the lamp can be placed near the camera or on the top plate, and the lamp can also be used in one to three, depending on the specific product requirements and configuration.
  • an LED light source with a color temperature of 6500K was used and insulated.
  • the example also includes a plurality of load cells 7, and the load cells 7 are arranged on each layer.
  • the load cells 7 are arranged on average per layer according to the length of the shelf 6, and when a device such as a tray carrying the foodstuff is placed on the shelf 6, the tray is pressed down on the shelf 6.
  • the weight sensor 7 is such that the load cell 7 can detect the weight of the foodstuff to be heated placed on each shelf, and the load cell 7 feeds back the detected weight of the foodstuff to the circuit board 5, which according to the weight of the food to be heated
  • the temperature, humidity, ambient temperature and type select the heating mode, and control the cooking component 2 to heat the food to be heated according to the heating mode.
  • the model identification device of the present example is connected to the acquisition device 3, directly receives the food image collected by the collection device 3 or directly receives the food video collected by the collection device 3, and then converts the food video into a corresponding food image (eg, in the video)
  • Each N frame is converted into an image to obtain a plurality of food images of different angles.
  • the feature points of the food image are extracted by the algorithm model and the feature points are matched to identify the type of the food to be heated.
  • the model identification device has a built-in neural network model for offline recognition.
  • the training set of the neural network model includes a set of food and/or food containers for big data, so that the trained neural network model is based on the characteristics of the collected food images.
  • the feature points of the dots and/or receptacle images identify the category attributes of the ingredients and/or the volume of the ingredients.
  • the training includes the collection, cleaning and use of big data, as well as the influence of the use environment and equipment, such as the different conditions of various containers. Impact, training through relevant data to ensure that the final neural network model can be used for food identification and food identification under different containers, so even if the food video or food image collected includes not only the food itself but also for storage
  • the food appliance such as the tray for storing the food
  • the model identification device of the present application can also identify the corresponding food material type according to the collected food image or the appliance image, for example, the model recognition device realizes the recognition of the liquid by recognizing the cup. .
  • the model recognition device of this example is offline image recognition, which makes the recognition speed faster when the smart oven is localized, and minimizes the influence of wireless network transmission on image recognition.
  • the neural network model can be updated online in real time according to changes in the type of ingredients, improvement in accuracy, and the like.
  • the input end of the control device is coupled to the temperature sensor and the matching device to actively select the heating mode according to the obtained temperature and type of the food to be heated, and the output of the control device is connected to the heater according to the actively selected heating mode or passively selected.
  • the heating mode control heater heats the food to be heated, and during the heating process, the control device dynamically adjusts the output power or working time of the heater according to the current temperature of the food to be heated fed back by the temperature sensor to realize the heating process of the food to be heated. Closed-loop control. Even if the same food is different in volume and temperature, the required heating mode and heating time are different.
  • the model identification device estimates the weight of the food based on the identified food volume, and the control device according to the temperature and category attribute of the food to be heated.
  • the volume and weight actively select the heating mode, and the heating time required to control the actively selected or passively selected heating mode according to the category attribute and volume, and the heating power or heating time required to control the heating mode in a closed loop according to the feedback temperature.
  • model identification device may be integrated with the collection device 3, or may be integrated with the control device, or may be used independently, in which manner, according to the specific requirements of the product. This example does not make special requirements.
  • the weighing principle inside the oven can also be converted to the load cell between the inner wall and the outer wall of the oven by using the principle of the lever.
  • the load cell 7 can be directly disposed on the four legs of the smart oven body.
  • the mounting method of the load cell 7 is set as long as it can achieve the purpose of weighing the food to be heated by the load cell 7. It is also possible to estimate the weight of the food by recognizing the volume of the food by the camera.
  • this example also includes several temperature/humidity sensors, temperature/humidity.
  • the sensor can be used in several ways, either simultaneously or in combination according to different product requirements. One is used to measure the temperature inside the smart oven cavity (using thermocouples, thermistors, and MEMS temperature sensors).
  • thermocouples, thermistors, and MEMS temperature sensors, etc., where temperature sensitive components need to be inserted into the food to be tested temperature
  • the temperature sensor may be disposed at any position inside the cavity to detect the temperature/humidity of the surface of the food to be heated, and/or to detect the temperature/humidity inside the chamber; in a preferred embodiment, the temperature/humidity sensor is disposed inside the casing The middle and lower portions of the wall to detect the temperature/humidity of the surface of the food to be heated, and/or to detect the chamber
  • the temperature/humidity of the part is also provided with a humidifying section in the chamber, and the control device also controls the humidifying section according to the currently detected temperature/humidity to maintain the chamber or/and the food to be heated at a set humidity.
  • the outer surface of the housing 1 is provided with a touch display screen 8.
  • the touch display screen 8 is connected with the circuit board 5.
  • the display content of the touch display screen 8 includes but is not limited to: heating mode and recipe content, and heat of the foodstuff.
  • the fat content, cholesterol content and vitamin content are guided by the user's healthy diet through the content displayed on the touch screen display 8.
  • the size of the touch screen display is set according to the requirements of the product. It can be installed on the door of the smart device.
  • the signal is connected to the control panel through the flexible cable or the hinge internal device. It can also be installed on the upper door of the door or around. On the door frame. It should be noted that various insulation materials need to be installed in various installation positions to ensure the normal operation of the touch display.
  • the outer surface of the casing 1 is further provided with a voice component 9 for voice control of the kind of the food to be heated, the heating mode and related content and interaction, and the voice component 9 is signally connected to the circuit board 5, and the voice component 9 of the present example includes The microphone and the horn perform voice identification on the inside and outside of the smart oven through the voice component 9 to realize automatic heating process and external voice control of certain types of food materials.
  • the example further includes a wireless communication module 10, and the wireless communication module 10 is connected with the circuit board 5, and the wireless communication module 10 can It is a wifi module, it can also be a Bluetooth module or other mobile communication module, such as 2G/3G/4G/5G module, or it can be used in combination.
  • the cloud can be connected to the cloud through the wifi module, and the heating process and results of the smart oven can be used.
  • the oven can be wirelessly controlled by the external terminal, and the recipe can be downloaded to the touch display 8 via the wireless communication module 10 in the cloud, and then downloaded through the circuit board 5 according to the recipe. Control the heating mode of the oven.
  • the circuit board 5 is based on the weight, temperature, humidity and environment of the food to be heated.
  • the temperature and type select the heating mode, and control the cooking component 2 to heat the food according to the heating mode; therefore, the smart oven of this example can automatically control the heating of the food to be heated, without the need for manual heating by the user, thereby improving the use of the oven.
  • the smart oven of this example can automatically control the heating of the food to be heated, without the need for manual heating by the user, thereby improving the use of the oven.
  • the circuit board 5 of the present example can be designed as an integrated structure according to actual needs, or can be designed as a split structure.
  • the schematic diagram is as shown in FIG. 8 , and the circuit board 5 includes The slave control circuit board 51 and the main control circuit board 52, the slave control circuit board 51 and the main control circuit board 52 are in communication connection, wherein the slave control circuit board 51 and the temperature/humidity sensor 3, the food material identification device 4, The weight sensor 7, the touch display screen 8, the voice component 9 and the wireless communication module 10 are signally connected, and the slave control board 51 is configured to select a heating mode according to the weight, temperature, humidity and type of the food to be heated, and transmit the heating mode.
  • the main control circuit board 52 is signally connected to the cooking component 2, and the main control circuit board 52 actively controls the cooking component 2 to heat the foodstuff according to the heating mode.
  • circuit board 5 is an integrated integrated design or a separate independent design. In specific cases, it is specifically set according to the R&D design of the oven and the actual needs of the user, and is not specifically limited in this example.
  • the present invention also provides a smart oven oven that does not require preheating, and includes a box body that is open at one end, a door body that is disposed at the opening of the box body, and a heater disposed inside the box body.
  • the utility model comprises a camera for extracting pictures of food materials; a temperature sensor for real-time monitoring temperature in the oven; a humidity sensor for real-time monitoring of humidity in the oven; and a control unit respectively connected to the camera and the sensor, the control unit is used for According to the parameters in the oven, the temperature and time of the oven are controlled. At the same time, the parameters such as the camera are used to identify and control the ingredients. It will not require preheating, intelligent identification of ingredients, intelligent cooking, good human-computer interaction and network connection. Integrated and integrated implementation for true intelligent baking.
  • a plurality of sensors connected to the control unit are mounted on the four walls of the oven to extract various parameters of the food, including a plurality of wide-angle cameras (which can also adopt a high-temperature wide-angle camera) and an ambient temperature sensor (the probe temperature can also be increased)
  • the sensor is used to sense the internal temperature of the food material, the humidity sensor, etc., and based on the extraction of various parameters, the heating temperature and time can be intelligently controlled by the PID algorithm for intelligent baking.
  • the camera is connected to the control unit by means of MIPI or USB interface, and can be transmitted to the control unit by taking photographs of the ingredients, and then automatically identifying the type of ingredients locally by loading the circuit of the neural network model (algorithm) of the food identification and related software. , volume and weight, so you can intelligently control the oven parameters for cooking and enhance the cooking experience.
  • the neural network model for intelligently identifying ingredients is obtained through big data training and testing.
  • the model can also be updated with the increase of the variety of ingredients and algorithm optimization, and downloaded to the local control unit through the wireless network.
  • the above control unit is connected with a plurality of sensors, and realizes intelligent integrated identification, such as intelligent identification of food materials, intelligent cooking, good human-computer interaction and network connection through the above-mentioned algorithm, and realizes true intelligent baking.
  • a display screen is installed on the door of the oven, and a control unit is installed at the rear of the display. Since the temperature of the oven is high, the control unit and the display temperature are ensured according to the operating temperature of the control unit and the display touch screen.
  • the installation position of the screen requires the installation of insulation foam and fan protection.
  • the use of camera and lamp requires the installation of insulated high temperature resistant glass, electric fan and heat dissipation path to ensure that the camera and lamp can work normally.
  • the specific parameters can be configured according to the parameters of the specific device.
  • the control unit is connected to the display screen and connected to the microphone, speaker, relay and other components to provide local human-computer interaction in voice, touch, display and control to increase the cooking experience.
  • the display screen can be a touch display screen, and a display area is arranged on the screen to display the working state of the smart oven.
  • the display also includes a contact for function selection, and the function can be selected by clicking, for example, the food can be selected. Types, baking time, temperature settings and other functions to achieve a variety of functions.
  • the display can also be used to display information only, with traditional physical buttons and knobs on one side of the display, allowing the user to manually adjust various modes of the oven.
  • the control unit can be connected to the cloud through wireless components (WIFI ⁇ 4G ⁇ 5G, etc.), which can download and update models on the one hand, online search for recipes, connection to related websites and communities for interaction, and connection to other smart devices. Engage in interactions, etc.
  • wireless components WIFI ⁇ 4G ⁇ 5G, etc.
  • the present invention has been improved so that it can greatly reduce or omit the preheating step and improve the user experience.
  • the modification is completely the same as the previous embodiment without preheating the oven, and details are not described herein again.
  • the camera may be GC1064, the temperature sensor may be WRNT ⁇ 01, and the humidity sensor may be DTH11 of AOSONG.
  • the control unit is a circuit board including a control chip.
  • the control chip model can be MTK6737, and the circuit board 5 is equipped with a Bluetooth and WiFi module (refer to the conventional development board).
  • the example further comprises an intelligent sensing device comprising a plurality of trigger circuits for detecting the state of the door switch, the trigger circuit being arranged on the door body and/or the box body, the door body being closed
  • the intelligent oven automatically recognizes and automatically heats the food to be heated by closing the door.
  • the trigger circuit is a gate switch, which can be in various forms such as a mechanical switch, an electronic switch and an optical switch.
  • the installation position can be on a suitable position such as a door or a door frame to ensure that the door closing signal can be timely, reliable and safe. Transmission. When the door is closed, the door switch is closed and the closing signal is transmitted to the smart sensing device and subsequent operations are initiated.
  • the utility model comprises a plurality of sensors for detecting parameters inside the chamber, a plurality of sensors are connected with the control device, and a switch is arranged at the door body, and the switch is automatically triggered when the door body is closed, and the control device is closed by the switch.
  • the oven and various sensors are automatically started, and the heating time and heating temperature are automatically set according to the data detected by the sensor and the type of the food, and the automatic heating function is realized, thereby avoiding the inaccurate setting caused by the artificial setting.
  • the problem of overcooking or cooking is not in place.
  • This solution can be applied not only to traditional ovens, but also to other types of ovens such as micro ovens, steam ovens, and built-in ovens. It can be used in a wide range of oven types.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

