WO2019150936A1 - Ni-zn-cu ferrite powder, electronic component, antenna, and rf tag - Google Patents

Ni-zn-cu ferrite powder, electronic component, antenna, and rf tag Download PDF

Info

Publication number
WO2019150936A1
WO2019150936A1 PCT/JP2019/000916 JP2019000916W WO2019150936A1 WO 2019150936 A1 WO2019150936 A1 WO 2019150936A1 JP 2019000916 W JP2019000916 W JP 2019000916W WO 2019150936 A1 WO2019150936 A1 WO 2019150936A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
present
mol
antenna
ferrite powder
Prior art date
Application number
PCT/JP2019/000916
Other languages
French (fr)
Japanese (ja)
Inventor
吏志 野村
純 香嶋
靖士 西尾
愛仁 中務
藤井 泰彦
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to JP2019568974A priority Critical patent/JP7224574B2/en
Publication of WO2019150936A1 publication Critical patent/WO2019150936A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material

Definitions

  • the present invention relates to a Ni—Zn—Cu based ferrite material, and more specifically, to provide a Ni—Zn—Cu based ferrite material having excellent characteristics even in a higher frequency band.
  • the power inductor operates in a high frequency band, and the ferrite material used therefor is required to maintain desired characteristics even in a high frequency band such as 60 MHz.
  • Patent Document 1 a ferrite having a specific composition is used in an inductance component having a structure in which a core with high permeability is wound.
  • an object of the present invention is to obtain a Ni—Zn—Cu ferrite powder having desired magnetic properties even in a frequency band such as 60 MHz.
  • Fe 2 O 3 is 46 to 50 mol%
  • NiO is 30 to 40 mol%
  • ZnO is 1.0 to 10 mol%
  • CuO is 9.0 to 11 mol%
  • CoO is 0.01 to 1 mol.
  • a Ni—Zn—Cu ferrite powder characterized by containing 0 mol% and having a molar ratio of Ni to Zn (Ni / Zn) of 3.8 to 5.8 (Invention 1).
  • the present invention is the Ni—Zn—Cu based ferrite powder according to the present invention 1, wherein the constituent phases are spinel ferrite and NiO (the present invention 2).
  • the present invention also relates to the Ni—Zn—Cu ferrite powder according to the present invention 2, wherein the crystallite size of the spinel ferrite is 240 nm or more (the present invention 3).
  • the present invention is the Ni—Zn—Cu ferrite powder according to any one of the present inventions 1 to 3 having a ⁇ Q product at 60 MHz of 3500 or more (Invention 4).
  • the present invention is a green sheet formed by using the Ni—Zn—Cu ferrite powder described in the first or second aspect of the present invention and a binding material into a sheet (Invention 5).
  • Fe 2 O 3 is 46-50 mol%
  • NiO is 30-40 mol%
  • ZnO is 1.0-10 mol%
  • CuO is 9.0-11 mol%
  • CoO is 0.01-1.
  • the present invention is an electronic component composed of a ferrite core and a coil
  • the ferrite core is an electronic component according to the sixth aspect of the present invention (Invention 7).
  • the present invention is an antenna comprising the electronic component according to the seventh aspect of the present invention (the present invention 8).
  • Ni—Zn—Cu ferrite powder according to the present invention exhibits excellent characteristics in a high frequency region such as 60 MHz, and is therefore suitable as a ferrite powder for power inductors.
  • an electronic component using the Ni—Zn—Cu based ferrite powder according to the present invention has a large ⁇ Q product and exhibits excellent characteristics in a high frequency region, and thus is suitable as various electronic components.
  • the Ni—Zn—Cu ferrite powder according to the present invention will be described.
  • the Ni—Zn—Cu-based ferrite powder of the present invention described below defines the whole powder, and does not necessarily define only the ferrite itself constituting the powder.
  • the Ni—Zn—Cu based ferrite powder is mainly composed of Ni—Zn—Cu based ferrite and is a mixture of Ni—Zn—Cu based ferrite and other components as described below. May be.
  • the Ni—Zn—Cu ferrite powder according to the present invention contains Fe, Ni, Zn, Cu and Co as constituent metal elements.
  • the Fe content of the Ni—Zn—Cu ferrite powder according to the present invention is 46 to 50 mol% in terms of Fe 2 O 3 .
  • the content of Fe is preferably 46.5 to 49.5 mol%, more preferably 47.0 to 49.0 mol%.
  • the Ni content of the Ni—Zn—Cu ferrite powder according to the present invention is 30 to 40 mol% in terms of NiO.
  • ⁇ ′′ increases in a high frequency region such as 60 MHz, and the ⁇ Q product decreases. This is not preferable because the Ni content exceeds 40 mol%, because ⁇ ′ decreases.
  • the Ni content is preferably 30.5 to 39.5 mol%, more preferably 31 to 39 mol%.
  • the Zn content of the Ni—Zn—Cu ferrite powder according to the present invention is 1.0 to 10 mol% in terms of ZnO.
  • ⁇ ′ decreases, which is not preferable.
  • ⁇ ′′ increases.
  • the Zn content is preferably 1.5 to 9.5 mol%, more preferably 2 to 9 mol%.
  • the Cu content of the Ni—Zn—Cu ferrite powder according to the present invention is 9.0 to 11 mol% in terms of CuO.
  • Cu content is less than 9.0 mol%, sinterability falls and it becomes difficult to manufacture a sintered compact at low temperature.
  • ⁇ ′ decreases, which is not preferable.
  • the Cu content is preferably 9.1 to 10.9 mol%, more preferably 9.2 to 10.8 mol%.
  • the Co content of the Ni—Zn—Cu ferrite powder according to the present invention is 0.01 to 1.0 mol% in terms of CoO.
  • the snake limit line shifts to the high frequency side. Therefore, the real part ⁇ ′ relative to the imaginary part ⁇ ′′ of the complex permeability in the high frequency range (for example, 13.56 MHz). It is possible to improve the Q ( ⁇ ′ / ⁇ ′′) of the ferrite core, which is the ratio of.
  • the Co content is preferably 0.05 to 0.95 mol%, more preferably 0.10 to 0.90 mol%.
  • the Ni—Zn—Cu ferrite powder according to the present invention has a molar ratio of Ni to Zn (Ni / Zn) of 3.8 to 5.8.
  • a high ⁇ Q product can be obtained in a high frequency region such as 60 MHz.
  • the molar ratio of Zn to Ni is 3.75 to 5.75, more preferably 3.73 to 5.73, and still more preferably 3.70 to 5.70.
  • the Ni—Zn—Cu ferrite powder according to the present invention preferably has a molar ratio of Ni to Cu (Ni / Cu) of 3.0 to 3.4.
  • a molar ratio of Ni and Cu is 3.05 to 3.35, and even more preferably 3.10 to 3.30.
  • the Ni—Zn—Cu ferrite powder according to the present invention preferably has a molar ratio of Cu to Zn (Cu / Zn) of 1.0 to 1.5.
  • a high ⁇ Q product can be obtained in a high frequency region such as 60 MHz.
  • the molar ratio of Cu to Zn is 1.05 to 1.45, and even more preferably 1.1 to 1.40.
  • the Ni—Zn—Cu-based ferrite powder according to the present invention may contain various elements at an impurity level in addition to the above elements as long as the characteristics are not affected.
  • adding Bi has an effect of lowering the sintering temperature of ferrite.
  • the temperature reduction and the control of the crystal structure in the present invention are adjusted by the Zn / Ni molar ratio (Zn / Ni) and Cu content, the effect of further lowering the sintering temperature is expected by addition.
  • refinement of the crystal structure is further promoted, and there is a high possibility that a decrease in ⁇ ′ or a decrease in ⁇ Q product will occur.
  • Active Bi addition is not preferable, and 0 ppm is preferable.
  • the Ni—Zn—Cu ferrite powder according to the present invention may contain Si as an inevitable impurity with an upper limit of 300 ppm in terms of SiO 2 . It is preferable not to contain Sn etc. (0 ppm).
  • the Ni—Zn—Cu based ferrite powder according to the present invention is preferably composed essentially of spinel ferrite and NiO. That is, it is preferably a mixture of spinel ferrite formed by integrating each of Fe, Ni, Zn, Cu, and Co and NiO existing in addition to the spinel ferrite formed by integrating. In the composition of the present invention, it is not preferable to obtain only the spinel type ferrite as the constituent phase because ⁇ ′′ increases in the high frequency region such as 60 MHz and the ⁇ Q product decreases, and phases other than spinel type ferrite and NiO.
  • the ⁇ Q product is decreased in a high frequency region such as 60 MHz, which is not preferable (that is, it is preferable that hematite (Fe 2 O 3 ) does not exist).
  • the spinel type ferrite and NiO constituting the Ni—Zn—Cu ferrite powder according to the present invention should be contained in an amount of 90 wt% or more (NiO is contained in an amount of 10 wt% or less and more than 0 wt%). preferable. If the content of the spinel type ferrite is less than 90 wt%, it is difficult to obtain a desired magnetic permeability. Identification of the constituent phases and confirmation of the content ratio were calculated by the method described later based on X-ray diffraction.
  • the Ni—Zn—Cu based ferrite powder according to the present invention preferably has a crystallite size of 240 nm or more measured for spinel ferrite among the constituent phases.
  • ⁇ ′ can be increased by controlling the crystallite size of the Ni—Zn—Cu ferrite powder according to the present invention within the above range.
  • the crystallite size is more preferably 242 to 300 nm.
  • the Ni—Zn—Cu based ferrite powder according to the present invention preferably has a lattice constant of 8.365% or more with respect to the spinel type ferrite among the constituent phases.
  • ⁇ ′ can be increased by controlling the lattice constant of the Ni—Zn—Cu ferrite powder according to the present invention within the above range.
  • the lattice constant is more preferably 8.366 mm or more.
  • the Ni—Zn—Cu ferrite powder according to the present invention preferably has a strain of 0.325 to 0.400 for spinel ferrite among the constituent phases.
  • ⁇ ′ can be increased by controlling the strain of the Ni—Zn—Cu ferrite powder according to the present invention within the above range. More preferably, the strain is 0.326 to 0.390.
  • ⁇ ′ at 13.56 MHz is preferably 20 to 50
  • ⁇ ′′ is preferably 0.1 to 0.5
  • Q value is preferably 100 to 300.
  • the ⁇ Q product is preferably 4500 to 10,000.
  • ⁇ ′ at 60 MHz is preferably 20 to 60
  • ⁇ ′′ is preferably 0.1 to 0.5
  • Q value is preferably 40 to 200
  • ⁇ Q product is 3500 or more, more preferably 3800 to 10,000. It is preferable.
  • the Ni—Zn—Cu based ferrite powder according to the present invention is prepared by mixing raw materials such as oxides, carbonates, hydroxides, oxalates and the like of each element constituting ferrite in a conventional manner.
  • the obtained raw material mixture or a coprecipitate obtained by precipitating each element in an aqueous solution is obtained by calcination in the air at a temperature range of 650 to 950 ° C. for 1 to 20 hours and then pulverizing. be able to.
  • a green sheet is a paint by mixing the Ni—Zn—Cu ferrite powder with a binder, a plasticizer, a solvent, etc., and the paint is formed to a thickness of several ⁇ m to several hundred ⁇ m using a doctor blade type coater or the like. The sheet is formed after being formed and then dried. After the sheets are stacked, pressure is applied to form a laminated body, and the laminated body is sintered at a predetermined temperature to obtain an inductance element.
  • the green sheet according to the present invention contains 2 to 20 parts by weight of a binder and 0.5 to 15 parts by weight of a plasticizer with respect to 100 parts by weight of the Ni—Zn—Cu ferrite powder according to the present invention.
  • the binder contains 4 to 15 parts by weight and the plasticizer 1 to 10 parts by weight.
  • the solvent may remain due to insufficient drying after film formation.
  • you may add well-known additives, such as a viscosity modifier, as needed.
  • binding materials are polyvinyl butyral, polyacrylic acid ester, polymethyl methacrylate, vinyl chloride, polymethacrylic acid ester, ethylene cellulose, abietic acid resin, and the like.
  • a preferred binding material is polyvinyl butyral.
  • the binding material When the binding material is less than 2 parts by weight, the green sheet becomes brittle, and in order to have strength, a content exceeding 20 parts by weight is not necessary.
  • Plasticizers include benzyl-n-butyl phthalate, butyl butyl phthalyl glycolate, dibutyl phthalate, dimethyl phthalate, polyethylene glycol, phthalate ester, butyl stearate, methyl agitate and the like.
  • the plasticizer When the plasticizer is less than 0.5 parts by weight, the green sheet becomes hard and cracks are likely to occur. When the plasticizer exceeds 15 parts by weight, the green sheet becomes soft and difficult to handle.
  • the green sheet according to the present invention 15 to 150 parts by weight of solvent is used with respect to 100 parts by weight of Ni—Zn—Cu ferrite powder.
  • the solvent is out of the above range, a uniform green sheet cannot be obtained. Therefore, the inductance element obtained by sintering the sheet tends to vary in characteristics.
  • Solvent types are acetone, benzene, butanol, ethanol, methyl ethyl ketone, toluene, propyl alcohol, isopropyl alcohol, n-butyl acetate, 3methyl-3methoxy-1-butanol, and the like.
  • the lamination pressure is preferably 0.2 ⁇ 10 4 to 0.6 ⁇ 10 4 t / m 2 .
  • the Ni—Zn—Cu based ferrite sintered body according to the present invention has a Ni—Zn—Cu based ferrite powder according to the present invention of 0.3 to 3.0 ⁇ 10 4 t / m 2 using a mold. It is obtained by a so-called green sheet method in which a green body containing a Ni-Zn-Cu ferrite powder according to the present invention is laminated, or a molded body obtained by a so-called powder pressure molding method that pressurizes with pressure.
  • the laminated body can be obtained by sintering at 850 to 1050 ° C. for 1 to 20 hours, preferably 1 to 10 hours.
  • a molding method a known method can be used, but the above-mentioned powder pressure molding method and the green sheet method are preferable.
  • the sintering temperature is lower than 850 ° C.
  • the sintered density is lowered, so that the mechanical strength of the sintered body is lowered.
  • the sintering temperature exceeds 1050 ° C.
  • the sintered body is likely to be deformed, making it difficult to obtain a sintered body having a desired shape.
  • a more preferable sintering temperature is 880 to 1020 ° C.
  • Ni—Zn—Cu ferrite sintered body according to the present invention can be used as a magnetic material for an inductance element by making it into a predetermined shape.
  • Ni—Zn—Cu ferrite sintered body according to the present invention can be used in the form of a plate.
  • the thickness of the ferrite sintered plate in the present invention is preferably 0.01 to 1 mm. More preferably, it is 0.02 to 1 mm, and still more preferably 0.03 to 0.5 mm.
  • An adhesive layer can be provided on at least one surface of the sintered ferrite plate in the present invention.
  • the thickness of the adhesive layer is preferably 0.001 to 0.1 mm.
  • a protective layer can be provided on at least one surface of the sintered ferrite plate in the present invention.
  • the thickness of the protective layer is preferably 0.001 to 0.1 mm.
  • the ⁇ ′ of the sintered ferrite sheet in the present invention is preferably 80 to 300. More preferably, it is 90 to 290, and still more preferably 110 to 280.
  • ⁇ ′′ of the sintered ferrite sheet is preferably 0.05 to 15. More preferably, it is 0.06 to 10. More preferably, it is 0.07 to 5.0.
  • a double-sided adhesive tape can be mentioned. It does not restrict
  • the protective layer in the present invention can enhance the reliability and durability against powder falling when the sintered ferrite plate is divided by providing this.
  • the protective layer is not particularly limited as long as it is a resin that stretches without breaking when the sintered ferrite sheet is bent, and examples thereof include a PET film.
  • the ferrite sintered sheet according to the present invention is provided with at least one groove provided in advance on at least one surface of the ferrite sintered plate in order to adhere and adhere to the bent portion and prevent cracking during use.
  • the ferrite sintered plate may be configured to be separable.
  • the groove may be continuous or intermittently formed, and can be substituted for the groove by forming a large number of minute recesses.
  • the groove is preferably U-shaped or V-shaped in cross section.
  • the ferrite sintered sheet in the present invention is preferably divided into small pieces in advance so that the sintered ferrite sheet is stuck in contact with the bent portion and is prevented from cracking during use.
  • the ferrite sintered plate is divided in advance from at least one groove provided on at least one surface of the ferrite sintered plate, or the ferrite sintered plate is divided into small pieces without forming a groove. Either method may be used.
  • the ferrite sintered plate is divided into triangles, quadrilaterals, polygons of any size or combinations thereof by grooves.
  • the length of one side of a triangle, quadrilateral, or polygon is usually 1 to 12 mm, and when the adhesion surface of the adherend is a curved surface, it is preferably 1 mm or more and 1/3 or less of the radius of curvature thereof, More preferably, it is 1 mm or more and 1/4 or less.
