WO2019150562A1 - Method for producing touch panel sensor and touch panel sensor substrate set - Google Patents

Method for producing touch panel sensor and touch panel sensor substrate set Download PDF

Info

Publication number
WO2019150562A1
WO2019150562A1 PCT/JP2018/003686 JP2018003686W WO2019150562A1 WO 2019150562 A1 WO2019150562 A1 WO 2019150562A1 JP 2018003686 W JP2018003686 W JP 2018003686W WO 2019150562 A1 WO2019150562 A1 WO 2019150562A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
wiring
substrate
base material
touch panel
Prior art date
Application number
PCT/JP2018/003686
Other languages
French (fr)
Japanese (ja)
Inventor
直人 新妻
大屋 秀信
正好 山内
小俣 猛憲
星野 秀樹
牛久 正幸
亮 青山
一歩 浦山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to PCT/JP2018/003686 priority Critical patent/WO2019150562A1/en
Priority to JP2019568529A priority patent/JPWO2019150562A1/en
Publication of WO2019150562A1 publication Critical patent/WO2019150562A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a method for manufacturing a touch panel sensor and a touch panel sensor base material set, and more specifically, particularly in the case of manufacturing a large area touch panel sensor, the handling property when connecting external connection parts can be improved, and the yield is also increased. It is related with the manufacturing method of the touch panel sensor which can improve, and a touch panel sensor base material set.
  • the touch panel sensor is mounted on, for example, a portable terminal and is used to detect a position touched by a user.
  • Patent Documents 1 and 2 propose a technique for increasing the area of an image to be displayed with respect to an image display device.
  • the touch panel sensor is often mounted on a relatively small device such as a portable terminal, a technique for increasing the area has not been sufficiently established.
  • a base material provided with a sensor channel and a lead wire connected to the sensor channel is prepared, and then FFC (Flexible Flat Cable; flexible) is provided for the lead wire of the base material.
  • FFC Flexible Flat Cable; flexible
  • External connection parts such as flat cable and FPC (Flexible Printed Circuit) were connected.
  • Such a conventional technique improves the handling performance (eg, the accuracy of alignment using a jig) and the yield when connecting externally connected components, particularly when manufacturing a large area touch panel sensor. In view of this, room for further improvement was found.
  • an object of the present invention is to provide a touch panel sensor manufacturing method and a touch panel sensor base material set capable of improving the handling property when connecting external connection parts and improving the yield even when manufacturing a touch panel sensor having a large area. Is to provide.
  • a method for manufacturing a touch panel sensor for connecting a base material 2.
  • the sensor substrate further comprises a conductor extending from an end of the sensor channel to a connection site to which the wiring substrate is connected; The conductor has a different structure from the sensor channel; 2.
  • Two units are prepared by connecting the sensor substrate having the sensor pattern part on one side and the wiring substrate to which the external connection component is connected, 6.
  • the sensor substrates of the two units are stacked, they are stacked so that the surfaces not provided with the sensor channels face each other, or the sensor channels of one of the sensor substrates are provided.
  • a base material set for configuring a touch panel sensor At least one sensor substrate having a sensor pattern portion comprising a plurality of sensor channels; Consisting of at least one wiring substrate having a lead wiring pattern portion composed of a plurality of wirings, A touch panel sensor substrate set in which the wiring substrate is connected to an external connection component.
  • the sensor substrate further comprises a conductor extending from an end of the sensor channel to one end of the sensor substrate; 12.
  • a touch panel sensor manufacturing method and a touch panel sensor base material set capable of improving the handling property when connecting external connection parts and improving the yield even when manufacturing a touch panel sensor having a large area. Can be provided.
  • the figure explaining the sensor base material used in the manufacturing method of the touch panel sensor which concerns on 1st Embodiment, a wiring base material, and an external connection component The figure explaining the example of composition of a sensor channel Diagram explaining connection between wiring substrate and external connection parts Diagram explaining connection between sensor substrate and wiring substrate.
  • the figure explaining the manufacturing method of the touchscreen sensor which concerns on 3rd Embodiment.
  • the figure explaining the manufacturing method of the touchscreen sensor which concerns on 4th Embodiment.
  • the figure explaining an example of an electroconductive member The figure explaining the other example of an electroconductive member
  • the figure explaining the other example of an electroconductive member The figure explaining the other example of an electroconductive member
  • an external connection component is connected to at least one wiring substrate having a lead wiring pattern portion made of a plurality of wires, and then at least one having a sensor pattern portion made of a plurality of sensor channels.
  • the sensor base material and the wiring base material are connected so that the sensor channel of one sensor base material and the wiring of the wiring base material are electrically connected.
  • First Embodiment A method for manufacturing a touch panel sensor according to a first embodiment will be described with reference to FIGS.
  • a sensor base material 1, a wiring base material 2, and an external connection component 3 are prepared.
  • the sensor substrate 1 includes a substrate 11 and a plurality of sensor channels 12 provided on the substrate 11.
  • a sensor pattern portion S is constituted by the plurality of sensor channels 12.
  • the sensor pattern portion S forms an effective area for sensing in the touch panel sensor.
  • the base material 11 may be any material that can hold the plurality of sensor channels 12 on the surface in a state of being insulated from each other. Examples thereof include a resin base material (also referred to as a film), a glass base material, and a ceramic base material.
  • the material of the film is not particularly limited.
  • polyethylene terephthalate (PET) resin polyethylene naphthalate (PEN) resin, polybutylene terephthalate resin, cellulose resin (polyacetyl cellulose, cellulose diacetate, cellulose triacetate, etc.), polyethylene resin Polypropylene resin, methacrylic resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile- (poly) styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin , Poly (meth) acrylic resin, polycarbonate resin, polyester resin, polyimide resin, polyamide resin, polyamideimide resin, cycloolefin polymer (COP) resin And the like. If these materials are used, good insulation and transparency can be imparted to the film. In particular, by using a synthetic resin material, good flexibility can be imparted to the
  • the thickness of the substrate 11 is not particularly limited, and can be, for example, about 1 ⁇ m to 10 cm, and further about 20 ⁇ m to 300 ⁇ m.
  • the substrate 11 may be subjected to a surface treatment that changes the surface energy.
  • the base material 11 may be a laminate, and may have a hard coat layer, an antireflection layer, or the like.
  • the base material 11 is rectangular, but the shape of the base material 11 is not limited to this, and an arbitrary shape can be given.
  • the sensor channel 12 is an electrode for detecting a touch in the touch panel sensor.
  • the detection method of the touch panel sensor is not particularly limited, and examples thereof include a resistance film method, a capacitance method, and an optical sensor method.
  • a plurality of sensor channels 12 are arranged at an equal pitch.
  • the sensor channel 12 is formed in a strip shape having a predetermined width (also referred to as channel width) with a conductive material.
  • the length and width of the sensor channel 12 are not particularly limited, and can be set as appropriate according to the purpose and application.
  • the conductive material constituting the sensor channel 12 is not particularly limited, and examples thereof include metal fine particles, metal oxide fine particles, carbon fine particles, and conductive polymers.
  • the metal constituting the metal fine particle include Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga, In etc. are mentioned. Among these, Au, Ag, and Cu are preferable, and Ag is particularly preferable.
  • the average particle diameter of the metal fine particles can be, for example, 1 to 100 nm, further 3 to 50 nm.
  • the average particle diameter is a volume average particle diameter, and can be measured by “Zeta Sizer 1000HS” manufactured by Malvern.
  • Examples of the metal oxide fine particles include indium tin oxide (ITO) and tin oxide.
  • Examples of the carbon fine particles include graphite fine particles, carbon nanotubes, fullerenes and the like. Although it does not specifically limit as a conductive polymer, (pi) conjugated system conductive polymer can be mentioned preferably.
  • Examples of the ⁇ -conjugated conductive polymer include polythiophenes and polyanilines. The ⁇ -conjugated conductive polymer may be used together with a polyanion such as polystyrene sulfonic acid.
  • the sensor channel 12 may be made of a conductive material applied in a solid shape on the base material 11, but in this embodiment, the sensor channel 12 is formed on the base material 11 as shown in FIG. It is constituted by a plurality of conductive thin wires 13 arranged two-dimensionally.
  • the sensor channel 12 shown in FIG. 2A is configured by a mesh pattern composed of a plurality of conductive thin wires 13.
  • the pattern of the sensor channel 12 may be, for example, a stripe pattern, a random pattern, or the like.
  • the pattern of the sensor channel may be a pattern configured by combining a plurality of conductive thin wires forming a geometric figure.
  • FIG. 2 (b) shows an example of a sensor channel having a pattern formed by combining a plurality of conductive thin lines forming a geometric figure.
  • the sensor channel 12 is composed of a plurality of thin conductive wires 13 that form a quadrangle.
  • the pattern of the sensor channel 12 is configured by two-dimensionally arranging a plurality of conductive thin wires 13 forming a quadrangle in the direction of two diagonal lines of the quadrangle.
  • the line width of the conductive thin wire 13 constituting the sensor channel 12 is not particularly limited, but may be, for example, 50 ⁇ m or less, 20 ⁇ m or less, preferably 10 ⁇ m or less, 7 ⁇ m or less, and further 5 ⁇ m or less.
  • the line width of the conductive thin wire 13 10 ⁇ m or less it is possible to obtain an effect that the sensor channel 12 composed of the conductive thin wire 13 and a pattern (here, a mesh pattern) constituted by the conductive thin wire 13 is less visible.
  • the lower limit of the line width of the conductive thin wire 13 is not particularly limited, but can be set to, for example, 1 ⁇ m or more from the viewpoint of providing stable conductivity.
  • the sensor substrate 1 has sensor pattern portions S on both sides. That is, the sensor base material 1 includes a plurality of sensor channels 12 that constitute the sensor pattern portion S on both surfaces of the base material 11. The sensor channels 12 on both sides face each other with the base material 11 interposed therebetween.
  • the sensor pattern portions S are formed on both surfaces of one base material 11 as in the present embodiment, an effect of omitting the step of stacking the base materials is obtained.
  • the sensor pattern portion S can be made into two layers by laminating a substrate having a sensor pattern portion on one side.
  • the longitudinal direction of the sensor channel 12 on the surface of the base material 11 is parallel to the direction of the long side of the base material 11 (the side oriented in the lateral direction in FIG. 1).
  • a plurality of sensor channels 12 on the surface of the base material 11 are arranged in parallel in the direction of the short side (the side oriented in the vertical direction in FIG. 1) of the base material 11.
  • the longitudinal direction of the sensor channel 12 on the back surface of the base material 11 is parallel to the direction of the short side (the side oriented in the vertical direction in FIG. 1) of the base material 11.
  • a plurality of sensor channels 12 on the back surface of the base material 11 are arranged in parallel in the direction of the long side of the base material 11 (the side oriented in the lateral direction in FIG. 1).
  • the sensor channel 12 on the front surface and the sensor channel 12 on the back surface are oriented in a direction crossing each other, so that the sensor pattern portion S can be detected in the XY coordinate system.
  • sensor channels 12 are arranged in parallel on the surface of the base material 11 and 15 sensor channels 12 are arranged in parallel on the back surface of the base material 11 is shown, but the present invention is not limited to this.
  • Any number of sensor channels 12 can be arranged side by side in accordance with the application or the like.
  • the area of the sensor pattern portion S is increased, for example, 20 or more, 30 or more, and further 40 or more sensor channels 12 can be arranged in parallel on each surface.
  • the upper limit of the number of sensor channels 12 to be provided is not particularly limited, but may be 500 or less, for example.
  • the distance ⁇ between the adjacent sensor channels 12 is not particularly limited, but is preferably reduced to, for example, 150 ⁇ m or less, 100 ⁇ m or less, and further 50 ⁇ m or less. Thereby, the sensor channel 12 can be arranged in a dense state, and the sensor sensitivity can be improved. It is also preferable to reduce the interval ⁇ to, for example, 30 ⁇ m or less, and further to 25 ⁇ m or less. Thereby, the sensor sensitivity can be improved, and the gap (insulating part) between the sensor channels 12 can be prevented from being visually recognized.
  • the lower limit of the distance ⁇ is not particularly limited as long as it can insulate between the sensor channels 12. However, for example, if the distance ⁇ is 5 ⁇ m or more, 10 ⁇ m or more, and further 15 ⁇ m or more, dust or the like may adhere between the sensor channels 12. Good insulation can be maintained.
  • the sensor channel 12 may be provided up to one end of the base material 11 (a connection part to which the wiring base material 2 is connected later), but a gap ⁇ is provided between the end of the sensor channel 12 and one end of the base material 11. It is preferable to provide it. By providing the interval ⁇ , it is avoided that the sensor channel 12 is directly exposed to one end of the base material 11 which is a connection site to which the wiring base material 2 is connected, and an unintended short circuit is prevented.
  • the interval ⁇ is provided, the value is not particularly limited, and can be, for example, 0.5 mm to 10 mm, further 1 mm to 6 mm.
  • the sensor substrate 1 includes a conductor 14 extending from the end of the sensor channel 12 to one end of the substrate 11 outside the sensor pattern portion S.
  • One end of the substrate 11 is a connection part to which the wiring substrate 2 is connected later, and the plurality of conductors 14 are electrically connected to the plurality of wirings 22 of the wiring substrate 2 at this connection part.
  • the plurality of conductors 14 are provided in an area corresponding to the above-described interval ⁇ at an arrangement pitch equal to the arrangement pitch of the sensor channels 12.
  • the conductor 14 is made of a conductive material and has a structure different from that of the sensor channel 12.
  • the conductor 14 is different in structure from the sensor channel 12 in that the conductor 14 is provided narrower than the channel width of the sensor channel 12.
  • An example of the case where the conductor 14 has a structure different from that of the sensor channel 12 is not limited to a case where the shape such as the width is different.
  • the conductor 14 is formed of a conductive material different from that of the sensor channel 12, This includes the case where the conductor 14 has a resistance value (for example, a sheet resistance value) different from that of the sensor channel 12.
  • the conductor 14 is a single wiring
  • the conductor 14 may be a mesh pattern similar to the sensor channel 12, for example.
  • various patterns such as a pattern configured by combining a plurality of conductive thin lines forming a geometric figure, a stripe pattern, a random pattern, and the like may be used.
  • a conductor is not limited to what has a pattern, You may be comprised with the electroconductive material provided to the solid shape.
  • the conductor 14 is preferably provided narrower than the channel width of the sensor channel 12 in any form. In this way, the conductor 14 exposed at one end of the base material 11 that is a connection site to which the wiring base material 2 is connected is thinner than the width of the sensor channel 12, so that the sensor channel 12 is exposed at the one end. Thus, the occurrence of an unintended short circuit is prevented.
  • the wiring substrate 2 includes a substrate 21 and a plurality of wirings 22 formed on the substrate 21.
  • the plurality of wirings 22 are electrically connected to each of the plurality of sensor channels 12 included in the sensor substrate 1.
  • a lead wiring pattern portion W is formed on the base material 21 by the plurality of wirings 22.
  • two wiring substrates 2 are prepared.
  • One wiring substrate 2 has a wiring 22 that is electrically connected to the sensor channel 12 on the surface of the sensor substrate 1.
  • the other wiring substrate 2 has a wiring 22 that is electrically connected to the sensor channel 12 on the back surface of the sensor substrate 1.
  • one end of the wiring 22 extends to one end of the substrate 21, and the other end of the wiring 22 extends to a predetermined position on the substrate 21 (here, the other end of the substrate 21).
  • connection part One end of the base material 21 on which one end of the wiring 22 is disposed is a connection part to which the sensor base material 1 is connected later.
  • the plurality of wirings 22 are respectively a plurality of conductors 14 of the sensor base material 1.
  • the plurality of sensor channels 12 are electrically connected via the plurality of conductors 14.
  • the arrangement pitch of the plurality of conductors 14 of the sensor base 1 and the arrangement pitch of the plurality of wirings 22 of the wiring base 2 are equal.
  • the other end of the base material 21 on which the other end of the wiring 22 is disposed is a connection portion to which the external connection component 3 is connected later.
  • the other end of the wiring 22 is provided in the external connection component 3 at this connection portion. It is electrically connected to the external wiring 31.
  • the arrangement pitch of the plurality of wirings 22 of the wiring substrate 2 and the arrangement pitch of the plurality of external wirings 31 of the external connection component 3 are equal.
  • the arrangement pitch of the plurality of wires 22 at the connection site between the wiring substrate 2 and the external connection component 3 is set smaller than the arrangement pitch at the connection site between the sensor substrate 1 and the wiring substrate 2.
  • interval (it is also called Line &Space; L / S) of the some wiring 22 are also the sensor base material 1 and the wiring base material 2. It is aggregated narrower than L / S at the connection site.
  • the arrangement pitch and L / S of the plurality of wirings 22 are relatively large at the connection portion between the sensor base material 1 and the wiring base material 2. There is a relatively small relationship at the connection site with the external connection component 3.
  • the external connection component 3 has a plurality of external wirings 31.
  • the plurality of external wires 31 are connected to each of the plurality of wires 22 of the wiring substrate 2.
  • Examples of the external connection component 3 include components for electrically connecting the plurality of wirings 22 of the wiring substrate 2 to an external circuit (not shown) via the plurality of external wirings 33. Examples include FFC and FPC.
  • signals from the plurality of sensor channels 12 of the sensor substrate 1 are transferred to the external circuit via the plurality of wires 22 of the wiring substrate 2 and the plurality of external wires 31 of the external connection component 3.
  • Examples of the external circuit include an integrated circuit (IC) for controlling the touch panel sensor.
  • the method of electrically connecting the wiring 22 of the wiring substrate 2 and the external wiring 31 of the external connection component 3 is not particularly limited.
  • the wiring 22 is connected by a conductive adhesive, an anisotropic conductive film (ACF), or the like. Can do.
  • the conductive adhesive is not particularly limited, and for example, an adhesive containing conductive particles can be used.
  • the size (size and area) of the wiring substrate 2 in this step is smaller than the size after the sensor substrate 1 is connected. Therefore, the effect which can improve the handleability at the time of connecting the external connection component 3 is acquired. This effect will be described in detail below.
  • the accuracy of connection can be improved by aligning the substrate on a stage (for example, a bonding stage). For example, by aligning the portion of the base material to which the external connection component is to be connected to a predetermined position on the stage by applying a corner of the base material to the abutting portion provided on the stage, the external connection Parts can be connected.
  • a stage for example, a bonding stage
  • the conventional technology uses a base material on which both the sensor pattern portion and the wiring portion are provided, especially when the sensor pattern portion is increased in area, the entire base material becomes large and protrudes from the stage and curves. , Even if the corner is applied, there arises a problem that the accuracy of alignment is lowered. If the alignment accuracy is lowered, poor electrical connection between the base material and the external connection component is caused. Alternatively, even if a stage capable of placing such a large base material as a whole can be prepared, it is difficult to place a large base material on the stage even if a dedicated jig is used. There is a problem that decreases. In addition, when the external connection parts are connected to both surfaces of the base material, if the base material is large, a reversing operation or the like becomes difficult, and the manufacturing efficiency further decreases.
  • the wiring substrate 2 can be made smaller by the amount that the sensor substrate 1 is not connected, the entire wiring substrate 2 can be placed on a relatively small stage, and the wiring substrate It is possible to prevent 2 from protruding from the stage and bend, and to improve the alignment accuracy. By improving the alignment accuracy, the electrical connection between the wiring substrate 2 and the external connection component 3 can be reliably performed. Further, the wiring substrate 2 can be easily placed flat on the stage without using a dedicated jig, and the manufacturing efficiency is improved. Furthermore, also when connecting the external connection components 3 to both surfaces of the wiring substrate 2, the reversing operation and the like are facilitated, and the manufacturing efficiency is further improved.
  • the wiring substrate 2 connected to the sensor channel 12 on the front surface of the sensor substrate 1 and the wiring substrate 2 connected to the sensor channel 12 on the back surface are separately prepared. It is not always necessary to connect the external connection components 3 to both surfaces of the two wiring bases 2, and the reversing operation itself on the stage can be omitted, thereby further improving the manufacturing efficiency.
  • each wiring base material 2 is connected to the external connection component 3 described above before connection to the sensor base material 1. .
  • the sensor channel 12 of the sensor base 1 and the wiring base are connected in a state where one end of the sensor base 1 and one end of the wiring base 2 are abutted.
  • the wiring 22 of the material 2 can be electrically connected.
  • the sensor base material 1 and the wiring base material 2 are arranged so that the plurality of sensor channels 12 and the plurality of wirings 22 correspond one-to-one.
  • a plurality of conductors 14 extending from a plurality of sensor channels 12 and a plurality of wirings 22 having the same number as the conductors 14 are connected to the sensor base 1 and the wiring base 2 at equal pitches.
  • the sensor substrate 1 and the wiring substrate 2 are aligned with each other so as to face each other.
  • one or both of the sensor substrate 1 and the wiring substrate 2 may be provided with a marker (not shown) for aligning the two substrates with each other.
  • the conductive member 4 In order to ensure the electrical connection between the sensor channel 12 and the wiring 22, it is preferable to provide the conductive member 4 at the connection site.
  • the conductive member 4 is preferably applied so as to contact both the conductor 14 and the wiring 22.
  • the conductor 14 is omitted and the sensor channel 12 extends to one end of the sensor substrate 1, the conductive member 4 can be applied so as to contact both the sensor channel 12 and the wiring 22.
  • the conductive member 4 is not particularly limited, and examples thereof include conductive paste (for example, metal paste) and conductive ink. These application methods are not particularly limited, and can be applied by a printing method such as an inkjet method. The conductive paste and the conductive ink can be fixed in a state of being in contact with both the conductor 14 and the wiring 22 by drying and / or curing. Other examples of the conductive member 4 will be described in detail later.
  • the sensor base material is electrically connected to the sensor channels 12 on both surfaces and the wiring 22 of the wiring base material 2. 1 and the wiring substrate 2 are connected.
  • the wiring 22 of the wiring substrate 2 provided with the wiring 22 on the surface is electrically connected to the sensor channel 12 on the surface of the sensor substrate 1
  • the sensor channel 12 is electrically connected to the sensor channel 12 on both sides of the sensor substrate 1 by electrically connecting the wire 22 of the wiring substrate 2 having the wiring 22 provided on the back surface. Connected to.
  • the arrangement pitch and L / S of the plurality of wirings 22 are relatively large at the connection portion between the sensor base 1 and the wiring base 2, and the wiring base
  • the connection portion between the material 2 and the external connection component 3 is relatively small. This technical significance will be described below.
  • the wiring base material 2 can be reduced by the amount that the sensor base material 1 is not connected, the handling property of the wiring base material 2 is improved, and the wiring base material 2 is highly accurate when connecting the external connection component 3. Can be aligned. Therefore, even if the arrangement pitch or L / S of the plurality of wirings 22 is reduced for narrowing the frame, electrical connection to the plurality of external wirings 31 of the external connection component 3 can be reliably performed.
  • the sensor pattern portion and the lead wiring pattern portion are formed on one base material.
  • the lead wiring pattern portion is a defective product. If it exists, it will become inferior goods as the whole base material, and the sensor pattern part with a comparatively high formation cost will be wasted.
  • the sensor pattern portion has a large area, the cost loss is further increased.
  • a plurality of sensor base materials 1 and a plurality of wiring base materials 2 are prepared, and non-defective products can be selected and connected from these. Thereby, it is possible to prevent the generation of defective products and improve the yield.
  • the conductive state of one or both of the sensor base material 1 and the wiring base material 2 is inspected. Is preferred. As a result, a non-defective product having a good conduction state can be selected with certainty, and the yield can be further improved.
  • the inspection of the conduction state is not particularly limited, and a known method can be used, and examples thereof include a confirmation inspection that no disconnection has occurred and a confirmation inspection that a short circuit has not occurred.
  • These inspections can be performed by, for example, resistance value measurement using a tester.
  • resistance value measurement using a tester a known device that automatically measures disconnection or short-circuit by scanning a measurement terminal based on drawing data can be used. These inspections are preferably performed on both the sensor substrate 1 and the wiring substrate 2 from the viewpoint of further improving the yield.
  • the inspection of the conductive state of the wiring substrate 2 may be performed after the external connection component 3 is connected to the wiring substrate 2, but should be performed before the external connection component 3 is connected to the wiring substrate 2. Is preferred. By grasping the non-defective product / defective product of the wiring substrate 2 before connecting the external connection component 3, it is possible to avoid wasting the external connection component 3 by connecting it to the defective wiring substrate 2.
  • the cutting process can be carried out so that an unnecessary part is cut from the base material to obtain a predetermined external dimension suitable for the product. Since the sensor substrate 1 and the wiring substrate 2 are separate, the handling property in the cutting process is improved in comparison with the case where the sensor substrate 1 and the wiring substrate 2 are integrated, and high-precision cutting can be realized.
  • a single wiring substrate 2 is used for a plurality of sensor channels 12 provided on the surface of the sensor substrate 1, and a plurality of sensor channels 12 provided on the back surface of the sensor substrate 1 are used.
  • the case of using one wiring substrate 2 is mainly shown, but the present invention is not limited to this.
  • a plurality of wiring substrates 2 may be used for a plurality of sensor channels 12 provided on the front surface of the sensor substrate 1 or for a plurality of sensor channels 12 provided on the back surface of the sensor substrate 1.
  • two wiring bases 2 are used for a plurality of sensor channels 12 provided on the surface of the sensor base 1, and a plurality of bases are provided on the back surface of the sensor base 1.
  • Two wiring substrates 2 are also used for the sensor channel 12.
  • each wiring base material 2 is in a state of being divided in the direction in which the plurality of sensor channels 12 to be connected are juxtaposed, the wiring base material 2 is further reduced in comparison with the first embodiment, and is connected to the external connection component 3.
  • the handling properties and handling properties in the cutting process are further improved. Even if the sensor substrate 1 becomes large, the wiring substrate 2 can be kept small by increasing the number of divisions of the wiring substrate 2.
  • each wiring substrate 2 may be provided with a part of the wirings 22 corresponding to a part of the sensor channels 12 among the plurality of sensor channels 12 to be connected. That is, since the number of wirings 22 provided on the wiring substrate 2 can be reduced, the space required for arranging a plurality of wirings 22 in parallel is also reduced. Thereby, not only the wiring base material 2 can be reduced in the juxtaposition direction of the plurality of sensor channels 12 to which the wiring base material 2 is connected, but also the direction orthogonal to the juxtaposition direction (longitudinal direction of the sensor channel 12). Can also be small. Since the wiring base material 2 becomes smaller in the longitudinal direction of the sensor channel 12, not only the handling property is further improved, but also a narrower frame can be achieved.
  • the present invention is not limited to this.
  • the plurality of divided wiring base materials 2 are connected to the sensor base material 1 so as to be alternately arranged on one end side and the other end side of the sensor channel 12. Also good.
  • the division of the wiring substrate 2 improves the degree of freedom of the arrangement of the wiring substrate 2 (attachment position with respect to the sensor substrate 1).
  • the touch panel sensor can be designed with a higher degree of freedom so that the optimum incorporation is realized.
  • the plurality of sensor bases 1 are coupled so that the sensor channels 12 are electrically connected to each other. It is preferable.
  • a plurality of sensor channels 12 on one side (here, the back side) of the sensor channels 12 on the front and back sides of the sensor substrate 1 are arranged in the longitudinal direction of the sensor channel 12 (vertical direction in FIG. 7).
  • the plurality of sensor channels 12 of each sensor base material 1 are electrically connected to each other so as to extend. In this way, the effective area for sensing in the touch panel sensor can be expanded.
  • the wiring base material 3 to which the external connection component 3 is connected in advance can be connected to the sensor base material 1 before being connected, and then a plurality of sensor base materials 1 can be connected.
  • the sensor channels 12 of the plurality of sensor substrates 1 When the sensor channels 12 of the plurality of sensor substrates 1 are electrically connected to each other, the sensor channels 12 may be directly connected to each other, but the same as described for the connection between the sensor channel 12 and the wiring 22 It is preferable to connect via the conductor 14. By connecting through the conductor 14, a short circuit or the like can be prevented.
  • the conductor 14 When providing the conductor 14, as shown in FIG. 7, the conductor 14 can be provided in the sensor channel 12 of both sensor base materials 1 of the sensor base materials 1 connected to each other. In this case, the electrical connection can be reliably performed by providing the conductive member 4 so as to contact both the conductors 14.
  • the conductive member 4 As the conductive member 4, the same material as described for the connection between the sensor channel 12 and the wiring 22 can be used.
  • a conductor may be provided only in the sensor channel of one of the sensor substrates connected to each other. In this case, electrical connection can be reliably performed by providing the conductive member so as to contact the conductor of one sensor base and the sensor channel of the other sensor base.
  • the wiring 22 of the wiring base 2 that is electrically connected to the sensor channel 12 on the surface of the sensor base 1 is disposed on the surface of the wiring base 2, the wiring base 2 The external connection component 3 connected to the material 2 is disposed on the surface of the wiring substrate 2.
  • the wiring 22 of the wiring base 2 that is electrically connected to the sensor channel 12 on the back surface of the sensor base 1 is connected to the wiring via a through-hole 23 provided so as to penetrate the wiring base 2. It is pulled out from the back surface of the base material 22 to the front surface.
  • the external connection component 3 connected to the wiring substrate 2 is also arranged on the surface of the wiring substrate 2.
  • the external connection components 3 are arranged on the same surface side with respect to all of the plurality of wiring substrates 2 in a state where the plurality of wiring substrates 2 are connected to the sensor substrate 1.
  • the present invention in order to draw out wiring from one surface of the wiring substrate to the other surface, the case of using a through hole penetrating the substrate is shown, but the present invention is not limited to this, and a known method is used. Can do. For example, a half-shaped through hole provided so as to cut out the end face of the wiring substrate may be used instead of the through hole. Further, the wiring may be folded back from one surface of the wiring substrate to the other surface at the end surface of the wiring substrate.
  • the sensor substrates after connecting external connection components from the same surface side to a plurality of wiring substrates, the sensor substrates can be connected to each wiring substrate without performing a reversal operation or the like. Therefore, the manufacturing process can be simplified and the production efficiency can be improved.
  • a plurality of (four in this example) sheet-like bodies each including a sheet-like support body 41 and a conductive member 4 supported on the support body 41 are provided. Use.
  • the support 41 is not particularly limited, and for example, those exemplified as the base material of the sensor base material can be used. Similar to the sensor channel 12, the conductive member 4 is composed of a plurality of conductive thin wires arranged in a mesh shape.
  • connection is made so that the conductive member 4 comes into contact with the conductor 14 and the wiring 22 facing each other across the connection portion between the sensor base 1 and the wiring base 2.
  • the conductive member 4 is overlaid on the part.
  • the conductive member 4 can be fixed to the connection site by using, for example, a conductive adhesive.
  • a sheet-like body composed of one support body 41 and a plurality of (four in this example) conductive members 4 supported on the support body 41 is provided. Use.
  • connection is made so that the conductive member 4 comes into contact with the conductor 14 and the wiring 22 facing each other across the connection portion between the sensor base 1 and the wiring base 2.
  • the conductive member 4 is overlaid on the part.
  • the plurality of conductive members 4 are arranged on the support body 41 at the same pitch as the plurality of conductors 14 or the plurality of wirings 22 so as not to contact unintended wirings.
  • a conductive adhesive or the like can be used when the conductive members 4 are overlapped.
  • the conductive adhesive can be used by defining an application range for each conductive member 4 on the support 41.
  • the conductive member 4 may be superposed using an adhesive tape as the support 41.
  • a sheet-like body including one support body 41 and a plurality (four in this example) of conductive members 4 supported on the support body 41. Is used.
  • the support body 41 has an area capable of covering a part or all of the plurality of sensor channels 12.
  • the support 41 can be, for example, a cover layer for protecting the sensor channel 12.
  • the support 41 can be a white layer for forming an image projection surface (screen) on the sensor channel 12, for example.
  • As the white layer for example, a resin layer in which a white pigment is dispersed can be used.
  • an image from an image projection device (projector) (not shown) can be projected and displayed on the screen.
  • a sensor film for example, a touch screen having both a sensor function and a screen function can be configured.
  • connection is made so that the conductive member 4 comes into contact with the conductor 14 and the wiring 22 facing each other across the connection portion between the sensor base 1 and the wiring base 2.
  • the conductive member 4 is overlaid on the part.
  • the support body 41 can cover a part or all of the plurality of sensor channels 12.
  • the substrate 8 can cover and protect not only the sensor channel 12 but also the wiring 22.
  • the end of the wiring can be exposed from the support body 41 for connection with an external connection component or the like.
  • the conductive member supported on the support is constituted by a plurality of conductive thin wires, but the present invention is not limited to this.
  • the conductive member may be formed in a solid shape on the support.
  • the conductive member is supported on the support.
  • the conductive member is made of, for example, a metal foil and has sufficient strength
  • the support may be omitted. Good.
  • the conductive member described above can be preferably used for electrical connection between the sensor channel and the sensor channel as shown in FIG.
  • Touch panel sensor base material set The touch panel sensor base material set of the present invention can be used to constitute a touch panel sensor, and includes at least one sensor base material and at least one wiring base material described above. The base material is connected to the external connection component.
  • the sensor base material and the wiring base material are connected so that the sensor channel of the sensor base material and the wiring of the wiring base material are electrically connected. Can be manufactured.
  • the touch panel sensor base material set may further include the above-described conductive member. Thereby, a touch panel sensor with good electrical connection between the sensor channel and the wiring can be efficiently manufactured.
  • the present invention is not limited to this.
  • the sensor base material may be prepared after connecting the wiring base material and the external connection component.
  • a conductor may be provided at both of the two ends (one end and the other end) of the sensor channel. If conductors are provided at both of the two ends of the sensor channel, a wiring substrate can be connected to both sides of the sensor substrate. In this case, the conductors provided at both of the two ends of the sensor channel can be electrically connected to the wiring of each wiring substrate. Even when the conductor is omitted, the wiring substrate can be connected to both sides of the sensor substrate. In this case, the two ends of the sensor channel can be electrically connected to the wiring of each wiring substrate.
  • the sensor base material and the wiring base material may be separately manufactured, or manufactured by dividing one base material on which the sensor pattern portion and the lead wiring pattern portion are formed. It may be what was done.
  • each substrate is small in comparison with one substrate having the sensor pattern portion and the lead wiring pattern portion. Handling property when forming the wiring pattern portion is improved. By improving the handleability, the sensor pattern portion and the lead wiring pattern portion can be formed with high accuracy.
  • the one base material is cut with a blade or the like, and at least one sensor base having the sensor pattern portion is formed.
  • It can be divided into a material and at least one wiring substrate having a lead wiring pattern portion. According to this method, when the sensor substrate and the wiring substrate are connected, the cutting lines of each substrate can be reconnected. Even if the cutting line at the time of cutting may be bent, the cutting lines of the respective base materials are in meshing relationship with each other, so that dimensional deviation and positional deviation are unlikely to occur during reconnection, and disconnection and short circuit can be prevented.
  • the present invention is not limited to this.
  • the sensor substrate may have a sensor pattern part on one side.
  • the sensor pattern portion having the two-layer structure can suitably perform position detection in the XY coordinate system, similarly to the sensor pattern portions on both sides described above.
  • the method of making the sensor pattern part into a two-layer structure by lamination is not particularly limited as long as the insulation between the sensor pattern parts of each sensor base material to be laminated is maintained.
  • lamination first, two units are prepared by connecting a sensor base material having a sensor pattern part on one side and a wiring base material to which external connection components are connected. Then, the sensor pattern part can be made into a two-layer structure by laminating two units of the sensor substrate.
  • the sensor bases of the two units When stacking the sensor bases of the two units, they may be stacked so that the surfaces not provided with the sensor channels face each other, or the surface of the one sensor base not provided with the sensor channels You may laminate
  • the latter form is particularly preferable, and an effect that the external connection parts can be arranged on the same surface side with respect to the wiring base material of each unit is obtained.
  • the terms “front surface” and “back surface” of the base material are used for the purpose of distinguishing one surface of the base material from the other surface formed on the back side as viewed from the one surface. This is merely a description, and in a product including a touch panel sensor, it is not limited that the “front surface” is oriented to the front surface side and the “back surface” is oriented to the back surface side. In a product including a sensor film, the “front surface” may be oriented to the back surface side, and the “back surface” may be oriented to the front surface side.