一种烤箱,包括:主体;烹饪室,具有敞开的前表面,烹饪室内设置有有效加热区,有效加热区由分隔构件(2)配合烹饪室的内表面包覆形成或一体成型工艺制成;门,可旋转地安装在主体上以打开或关闭烹饪室;加热器,以提供对加热空间进行加热;热反射结构,形成在加热空间的内表面和门内表面的至少之一以上,以使得加热器的热量反射至烹饪室的食材区域。

Description

一种烤箱及一种智能烤箱及一种具有食材识别的智能设备 技术领域
本实用新型涉及烤箱领域,尤其涉及一种升温快的烤箱及智能烤箱。
背景技术
在目前社会,烤箱越来越成为家庭中必备的烹饪设备,但现有的烤箱使用时都需要预热处理,先将烤箱内的温度提升到一定温度后才能将食材放入,如果不进行预加热,食材在温升速度慢的情况下时间过长会严重影响食材的味道和口感。这个过程无疑会增加等待时间,影响用户体验,而烤箱需要预热的原因是烤箱内部有过大的无用空间,以及热量流失严重,从而导致烤箱内温升速度过慢。
实用新型内容
为解决上述问题,本实用新型提供一种烤箱及一种智能烤箱,以解决现有烤箱内部无用空间过大,热量流失严重的问题,从而导致加热速度慢的问题。
为实现上述目的,本实用新型提供以下技术方案;一种烤箱,其特征在于,包括:
主体;
烹饪室,具有敞开的前表面,所述烹饪室内设置有有效加热区,所述有效加热区由分隔构件配合烹饪室的内表面包覆形成或一体成型工艺制成;
其中,所述分隔构件设置在所述烹饪室的表面交界处,对所述烹饪室进行分割,所述分隔构件靠近食材区域的表面与所述烹饪室的表面形成加热内表面层,所述加热内表面层所围合成的空间构成所述有效加热区,并且,所述有效加热区 小于所述烹饪室,食物在所述有效加热区内被烹饪;
加热器,设置在所述有效加热区内以对有效加热区及食物进行加热;
门,安装在烤箱主体上以打开或关闭所述烤箱主体。
根据本发明的一个具体实施方式,所述烹饪室包括下内表面、上内表面、后内表面、左内表面和右内表面,所述分隔构件设置在三个内表面相交的顶点处和/或内表面两两相交的交界处,所述分隔构件表面与所述烹饪室的部分内表面形成所述加热内表面层,以减少在所述烹饪室内、有效加热区之外的无效加热的空间。
根据本发明的一个具体实施方式,所述分隔构件焊接或胶粘在所述烹饪室的内表面,所述分隔构件与烹饪室之间的分隔点为所述分隔构件所在烹饪室的棱线和/或所在烹饪室的内表面长度的1/2~1/8之间。
根据本发明的一个具体实施方式,加热内表面层包括连接在上内表面、下内表面之间的分隔构件的侧面内表面层,所述上内表面、下内表面、侧面内表面层和门内表面形成包覆食材区域的加热内表面层。
根据本发明的一个具体实施方式,所述分隔构件为填充在所述烹饪室的表面交界处的实体结构;或
一厚度不小于1mm的挡板结构,所述分隔构件与所述烹饪室的内表面之间形成一隔离空间。
根据本发明的一个具体实施方式,所述分隔构件与所述烹饪室的内表面之间的隔热空间内填充设置有物填充,所述填充物为热的不良导体。
根据本发明的一个具体实施方式,所述分隔构件为陶瓷、合金、钢板、铝、玻璃或隔热棉。
根据本发明的一个具体实施方式,所述有效加热区为一体化成型结构制成的箱体,所述箱体各壁的连接处为钝角或圆角结构,或无明显箱体壁的类球体结构,所述箱体的内表面为所述加热内表面层。
根据本发明的一个具体实施方式,所述加热内表面层为表面抛光设置的镜面结构或准镜面结构,或表面设置有热反射涂层,以使有效加热区中的热量多次反射,提升温升速度。
根据本发明的一个具体实施方式,所述加热器为石英管和/或石墨加热管。
根据本发明的一个具体实施方式,所述烹饪室的外表面设置一保温夹层,所述保温夹层为热的不良导体。
本发明还提供了一种智能烤箱,所述智能烤箱为烤箱、烤箱与烤箱一体机或微蒸烤一体机,包括壳体,所述壳体的腔室内设有用于加热食物的有效加热区,所述有效加热区小于所述壳体,所述的智能烤箱还包括:
温度传感器,设置于壳体的内壁上,用于测量待加热食材的温度;
采集装置,用于采集待加热食材的食物图像/或食物视频;
模型识别装置,与所述采集装置信号连接,直接接收食物图像/或将接收的食物视频转化为食物图像,通过算法模型提取食物图像的特征点并进行特征点匹配,以识别出待加热食材的类型;
控制装置,所述控制装置的输入端与所述温度传感器和匹配装置信号连接,以根据获取的待加热食材的温度和类型主动选择加热模式,所述控制装置的输出端与加热器连接,根据主动选择的加热模式或被动选择的加热模式控制加热器对待加热食材进行加热,且,加热过程中,控制装置根据所述温度传感器反馈的待加热食材的当前温度动态调整加热器的输出功率或者工作时间,以实现待加热食材的加热过程的闭环控制。
根据本发明的一个具体实施方式,所述模型识别装置内置有已训练的用于离线识别的神经网络模型,所述神经网络模型的训练集包括大数据的食材和/或食材盛器图像集,使已训练的神经网络模型根据采集的食物图像的特征点和/或盛器图像的特征点识别出食材的类别属性和/或食材体积。
根据本发明的一个具体实施方式,所述模型识别装置还根据识别的食材体积或面积估算食材重量,所述控制装置根据待加热食材的温度、类别属性、体积或面积大小和重量主动选择加热模式、及根据类别属性、体积大小或面积和重量控制主动选择或被动选择的加热模式所需的加热时间、及根据反馈的温度闭环控制加热模式所需的加热功率或加热时间。
根据本发明的一个具体实施方式,所述采集装置为若干个摄像头,所述摄像头设置于腔室的内部,且所述腔室的内部还分别设有隔热、隔湿、透明的玻璃板,所述玻璃板将所述摄像头隐藏于玻璃板与腔室内顶角形成的密封腔内,以使待加热食材或所述加热器所产生的温度/湿度与所述摄像头隔离。
根据本发明的一个具体实施方式,所述腔室内还安装有配合所述摄像头使用的照明灯,所述照明灯与所述摄像头的安装孔径小于3mm,当所述摄像头对待加热食材进行图像拍摄时,所述照明灯向所述待加热食材补充拍摄图像所需光源。
根据本发明的一个具体实施方式,还包括对待加热食材进行称重的称重传感器,所述称重传感器设置于所述壳体底部并位于所述加热放置区下方;
所述称重传感器与所述控制装置的输入端信号连接,所述控制装置还根据待加热食材的重量、温度和食材类型主动选择加热模式。
根据本发明的一个具体实施方式,还包括若干个温/湿度传感器,所述温/湿度传感器设置于壳体内壁,以检测待加热食材表面的温/湿度,和/或以检测腔室内部的温/湿度,所述腔室内还设有加湿部,所述控制装置还根据当前检测的所述温/湿度控制所述加湿部工作,以使所述腔室或/和待加热食材保持一设定的湿度。
根据本发明的一个具体实施方式,所述腔室内安装有向所述待加热食材的放置区发射出标记点的指示灯,所述指示灯的安装孔径小于3mm,所述指示灯用以指示需要加热和进行温度测试的食材放置参考位置,或者,所述放置区上设有用以提示需要加热和进行温度测试的食材放置参考位置的标识符。
根据本发明的一个具体实施方式,所述壳体的外表面设有人机交互组件,所述人机交互组件包括但不限于触控显示屏和语音组件,所述控制装置包括主控制板和人机交互显控板;
所述人机交互显控板根据获取的待加热食材的温度和食材类型主动选择加热模式,或者通过所述人机交互组件获取被动选择的加热模式,并将所述加热模式发送至所述主控制板,所述主控制板根据加热模式控制加热器对待加热食材进行加热;
所述人机交互显控板与所述主控制板为一体式集成结构或分体式通过线路连接,且,所述人机交互显控板还将待加热食材的温度实时反馈至所述主控制板,使得加热过程中,所述主控制板根据反馈的温度动态调整加热器的输出功率,以实现待加热食材的加热过程的闭环控制。