  • the groove When the groove is formed, it can be intimately or substantially adhered to a cylindrical side curved surface and a surface with some unevenness as well as a flat surface without cracking indefinitely at a place other than the groove.
  • the width of the opening of the groove formed in the ferrite sintered plate is usually preferably 250 ⁇ m or less, more preferably 1 to 150 ⁇ m. When the width of the opening exceeds 250 ⁇ m, the decrease in the magnetic permeability of the ferrite sintered plate becomes large, which is not preferable.
  • the depth of the groove is usually 1/20 to 3/5 of the thickness of the ferrite sintered plate. In the case of a thin sintered ferrite plate having a thickness of 0.1 mm to 0.2 mm, the depth of the groove is preferably 1/20 to 1/4 of the thickness of the sintered ferrite plate, more preferably 1 / 20 to 1/6.
  • Ni—Zn—Cu ferrite sintered body according to the present invention can be used as a magnetic material for an antenna by having a predetermined shape.
  • the antenna according to the present invention is used, for example, for RFID tag applications, and the real part ⁇ ′ of the complex permeability at 13.56 MHz of the ferrite core is preferably 80 or more. Below 80, desired Q and ⁇ Q products cannot be obtained, and excellent communication characteristics cannot be obtained in the antenna. More preferably, it is 100 or more, More preferably, it is 110 or more.
  • the imaginary part ⁇ ′′ of the complex permeability at 13.56 MHz of the ferrite core is 2 or less. Therefore, Q is lowered, and excellent communication characteristics cannot be obtained in the antenna. More preferably, it is 1.5 or less, More preferably, it is 1.0 or less.
  • the ferrite core Q ( ⁇ ′ / ⁇ ′′), which is the ratio of the real part ⁇ ′ to the imaginary part ⁇ ′′ of the complex permeability at 13.56 MHz of the ferrite core, is 50 to 170. preferable.
  • the Q ( ⁇ ′ / ⁇ ′′) of the ferrite core is less than 50, the communication distance of the antenna is shortened and becomes unsuitable for the antenna.
  • the Q ( ⁇ ′ / ⁇ ′′) of the ferrite core at 13.56 MHz is more preferably 70 to 165, even more preferably 80 to 160.
  • the ⁇ Q product which is the product of the real part ⁇ ′ of the complex permeability at 13.56 MHz of the ferrite core and the Q of the ferrite core, is preferably 9000 or more. If it is less than 9000, excellent communication characteristics cannot be obtained.
  • the ⁇ Q product is more preferably 10,000 or more, and even more preferably 12,000 or more.
  • the electronic component according to the present invention includes a coil made of a conductor around which the ferrite core is wound outside the ferrite core.
  • the coil is integrally fired with a ferrite base material serving as a ferrite core and a conductive material serving as a coil so that the conductor adheres to the outside of the ferrite core.
  • the electronic component in the present invention is preferably made of a sintered body having a ferrite core and a coil.
  • a metal such as Ag or an Ag-based alloy, copper or a copper-based alloy can be used, and Ag or an Ag-based alloy is preferable.
  • the electronic component according to the present invention preferably includes an insulating layer on one or both outer surfaces provided with a coil made of a conductor on the outer side of the ferrite core.
  • a coil made of a conductor on the outer side of the ferrite core.
  • nonmagnetic ferrite such as Zn ferrite
  • glass ceramic such as borosilicate glass, zinc glass or lead glass, or nonmagnetic ferrite and glass ceramic is mixed as an insulating layer.
  • nonmagnetic ferrite such as Zn ferrite
  • glass ceramic such as borosilicate glass, zinc glass or lead glass
  • nonmagnetic ferrite and glass ceramic is mixed as an insulating layer.
  • a Zn-based ferrite composition may be selected such that the volume resistivity of the sintered body is 10 8 ⁇ cm or more.
  • a composition in which Fe 2 O 3 is 45.0 to 49.5 mol%, ZnO is 17.0 to 45.0 mol%, and CuO is 4.5 to 15.0 mol% is preferable.
  • the insulating layer is a glass-based ceramic
  • the composition is such that the difference from the linear expansion coefficient of the magnetic ferrite used as the magnetic material is within ⁇ 5 ppm / ° C.
  • the electronic component according to the present invention may include a conductive layer via an insulating layer outside the coil on the ferrite core.
  • the electronic component according to the present invention can be provided with a metal layer as the conductive layer, and is preferably a thin metal layer made of Ag or an Ag-based alloy having low resistance.
  • the electronic component according to the present invention is preferably a sintered body in which the insulating layer and the conductive layer are integrally fired together with a ferrite base material serving as a ferrite core and a conductive material serving as a conductor and are in close contact with the ferrite core.
  • a small and highly sensitive antenna obtained by the present invention is desired to be applied to a wearable device.
  • the size of the antenna is preferably 1 cm square or less and 1 cm or less in height.
  • the RF tag in the present invention is one in which an IC chip is connected to the antenna. Even if the RF tag in the present invention is coated with resin, the antenna and the connected IC chip are protected without impairing the characteristics, and an RF tag with a quality that operates stably can be obtained.
  • the electronic component according to the present invention can be manufactured by various methods in which a coil can be provided so as to wind a ferrite core.
  • a manufacturing method of an antenna using LTCC (Low Temperature Co-fired Ceramics) technology which is formed by laminating a sheet-like ferrite base material and a conductive material so as to have a desired configuration and then firing them integrally. Will be described.
  • LTCC Low Temperature Co-fired Ceramics
  • a ferrite base material is formed in a sheet shape from a mixture of magnetic powder and binder.
  • the magnetic powder contains Fe, Ni, Zn, Cu and Co as constituent metal elements.
  • each constituent metal element is converted to Fe 2 O 3 , NiO, ZnO, CuO and CoO, Fe 2 O 3 , NiO, ZnO, CuO, and CoO as a reference, Fe 2 O 3 is 46-50 mol%, NiO is 20-27 mol%, ZnO is 15-22 mol%, CuO is 9-11 mol%, and CoO is 0.1%.
  • a ferrite calcined powder containing 01 to 1.0 mol% can be used.
  • a magnetic layer (5) made of a ferrite base material is laminated so that the entire thickness becomes a desired thickness.
  • a desired number of through holes (1) are opened in the laminate of magnetic layers (5).
  • a conductive material is poured into each of the through holes (1).
  • the electrode layer (2) is formed on both surfaces of the magnetic layer (5) laminated at right angles to the through hole (1) so as to be connected to the through hole (1) to form a coil shape (winding shape).
  • the coil (4) is formed by the conductive material and the electrode layer (2) poured into the through hole (1) so that the laminated body of the magnetic layers (5) becomes a rectangular parallelepiped core. At this time, both ends of the magnetic layer forming the coil (4) are open on the magnetic circuit.
  • a metal-based conductive paste As a conductive material that flows into the through hole (1) or forms the electrode layer (2), a metal-based conductive paste can be used, and an Ag paste or an Ag-based alloy paste is suitable.
  • the obtained sheet-like laminate is cut at the surface including the through-hole (1) and the coil open end surface (4-2) so as to have a desired shape and fired integrally, or after the integral firing, the through-hole (
  • the antenna of the present invention comprising a sintered body having a ferrite core (3) and a coil (4) can be manufactured by cutting at a plane including 1) and a coil open end face (4-2).
  • the firing temperature of the laminate is 800 ° C. to 1000 ° C., preferably 850 ° C. to 920 ° C.
  • the temperature is lower than the above range, it is difficult to obtain desirable characteristics in ⁇ ′ and Q, and when the temperature is higher, integral firing becomes difficult.
  • the insulating layer (6) can be formed on the upper and lower surfaces of the magnetic layer (5) on which the electrode layer (2) is formed.
  • FIG. 2 shows a schematic diagram of the antenna on which the insulating layer (6) is formed.
  • an IC may be mounted by forming a coil lead terminal and an IC chip connection terminal with a conductive material on the surface of the insulating layer (6).
  • the antenna having the IC chip connection terminal is provided with a through hole in the insulating layer (6) formed on at least one surface of the magnetic layer (5) on which the electrode layer (2) is formed, and a conductive material is provided in the through hole. Is connected to both ends of the coil (4), formed on the surface of the insulating layer (6) so that the coil lead terminal and the IC chip connection terminal can be connected in parallel or in series with a conductive material, and are integrally fired. Can do.
  • a conductive layer (7) may be provided outside the insulating layer (6) as shown in FIG.
  • the resonance frequency does not change much even when the antenna is attached to the metal surface. By not touching the metal surface, a homogeneous antenna that operates stably can be obtained.
  • an insulating layer (6) may be further provided on the outer surface of the conductive layer (7) as shown in FIG. Further, the magnetic layer (5) or the magnetic layer (5) may be provided on the outer surface of the insulating layer (6), and the insulating layer (6) may be provided on the outer surface thereof.
  • the conductive layer (7) may be formed by any means.
  • a similar effect can be imparted by attaching a metal plate to the outside of the insulating layer (6).
  • a metal-based conductive paste can be used, and an Ag paste or an Ag-based alloy paste is suitable.
  • the film thickness of the conductive layer (7) is preferably 0.001 to 0.1 mm in terms of the film thickness after firing.
  • capacitor electrodes may be arranged on one or both outer surfaces of the insulating layer (6) sandwiching the upper and lower surfaces of the coil (4).
  • the capacitor formed on the upper surface of the insulating layer (6) may be a capacitor by printing parallel electrodes or comb electrodes, and the capacitor and the coil lead terminal are connected in parallel or in series. Also good.
  • a terminal provided with a variable capacitor may be formed on the upper surface of the insulating layer (6), and the coil lead terminal and the coil lead terminal may be connected in parallel or in series.
  • an insulating layer (6) is further provided on the outer surface of the insulating layer (6) on which the capacitor electrode is disposed, and an electrode layer also serving as an IC chip connection terminal is formed on the outer surface of the insulating layer (6).
  • a capacitor may be formed so as to sandwich the layer (6) and connected to the IC chip connection terminal in parallel or in series.
  • a through hole (1) is provided in the insulating layer (6) on the lower surface of the coil (4), a conductive material is poured into the through hole, and connected to both ends of the coil (4).
  • the substrate connection terminals may be formed of a conductive material and integrally fired. In that case, it can be easily bonded to a substrate of ceramic, resin or the like.
  • the IC chip may be connected by forming an IC chip connection terminal on the insulating layer, or by forming a wiring in the substrate so as to connect to the substrate connection terminal on the lower surface of the antenna, and via the in-substrate wiring You may connect.
  • the antenna of the present invention can be used as an RF tag.
  • the RF tag in the present invention is made of a resin such as polystyrene, acrylonitrile styrene, acrylonitrile butadiene styrene, acrylic, polyethylene, polypropylene, polyamide, polyacetal, polycarbonate, vinyl chloride, modified polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, and the like. It may be covered.
  • a resin such as polystyrene, acrylonitrile styrene, acrylonitrile butadiene styrene, acrylic, polyethylene, polypropylene, polyamide, polyacetal, polycarbonate, vinyl chloride, modified polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, and the like. It may be covered.
  • ⁇ Action> In the antenna according to the present invention, when the ferrite core converts Fe, Ni, Zn, Cu, and Co into Fe 2 O 3 , NiO, ZnO, CuO, and CoO, respectively, Fe 2 O 3 , NiO, ZnO, Based on the total of CuO and CoO, Fe 2 O 3 is 46 to 50 mol%, NiO is 30 to 40 mol%, ZnO is 1.0 to 10 mol%, CuO is 9.0 to 11 mol%, and CoO is 0.01 A magnetic material containing ⁇ 1.0 mol%, which has a high Q and ⁇ Q product at 13.56 MHz and 60 MHz.
  • the antenna manufactured using the ferrite powder according to the present invention can improve the communication sensitivity of the antenna because the ferrite powder has the above characteristics.
  • Crystallite size, lattice constant The crystallite size and the lattice constant of the ferrite were measured using the TOPAS software Ver. 4 using D8 ADVANCE in the same manner as in the X-ray diffraction. It was evaluated at 4.
  • the magnetic permeability, Q, and ⁇ Q product of the ring core were measured at a frequency of 13.56 MHz using an impedance / material analyzer E4991A (manufactured by Agilent Technologies).
  • Example 1 Each oxide raw material was weighed so that the composition of Ni—Zn—Cu—Co ferrite was a predetermined composition, wet mixed, and then the mixed slurry was filtered and dried to obtain a raw material mixed powder.
  • the calcined product obtained by firing the raw material mixed powder at 830 ° C. for 2 hours was pulverized with a vibration mill to obtain the Ni—Zn—Cu—Co ferrite powder according to the present invention.
  • Ni—Zn—Cu—Co ferrite In the evaluation of the obtained Ni—Zn—Cu—Co ferrite by XRD, the presence of NiO was confirmed with spinel ferrite as the main phase. The proportions were 96.04% for spinel ferrite and 3.96% for NiO. The crystallite size for spinel ferrite was 243 nm and the lattice constant was 8.36910 mm.
  • Examples 2 to 4 and Comparative Examples 1 to 6 A Ni—Zn—Cu—Co ferrite powder was obtained in the same manner as in Example 1 except that the composition range was variously changed. Various characteristics of the obtained Ni—Zn—Cu—Co ferrite powder are shown in Tables 1 and 2.
  • Example 5 Production of antenna
  • a slurry was prepared by mixing 100 parts by weight of the Ni—Zn—Cu ferrite calcined powder of Example 3, 8 parts by weight of butyral resin, 5 parts by weight of a plasticizer, and 80 parts by weight of a solvent with a ball mill.
  • the resulting slurry was formed into a sheet of 150 mm square on a PET film with a doctor blade so that the thickness upon sintering was 0.1 mm to obtain a green sheet for the magnetic layer (5).
  • the magnetic properties of the ferrite core obtained by sintering at a firing temperature of 900 ° C. using this green sheet are shown in Table 1.
  • Zn-Cu ferrite calcined powder (Fe 2 O 3 46.5 mol%, ZnO 42.0 mol%, CuO 11.5 mol%) 100 parts by weight, butyral resin 8 parts by weight, plasticizer 5 parts by weight, solvent 80 parts by weight The parts were mixed with a ball mill to produce a slurry. The resulting slurry was sheet-molded on a PET film with a doctor blade with the same size and thickness as the magnetic layer (5) green sheet to obtain an insulating layer (6) green sheet.
  • the laminated green sheets are pressure-bonded together, cut at the surface where the through-hole (1) is divided and the coil open end surface (4-2), and fired integrally at 900 ° C. for 2 hours, 10 mm wide ⁇ 3 mm long
  • An antenna made of a sintered body having a ferrite core and a coil having a coil turn number of 23 turns was prepared (in FIG. 2, the coil turn number is shown as 7 turns for the sake of simplicity of the drawing.
  • the number of laminated magnetic layers (5) is represented by three layers for simplification of the drawing, and the same applies to the other drawings below).
  • An RF tag IC is connected to both ends of the coil of the antenna, a capacitor is further connected in parallel with the IC, and an RF tag is manufactured by adjusting the resonance frequency so as to maximize the communication distance.
  • the writer manufactured by Takaya Co., Ltd., product name TR3-A201 / TR3-D002A
  • the writer is fixed horizontally, and the center axis of the coil of the RF tag antenna is positioned vertically above the center of the reader / writer antenna.
  • the distance between the reader / writer antenna and the RF tag when the communication is as high as possible is defined as the longest communication distance.
  • the antenna using the Ni—Zn—Cu—Co ferrite powder of Example 1 was 103%, 104% in Example 2, 109% in Example 3, and 113% in Example 4.
  • the antenna according to the present invention has a high Q ( ⁇ ′ / ⁇ ′′) of the ferrite core used for the ferrite core, and it has been confirmed that the antenna achieves both miniaturization and improved communication sensitivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

