WO2019150457A1 - 空調制御システム及び空気調和機 - Google Patents

空調制御システム及び空気調和機 Download PDF

Info

Publication number
WO2019150457A1
WO2019150457A1 PCT/JP2018/003073 JP2018003073W WO2019150457A1 WO 2019150457 A1 WO2019150457 A1 WO 2019150457A1 JP 2018003073 W JP2018003073 W JP 2018003073W WO 2019150457 A1 WO2019150457 A1 WO 2019150457A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
unit
air conditioning
wind speed
wind
Prior art date
Application number
PCT/JP2018/003073
Other languages
English (en)
French (fr)
Inventor
亜紀 木村
由佳 津田
哲郎 志田
昌鷹 馬場
智子 三木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019568449A priority Critical patent/JP6847275B2/ja
Priority to PCT/JP2018/003073 priority patent/WO2019150457A1/ja
Priority to US16/962,957 priority patent/US11708992B2/en
Priority to EP18904089.2A priority patent/EP3748249B1/en
Priority to CN201880087702.4A priority patent/CN111656103B/zh
Publication of WO2019150457A1 publication Critical patent/WO2019150457A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure

Definitions

  • the present invention relates to an air conditioning control system and an air conditioner.
  • the indoor environment is usually obtained by measuring with a sensor mounted on the indoor unit.
  • the outdoor environment is measured by installing sensors on the outdoor unit, installing a dedicated environment measurement device, and collecting observation data from weather stations via the Internet. Has been.
  • the prior art document 1 discloses an air conditioning system including a window and door opening and closing device, an air conditioner, a monitoring device for monitoring the environment inside and outside the building, and a controller.
  • the monitoring device measures the wind speed and the wind direction with sensors, and the controller controls the air conditioning device based on the measurement result of the monitoring device.
  • an object of one or more aspects of the present invention is to allow a place desired by a user to be suitably performed by an air conditioner.
  • An air conditioning control system includes an air conditioner control system including a portable terminal including an atmospheric pressure measurement unit that measures an atmospheric pressure value, and an air conditioner including an air conditioning unit that can change the wind direction and the air volume.
  • the wind speed of the wind received by the portable terminal is calculated from a plurality of changes in the atmospheric pressure value measured by the atmospheric pressure measurement unit.
  • a wind speed calculation unit that identifies a certain direction of presence, an air conditioning control determination unit that determines a wind direction and an air volume of the air conditioning unit according to the wind speed and the presence direction, and the air conditioning unit so as to be the determined wind direction and air volume
  • An air conditioning control unit for controlling the air conditioning.
  • An air conditioning control system changes a wind direction and an air volume, a portable terminal including an atmospheric pressure measurement unit that measures an atmospheric pressure value, a temperature measurement unit that measures temperature, and a humidity measurement unit that measures humidity.
  • An air conditioning control system including an air conditioner including an air conditioning unit capable of calculating the wind speed of the wind received by the mobile terminal from a plurality of changes in the atmospheric pressure values measured by the atmospheric pressure measurement unit
  • a wind speed calculation unit that specifies a direction in which the mobile terminal is present from the air conditioner, and a temperature sensed by the user of the mobile terminal from the wind speed, the temperature, and the humidity
  • An air conditioning control determining unit that determines a wind direction and an air volume of the air conditioning unit in accordance with the sensory temperature and the presence direction, and an air conditioning control unit that controls the air conditioning unit so as to be the determined wind direction and air volume. , Characterized in that it comprises a.
  • An air conditioning control system includes a portable terminal including a sound collection unit that outputs an output value indicating a noise amount, and an air conditioner including an air conditioning unit that can change the wind direction and the air volume.
  • the air conditioning control system includes a wind speed of the wind received by the mobile terminal from a plurality of changes in the output values output from the sound collection unit, and the mobile terminal exists from the air conditioner.
  • a wind speed identifying unit that identifies a direction that is present
  • an air conditioning control determining unit that determines a wind direction and an air volume of the air conditioning unit according to the wind speed and the existing direction, and the determined wind direction and air volume.
  • an air conditioning control unit for controlling the air conditioning unit.
  • An air conditioner is an air conditioner that communicates with a portable terminal that includes an atmospheric pressure measurement unit that measures an atmospheric pressure value, the air conditioning unit capable of changing a wind direction and an air volume, and By communicating with the portable terminal, an air conditioning communication unit that receives the atmospheric pressure value from the portable terminal, and a wind speed received by the portable terminal from a plurality of changes in the atmospheric pressure value received by the air conditioning communication unit.
  • a wind speed calculating unit that calculates a direction in which the mobile terminal is present from the air conditioner, and an air conditioning control that determines a wind direction and an air volume of the air conditioning unit according to the wind speed and the existing direction And a determination unit, and an air-conditioning control unit that controls the air-conditioning unit so as to achieve the determined wind direction and air volume.
  • An air conditioner is an air conditioner that communicates with a portable terminal including an atmospheric pressure measurement unit that measures an atmospheric pressure value, a temperature measurement unit that measures temperature, and a humidity measurement unit that measures humidity.
  • An air conditioning unit capable of changing a wind direction and an air volume, an air conditioning communication unit that receives the atmospheric pressure value, the temperature, and the humidity from the portable terminal by communicating with the portable terminal, and the air conditioning communication unit.
  • a wind speed calculation unit that calculates the wind speed of the wind received by the mobile terminal from a plurality of changes in the atmospheric pressure value that is received, and that specifies the direction in which the mobile terminal exists from the air conditioner
  • An air-conditioning control determining unit that identifies the temperature sensed by the user of the mobile terminal from the wind speed, the temperature, and the humidity, and determines the air direction and the air volume of the air-conditioning unit according to the temperature sensed and the direction of presence.
  • the determined wind direction and air flow characterized in that it comprises, and the air conditioning control section for controlling the air-conditioning unit.
  • An air conditioner is an air conditioner that communicates with a portable terminal including a sound collection unit that outputs an output value indicating a noise amount, and is an air conditioner capable of changing a wind direction and an air volume.