根据本发明的一个具体实施方式,还包括智能感应装置,所述智能感应装置包括若干用于检测门体开关状态的触发电路,所述触发电路设置在所述门体和/或箱体上,待所述门体闭合时,所述触发电路接通并启动所述控制装置、采集装置、相关传感器、加热器和/或风扇,实现所述智能烤箱通过关门操作对待加热食材自动识别、自动加热。
根据本发明的一个具体实施方式,包括用于采集门体开关状态的智能感应装置,以及设置在所述箱体开口处的门体;其中,
所述智能感应装置包括用于检测门体开关状态、控制通断的触发电路,所述触发电路设置在所述门体和/或所述箱体上,所述门体闭合时,所述触发电路接通并启动与所述智能烤箱。
根据本发明的一个具体实施方式,所述触发电路与控制板连接,所述触发电路闭合时,所述智能烤箱启动。
根据本发明的一个具体实施方式,所述加热器为电热丝、磁控管、石英管、 碳纤维管或蒸汽加热组件。
本方案还公开了一种具有食材识别的智能设备,包括壳体,所述壳体的腔室内设有食物加热放置区,还包括:
温度传感器,设置于所述壳体的内壁上,用于检测待加热食材/腔室的温度;
采集装置,用于采集待加热食材的食物图像/或食物视频;
模型识别装置,与所述采集装置信号连接,直接接收食物图像/或将接收的食物视频转化为食物图像,通过算法模型提取食物图像的特征点并进行特征点匹配,以识别出待加热食材的类型;
控制装置,所述控制装置的输入端与所述温度传感器和模型识别装置信号连接,以根据获取的待加热食材/腔室的温/湿度和类型主动选择加热模式,所述控制装置的输出端与加热部件连接,根据主动选择的加热模式或被动选择的加热模式控制智能设备对待加热食材进行加热,且,加热过程中,控制装置根据所述温度传感器反馈的待加热食材/腔室的当前温度动态调整智能设备的输出功率或者工作时间,以实现待加热食材的加热过程的闭环控制。
根据本发明的一个具体实施方式,所述模型识别装置内置有已训练的用于离线识别的神经网络模型,所述神经网络模型的训练集包括大数据的食材和/或食材盛器图像集,使已训练的神经网络模型根据采集的食物图像的特征点和/或盛器图像的特征点识别出食材的类别属性和/或食材体积。
根据本发明的一个具体实施方式,所述模型识别装置还根据识别的食材体积或面积估算食材重量,所述控制装置根据待加热食材/腔室的温/湿度、类别属性和体积大小主动选择加热模式、及根据类别属性、体积大小和重量控制主动选择或被动选择的加热模式所需的加热时间、及根据反馈的温度闭环控制加热模式所需的加热功率。
根据本发明的一个具体实施方式,还包括智能感应装置,所述智能感应装置 包括若干用于检测门体开关状态的触发电路,所述触发电路设置在所述门体和/或箱体上,所述门体闭合时,所述触发电路接通并启动所述控制装置、采集装置、相关传感器、加热部件和/或风扇,实现所述智能设备通过关门操作对待加热食材自动识别、自动加热。
通过采用上述技术方案,使其与现有技术相比具有以下有益效果:
(1)本方案将烤箱的内表面设置成热反射结构(比如镜面或准镜面结构),能够有效将加热器的热量反射到加热器前方的食材区域,相对于现有的烤箱单纯加热烤箱内的空气温度能有效提升温升速度,减少预热时间。同时,由于烤箱的内壁能够反射加热器的热量,因此能够减少热量向外传导,减少热量流失,因而进一步加快烤箱内的温升速度。
(2)加热空间包括食材区域及包覆该食材区域形成有效加热性能区的加热内表面层,在现有的烤箱结构中,如烤箱相邻侧壁的夹角处通常得不到利用,却无形中增加了需要加热的空间。如何降低无效加热区间,提升有效加热性能?本专利可以将现有无效的加热区间进行处理,比如把烤箱相邻侧壁的夹角处进行处理,设置新的加热空间,在该加热空间对现有无用空间进行处理,形成最佳有效加热性能区,比如设置分隔构件占用夹角处的无用空间,使烤箱内部无用空间减小,大大提升加热的效果。
(3)加热空间可以是把现有的无用空间(比如夹角处)用隔板进行热隔离,当然,也可以整体设置一新的加热内表面层,直接放置在烹饪室内。
(4)该反射板的表面为能够反射热量的镜面或准镜面结构,一方面分隔构件占用夹角处的无用空间,使烤箱内部空间减小,另一方面,分隔构件具有反射热量的作用,能够将侧面投向分隔构件的热量向烤箱中间位置的食材区域反射,进一步加快食材的温度。
(5)在烤箱的箱体外层设置一层保温夹层,该夹层的两侧都设置有锡纸层, 一方面锡纸层将少数外散的热量放射至箱体内,另一方面,保温夹层可以采用矿棉或保温棉等材质,有效将烤箱内部的温度与外界隔绝,减少热量的流失,进而缩短预热时间或忽略步骤。
(6)本方案在门体的内表面涂有能够反射热量的涂层,尽可能保证内部温度不向外流失,将热量反射回食材区域,减少或省略预热时间。
(7)本方案引入石墨(碳纤维)加热管,能够进一步加快内部的升温速度,进而减少或省略预热时间。
(8)本方案在箱体内壁涂有防油污涂层,由于该涂层不影响热量反射效果,且能够防止油污粘在箱体的内壁,因此能够更好的提升用户使用体验效果。
(9)本方案中的食材本地化自动识别功能,大大的简化了烹饪过程,同时根据识别的食材类型、重量等参数可以自动选择对应的烹饪程序并提供不限于的消费者各种图片/视频烹饪教程、各类食材的营养配比等功能,极大的提升了烹饪体验。
(10)本方案中的语音交互功能可以提供远距离的语音交互与控制,同时也可以通过各种智能音箱和智能家居设备进行相关的语音控制,进一步方便了消费者。
(11)本方案提供的触控显示交互与控制功能,通过图像与视频交互进一步提升了消费者的烹饪体验。
附图说明
图1为本实用新型中侧面结构示意图;
图2为本方案一种实施方式结构示意图;
图3为本方案一种实施方式结构示意图;
图4为本方案一种实施方式结构示意图;
图5为本方案一种实施方式结构示意图;
图6为智能烤箱结构示意图;
图7为智能烤箱电路原理图;
图8为智能烤箱另一种电路原理图。
具体实施方式
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图对本实用新型的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本实用新型。但是本实用新型能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似推广,因此本实用新型不受下面公开的具体实施的限制。
本实用新型提供了一种烤箱,包括:
主体;
烹饪室,其内设置加热空间,提供在所述主体并具有敞开的前表面;
门,可旋转地安装在所述主体上以打开或关闭烹饪室;
加热器,以提供对加热空间进行加热;
热反射结构,形成在加热空间的内表面和所述门内表面的至少之一以上,以使得加热器的热量反射至烹饪室的食材区域。
实施例1
请参阅图1,主体的内表面采用镜面处理的金属材质,在主体的上表面和下表面为加热器,其中加热器采用电热丝、磁控管、石英加热器或石墨加热管,主体为六面体结构,每两个临面连接处都有一夹角,本实施例中,上表面与侧面的连接处,以及下表面与侧面的连接处的夹角位置设置设置有厚度不小于1mm的分隔 构件。
具体的,请参阅图2,分隔构件的位置设置在主体内壁三个内表面的连接处,例如在上内表面、后内表面以及左内表面交汇连接的顶点位置处,在上内表面、后内表面以及右内表面交汇连接的顶点位置处,下内表面、后内表面以及左内表面交汇连接的顶点位置处,以及下内表面、后内表面以及右内表面交汇连接的顶点位置处,在分隔构件与主体内表面之间有导热性能不好的填充物,可以是空气层或隔热棉等,分隔构件采用焊接或胶粘的方式固定在其所在的顶点处,连接处的位置具体为:分隔构件的最大距离不大于其所在两表面交汇处棱线长度的1/2,同时也不小于其所在两表面交汇处棱线长度的1/8,分隔构件的位置优选为正对食材区域,以使得热量反射至食材区,提升温升速度。