The purpose of the present invention is to obtain a Ni-Zn-Cu ferrite powder which has desired magnetic properties at a frequency band such as 60 MHz. This Ni-Zn-Cu ferrite powder comprises Fe2O3, NiO, ZnO, CuO, and CoO in a predetermined compositional ratio with the molar ratio (Ni/Zn) of the contained Ni and Zn being 3.8 to 5.8, wherein constituent phases of the ferrite powder are spinel ferrite and NiO, and μQ product at 60 MHz is 3500 or more.

Description

Ni-Zn-Cu系フェライト粉末、電子部品、アンテナ及びRFタグNi-Zn-Cu ferrite powder, electronic parts, antenna and RF tag
 本発明は、Ni-Zn-Cu系フェライト材料に関し、更に詳しくは、より高い周波数帯でも特性に優れたNi-Zn-Cu系フェライト材料を提供するものである。 The present invention relates to a Ni—Zn—Cu based ferrite material, and more specifically, to provide a Ni—Zn—Cu based ferrite material having excellent characteristics even in a higher frequency band.
 近年、家庭用及び産業用等の電子機器の小型・軽量化が進んでおり、それに伴い、前述の各種電子機器に用いられる電子部品の小型化、高効率化、高周波数化のニーズが高まっている。 In recent years, electronic devices for home use and industrial use have been reduced in size and weight, and accordingly, there has been an increasing need for downsizing, higher efficiency and higher frequency of electronic components used in the various electronic devices described above. Yes.
 例えば、パワーインダクタが高い周波数帯で作動することが想定されており、それに用いられるフェライト材料についても60MHzなどの高い周波数帯でも所望の特性が維持できることが要求されている。 For example, it is assumed that the power inductor operates in a high frequency band, and the ferrite material used therefor is required to maintain desired characteristics even in a high frequency band such as 60 MHz.
 従来、高透磁率のコアに巻線した構造のインダクタンス部品において、特定組成のフェライトを用いることが記載されている(特許文献1)。 Conventionally, it is described that a ferrite having a specific composition is used in an inductance component having a structure in which a core with high permeability is wound (Patent Document 1).
特開平9-63826号公報JP-A-9-63826
 しかしながら、前記特許文献1記載の技術では、数~数十MHzの比較的低周波数で使用するインダクタンス部品を得ることを目的とし実施例では120MHzのμ”が低いフェライトが記載されているが、60MHzの周波数帯では十分な特性が得られるものではなかった。 However, in the technique described in Patent Document 1, a ferrite having a low μ ″ of 120 MHz is described in the embodiment for the purpose of obtaining an inductance component used at a relatively low frequency of several to several tens of MHz. In the frequency band, sufficient characteristics were not obtained.
 そこで、本発明は、60MHzなどの周波数帯でも所望の磁気特性を有するNi-Zn-Cu系フェライト粉末を得ることを目的とする。 Therefore, an object of the present invention is to obtain a Ni—Zn—Cu ferrite powder having desired magnetic properties even in a frequency band such as 60 MHz.
 前記技術的課題は、次の通りの本発明によって達成できる。 The technical problem can be achieved by the present invention as follows.
 すなわち、本発明は、Feを46~50mol%、NiOを30~40mol%、ZnOを1.0~10mol%、CuOを9.0~11mol%、及びCoOを0.01~1.0mol%含有し、含有するNiとZnとのモル比(Ni/Zn)が3.8~5.8であることを特徴とするNi-Zn-Cu系フェライト粉末である(本発明1)。 That is, according to the present invention, Fe 2 O 3 is 46 to 50 mol%, NiO is 30 to 40 mol%, ZnO is 1.0 to 10 mol%, CuO is 9.0 to 11 mol%, and CoO is 0.01 to 1 mol. A Ni—Zn—Cu ferrite powder characterized by containing 0 mol% and having a molar ratio of Ni to Zn (Ni / Zn) of 3.8 to 5.8 (Invention 1).
 また、本発明は、構成相がスピネル型フェライトとNiOである本発明1に記載のNi-Zn-Cu系フェライト粉末である(本発明2)。 In addition, the present invention is the Ni—Zn—Cu based ferrite powder according to the present invention 1, wherein the constituent phases are spinel ferrite and NiO (the present invention 2).
 また、本発明は、スピネル型フェライトの結晶子サイズが240nm以上である本発明2に記載のNi-Zn-Cu系フェライト粉末である(本発明3)。 The present invention also relates to the Ni—Zn—Cu ferrite powder according to the present invention 2, wherein the crystallite size of the spinel ferrite is 240 nm or more (the present invention 3).
 また、本発明は、60MHzでのμQ積が3500以上である本発明1~3のいずれかに記載のNi-Zn-Cu系フェライト粉末である(本発明4)。 Further, the present invention is the Ni—Zn—Cu ferrite powder according to any one of the present inventions 1 to 3 having a μQ product at 60 MHz of 3500 or more (Invention 4).
 また、本発明は、本発明1又は2記載のNi-Zn-Cu系フェライト粉末と結合材料とを用いてシート状に成膜してなるグリーンシートである(本発明5)。 In addition, the present invention is a green sheet formed by using the Ni—Zn—Cu ferrite powder described in the first or second aspect of the present invention and a binding material into a sheet (Invention 5).
 また、本発明は、Feを46~50mol%、NiOを30~40mol%、ZnOを1.0~10mol%、CuOを9.0~11mol%、及びCoOを0.01~1.0mol%含有し、含有するNiとZnとのモル比(Ni/Zn)が3.8~5.8であるNi-Zn-Cu系フェライト焼結体である(本発明6)。 In the present invention, Fe 2 O 3 is 46-50 mol%, NiO is 30-40 mol%, ZnO is 1.0-10 mol%, CuO is 9.0-11 mol%, and CoO is 0.01-1. A Ni—Zn—Cu ferrite sintered body containing 0 mol% and having a molar ratio of Ni to Zn (Ni / Zn) of 3.8 to 5.8 (Invention 6).
 また、本発明は、フェライトコアとコイルとで構成される電子部品であって、該フェライトコアが本発明6記載の焼結体である電子部品である(本発明7)。 Further, the present invention is an electronic component composed of a ferrite core and a coil, and the ferrite core is an electronic component according to the sixth aspect of the present invention (Invention 7).
 また、本発明は、本発明7記載の電子部品からなるアンテナである(本発明8)。 Further, the present invention is an antenna comprising the electronic component according to the seventh aspect of the present invention (the present invention 8).
 本発明に係るNi-Zn-Cu系フェライト粉末は、例えば、60MHzなどの高周波領域で優れた特性を示すので、パワーインダクタ用のフェライト粉末として好適である。
 また、本発明に係るNi-Zn-Cu系フェライト粉末を用いた電子部品は、μQ積が大きいので、高周波領域で優れた特性を示すので、各種電子部品として好適である。
The Ni—Zn—Cu ferrite powder according to the present invention exhibits excellent characteristics in a high frequency region such as 60 MHz, and is therefore suitable as a ferrite powder for power inductors.
In addition, an electronic component using the Ni—Zn—Cu based ferrite powder according to the present invention has a large μQ product and exhibits excellent characteristics in a high frequency region, and thus is suitable as various electronic components.
本発明に係る電子部品のコイル部分の構成図である。It is a block diagram of the coil part of the electronic component which concerns on this invention. 本発明に係る電子部品の積層構造を示す概念図である。It is a conceptual diagram which shows the laminated structure of the electronic component which concerns on this invention. 本発明に係る電子部品の積層構造の別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the laminated structure of the electronic component which concerns on this invention.
 本発明に係るNi-Zn-Cu系フェライト粉末について述べる。なお、以下で説明する本発明のNi-Zn-Cu系フェライト粉末とは、粉末全体を定義するものであり、必ずしも粉末を構成するフェライトそのもののみを定義するものではない。Ni-Zn-Cu系フェライト粉末は、Ni-Zn-Cu系フェライトを主たる構成成分とするものであり、以下で説明するように、Ni-Zn-Cu系フェライトと他の成分との混合物であってもよい。 The Ni—Zn—Cu ferrite powder according to the present invention will be described. The Ni—Zn—Cu-based ferrite powder of the present invention described below defines the whole powder, and does not necessarily define only the ferrite itself constituting the powder. The Ni—Zn—Cu based ferrite powder is mainly composed of Ni—Zn—Cu based ferrite and is a mixture of Ni—Zn—Cu based ferrite and other components as described below. May be.
 本発明に係るNi-Zn-Cu系フェライト粉末は、構成金属元素としてFe,Ni,Zn,Cu及びCoを含有する。構成金属元素それぞれを、Fe,NiO,ZnO,CuO及びCoOに換算したときに、Fe,NiO,ZnO,CuO及びCoOの合計(100%)を基準として、Feを46~50mol%、NiOを30~40mol%、ZnOを1.0~10mol%、CuOを9.0~11mol%及びCoOを0.01~1.0mol%含有する。 The Ni—Zn—Cu ferrite powder according to the present invention contains Fe, Ni, Zn, Cu and Co as constituent metal elements. Each constituent metal elements, Fe 2 O 3, NiO, ZnO, when converted to CuO and CoO, Fe 2 O 3, NiO, ZnO, the total of CuO and CoO (100%) based, Fe 2 O 3 46 to 50 mol%, NiO 30 to 40 mol%, ZnO 1.0 to 10 mol%, CuO 9.0 to 11 mol%, and CoO 0.01 to 1.0 mol%.
 本発明に係るNi-Zn-Cu系フェライト粉末のFe含有量は、Fe換算で46~50mol%である。Fe含有量が46mol%未満の場合、μ’が小さくなり、Fe含有量が50mol%を超える場合は、焼結できなくなる。Feの含有量は好ましくは46.5~49.5mol%、より好ましくは47.0~49.0mol%である。 The Fe content of the Ni—Zn—Cu ferrite powder according to the present invention is 46 to 50 mol% in terms of Fe 2 O 3 . When the Fe content is less than 46 mol%, μ ′ decreases, and when the Fe content exceeds 50 mol%, sintering cannot be performed. The content of Fe is preferably 46.5 to 49.5 mol%, more preferably 47.0 to 49.0 mol%.
 本発明に係るNi-Zn-Cu系フェライト粉末のNi含有量は、NiO換算で30~40mol%である。Ni含有量が30mol%未満の場合、60MHzなどの高周波領域でμ”が高くなり、μQ積が低下するため好ましくない。Ni含有量が40mol%を超える場合は、μ’が低下するため好ましくない。Ni含有量は好ましくは30.5~39.5mol%、より好ましくは31~39mol%である。 The Ni content of the Ni—Zn—Cu ferrite powder according to the present invention is 30 to 40 mol% in terms of NiO. When the Ni content is less than 30 mol%, μ ″ increases in a high frequency region such as 60 MHz, and the μQ product decreases. This is not preferable because the Ni content exceeds 40 mol%, because μ ′ decreases. The Ni content is preferably 30.5 to 39.5 mol%, more preferably 31 to 39 mol%.
 本発明に係るNi-Zn-Cu系フェライト粉末のZn含有量は、ZnO換算で1.0~10mol%である。Zn含有量が1.0mol%未満の場合、μ’が低下するため好ましくない。Zn含有量が10mol%を超える場合は、μ”が大きくなる。Zn含有量は好ましくは1.5~9.5mol%、より好ましくは2~9mol%である。 The Zn content of the Ni—Zn—Cu ferrite powder according to the present invention is 1.0 to 10 mol% in terms of ZnO. When the Zn content is less than 1.0 mol%, μ ′ decreases, which is not preferable. When the Zn content exceeds 10 mol%, μ ″ increases. The Zn content is preferably 1.5 to 9.5 mol%, more preferably 2 to 9 mol%.
 本発明に係るNi-Zn-Cu系フェライト粉末のCu含有量は、CuO換算で9.0~11mol%である。Cu含有量が9.0mol%未満の場合、焼結性が低下し、低温で焼結体を製造することが困難になる。Cu含有量が11mol%を超える場合は、μ’が低下するため好ましくない。Cuの含有量は好ましくは9.1~10.9mol%、より好ましくは9.2~10.8mol%である。 The Cu content of the Ni—Zn—Cu ferrite powder according to the present invention is 9.0 to 11 mol% in terms of CuO. When Cu content is less than 9.0 mol%, sinterability falls and it becomes difficult to manufacture a sintered compact at low temperature. When the Cu content exceeds 11 mol%, μ ′ decreases, which is not preferable. The Cu content is preferably 9.1 to 10.9 mol%, more preferably 9.2 to 10.8 mol%.
 本発明に係るNi-Zn-Cu系フェライト粉末のCo含有量は、CoO換算で0.01~1.0mol%である。本発明においては、フェライトがCoを含有することによって、スネークの限界線が高周波数側にシフトするため、高周波数域(例えば13.56MHz)における複素透磁率の虚数部μ”に対する実数部μ’の比であるフェライトコアのQ(μ’/μ”)を向上させることが出来る。ただし、Co含有量が、CoO換算で1.0mol%を超えると、透磁率が低下し、フェライトコアのQも低下する傾向がある。Co含有量は好ましくは0.05~0.95mol%、より好ましくは0.10~0.90mol%である。 The Co content of the Ni—Zn—Cu ferrite powder according to the present invention is 0.01 to 1.0 mol% in terms of CoO. In the present invention, because the ferrite contains Co, the snake limit line shifts to the high frequency side. Therefore, the real part μ ′ relative to the imaginary part μ ″ of the complex permeability in the high frequency range (for example, 13.56 MHz). It is possible to improve the Q (μ ′ / μ ″) of the ferrite core, which is the ratio of. However, when the Co content exceeds 1.0 mol% in terms of CoO, the magnetic permeability is lowered and the Q of the ferrite core tends to be lowered. The Co content is preferably 0.05 to 0.95 mol%, more preferably 0.10 to 0.90 mol%.
 本発明に係るNi-Zn-Cu系フェライト粉末は、含有するNiとZnとのモル比(Ni/Zn)は3.8~5.8である。NiとZnとのモル比をこの範囲に調整することにより、60MHzなどの高周波領域で高いμQ積を得ることができる。好ましくはZnとNiのモル比が3.75~5.75、より好ましくは3.73~5.73、さらにより好ましくは3.70~5.70である。 The Ni—Zn—Cu ferrite powder according to the present invention has a molar ratio of Ni to Zn (Ni / Zn) of 3.8 to 5.8. By adjusting the molar ratio of Ni and Zn within this range, a high μQ product can be obtained in a high frequency region such as 60 MHz. Preferably, the molar ratio of Zn to Ni is 3.75 to 5.75, more preferably 3.73 to 5.73, and still more preferably 3.70 to 5.70.
 本発明に係るNi-Zn-Cu系フェライト粉末は、含有するNiとCuとのモル比(Ni/Cu)は3.0~3.4であることが好ましい。NiとCuのモル比をこの範囲に調整することにより、60MHzなどの高周波領域で高いμQ積を得ることができる。より好ましくはNiとCuとのモル比が3.05~3.35、さらにより好ましくは3.10~3.30である。 The Ni—Zn—Cu ferrite powder according to the present invention preferably has a molar ratio of Ni to Cu (Ni / Cu) of 3.0 to 3.4. By adjusting the molar ratio of Ni and Cu to this range, a high μQ product can be obtained in a high frequency region such as 60 MHz. More preferably, the molar ratio of Ni and Cu is 3.05 to 3.35, and even more preferably 3.10 to 3.30.
 本発明に係るNi-Zn-Cu系フェライト粉末は、含有するCuとZnとのモル比(Cu/Zn)は1.0~1.5であることが好ましい。CuとZnのモル比をこの範囲に調整することにより、60MHzなどの高周波領域で高いμQ積を得ることができる。より好ましくはCuとZnとのモル比が1.05~1.45、さらにより好ましくは1.1~1.40である。 The Ni—Zn—Cu ferrite powder according to the present invention preferably has a molar ratio of Cu to Zn (Cu / Zn) of 1.0 to 1.5. By adjusting the molar ratio of Cu and Zn within this range, a high μQ product can be obtained in a high frequency region such as 60 MHz. More preferably, the molar ratio of Cu to Zn is 1.05 to 1.45, and even more preferably 1.1 to 1.40.
 本発明に係るNi-Zn-Cu系フェライト粉末は、その特性に影響を及ぼさない範囲で前記元素のほかに不純物レベルの種々の元素を含んでいてもよい。一般的に、Biを添加することはフェライトの焼結温度の低温化の効果があると知られている。しかし、本発明における低温化や結晶組織の制御についてはZnとNiのモル比(Zn/Ni)とCuの含有量により調整しているため、添加によって焼結温度のさらなる低温化の効果が期待できるが、結晶組織の微細化もさらに促進され、μ’の低下あるいは、μQ積の低下が起こる可能性が高く、積極的なBi添加は好ましくなく、0ppmであることが好ましい。 The Ni—Zn—Cu-based ferrite powder according to the present invention may contain various elements at an impurity level in addition to the above elements as long as the characteristics are not affected. In general, it is known that adding Bi has an effect of lowering the sintering temperature of ferrite. However, since the temperature reduction and the control of the crystal structure in the present invention are adjusted by the Zn / Ni molar ratio (Zn / Ni) and Cu content, the effect of further lowering the sintering temperature is expected by addition. However, refinement of the crystal structure is further promoted, and there is a high possibility that a decrease in μ ′ or a decrease in μQ product will occur. Active Bi addition is not preferable, and 0 ppm is preferable.
 本発明に係るNi-Zn-Cu系フェライト粉末は、不可避的な不純物としてSiをSiO換算で300ppmを上限として含有してもよい。Snなどは含有しないことが好ましい(0ppm)。 The Ni—Zn—Cu ferrite powder according to the present invention may contain Si as an inevitable impurity with an upper limit of 300 ppm in terms of SiO 2 . It is preferable not to contain Sn etc. (0 ppm).
 本発明に係るNi-Zn-Cu系フェライト粉末は、その構成相が実質的にスピネル型フェライトとNiOのみであることが好ましい。すなわち、Fe,Ni,Zn,Cu及びCoそれぞれが1体化して形成されたスピネル型フェライトと、1体化して形成されたスピネル型フェライト以外に存在するNiOとの混合物であることが好ましい。本発明における組成において、構成相がスピネル型フェライトだけのものを得ることは60MHzなどの高周波領域でμ”が高くなり、μQ積が低下するため好ましくない。また、スピネル型フェライトとNiO以外の相、例えば、ヘマタイト(Fe)が存在する場合には60MHzなどの高周波領域でμQ積が低下するため好ましくない(すなわち、ヘマタイト(Fe)が存在しないことが好ましい)。 The Ni—Zn—Cu based ferrite powder according to the present invention is preferably composed essentially of spinel ferrite and NiO. That is, it is preferably a mixture of spinel ferrite formed by integrating each of Fe, Ni, Zn, Cu, and Co and NiO existing in addition to the spinel ferrite formed by integrating. In the composition of the present invention, it is not preferable to obtain only the spinel type ferrite as the constituent phase because μ ″ increases in the high frequency region such as 60 MHz and the μQ product decreases, and phases other than spinel type ferrite and NiO. For example, when hematite (Fe 2 O 3 ) is present, the μQ product is decreased in a high frequency region such as 60 MHz, which is not preferable (that is, it is preferable that hematite (Fe 2 O 3 ) does not exist).