  • the portable terminal receives from the air conditioning communication unit that receives the output value from the portable terminal by communicating with the portable terminal and the change amount of the plurality of output values received by the air conditioning communication unit
  • a wind speed specifying unit that specifies a wind direction of the wind and a direction in which the mobile terminal is present from the air conditioner, and a wind direction and a volume of the air conditioning unit according to the wind speed and the direction of presence.
  • An air conditioning control determining unit to determine, and an air conditioning control unit to control the air conditioning unit so as to have the determined wind direction and air volume are provided.
  • the location desired by the user can be made more suitable by the air conditioner.
  • FIG. 1 is a block diagram schematically showing a configuration of an air conditioning control system according to Embodiment 1.
  • FIG. (A) And (B) is a block diagram which shows the hardware structural example. It is a flowchart which shows the process which calculates a wind speed. It is the schematic which shows an example of the graph which shows the fluctuation
  • (A) And (B) is the schematic for demonstrating the relationship between the angle which a wind hits an atmospheric
  • FIG. 1 It is a block diagram which shows schematically the structure of the air-conditioning control system which concerns on Embodiment 3. It is a block diagram which shows schematically the structure of the air-conditioning control system which concerns on Embodiment 4. It is the schematic which shows the utilization method of the air-conditioning control system which concerns on Embodiment 4.
  • FIG. 1 It is a block diagram which shows schematically the structure of the air-conditioning control system which concerns on Embodiment 3. It is a block diagram which shows schematically the structure of the air-conditioning control system which concerns on Embodiment 4. It is the schematic which shows the utilization method of the air-conditioning control system which concerns on Embodiment 4.
  • FIG. 1 is a block diagram schematically showing a configuration of an air conditioning control system 100 according to the first embodiment.
  • the air conditioning control system 100 includes a mobile terminal 110 and an air conditioner 130.
  • the portable terminal 110 and the air conditioner 130 are connected to a network 101 such as a LAN (Local Area Network).
  • a network 101 such as a LAN (Local Area Network).
  • the communication on the network 101 is wireless communication such as a wireless LAN, Wi-Fi (registered trademark), or Bluetooth (registered trademark).
  • the mobile terminal 110 includes an atmospheric pressure measurement unit 111, a terminal control unit 112, and a terminal communication unit 113.
  • the atmospheric pressure measurement unit 111 measures an atmospheric pressure value.
  • the atmospheric pressure measurement unit 111 can be realized by an atmospheric pressure sensor that measures atmospheric pressure.
  • the terminal control unit 112 controls processing on the mobile terminal 110.
  • the terminal control unit 112 receives the measured atmospheric pressure value from the atmospheric pressure measurement unit 111 and provides the measured value to the terminal communication unit 113.
  • the terminal communication unit 113 performs communication with the network 101.
  • the terminal communication unit 113 transmits the atmospheric pressure value given from the terminal control unit 112 to the air conditioner 130.
  • the terminal communication unit 113 can be realized by, for example, a NIC (Network Interface Card).
  • Part or all of the terminal control unit 112 described above includes, for example, a memory 10 and a CPU (Central Processing) that executes a program stored in the memory 10 as illustrated in FIG. Unit) or the like.
  • a program may be provided through a network, or may be provided by being recorded on a recording medium. That is, such a program may be provided as a program product, for example.
  • a part of the terminal control unit 112 includes a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuits). ) Or FPGA (Field Programmable Gate Array) or the like.
  • the air conditioner 130 includes an air conditioning communication unit 131, a wind speed calculation unit 132, a storage unit 133, an air conditioning control determination unit 134, an air conditioning control unit 135, and an air conditioning unit 136.
  • the air conditioning communication unit 131 communicates with the network 101.
  • the air conditioning communication unit 131 receives an atmospheric pressure value from the mobile terminal 110.
  • the received atmospheric pressure value is given to the wind speed calculation unit 132.
  • the air conditioning communication unit 131 can be realized by a NIC, for example.
  • the wind speed calculation unit 132 stores the atmospheric pressure value given from the air conditioning communication unit 131 in the storage unit 133.
  • the wind speed calculation unit 132 calculates the wind speed of the wind received by the mobile terminal 110.
  • the wind speed calculation unit 132 is based on the change amounts of a plurality of atmospheric pressure values stored in the storage unit 133 and the current wind direction and air flow setting values of the air conditioner 130 input from the air conditioning control unit 135.
  • the wind speed of the wind received by the mobile terminal 110 is calculated.
  • the wind speed calculation unit 132 changes the first atmospheric pressure value measured by the atmospheric pressure measurement unit 111 and the wind direction from the air conditioning unit 136 in the left-right direction at the current wind direction and air volume of the air conditioner 130.
  • the change amount of the atmospheric pressure value is specified by the target difference which is the difference from the lowest value among the plurality of second atmospheric pressure values measured a plurality of times by the atmospheric pressure measurement unit 111.
  • the wind speed calculation part 132 calculates a wind speed by the square root of the value which divided the change amount twice and divided by the density of air.
  • the target difference is corrected according to the direction of the atmospheric pressure measurement unit 111 of the mobile terminal 110 when the mobile terminal 110 receives wind from the air conditioning unit 136.
  • the wind speed calculation part 132 specifies the presence direction which is a direction where the portable terminal 110 exists.
  • the wind speed calculated as described above and the specified existence direction are given to the air conditioning control determination unit 134.
  • the storage unit 133 stores information necessary for processing in the air conditioner 130.
  • the storage unit 133 stores the atmospheric pressure value given from the wind speed calculation unit 132.
  • the storage unit 133 can be realized by a volatile memory or a nonvolatile memory.
  • the air conditioning control determining unit 134 determines the control content of the air direction and the air volume of the air conditioner 130 according to the current setting value of the wind direction and the air volume, the wind speed and the direction of presence given from the wind speed calculating unit 132, and the control content of the air direction and the air volume. Is given to the air conditioning control unit 135.
  • the air conditioning control unit 135 sets the air direction and the air volume to the air conditioning unit 136 so that the air conditioner 130 outputs the wind according to the control contents of the air direction and the air volume given from the air conditioning control determination unit 134, and sets the set values.