烤箱主体内的顶点处为难以利用的空间,本方案将该顶点位置的空间占据或隔断,从而形成一有效加热性能区,该加热性能区的空间小于主体内表面的空间,由于将利用率低的空间减小,从而提升烤箱内的温升速度,本方案中的烤箱经实际实验证实,在烤箱中增加了分隔构件之后,与传统的烤箱相比温升速度能够提升15%至40%,当所有分隔构件占用烹饪室最小,即当所有的挡板的分割点均为1/8时,烤箱内的温升速度能够提升15%,当所有分隔构件占用烹饪室最大,即当所有的挡板的分割点均为1/2时,烤箱内的温升速度能够提升40%,经实际验证,当所有的挡板的分割点均为1/4时效果最优,既没有过多占用烤箱使用的空间,又填充了烤箱内的无效加热空间,使有效加热区缩小,获得恰当合适的加热空间。
在加热性能区内还包括一加热器,该加热器为升温速度较快的石英管和/或石墨加热管,能够进一步提高烤箱的温升速度。
实施例2
请参阅图3,分隔构件的位置设置在两个内表面的交界处,占用箱体内棱线处的空间,具***置优选设置在上表面与后表面连接处的夹角位置,上表面与左右 两侧表面连接处的夹角位置,以及,下表面与后表面连接处的夹角位置,下表面与左右两侧表面连接处的夹角,连接处的位置具体为:上表面与左表面、右表面、后表面的交界处时,分隔构件的角度为正对放置食材的区域,使其内部的热量能够反射到食材区域,加快食物的温升速度。
而由于下表面需要放置待加热的食材,因此与下表面连接的左表面、右表面后表面的连接处分隔构件需做特别调整,使隔构件尽量少占用下表面,因此分隔构件与下表面的夹角为60°±10°。
当然,食材区域若设置在烤箱的中央处,分隔构件的设置方式也与在上方的相同,均将分隔构件的表面正对食材区域,以反射热量。
在分隔构件与主体内表面之间有导热性能不好的填充物,可以是空气层或隔热棉等,与实施例1同理,在利用间隔板将烤箱中的加热空间中的难以利用的位置隔开或填充后,缩小了加热空间,使内部的有效加热效率提升,进而缩短了加热时间。该实施例方案与实施例中的方案可互相补充,根据实际情况确定分隔构件2的位置。
实施例3
请参阅图4,本实施例提供了另一种分隔构件的结构形式,分隔构件2在烤箱主体内两个相对的表面之间,以在上下内表面之间为例,分隔构件2为一侧内凹的结构,且分隔构件2的两端一侧连接在上内表面,另一侧连接在下内表面,且分隔构件2的数量为两个,分别在左内表面和右内表面,主体的上下内表面通过分隔构件2连通后,其主体内表面连接处的空间被隔断或填充,使加热空间缩小,可有效缩短加热时间。
分隔构件2的数量不局限于两个,也可以设置三个,第三个分隔构件设置在主体内表面的后内表面,进一步的缩小了连接处的无用空间,提高温升速度。
当然,分隔构件2不局限于设置在上下内表面之间,也可以在左右内表面之 间,例如,当隔断2的数列为一个、两个或三个时,可根据情况选取上内表面、下内表面或后内表面中的任意一个、两个或三个内表面设置分隔构件2,进而达到减小无效加热空间,提升温升速度的目的。
实施例4
请参阅图5,本实施例提供了另一种烤箱结构,与上述几种实施例相比,本实施例中无需额外设置分隔构件,本实施例中的烤箱采用一体化成型结构制成,将烹饪室一体化制成箱体壁连接处无用空间小的结构形式,如图中所示,箱体的侧壁与上下面连接处为钝角结构,当然也可以采用圆角结构或无明显连接痕迹的类球体结构。
在主体内的烹饪室中,还设置有热反射结构,该热反射结构设置在加热空间的内表面和所述门内表面,该热反射结构为烤箱生产时将其内部做工业或化学抛光处理,使其内部形成能够反射热量的镜面结构或准镜面结构,采用能够反射热量的镜面或准镜面结构后,烤箱的温升速度能够提升10%以上。应当理解,热反射结构不局限于该实现方式,也可以将烹饪室的内表面涂热反射涂层,使其达到反射热量的目的。
在烹饪室中还设置有一加热器,本实施例中加热器为温升速度较快的石英管、石墨(碳纤维)加热管或两种的组合使用,配合热反射结构,当加热器在短时间释放大量热量后,由于热反射结构具有反射热量的性能,热反射结构将其表面的热量向烹饪室中央的食材去反射,烤箱内的热量在烤箱内经过多次反射,使烤箱内的温升速度得以快速提升并维持在一较稳定的状态。
本实施例中的加热器不局限与使用上述石英管与石墨加热管为烤箱加热,还可以其他结构如电加热丝等。并且加热器设置在顶部、侧壁和/或底部,加热器的位置和数量均不做限定,可根据烤箱的具体结构和设计合理安排。
分隔构件的材质为金属板如铝、铝合金或不锈钢等,也可以采用陶瓷板,在 金属板或陶瓷板的表面涂一层热反射涂料以起到热反射的作用。分隔构件也可直接采用一导热性能不好的隔热件,材质可以是隔热泡棉等,在该隔热件的表面涂覆有热反射涂层,烤箱内的热量难以穿透隔热件,并请隔热件的表面的热反射涂层将热量反射回烤箱中,提升温升速度。
实施例5
在箱体的外面设置一壳体,壳体与箱体之间有一隔热层,隔热层的一侧或两侧设置有锡纸层,一方面锡纸层将少数外散的热量放射至箱体内,另一方面,保温夹层可以采用矿棉或保温棉等材质,有效将烤箱内部的温度与外界隔绝,减少热量的流失,进而缩短预热时间或忽略步骤。
隔热层采用矿棉或者隔热棉,或其它导热性差的材料。
烤箱的门体是热量容易散失的地方,因此门体可以采用只留小的视窗,其他地方同样采用镜面设计或者圆弧形、梯形、直角形镜面设计,用于将热量反射到食材加热区域。考虑到美观的要求,面板可以采用金属或者玻璃的材料,面板设置在门体上,门体可以用单层也可以用多层实现,多层的层间填充气体或其它隔热材料,在玻璃门体上最内层贴有热反射涂层,当层数较多时,也可以在其他玻璃层上涂热反射结构,减少热量散失。
应当理解,上述各个实施例中分隔构件的结构形状不做限制,以传统的烤箱为例,其接触面都是直角,因此分隔构件的截面可以是一个直角三角形,也可以是一个直角扇形,或其它结构形状,其作用是占用利用不到的空间,减小加热空间,同时其表面能够将热量反射至食材区域。因此凡是以实现该目的其他结构变化均落入本方案的保护内容。
实施例6
本例提供一种智能烤箱,该智能烤箱可以仅是烤箱,也可以是烤箱与烤箱一体机,还可以是微蒸烤一体机,包括壳体,所述壳体的腔室内设有用于加热食物 的有效加热区,所述有效加热区由分隔构件配合烹饪室的内表面包覆形成或一体成型工艺制成,具体结构请参照实施例1至实施例5的内容,在此不再赘述,为使烤箱在无需预热的基础上实现自动化功能,本实施例中还增加了多种用于收集详细参数的传感器,具体方案如下文所述。
本实施例中的烤箱结构示意图如图6所示,原理图如图7所示,包括壳体1、烹饪组件2、温度/湿度传感器3、食材识别装置4、控制板5和门体,其中,烹饪组件2用于对智能烤箱内的食材进行烹饪,控制板为一电路板,烹饪组件2包括但不限于加热器21、蒸汽部件22、热风部件23、食材旋转部件24和灯光控制部件25,根据智能烤箱的实体空间结构将烹饪组件2设置于壳体1内,如,可以将加热器21设置于壳体1的顶部、底部和侧壁,蒸汽部件22设置于壳体1的底部,热风部件23设置于壳体1的周边侧壁上,食材旋转部件24也设置于壳体1的周边侧壁上,加热器21、蒸汽部件22、热风部件23和食材旋转部件24的控制端分别与电路板5信号连接,电路板5根据实际加热模式控制烹饪组件2对待加热食材进行加热。
需要说明的是,智能烤箱的加热器21包括石英管、光波管、石墨烯(碳纤维)加热源等不同加热元件,根据产品系列的不同选取不同的加热元件,本例采用碳纤维加热元件,另外,本例的智能烤箱还可以是烤箱与烤箱一体机,因此,本例的加热器21还包括磁控管,具体的,加热元件设置于壳体1的顶部和底部,加热器设置于壳体1的侧壁;根据用户具体选择的烹饪方式,电路板5控制加热元件或加热器工作。