 本発明に係るNi-Zn-Cu系フェライト粉末を構成するスピネル型フェライトとNiOのうち、スピネル型フェライトを90wt%以上含有する(NiOを10wt%以下で、0wt%を超えて含有する)ことが好ましい。スピネル型フェライトの含有量が90wt%未満では、所望の透磁率を得ることが困難となる。構成相の同定及び含有割合の確認はX線回折に基づいて後述する方法で算出した。 Of the spinel type ferrite and NiO constituting the Ni—Zn—Cu ferrite powder according to the present invention, the spinel type ferrite should be contained in an amount of 90 wt% or more (NiO is contained in an amount of 10 wt% or less and more than 0 wt%). preferable. If the content of the spinel type ferrite is less than 90 wt%, it is difficult to obtain a desired magnetic permeability. Identification of the constituent phases and confirmation of the content ratio were calculated by the method described later based on X-ray diffraction.
 本発明に係るNi-Zn-Cu系フェライト粉末は、その構成相のうち、スピネル型フェライトについて測定した結晶子サイズが240nm以上が好ましい。本発明に係るNi-Zn-Cu系フェライト粉末の結晶子サイズを前記範囲内に制御することによってμ’を高くすることができる。結晶子サイズは242~300nmであることがより好ましい。 The Ni—Zn—Cu based ferrite powder according to the present invention preferably has a crystallite size of 240 nm or more measured for spinel ferrite among the constituent phases. Μ ′ can be increased by controlling the crystallite size of the Ni—Zn—Cu ferrite powder according to the present invention within the above range. The crystallite size is more preferably 242 to 300 nm.
 本発明に係るNi-Zn-Cu系フェライト粉末は、その構成相のうち、スピネル型フェライトについて格子定数が8.365Å以上であることが好ましい。本発明に係るNi-Zn-Cu系フェライト粉末の格子定数を前記範囲に制御することによってμ’を高くすることができる。格子定数は8.366Å以上がより好ましい。 The Ni—Zn—Cu based ferrite powder according to the present invention preferably has a lattice constant of 8.365% or more with respect to the spinel type ferrite among the constituent phases. Μ ′ can be increased by controlling the lattice constant of the Ni—Zn—Cu ferrite powder according to the present invention within the above range. The lattice constant is more preferably 8.366 mm or more.
 本発明に係るNi-Zn-Cu系フェライト粉末は、その構成相のうち、スピネル型フェライトについて歪が0.325~0.400であることが好ましい。本発明に係るNi-Zn-Cu系フェライト粉末の歪を前記範囲に制御することによってμ’を高くすることができる。歪は0.326~0.390であることがより好ましい。 The Ni—Zn—Cu ferrite powder according to the present invention preferably has a strain of 0.325 to 0.400 for spinel ferrite among the constituent phases. Μ ′ can be increased by controlling the strain of the Ni—Zn—Cu ferrite powder according to the present invention within the above range. More preferably, the strain is 0.326 to 0.390.
 本発明に係るNi-Zn-Cu系フェライト粉末は、13.56MHzでのμ’は20~50が好ましく、μ”は0.1~0.5が好ましく、Q値は100~300が好ましく、μQ積が4500~10000であることが好ましい。
 また、60MHzでのμ’は20~60が好ましく、μ”は0.1~0.5が好ましく、Q値は40~200が好ましく、μQ積が3500以上、より好ましくは3800~10000であることが好ましい。
In the Ni—Zn—Cu ferrite powder according to the present invention, μ ′ at 13.56 MHz is preferably 20 to 50, μ ″ is preferably 0.1 to 0.5, and Q value is preferably 100 to 300. The μQ product is preferably 4500 to 10,000.
Further, μ ′ at 60 MHz is preferably 20 to 60, μ ″ is preferably 0.1 to 0.5, Q value is preferably 40 to 200, and μQ product is 3500 or more, more preferably 3800 to 10,000. It is preferable.
 本発明に係るNi-Zn-Cu系フェライト粉末は、常法により、フェライトを構成する各元素の酸化物、炭酸塩、水酸化物、シュウ酸塩等の原料を所定の組成割合で混合して得られた原料混合物、又は、水溶液中で各元素を沈殿させて得られた共沈物を、大気中において650~950℃の温度範囲で1~20時間仮焼成した後、粉砕することにより得ることができる。 The Ni—Zn—Cu based ferrite powder according to the present invention is prepared by mixing raw materials such as oxides, carbonates, hydroxides, oxalates and the like of each element constituting ferrite in a conventional manner. The obtained raw material mixture or a coprecipitate obtained by precipitating each element in an aqueous solution is obtained by calcination in the air at a temperature range of 650 to 950 ° C. for 1 to 20 hours and then pulverizing. be able to.
 次に、本発明に係るグリーンシートについて述べる。 Next, the green sheet according to the present invention will be described.
 グリーンシートとは、上記Ni-Zn-Cu系フェライト粉末を結合材料、可塑剤及び溶剤等と混合することによって塗料とし、該塗料をドクターブレード式コーター等で数μmから数百μmの厚さに成膜した後、乾燥してなるシートである。このシートを重ねた後、加圧することで積層体とし、該積層体を所定の温度で焼結させることでインダクタンス素子を得ることができる。 A green sheet is a paint by mixing the Ni—Zn—Cu ferrite powder with a binder, a plasticizer, a solvent, etc., and the paint is formed to a thickness of several μm to several hundred μm using a doctor blade type coater or the like. The sheet is formed after being formed and then dried. After the sheets are stacked, pressure is applied to form a laminated body, and the laminated body is sintered at a predetermined temperature to obtain an inductance element.
 本発明に係るグリーンシートは、本発明に係るNi-Zn-Cu系フェライト粉末を100重量部に対して結合材料を2~20重量部、可塑剤を0.5~15重量部含有する。好ましくは、結合材料を4~15重量部、可塑剤を1~10重量部含有する。また、成膜後の乾燥が不十分なことにより溶剤が残留していても良い。更に、必要に応じて粘度調整剤等の公知の添加剤を添加しても良い。 The green sheet according to the present invention contains 2 to 20 parts by weight of a binder and 0.5 to 15 parts by weight of a plasticizer with respect to 100 parts by weight of the Ni—Zn—Cu ferrite powder according to the present invention. Preferably, the binder contains 4 to 15 parts by weight and the plasticizer 1 to 10 parts by weight. Further, the solvent may remain due to insufficient drying after film formation. Furthermore, you may add well-known additives, such as a viscosity modifier, as needed.
 結合材料の種類は、ポリビニルブチラール、ポリアクリル酸エステル、ポリメチルメタクリレート、塩化ビニル、ポリメタクリル酸エステル、エチレンセルロース、アビエチン酸レジン等である。好ましい結合材料は、ポリビニルブチラールである。 The types of binding materials are polyvinyl butyral, polyacrylic acid ester, polymethyl methacrylate, vinyl chloride, polymethacrylic acid ester, ethylene cellulose, abietic acid resin, and the like. A preferred binding material is polyvinyl butyral.
 結合材料が2重量部未満の場合はグリーンシートが脆くなり、また、強度を持たす為には20重量部を越える含有量は必要ない。 When the binding material is less than 2 parts by weight, the green sheet becomes brittle, and in order to have strength, a content exceeding 20 parts by weight is not necessary.
 可塑剤の種類は、フタル酸ベンジル-n-ブチル、ブチルフタリルグリコール酸ブチル、ジブチルフタレート、ジメチルフタレート、ポリエチレングリコール、フタル酸エステル、ブチルステアレート、メチルアジテート等である。 Plasticizers include benzyl-n-butyl phthalate, butyl butyl phthalyl glycolate, dibutyl phthalate, dimethyl phthalate, polyethylene glycol, phthalate ester, butyl stearate, methyl agitate and the like.
 可塑剤が0.5重量部未満の場合はグリーンシートが固くなり、ひび割れが生じやすくなる。可塑剤が15重量部を越える場合はグリーンシートが軟らかくなり、扱いにくくなる。 When the plasticizer is less than 0.5 parts by weight, the green sheet becomes hard and cracks are likely to occur. When the plasticizer exceeds 15 parts by weight, the green sheet becomes soft and difficult to handle.
 本発明に係るグリーンシートの製造においては、Ni-Zn-Cu系フェライト粉末100重量部に対して15~150重量部の溶剤を使用する。溶剤が上記範囲外である場合は、均一なグリーンシートが得られないので、これを焼結して得られるインダクタンス素子は特性にバラツキのあるものとなりやすい。 In the production of the green sheet according to the present invention, 15 to 150 parts by weight of solvent is used with respect to 100 parts by weight of Ni—Zn—Cu ferrite powder. When the solvent is out of the above range, a uniform green sheet cannot be obtained. Therefore, the inductance element obtained by sintering the sheet tends to vary in characteristics.
 溶剤の種類は、アセトン、ベンゼン、ブタノール、エタノール、メチルエチルケトン、トルエン、プロピルアルコール、イソプロピルアルコール、酢酸n-ブチル、3メチル-3メトキシ-1ブタノール等である。 Solvent types are acetone, benzene, butanol, ethanol, methyl ethyl ketone, toluene, propyl alcohol, isopropyl alcohol, n-butyl acetate, 3methyl-3methoxy-1-butanol, and the like.
 積層圧力は、0.2×10~0.6×10t/mが好ましい。 The lamination pressure is preferably 0.2 × 10 4 to 0.6 × 10 4 t / m 2 .
 次に、本発明に係るNi-Zn-Cu系フェライト焼結体について述べる。 Next, the Ni—Zn—Cu ferrite sintered body according to the present invention will be described.
 本発明に係るNi-Zn-Cu系フェライト焼結体は、本発明に係るNi-Zn-Cu系フェライト粉末を金型を用いて、0.3~3.0×10t/mの圧力で加圧する、所謂、粉末加圧成型法により得られた成型体、又は、本発明に係るNi-Zn-Cu系フェライト粉末を含有するグリーンシートを積層する、所謂、グリーンシート法により得られた積層体を850~1050℃で1~20時間、好ましくは1~10時間焼結することによって得ることができる。成型方法としては、公知の方法を使用できるが、上記粉末加圧成型法やグリーンシート法が好ましい。 The Ni—Zn—Cu based ferrite sintered body according to the present invention has a Ni—Zn—Cu based ferrite powder according to the present invention of 0.3 to 3.0 × 10 4 t / m 2 using a mold. It is obtained by a so-called green sheet method in which a green body containing a Ni-Zn-Cu ferrite powder according to the present invention is laminated, or a molded body obtained by a so-called powder pressure molding method that pressurizes with pressure. The laminated body can be obtained by sintering at 850 to 1050 ° C. for 1 to 20 hours, preferably 1 to 10 hours. As a molding method, a known method can be used, but the above-mentioned powder pressure molding method and the green sheet method are preferable.
 焼結温度が850℃未満であると、焼結密度が低下する為、焼結体の機械的強度が低くなる。焼結温度が1050℃を越える場合には、焼結体に変形が生じやすくなる為、所望の形状の焼結体を得ることが困難になる。より好ましい焼結温度は880~1020℃である。 When the sintering temperature is lower than 850 ° C., the sintered density is lowered, so that the mechanical strength of the sintered body is lowered. When the sintering temperature exceeds 1050 ° C., the sintered body is likely to be deformed, making it difficult to obtain a sintered body having a desired shape. A more preferable sintering temperature is 880 to 1020 ° C.
 本発明に係るNi-Zn-Cu系フェライト焼結体は、所定の形状とすることによって、インダクタンス素子用の磁性材料として用いることができる。 The Ni—Zn—Cu ferrite sintered body according to the present invention can be used as a magnetic material for an inductance element by making it into a predetermined shape.
 本発明に係るNi-Zn-Cu系フェライト焼結体は、板状にして用いることができる。 The Ni—Zn—Cu ferrite sintered body according to the present invention can be used in the form of a plate.
 本発明におけるフェライト焼結板の厚さは、0.01~1mmが好ましい。より好ましくは0.02~1mmであり、更に好ましくは0.03~0.5mmである。 The thickness of the ferrite sintered plate in the present invention is preferably 0.01 to 1 mm. More preferably, it is 0.02 to 1 mm, and still more preferably 0.03 to 0.5 mm.
 本発明におけるフェライト焼結板の少なくとも一方の表面には粘着層を設けることができる。粘着層の厚みは0.001~0.1mmが好ましい。 An adhesive layer can be provided on at least one surface of the sintered ferrite plate in the present invention. The thickness of the adhesive layer is preferably 0.001 to 0.1 mm.
 本発明におけるフェライト焼結板の少なくとも一方の表面には保護層を設けることができる。保護層の厚みは0.001~0.1mmが好ましい。 A protective layer can be provided on at least one surface of the sintered ferrite plate in the present invention. The thickness of the protective layer is preferably 0.001 to 0.1 mm.
 本発明におけるフェライト焼結シートのμ’は、80~300が好ましい。更に好ましくは90~290、更により好ましくは110~280である。 The μ ′ of the sintered ferrite sheet in the present invention is preferably 80 to 300. More preferably, it is 90 to 290, and still more preferably 110 to 280.
 本発明におけるフェライト焼結シートのμ”は、0.05~15が好ましい。更に好ましくは0.06~10である。更に好ましくは0.07~5.0である。 In the present invention, μ ″ of the sintered ferrite sheet is preferably 0.05 to 15. More preferably, it is 0.06 to 10. More preferably, it is 0.07 to 5.0.
 本発明における粘着層としては、両面粘着テープが挙げられる。両面粘着テープとしては、特に制限されるものではなく、公知の両面粘着テープを使用し得る。また、粘着層として、フェライト焼結板の片面に粘着層、屈曲性且つ伸縮性のフイルム又はシート、粘着層および離型シートを順次積層したものであってもよい。 As the adhesive layer in the present invention, a double-sided adhesive tape can be mentioned. It does not restrict | limit especially as a double-sided adhesive tape, A well-known double-sided adhesive tape can be used. Further, as the adhesive layer, an adhesive layer, a flexible and stretchable film or sheet, an adhesive layer, and a release sheet may be sequentially laminated on one surface of the ferrite sintered plate.
 本発明における保護層は、これを設けることによりフェライト焼結板を分割した場合の粉落ちに対しての信頼性及び耐久性を高めることができる。該保護層としては、フェライト焼結シートを屈曲させた場合に破断することなく伸びる樹脂であれば特に制限されるものではなく、PETフィルム等が例示される。 The protective layer in the present invention can enhance the reliability and durability against powder falling when the sintered ferrite plate is divided by providing this. The protective layer is not particularly limited as long as it is a resin that stretches without breaking when the sintered ferrite sheet is bent, and examples thereof include a PET film.
 本発明におけるフェライト焼結シートは、屈曲した部分に密着させて貼付する為と、使用時に割れることを防ぐ為に、予め、フェライト焼結板の少なくとも一方の表面に設けられた少なくとも1つの溝を起点としてフェライト焼結板が分割可能に構成されてもよい。前記溝は連続していても、断続的に形成されていてもよく、また、多数の微小な凹部を形成することで、溝の代用とすることもできる。溝は断面がU字型又はV字型が望ましい。 The ferrite sintered sheet according to the present invention is provided with at least one groove provided in advance on at least one surface of the ferrite sintered plate in order to adhere and adhere to the bent portion and prevent cracking during use. As a starting point, the ferrite sintered plate may be configured to be separable. The groove may be continuous or intermittently formed, and can be substituted for the groove by forming a large number of minute recesses. The groove is preferably U-shaped or V-shaped in cross section.
 本発明におけるフェライト焼結シートは、屈曲した部分に密着させて貼付する為と、使用時に割れることを防ぐ為に、予め、フェライト焼結板を小片状に分割しておくことが好ましい。例えば、予め、フェライト焼結板の少なくとも一方の表面に設けられた少なくとも1つの溝を起点としてフェライト焼結板を分割したり、溝を形成することなくフェライト焼結板を分割して小片状とする方法のいずれでもよい。 The ferrite sintered sheet in the present invention is preferably divided into small pieces in advance so that the sintered ferrite sheet is stuck in contact with the bent portion and is prevented from cracking during use. For example, the ferrite sintered plate is divided in advance from at least one groove provided on at least one surface of the ferrite sintered plate, or the ferrite sintered plate is divided into small pieces without forming a groove. Either method may be used.
 フェライト焼結板は、溝によって任意の大きさの三角形、四辺形、多角形またはそれらの組合せに区分される。例えば、三角形、四辺形、多角形の1辺の長さは、通常1~12mmであり、被付着物の接着面が曲面の場合は、好ましくは1mm以上でその曲率半径の1/3以下、より好ましくは1mm以上で1/4以下である。溝を形成した場合、溝以外の場所で不定形に割れることなく、平面は勿論、円柱状の側曲面および多少の凹凸のある面に密着または実質的に密着することが出来る。 The ferrite sintered plate is divided into triangles, quadrilaterals, polygons of any size or combinations thereof by grooves. For example, the length of one side of a triangle, quadrilateral, or polygon is usually 1 to 12 mm, and when the adhesion surface of the adherend is a curved surface, it is preferably 1 mm or more and 1/3 or less of the radius of curvature thereof, More preferably, it is 1 mm or more and 1/4 or less. When the groove is formed, it can be intimately or substantially adhered to a cylindrical side curved surface and a surface with some unevenness as well as a flat surface without cracking indefinitely at a place other than the groove.
 フェライト焼結板に形成する溝の開口部の幅は、通常250μm以下が好ましく、より好ましくは1~150μmである。開口部の幅が250μmを超える場合は、フェライト焼結板の透磁率の低下が大きくなり好ましくない。また、溝の深さは、フェライト焼結板の厚さの通常1/20~3/5である。なお、厚さが0.1mm~0.2mmの薄い焼結フェライト板の場合、溝の深さは、焼結フェライト板の厚さの好ましくは1/20~1/4、より好ましくは1/20~1/6である。 The width of the opening of the groove formed in the ferrite sintered plate is usually preferably 250 μm or less, more preferably 1 to 150 μm. When the width of the opening exceeds 250 μm, the decrease in the magnetic permeability of the ferrite sintered plate becomes large, which is not preferable. The depth of the groove is usually 1/20 to 3/5 of the thickness of the ferrite sintered plate. In the case of a thin sintered ferrite plate having a thickness of 0.1 mm to 0.2 mm, the depth of the groove is preferably 1/20 to 1/4 of the thickness of the sintered ferrite plate, more preferably 1 / 20 to 1/6.