Abstract

The present invention addresses the problem of providing: a method for producing a touch panel sensor, which is capable of improving the handling properties during the time when an external connection component is connected, especially in cases where a large-area touch panel sensor is produced, and which is also capable of improving the yield; and a touch panel sensor substrate set. The problem is solved by a method for producing a touch panel sensor, wherein an external connection component (3) is connected to at least one wiring substrate (2) which has a lead-out wiring pattern part (W) that is composed of a plurality of wiring lines (22), and subsequently, at least one sensor substrate (1) which has a sensor pattern part (S) that is composed of a plurality of sensor channels (12) and the wiring substrate (2) are connected so that the sensor channels (12) of the at least one sensor substrate (1) and the wiring lines (22) of the wiring substrate (2) are electrically connected to each other.

Description

タッチパネルセンサーの製造方法及びタッチパネルセンサー基材セットTouch panel sensor manufacturing method and touch panel sensor substrate set
 本発明は、タッチパネルセンサーの製造方法及びタッチパネルセンサー基材セットに関し、より詳しくは、特に大面積のタッチパネルセンサーを製造する場合においても、外部接続部品を接続する際のハンドリング性を向上でき、また歩留りも向上できるタッチパネルセンサーの製造方法及びタッチパネルセンサー基材セットに関する。 The present invention relates to a method for manufacturing a touch panel sensor and a touch panel sensor base material set, and more specifically, particularly in the case of manufacturing a large area touch panel sensor, the handling property when connecting external connection parts can be improved, and the yield is also increased. It is related with the manufacturing method of the touch panel sensor which can improve, and a touch panel sensor base material set.
 タッチパネルセンサーは、例えば携帯端末等に搭載され、ユーザーによってタッチされた位置を検出するために利用されている。 The touch panel sensor is mounted on, for example, a portable terminal and is used to detect a position touched by a user.
特開2003-153128号公報JP 2003-153128 A 特開平3-38982号公報JP-A-3-38982
 特許文献1、2には、画像表示装置に関して、表示される画像を大面積化する技術が提案されている。しかし、タッチパネルセンサーに関しては、携帯端末のような比較的小型の装置に搭載されることが多いため、面積を大きくするための技術は十分に確立されていない。 Patent Documents 1 and 2 propose a technique for increasing the area of an image to be displayed with respect to an image display device. However, since the touch panel sensor is often mounted on a relatively small device such as a portable terminal, a technique for increasing the area has not been sufficiently established.
 従来、タッチパネルセンサーを製造する際には、センサーチャネルと該センサーチャネルに接続された引出配線とが設けられた基材を用意し、次いで、該基材の引出配線にFFC(Flexible Flat Cable;フレキシブルフラットケーブル)やFPC(Flexible Printed Circuit;フレキシブルプリント回路基材)等の外部接続部品を接続していた。 Conventionally, when manufacturing a touch panel sensor, a base material provided with a sensor channel and a lead wire connected to the sensor channel is prepared, and then FFC (Flexible Flat Cable; flexible) is provided for the lead wire of the base material. External connection parts such as flat cable and FPC (Flexible Printed Circuit) were connected.
 かかる従来技術には、特に大面積のタッチパネルセンサーを製造する場合に、外部接続部品を接続する際のハンドリング性(例えば治具を用いた位置合わせの精度)を向上する観点、及び、歩留りを向上する観点で、更なる改善の余地が見出された。 Such a conventional technique improves the handling performance (eg, the accuracy of alignment using a jig) and the yield when connecting externally connected components, particularly when manufacturing a large area touch panel sensor. In view of this, room for further improvement was found.
 そこで本発明の課題は、特に大面積のタッチパネルセンサーを製造する場合においても、外部接続部品を接続する際のハンドリング性を向上でき、また歩留りも向上できるタッチパネルセンサーの製造方法及びタッチパネルセンサー基材セットを提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a touch panel sensor manufacturing method and a touch panel sensor base material set capable of improving the handling property when connecting external connection parts and improving the yield even when manufacturing a touch panel sensor having a large area. Is to provide.
 また本発明の他の課題は、以下の記載によって明らかとなる。 Further, other problems of the present invention will become apparent from the following description.
 上記課題は、以下の各発明によって解決される。 The above problems are solved by the following inventions.
1.
 複数の配線からなる引出配線パターン部を有する少なくとも1つの配線基材に外部接続部品を接続し、
 次いで、複数のセンサーチャネルからなるセンサーパターン部を有する少なくとも1つのセンサー基材の前記センサーチャネルと、前記配線基材の前記配線とが電気的に接続されるように、前記センサー基材と前記配線基材とを接続するタッチパネルセンサーの製造方法。
2.
 前記センサー基材は、前記センサーチャネルの端部から前記配線基材が接続される接続部位まで伸びる導体を更に備え、
 前記導体は前記センサーチャネルと異なる構造を有しており、
 前記センサー基材の前記導体及び前記配線基材の前記配線の両方に接触するように導電部材を付与することによって、前記センサーチャネルと前記配線とを電気的に接続する前記1記載のタッチパネルセンサーの製造方法。
3.
 前記センサーチャネルの端部から前記接続部位まで伸びる前記導体の幅は、前記センサーチャネルのチャネル幅より細い前記2記載のタッチパネルセンサーの製造方法。
4.
 複数の前記センサー基材を、前記センサーチャネル同士を互いに電気的に接続するように連結する前記1~3の何れかに記載のタッチパネルセンサーの製造方法。
5.
 前記センサー基材と前記配線基材とを接続する前に、前記センサー基材及び前記配線基材の一方又は両方を裁断加工する前記1~4の何れかに記載のタッチパネルセンサーの製造方法。
6.
 前記センサー基材は前記センサーパターン部を両面に有し、
 前記配線基材と外部接続部品とを接続した後に、
 前記センサー基材の両面の前記センサーチャネルと前記配線とが電気的に接続するように、前記センサー基材と前記配線基材とを接続する前記1~5の何れかに記載のタッチパネルセンサーの製造方法。
7.
 片面に前記センサーパターン部を有する前記センサー基材と、前記外部接続部品が接続された前記配線基材とを接続してなるユニットを2つ用意し、
 2つの前記ユニットの前記センサー基材を積層することによって、前記センサーパターン部を2層構造にする前記1~5の何れかに記載のタッチパネルセンサーの製造方法。
8.
 2つの前記ユニットの前記センサー基材を積層する際に、前記センサーチャネルが設けられていない面同士が対向するように積層するか、又は、一方の前記センサー基材の前記センサーチャネルが設けられていない面と他方の前記センサー基材の前記センサーチャネルが設けられた面とが対向するように積層する前記7記載のタッチパネルセンサーの製造方法。
9.
 前記センサー基材と前記配線基材とを接続する前に、前記センサー基材及び前記配線基材の一方又は両方の導通状態の検査を行う前記1~8の何れかに記載のタッチパネルセンサーの製造方法。
10.
 複数の前記配線基材を前記センサー基材に接続した状態で、複数の前記配線基材のすべてに対して前記外部接続部品が同一面側に配置されるように、複数の前記配線基材のうち少なくとも1つの配線基材が有する配線が、該配線基材の一方の面から他方の面に引き出されている前記1~9の何れかに記載のタッチパネルセンサーの製造方法。
11.
 タッチパネルセンサーを構成するための基材セットであって、
 複数のセンサーチャネルからなるセンサーパターン部を有する少なくとも1つのセンサー基材と、
 複数の配線からなる引出配線パターン部を有する少なくとも1つの配線基材とからなり、
 前記配線基材が外部接続部品と接続されているタッチパネルセンサー基材セット。
12.
 前記センサー基材は、前記センサーチャネルの端部から該センサー基材の一端まで伸びる導体を更に備え、
 前記導体は前記センサーチャネルと異なる構造を有している前記11記載のタッチパネルセンサー基材セット。
13.
 前記センサーチャネルの端部から前記接続部位まで伸びる前記導体の幅は、前記センサーチャネルのチャネル幅より細い前記12記載のタッチパネルセンサー基材セット。
14.
 前記センサー基材は前記センサーパターン部を両面に有する前記11~13の何れかに記載のタッチパネルセンサー基材セット。
15.
 少なくとも1つの前記配線基材が有する配線が、該配線基材の一方の面から他方の面に引き出されている前記11~14の何れかに記載のタッチパネルセンサー基材セット。
16.
 前記センサー基材の前記センサーチャネルと前記配線基材の前記配線とを電気的に接続するための導電部材を更に備える前記11~15の何れかに記載のタッチパネルセンサー基材セット。
17.
 前記導電部材はシート状の支持体上に支持されている前記16記載のタッチパネルセンサー基材セット。
1.
Connecting an external connection component to at least one wiring substrate having a lead wiring pattern portion composed of a plurality of wirings;
Next, the sensor base material and the wiring are connected so that the sensor channel of at least one sensor base material having a sensor pattern portion composed of a plurality of sensor channels and the wiring of the wiring base material are electrically connected. A method for manufacturing a touch panel sensor for connecting a base material.
2.
The sensor substrate further comprises a conductor extending from an end of the sensor channel to a connection site to which the wiring substrate is connected;
The conductor has a different structure from the sensor channel;
2. The touch panel sensor according to claim 1, wherein the sensor channel and the wiring are electrically connected by providing a conductive member so as to contact both the conductor of the sensor base and the wiring of the wiring base. Production method.
3.
3. The method of manufacturing a touch panel sensor according to 2, wherein a width of the conductor extending from an end portion of the sensor channel to the connection site is narrower than a channel width of the sensor channel.
4).
4. The method for manufacturing a touch panel sensor according to any one of 1 to 3, wherein a plurality of the sensor substrates are coupled so that the sensor channels are electrically connected to each other.
5).
5. The touch panel sensor manufacturing method according to any one of 1 to 4, wherein one or both of the sensor base and the wiring base is cut before connecting the sensor base and the wiring base.
6).
The sensor substrate has the sensor pattern part on both sides,
After connecting the wiring substrate and external connection parts,
6. The touch panel sensor according to any one of 1 to 5, wherein the sensor base and the wiring base are connected so that the sensor channel and the wiring on both sides of the sensor base are electrically connected. Method.
7).
Two units are prepared by connecting the sensor substrate having the sensor pattern part on one side and the wiring substrate to which the external connection component is connected,
6. The method for manufacturing a touch panel sensor according to any one of 1 to 5, wherein the sensor pattern portion is formed into a two-layer structure by stacking the sensor base materials of the two units.
8).
When the sensor substrates of the two units are stacked, they are stacked so that the surfaces not provided with the sensor channels face each other, or the sensor channels of one of the sensor substrates are provided. The manufacturing method of the touch panel sensor according to 7, wherein the non-surface and the surface of the other sensor substrate on which the sensor channel is provided face each other.
9.
9. The touch panel sensor according to any one of 1 to 8, wherein an inspection is performed on one or both of the sensor substrate and the wiring substrate before connecting the sensor substrate and the wiring substrate. Method.
10.
In a state where the plurality of wiring base materials are connected to the sensor base material, the external connection parts are arranged on the same surface side with respect to all of the plurality of wiring base materials. 10. The method for manufacturing a touch panel sensor according to any one of 1 to 9, wherein the wirings included in at least one wiring substrate are drawn from one surface of the wiring substrate to the other surface.
11
A base material set for configuring a touch panel sensor,
At least one sensor substrate having a sensor pattern portion comprising a plurality of sensor channels;
Consisting of at least one wiring substrate having a lead wiring pattern portion composed of a plurality of wirings,
A touch panel sensor substrate set in which the wiring substrate is connected to an external connection component.
12
The sensor substrate further comprises a conductor extending from an end of the sensor channel to one end of the sensor substrate;
12. The touch panel sensor substrate set according to 11, wherein the conductor has a structure different from that of the sensor channel.
13.
13. The touch panel sensor substrate set according to 12, wherein a width of the conductor extending from an end portion of the sensor channel to the connection site is narrower than a channel width of the sensor channel.
14
14. The touch panel sensor substrate set according to any one of 11 to 13, wherein the sensor substrate has the sensor pattern portion on both surfaces.
15.
15. The touch panel sensor substrate set according to any one of 11 to 14, wherein the wirings included in at least one of the wiring substrates are drawn from one surface of the wiring substrate to the other surface.
16.
16. The touch panel sensor substrate set according to any one of 11 to 15, further comprising a conductive member for electrically connecting the sensor channel of the sensor substrate and the wiring of the wiring substrate.
17.
17. The touch panel sensor substrate set according to 16, wherein the conductive member is supported on a sheet-like support.
 本発明によれば、特に大面積のタッチパネルセンサーを製造する場合においても、外部接続部品を接続する際のハンドリング性を向上でき、また歩留りも向上できるタッチパネルセンサーの製造方法及びタッチパネルセンサー基材セットを提供することができる。 According to the present invention, there is provided a touch panel sensor manufacturing method and a touch panel sensor base material set capable of improving the handling property when connecting external connection parts and improving the yield even when manufacturing a touch panel sensor having a large area. Can be provided.
第1実施形態に係るタッチパネルセンサーの製造方法に用いられるセンサー基材、配線基材及び外部接続部品を説明する図The figure explaining the sensor base material used in the manufacturing method of the touch panel sensor which concerns on 1st Embodiment, a wiring base material, and an external connection component. センサーチャネルの構成例を説明する図The figure explaining the example of composition of a sensor channel 配線基材と外部接続部品との接続を説明する図Diagram explaining connection between wiring substrate and external connection parts センサー基材と配線基材との接続を説明する図Diagram explaining connection between sensor substrate and wiring substrate 第2実施形態に係るタッチパネルセンサーの製造方法を説明する図The figure explaining the manufacturing method of the touch panel sensor which concerns on 2nd Embodiment. 第2実施形態の変形例に係るタッチパネルセンサーの製造方法を説明する図The figure explaining the manufacturing method of the touch panel sensor which concerns on the modification of 2nd Embodiment. 第3実施形態に係るタッチパネルセンサーの製造方法を説明する図The figure explaining the manufacturing method of the touchscreen sensor which concerns on 3rd Embodiment. 第4実施形態に係るタッチパネルセンサーの製造方法を説明する図The figure explaining the manufacturing method of the touchscreen sensor which concerns on 4th Embodiment. 導電部材の一例を説明する図The figure explaining an example of an electroconductive member 導電部材の他の例を説明する図The figure explaining the other example of an electroconductive member 導電部材の他の例を説明する図The figure explaining the other example of an electroconductive member
 以下に、本発明を実施するための形態について詳しく説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
 本発明のタッチパネルセンサーの製造方法では、複数の配線からなる引出配線パターン部を有する少なくとも1つの配線基材に外部接続部品を接続し、次いで、複数のセンサーチャネルからなるセンサーパターン部を有する少なくとも1つのセンサー基材の前記センサーチャネルと、前記配線基材の前記配線とが電気的に接続されるように、前記センサー基材と前記配線基材とを接続する。これにより、特に大面積のタッチパネルセンサーを製造する場合においても、外部接続部品を接続する際のハンドリング性を向上でき、また歩留りも向上できる効果が得られる。 In the method for manufacturing a touch panel sensor of the present invention, an external connection component is connected to at least one wiring substrate having a lead wiring pattern portion made of a plurality of wires, and then at least one having a sensor pattern portion made of a plurality of sensor channels. The sensor base material and the wiring base material are connected so that the sensor channel of one sensor base material and the wiring of the wiring base material are electrically connected. Thereby, especially when manufacturing a large-area touch panel sensor, it is possible to improve the handling property when connecting the external connection parts and to improve the yield.
1.第1実施形態
 第1実施形態に係るタッチパネルセンサーの製造方法について、図1~図4を参照して説明する。本実施形態では、まず、図1に示すように、センサー基材1、配線基材2及び外部接続部品3を用意する。
1. First Embodiment A method for manufacturing a touch panel sensor according to a first embodiment will be described with reference to FIGS. In this embodiment, first, as shown in FIG. 1, a sensor base material 1, a wiring base material 2, and an external connection component 3 are prepared.
〔センサー基材〕
 センサー基材1は、基材11と、該基材11上に設けられた複数のセンサーチャネル12とによって構成されている。複数のセンサーチャネル12によってセンサーパターン部Sが構成される。センサーパターン部Sは、タッチパネルセンサーにおいてセンシングに有効な領域を形成する。
[Sensor substrate]
The sensor substrate 1 includes a substrate 11 and a plurality of sensor channels 12 provided on the substrate 11. A sensor pattern portion S is constituted by the plurality of sensor channels 12. The sensor pattern portion S forms an effective area for sensing in the touch panel sensor.
〔基材〕
 基材11は、複数のセンサーチャネル12を互いに絶縁された状態で表面に保持できるものであればよく、例えば樹脂基材(フィルムともいう)、ガラス基材、セラミック基材等が挙げられる。
〔Base material〕
The base material 11 may be any material that can hold the plurality of sensor channels 12 on the surface in a state of being insulated from each other. Examples thereof include a resin base material (also referred to as a film), a glass base material, and a ceramic base material.
 フィルムの材質は格別限定されず、例えば、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリブチレンテレフタレート樹脂、セルロース系樹脂(ポリアセチルセルロース、セルロースジアセテート、セルローストリアセテート等)、ポリエチレン樹脂、ポリプロピレン系樹脂、メタクリル系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル-(ポリ)スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、シクロオレフィンポリマー(COP)樹脂等が挙げられる。これらの材質を用いれば、フィルムに良好な絶縁性と透明性を付与できる。また、特に合成樹脂材料を用いることによって、フィルムに良好な可撓性を付与することができる。合成樹脂材料により構成されたフィルムは、延伸されていても、未延伸であってもよい。 The material of the film is not particularly limited. For example, polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polybutylene terephthalate resin, cellulose resin (polyacetyl cellulose, cellulose diacetate, cellulose triacetate, etc.), polyethylene resin Polypropylene resin, methacrylic resin, cyclic polyolefin resin, polystyrene resin, acrylonitrile- (poly) styrene copolymer (AS resin), acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride resin , Poly (meth) acrylic resin, polycarbonate resin, polyester resin, polyimide resin, polyamide resin, polyamideimide resin, cycloolefin polymer (COP) resin And the like. If these materials are used, good insulation and transparency can be imparted to the film. In particular, by using a synthetic resin material, good flexibility can be imparted to the film. The film made of the synthetic resin material may be stretched or unstretched.