本例的食材识别装置4包括若干个摄像头,若干个摄像头设置于壳体1腔室内部/外部,可采用MIPI/USB等接口,本例的摄像头优选为广角摄像头,需要说明的是,本例采用的广角摄像头与集成了现有的图像识别算法的电路板连接,通过该现有的图像识别算法对广角摄像头采集的待加热食材的图像进行识别,可以自 动识别出肉类(排骨、牛排、鸡腿、鸡翅等)、面点(面包、蛋糕、披萨、蛋挞等)类、海鲜类(鱼、虾类等)、蔬菜类(地瓜、玉米、土豆等)等常用食材,另外,针对具有包装的食材,还可以识别该包装上的二维码或条形码以识别食材的类型,进而进行对应的智能控制;在其他实施例中,还可以通过其他方式识别待加热食材的类型。作为一优选实施例,作为一优选实施例,摄像头的位置设置在烤箱内顶部的顶角处,在顶角时摄像头能够获得较大的拍摄视角,因而数量可以至少为一个,当然根据需要也可在两个或三个顶点位置处均设置一摄像头,以实现多方位获取食材图像的目的,从而能提高参数的准确度。
为防止摄像头长时间在高温下工作发生故障,采用隔热的透明的隔热板将摄像头与内部隔开,以使待加热食材吸收产生的温度/湿度与摄像头隔离,也即是,摄像头通过隔热的透明的玻璃板将摄像头与腔室内部隔开;另外,还可以在密封腔内加装风扇部件,以实现对摄像头工作时产生的热量进行散热。
在箱体内还设置有一照明灯,优选设置在摄像头的同一侧或箱体内的顶部,当智能烤箱与微波加热结合时,摄像头和照明灯的安装孔不大于3mm,该照明灯与摄像头一同启动,用于为摄像头提取清晰的食材图片。为保证食材照片的准确性,照明灯优选白光灯,其他颜色的等虽然也能起到照明的目的,但会影响对食材的判断。
当然,摄像头的位置不局限于上述中的内部顶点处,还可以设置在顶部或侧壁,具***置不做具体限定。照明灯的位置设置在摄像头侧或烤箱的顶部目的是防止摄像头拍照时发生逆光或食材出现阴影的问题,因此在不影响拍照效果的情况下可适当调整灯与摄像头的位置。电路板5封装于壳体1的内壁和外壁之间,与烹饪组件2、温/湿度传感器3和食材识别装置4信号连接,用于根据待加热食材的温度、湿度及类型选择加热模式,并根据加热模式控制烹饪组件2对待加热食材进行加热。摄像头的位置也可设置在箱体的外部,可以设置在门体的上部、 门框或者门楣上,当设置在外部时,可先将食材放置在摄像头的范围内提取食材图片样张,智能设备识别食材类型并调用对应的图片或者视频食谱教材以及营养知识等相关内容,帮助消费者进行食谱选择以及食材加工,之后再放入烤箱内进行对应的烹饪操作。
进一步的,配合摄像头使用的灯最好选用色温5500K~6500K左右的LED灯源,使得光线能够均匀的照射在食材表面,灯需要用1~3层的防高温玻璃进行隔热处理,最外层玻璃还需要进行散射处理。
如果灯采用卤素灯等其他光源,需要***用软件对色温进行修正,也可以外加滤光片进行修正,如果修正的不好会降低食材识别准确率,具体解决方案视具体产品进行设置。
灯可放置在摄像头附近或者顶板上,灯也可以采用1~3个,视具体产品需求和配置决定。
本例采用色温为6500K的LED光源,并进行了隔热处理。
进一步,为了向智能烤箱的自动加工提供更多的考虑因素,以使高智能烤箱能自动加工出更美味的食物,本例还包括若干个称重传感器7,称重传感器7布设于各层层架6上,具体的,根据层架6的长度每层平均布设三个称重传感器7,当托盘等承载食材的设备放置于该层架6上时,托盘下压该层架6上的称重传感器7,这样,称重传感器7能检测各层层架上放置的待加热食材的重量,称重传感器7将检测到的食材重量反馈至电路板5,电路板5根据待加热食材的重量、温度、湿度、环境温度及类型选择加热模式,并根据加热模式控制烹饪组件2对待加热食材进行加热。
本例的模型识别装置与采集装置3信号连接,直接接收采集装置3采集的食物图像或直接接收采集装置3采集的食物视频,再将该食物视频转化为相应的食物图像(如将视频中的每N帧转化为一张图像,即可获得多张不同角度的食物图 像),通过算法模型提取食物图像的特征点并进行特征点匹配,以识别出待加热食材的类型。
模型识别装置内置有已训练的用于离线识别的神经网络模型,神经网络模型的训练集包括大数据的食材和/或食材盛器图像集,使已训练的神经网络模型根据采集的食物图像的特征点和/或盛器图像的特征点识别出食材的类别属性和/或食材体积。
由于本申请所采用的神经网络模型是线下通过大数据训练得到的,训练包括对大数据的采集、清洗及使用,还包括使用环境及设备的影响,如各种盛器的不同情况对食材的影响,通过相关的数据进行训练以保证最后的神经网络模型能够进行食材识别及不同盛器下的食材识别,因此,即使所采集的食物视频或食物图像不仅包括了食物本身还进一步包括了用于存放食物的器具,如存放食物的盘子,本申请的模型识别装置也能根据采集的食物图像或器具图像识别出相应的食材类型,如,模型识别装置通过对杯子的识别,进而实现对液体的识别。
本例的模型识别装置为离线的图像识别,这样使得智能烤箱本地化使用时识别速度更快,将无线网络传输对图像识别的影响降到最低。且,神经网络模型可以根据食材种类的变化、精度的提升等进行在线的实时更新。
控制装置的输入端与温度传感器和匹配装置信号连接,以根据获取的待加热食材的温度和类型主动选择加热模式,控制装置的输出端与加热器连接,根据主动选择的加热模式或被动选择的加热模式控制加热器对待加热食材进行加热,且,加热过程中,控制装置根据温度传感器反馈的待加热食材的当前温度动态调整加热器的输出功率或工作时间,以实现待加热食材的加热过程的闭环控制。即使是同一种食材,因体积大小不同、温度不同,所需加热模式及加热时间也不同,因此,模型识别装置还根据识别的食材体积估算食材重量,控制装置根据待加热食材的温度、类别属性、体积大小和重量主动选择加热模式、及根据类别属性和体 积大小控制主动选择或被动选择的加热模式所需的加热时间、及根据反馈的温度闭环控制加热模式所需的加热功率或加热时间。
需要说明的是,在具体应用中,模型识别装置可以与采集装置3集成在一起,也可以与控制装置集成在一起,还可以独立使用,具体采用何种方式,根据产品的具体要求而设定,本例不作特殊要求。
在其他实施例中,也可利用杠杆原理将烤箱内部的称重力矩转换到烤箱内壁与外壁之间的称重传感器上,另外,也可以直接将称重传感器7布置在智能烤箱机体的四脚上,不论如何设置称重传感器7的安装方式,只要能达到利用称重传感器7对待加热食材进行称重的目的即可。也可以通过摄像头对食材的体积进行识别进而推算出食材的重量。
进一步,为了使智能烤箱不仅具有加热食材的功能,同时还具有烹饪的功能,由于在烹饪的过程中需要控制食材的温/湿度,进一步,本例还包括若干个温/湿度传感器,温/湿度传感器可以采用几种方式,可以同时使用也可以根据不同产品需求组合进行使用,一种用于测量智能烤箱腔体内部的温度(采用热电偶、热敏电阻以及MEMS温度传感器等各种方式);一种用于测量食材表面的温度;一种用于测量食材内部的温度(采用热电偶、热敏电阻以及MEMS温度传感器等各种方式,这里温度敏感元件需要***待测试的食材内部),温/度传感器可以设置在腔体内部的任何位置,以检测待加热食材表面的温/湿度,和/或以检测腔室内部的温/湿度;优选方案中,温/湿度传感器设置于壳体内侧壁的中部及中部以下位置,以检测待加热食材表面的温/湿度,和/或以检测腔室内部的温/湿度,腔室内还设有加湿部,控制装置还根据当前检测的温/湿度控制加湿部工作,以使腔室或/和待加热食材保持一设定的湿度。