 本発明に係るNi-Zn-Cu系フェライト焼結体は、所定の形状とすることによって、アンテナ用の磁性材料として用いることができる。 The Ni—Zn—Cu ferrite sintered body according to the present invention can be used as a magnetic material for an antenna by having a predetermined shape.
 本発明に係るアンテナは、例えば、RFIDタグ用途に用いられ、フェライトコアの13.56MHzにおける複素透磁率の実数部μ’が、80以上であることが好ましい。80を下回ると、所望のQ及びμQ積が得られず、アンテナにおいて優れた交信特性が得られない。より好ましくは100以上であり、さらにより好ましくは110以上である。 The antenna according to the present invention is used, for example, for RFID tag applications, and the real part μ ′ of the complex permeability at 13.56 MHz of the ferrite core is preferably 80 or more. Below 80, desired Q and μQ products cannot be obtained, and excellent communication characteristics cannot be obtained in the antenna. More preferably, it is 100 or more, More preferably, it is 110 or more.
 また、本発明に係るアンテナは、フェライトコアの13.56MHzにおける複素透磁率の虚数部μ”が、2以下であることが望ましい。2を超える場合では、僅かな周波数のずれによりμ”が急激に増加するため、Qが低下し、アンテナにおいて優れた交信特性が得られない。より好ましくは1.5以下であり、さらにより好ましくは1.0以下である。 Further, in the antenna according to the present invention, it is desirable that the imaginary part μ ″ of the complex permeability at 13.56 MHz of the ferrite core is 2 or less. Therefore, Q is lowered, and excellent communication characteristics cannot be obtained in the antenna. More preferably, it is 1.5 or less, More preferably, it is 1.0 or less.
 本発明に係るアンテナは、フェライトコアの13.56MHzにおける複素透磁率の虚数部μ”に対する実数部μ’の比であるフェライトコアのQ(μ’/μ”)が50~170であることが好ましい。フェライトコアのQ(μ’/μ”)が50を下回る場合、アンテナの交信距離が短くなり、アンテナに適さなくなる。フェライトコアの13.56MHzにおけるQ(μ’/μ”)は、より好ましくは70~165であり、さらにより好ましくは80~160である。 In the antenna according to the present invention, the ferrite core Q (μ ′ / μ ″), which is the ratio of the real part μ ′ to the imaginary part μ ″ of the complex permeability at 13.56 MHz of the ferrite core, is 50 to 170. preferable. When the Q (μ ′ / μ ″) of the ferrite core is less than 50, the communication distance of the antenna is shortened and becomes unsuitable for the antenna. The Q (μ ′ / μ ″) of the ferrite core at 13.56 MHz is more preferably 70 to 165, even more preferably 80 to 160.
 本発明に係るアンテナは、フェライトコアの13.56MHzにおける複素透磁率の実数部μ’とフェライトコアのQの積であるμQ積が、9000以上であることが好ましい。9000未満では、優れた交信特性を得られない。μQ積はより好ましくは10000以上であり、さらにより好ましくは12000以上である。 In the antenna according to the present invention, the μQ product, which is the product of the real part μ ′ of the complex permeability at 13.56 MHz of the ferrite core and the Q of the ferrite core, is preferably 9000 or more. If it is less than 9000, excellent communication characteristics cannot be obtained. The μQ product is more preferably 10,000 or more, and even more preferably 12,000 or more.
 本発明に係る電子部品は、フェライトコアの外側に、フェライトコアを巻回する導体からなるコイルを備えている。該コイルは、インダクタンスなどの電気特性のバラつきを抑えるため、あるいは生産性の観点からフェライトコアとなるフェライト基材とコイルとなる導電材料とが一体焼成されて導体がフェライトコアの外側に密着していることが好ましい。すなわち、本発明における電子部品はフェライトコアとコイルとを有する焼結体からなることが好ましい。 The electronic component according to the present invention includes a coil made of a conductor around which the ferrite core is wound outside the ferrite core. In order to suppress variations in electrical characteristics such as inductance, or from the viewpoint of productivity, the coil is integrally fired with a ferrite base material serving as a ferrite core and a conductive material serving as a coil so that the conductor adheres to the outside of the ferrite core. Preferably it is. That is, the electronic component in the present invention is preferably made of a sintered body having a ferrite core and a coil.
 コイルを構成する導体は、AgまたはAg系合金、銅または銅系合金等の金属を用いることができ、AgまたはAg系合金であることが好ましい。 As the conductor constituting the coil, a metal such as Ag or an Ag-based alloy, copper or a copper-based alloy can be used, and Ag or an Ag-based alloy is preferable.
 本発明に係る電子部品は、フェライトコアの外側に導体からなるコイルを備えている一方又は両方の外側面に絶縁層を備えていることが好ましい。絶縁層を設けることによってコイルが保護されて安定に動作する品質の均質な電子部品が得られる。 The electronic component according to the present invention preferably includes an insulating layer on one or both outer surfaces provided with a coil made of a conductor on the outer side of the ferrite core. By providing the insulating layer, the coil is protected, and a homogeneous electronic component of stable quality can be obtained.
 本発明に係る電子部品は、絶縁層として、Zn系フェライトなどの非磁性フェライト、ホウケイ酸系ガラス、亜鉛系ガラス又は鉛系ガラス等のガラス系セラミック、あるいは非磁性フェライトとガラス系セラミックを適量混合したものなどを用いることができる。 In the electronic component according to the present invention, an appropriate amount of nonmagnetic ferrite such as Zn ferrite, glass ceramic such as borosilicate glass, zinc glass or lead glass, or nonmagnetic ferrite and glass ceramic is mixed as an insulating layer. Can be used.
 絶縁層に非磁性フェライトとして使用するフェライトには、焼結体の体積固有抵抗が10Ωcm以上になるようなZn系フェライト組成を選択するとよい。例えば、Feが45.0~49.5mol%、ZnOが17.0~45.0mol%、CuOが4.5~15.0mol%である組成が好ましい。 For the ferrite used as the nonmagnetic ferrite for the insulating layer, a Zn-based ferrite composition may be selected such that the volume resistivity of the sintered body is 10 8 Ωcm or more. For example, a composition in which Fe 2 O 3 is 45.0 to 49.5 mol%, ZnO is 17.0 to 45.0 mol%, and CuO is 4.5 to 15.0 mol% is preferable.
 絶縁層がガラス系セラミックである場合、使用するガラス系セラミックには、線膨張係数が使用する磁性体の線膨張係数と大きく異ならない組成を選択するとよい。具体的には磁性体として用いる磁性フェライトの線膨張係数との差が±5ppm/℃以内の組成である。 When the insulating layer is a glass-based ceramic, it is preferable to select a composition that does not greatly differ from the linear expansion coefficient of the magnetic material used for the glass-based ceramic to be used. Specifically, the composition is such that the difference from the linear expansion coefficient of the magnetic ferrite used as the magnetic material is within ± 5 ppm / ° C.
 本発明に係る電子部品は、フェライトコア上のコイルの外側に絶縁層を介して導電層を備えていてもよい。導電層を設けることによってアンテナに金属物が近づいてもアンテナの共振周波数の変化が小さくなり、安定に動作する品質の均質なアンテナが得られる。 The electronic component according to the present invention may include a conductive layer via an insulating layer outside the coil on the ferrite core. By providing the conductive layer, even when a metal object approaches the antenna, the change in the resonance frequency of the antenna is reduced, and a homogeneous antenna with stable operation quality can be obtained.
 本発明に係る電子部品は、導電層として、金属層を設けることができ、抵抗の低いAgまたはAg系合金による金属の薄層であることが好ましい。 The electronic component according to the present invention can be provided with a metal layer as the conductive layer, and is preferably a thin metal layer made of Ag or an Ag-based alloy having low resistance.
 本発明に係る電子部品は、前記の絶縁層や導電層が、フェライトコアとなるフェライト基材と導体となる導電材料と共に一体焼成されてフェライトコアに密着した焼結体であることが好ましい。 The electronic component according to the present invention is preferably a sintered body in which the insulating layer and the conductive layer are integrally fired together with a ferrite base material serving as a ferrite core and a conductive material serving as a conductor and are in close contact with the ferrite core.
 本発明によって得られるような、小型で高感度のアンテナは、ウェアラブル機器への適用が望まれており、その場合、アンテナのサイズは1cm角以下且つ高さ1cm以下である事が望ましい。 A small and highly sensitive antenna obtained by the present invention is desired to be applied to a wearable device. In that case, the size of the antenna is preferably 1 cm square or less and 1 cm or less in height.
 本発明におけるRFタグは、前記アンテナにICチップを接続したものである。本発明におけるRFタグは、樹脂によって被覆されていても特性を損なうことなく、アンテナ及び接続されたICチップが保護されて、安定に動作する品質のRFタグが得られる。 The RF tag in the present invention is one in which an IC chip is connected to the antenna. Even if the RF tag in the present invention is coated with resin, the antenna and the connected IC chip are protected without impairing the characteristics, and an RF tag with a quality that operates stably can be obtained.
 本発明に係る電子部品の製造方法について述べる。 The method for manufacturing an electronic component according to the present invention will be described.
 本発明に係る電子部品は、フェライトコアを巻回するようにコイルを設けることができる種々の方法によって製造することができる。ここでは、シート状のフェライト基材と導電材料とを所望の構成となるように積層した後に一体焼成して作る、LTCC(Low Temperature Co-fired Ceramics、低温共焼成セラミックス)技術によるアンテナの製造方法について説明する。 The electronic component according to the present invention can be manufactured by various methods in which a coil can be provided so as to wind a ferrite core. Here, a manufacturing method of an antenna using LTCC (Low Temperature Co-fired Ceramics) technology, which is formed by laminating a sheet-like ferrite base material and a conductive material so as to have a desired configuration and then firing them integrally. Will be described.
 図1及び図2に示すようなアンテナの積層構成を例に説明する。 An explanation will be given by taking as an example a laminated structure of antennas as shown in FIGS.
 まず、磁性粉末及びバインダーを混合した混合物をシート状にしたフェライト基材を形成する。 First, a ferrite base material is formed in a sheet shape from a mixture of magnetic powder and binder.
 磁性粉末としては、構成金属元素としてFe,Ni,Zn,Cu及びCoを含有し、構成金属元素それぞれを、Fe,NiO,ZnO,CuO及びCoOに換算したときに、Fe,NiO,ZnO,CuO及びCoOの合計を基準として、Feを46~50mol%、NiOを20~27mol%、ZnOを15~22mol%、CuOを9~11mol%、及びCoOを0.01~1.0mol%含有するフェライト仮焼粉を用いることができる。 The magnetic powder contains Fe, Ni, Zn, Cu and Co as constituent metal elements. When each constituent metal element is converted to Fe 2 O 3 , NiO, ZnO, CuO and CoO, Fe 2 O 3 , NiO, ZnO, CuO, and CoO as a reference, Fe 2 O 3 is 46-50 mol%, NiO is 20-27 mol%, ZnO is 15-22 mol%, CuO is 9-11 mol%, and CoO is 0.1%. A ferrite calcined powder containing 01 to 1.0 mol% can be used.
 次に、フェライト基材からなる磁性層(5)を全体の厚みが所望の厚さとなるように積層する。図1に示すように、磁性層(5)の積層体に所望の数のスルーホール(1)を開ける。前記スルーホール(1)のそれぞれに導電材料を流し込む。また、磁性層(5)の積層体のスルーホール(1)と直角になる両面に、スルーホール(1)と接続してコイル状(巻き線状)となるように電極層(2)を形成する。スルーホール(1)に流し込んだ導電材料と電極層(2)によって、磁性層(5)の積層体が直方体のコアとなるようにコイル(4)を形成する。このとき、コイル(4)を形成する磁性層の両端が磁性回路上開放となる構成となる。 Next, a magnetic layer (5) made of a ferrite base material is laminated so that the entire thickness becomes a desired thickness. As shown in FIG. 1, a desired number of through holes (1) are opened in the laminate of magnetic layers (5). A conductive material is poured into each of the through holes (1). The electrode layer (2) is formed on both surfaces of the magnetic layer (5) laminated at right angles to the through hole (1) so as to be connected to the through hole (1) to form a coil shape (winding shape). To do. The coil (4) is formed by the conductive material and the electrode layer (2) poured into the through hole (1) so that the laminated body of the magnetic layers (5) becomes a rectangular parallelepiped core. At this time, both ends of the magnetic layer forming the coil (4) are open on the magnetic circuit.
 スルーホール(1)に流し込む、又は電極層(2)を形成する導電材料としては、金属系導電性ペーストを使用することができ、AgペーストやAg系合金ペーストが適している。 As a conductive material that flows into the through hole (1) or forms the electrode layer (2), a metal-based conductive paste can be used, and an Ag paste or an Ag-based alloy paste is suitable.
 得られたシート状の積層体を、所望の形状となるように、スルーホール(1)を含む面とコイル開放端面(4-2)で切断して一体焼成する、又は一体焼成後にスルーホール(1)を含む面とコイル開放端面(4-2)で切断することによってフェライトコア(3)とコイル(4)とを有する焼結体からなる本発明のアンテナを製造することができる。 The obtained sheet-like laminate is cut at the surface including the through-hole (1) and the coil open end surface (4-2) so as to have a desired shape and fired integrally, or after the integral firing, the through-hole ( The antenna of the present invention comprising a sintered body having a ferrite core (3) and a coil (4) can be manufactured by cutting at a plane including 1) and a coil open end face (4-2).
 前記積層体の焼成温度は800℃~1000℃であり、好ましくは850℃~920℃である。前述の範囲より温度が低い場合は、μ’やQなどにおいて望ましい特性が得られにくくなり、また高い温度の場合は、一体焼成が困難になる。 The firing temperature of the laminate is 800 ° C. to 1000 ° C., preferably 850 ° C. to 920 ° C. When the temperature is lower than the above range, it is difficult to obtain desirable characteristics in μ ′ and Q, and when the temperature is higher, integral firing becomes difficult.
 また、本発明においては電極層(2)を形成した磁性層(5)の上下面に絶縁層(6)を形成することができる。絶縁層(6)を形成したアンテナの概略図を図2に示す。 In the present invention, the insulating layer (6) can be formed on the upper and lower surfaces of the magnetic layer (5) on which the electrode layer (2) is formed. FIG. 2 shows a schematic diagram of the antenna on which the insulating layer (6) is formed.
 また、本発明におけるアンテナは、絶縁層(6)の表面に導電材料でコイルリード端子とICチップ接続端子を形成し、ICを実装してもよい。 In the antenna of the present invention, an IC may be mounted by forming a coil lead terminal and an IC chip connection terminal with a conductive material on the surface of the insulating layer (6).
 前記ICチップ接続端子を形成したアンテナは、電極層(2)を形成した磁性層(5)の少なくとも一方の面に形成された絶縁層(6)にスルーホールを設け、このスルーホールに導電材料を流し込み、コイル(4)の両端と接続し、該絶縁層(6)の表面に導電材料でコイルリード端子とICチップ接続端子を並列若しくは直列に接続できるよう形成して一体焼成して得ることができる。 The antenna having the IC chip connection terminal is provided with a through hole in the insulating layer (6) formed on at least one surface of the magnetic layer (5) on which the electrode layer (2) is formed, and a conductive material is provided in the through hole. Is connected to both ends of the coil (4), formed on the surface of the insulating layer (6) so that the coil lead terminal and the IC chip connection terminal can be connected in parallel or in series with a conductive material, and are integrally fired. Can do.
 また、本発明に係るアンテナは、図3に示すように絶縁層(6)の外側に導電層(7)を設けてもよい。アンテナがコイル(4)を形成する磁性層(5)に絶縁層(6)を介して導電層(7)を備えることによって、金属面に貼り付けても共振周波数の変化が少なく、コイルが直接金属面に触れないことによって、安定に動作する品質の均質なアンテナが得られる。 In the antenna according to the present invention, a conductive layer (7) may be provided outside the insulating layer (6) as shown in FIG. When the antenna is provided with the conductive layer (7) through the insulating layer (6) on the magnetic layer (5) forming the coil (4), the resonance frequency does not change much even when the antenna is attached to the metal surface. By not touching the metal surface, a homogeneous antenna that operates stably can be obtained.
 また、本発明に係るアンテナは、図3に示すように導電層(7)の外側面にさらに絶縁層(6)を設けてもよい。さらに、当該絶縁層(6)の外側面に、磁性層(5)又は磁性層(5)とその外側面に絶縁層(6)を設けてもよい。これによって、アンテナに金属物が近づいてもアンテナの特性変化がより小さくなり、共振周波数の変化をより小さくすることができる。 In the antenna according to the present invention, an insulating layer (6) may be further provided on the outer surface of the conductive layer (7) as shown in FIG. Further, the magnetic layer (5) or the magnetic layer (5) may be provided on the outer surface of the insulating layer (6), and the insulating layer (6) may be provided on the outer surface thereof. As a result, even when a metal object approaches the antenna, the change in the antenna characteristic is further reduced, and the change in the resonance frequency can be further reduced.