 基材11の厚さは格別限定されず、例えば1μm~10cm程度、更には20μm~300μm程度とすることができる。 The thickness of the substrate 11 is not particularly limited, and can be, for example, about 1 μm to 10 cm, and further about 20 μm to 300 μm.
 基材11には、表面エネルギーを変化させる表面処理が施されていてもよい。更に、基材11は、積層体でもよく、ハードコート層や反射防止層などを有してもよい。 The substrate 11 may be subjected to a surface treatment that changes the surface energy. Furthermore, the base material 11 may be a laminate, and may have a hard coat layer, an antireflection layer, or the like.
 本実施形態において基材11は長方形であるが、基材11の形状はこれに限定されず、任意の形状を付与できる。 In the present embodiment, the base material 11 is rectangular, but the shape of the base material 11 is not limited to this, and an arbitrary shape can be given.
〔センサーチャネル〕
 本実施形態において、センサーチャネル12は、タッチパネルセンサーにおいてタッチを検出するための電極である。タッチパネルセンサーの検出方式は格別限定されず、例えば、抵抗膜方式、静電容量方式、光センサー方式等が挙げられる。
[Sensor channel]
In the present embodiment, the sensor channel 12 is an electrode for detecting a touch in the touch panel sensor. The detection method of the touch panel sensor is not particularly limited, and examples thereof include a resistance film method, a capacitance method, and an optical sensor method.
 センサーパターン部Sには、複数のセンサーチャネル12が等ピッチで配置されている。 In the sensor pattern portion S, a plurality of sensor channels 12 are arranged at an equal pitch.
 センサーチャネル12は導電性材料によって所定の幅(チャネル幅ともいう)を有する帯状に形成されている。センサーチャネル12の長さや幅は格別限定されず、目的、用途等に応じて適宜設定できる。 The sensor channel 12 is formed in a strip shape having a predetermined width (also referred to as channel width) with a conductive material. The length and width of the sensor channel 12 are not particularly limited, and can be set as appropriate according to the purpose and application.
 センサーチャネル12を構成する導電性材料は格別限定されないが、金属微粒子、金属酸化物微粒子、カーボン微粒子、導電性ポリマー等が挙げられる。金属微粒子を構成する金属として、例えば、Au、Pt、Ag、Cu、Ni、Cr、Rh、Pd、Zn、Co、Mo、Ru、W、Os、Ir、Fe、Mn、Ge、Sn、Ga、In等が挙げられる。これらの中でも、Au、Ag、Cuが好ましく、Agが特に好ましい。金属微粒子の平均粒子径は、例えば1~100nm、更には3~50nmとすることができる。平均粒子径は、体積平均粒子径であり、マルバーン社製「ゼータサイザ1000HS」により測定することができる。金属酸化物微粒子として、例えば、酸化インジウムスズ(ITO)、酸化スズ等が挙げられる。カーボン微粒子としては、例えば、グラファイト微粒子、カーボンナノチューブ、フラーレン等が挙げられる。導電性ポリマーとしては、格別限定されないが、π共役系導電性高分子を好ましく挙げることができる。π共役系導電性高分子としては、例えば、ポリチオフェン類やポリアニリン類等が挙げられる。π共役系導電性高分子は、例えばポリスチレンスルホン酸等のようなポリアニオンと共に用いてもよい。 The conductive material constituting the sensor channel 12 is not particularly limited, and examples thereof include metal fine particles, metal oxide fine particles, carbon fine particles, and conductive polymers. Examples of the metal constituting the metal fine particle include Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga, In etc. are mentioned. Among these, Au, Ag, and Cu are preferable, and Ag is particularly preferable. The average particle diameter of the metal fine particles can be, for example, 1 to 100 nm, further 3 to 50 nm. The average particle diameter is a volume average particle diameter, and can be measured by “Zeta Sizer 1000HS” manufactured by Malvern. Examples of the metal oxide fine particles include indium tin oxide (ITO) and tin oxide. Examples of the carbon fine particles include graphite fine particles, carbon nanotubes, fullerenes and the like. Although it does not specifically limit as a conductive polymer, (pi) conjugated system conductive polymer can be mentioned preferably. Examples of the π-conjugated conductive polymer include polythiophenes and polyanilines. The π-conjugated conductive polymer may be used together with a polyanion such as polystyrene sulfonic acid.
 センサーチャネル12は基材11上にベタ状に付与された導電性材料によって構成されてもよいが、本実施形態においてセンサーチャネル12は、図2(a)に示すように、基材11上に2次元的に配置された複数の導電性細線13によって構成されている。 The sensor channel 12 may be made of a conductive material applied in a solid shape on the base material 11, but in this embodiment, the sensor channel 12 is formed on the base material 11 as shown in FIG. It is constituted by a plurality of conductive thin wires 13 arranged two-dimensionally.
 図2(a)に示すセンサーチャネル12は、複数の導電性細線13からなるメッシュパターンによって構成されている。この例に限定されず、センサーチャネル12のパターンは、例えばストライプパターン、ランダムパターン等であってもよい。 The sensor channel 12 shown in FIG. 2A is configured by a mesh pattern composed of a plurality of conductive thin wires 13. Without being limited to this example, the pattern of the sensor channel 12 may be, for example, a stripe pattern, a random pattern, or the like.
 また、センサーチャネルのパターンは、幾何学図形を成す導電性細線を複数組み合わせて構成されたパターンであってもよい。幾何学図形を成す導電性細線を複数組み合わせて構成されたパターンからなるセンサーチャネルの一例について図2(b)に示す。 Further, the pattern of the sensor channel may be a pattern configured by combining a plurality of conductive thin wires forming a geometric figure. FIG. 2 (b) shows an example of a sensor channel having a pattern formed by combining a plurality of conductive thin lines forming a geometric figure.
 図2(b)の例において、センサーチャネル12は、四角形を成す複数の導電性細線13によって構成されている。センサーチャネル12のパターンは、四角形の2本の対角線の方向に、四角形を成す導電性細線13を二次元的に複数並設することによって構成されている。 In the example of FIG. 2B, the sensor channel 12 is composed of a plurality of thin conductive wires 13 that form a quadrangle. The pattern of the sensor channel 12 is configured by two-dimensionally arranging a plurality of conductive thin wires 13 forming a quadrangle in the direction of two diagonal lines of the quadrangle.
 センサーチャネル12を構成する導電性細線13の線幅は格別限定されないが、例えば50μm以下、20μm以下とすることができ、好ましくは10μm以下、7μm以下、更には5μm以下とすることである。導電性細線13の線幅を10μm以下にすることによって、導電性細線13及び該導電性細線13によって構成されるパターン(ここではメッシュパターン)からなるセンサーチャネル12が視認されにくくなる効果が得られる。導電性細線13の線幅の下限は格別限定されないが、安定した導電性を付与する観点では、例えば1μm以上とすることができる。 The line width of the conductive thin wire 13 constituting the sensor channel 12 is not particularly limited, but may be, for example, 50 μm or less, 20 μm or less, preferably 10 μm or less, 7 μm or less, and further 5 μm or less. By making the line width of the conductive thin wire 13 10 μm or less, it is possible to obtain an effect that the sensor channel 12 composed of the conductive thin wire 13 and a pattern (here, a mesh pattern) constituted by the conductive thin wire 13 is less visible. . The lower limit of the line width of the conductive thin wire 13 is not particularly limited, but can be set to, for example, 1 μm or more from the viewpoint of providing stable conductivity.
 図1に示したように、本実施形態において、センサー基材1はセンサーパターン部Sを両面に有している。即ち、センサー基材1は、基材11の両面にセンサーパターン部Sを構成する複数のセンサーチャネル12を備えている。これら両面のセンサーチャネル12は、基材11を介して対向している。本実施形態のように、1つの基材11の両面にセンサーパターン部Sを形成する場合は、基材を積層する工程を省略できる効果が得られる。また、後に詳述するように、片面にセンサーパターン部を有する基材を積層することによってセンサーパターン部Sを2層化することもできる。 As shown in FIG. 1, in this embodiment, the sensor substrate 1 has sensor pattern portions S on both sides. That is, the sensor base material 1 includes a plurality of sensor channels 12 that constitute the sensor pattern portion S on both surfaces of the base material 11. The sensor channels 12 on both sides face each other with the base material 11 interposed therebetween. When the sensor pattern portions S are formed on both surfaces of one base material 11 as in the present embodiment, an effect of omitting the step of stacking the base materials is obtained. Further, as will be described in detail later, the sensor pattern portion S can be made into two layers by laminating a substrate having a sensor pattern portion on one side.
 基材11の表面のセンサーチャネル12の長手方向は基材11の長辺(図1中、横方向に配向された辺)方向と平行である。また、基材11の表面のセンサーチャネル12は、基材11の短辺(図1中、縦方向に配向された辺)方向に複数並設されている。 The longitudinal direction of the sensor channel 12 on the surface of the base material 11 is parallel to the direction of the long side of the base material 11 (the side oriented in the lateral direction in FIG. 1). A plurality of sensor channels 12 on the surface of the base material 11 are arranged in parallel in the direction of the short side (the side oriented in the vertical direction in FIG. 1) of the base material 11.
 基材11の裏面のセンサーチャネル12の長手方向は基材11の短辺(図1中、縦方向に配向された辺)方向と平行である。また、基材11の裏面のセンサーチャネル12は、基材11の長辺(図1中、横方向に配向された辺)方向に複数並設されている。 The longitudinal direction of the sensor channel 12 on the back surface of the base material 11 is parallel to the direction of the short side (the side oriented in the vertical direction in FIG. 1) of the base material 11. In addition, a plurality of sensor channels 12 on the back surface of the base material 11 are arranged in parallel in the direction of the long side of the base material 11 (the side oriented in the lateral direction in FIG. 1).
 表面のセンサーチャネル12と、裏面のセンサーチャネル12とが、互いに交差する方向に配向されることで、センサーパターン部Sにおいて、XY座標系での位置検出が可能になる。 The sensor channel 12 on the front surface and the sensor channel 12 on the back surface are oriented in a direction crossing each other, so that the sensor pattern portion S can be detected in the XY coordinate system.
 ここでは基材11の表面に10本のセンサーチャネル12が並設され、基材11の裏面に15本のセンサーチャネル12が並設される場合について示しているが、これに限定されず、目的や用途等に応じて任意の本数のセンサーチャネル12を並設することができる。特にセンサーパターン部Sを大面積化する場合は、例えば、各面に20本以上、30本以上、更には40本以上のセンサーチャネル12を並設することができる。併設されるセンサーチャネル12の本数の上限は格別限定されないが、例えば500本以下とすることができる。 Here, a case where 10 sensor channels 12 are arranged in parallel on the surface of the base material 11 and 15 sensor channels 12 are arranged in parallel on the back surface of the base material 11 is shown, but the present invention is not limited to this. Any number of sensor channels 12 can be arranged side by side in accordance with the application or the like. In particular, when the area of the sensor pattern portion S is increased, for example, 20 or more, 30 or more, and further 40 or more sensor channels 12 can be arranged in parallel on each surface. The upper limit of the number of sensor channels 12 to be provided is not particularly limited, but may be 500 or less, for example.
 互いに隣接するセンサーチャネル12間の間隔αは格別限定されないが、例えば150μm以下、100μm以下、更には50μm以下まで小さくすることが好ましい。これにより、センサーチャネル12を密な状態で配置でき、センサー感度を向上できる。また、間隔αを、例えば30μm以下、更には25μm以下まで小さくすることも好ましい。これにより、センサー感度を向上できると共に、センサーチャネ12間の隙間(絶縁部)が視認されてしまうことを防止できる。間隔αの下限は、センサーチャネル12間を絶縁できるものであれば格別限定されないが、例えば5μm以上、10μm以上、更には15μm以上とすることで、センサーチャネル12間に埃等が付着しても絶縁状態を良好に保持できる。 The distance α between the adjacent sensor channels 12 is not particularly limited, but is preferably reduced to, for example, 150 μm or less, 100 μm or less, and further 50 μm or less. Thereby, the sensor channel 12 can be arranged in a dense state, and the sensor sensitivity can be improved. It is also preferable to reduce the interval α to, for example, 30 μm or less, and further to 25 μm or less. Thereby, the sensor sensitivity can be improved, and the gap (insulating part) between the sensor channels 12 can be prevented from being visually recognized. The lower limit of the distance α is not particularly limited as long as it can insulate between the sensor channels 12. However, for example, if the distance α is 5 μm or more, 10 μm or more, and further 15 μm or more, dust or the like may adhere between the sensor channels 12. Good insulation can be maintained.
 センサーチャネル12を基材11の一端(後に配線基材2が接続される接続部位)まで設けてもよいが、センサーチャネル12の端部と、基材11の一端との間には間隔βを設けることが好ましい。間隔βが設けられることによって、配線基材2が接続される接続部位である基材11の一端にセンサーチャネル12が直接露出することが回避され、意図しない短絡の発生が防止される。間隔βを設ける場合、その値は格別限定されず、例えば0.5mm~10mm、更には1mm~6mmとすることができる。 The sensor channel 12 may be provided up to one end of the base material 11 (a connection part to which the wiring base material 2 is connected later), but a gap β is provided between the end of the sensor channel 12 and one end of the base material 11. It is preferable to provide it. By providing the interval β, it is avoided that the sensor channel 12 is directly exposed to one end of the base material 11 which is a connection site to which the wiring base material 2 is connected, and an unintended short circuit is prevented. When the interval β is provided, the value is not particularly limited, and can be, for example, 0.5 mm to 10 mm, further 1 mm to 6 mm.
〔導体〕
 本実施形態において、センサー基板1は、センサーパターン部Sの外部に、センサーチャネル12の端部から基材11の一端まで伸びる導体14を備えている。基材11の一端は、後に配線基材2が接続される接続部位であり、この接続部位において複数の導体14は配線基材2の複数の配線22と電気的に接続される。
〔conductor〕
In the present embodiment, the sensor substrate 1 includes a conductor 14 extending from the end of the sensor channel 12 to one end of the substrate 11 outside the sensor pattern portion S. One end of the substrate 11 is a connection part to which the wiring substrate 2 is connected later, and the plurality of conductors 14 are electrically connected to the plurality of wirings 22 of the wiring substrate 2 at this connection part.
 本実施形態において、複数の導体14は、上述した間隔βに対応する領域に、センサーチャネル12の配列ピッチと等しい配列ピッチで設けられている。 In the present embodiment, the plurality of conductors 14 are provided in an area corresponding to the above-described interval β at an arrangement pitch equal to the arrangement pitch of the sensor channels 12.
 導体14は導電性材料からなり、センサーチャネル12とは異なる構造を有している。本実施形態において、導体14は、センサーチャネル12のチャネル幅より細く設けられている点で、センサーチャネル12と構造が異なっている。導体14がセンサーチャネル12と異なる構造を有する場合の例は、幅等の形状が異なる場合に限定されず、例えば、導体14がセンサーチャネル12とは異なる導電性材料によって形成されている場合や、導体14がセンサーチャネル12とは異なる抵抗値(例えばシート抵抗値)を有する場合等も含む。 The conductor 14 is made of a conductive material and has a structure different from that of the sensor channel 12. In this embodiment, the conductor 14 is different in structure from the sensor channel 12 in that the conductor 14 is provided narrower than the channel width of the sensor channel 12. An example of the case where the conductor 14 has a structure different from that of the sensor channel 12 is not limited to a case where the shape such as the width is different. For example, when the conductor 14 is formed of a conductive material different from that of the sensor channel 12, This includes the case where the conductor 14 has a resistance value (for example, a sheet resistance value) different from that of the sensor channel 12.
 本実施形態では導体14が1本の配線である場合について示しているが、これに限定されず、導体14は例えばセンサーチャネル12と同様のメッシュパターンであってもよい。また、メッシュパターンに代えて、例えば幾何学図形を成す導電性細線を複数組み合わせて構成されたパターン、ストライプパターン、ランダムパターン等の種々のパターンであってもよい。更に、導体は、パターンを有するものに限定されず、ベタ状に付与された導電性材料によって構成されてもよい。 In the present embodiment, the case where the conductor 14 is a single wiring is shown, but the present invention is not limited to this, and the conductor 14 may be a mesh pattern similar to the sensor channel 12, for example. Further, instead of the mesh pattern, for example, various patterns such as a pattern configured by combining a plurality of conductive thin lines forming a geometric figure, a stripe pattern, a random pattern, and the like may be used. Furthermore, a conductor is not limited to what has a pattern, You may be comprised with the electroconductive material provided to the solid shape.
 導体14は、何れの形態であっても、センサーチャネル12のチャネル幅より細く設けられていることが好ましい。これにより、配線基材2が接続される接続部位である基材11の一端に露出する導体14が、センサーチャネル12の幅より細いことによって、該一端にセンサーチャネル12を露出させる場合との対比で、意図しない短絡の発生が防止される。 The conductor 14 is preferably provided narrower than the channel width of the sensor channel 12 in any form. In this way, the conductor 14 exposed at one end of the base material 11 that is a connection site to which the wiring base material 2 is connected is thinner than the width of the sensor channel 12, so that the sensor channel 12 is exposed at the one end. Thus, the occurrence of an unintended short circuit is prevented.
〔配線基材〕
 図1に示すように、配線基材2は、基材21と、該基材21上に形成された複数の配線22とによって構成されている。複数の配線22は、センサー基材1が有する複数のセンサーチャネル12のそれぞれに電気的に接続される。複数の配線22によって、基材21上に引出配線パターン部Wが構成されている。
[Wiring substrate]
As shown in FIG. 1, the wiring substrate 2 includes a substrate 21 and a plurality of wirings 22 formed on the substrate 21. The plurality of wirings 22 are electrically connected to each of the plurality of sensor channels 12 included in the sensor substrate 1. A lead wiring pattern portion W is formed on the base material 21 by the plurality of wirings 22.
 本実施形態では、2つの配線基材2を用意している。一方の配線基材2は、センサー基材1の表面のセンサーチャネル12に電気的に接続される配線22を有している。他方の配線基材2は、センサー基材1の裏面のセンサーチャネル12に電気的に接続される配線22を有している。 In this embodiment, two wiring substrates 2 are prepared. One wiring substrate 2 has a wiring 22 that is electrically connected to the sensor channel 12 on the surface of the sensor substrate 1. The other wiring substrate 2 has a wiring 22 that is electrically connected to the sensor channel 12 on the back surface of the sensor substrate 1.
 配線基材2において、配線22の一端は基材21の一端まで伸び、該配線22の他端は基材21上の所定の位置(ここでは基材21の他端)まで伸びている。 In the wiring substrate 2, one end of the wiring 22 extends to one end of the substrate 21, and the other end of the wiring 22 extends to a predetermined position on the substrate 21 (here, the other end of the substrate 21).