另外,壳体1的外表面设有触控显示屏8,触控显示屏8与电路板5信号连接,触控显示屏8显示的内容包括但不限于:加热模式及菜谱内容、食材的热量、脂 肪含量、胆固醇含量及维生素含量,通过触控显示屏8显示的内容为用户的健康饮食进行指导。触控显示屏的尺寸大小根据产品的需求进行设定,可以装置在智能设备的门体上,信号通过软排线或者铰链内部装置连接到控制板;也可以装置在门体的上门楣或者左右门框上。需要注意的是各种安装位置均需要加装各种隔热材料以保证触控显示屏的正常工作。
进一步,壳体1的外表面还设有用于对待加热食材的种类、加热模式以及相关内容和交互进行语音控制的语音组件9,语音组件9与电路板5信号连接,本例的语音组件9包括麦克风和喇叭,通过语音组件9对智能烤箱内部及外部进行声音鉴别以实现某类食材自动加热过程和外部的语音控制。
进一步,为了实现本例的智能烤箱与云端或者其他外部终端连接,以扩展智能烤箱的应用,本例还包括无线通讯模块10,无线通讯模块10与电路板5信号连接,该无线通讯模块10可以是wifi模块,也可以是蓝牙模块或者其他移动通信模块,如2G/3G/4G/5G模块,还可以是三者组合使用,如,可以通过wifi模块连接云端,将智能烤箱的加热过程和结果上传至云端或外部终端,另外,也可以通过外部终端无线控制烤箱的加热模式,还可以通过无线通讯模块10在云端下载菜谱到触控显示屏8,然后,再通过电路板5根据下载的菜谱控制烤箱的加热模式。
当用户需要使用智能烤箱时,选择烹饪模式后,只需打开门体,将食材通过托盘放置于层架6上,关闭门体后,电路板5根据待加热食材的重量、温度、湿度、环境温度及类型选择加热模式,并根据加热模式控制烹饪组件2对待加热食材进行加热;因此,本例的智能烤箱能实现对待加热食材进行全自动控制加热,无需用户手动操作加热,从而提高烤箱的使用体验。
需要说明的是,本例的电路板5根据实际需要可以设计为一体式结构,也可以设计为分体式结构,当设计为分体式结构时,其原理图如图8所示,电路板5包括从控电路板51和主控制电路板52,从控电路板51与主控电路板52两者之间 通讯连接,其中,从控电路板51与温/湿度传感器3、食材识别装置4、称重传感器7、触控显示屏8、语音组件9和无线通讯模块10信号连接,从控电路板51用于根据待加热食材的重量、温度、湿度及类型选择加热模式,并将该加热模式传输至主控电路板52;主控电路板52与烹饪组件2信号连接,主控电路板52根据加热模式主动控制烹饪组件2对待加热食材进行加热。
需要说明的是,电路板5是一体式集成设计还是分体式独立设计,具体情况,根据烤箱的研发设计及用户实际需求而具体设定,本例不作具体限定。
以上应用了具体个例对本实用新型进行阐述,只是用于帮助理解本实用新型,并不用以限制本实用新型。对于本实用新型所属技术领域的技术人员,依据本实用新型的思想,还可以做出若干简单推演、变形或替换。
实施例7
进一步的,本实用新型还提供了一种无需预加热的智能烤箱烤箱,包括一端开口的箱体、设置在所述箱体开口处的门体以及设置在所述箱体内部的加热器,还包括,用于提取食材图片的摄像头;用于实时监控烤箱内温度的温度传感器;用于实时监控烤箱内的湿度情况的湿度传感器;以及分别与上述摄像头、传感器连接的控制单元,控制单元用于根据烤箱内的参数控制烤箱温度以及时间,同时如摄像头等提取的参数进行食材的识别及其他控制,将不需要预热、智能识别食材、智能化烹饪、良好的人机互动和网络连接等功能集成一体化实现,实现真正的智能化烘焙。
具体的,在烤箱四壁装有多种与控制单元连接的传感器,以提取食材的各种参数,包括若干广角摄像头(亦可采用耐高温广角摄像头)、环境温度传感器(也可以增加探针温度传感器用以感知食材内部温度)、湿度传感器等,在提取各种参数的基础上可以通过PID算法智能控制加热温度和时间,进行智能烘焙。
摄像头采用MIPI或者USB等接口与控制单元相连接,可以通过拍摄食材照片 传送到控制单元,再通过装载好食材识别的神经网络模型(算法)的电路以及相关软件,在本地自动识别出食材的类型、体积和重量,从而可以智能控制烤箱参数进行烹饪,提升烹饪体验。智能识别食材的神经网络模型,是通过大数据训练以及测试后得到,模型也可以随着食材种类的增加和算法优化进行更新,并通过无线网络及时下载到本地控制单元上。
上述的控制单元与多种传感器连接,并通过上述的算法实现智能识别食材、智能化烹饪、良好的人机互动和网络连接等功能集成一体化实现,实现真正的智能化烘焙。
在烤箱的门体上安装一显示屏,在显示器的后方安装控制单元,由于烤箱使用时温度较高,为保证控制单元及显示触控屏的使用环境温度符合器件的工作温度,控制单元及显示屏的安装位置需要加装隔热泡棉以及风扇等保护手段。摄像头及灯的使用需要加装隔热耐高温玻璃、电风扇及散热通路,以保证摄像头和灯能够正常工作,具体参数可以按照具体器件的参数要求进行配置。
控制单元与显示屏相连接,同时连接麦克风、喇叭、继电器等部件,可以在本地提供语音、触控、显示以及控制等方面的人机交互,增加烹饪体验。
显示屏可以是触控显示屏,屏上面设置有显示区域,显示智能烤箱的工作状态,显示屏上还包括用于功能选择的触点,通过点击可进行相应功能的选择,例如,可以选择食材的种类,烘焙时间,温度设定等功能,实现多种功能。
显示屏还可以仅用于显示信息内容,在显示屏的一侧设置有传统的物理按键和旋钮,使用户能够手动调节烤箱的各种模式。
控制单元通过无线组件(WIFI\4G\5G等协议)可以连接到云端,一方面可以下载和更新模型、另外也可以在线搜索菜谱、连接到相关的网站和社区进行互动、连接到其他智能设备上进行互动等。
基于上述的智能烤箱,本实用新型进行了改进,使其能够大幅度缩减或省略 掉预热的步骤,提高用户体验。其改进方式与上一无需预热烤箱的实施例完全相同,在此不再赘述。
上述设备中,摄像头可以是GC1064,温度传感器可以是WRNT‐01,湿度传感器可以是AOSONG(奥松)的DTH11。控制单元为包括一控制芯片的电路板,控制芯片型号可以是MTK6737,在电路板5上配有蓝牙和WiFi模块(可参照传统开发板)。
另外,为了实现烤箱全自动化控制,本例还包括智能感应装置,智能感应装置包括若干用于检测门体开关状态的触发电路,触发电路设置在门体和/或箱体上,待门体闭合时,触发电路接通并启动控制装置、匹配装置、采集装置和温度传感器,实现智能烤箱通过关门操作对待加热食材自动识别、自动加热。
其中,该触发电路为一门控开关,具体可以采用机械开关、电子开关和光学开关等各种形式,安装位置可以在门上、门框上等适合的位置,保证关门信号可以及时、可靠和安全的传输。当门关闭后,门控开关处于闭合状态,并将闭合信号传递至智能感应装置中,并启动后续操作。
本实用新型中包括多种用于检测腔室内部参数的多种传感器,多种传感器与控制装置连接,且在门体处设置有一开关,当门体关闭后自动触发开关,控制装置得到开关闭合的指令后自动启动烤箱和多种传感器,根据传感器检测到的数据以及食材种类等参数自动设定加热时间和加热温度,实现全自动加热功能,避免了人为设定导致的因设定不准确导致的烹饪过度或者烹饪不到位的问题。
以上涉及的具体型号仅为帮助读者理解本方案,并不作为限定内容。
本方案不仅可以运用在传统烤箱上,还可以运用在微烤箱、蒸烤箱、嵌入式烤箱等其他种类的烤箱上,适用范围广,能适用绝大多数烤箱种类。
上述各实施例方案可彼此结合使用。
本实用新型虽然以较佳实施例公开如上,但其并不是用来限定权利要求,任 何本领域技术人员在不脱离本实用新型的精神和范围内,都可以做出可能的变动和修改,因此本实用新型的保护范围应当以本实用新型权利要求所界定的范围为准。