 導電層(7)はどのような手段で形成されても良いが、例えば、ペースト状の導電材料によって絶縁層(6)上に印刷、刷毛塗り等の通常の方法で形成することが好ましい。あるいは、金属板を絶縁層(6)の外側に貼り付けて同様の効果を付与することも出来る。 The conductive layer (7) may be formed by any means. For example, it is preferable to form the conductive layer (7) on the insulating layer (6) by a usual method such as printing or brushing using a paste-like conductive material. Alternatively, a similar effect can be imparted by attaching a metal plate to the outside of the insulating layer (6).
 導電層(7)を形成するペースト状の導電材料としては、金属系導電性ペーストを使用することができ、AgペーストやAg系合金ペーストが適している。 As the paste-like conductive material for forming the conductive layer (7), a metal-based conductive paste can be used, and an Ag paste or an Ag-based alloy paste is suitable.
 導電層(7)を絶縁層の外側に形成する場合、導電層(7)の膜厚は焼成後の膜厚で0.001~0.1mmが製造上好ましい。 When the conductive layer (7) is formed outside the insulating layer, the film thickness of the conductive layer (7) is preferably 0.001 to 0.1 mm in terms of the film thickness after firing.
 また、本発明におけるアンテナは、コイル(4)の上下面を挟み込んだ絶縁層(6)の一方あるいは両方の外側面にコンデンサー電極を配置してもよい。 In the antenna of the present invention, capacitor electrodes may be arranged on one or both outer surfaces of the insulating layer (6) sandwiching the upper and lower surfaces of the coil (4).
 なお、アンテナは、絶縁層(6)の上面に形成するコンデンサーを、平行電極若しくはくし型電極を印刷してコンデンサーとしてもよく、更に、該コンデンサーとコイルリード端子とを並列もしくは直列に接続してもよい。 In the antenna, the capacitor formed on the upper surface of the insulating layer (6) may be a capacitor by printing parallel electrodes or comb electrodes, and the capacitor and the coil lead terminal are connected in parallel or in series. Also good.
 また、本発明に係るアンテナは、絶縁層(6)上面に可変コンデンサーを設ける端子を形成し、コイルリード端子とコイルリード端子とを並列若しくは直列に接続してもよい。 In the antenna according to the present invention, a terminal provided with a variable capacitor may be formed on the upper surface of the insulating layer (6), and the coil lead terminal and the coil lead terminal may be connected in parallel or in series.
 また、絶縁層(6)上面にコンデンサー電極を配置した外側面にさらに絶縁層(6)を設け、該絶縁層(6)の外側面にICチップ接続端子を兼ねる電極層を形成して該絶縁層(6)を挟みこむようにコンデンサーを形成し、ICチップ接続端子と並列もしくは直列に接続してもよい。 Further, an insulating layer (6) is further provided on the outer surface of the insulating layer (6) on which the capacitor electrode is disposed, and an electrode layer also serving as an IC chip connection terminal is formed on the outer surface of the insulating layer (6). A capacitor may be formed so as to sandwich the layer (6) and connected to the IC chip connection terminal in parallel or in series.
 本発明に係るアンテナは、コイル(4)の下面の絶縁層(6)にスルーホール(1)を設け、そのスルーホールに導電材料を流し込み、コイル(4)の両端と接続し、その下表面に導電材料で基板接続端子を形成して一体焼成してもよい。その場合、セラミック、樹脂等の基板に容易に接合することができる。 In the antenna according to the present invention, a through hole (1) is provided in the insulating layer (6) on the lower surface of the coil (4), a conductive material is poured into the through hole, and connected to both ends of the coil (4). Alternatively, the substrate connection terminals may be formed of a conductive material and integrally fired. In that case, it can be easily bonded to a substrate of ceramic, resin or the like.
 ICチップは、絶縁層上にICチップ接続端子を形成して接続しても良いし、アンテナの下面の基板接続端子に接続するように基板内に配線を形成して、基板内配線を介して接続しても良い。ICチップを接続することで、本発明におけるアンテナをRFタグとして利用することができる。 The IC chip may be connected by forming an IC chip connection terminal on the insulating layer, or by forming a wiring in the substrate so as to connect to the substrate connection terminal on the lower surface of the antenna, and via the in-substrate wiring You may connect. By connecting an IC chip, the antenna of the present invention can be used as an RF tag.
 また、本発明におけるRFタグは、ポリスチレン、アクリルニトリルスチレン、アクリルニトリルブタジェンスチレン、アクリル、ポリエチレン、ポリプロピレン、ポリアミド、ポリアセタール、ポリカーボネート、塩化ビニル、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド等の樹脂によって被覆されていても良い。 The RF tag in the present invention is made of a resin such as polystyrene, acrylonitrile styrene, acrylonitrile butadiene styrene, acrylic, polyethylene, polypropylene, polyamide, polyacetal, polycarbonate, vinyl chloride, modified polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, and the like. It may be covered.
<作用>
 本発明に係るアンテナは、フェライトコアがFe,Ni,Zn,Cu及びCoを、それぞれ、Fe,NiO,ZnO,CuO及びCoOに換算したときに、Fe,NiO,ZnO,CuO及びCoOの合計を基準として、Feを46~50mol%、NiOを30~40mol%、ZnOを1.0~10mol%、CuOを9.0~11mol%、及びCoOを0.01~1.0mol%含有する磁性体であって、13.56MHz及び60MHzにおけるQ及びμQ積が高いものである。
<Action>
In the antenna according to the present invention, when the ferrite core converts Fe, Ni, Zn, Cu, and Co into Fe 2 O 3 , NiO, ZnO, CuO, and CoO, respectively, Fe 2 O 3 , NiO, ZnO, Based on the total of CuO and CoO, Fe 2 O 3 is 46 to 50 mol%, NiO is 30 to 40 mol%, ZnO is 1.0 to 10 mol%, CuO is 9.0 to 11 mol%, and CoO is 0.01 A magnetic material containing ˜1.0 mol%, which has a high Q and μQ product at 13.56 MHz and 60 MHz.
 本発明に係るフェライト粉末を用いて作製したアンテナは、フェライト粉末が上記特性を有するので、アンテナの交信感度を向上させることができる。 The antenna manufactured using the ferrite powder according to the present invention can improve the communication sensitivity of the antenna because the ferrite powder has the above characteristics.
 以下に、本発明における実施例を示し、本発明を具体的に説明する。 Hereinafter, examples of the present invention will be shown to specifically describe the present invention.
[フェライト組成の測定]
 上述のフェライトコア用のフェライト仮焼粉の組成は、多元素同時蛍光X線分析装置 Simultix 14((株)リガク)を用いて測定した。
[Measurement of ferrite composition]
The composition of the above-mentioned ferrite calcined powder for the ferrite core was measured using a multi-element simultaneous fluorescent X-ray analyzer Simultix 14 (Rigaku Corporation).
[結晶相の同定・定量]
 フェライトを構成する結晶相は、D8 ADVANCEを用いて評価した。
[Identification and quantification of crystal phase]
The crystal phase constituting the ferrite was evaluated using D8 ADVANCE.
[結晶子サイズ、格子定数]
 フェライトの結晶子サイズ及び格子定数は、前記X線回折と同様にして、D8 ADVANCEを用いて、TOPASソフトウェアVer.4にて評価した。
[Crystallite size, lattice constant]
The crystallite size and the lattice constant of the ferrite were measured using the TOPAS software Ver. 4 using D8 ADVANCE in the same manner as in the X-ray diffraction. It was evaluated at 4.
[フェライトコアの磁気特性の測定]
 上述のフェライトコア用のフェライト仮焼粉15g及び6.5%希釈したPVA水溶液1.5mLを混合した粉末を、外径20mmφ、内径10mmφの金型に投入し、プレス機にて、1ton/cmで圧縮し、アンテナを製造する場合と同様の条件である900℃で2時間焼成する事で、初透磁率、Q、μQ積を測定するためのフェライトのリングコアを得た。
[Measurement of magnetic properties of ferrite core]
A powder obtained by mixing 15 g of the above-mentioned ferrite calcined powder for ferrite core and 1.5 mL of 6.5% diluted PVA aqueous solution was put into a mold having an outer diameter of 20 mmφ and an inner diameter of 10 mmφ, and 1 ton / cm by a press machine. By compressing at 2 and firing at 900 ° C. for 2 hours, which is the same condition as in manufacturing the antenna, a ferrite ring core for measuring initial permeability, Q, and μQ products was obtained.
 リングコアの透磁率、Q、μQ積は、インピーダンス/マテリアルアナライザーE4991A(アジレント・テクノロジー(株)製)を用いて13.56MHzの周波数において測定した。 The magnetic permeability, Q, and μQ product of the ring core were measured at a frequency of 13.56 MHz using an impedance / material analyzer E4991A (manufactured by Agilent Technologies).
実施例1:
 Ni-Zn-Cu-Coフェライトの組成が、所定の組成になるように各酸化物原料を秤量し、湿式混合を行った後、混合スラリーを濾別・乾燥して原料混合粉末を得た。該原料混合粉末を830℃で2時間焼成して得られた仮焼成物を振動ミルで粉砕し、本発明に係るNi-Zn-Cu-Coフェライト粉末を得た。
Example 1:
Each oxide raw material was weighed so that the composition of Ni—Zn—Cu—Co ferrite was a predetermined composition, wet mixed, and then the mixed slurry was filtered and dried to obtain a raw material mixed powder. The calcined product obtained by firing the raw material mixed powder at 830 ° C. for 2 hours was pulverized with a vibration mill to obtain the Ni—Zn—Cu—Co ferrite powder according to the present invention.
 得られたNi-Zn-Cu-Coフェライト粉末100重量部に対して、PVA(ポリビニルアルコール)10重量部を添加混合した後、該粉末3.5gを秤量し、金型を用いて外径20mm、内径12mm、高さ5mmに加圧成型(プレス圧1.0×10t/m)した。この成型体を焼結温度900℃において、2時間焼結して得られるフェライト焼結体の磁気特性を表1に記載した。 After adding and mixing 10 parts by weight of PVA (polyvinyl alcohol) to 100 parts by weight of the obtained Ni—Zn—Cu—Co ferrite powder, 3.5 g of the powder was weighed and the outer diameter was 20 mm using a mold. And press molding (pressing pressure 1.0 × 10 4 t / m 2 ) to an inner diameter of 12 mm and a height of 5 mm. Table 1 shows the magnetic properties of the ferrite sintered body obtained by sintering this molded body at a sintering temperature of 900 ° C. for 2 hours.
 得られたNi-Zn-Cu-CoフェライトのXRDによる評価では、スピネルフェライトを主相としNiOの存在も確認できた。その割合はスピネルフェライトが96.04%、NiOが3.96%であった。スピネルフェライトについての結晶子サイズは243nm、格子定数は8.36910Åであった。 In the evaluation of the obtained Ni—Zn—Cu—Co ferrite by XRD, the presence of NiO was confirmed with spinel ferrite as the main phase. The proportions were 96.04% for spinel ferrite and 3.96% for NiO. The crystallite size for spinel ferrite was 243 nm and the lattice constant was 8.36910 mm.
 実施例2~4、比較例1~6
 組成範囲を種々変更した以外は実施例1と同様にしてNi-Zn-Cu-Coフェライト粉末を得た。得られたNi-Zn-Cu-Coフェライト粉末の諸特性を表1、2に示す。
Examples 2 to 4 and Comparative Examples 1 to 6
A Ni—Zn—Cu—Co ferrite powder was obtained in the same manner as in Example 1 except that the composition range was variously changed. Various characteristics of the obtained Ni—Zn—Cu—Co ferrite powder are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例5 アンテナの製造]
 実施例3のNi-Zn-Cuフェライト仮焼粉100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に150mm角で、焼結時の厚みが0.1mmになるようにシート成型して、磁性層(5)用グリーンシートとした。このグリーンシートを用い、焼成温度900℃で焼結して得られるフェライトコアの磁気特性については表1に記載した。
[Example 5: Production of antenna]
A slurry was prepared by mixing 100 parts by weight of the Ni—Zn—Cu ferrite calcined powder of Example 3, 8 parts by weight of butyral resin, 5 parts by weight of a plasticizer, and 80 parts by weight of a solvent with a ball mill. The resulting slurry was formed into a sheet of 150 mm square on a PET film with a doctor blade so that the thickness upon sintering was 0.1 mm to obtain a green sheet for the magnetic layer (5). The magnetic properties of the ferrite core obtained by sintering at a firing temperature of 900 ° C. using this green sheet are shown in Table 1.
 また、Zn-Cuフェライト仮焼粉(Fe 46.5mol%、ZnO 42.0mol%、CuO 11.5mol%)100重量部、ブチラール樹脂8重量部、可塑剤5重量部、溶剤80重量部をボールミルで混合しスラリーを製造した。出来たスラリーをドクターブレードでPETフィルム上に磁性層(5)用グリーンシートと同様のサイズと厚みでシート成型して、絶縁層(6)用グリーンシートとした。 Also, Zn-Cu ferrite calcined powder (Fe 2 O 3 46.5 mol%, ZnO 42.0 mol%, CuO 11.5 mol%) 100 parts by weight, butyral resin 8 parts by weight, plasticizer 5 parts by weight, solvent 80 parts by weight The parts were mixed with a ball mill to produce a slurry. The resulting slurry was sheet-molded on a PET film with a doctor blade with the same size and thickness as the magnetic layer (5) green sheet to obtain an insulating layer (6) green sheet.
 次に、磁性層(5)用グリーンシート10枚の所定の位置にスルーホール(1)を開けその中にAgペーストを充填し、電極層(2)を設ける面にはAgペーストを用いて電極のパターンを印刷した。これら10枚のグリーンシートを積層し、導電材料が積層されたグリーンシートの外側にコイル状に形成された積層体を形成した。積層体の電極層となる導電材料が印刷された面の上に絶縁層(6)用グリーンシートを積層した。 Next, through holes (1) are opened at predetermined positions of 10 green sheets for the magnetic layer (5), and Ag paste is filled therein, and the electrode layer (2) is provided with an Ag paste on the surface. The pattern was printed. These 10 green sheets were laminated, and a laminated body formed in a coil shape was formed outside the green sheet on which the conductive material was laminated. The green sheet for insulating layers (6) was laminated | stacked on the surface in which the electrically-conductive material used as the electrode layer of a laminated body was printed.
 積層したグリーンシートをまとめて加圧接着させ、スルーホール(1)を分割する面とコイル開放端面(4-2)とで切断し、900℃で2時間一体焼成して、横10mm×縦3mmのサイズのコイル巻き数23ターンの、フェライトコアとコイルとを有する焼結体からなるアンテナを作成した(図2ではコイル巻き数は図の簡略化のため、7ターンで表示している。また、磁性層(5)の積層枚数は図の簡略化のため3層で表している。以下の他の図についても同様である。)。 The laminated green sheets are pressure-bonded together, cut at the surface where the through-hole (1) is divided and the coil open end surface (4-2), and fired integrally at 900 ° C. for 2 hours, 10 mm wide × 3 mm long An antenna made of a sintered body having a ferrite core and a coil having a coil turn number of 23 turns was prepared (in FIG. 2, the coil turn number is shown as 7 turns for the sake of simplicity of the drawing. The number of laminated magnetic layers (5) is represented by three layers for simplification of the drawing, and the same applies to the other drawings below).
[交信距離の測定]
 該アンテナのコイル両端にRFタグ用ICを接続してさらにICと並列にコンデンサーを接続して、交信距離が最大となるように共振周波数を調整してRFタグを作製し、出力100mWのリーダ/ライタ(株式会社タカヤ製、製品名TR3-A201/TR3-D002A)のアンテナを水平に固定し、RFタグのアンテナのコイルの中心軸がリーダ/ライタのアンテナの中心上に垂直に向くように位置させて、交信が可能な限り高い位置の時のリーダ/ライタのアンテナとRFタグの間の距離を最長交信距離とした。
[Measurement of communication distance]
An RF tag IC is connected to both ends of the coil of the antenna, a capacitor is further connected in parallel with the IC, and an RF tag is manufactured by adjusting the resonance frequency so as to maximize the communication distance. The writer (manufactured by Takaya Co., Ltd., product name TR3-A201 / TR3-D002A) is fixed horizontally, and the center axis of the coil of the RF tag antenna is positioned vertically above the center of the reader / writer antenna. Thus, the distance between the reader / writer antenna and the RF tag when the communication is as high as possible is defined as the longest communication distance.
 比較例2で製造したアンテナの最長交信距離を基準に、他の例のアンテナの最長交信距離の相対値を百分率で計算した。 Based on the longest communication distance of the antenna manufactured in Comparative Example 2, the relative value of the longest communication distance of the antennas of other examples was calculated as a percentage.
 実施例1のNi-Zn-Cu-Coフェライト粉末を用いたアンテナでは103%、実施例2では104%、実施例3では109%、実施例4では113%であった。 The antenna using the Ni—Zn—Cu—Co ferrite powder of Example 1 was 103%, 104% in Example 2, 109% in Example 3, and 113% in Example 4.
 本発明の実施例及び比較例において、同じ大きさと構造を持つアンテナのフェライトコアの組成を種々変更した結果、本発明において規定する組成のとき、交信感度の向上が見られた。 In the examples and comparative examples of the present invention, as a result of various changes in the composition of the ferrite core of the antenna having the same size and structure, the communication sensitivity was improved when the composition was defined in the present invention.
 本発明におけるアンテナはフェライトコアに使用するフェライトコアのQ(μ’/μ”)が高く、小型化と交信感度の向上を両立させたアンテナであることが確認された。 The antenna according to the present invention has a high Q (μ ′ / μ ″) of the ferrite core used for the ferrite core, and it has been confirmed that the antenna achieves both miniaturization and improved communication sensitivity.
1 スルーホール
2 電極層(コイル電極)
3 コア(磁性体)
4 コイル
5 磁性層
6 絶縁層
7 導電層
1 Through hole 2 Electrode layer (coil electrode)
3 Core (magnetic material)
4 Coil 5 Magnetic layer 6 Insulating layer 7 Conductive layer