 配線22の一端が配置される基材21の一端は、後にセンサー基材1が接続される接続部位であり、この接続部位において、複数の配線22は、それぞれセンサー基材1の複数の導体14に接続され、その結果として複数の導体14を介して複数のセンサーチャネル12と電気的に接続される。センサー基材1と配線基材2との接続部位において、センサー基材1の複数の導体14の配列ピッチと、配線基材2の複数の配線22の配列ピッチとは等しい関係にある。 One end of the base material 21 on which one end of the wiring 22 is disposed is a connection part to which the sensor base material 1 is connected later. In the connection part, the plurality of wirings 22 are respectively a plurality of conductors 14 of the sensor base material 1. As a result, the plurality of sensor channels 12 are electrically connected via the plurality of conductors 14. At the connection portion between the sensor base 1 and the wiring base 2, the arrangement pitch of the plurality of conductors 14 of the sensor base 1 and the arrangement pitch of the plurality of wirings 22 of the wiring base 2 are equal.
 一方、配線22の他端が配置される基材21の他端は、後に外部接続部品3が接続される接続部位であり、この接続部位において、配線22の他端は外部接続部品3が備える外部配線31に電気的に接続される。配線基材2と外部接続部品3との接続部位において、配線基材2の複数の配線22の配列ピッチと、外部接続部品3の複数の外部配線31との配列ピッチとは等しい関係にある。 On the other hand, the other end of the base material 21 on which the other end of the wiring 22 is disposed is a connection portion to which the external connection component 3 is connected later. The other end of the wiring 22 is provided in the external connection component 3 at this connection portion. It is electrically connected to the external wiring 31. At the connection site between the wiring substrate 2 and the external connection component 3, the arrangement pitch of the plurality of wirings 22 of the wiring substrate 2 and the arrangement pitch of the plurality of external wirings 31 of the external connection component 3 are equal.
 配線基材2と外部接続部品3との接続部位における複数の配線22の配列ピッチは、センサー基材1と配線基材2との接続部位における配列ピッチより小さく設けられている。また、配線基材2と外部接続部品3との接続部位においては、複数の配線22の線幅及び線間隔(Line&Space;L/Sともいう)も、センサー基材1と配線基材2との接続部位におけるL/Sより狭く集約されている。 The arrangement pitch of the plurality of wires 22 at the connection site between the wiring substrate 2 and the external connection component 3 is set smaller than the arrangement pitch at the connection site between the sensor substrate 1 and the wiring substrate 2. Moreover, in the connection site | part of the wiring base material 2 and the external connection component 3, the line | wire width and line space | interval (it is also called Line &Space; L / S) of the some wiring 22 are also the sensor base material 1 and the wiring base material 2. It is aggregated narrower than L / S at the connection site.
 つまり、本実施形態では、引出配線パターン部Wにおいて、複数の配線22の配列ピッチやL/Sは、センサー基材1と配線基材2との接続部位において比較的大きく、配線基材2と外部接続部品3との接続部位において比較的小さい関係にある。 That is, in the present embodiment, in the lead wiring pattern portion W, the arrangement pitch and L / S of the plurality of wirings 22 are relatively large at the connection portion between the sensor base material 1 and the wiring base material 2. There is a relatively small relationship at the connection site with the external connection component 3.
〔外部接続部品〕
 外部接続部品3は複数の外部配線31を有している。複数の外部配線31は、配線基材2の複数の配線22のそれぞれに接続される。
[External connection parts]
The external connection component 3 has a plurality of external wirings 31. The plurality of external wires 31 are connected to each of the plurality of wires 22 of the wiring substrate 2.
 外部接続部品3としては、例えば、配線基材2の複数の配線22を、複数の外部配線33を介して、図示しない外部回路に電気的に接続するための部品等が挙げられ、具体的には、例えばFFCやFPC等が挙げられる。 Examples of the external connection component 3 include components for electrically connecting the plurality of wirings 22 of the wiring substrate 2 to an external circuit (not shown) via the plurality of external wirings 33. Examples include FFC and FPC.
 このような接続によって、センサー基材1の複数のセンサーチャネル12からの信号を、配線基材2の複数の配線22、及び、外部接続部品3の複数の外部配線31を介して、外部回路に送信することができる。外部回路としては、例えば、タッチパネルセンサーを制御するための集積回路(IC)等が挙げられる。 By such connection, signals from the plurality of sensor channels 12 of the sensor substrate 1 are transferred to the external circuit via the plurality of wires 22 of the wiring substrate 2 and the plurality of external wires 31 of the external connection component 3. Can be sent. Examples of the external circuit include an integrated circuit (IC) for controlling the touch panel sensor.
〔配線基材と外部接続部品との接続〕
 図3に示すように、本実施形態では、センサー基材1と配線基材2とを接続する前に、配線基材2と外部接続部品3とを接続する。即ち、配線基材2の複数の配線22を、外部接続部品3の複数の外部配線31に電気的に接続するように、配線基材2と外部接続部品3とを接続する。
[Connection between wiring substrate and external connection parts]
As shown in FIG. 3, in this embodiment, before connecting the sensor base material 1 and the wiring base material 2, the wiring base material 2 and the external connection component 3 are connected. That is, the wiring substrate 2 and the external connection component 3 are connected so that the plurality of wirings 22 of the wiring substrate 2 are electrically connected to the plurality of external wirings 31 of the external connection component 3.
 配線基材2の配線22と、外部接続部品3の外部配線31とを電気的に接続する方法は格別限定されず、例えば導電性接着剤や異方性導電フィルム(ACF)等によって接続することができる。導電性接着剤は格別限定されず、例えば導電性粒子を含有させた接着剤等を用いることができる。 The method of electrically connecting the wiring 22 of the wiring substrate 2 and the external wiring 31 of the external connection component 3 is not particularly limited. For example, the wiring 22 is connected by a conductive adhesive, an anisotropic conductive film (ACF), or the like. Can do. The conductive adhesive is not particularly limited, and for example, an adhesive containing conductive particles can be used.
 配線基材2を外部接続部品3に接続する工程において、配線基材2には未だセンサー基材1が接続されていない。そのため、この工程での配線基材2の大きさ(寸法及び面積)は、センサー基材1が接続された後の大きさと較べて小さい。これにより、外部接続部品3を接続する際のハンドリング性を向上できる効果が得られる。この効果について以下に詳述する。 In the process of connecting the wiring substrate 2 to the external connection component 3, the sensor substrate 1 is not yet connected to the wiring substrate 2. Therefore, the size (size and area) of the wiring substrate 2 in this step is smaller than the size after the sensor substrate 1 is connected. Thereby, the effect which can improve the handleability at the time of connecting the external connection component 3 is acquired. This effect will be described in detail below.
 まず、基材に外部接続部品を接続する際には、該基材をステージ(例えばボンディングステージ)上で位置合わせすることによって、接続の精度を向上できる。例えば、ステージ上に設けられた突き当て部に基材の角部を角あてすることによって該基材における外部接続部品を接続すべき部位を該ステージ上の所定位置に位置合わせした後、外部接続部品を接続することができる。 First, when connecting an external connection component to a substrate, the accuracy of connection can be improved by aligning the substrate on a stage (for example, a bonding stage). For example, by aligning the portion of the base material to which the external connection component is to be connected to a predetermined position on the stage by applying a corner of the base material to the abutting portion provided on the stage, the external connection Parts can be connected.
 このとき、従来の技術では、センサーパターン部と配線部とが共に設けられた基材を用いるため、特にセンサーパターン部を大面積化しようとすると基材全体が大きくなり、ステージからはみ出して湾曲し、角あてしても位置合わせの精度が低下する問題を生じる。位置合わせの精度が低下すれば、基材と外部接続部品との間の電気的接続の不良を招く。あるいは、このような大きな基材の全体を載置できるステージを用意できたとしても、該ステージ上に大きな基材を平置きすることは専用の治具を用いても困難であり、製造効率が低下する問題がある。また、基材の両面に外部接続部品を接続する場合に該基材が大きいと反転作業等も難しくなり、製造効率が更に低下する。 At this time, since the conventional technology uses a base material on which both the sensor pattern portion and the wiring portion are provided, especially when the sensor pattern portion is increased in area, the entire base material becomes large and protrudes from the stage and curves. , Even if the corner is applied, there arises a problem that the accuracy of alignment is lowered. If the alignment accuracy is lowered, poor electrical connection between the base material and the external connection component is caused. Alternatively, even if a stage capable of placing such a large base material as a whole can be prepared, it is difficult to place a large base material on the stage even if a dedicated jig is used. There is a problem that decreases. In addition, when the external connection parts are connected to both surfaces of the base material, if the base material is large, a reversing operation or the like becomes difficult, and the manufacturing efficiency further decreases.
 これに対して、本実施形態では、センサー基材1が接続されていない分だけ配線基材2を小さくできるため、比較的小さいステージ上に配線基材2の全体を載置でき、配線基材2がステージからはみ出して湾曲することが防止され、位置合わせの精度を向上できる。位置合わせの精度が向上することによって、配線基材2と外部接続部品3との間の電気的接続を確実に行うことができる。また、専用の治具を用いなくても配線基材2をステージ上に容易に平置きすることができ、製造効率が向上する。更に、配線基材2の両面に外部接続部品3を接続する場合においても、反転作業等が容易になり、製造効率が更に向上する。特に本実施形態では、センサー基材1の表面のセンサーチャネル12に接続される配線基材2と、裏面のセンサーチャネル12に接続される配線基材2とを個別に用意しているため、1つの配線基材2の両面に外部接続部品3を接続する必要が必ずしもなく、ステージ上での反転作業自体を省略できることによって製造効率が更に向上する。 On the other hand, in this embodiment, since the wiring substrate 2 can be made smaller by the amount that the sensor substrate 1 is not connected, the entire wiring substrate 2 can be placed on a relatively small stage, and the wiring substrate It is possible to prevent 2 from protruding from the stage and bend, and to improve the alignment accuracy. By improving the alignment accuracy, the electrical connection between the wiring substrate 2 and the external connection component 3 can be reliably performed. Further, the wiring substrate 2 can be easily placed flat on the stage without using a dedicated jig, and the manufacturing efficiency is improved. Furthermore, also when connecting the external connection components 3 to both surfaces of the wiring substrate 2, the reversing operation and the like are facilitated, and the manufacturing efficiency is further improved. In particular, in the present embodiment, the wiring substrate 2 connected to the sensor channel 12 on the front surface of the sensor substrate 1 and the wiring substrate 2 connected to the sensor channel 12 on the back surface are separately prepared. It is not always necessary to connect the external connection components 3 to both surfaces of the two wiring bases 2, and the reversing operation itself on the stage can be omitted, thereby further improving the manufacturing efficiency.
 本実施形態のように複数の配線基材2を用いる場合は、各配線基材2について、センサー基材1との接続の前に、上述した外部接続部品3との接続を実施することが好ましい。 When using a plurality of wiring base materials 2 as in the present embodiment, it is preferable to connect each wiring base material 2 to the external connection component 3 described above before connection to the sensor base material 1. .
〔センサー基材と配線基材との接続〕
 次いで、図4に示すように、センサー基材1と配線基材2とを接続する。センサー基材1との接続に供される配線基材2には、上述したように、予め外部接続部品3が接続されている。
[Connection between sensor substrate and wiring substrate]
Next, as shown in FIG. 4, the sensor substrate 1 and the wiring substrate 2 are connected. As described above, the external connection component 3 is connected in advance to the wiring base material 2 provided for connection to the sensor base material 1.
 センサー基材1と配線基材2とを接続する際には、センサー基材1の一端と、配線基材2の一端とを突き合わせた状態で、センサー基材1のセンサーチャネル12と、配線基材2の配線22とを電気的に接続することができる。ここでは、複数のセンサーチャネル12と複数の配線22とが1対1に対応するようにセンサー基材1と配線基材2とを配置している。 When connecting the sensor base 1 and the wiring base 2, the sensor channel 12 of the sensor base 1 and the wiring base are connected in a state where one end of the sensor base 1 and one end of the wiring base 2 are abutted. The wiring 22 of the material 2 can be electrically connected. Here, the sensor base material 1 and the wiring base material 2 are arranged so that the plurality of sensor channels 12 and the plurality of wirings 22 correspond one-to-one.
 本実施形態では、センサー基材1と配線基材2との接続部位に、複数のセンサーチャネル12から伸びる複数の導体14と、該導体14と等しい数の複数の配線22とが、互いに等しいピッチで対向するように、センサー基材1と配線基材2とを互いに位置合わせしている。このとき、センサー基材1及び配線基材2の一方又は両方に、両基材を互いに位置合わせするためのマーカー(図示省略)が付与されていてもよい。 In the present embodiment, a plurality of conductors 14 extending from a plurality of sensor channels 12 and a plurality of wirings 22 having the same number as the conductors 14 are connected to the sensor base 1 and the wiring base 2 at equal pitches. The sensor substrate 1 and the wiring substrate 2 are aligned with each other so as to face each other. At this time, one or both of the sensor substrate 1 and the wiring substrate 2 may be provided with a marker (not shown) for aligning the two substrates with each other.
 センサーチャネル12と配線22との電気的な接続を確実にするために、接続部位に導電部材4を付与することは好ましいことである。 In order to ensure the electrical connection between the sensor channel 12 and the wiring 22, it is preferable to provide the conductive member 4 at the connection site.
 本実施形態のようにセンサーチャネル12に導体14が接続されている場合、導電部材4は、導体14及び配線22の両方に接触するように付与することが好ましい。導体14が省略され、センサーチャネル12がセンサー基材1の一端まで伸びている場合は、導電部材4は、センサーチャネル12及び配線22の両方に接触するように付与することができる。 When the conductor 14 is connected to the sensor channel 12 as in the present embodiment, the conductive member 4 is preferably applied so as to contact both the conductor 14 and the wiring 22. When the conductor 14 is omitted and the sensor channel 12 extends to one end of the sensor substrate 1, the conductive member 4 can be applied so as to contact both the sensor channel 12 and the wiring 22.
 導電部材4は、格別限定されず、例えば導電性ペースト(例えば金属ペースト)や導電性インク等が挙げられる。これらの付与方法は格別限定されず、例えばインクジェット法等の印刷法によって付与することができる。導電性ペーストや導電性インクは、乾燥及び又は硬化によって、導体14及び配線22の両方に接触した状態で固定できる。導電部材4の他の例については、後に詳述する。 The conductive member 4 is not particularly limited, and examples thereof include conductive paste (for example, metal paste) and conductive ink. These application methods are not particularly limited, and can be applied by a printing method such as an inkjet method. The conductive paste and the conductive ink can be fixed in a state of being in contact with both the conductor 14 and the wiring 22 by drying and / or curing. Other examples of the conductive member 4 will be described in detail later.
 本実施形態では、センサー基材1の両面にセンサーチャネル12が設けられているため、これら両面のセンサーチャネル12と、配線基材2の配線22とを電気的に接続するように、センサー基材1と配線基材2とが接続される。本実施形態では、センサー基材1の表面のセンサーチャネル12に対しては、表面に配線22が設けられた配線基材2の該配線22を電気的に接続し、センサー基材1の裏面のセンサーチャネル12に対しては、裏面に配線22が設けられた配線基材2の該配線22を電気的に接続することで、センサー基材1の両面のセンサーチャネル12と配線22とを電気的に接続している。 In this embodiment, since the sensor channel 12 is provided on both surfaces of the sensor base material 1, the sensor base material is electrically connected to the sensor channels 12 on both surfaces and the wiring 22 of the wiring base material 2. 1 and the wiring substrate 2 are connected. In the present embodiment, the wiring 22 of the wiring substrate 2 provided with the wiring 22 on the surface is electrically connected to the sensor channel 12 on the surface of the sensor substrate 1, and The sensor channel 12 is electrically connected to the sensor channel 12 on both sides of the sensor substrate 1 by electrically connecting the wire 22 of the wiring substrate 2 having the wiring 22 provided on the back surface. Connected to.
 上述したように、本実施形態では、引出配線パターン部Wにおいて、複数の配線22の配列ピッチやL/Sは、センサー基材1と配線基材2との接続部位において比較的大きく、配線基材2と外部接続部品3との接続部位において比較的小さい関係にある。この技術的意義について以下に説明する。 As described above, in the present embodiment, in the lead-out wiring pattern portion W, the arrangement pitch and L / S of the plurality of wirings 22 are relatively large at the connection portion between the sensor base 1 and the wiring base 2, and the wiring base The connection portion between the material 2 and the external connection component 3 is relatively small. This technical significance will be described below.
 本実施形態では、センサー基材1が接続されていない分だけ配線基材2を小さくできるため、配線基材2のハンドリング性が向上し、外部接続部品3の接続に際して配線基材2を高精度に位置合わせできる。そのため、狭額縁化のために複数の配線22の配列ピッチやL/Sを小さくしても、外部接続部品3の複数の外部配線31に対して電気的な接続を確実に行うことができる。 In this embodiment, since the wiring base material 2 can be reduced by the amount that the sensor base material 1 is not connected, the handling property of the wiring base material 2 is improved, and the wiring base material 2 is highly accurate when connecting the external connection component 3. Can be aligned. Therefore, even if the arrangement pitch or L / S of the plurality of wirings 22 is reduced for narrowing the frame, electrical connection to the plurality of external wirings 31 of the external connection component 3 can be reliably performed.
 一方、センサー基材1と配線基材2とを接続する際には、センサー基材1が大面積であるほどハンドリング性が低下し、位置合わせの精度も低下するが、上述したようにセンサー基材1と配線基材2との接続部位において複数の配線22の配列ピッチやL/Sが比較的大きいことによって、位置合わせの精度が低い状態でも位置ずれによる影響を軽減でき、センサー基材1の複数の導体14と配線基材2の複数の配線22との電気的な接続を確実に行うことができる。 On the other hand, when the sensor substrate 1 and the wiring substrate 2 are connected, the larger the area of the sensor substrate 1 is, the lower the handling property and the alignment accuracy are. Since the arrangement pitch and the L / S of the plurality of wirings 22 are relatively large at the connection portion between the material 1 and the wiring base material 2, the influence of the positional deviation can be reduced even when the positioning accuracy is low. Thus, the electrical connection between the plurality of conductors 14 and the plurality of wirings 22 of the wiring substrate 2 can be reliably performed.