  • the wind speed calculation unit 132 is provided with the current wind direction and air flow setting values.
  • the air conditioning unit 136 is a part that executes air conditioning. For example, the air conditioning unit 136 cools or heats air using a refrigeration cycle, and discharges the cooled or heated air with a set wind direction and air volume.
  • the air conditioning unit 136 can change the wind direction and the air volume.
  • a part or all of the wind speed calculation unit 132, the air conditioning control determination unit 134, and the air conditioning control unit 135 described above are stored in the memory 10 and the memory 10 as illustrated in FIG. It can be constituted by a processor 11 such as a CPU that executes the program being executed.
  • a program may be provided through a network, or may be provided by being recorded on a recording medium. That is, such a program may be provided as a program product, for example.
  • part or all of the wind speed calculation unit 132, the air conditioning control determination unit 134, and the air conditioning control unit 135 may be a single circuit, a composite circuit, or a programmed processor as illustrated in FIG. 2B, for example. Alternatively, it may be configured by a processor programmed in parallel, a processing circuit 12 such as an ASIC or FPGA.
  • the air pressure in the room changes due to the wind exhausted from the air conditioner 130. Even if the wind direction, wind speed, and temperature of the wind output from the air conditioner 130 are the same, the change in the atmospheric pressure varies depending on the indoor location.
  • the wind discharged from the air conditioner 130 is the distance from the air conditioner 130, the furniture installed between the air conditioner 130 and the measurement location, the objects placed around the measurement location, the movement of people, the air conditioning It is affected by wind exhausted by devices other than the machine 130, or wind entering from openings such as windows or doors.
  • the place where the mobile terminal 110 is installed is the place where the wind is detected, and the wind received by the mobile terminal 110 is calculated based on the atmospheric pressure value measured by the atmospheric pressure measurement unit 111 of the mobile terminal 110.
  • the atmospheric pressure value measured by the atmospheric pressure measurement unit 111 is sent to the terminal communication unit 113 of the mobile terminal 110.
  • the measured atmospheric pressure value is transmitted from the terminal communication unit 113 to the air conditioner 130 and received by the air conditioning communication unit 131.
  • the received atmospheric pressure value is provided to the wind speed calculation unit 132, and the wind speed calculation unit 132 is based on the atmospheric pressure value provided from the air conditioning communication unit 131 and the current wind direction and air volume setting values provided from the air conditioning control unit 135.
  • the wind speed of the wind received by the mobile terminal 110 is calculated.
  • FIG. 3 is a flowchart showing processing for calculating the wind speed in the wind speed calculation unit 132.
  • the wind speed calculation unit 132 causes the storage unit 133 to store the latest setting value of the latest wind direction and air volume given from the air conditioning control unit 135 and the latest atmospheric pressure value given from the portable terminal 110 (S10).
  • the wind speed calculation unit 132 instructs the air conditioning control determination unit 134 to swing-control the air direction of the air conditioning unit 136 in the left-right direction (S11).
  • the air conditioning control determining unit 134 determines a wind direction and an air volume control command for controlling the wind direction and the air volume output from the air conditioning unit 136 according to the instruction of the wind speed calculating unit 132 in order to calculate the wind speed. It gives to the air-conditioning control part 135.
  • the air conditioning control unit 135 controls the wind direction and the air volume according to the air direction and air volume control command given from the air conditioning control determination unit 134. According to such control, the air conditioning unit 136 changes the air direction by a predetermined amount in the left or right direction.
  • the direction in which the wind direction is changed may be determined in advance, or may be determined from the current wind direction position to a direction with a larger amount of change.
  • the air conditioning control unit 135 gives the changed wind direction and air volume setting values to the wind speed calculation unit 132.
  • the atmospheric pressure measurement unit 111 of the mobile terminal 110 measures the atmospheric pressure value (S12).
  • the terminal control unit 112 receives the measured atmospheric pressure value from the atmospheric pressure measurement unit 111 and sends it from the terminal communication unit 113 to the air conditioner 130 (S13).
  • the wind speed calculation part 132 memorize
  • the wind speed calculation unit 132 determines whether or not the setting value of the wind direction stored in the storage unit 133 has changed from the right end to the left end in the left-right direction that can be set by the air conditioning unit 136 (S15). If the setting value of the wind direction has changed from the right end to the left end (Yes in S15), the process proceeds to step S16, and if the setting value of the wind direction has not yet changed from the right end to the left end (No in S15). The process returns to step S11.
  • the air conditioning control unit 135 does not need to change the wind direction in order from the right end. For example, the process of changing the wind direction from the position where the wind direction at the start of the flow shown in FIG. 3 is set to one of the right and left, and changing to the other when it reaches the end may be repeated.
  • the storage unit 133 when the wind direction is set to the rightmost, when set to the leftmost, and when set in the middle, the setting value of the wind direction and the air volume, and the atmospheric pressure value at the set value And should be stored.
  • a plurality are necessary. For example, the pressure value is measured for 10 or more wind direction positions between the rightmost and leftmost positions.
  • step S ⁇ b> 16 the wind speed calculation unit 132 creates a graph indicating the variation in the atmospheric pressure value corresponding to the wind direction setting value from the wind direction setting value and the atmospheric pressure value stored in the storage unit 133 in step S ⁇ b> 14.
  • FIG. 4 is a schematic diagram illustrating an example of a graph created in step S ⁇ b> 16 and illustrating a change in the atmospheric pressure value corresponding to the set value of the wind direction.
  • the setting value of the wind direction is assigned to the horizontal axis
  • the atmospheric pressure value (hPa) is assigned to the vertical axis.
  • the wind speed calculation unit 132 plots the set value of the wind direction stored in the storage unit 133 and the atmospheric pressure value at the set value on the graph of FIG. 4 and connects the plotted points.
  • the wind speed calculation part 132 performs the process which removes the noise which is a micro change of an atmospheric pressure value (S17). This is to prevent the influence of minute changes in the atmospheric pressure value in subsequent processing. Specifically, the wind speed calculation unit 132 smoothes the value by filtering the atmospheric pressure value. A filter such as an average value filter or a Gaussian filter is used as the smoothing filter.