Claims (8)

  1.  Feを46~50mol%、NiOを30~40mol%、ZnOを1.0~10mol%、CuOを9.0~11mol%、及びCoOを0.01~1.0mol%含有し、含有するNiとZnとのモル比(Ni/Zn)が3.8~5.8であることを特徴とするNi-Zn-Cu系フェライト粉末。 Fe 2 O 3 46 to 50 mol%, NiO 30 to 40 mol%, ZnO 1.0 to 10 mol%, CuO 9.0 to 11 mol%, and CoO 0.01 to 1.0 mol% A Ni—Zn—Cu ferrite powder characterized in that the molar ratio of Ni to Zn (Ni / Zn) is 3.8 to 5.8.
  2.  構成相がスピネル型フェライトとNiOである請求項1に記載のNi-Zn-Cu系フェライト粉末。 The Ni-Zn-Cu ferrite powder according to claim 1, wherein the constituent phases are spinel type ferrite and NiO.
  3.  スピネル型フェライトの結晶子サイズが240nm以上である請求項2に記載のNi-Zn-Cu系フェライト粉末。 The Ni-Zn-Cu ferrite powder according to claim 2, wherein the crystallite size of the spinel ferrite is 240 nm or more.
  4.  60MHzでのμQ積が3500以上である請求項1~3のいずれかに記載のNi-Zn-Cu系フェライト粉末。 The Ni-Zn-Cu ferrite powder according to any one of claims 1 to 3, wherein the μQ product at 60 MHz is 3500 or more.
  5.  請求項1又は2記載のNi-Zn-Cu系フェライト粉末と結合材料とを用いてシート状に成膜してなるグリーンシート。 A green sheet formed into a sheet using the Ni—Zn—Cu ferrite powder according to claim 1 or 2 and a binding material.
  6.  Feを46~50mol%、NiOを30~40mol%、ZnOを1.0~10mol%、CuOを9.0~11mol%、及びCoOを0.01~1.0mol%含有し、含有するNiとZnとのモル比(Ni/Zn)が3.8~5.8であるNi-Zn-Cu系フェライト焼結体。 Fe 2 O 3 46 to 50 mol%, NiO 30 to 40 mol%, ZnO 1.0 to 10 mol%, CuO 9.0 to 11 mol%, and CoO 0.01 to 1.0 mol% Ni—Zn—Cu ferrite sintered body having a molar ratio of Ni to Zn (Ni / Zn) of 3.8 to 5.8.
  7.  フェライトコアとコイルとで構成される電子部品であって、該フェライトコアが請求項6記載の焼結体である電子部品。 An electronic component comprising a ferrite core and a coil, wherein the ferrite core is a sintered body according to claim 6.
  8.  請求項7記載の電子部品からなるアンテナ。 An antenna comprising the electronic component according to claim 7.
PCT/JP2019/000916 2018-01-31 2019-01-15 Ni-zn-cu ferrite powder, electronic component, antenna, and rf tag WO2019150936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019568974A JP7224574B2 (en) 2018-01-31 2019-01-15 Ni-Zn-Cu ferrite powder, electronic parts, antennas and RF tags