 このようにして、センサーチャネル12で検出した信号を外部回路に送信するための経路を確実に形成できると共に、狭額縁化も達成できる。 In this way, a path for transmitting the signal detected by the sensor channel 12 to the external circuit can be surely formed, and a narrow frame can be achieved.
 本実施形態では、センサー基材1と配線基材2とを別体として用意しているため、以下に説明するように、歩留り向上の効果も得られる。 In this embodiment, since the sensor base material 1 and the wiring base material 2 are prepared as separate bodies, an effect of improving the yield can be obtained as described below.
 まず、従来の技術では、1つの基材上にセンサーパターン部と引出配線パターン部とを形成していたが、この場合、センサーパターン部が良品であっても、引出配線パターン部が不良品であれば、基材全体として不良品になってしまい、形成コストが比較的高いセンサーパターン部を無駄にしてしまう。センサーパターン部が大面積である場合、コストの損失は更に大きいものになる。 First, in the conventional technology, the sensor pattern portion and the lead wiring pattern portion are formed on one base material. In this case, even if the sensor pattern portion is a good product, the lead wiring pattern portion is a defective product. If it exists, it will become inferior goods as the whole base material, and the sensor pattern part with a comparatively high formation cost will be wasted. When the sensor pattern portion has a large area, the cost loss is further increased.
 これに対して、本実施形態では、例えば複数のセンサー基材1と複数の配線基材2とを用意しておき、これらの中から良品同士を選択して接続できる。これにより、不良品の発生を防止して、歩留りを向上できる効果が得られる。 In contrast, in the present embodiment, for example, a plurality of sensor base materials 1 and a plurality of wiring base materials 2 are prepared, and non-defective products can be selected and connected from these. Thereby, it is possible to prevent the generation of defective products and improve the yield.
 歩留り向上の効果を更に好適に発揮する観点で、センサー基材1と配線基材2とを接続する前に、センサー基材1及び配線基材2の一方又は両方の導通状態の検査を行うことが好ましい。これにより、導通状態が良好な良品を確実に選択できるため、歩留りを更に向上できる。 Before connecting the sensor base material 1 and the wiring base material 2 in order to achieve the effect of improving the yield more suitably, the conductive state of one or both of the sensor base material 1 and the wiring base material 2 is inspected. Is preferred. As a result, a non-defective product having a good conduction state can be selected with certainty, and the yield can be further improved.
 導通状態の検査は格別限定されず、公知の手法を用いることができ、例えば、断線が生じていないことの確認検査や、短絡が生じていないことの確認検査等が挙げられる。これらの検査は、例えば、テスターを利用した抵抗値測定等によって行うことができる。テスターを利用した抵抗値測定においては、図面データをもとに測定端子を走査して断線やショートを自動測定する公知の装置を用いることができる。これらの検査は、センサー基材1及び配線基材2の両方について実施することが歩留りを更に向上する観点で好ましい。 The inspection of the conduction state is not particularly limited, and a known method can be used, and examples thereof include a confirmation inspection that no disconnection has occurred and a confirmation inspection that a short circuit has not occurred. These inspections can be performed by, for example, resistance value measurement using a tester. In resistance value measurement using a tester, a known device that automatically measures disconnection or short-circuit by scanning a measurement terminal based on drawing data can be used. These inspections are preferably performed on both the sensor substrate 1 and the wiring substrate 2 from the viewpoint of further improving the yield.
 配線基材2の導通状態の検査は、該配線基材2に外部接続部品3を接続した後に実施してもよいが、該配線基材2に外部接続部品3を接続する前に実施することが好ましい。外部接続部品3を接続する前に配線基材2の良品/不良品を把握しておくことによって、外部接続部品3を不良品の配線基材2に接続して無駄にすることを回避できる。 The inspection of the conductive state of the wiring substrate 2 may be performed after the external connection component 3 is connected to the wiring substrate 2, but should be performed before the external connection component 3 is connected to the wiring substrate 2. Is preferred. By grasping the non-defective product / defective product of the wiring substrate 2 before connecting the external connection component 3, it is possible to avoid wasting the external connection component 3 by connecting it to the defective wiring substrate 2.
 また、センサー基材1と配線基材2とを接続する前に、センサー基材1及び配線基材2の一方又は両方を裁断加工することが好ましい。裁断加工は基材から不要部分を切除して、製品に適合する所定の外形寸法となるように実施することができる。センサー基材1と配線基材2とが別体であることによって、一体である場合との対比で、裁断加工におけるハンドリング性も向上し、高精度な裁断を実現できる。 In addition, it is preferable to cut one or both of the sensor base 1 and the wiring base 2 before connecting the sensor base 1 and the wiring base 2. The cutting process can be carried out so that an unnecessary part is cut from the base material to obtain a predetermined external dimension suitable for the product. Since the sensor substrate 1 and the wiring substrate 2 are separate, the handling property in the cutting process is improved in comparison with the case where the sensor substrate 1 and the wiring substrate 2 are integrated, and high-precision cutting can be realized.
2.第2実施形態
 以上の説明では、センサー基材1の表面に設けられる複数のセンサーチャネル12に対して1つの配線基材2を用い、センサー基材1の裏面に設けられる複数のセンサーチャネル12に対しても1つの配線基材2を用いる場合について主に示したが、これに限定されない。センサー基材1の表面に設けられる複数のセンサーチャネル12に対して、あるいはセンサー基材1の裏面に設けられる複数のセンサーチャネル12に対して、複数の配線基材2を用いてもよい。
2. Second Embodiment In the above description, a single wiring substrate 2 is used for a plurality of sensor channels 12 provided on the surface of the sensor substrate 1, and a plurality of sensor channels 12 provided on the back surface of the sensor substrate 1 are used. In contrast, the case of using one wiring substrate 2 is mainly shown, but the present invention is not limited to this. A plurality of wiring substrates 2 may be used for a plurality of sensor channels 12 provided on the front surface of the sensor substrate 1 or for a plurality of sensor channels 12 provided on the back surface of the sensor substrate 1.
 図5に示すように、第2実施形態では、センサー基材1の表面に設けられる複数のセンサーチャネル12に対して2つの配線基材2を用い、センサー基材1の裏面に設けられる複数のセンサーチャネル12に対しても2つの配線基材2を用いている。 As shown in FIG. 5, in the second embodiment, two wiring bases 2 are used for a plurality of sensor channels 12 provided on the surface of the sensor base 1, and a plurality of bases are provided on the back surface of the sensor base 1. Two wiring substrates 2 are also used for the sensor channel 12.
 各配線基材2は、接続対象である複数のセンサーチャネル12の並設方向に分割された状態であるため、第1実施形態との対比で更に小さくなり、外部接続部品3との接続時のハンドリング性や、裁断加工におけるハンドリング性などが更に向上する。センサー基材1が大きくなっても、配線基材2の分割数を増やすことで、該配線基材2を小さく維持できる。 Since each wiring base material 2 is in a state of being divided in the direction in which the plurality of sensor channels 12 to be connected are juxtaposed, the wiring base material 2 is further reduced in comparison with the first embodiment, and is connected to the external connection component 3. The handling properties and handling properties in the cutting process are further improved. Even if the sensor substrate 1 becomes large, the wiring substrate 2 can be kept small by increasing the number of divisions of the wiring substrate 2.
 また、各配線基材2には、接続対象である複数のセンサーチャネル12のうちの一部のセンサーチャネル12に対応する一部の配線22が設けられればよい。つまり、配線基材2に設けられる配線22の数を少なくできるため、複数の配線22を並設するために必要となるスペースも小さくなる。これにより、配線基材2を、該配線基材2の接続対象である複数のセンサーチャネル12の並設方向に小さくできるだけでなく、該並設方向と直交する方向(センサーチャネル12の長手方向)にも小さくできる。配線基材2が、センサーチャネル12の長手方向に小さくなることで、ハンドリング性が更に向上するだけでなく、更なる狭額縁化を達成することもできる。 In addition, each wiring substrate 2 may be provided with a part of the wirings 22 corresponding to a part of the sensor channels 12 among the plurality of sensor channels 12 to be connected. That is, since the number of wirings 22 provided on the wiring substrate 2 can be reduced, the space required for arranging a plurality of wirings 22 in parallel is also reduced. Thereby, not only the wiring base material 2 can be reduced in the juxtaposition direction of the plurality of sensor channels 12 to which the wiring base material 2 is connected, but also the direction orthogonal to the juxtaposition direction (longitudinal direction of the sensor channel 12). Can also be small. Since the wiring base material 2 becomes smaller in the longitudinal direction of the sensor channel 12, not only the handling property is further improved, but also a narrower frame can be achieved.
 図5の例では、分割された複数の配線基材2が、センサーチャネル12の一端側に並設される場合について示したが、これに限定されない。例えば、図6の変形例に示すように、分割された複数の配線基材2を、センサーチャネル12の一端側と他端側とに交互に配置するように、センサー基材1に接続してもよい。 In the example of FIG. 5, the case where the plurality of divided wiring base materials 2 are arranged in parallel on one end side of the sensor channel 12 is shown, but the present invention is not limited to this. For example, as shown in the modification of FIG. 6, the plurality of divided wiring base materials 2 are connected to the sensor base material 1 so as to be alternately arranged on one end side and the other end side of the sensor channel 12. Also good.
 このように、配線基材2の分割によって、配線基材2の配置(センサー基材1に対する取り付け位置)の自由度が向上する。これにより、タッチパネルセンサーが組み込まれるデバイスの設計に合わせて、最適な組み込みが実現されるように、タッチパネルセンサーをより自由度高く設計することができる。 As described above, the division of the wiring substrate 2 improves the degree of freedom of the arrangement of the wiring substrate 2 (attachment position with respect to the sensor substrate 1). Thereby, according to the design of the device in which the touch panel sensor is incorporated, the touch panel sensor can be designed with a higher degree of freedom so that the optimum incorporation is realized.
3.第3実施形態
 以上の説明では、1つのタッチパネルセンサーを製造する際に、1つのセンサー基材1を用いる場合について主に示したが、これに限定されない。以下に説明する第3実施形態では、1つのタッチパネルセンサーを製造する際に、複数のセンサー基材1を用いる場合について示す。
3. 3rd Embodiment In the above description, when manufacturing one touch panel sensor, it showed mainly about the case where one sensor base material 1 is used, However, It is not limited to this. In 3rd Embodiment demonstrated below, when manufacturing one touch-panel sensor, it shows about the case where the some sensor base material 1 is used.
 図7に示すように、複数(図示の例では2つ)のセンサー基材1を用いる場合は、複数のセンサー基材1を、センサーチャネル12同士を互いに電気的に接続するように、連結することが好ましい。 As shown in FIG. 7, when a plurality (two in the illustrated example) of sensor bases 1 are used, the plurality of sensor bases 1 are coupled so that the sensor channels 12 are electrically connected to each other. It is preferable.
 図7の例では、センサー基材1の表裏のセンサーチャネル12のうちの一方の面(ここでは裏面)の複数のセンサーチャネル12を、該センサーチャネル12の長手方向(図7中、縦方向)に延長するように、各センサー基材1の複数のセンサーチャネル12同士を互いに電気的に接続している。このようにして、タッチパネルセンサーにおけるセンシングに有効な面積を拡大することができる。 In the example of FIG. 7, a plurality of sensor channels 12 on one side (here, the back side) of the sensor channels 12 on the front and back sides of the sensor substrate 1 are arranged in the longitudinal direction of the sensor channel 12 (vertical direction in FIG. 7). The plurality of sensor channels 12 of each sensor base material 1 are electrically connected to each other so as to extend. In this way, the effective area for sensing in the touch panel sensor can be expanded.
 複数のセンサー基材1を用いる場合は、まず、複数のセンサー基材1を連結し、次いで、該複数のセンサー基材1に対して、外部接続部品3が予め接続された配線基材3を接続することができる。 When using a plurality of sensor substrates 1, first, the plurality of sensor substrates 1 are connected, and then a wiring substrate 3 in which external connection components 3 are connected in advance to the plurality of sensor substrates 1. Can be connected.
 あるいは、連結される前のセンサー基材1に対して、外部接続部品3が予め接続された配線基材3を接続し、次いで、複数のセンサー基材1を連結することができる。 Alternatively, the wiring base material 3 to which the external connection component 3 is connected in advance can be connected to the sensor base material 1 before being connected, and then a plurality of sensor base materials 1 can be connected.
 複数のセンサー基材1のセンサーチャネル12同士を互いに電気的に接続する際には、センサーチャネル12同士を直接接続してもよいが、センサーチャネル12と配線22との接続に関して説明したものと同様の導体14を介して接続することが好ましい。導体14を介して接続することで、短絡等を防止することができる。 When the sensor channels 12 of the plurality of sensor substrates 1 are electrically connected to each other, the sensor channels 12 may be directly connected to each other, but the same as described for the connection between the sensor channel 12 and the wiring 22 It is preferable to connect via the conductor 14. By connecting through the conductor 14, a short circuit or the like can be prevented.
 導体14を設ける場合は、図7に示すように、互いに接続されるセンサー基材1の両方のセンサー基材1のセンサーチャネル12に導体14を設けることができる。この場合、両方の導体14に接触するように、導電部材4を付与することで、電気的な接続を確実に行うことができる。導電部材4についても、センサーチャネル12と配線22との接続に関して説明したものと同様のものを用いることができる。 When providing the conductor 14, as shown in FIG. 7, the conductor 14 can be provided in the sensor channel 12 of both sensor base materials 1 of the sensor base materials 1 connected to each other. In this case, the electrical connection can be reliably performed by providing the conductive member 4 so as to contact both the conductors 14. As the conductive member 4, the same material as described for the connection between the sensor channel 12 and the wiring 22 can be used.
 また、図示しないが、互いに接続されるセンサー基材のうち一方のセンサー基材のセンサーチャネルのみに導体を設けることもできる。この場合、一方のセンサー基材の導体と、他方のセンサー基材のセンサーチャネルとに接触するように、導電部材を付与することで、電気的な接続を確実に行うことができる。 Although not shown, a conductor may be provided only in the sensor channel of one of the sensor substrates connected to each other. In this case, electrical connection can be reliably performed by providing the conductive member so as to contact the conductor of one sensor base and the sensor channel of the other sensor base.
4.第4実施形態
 以上の説明では、複数の配線基材2をセンサー基材1に接続した状態で、外部接続部品3が表面に配置される配線基材2と、外部接続部品3が裏面に配置される配線基材2とが共存している場合について主に示したが、これに限定されない。以下に説明する第4実施形態では、複数の配線基材2をセンサー基材1に接続した状態で、複数の配線基材2のすべてに対して外部接続部品3が同一面側に配置される場合について説明する。
4). 4th Embodiment In the above description, in the state which connected the some wiring base material 2 to the sensor base material 1, the wiring base material 2 by which the external connection component 3 is arrange | positioned on the surface, and the external connection component 3 are arrange | positioned on the back surface Although mainly shown about the case where the wiring base material 2 to be coexisted, it is not limited to this. In the fourth embodiment described below, the external connection components 3 are arranged on the same surface side with respect to all of the plurality of wiring substrates 2 in a state where the plurality of wiring substrates 2 are connected to the sensor substrate 1. The case will be described.
 図8に示すように、センサー基材1の表面のセンサーチャネル12に電気的に接続される配線基材2の配線22は、該配線基材2の表面に配置されているため、該配線基材2に接続される外部接続部品3は、該配線基材2の表面に配置される。 As shown in FIG. 8, since the wiring 22 of the wiring base 2 that is electrically connected to the sensor channel 12 on the surface of the sensor base 1 is disposed on the surface of the wiring base 2, the wiring base 2 The external connection component 3 connected to the material 2 is disposed on the surface of the wiring substrate 2.
 一方、センサー基材1の裏面のセンサーチャネル12に電気的に接続される配線基材2の配線22は、該配線基材2を貫通するように設けられたスルーホール23を介して、該配線基材22の裏面から表面に引き出されている。これにより、該配線基材2に接続される外部接続部品3も、該配線基材2の表面に配置される。 On the other hand, the wiring 22 of the wiring base 2 that is electrically connected to the sensor channel 12 on the back surface of the sensor base 1 is connected to the wiring via a through-hole 23 provided so as to penetrate the wiring base 2. It is pulled out from the back surface of the base material 22 to the front surface. Thereby, the external connection component 3 connected to the wiring substrate 2 is also arranged on the surface of the wiring substrate 2.
 その結果、本実施形態においては、複数の配線基材2をセンサー基材1に接続した状態で、複数の配線基材2のすべてに対して外部接続部品3が同一面側に配置される。 As a result, in the present embodiment, the external connection components 3 are arranged on the same surface side with respect to all of the plurality of wiring substrates 2 in a state where the plurality of wiring substrates 2 are connected to the sensor substrate 1.
 本実施形態では、配線基材の一方の面から他方の面に配線を引き出すために、基材を貫通するスルーホールを用いる場合について示したが、これに限定されず、公知の方法を用いることができる。例えばスルーホールに代えて配線基材の端面を切り欠くように設けられた半割り状スルーホール等を用いてもよい。また、配線基材の端面において該配線基材の一方の面から他方の面に配線を折り返すようにしてもよい。 In this embodiment, in order to draw out wiring from one surface of the wiring substrate to the other surface, the case of using a through hole penetrating the substrate is shown, but the present invention is not limited to this, and a known method is used. Can do. For example, a half-shaped through hole provided so as to cut out the end face of the wiring substrate may be used instead of the through hole. Further, the wiring may be folded back from one surface of the wiring substrate to the other surface at the end surface of the wiring substrate.
 本実施形態によれば、複数の配線基材に対して同一面側から外部接続部品を接続した後、各配線基材に反転作業等を行うことなくセンサー基材を接続することができる。そのため、製造工程を簡略化でき、生産効率を向上することができる。 According to this embodiment, after connecting external connection components from the same surface side to a plurality of wiring substrates, the sensor substrates can be connected to each wiring substrate without performing a reversal operation or the like. Therefore, the manufacturing process can be simplified and the production efficiency can be improved.