  • Curves a to d shown in FIG. 4 indicate fluctuations in the atmospheric pressure value after the noise is removed in step S16.
  • Curves a and b show changes in atmospheric pressure values when only the orientation of the mobile terminal 110 is changed without changing the position of the mobile terminal 110.
  • a curve a and a curve b indicate a difference between when the display is directed toward the ceiling and when the display is not directed toward the ceiling.
  • Curves c and d show fluctuations in the atmospheric pressure value when the mobile terminal 110 is in a position where the wind from the air conditioner 130 does not hit. It should be noted that the amount of wind discharged from the air conditioner 130 is not changed. Details of the differences in the curves will be explained in the following steps.
  • the wind speed calculation unit 132 specifies the maximum value and the minimum value in the curve indicating the fluctuation of the atmospheric pressure value, and calculates the difference. And the wind speed calculation part 132 judges whether the difference is larger than a predetermined threshold value (S18).
  • a predetermined threshold value (Yes in S18)
  • it is determined that the portable terminal 110 is directly hit by the wind and the process proceeds to step S19.
  • the difference is equal to or smaller than a predetermined threshold (No in S18)
  • the threshold here is, for example, 1.36 hPa.
  • This value means that at room temperature of 20 ° C., there is no wind of 1.5 m / s or more, which is the maximum wind speed at which no wind is felt on the face.
  • the density of air varies with room temperature and is 1.293 at 0 ° C., 1.247 at 10 ° C. and 1.165 at 30 ° C. As will be described later, the wind speed depends on the amount of change in the atmospheric pressure value and the density of the air.
  • the wind speed calculation unit 132 calculates the number of maximum values in the curve indicating the fluctuation of the atmospheric pressure value. Then, the wind speed calculation unit 132 determines whether or not the maximum value and the maximum value are the same and the maximum value is one (S19). When the maximum value and the maximum value are the same and there is only one maximum value (Yes in S19), it is determined that the mobile terminal 110 receives the wind from the air conditioner 130, and the processing is performed. Proceed to step S20. When the maximum value is different from the maximum value, or when there are a plurality of maximum values (No in S19), it is determined that the portable terminal 110 has not received the wind from the air conditioner 130, and the process proceeds to step S22. move on.
  • the atmospheric pressure value measured by the atmospheric pressure measurement unit 111 of the portable terminal 110 is maximized when the portable terminal 110 is in the direction of the wind output from the air conditioner 130. For this reason, it can be said that the portable terminal 110 is in the direction of the set value of the wind direction in which the atmospheric pressure value measured by the atmospheric pressure measurement unit 111 is maximized.
  • curve a and curve b correspond to such a case.
  • FIG. 5A when the atmospheric pressure value is detected by the atmospheric pressure measurement unit 111, the atmospheric pressure value varies depending on the angle at which the wind hits the atmospheric pressure measurement unit 111.
  • FIG. 5A an angle R at which the wind hits the atmospheric pressure measurement unit 111 is set.
  • FIG. 5B shows an angle change rate which is a change rate of the atmospheric pressure value at the angle R.
  • the angle change rate is 1 when the angle is 0 °.
  • the angle change ratio can be calculated by dividing the atmospheric pressure value at each angle by the atmospheric pressure value when the angle is 0 °, that is, the maximum atmospheric pressure value.
  • the wind speed calculation unit 132 corrects the difference in the atmospheric pressure value changed according to the direction of the atmospheric pressure measurement unit 111 using the angle change rate, and estimates the wind received by the mobile terminal 110.
  • the wind speed calculation unit 132 specifies the angle at which the wind hits the atmospheric pressure measurement unit 111. For example, angle information indicating an angle corresponding to the difference between the maximum value and the minimum value of the atmospheric pressure value is stored in advance in the storage unit 133, and the wind speed calculation unit 132 refers to the angle information to perform the step. An angle corresponding to the difference calculated in S18 is specified.
  • the wind speed calculation unit 132 specifies an angle change rate (hereinafter referred to as efficiency) corresponding to the angle specified in step S21 (S21).
  • efficiency an angle change rate corresponding to the angle specified in step S21 (S21).
  • efficiency information indicating the relationship between the angle and the efficiency as illustrated in FIG. 5B is stored in the storage unit 133 in advance, and the wind speed calculation unit 132 refers to the efficiency information.
  • the efficiency corresponding to the angle specified in step S21 is specified.
  • the wind speed calculation unit 132 may acquire information indicating such a relationship from the network 101 via the air conditioning communication unit 131. Alternatively, the wind speed calculation unit 132 may instruct the user to rotate the mobile terminal 110 and calculate such a relationship from the rotation angle and the atmospheric pressure value at that time.
  • step S18 when the difference between the maximum value and the minimum value of the atmospheric pressure value is equal to or smaller than a predetermined threshold value (No in S18), the wind speed calculation unit 132 does not hit the portable terminal 110 with wind. Judge. Curve c in FIG. 4 corresponds to such a case.
  • Step S19 when there are two or more maximum values of the atmospheric pressure value (No in S19), the wind speed calculation unit 132 determines that the wind is hitting from a plurality of directions. Curve d in FIG. 4 corresponds to such a case. In such a case (No in step S18 or No in step S19), the process proceeds to step S22.
  • step S22 the wind speed calculation unit 132 calculates the amount of change in the atmospheric pressure value due to the wind.
  • the calculation method of the change amount of the atmospheric pressure value differs depending on the previous step.
  • the wind speed calculation unit 132 divides the value obtained by subtracting the minimum value of the graph created in step S16 from the atmospheric pressure value stored in step S10 by the efficiency specified in step S21. The value obtained is used as the change amount of the atmospheric pressure value.
  • the wind speed calculation unit 132 changes the pressure value by subtracting the minimum value of the graph created in step S16 from the pressure value stored in step S10. Amount. Note that a value obtained by subtracting the minimum value of the graph created in step S16 from the atmospheric pressure value stored in step S10 is also referred to as a target difference.