Claims (28)

  1. 一种烤箱,其特征在于,包括:
    主体;
    烹饪室,具有敞开的前表面,所述烹饪室内设置有有效加热区,所述有效加热区由分隔构件配合烹饪室的内表面包覆形成或一体成型工艺制成;
    其中,所述分隔构件设置在所述烹饪室的表面交界处,对所述烹饪室进行分割,所述分隔构件靠近食材区域的表面与所述烹饪室的表面形成加热内表面层,所述加热内表面层所围合成的空间构成所述有效加热区,并且,所述有效加热区小于所述烹饪室,食物在所述有效加热区内被烹饪;
    加热器,设置在所述有效加热区内以对有效加热区及食物进行加热;
    门,安装在烤箱主体上以打开或关闭所述烤箱主体。
  2. 如权利要求1所述的一种烤箱,其特征在于,所述烹饪室包括下内表面、上内表面、后内表面、左内表面和右内表面,所述分隔构件设置在三个内表面相交的顶点处和/或内表面两两相交的交界处,所述分隔构件表面与所述烹饪室的部分内表面形成所述加热内表面层,以减少在所述烹饪室内、有效加热区之外的无效加热的空间。
  3. 如权利要求2所述的一种烤箱,其特征在于,所述分隔构件焊接或胶粘在所述烹饪室的内表面,所述分隔构件与烹饪室之间的分隔点为所述分隔构件所在烹饪室的棱线和/或所在烹饪室的内表面长度的1/2~1/8之间。
  4. 如权利要求1所述的一种烤箱,其特征在于,加热内表面层包括连接在上内表面、下内表面之间的分隔构件的侧面内表面层,所述上内表面、下内表面、侧面内表面层和门内表面形成包覆食材区域的加热内表面层。
  5. 如权利要求1所述的一种烤箱,其特征在于,所述分隔构件为填充在所述烹饪室的表面交界处的实体结构;或
    一厚度不小于1mm的挡板结构,所述分隔构件与所述烹饪室的内表面之间形成一隔离空间。
  6. 如权利要求5所述的一种烤箱,其特征在于,所述分隔构件与所述烹饪室的内表面之间的隔热空间内填充设置有物填充,所述填充物为热的不良导体。
  7. 如权利要求5所述的一种烤箱,其特征在于,所述分隔构件为陶瓷、合金、钢板、铝、玻璃或隔热棉。
  8. 如权利要求1所述的一种烤箱,其特征在于,所述有效加热区为一体化成型结构制成的箱体,所述箱体各壁的连接处为钝角或圆角结构,或无明显箱体壁的类球体结构,所述箱体的内表面为所述加热内表面层。
  9. 如权利要求1或8所述的一种烤箱,其特征在于,所述加热内表面层为表面抛光设置的镜面结构或准镜面结构,或表面设置有热反射涂层,以使有效加热区中的热量多次反射,提升温升速度。
  10. 如权利要求1所述的一种烤箱,其特征在于,所述加热器为石英管和/或石墨加热管。
  11. 如权利要求1所述的一种烤箱,其特征在于,所述烹饪室的外表面设置一保温夹层,所述保温夹层为热的不良导体。
  12. 一种智能烤箱,所述智能烤箱为烤箱、烤箱与烤箱一体机或微蒸烤一体机,其特征在于,包括壳体,所述壳体的腔室内设有用于加热食物的有效加热区,所述有效加热区由分隔构件配合烹饪室的内表面包覆形成或一体成型工艺制成,所述的智能烤箱还包括:
    温度传感器,设置于壳体的内壁上,用于测量待加热食材的温度;
    采集装置,用于采集待加热食材的食物图像/或食物视频;
    模型识别装置,与所述采集装置信号连接,直接接收食物图像/或将接收的食物视频转化为食物图像,通过算法模型提取食物图像的特征点并进行特征点匹配, 以识别出待加热食材的类型;
    控制装置,所述控制装置的输入端与所述温度传感器和匹配装置信号连接,以根据获取的待加热食材的温度和类型主动选择加热模式,所述控制装置的输出端与加热器连接,根据主动选择的加热模式或被动选择的加热模式控制加热器对待加热食材进行加热,且,加热过程中,控制装置根据所述温度传感器反馈的待加热食材的当前温度动态调整加热器的输出功率或者工作时间,以实现待加热食材的加热过程的闭环控制。
  13. 如权利要求12所述的智能烤箱,其特征在于,所述模型识别装置内置有已训练的用于离线识别的神经网络模型,所述神经网络模型的训练集包括大数据的食材和/或食材盛器图像集,使已训练的神经网络模型根据采集的食物图像的特征点和/或盛器图像的特征点识别出食材的类别属性和/或食材体积。
  14. 如权利要求13所述的智能烤箱,其特征在于,所述模型识别装置还根据识别的食材体积或面积估算食材重量,所述控制装置根据待加热食材的温度、类别属性、体积或面积大小和重量主动选择加热模式、及根据类别属性、体积大小或面积和重量控制主动选择或被动选择的加热模式所需的加热时间、及根据反馈的温度闭环控制加热模式所需的加热功率或加热时间。
  15. 如权利要求12所述的智能烤箱,其特征在于,所述采集装置为若干个摄像头,所述摄像头设置于腔室的内部,且所述腔室的内部还分别设有隔热、隔湿、透明的玻璃板,所述玻璃板将所述摄像头隐藏于玻璃板与腔室内顶角形成的密封腔内,以使待加热食材或所述加热器所产生的温度/湿度与所述摄像头隔离。
  16. 如权利要求15所述的智能烤箱,其特征在于,所述腔室内还安装有配合所述摄像头使用的照明灯,所述照明灯与所述摄像头的安装孔径小于3mm,当所述摄像头对待加热食材进行图像拍摄时,所述照明灯向所述待加热食材补充拍摄图像所需光源。
  17. 如权利要求12所述的智能烤箱,其特征在于,还包括对待加热食材进行称重的称重传感器,所述称重传感器设置于所述壳体底部并位于所述加热放置区下方;
    所述称重传感器与所述控制装置的输入端信号连接,所述控制装置还根据待加热食材的重量、温度和食材类型主动选择加热模式。
  18. 如权利要求12所述的智能烤箱,其特征在于,还包括若干个温/湿度传感器,所述温/湿度传感器设置于壳体内壁,以检测待加热食材表面的温/湿度,和/或以检测腔室内部的温/湿度,所述腔室内还设有加湿部,所述控制装置还根据当前检测的所述温/湿度控制所述加湿部工作,以使所述腔室或/和待加热食材保持一设定的湿度。
  19. 如权利要求12所述的智能烤箱,其特征在于,所述腔室内安装有向所述待加热食材的放置区发射出标记点的指示灯,所述指示灯的安装孔径小于3mm,所述指示灯用以指示需要加热和进行温度测试的食材放置参考位置,或者,所述放置区上设有用以提示需要加热和进行温度测试的食材放置参考位置的标识符。
  20. 如权利要求12所述的智能烤箱,其特征在于,所述壳体的外表面设有人机交互组件,所述人机交互组件包括但不限于触控显示屏和语音组件,所述控制装置包括主控制板和人机交互显控板;
    所述人机交互显控板根据获取的待加热食材的温度和食材类型主动选择加热模式,或者通过所述人机交互组件获取被动选择的加热模式,并将所述加热模式发送至所述主控制板,所述主控制板根据加热模式控制加热器对待加热食材进行加热;
    所述人机交互显控板与所述主控制板为一体式集成结构或分体式通过线路连接,且,所述人机交互显控板还将待加热食材的温度实时反馈至所述主控制板,使得加热过程中,所述主控制板根据反馈的温度动态调整加热器的输出功率,以 实现待加热食材的加热过程的闭环控制。
  21. 如权利要求12所述的智能烤箱,其特征在于,还包括智能感应装置,所述智能感应装置包括若干用于检测门体开关状态的触发电路,所述触发电路设置在所述门体和/或箱体上,待所述门体闭合时,所述触发电路接通并启动所述控制装置、采集装置、相关传感器、加热器和/或风扇,实现所述智能烤箱通过关门操作对待加热食材自动识别、自动加热。
  22. 如权利要求12所述的智能烤箱,其特征在于,包括用于采集门体开关状态的智能感应装置,以及设置在所述箱体开口处的门体;其中,
    所述智能感应装置包括用于检测门体开关状态、控制通断的触发电路,所述触发电路设置在所述门体和/或所述箱体上,所述门体闭合时,所述触发电路接通并启动与所述智能烤箱。
  23. 如权利要求22所述的一种智能烤箱,其特征在于,所述触发电路与控制板连接,所述触发电路闭合时,所述智能烤箱启动。
  24. 如权利要求12所述的一种智能烤箱,其特征在于,所述加热器为电热丝、磁控管、石英管、碳纤维管或蒸汽加热组件。
  25. 一种具有食材识别的智能设备,包括壳体,所述壳体的腔室内设有食物加热放置区,其特征在于,还包括:
    温度传感器,设置于所述壳体的内壁上,用于检测待加热食材/腔室的温度;
    采集装置,用于采集待加热食材的食物图像/或食物视频;
    模型识别装置,与所述采集装置信号连接,直接接收食物图像/或将接收的食物视频转化为食物图像,通过算法模型提取食物图像的特征点并进行特征点匹配,以识别出待加热食材的类型;
    控制装置,所述控制装置的输入端与所述温度传感器和模型识别装置信号连接,以根据获取的待加热食材/腔室的温/湿度和类型主动选择加热模式,所述控制 装置的输出端与加热部件连接,根据主动选择的加热模式或被动选择的加热模式控制智能设备对待加热食材进行加热,且,加热过程中,控制装置根据所述温度传感器反馈的待加热食材/腔室的当前温度动态调整智能设备的输出功率或者工作时间,以实现待加热食材的加热过程的闭环控制。
  26. 如权利要求25所述的智能设备,其特征在于,所述模型识别装置内置有已训练的用于离线识别的神经网络模型,所述神经网络模型的训练集包括大数据的食材和/或食材盛器图像集,使已训练的神经网络模型根据采集的食物图像的特征点和/或盛器图像的特征点识别出食材的类别属性和/或食材体积。
  27. 如权利要求26所述的智能烤箱,其特征在于,所述模型识别装置还根据识别的食材体积或面积估算食材重量,所述控制装置根据待加热食材/腔室的温/湿度、类别属性和体积大小主动选择加热模式、及根据类别属性、体积大小和重量控制主动选择或被动选择的加热模式所需的加热时间、及根据反馈的温度闭环控制加热模式所需的加热功率。
  28. 如权利要求25所述的智能设备,其特征在于,还包括智能感应装置,所述智能感应装置包括若干用于检测门体开关状态的触发电路,所述触发电路设置在所述门体和/或箱体上,所述门体闭合时,所述触发电路接通并启动所述控制装置、采集装置、相关传感器、加热部件和/或风扇,实现所述智能设备通过关门操作对待加热食材自动识别、自动加热。
PCT/CN2018/102303 2018-02-09 2018-08-24 一种烤箱及一种智能烤箱及一种具有食材识别的智能设备 WO2019153711A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201820236235.4 2018-02-09
CN201820236235.4U CN208015766U (zh) 2018-02-09 2018-02-09 一种智能烤箱
CN201820920257 2018-06-13
CN201820920257.2 2018-06-13
CN201821343021.3U CN209153277U (zh) 2018-06-13 2018-08-20 一种烤箱及一种智能烤箱
CN201821343021.3 2018-08-20