 また、複数の配線基材のすべてに対して外部接続部品が同一面側に配置されることによって、タッチパネルセンサーをデバイスに組込み易くなり、また組み込み時のボンディング等の作業も容易に行うことができる。 In addition, by arranging the external connection parts on the same surface for all of the plurality of wiring substrates, it becomes easy to incorporate the touch panel sensor into the device, and it is also possible to easily perform operations such as bonding at the time of incorporation. .
5.導電部材の他の例
 以上の説明では、導電部材4を導電性ペーストや導電性インクとして付与する場合について主に示したが、これに限定されない。以下に、図9~図11を参照して、導電部材の他の例について説明する。
5). Other Examples of Conductive Member In the above description, the case where the conductive member 4 is applied as a conductive paste or conductive ink is mainly shown, but the present invention is not limited to this. Hereinafter, another example of the conductive member will be described with reference to FIGS.
 図9の例では、図9(a)に示すように、シート状の支持体41と該支持体41上に支持された導電部材4とからなるシート状体を複数(この例では4つ)用いる。 In the example of FIG. 9, as shown in FIG. 9A, a plurality of (four in this example) sheet-like bodies each including a sheet-like support body 41 and a conductive member 4 supported on the support body 41 are provided. Use.
 支持体41は格別限定されず、例えばセンサー基材の基材として例示したものを用いることができる。導電部材4は、センサーチャネル12と同様に、メッシュ状に配置された複数の導電性細線によって構成されている。 The support 41 is not particularly limited, and for example, those exemplified as the base material of the sensor base material can be used. Similar to the sensor channel 12, the conductive member 4 is composed of a plurality of conductive thin wires arranged in a mesh shape.
 図9(b)に示すように、センサー基材1と配線基材2との間の接続部位を挟んで対向する導体14と配線22とに対して導電部材4が接触するように、該接続部位上に導電部材4を重ね合わせる。導電部材4は、例えば導電性接着剤等を用いることによって、接続部位に固定できる。 As shown in FIG. 9B, the connection is made so that the conductive member 4 comes into contact with the conductor 14 and the wiring 22 facing each other across the connection portion between the sensor base 1 and the wiring base 2. The conductive member 4 is overlaid on the part. The conductive member 4 can be fixed to the connection site by using, for example, a conductive adhesive.
 図10の例では、図10(a)に示すように、1つの支持体41と該支持体41上に支持された複数(この例では4つ)の導電部材4とからなるシート状体を用いる。 In the example of FIG. 10, as shown in FIG. 10A, a sheet-like body composed of one support body 41 and a plurality of (four in this example) conductive members 4 supported on the support body 41 is provided. Use.
 図10(b)に示すように、センサー基材1と配線基材2との間の接続部位を挟んで対向する導体14と配線22とに対して導電部材4が接触するように、該接続部位上に導電部材4を重ね合わせる。複数の導電部材4は、意図しない配線と接触しないように、複数の導体14あるいは複数の配線22と等しいピッチで支持体41上に配置されている。 As shown in FIG. 10B, the connection is made so that the conductive member 4 comes into contact with the conductor 14 and the wiring 22 facing each other across the connection portion between the sensor base 1 and the wiring base 2. The conductive member 4 is overlaid on the part. The plurality of conductive members 4 are arranged on the support body 41 at the same pitch as the plurality of conductors 14 or the plurality of wirings 22 so as not to contact unintended wirings.
 図10の例においても、導電部材4の重ね合わせに際しては、例えば導電性接着剤等を用いることができる。導電性接着剤は、支持体41上の導電部材4ごとに塗布範囲を画定して用いることができる。また、支持体41として粘着テープを用いて、導電部材4を重ね合わせてもよい。 Also in the example of FIG. 10, for example, a conductive adhesive or the like can be used when the conductive members 4 are overlapped. The conductive adhesive can be used by defining an application range for each conductive member 4 on the support 41. Alternatively, the conductive member 4 may be superposed using an adhesive tape as the support 41.
 図11の例においても、図11(a)に示すように、1つの支持体41と該支持体41上に支持された複数(この例では4つ)の導電部材4とからなるシート状体を用いる。 Also in the example of FIG. 11, as shown in FIG. 11A, a sheet-like body including one support body 41 and a plurality (four in this example) of conductive members 4 supported on the support body 41. Is used.
 この例では、支持体41は、複数のセンサーチャネル12の一部又は全部を被覆可能な面積を有している。支持体41は、例えばセンサーチャネル12を保護するためのカバー層等であり得る。また、支持体41は、例えばセンサーチャネル12上に画像投影面(スクリーン)を形成するための白色層であり得る。白色層としては、例えば白色顔料を分散させた樹脂層等を用いることができる。 In this example, the support body 41 has an area capable of covering a part or all of the plurality of sensor channels 12. The support 41 can be, for example, a cover layer for protecting the sensor channel 12. The support 41 can be a white layer for forming an image projection surface (screen) on the sensor channel 12, for example. As the white layer, for example, a resin layer in which a white pigment is dispersed can be used.
 センサーチャネル3上にスクリーンを形成することによって、該スクリーンに、図示しない画像投影装置(プロジェクター)からの画像を投影して表示できる。このようにして、センサー機能とスクリーン機能とを併せ持つセンサーフィルム(例えばタッチスクリーン)を構成することができる。 By forming a screen on the sensor channel 3, an image from an image projection device (projector) (not shown) can be projected and displayed on the screen. In this way, a sensor film (for example, a touch screen) having both a sensor function and a screen function can be configured.
 図11(b)に示すように、センサー基材1と配線基材2との間の接続部位を挟んで対向する導体14と配線22とに対して導電部材4が接触するように、該接続部位上に導電部材4を重ね合わせる。この状態で、支持体41は、複数のセンサーチャネル12の一部又は全部を被覆することができる。 As shown in FIG. 11B, the connection is made so that the conductive member 4 comes into contact with the conductor 14 and the wiring 22 facing each other across the connection portion between the sensor base 1 and the wiring base 2. The conductive member 4 is overlaid on the part. In this state, the support body 41 can cover a part or all of the plurality of sensor channels 12.
 図11(b)に示すように、基材8によって、センサーチャネル12だけでなく、配線22も被覆して保護できる。配線の末端は、外部接続部品との接続等のために、支持体41から露出させることができる。 As shown in FIG. 11B, the substrate 8 can cover and protect not only the sensor channel 12 but also the wiring 22. The end of the wiring can be exposed from the support body 41 for connection with an external connection component or the like.
 図9~図11の例では、支持体上に支持される導電部材が複数の導電性細線によって構成される場合について示したが、これに限定されない。導電部材は支持体上にベタ状に形成されていてもよい。 9 to 11 show the case where the conductive member supported on the support is constituted by a plurality of conductive thin wires, but the present invention is not limited to this. The conductive member may be formed in a solid shape on the support.
 図9~図11の例では、導電部材を支持体上に支持する場合について説明したが、導電部材が例えば金属箔等からなり十分な強度を有するような場合は、支持体を省略してもよい。また、導電部材として、導電性不織布を用いてもよい。 In the examples of FIGS. 9 to 11, the case where the conductive member is supported on the support has been described. However, when the conductive member is made of, for example, a metal foil and has sufficient strength, the support may be omitted. Good. Moreover, you may use a conductive nonwoven fabric as a conductive member.
 以上に説明した導電部材は、図7に示したようなセンサーチャネルとセンサーチャネルとの電気的な接続に際しても好ましく用いることができる。 The conductive member described above can be preferably used for electrical connection between the sensor channel and the sensor channel as shown in FIG.
6.タッチパネルセンサー基材セット
 本発明のタッチパネルセンサー基材セットは、タッチパネルセンサーを構成するために用いることができ、以上に説明した少なくとも1つのセンサー基材と少なくとも1つの配線基材とからなり、該配線基材が外部接続部品と接続されている。
6). Touch panel sensor base material set The touch panel sensor base material set of the present invention can be used to constitute a touch panel sensor, and includes at least one sensor base material and at least one wiring base material described above. The base material is connected to the external connection component.
 かかるタッチパネルセンサー基材セットを用いれば、センサー基材のセンサーチャネルと、配線基材の配線とが電気的に接続されるように、センサー基材と配線基材とを接続することで、タッチパネルセンサーを製造することができる。 If such a touch panel sensor base material set is used, the sensor base material and the wiring base material are connected so that the sensor channel of the sensor base material and the wiring of the wiring base material are electrically connected. Can be manufactured.
 また、配線基材に外部接続部品を接続する際のハンドリング性が向上するため、配線基材の配線と外部接続部品の外部配線との電気的な接続が確実なものとなる。 In addition, since the handleability when connecting the external connection component to the wiring substrate is improved, the electrical connection between the wiring of the wiring substrate and the external wiring of the external connection component is ensured.
 更に、センサー基材及び配線基材の各々について、導通異常のない良品同士を選択して接続できるため、歩留りも向上できる効果が得られる。 Furthermore, for each of the sensor base material and the wiring base material, it is possible to select and connect non-defective products with no conduction abnormality, so that an effect of improving the yield can be obtained.
 タッチパネルセンサー基材セットは、上述した導電部材を更に含んでもよい。これにより、センサーチャネルと配線との電気的な接続が良好なタッチパネルセンサーを効率的に製造することができる。 The touch panel sensor base material set may further include the above-described conductive member. Thereby, a touch panel sensor with good electrical connection between the sensor channel and the wiring can be efficiently manufactured.
7.その他
 以上の説明では、配線基材と外部接続部品とを接続する段階で、既にセンサー基材が用意されている場合について主に説明したが、これに限定されない。例えば、配線基材と外部接続部品とを接続した後に、センサー基材を用意してもよい。
7). Others In the above description, the case where the sensor base material is already prepared at the stage of connecting the wiring base material and the external connection component has been mainly described, but the present invention is not limited to this. For example, the sensor base material may be prepared after connecting the wiring base material and the external connection component.
 以上の説明では、センサーチャネルの2つの端部のうちの一端部に導体が設けられる場合について主に示したが、これに限定されない。例えば、センサーチャネルの2つの端部の両方(一端部及び他端部)に導体が設けられてもよい。センサーチャネルの2つの端部の両方に導体が設けられる場合は、センサー基材の両側に配線基材を接続することができる。この場合、センサーチャネルの2つの端部の両方に設けられた導体を、各配線基材の配線と電気的に接続することができる。また、導体が省略される場合においても、センサー基材の両側に配線基材を接続することができる。この場合、センサーチャネルの2つの端部を、各配線基材の配線と電気的に接続することができる。 In the above description, the case where the conductor is provided at one end of the two ends of the sensor channel is mainly shown, but the present invention is not limited to this. For example, a conductor may be provided at both of the two ends (one end and the other end) of the sensor channel. If conductors are provided at both of the two ends of the sensor channel, a wiring substrate can be connected to both sides of the sensor substrate. In this case, the conductors provided at both of the two ends of the sensor channel can be electrically connected to the wiring of each wiring substrate. Even when the conductor is omitted, the wiring substrate can be connected to both sides of the sensor substrate. In this case, the two ends of the sensor channel can be electrically connected to the wiring of each wiring substrate.
 以上の説明において、センサー基材と配線基材とは個別に製造されたものであってもよいし、センサーパターン部と引出配線パターン部とが形成された1つの基材を分割することによって製造されたものであってもよい。まず、センサー基材と配線基材とを個別に製造する場合は、センサーパターン部と引出配線パターン部とを有する1つの基材との対比で、各基材が小さいため、センサーパターン部や引出配線パターン部を形成する際のハンドリング性が向上する。ハンドリング性が向上することで、センサーパターン部や引出配線パターン部を高精度に形成することができる。一方、センサーパターン部と引出配線パターン部とが形成された1つの基材を分割する場合は、例えば、該1つの基材を刃物等で切断して、センサーパターン部を有する少なくとも1つのセンサー基材と、引出配線パターン部を有する少なくとも1つの配線基材とに分割することができる。この方法によれば、センサー基材と配線基材との接続に際して、各基材の切断ライン同士を再接続できる。切断時の切断ラインが曲がることがあっても各基材の切断ライン同士は互いに噛み合う関係にあるため、再接続時に寸法ずれや位置ずれが生じ難く、断線や短絡を防止できる。また、1つの基材上にセンサーパターン部や引出配線パターン部を形成する際に加熱等によって該基材が変形(膨張、収縮、湾曲等)しても、切断後の各基材の切断ライン同士は噛み合うものとなるため、再接続時に寸法ずれや位置ずれが生じ難く、断線や短絡を防止できる。 In the above description, the sensor base material and the wiring base material may be separately manufactured, or manufactured by dividing one base material on which the sensor pattern portion and the lead wiring pattern portion are formed. It may be what was done. First, when the sensor substrate and the wiring substrate are manufactured separately, each substrate is small in comparison with one substrate having the sensor pattern portion and the lead wiring pattern portion. Handling property when forming the wiring pattern portion is improved. By improving the handleability, the sensor pattern portion and the lead wiring pattern portion can be formed with high accuracy. On the other hand, when dividing one base material on which the sensor pattern portion and the lead-out wiring pattern portion are formed, for example, the one base material is cut with a blade or the like, and at least one sensor base having the sensor pattern portion is formed. It can be divided into a material and at least one wiring substrate having a lead wiring pattern portion. According to this method, when the sensor substrate and the wiring substrate are connected, the cutting lines of each substrate can be reconnected. Even if the cutting line at the time of cutting may be bent, the cutting lines of the respective base materials are in meshing relationship with each other, so that dimensional deviation and positional deviation are unlikely to occur during reconnection, and disconnection and short circuit can be prevented. Moreover, even when the base material is deformed (expanded, shrunk, curved, etc.) by heating or the like when forming the sensor pattern part or the lead wiring pattern part on one base material, the cutting line of each base material after cutting Since they are meshed with each other, dimensional deviation and positional deviation hardly occur during reconnection, and disconnection and short circuit can be prevented.
 以上の説明では、センサー基材がセンサーパターン部を両面に有している場合について主に示したが、これに限定されない。センサー基材は、センサーパターン部を片面に有するものであってもよい。また、片面にセンサーパターン部を有するセンサー基材を積層することによってセンサーパターン部を2層構造にする工程を更に有してもよい。このようにして2層構造を成すセンサーパターン部は、上述した両面のセンサーパターン部と同様に、XY座標系での位置検出を好適に行うことができる。 In the above description, the case where the sensor substrate has sensor pattern portions on both sides is mainly shown, but the present invention is not limited to this. The sensor substrate may have a sensor pattern part on one side. Moreover, you may further have the process of making a sensor pattern part into 2 layer structure by laminating | stacking the sensor base material which has a sensor pattern part on one side. In this way, the sensor pattern portion having the two-layer structure can suitably perform position detection in the XY coordinate system, similarly to the sensor pattern portions on both sides described above.
 積層によってセンサーパターン部を2層構造にする方法は、積層される各センサー基材のセンサーパターン部間の絶縁が保たれる方法であれば格別限定されない。積層の好ましい一例においては、まず、片面にセンサーパターン部を有するセンサー基材と、外部接続部品が接続された配線基材とを接続してなるユニットを2つ用意する。次いで、2つのユニットのセンサー基材を積層することによって、センサーパターン部を2層構造にすることができる。 The method of making the sensor pattern part into a two-layer structure by lamination is not particularly limited as long as the insulation between the sensor pattern parts of each sensor base material to be laminated is maintained. In a preferred example of lamination, first, two units are prepared by connecting a sensor base material having a sensor pattern part on one side and a wiring base material to which external connection components are connected. Then, the sensor pattern part can be made into a two-layer structure by laminating two units of the sensor substrate.
 2つのユニットのセンサー基材を積層する際には、センサーチャネルが設けられていない面同士が対向するように積層してもよいし、一方のセンサー基材のセンサーチャネルが設けられていない面と他方のセンサー基材のセンサーチャネルが設けられた面とが対向するように積層してもよい。特に後者の形態が好ましく、各ユニットの配線基材に対して外部接続部品を同一面側に配置できる効果が得られる。 When stacking the sensor bases of the two units, they may be stacked so that the surfaces not provided with the sensor channels face each other, or the surface of the one sensor base not provided with the sensor channels You may laminate | stack so that the surface in which the sensor channel of the other sensor base material was provided opposes. The latter form is particularly preferable, and an effect that the external connection parts can be arranged on the same surface side with respect to the wiring base material of each unit is obtained.
 以上の説明において、基材の「表面」、「裏面」という記載は、基材の一方の面と、該一方の面からみて裏側に形成される他方の面とを便宜的に区別するための記載に過ぎず、タッチパネルセンサーを備えた製品において、「表面」が表面側に配向され、「裏面」が裏面側に配向されることを限定するものではない。センサーフィルムを備えた製品において、「表面」が裏面側に配向され、「裏面」が表面側に配向されてもよい。 In the above description, the terms “front surface” and “back surface” of the base material are used for the purpose of distinguishing one surface of the base material from the other surface formed on the back side as viewed from the one surface. This is merely a description, and in a product including a touch panel sensor, it is not limited that the “front surface” is oriented to the front surface side and the “back surface” is oriented to the back surface side. In a product including a sensor film, the “front surface” may be oriented to the back surface side, and the “back surface” may be oriented to the front surface side.
 以上の説明において、一つの実施形態あるいは一つの例について説明された構成は、他の実施形態あるいは他の例に適宜適用することができる。 In the above description, the configuration described for one embodiment or one example can be appropriately applied to another embodiment or another example.
 1:センサー基材
  11:基材
  12:センサーチャネル
  13:導電性細線
  14:導体
  S:センサーパターン部
 2:配線基材
  21:基材
  22:配線
  23:スルーホール
  W:引出配線パターン部
 3:外部接続部品
  31:外部配線
 4:導電部材
  41:支持体
1: Sensor base material 11: Base material 12: Sensor channel 13: Conductive thin wire 14: Conductor S: Sensor pattern part 2: Wiring base material 21: Base material 22: Wiring 23: Through hole W: Lead-out wiring pattern part 3: External connection component 31: External wiring 4: Conductive member 41: Support