  • the wind speed calculation part 132 calculates a wind speed by the following (1) Formula using the variation
  • V is a wind speed (m / s)
  • d is an air density (kg / m 3 )
  • Pv is a change amount (hPa) of an atmospheric pressure value.
  • the density of air varies depending on the temperature, “1.205”, which is the density of air at a room temperature of 20 ° C., is used here. Equation (1) is derived from Bernoulli's theorem.
  • the wind speed calculation unit 132 can calculate the wind speed from the atmospheric pressure value measured by the mobile terminal 110 using Bernoulli's theorem.
  • the wind speed calculated as described above is given to the air conditioning control determination unit 134.
  • the wind speed calculation part 132 specifies the presence direction which is a direction in which the portable terminal 110 exists from the determination result of step S18 and S19, and gives the specified presence direction to the air-conditioning control determination part 134. For example, if the determination results in steps S18 and S19 are Yes, the wind speed calculation unit 132 determines in step S16 that the mobile terminal 110 exists in the direction of the set value of the wind direction corresponding to the maximum value of the atmospheric pressure value. . On the other hand, when the determination result in step S18 or S19 is No, the wind speed calculation unit 132 determines that the portable terminal 110 is not within a range in which the wind direction of the air conditioner 130 can be set. In other words, it is determined that the portable terminal 110 exists in a range where the wind direction of the air conditioner 130 cannot be set.
  • the wind speed calculation unit 132 gives the determination result as described above to the air conditioning control determination unit 134 as the presence direction of the mobile terminal 110
  • the air conditioning control determination unit 134 determines the air conditioning control method using the current setting value of the wind direction and air volume, the wind speed calculated by the wind speed calculation unit 132, and the direction in which the mobile terminal 110 is present. At this time, assuming that the portable terminal 110 is placed on the user side, the air conditioning control determination unit 134 performs control so that, for example, the wind does not directly hit the user, or the wind speed feels comfortable to the user. Or the degree of wind contact is controlled according to time or time.
  • the air-conditioning control method shall be predetermined according to the combination of the setting value of the present wind direction and air volume, a wind speed, and an existing direction.
  • the airflow speed in consideration of comfort is 0.3 m / s or less when the set temperature is less than 27 ° C. during cooling in summer, and is 0. 5 m / s to 1.0 m / s is desirable.
  • the wind speed and how the person feels it is assumed that the wind speed that the user feels comfortable is determined in advance with reference to, for example, the Buford wind class table.
  • the portable terminal 110 assumes the smart phone or the mobile phone, if it is provided with the communication apparatus which transmits the atmospheric
  • the mobile terminal 110 may be an alarm clock provided with an atmospheric pressure sensor and a communication device, or an alarm clock provided with a module provided with an atmospheric pressure sensor and a communication device.
  • the control determination unit 134 may give the wind speed calculation unit 132.
  • the air-conditioning control determining unit 134 determines that the air-direction and air-volume control command has been executed by the air-conditioning control unit 135.
  • the wind speed calculation unit 132 calculates the wind speed using the atmospheric pressure value measured by the atmospheric pressure measurement unit 111, but the first embodiment is not limited to such an example.
  • the wind speed calculation unit 132 can also calculate the wind speed using sound detected by a microphone (not shown) built in the mobile terminal 110. The fluctuation of the air due to the wind is detected as noise of the microphone as the sound collection unit. Since the noise due to wind is an extremely low frequency, the terminal control unit 112 calculates an output value indicating the amount of noise by extracting only the low frequency region from the noise (gain) detected by the microphone through a low-pass filter. The portion 132 can be given.
  • the wind speed can be calculated using sound detected by a speaker (not shown) built in the mobile terminal 110 instead of the microphone.
  • the wind speed can be obtained by detecting the vibration of the diaphragm of the speaker due to the wind and adding a circuit that amplifies the detected vibration and transmits the signal to the wind speed calculation unit 132 as a signal. The amount of noise change can be detected.
  • the wind speed calculation unit 132 can obtain the wind speed using the change amounts of the plurality of output values in the low frequency region of the noise detected by the microphone instead of the change amounts of the plurality of atmospheric pressure values.
  • the storage unit 133 stores in advance wind speed information that associates the amount of change with the wind speed, so that the wind speed calculation unit 132 can specify the wind speed.
  • the wind speed calculation unit 132 functions as a wind speed specifying unit.
  • step S12 and S13 the output value in the low frequency region of the noise detected by the microphone is measured and stored in place of the atmospheric pressure value.
  • the output value in the low-frequency region of noise from the microphone is measured and stored at the same time as the atmospheric pressure value, so that the wind speed calculation unit 132 can complement the wind speed only by the atmospheric pressure measurement unit 111 and increase the wind speed estimation accuracy.
  • the wind speed estimation accuracy can be increased.
  • the wind speed at the place where the mobile terminal 110 is placed can be specified and fed back to the control of the air conditioner 130.
  • the place where the portable terminal 110 is placed can be set to a suitable environment. Therefore, the user can provide comfortable air conditioning for the target by placing the portable terminal 110 near the target such as a person, pet or food who wants to provide a comfortable space when desired.
  • the portable terminal 110 only needs to measure the atmospheric pressure value with the atmospheric pressure measurement unit 111 and transmit the atmospheric pressure value to the air conditioner 130.
  • a portable terminal 110 that does not have a can be used.
  • the air conditioning control system 100 by distinguishing the difference between the wind received by the mobile terminal 110 and the wind hitting the atmospheric pressure measurement unit 111, the atmospheric pressure value according to the installation direction of the atmospheric pressure measurement unit 111 is changed. Changes can be corrected.
  • the direction in which the mobile terminal 110 is present can be specified by the atmospheric pressure value measured by the atmospheric pressure measurement unit 111 provided in the mobile terminal 110.
  • the direction in which the terminal 110 exists can be a comfortable space.
  • the portable terminal 110 can be obtained by retrofitting the atmospheric pressure sensor and the communication device to the portable object.
  • the portable terminal 110 can be realized not only by a smartphone or a cellular phone but also by a portable object such as an alarm clock.
  • an alarm clock is often installed on the user's side during sleep, when the user cannot control the air conditioner 130 with a remote controller, and thus can watch the environment on behalf of the user.