Publications (1)

Publication Number Publication Date
WO2019153711A1 true WO2019153711A1 (zh) 2019-08-15

Family

ID=67548174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102303 WO2019153711A1 (zh) 2018-02-09 2018-08-24 一种烤箱及一种智能烤箱及一种具有食材识别的智能设备

Country Status (1)

Country Link
WO (1) WO2019153711A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2087871U (zh) * 1991-04-01 1991-11-06 刘维柏 新型节能远红外线食品烤箱
CN2110171U (zh) * 1992-01-11 1992-07-15 季桂敏 高效节能电烤箱
KR20040057763A (ko) * 2002-12-26 2004-07-02 엘지전자 주식회사 전자레인지
CN103654452A (zh) * 2012-09-24 2014-03-26 李文庆 一种电烤箱
CN104042124A (zh) * 2014-06-05 2014-09-17 宁波方太厨具有限公司 一种智能烤箱及其工作控制方法
CN204427811U (zh) * 2015-02-12 2015-07-01 东莞市海厨宝厨具有限公司 节能型可调烤箱
CN105444222A (zh) * 2015-12-11 2016-03-30 美的集团股份有限公司 微波炉的烹饪控制方法、***、云服务器和微波炉
CN206131093U (zh) * 2016-09-30 2017-04-26 宁波方太厨具有限公司 微波炉门控装置
CN106604435A (zh) * 2016-12-30 2017-04-26 北京小米移动软件有限公司 微波炉

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2087871U (zh) * 1991-04-01 1991-11-06 刘维柏 新型节能远红外线食品烤箱
CN2110171U (zh) * 1992-01-11 1992-07-15 季桂敏 高效节能电烤箱
KR20040057763A (ko) * 2002-12-26 2004-07-02 엘지전자 주식회사 전자레인지
CN103654452A (zh) * 2012-09-24 2014-03-26 李文庆 一种电烤箱
CN104042124A (zh) * 2014-06-05 2014-09-17 宁波方太厨具有限公司 一种智能烤箱及其工作控制方法
CN204427811U (zh) * 2015-02-12 2015-07-01 东莞市海厨宝厨具有限公司 节能型可调烤箱
CN105444222A (zh) * 2015-12-11 2016-03-30 美的集团股份有限公司 微波炉的烹饪控制方法、***、云服务器和微波炉
CN206131093U (zh) * 2016-09-30 2017-04-26 宁波方太厨具有限公司 微波炉门控装置
CN106604435A (zh) * 2016-12-30 2017-04-26 北京小米移动软件有限公司 微波炉

Similar Documents

Publication Publication Date Title
CN209153277U (zh) 一种烤箱及一种智能烤箱
CN212157290U (zh) 烹饪辅助器具
AU2015311260B2 (en) Domestic appliance, in particular cooking oven, with a camera
JP6265868B2 (ja) 加熱調理器、加熱調理システム、及び、加熱調理器の制御方法
WO2018024913A1 (en) Cooking system having inductive heating and wireless powering of kitchen appliances
KR20190057202A (ko) 무선 제어 요리 시스템
CN108351107A (zh) 烤炉和烤炉门开闭方法
WO2019137013A1 (zh) 一种智能微波炉和具有食材识别的智能设备
CN105942837A (zh) 智能电饭煲
CN213371499U (zh) 一种智能热空气烹饪设备
KR20180015926A (ko) 조리기기 및 그 제어방법
KR20180083167A (ko) 조리 기기 및 그를 포함하는 조리 시스템
CN110262294A (zh) 一种烹饪电器的控制方法、控制装置、烹饪电器
CN108700306B (zh) 用于制作至少一种食物的***以及运行相关***的方法
WO2022016677A1 (zh) 一种智能煎烤机
CN108670050A (zh) 具有加湿功能的烤箱及其控制方法
CN107831692B (zh) 厨具控制方法、装置和电子设备
JP6240990B2 (ja) 調理装置
US20240053025A1 (en) Cooking appliance and control method therefor
WO2019153711A1 (zh) 一种烤箱及一种智能烤箱及一种具有食材识别的智能设备
US20220151431A1 (en) Machine vision cook timer
US20220163261A1 (en) Appliances and Methods for Adaptive Zonal Cooking
CN216416865U (zh) 智能锅盖
CN209750800U (zh) 多功能称重式牛排机
CN112180751A (zh) 控制方法、计算机可读存储介质、烹饪设备和烹饪***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905769

Country of ref document: EP

Kind code of ref document: A1