Claims (17)

  1.  複数の配線からなる引出配線パターン部を有する少なくとも1つの配線基材に外部接続部品を接続し、
     次いで、複数のセンサーチャネルからなるセンサーパターン部を有する少なくとも1つのセンサー基材の前記センサーチャネルと、前記配線基材の前記配線とが電気的に接続されるように、前記センサー基材と前記配線基材とを接続するタッチパネルセンサーの製造方法。
    Connecting an external connection component to at least one wiring substrate having a lead wiring pattern portion composed of a plurality of wirings;
    Next, the sensor base material and the wiring are connected so that the sensor channel of at least one sensor base material having a sensor pattern portion composed of a plurality of sensor channels and the wiring of the wiring base material are electrically connected. A method for manufacturing a touch panel sensor for connecting a base material.
  2.  前記センサー基材は、前記センサーチャネルの端部から前記配線基材が接続される接続部位まで伸びる導体を更に備え、
     前記導体は前記センサーチャネルと異なる構造を有しており、
     前記センサー基材の前記導体及び前記配線基材の前記配線の両方に接触するように導電部材を付与することによって、前記センサーチャネルと前記配線とを電気的に接続する請求項1記載のタッチパネルセンサーの製造方法。
    The sensor substrate further comprises a conductor extending from an end of the sensor channel to a connection site to which the wiring substrate is connected;
    The conductor has a different structure from the sensor channel;
    The touch panel sensor according to claim 1, wherein the sensor channel and the wiring are electrically connected by providing a conductive member so as to contact both the conductor of the sensor base and the wiring of the wiring base. Manufacturing method.
  3.  前記センサーチャネルの端部から前記接続部位まで伸びる前記導体の幅は、前記センサーチャネルのチャネル幅より細い請求項2記載のタッチパネルセンサーの製造方法。 The method for manufacturing a touch panel sensor according to claim 2, wherein a width of the conductor extending from an end portion of the sensor channel to the connection site is smaller than a channel width of the sensor channel.
  4.  複数の前記センサー基材を、前記センサーチャネル同士を互いに電気的に接続するように連結する請求項1~3の何れかに記載のタッチパネルセンサーの製造方法。 The touch panel sensor manufacturing method according to any one of claims 1 to 3, wherein a plurality of the sensor base materials are coupled so that the sensor channels are electrically connected to each other.
  5.  前記センサー基材と前記配線基材とを接続する前に、前記センサー基材及び前記配線基材の一方又は両方を裁断加工する請求項1~4の何れかに記載のタッチパネルセンサーの製造方法。 The method for manufacturing a touch panel sensor according to any one of claims 1 to 4, wherein one or both of the sensor base material and the wiring base material are cut before connecting the sensor base material and the wiring base material.
  6.  前記センサー基材は前記センサーパターン部を両面に有し、
     前記配線基材と外部接続部品とを接続した後に、
     前記センサー基材の両面の前記センサーチャネルと前記配線とが電気的に接続するように、前記センサー基材と前記配線基材とを接続する請求項1~5の何れかに記載のタッチパネルセンサーの製造方法。
    The sensor substrate has the sensor pattern part on both sides,
    After connecting the wiring substrate and external connection parts,
    The touch panel sensor according to any one of claims 1 to 5, wherein the sensor base and the wiring base are connected such that the sensor channel and the wiring on both sides of the sensor base are electrically connected. Production method.
  7.  片面に前記センサーパターン部を有する前記センサー基材と、前記外部接続部品が接続された前記配線基材とを接続してなるユニットを2つ用意し、
     2つの前記ユニットの前記センサー基材を積層することによって、前記センサーパターン部を2層構造にする請求項1~5の何れかに記載のタッチパネルセンサーの製造方法。
    Two units are prepared by connecting the sensor substrate having the sensor pattern part on one side and the wiring substrate to which the external connection component is connected,
    The touch panel sensor manufacturing method according to any one of claims 1 to 5, wherein the sensor pattern portion has a two-layer structure by laminating the sensor base materials of the two units.
  8.  2つの前記ユニットの前記センサー基材を積層する際に、前記センサーチャネルが設けられていない面同士が対向するように積層するか、又は、一方の前記センサー基材の前記センサーチャネルが設けられていない面と他方の前記センサー基材の前記センサーチャネルが設けられた面とが対向するように積層する請求項7記載のタッチパネルセンサーの製造方法。 When the sensor substrates of the two units are stacked, they are stacked so that the surfaces not provided with the sensor channels face each other, or the sensor channels of one of the sensor substrates are provided. The manufacturing method of the touch panel sensor of Claim 7 laminated | stacked so that the surface in which the sensor channel of the other sensor base material and the said sensor channel were provided may oppose.
  9.  前記センサー基材と前記配線基材とを接続する前に、前記センサー基材及び前記配線基材の一方又は両方の導通状態の検査を行う請求項1~8の何れかに記載のタッチパネルセンサーの製造方法。 The touch panel sensor according to any one of claims 1 to 8, wherein an inspection of one or both of the sensor base and the wiring base is conducted before connecting the sensor base and the wiring base. Production method.
  10.  複数の前記配線基材を前記センサー基材に接続した状態で、複数の前記配線基材のすべてに対して前記外部接続部品が同一面側に配置されるように、複数の前記配線基材のうち少なくとも1つの配線基材が有する配線が、該配線基材の一方の面から他方の面に引き出されている請求項1~9の何れかに記載のタッチパネルセンサーの製造方法。 In a state where the plurality of wiring base materials are connected to the sensor base material, the external connection parts are arranged on the same surface side with respect to all of the plurality of wiring base materials. The method for manufacturing a touch panel sensor according to any one of claims 1 to 9, wherein a wiring included in at least one wiring base material is drawn from one surface of the wiring base material to the other surface.
  11.  タッチパネルセンサーを構成するための基材セットであって、
     複数のセンサーチャネルからなるセンサーパターン部を有する少なくとも1つのセンサー基材と、
     複数の配線からなる引出配線パターン部を有する少なくとも1つの配線基材とからなり、
     前記配線基材が外部接続部品と接続されているタッチパネルセンサー基材セット。
    A base material set for configuring a touch panel sensor,
    At least one sensor substrate having a sensor pattern portion comprising a plurality of sensor channels;
    Consisting of at least one wiring substrate having a lead wiring pattern portion composed of a plurality of wirings,
    A touch panel sensor substrate set in which the wiring substrate is connected to an external connection component.
  12.  前記センサー基材は、前記センサーチャネルの端部から該センサー基材の一端まで伸びる導体を更に備え、
     前記導体は前記センサーチャネルと異なる構造を有している請求項11記載のタッチパネルセンサー基材セット。
    The sensor substrate further comprises a conductor extending from an end of the sensor channel to one end of the sensor substrate;
    The touch panel sensor substrate set according to claim 11, wherein the conductor has a structure different from that of the sensor channel.
  13.  前記センサーチャネルの端部から前記接続部位まで伸びる前記導体の幅は、前記センサーチャネルのチャネル幅より細い請求項12記載のタッチパネルセンサー基材セット。 The touch panel sensor substrate set according to claim 12, wherein a width of the conductor extending from an end portion of the sensor channel to the connection site is smaller than a channel width of the sensor channel.
  14.  前記センサー基材は前記センサーパターン部を両面に有する請求項11~13の何れかに記載のタッチパネルセンサー基材セット。 The touch panel sensor substrate set according to any one of claims 11 to 13, wherein the sensor substrate has the sensor pattern portions on both sides.
  15.  少なくとも1つの前記配線基材が有する配線が、該配線基材の一方の面から他方の面に引き出されている請求項11~14の何れかに記載のタッチパネルセンサー基材セット。 15. The touch panel sensor substrate set according to claim 11, wherein the wiring of at least one of the wiring substrates is drawn from one surface of the wiring substrate to the other surface.
  16.  前記センサー基材の前記センサーチャネルと前記配線基材の前記配線とを電気的に接続するための導電部材を更に備える請求項11~15の何れかに記載のタッチパネルセンサー基材セット。 The touch panel sensor substrate set according to any one of claims 11 to 15, further comprising a conductive member for electrically connecting the sensor channel of the sensor substrate and the wiring of the wiring substrate.
  17.  前記導電部材はシート状の支持体上に支持されている請求項16記載のタッチパネルセンサー基材セット。 The touch panel sensor substrate set according to claim 16, wherein the conductive member is supported on a sheet-like support.
PCT/JP2018/003686 2018-02-02 2018-02-02 Method for producing touch panel sensor and touch panel sensor substrate set WO2019150562A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/003686 WO2019150562A1 (en) 2018-02-02 2018-02-02 Method for producing touch panel sensor and touch panel sensor substrate set
JP2019568529A JPWO2019150562A1 (en) 2018-02-02 2018-02-02 Touch panel sensor manufacturing method and touch panel sensor base material set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003686 WO2019150562A1 (en) 2018-02-02 2018-02-02 Method for producing touch panel sensor and touch panel sensor substrate set