  • FIG. FIG. 6 is a block diagram schematically showing a configuration of an air conditioning control system 200 according to the second embodiment.
  • the air conditioning control system 200 includes a mobile terminal 210 and an air conditioner 230.
  • the portable terminal 210 and the air conditioner 230 are connected to the network 101.
  • the portable terminal 210 includes an atmospheric pressure measurement unit 111, a terminal control unit 112, a terminal communication unit 113, a wind speed calculation unit 214, a storage unit 215, and an air conditioning control determination unit 216.
  • the atmospheric pressure measurement unit 111, the terminal control unit 112, and the terminal communication unit 113 in the second embodiment are the same as those in the first embodiment.
  • the terminal control unit 112 in the second embodiment gives the air pressure value given from the air pressure measurement unit 111 to the wind speed calculation unit 214.
  • the terminal communication unit 113 in the second embodiment transmits the control content of the wind direction and the air volume given from the air conditioning control determination unit 216 to the air conditioner 230, and sets the current wind direction and air volume setting values from the air conditioner 230. The setting value is received and given to the wind speed calculation unit 214.
  • the wind speed calculation unit 214 stores the atmospheric pressure value given from the terminal control unit 112 in the storage unit 215. Then, the wind speed calculation unit 214 is based on the amount of change in the plurality of atmospheric pressure values stored in the storage unit 215 and the current wind direction and air volume setting values of the air conditioner 230 provided from the terminal communication unit 113. While calculating the wind speed of the wind which the terminal 210 received, the presence direction of the portable terminal 210 is specified. The calculated wind speed and the specified existence direction are given to the air conditioning control determination unit 216.
  • the storage unit 215 stores information necessary for processing in the mobile terminal 210.
  • the storage unit 215 stores the atmospheric pressure value given from the wind speed calculation unit 214.
  • the storage unit 215 can be realized by a volatile memory or a nonvolatile memory.
  • the air conditioning control determination unit 216 determines the control content of the air direction and the air volume of the air conditioner 230 according to the current setting value of the wind direction and the air volume, the wind speed and the direction of presence given from the wind speed calculation unit 214, and the terminal communication unit 113 The control content of the wind direction and the air volume is transmitted to the air conditioner 230.
  • an application for a smart phone remote control can be used as the air conditioning control determination unit 216.
  • Part or all of the terminal control unit 112, the wind speed calculation unit 214, and the air-conditioning control determination unit 216 described above are performed by, for example, the memory 10 and the processor 11 as illustrated in FIG. Can be configured.
  • a part of the terminal control unit 112, the wind speed calculation unit 214, and the air conditioning control determination unit 216 can be configured by the processing circuit 12 as illustrated in FIG. 2B, for example.
  • the air conditioner 230 includes an air conditioning communication unit 131, an air conditioning control unit 235, and an air conditioning unit 136.
  • the air conditioning communication unit 131 and the air conditioning unit 136 in the second embodiment are the same as those in the first embodiment.
  • the air conditioning communication unit 131 receives the control content of the wind direction and the air volume from the portable terminal 210 and gives the control content of the wind direction and the air volume to the air conditioning control unit 235.
  • the air conditioning communication unit 131 receives the current wind direction and air volume setting values from the air conditioning control unit 235, and transmits the current wind direction and air volume setting values to the mobile terminal 210.
  • the air conditioning control unit 235 sets the air direction and the air volume to the air conditioning unit 136 so that the air conditioner 230 outputs the wind according to the control contents of the air direction and the air volume given from the air conditioning communication unit 131, and sets the set values thereof.
  • the set value of the current wind direction and air volume is given to the air conditioning communication unit 131.
  • a part or all of the air conditioning control unit 235 described above can be configured by, for example, a memory 10 and a processor 11 as illustrated in FIG.
  • a part or all of the air conditioning control unit 235 can be configured by the processing circuit 12 as shown in FIG. 2B, for example.
  • the air conditioner 230 only needs to follow the control from the portable terminal 210, and thus the existing air conditioner 230 can be used.
  • FIG. 7 is a block diagram schematically showing a configuration of an air conditioning control system 300 according to the third embodiment.
  • the air conditioning control system 300 includes a first mobile terminal 110A, a second mobile terminal 110B, and an air conditioner 330.
  • the first mobile terminal 110 ⁇ / b> A, the second mobile terminal 110 ⁇ / b> B, and the air conditioner 330 are connected to the network 101.
  • Barometric pressure measurement unit 111A, terminal control unit 112A, and terminal communication unit 113A in first mobile terminal 110A are the same as barometric pressure measurement unit 111, terminal control unit 112, and terminal communication unit 113 of mobile terminal 110 in the first embodiment. .
  • the second portable terminal 110B includes an atmospheric pressure measurement unit 111B, a terminal control unit 112B, and a terminal communication unit 113B.
  • the atmospheric pressure measurement unit 111B, the terminal control unit 112B, and the terminal communication unit 113B in the second portable terminal 110B are the same as the atmospheric pressure measurement unit 111, the terminal control unit 112, and the terminal communication unit 113 of the portable terminal 110 in the first embodiment. .
  • the air conditioner 330 includes an air conditioning communication unit 131, a wind speed calculation unit 332, a storage unit 133, an air conditioning control determination unit 334, an air conditioning control unit 135, and an air conditioning unit 136.
  • the air conditioning communication unit 131, the storage unit 133, the air conditioning control unit 135, and the air conditioning unit 136 in the third embodiment are the same as those in the first embodiment.
  • the wind speed calculation unit 332 causes the storage unit 133 to store the atmospheric pressure value measured by the first portable terminal 110A and the atmospheric pressure value measured by the second portable terminal 110B, which are supplied from the air conditioning communication unit 131. Then, the wind speed calculation unit 332 stores the amount of change in the atmospheric pressure value of the first mobile terminal 110A stored in the storage unit 133, the current wind direction and the air volume of the air conditioner 130 input from the air conditioning control unit 135. Based on the set value, the wind speed of the wind received by the first mobile terminal 110A is calculated, and the presence direction, which is the direction in which the first mobile terminal 110A exists, is specified.