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-015929 2018-01-31
JP2018015929 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019150936A1 true WO2019150936A1 (en) 2019-08-08

Family

ID=67479635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000916 WO2019150936A1 (en) 2018-01-31 2019-01-15 Ni-zn-cu ferrite powder, electronic component, antenna, and rf tag

Country Status (3)

Country Link
JP (1) JP7224574B2 (en)
TW (1) TW201940430A (en)
WO (1) WO2019150936A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134312A (en) * 2000-10-26 2002-05-10 Tdk Corp Magnetic material and coil part using the same
JP2008117944A (en) * 2006-11-06 2008-05-22 Sony Corp Magnetic core member for antenna module, antenna module, and portable information terminal equipped with the same
JP2013133263A (en) * 2011-12-27 2013-07-08 Panasonic Corp Ferrite magnetic material and production method thereof, ferrite fired body using the same and antenna module
JP2015074570A (en) * 2013-10-07 2015-04-20 Tdk株式会社 Ferrite composition and electronic component
JP2015078088A (en) * 2013-10-16 2015-04-23 Tdk株式会社 Ferrite composition and electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134312A (en) * 2000-10-26 2002-05-10 Tdk Corp Magnetic material and coil part using the same
JP2008117944A (en) * 2006-11-06 2008-05-22 Sony Corp Magnetic core member for antenna module, antenna module, and portable information terminal equipped with the same
JP2013133263A (en) * 2011-12-27 2013-07-08 Panasonic Corp Ferrite magnetic material and production method thereof, ferrite fired body using the same and antenna module
JP2015074570A (en) * 2013-10-07 2015-04-20 Tdk株式会社 Ferrite composition and electronic component
JP2015078088A (en) * 2013-10-16 2015-04-23 Tdk株式会社 Ferrite composition and electronic component

Also Published As

Publication number Publication date
JPWO2019150936A1 (en) 2021-02-25
JP7224574B2 (en) 2023-02-20
TW201940430A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP4793584B2 (en) A substrate with a magnetic antenna
JP4821965B2 (en) Magnetic antenna
JP5354188B2 (en) Magnetic antenna, substrate on which magnetic antenna is mounted, and RF tag
JP5212623B2 (en) Ni-Zn-Cu ferrite powder, green sheet containing the Ni-Zn-Cu ferrite powder, and Ni-Zn-Cu ferrite sintered body.
JP5582279B2 (en) Inductance element comprising Ni-Zn-Cu ferrite sintered body
JP5634717B2 (en) Magnetic antenna, RF tag, and substrate mounted with the RF tag
JP4703459B2 (en) Coil built-in board
JP2010018482A (en) Ferrite, and manufacturing method thereof
JP6127959B2 (en) Ferrite composition, ferrite plate, antenna element member, and antenna element
TWI776846B (en) Electronic components, antennas and RF tags
JP4736311B2 (en) Magnetic ferrite and magnetic element using the same
JP2023158013A (en) Ni-Zn-Cu-BASED FERRITE POWDER, SINTERED COMPACT, FERRITE SHEET
JP2005032918A (en) Magnetic element
JP7224574B2 (en) Ni-Zn-Cu ferrite powder, electronic parts, antennas and RF tags
US11996226B2 (en) Multilayer coil component
JPH0963826A (en) Magnetic ceramics and layered electronic component
JP6365255B2 (en) Ferrite composition, ferrite plate, antenna element member, and antenna element
JP2008127222A (en) Oxide magnetic material and antenna element and impedance element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19747699

Country of ref document: EP

Kind code of ref document: A1