Publications (1)

Publication Number Publication Date
WO2019150562A1 true WO2019150562A1 (en) 2019-08-08

Family

ID=67479910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003686 WO2019150562A1 (en) 2018-02-02 2018-02-02 Method for producing touch panel sensor and touch panel sensor substrate set

Country Status (2)

Country Link
JP (1) JPWO2019150562A1 (en)
WO (1) WO2019150562A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033524A (en) * 2020-08-17 2022-03-02 シャープ株式会社 Touch panel and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045150A (en) * 2011-08-22 2013-03-04 Dainippon Printing Co Ltd Panel and display device
WO2014171103A1 (en) * 2013-04-18 2014-10-23 シャープ株式会社 Touch panel module and electronic information device
JP2014206936A (en) * 2013-04-15 2014-10-30 富士フイルム株式会社 Method of manufacturing conductive sheet for touch panel, and conductive sheet for touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045150A (en) * 2011-08-22 2013-03-04 Dainippon Printing Co Ltd Panel and display device
JP2014206936A (en) * 2013-04-15 2014-10-30 富士フイルム株式会社 Method of manufacturing conductive sheet for touch panel, and conductive sheet for touch panel
WO2014171103A1 (en) * 2013-04-18 2014-10-23 シャープ株式会社 Touch panel module and electronic information device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022033524A (en) * 2020-08-17 2022-03-02 シャープ株式会社 Touch panel and display device
JP7463636B2 (en) 2020-08-17 2024-04-09 シャープ株式会社 Touch Panel and Display Device

Also Published As

Publication number Publication date
JPWO2019150562A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
CN102112949B (en) Planar element, and touch switch
TWI551537B (en) Conductive film and touch panel including the same
US9235298B2 (en) Transparent capacitor with multi-layer grid structure
JP4616324B2 (en) Touch sensor
CN206470728U (en) Touch panel and the image display device including it
JP6346584B2 (en) Touch panel and manufacturing method thereof
JP2012089102A (en) Capacitive touch screen and method for manufacturing the same
JP2013206315A (en) Film-shaped touch panel sensor and method for manufacturing the same
JP2014149861A (en) Touch panel and method for manufacturing the same
CN103631418A (en) Touch screen and touch-controlled display device
JP2012059247A (en) Electrostatic capacitance touch screen and its manufacturing method
JP2010211823A (en) Touch sensor
TW202001524A (en) Metal mesh touch electrode of touch panel
WO2019150562A1 (en) Method for producing touch panel sensor and touch panel sensor substrate set
JP5279530B2 (en) Touch panel
KR20120062135A (en) Electrostatic capacity touch sensor of double layer type, and the manufacturing method
WO2019150563A1 (en) Method for producing touch panel sensor substrate and touch panel sensor substrate set
US20200356231A1 (en) Touch sensor and method for manufacturing the same, display panel and method for manufacturing the same and display device
CN216773243U (en) Display panel and display device
KR20120023288A (en) Touch panel and method for manufacturing the same
CN211264290U (en) Capacitive touch screen laminated structure and capacitive touch screen
JP2015128036A (en) Transparent conductive sheet and touch panel using transparent conductive sheet
JP2014215682A (en) Capacitance input device and manufacturing method therefor
JP7007983B2 (en) Conductive sheet for patternless touch panels
WO2020129506A1 (en) Touch panel, touch panel module, and touch panel inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568529

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903690

Country of ref document: EP

Kind code of ref document: A1