  • the wind speed calculation unit 332 stores the amount of change in the atmospheric pressure value of the second portable terminal 110B stored in the storage unit 133 and the current wind direction and air volume of the air conditioner 130 input from the air conditioning control unit 135. Based on the set value, the wind speed of the wind received by the second portable terminal 110B is calculated, and the presence direction that is the direction in which the second portable terminal 110B exists is specified. The wind speed and specified presence direction calculated in the first mobile terminal 110A, and the wind speed and specified presence direction calculated in the second mobile terminal 110B are given to the air conditioning control determination unit 334.
  • the air conditioning control determination unit 334 sets the current wind direction and air volume setting values, the wind speed and the specified presence direction calculated by the first mobile terminal 110A, and the second mobile terminal 110B, which are given from the wind speed calculation unit 332.
  • the control content of the air direction and the air volume of the air conditioner 330 is determined according to the wind speed calculated in step S3 and the specified existence direction, and the control content of the air direction and the air volume is given to the air conditioning control unit 135.
  • the air-conditioning control determination unit 334 only needs to be able to perform comfortable air-conditioning control on both the first mobile terminal 110A and the second mobile terminal 110B. However, when different controls are required in the same place, priorities are assigned. Give priority to either.
  • Embodiment 3 two mobile terminals 110 are used, but the number of mobile terminals 110 is not limited to two, and three or more mobile terminals 110 may be provided.
  • Embodiment 3 even when there are a plurality of mobile terminals 110, comfortable air conditioning control can be performed for a specific place.
  • FIG. FIG. 8 is a block diagram schematically showing a configuration of an air conditioning control system 400 according to the fourth embodiment.
  • the air conditioning control system 400 includes a mobile terminal 410, an air conditioner 230, and an opening / closing device 450.
  • the portable terminal 410, the air conditioner 230, and the opening / closing device 450 are connected to the network 101.
  • the air conditioner 230 in the fourth embodiment is the same as that in the second embodiment.
  • the portable terminal 410 includes an atmospheric pressure measurement unit 111, a terminal control unit 412, a terminal communication unit 413, a wind speed calculation unit 414, a storage unit 415, an air conditioning control determination unit 416, a temperature measurement unit 417, and a humidity measurement unit. 418.
  • the atmospheric pressure measurement unit 111 in the fourth embodiment is the same as that in the first embodiment.
  • the temperature measurement unit 417 is a temperature sensor that measures the temperature and gives the measured temperature to the terminal control unit 412.
  • the humidity measuring unit 418 is a humidity sensor that measures humidity and gives the measured humidity to the terminal control unit 412.
  • the terminal control unit 412 controls processing in the mobile terminal 410.
  • the terminal control unit 412 gives the air pressure value given from the air pressure measurement unit 111 and the temperature given from the temperature measurement unit 417 to the wind speed calculation unit 414.
  • the terminal control unit 412 gives the temperature given from the temperature measurement unit 417 and the humidity given from the humidity measurement unit 418 to the air conditioning control determination unit 416.
  • the wind speed calculation unit 414 stores the atmospheric pressure value given from the terminal control unit 412 in the storage unit 415.
  • the wind speed calculation part 414 is the setting value of the present wind direction and the air volume of the air conditioner 230 given from the terminal communication part 413, the variation
  • the speed of the wind received by the mobile terminal 410 is calculated, and the direction in which the mobile terminal 410 exists is specified.
  • the calculated wind speed and the specified existence direction are given to the air conditioning control determination unit 416.
  • the wind speed calculation unit 414 uses the air density corresponding to the temperature given from the temperature measurement unit 417 to calculate the wind speed according to the above equation (1).
  • the storage unit 415 stores information necessary for processing in the mobile terminal 410.
  • the storage unit 415 stores the atmospheric pressure value given from the wind speed calculation unit 414.
  • the storage unit 415 stores density information in which the temperature and the air density are associated with each other.
  • the wind speed calculation part 414 should just identify the density of the air corresponding to the temperature given from the temperature measurement part 417 by referring density information.
  • the storage unit 415 stores sensory temperature information that associates the combination of wind speed, temperature, and humidity with the sensory temperature. Note that the storage unit 415 can be realized by a volatile memory or a nonvolatile memory.
  • the air conditioning control determination unit 416 specifies the sensible temperature using the wind speed given from the wind speed calculation unit 414, the temperature given from the temperature measurement unit 417, and the humidity given from the humidity measurement unit 418.
  • the air-conditioning control determination unit 416 specifies the sensible temperature corresponding to the wind speed, temperature, and humidity by referring to the sensible temperature information stored in the storage unit 415.
  • the air conditioning control determination unit 416 determines the control content of the air direction and the air volume of the air conditioner 230 according to the current setting value of the wind direction and the air volume, the presence direction given from the wind speed calculation unit 414 and the specified sensible temperature.
  • control content of the wind direction and the air volume is determined in advance according to a combination of the current setting value of the wind direction and the air volume, the existing direction, and the sensible temperature.
  • the air conditioning control determination unit 416 gives the control content of the wind direction and air volume to the terminal communication unit 413.
  • the air conditioning control determination unit 416 determines the degree of opening / closing of the opening / closing device 450 according to the specified sensible temperature. Note that the degree of opening and closing is determined in advance according to the temperature of sensation.
  • the air conditioning control determining unit 416 gives the degree of opening / closing to the terminal communication unit 413.
  • the terminal communication unit 413 transmits to the air conditioner 230 the control content of the wind direction and the air volume given from the air conditioning control determination unit 416. In addition, the terminal communication unit 413 transmits the opening / closing degree given from the air conditioning control determination unit 416 to the opening / closing device 450. Further, the terminal communication unit 413 receives the current wind direction and air volume setting values from the air conditioner 230, and provides the setting values to the wind speed calculation unit 414.
  • the opening / closing device 450 includes an opening / closing communication unit 451, an opening / closing control unit 452, and an opening / closing unit 453.
  • the open / close communication unit 451 communicates with the network 101.
  • the open / close communication unit 451 receives the open / close degree from the portable terminal 410 and gives the open / close degree to the open / close control unit 452.
  • the open / close control unit 452 controls the open / close unit 453 attached to the open / close target according to the open / close degree given from the open / close communication unit 451.
  • the opening / closing unit 453 is attached to the object to be opened / closed, and opens / closes the object to be opened / closed so as to have the degree of opening / closing given from the opening / closing communication unit 451.
  • the objects to be opened and closed are doors, doors, fences or windows.
  • Part or all of the open / close control unit 452 described above can be configured by a memory 10 and a processor 11 as shown in FIG. 2A, for example. Further, a part or all of the open / close control unit 452 can be configured by the processing circuit 12 as shown in FIG. 2B, for example.
  • FIG. 9 is a schematic diagram illustrating a method of using the air conditioning control system 400 according to the fourth embodiment.
  • the portable terminal 410 is placed next to a sleeping person and receives the wind output from the air conditioner 230. At this time, the portable terminal 410 should be placed on the human air conditioner 230 side.
  • the opening / closing device 450 is attached to the window 460 and the door 461, and opens and closes the window 460 and the door 461, respectively. Since the configuration of the opening / closing portion 453 that opens and closes the window 460 and the door 461 may be a known configuration, detailed description thereof is omitted.
  • the wind speed can be estimated more accurately by measuring the temperature.
  • the temperature sensed can be specified by the temperature, humidity, and wind speed, and therefore control according to the temperature sensed can be performed.
  • the portable terminal 410 includes the wind speed calculation unit 414, the storage unit 415, and the air conditioning control determination unit 416.
  • the fourth embodiment is not limited to such an example.
  • storage part 415, and the air-conditioning control determination part 416 may be provided in any one or both of the air conditioner 230 and the opening / closing apparatus 450.
  • the portable terminal 410 may transmit the measured atmospheric pressure value, temperature, and humidity to one or both of the air conditioner 230 and the opening / closing device 450.
  • the air conditioning control determination unit 416 includes the air conditioner 230.
  • the control content of the opening / closing device 450 may be determined, and the control content of the other device may be transmitted to the other device.
  • the air conditioning control determination unit 416 determines the control content of the own device. Just decide.
  • Air conditioning control system 101 network, 110, 210, 410 mobile terminal, 111 barometric pressure measurement unit, 112, 412 terminal control unit, 113, 413 terminal communication unit, 214, 414 wind speed calculation unit, 215, 415 storage unit, 216, 416 air conditioning control determination unit, 417 temperature measurement unit, 418 humidity measurement unit, 130, 230, 330 air conditioner, 131 air conditioning communication unit, 132, 332 wind speed calculation unit, 133 storage unit, 134, 334 Air conditioning control determination unit, 135, 235, air conditioning control unit, 136 air conditioning unit, 450 switching device, 451 switching communication unit, 452 switching control unit, 453 switching unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

気圧値を測定する気圧測定部(111)と、風向及び風量を変更することのできる空調部(136)と、複数の気圧値の変化量から、携帯端末(110)が受ける風の風速を算出するとともに、空気調和機(130)から携帯端末(110)が存在している方向である存在方向を特定する風速算出部(132)と、風速及び存在方向に従って、空調部(136)の風向及び風量を決定する空調制御決定部(134)と、決定された風向及び風量となるように、空調部(136)を制御する空調制御部(135)とを備える。

Description

空調制御システム及び空気調和機
 本発明は、空調制御システム及び空気調和機に関する。
 空気調和機により室内環境を快適にするため、従来は、室内及び屋外の環境を測定し、環境に合わせた制御がなされてきた。室内の環境は、通常、室内機に搭載したセンサで測定することにより取得される。屋外の環境は、室外機にセンサを搭載して測定したり、専用の環境測定装置を設置して測定したり、気象観測所の観測データを、インターネットを介して収集したりすることにより、取得されている。
 例えば、先行文献1は、窓及びドアの開閉装置と、空調装置と、建物内外に環境を監視する監視装置と、コントローラとを備える空調システムを開示している。この空調システムでは、監視装置は、センサで風速及び風向を計測し、コントローラは、監視装置の計測結果に基づき、空調装置を制御している。
国際公開第2014/167837号公報
 しかしながら、空気調和機で室内のあらゆる場所を、ユーザが所望し、指示した環境にすることは困難である。具体的には、空気調和機は、センサの測定値に基づき制御されるため、センサが存在する場所が、空気調和機により好適な環境にされる。このため、ユーザの周辺等の、ユーザが希望する場所にセンサが設置されていない場合には、ユーザが希望する場所を快適にすることはできない。
 そこで、本発明の1又は複数の態様は、ユーザが希望する場所を、空気調和機により好適にできるようにすることを目的とする。
 本発明の第1の態様に係る空調制御システムは、気圧値を測定する気圧測定部を含む携帯端末と、風向及び風量を変更することのできる空調部を含む空気調和機とを備える空調制御システムであって、前記気圧測定部で測定される複数の前記気圧値の変化量から、前記携帯端末が受ける風の風速を算出するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速算出部と、前記風速及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えることを特徴とする。
 本発明の第2の態様に係る空調制御システムは、気圧値を測定する気圧測定部、温度を測定する温度測定部及び湿度を測定する湿度測定部を備える携帯端末と、風向及び風量を変更することのできる空調部を備える空気調和機とを備える空調制御システムであって、前記気圧測定部で測定される複数の前記気圧値の変化量から、前記携帯端末が受ける風の風速を算出するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速算出部と、前記風速、前記温度及び前記湿度から、前記携帯端末のユーザの体感温度を特定し、前記体感温度及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えることを特徴とする。
 本発明の第3の態様に係る空調制御システムは、雑音量を示す出力値を出力する集音部を含む携帯端末と、風向及び風量を変更することのできる空調部を含む空気調和機とを備える空調制御システムであって、前記集音部から出力される複数の前記出力値の変化量から、前記携帯端末が受ける風の風速を特定するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速特定部と、前記風速及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えることを特徴とする。
 本発明の第1の態様に係る空気調和機は、気圧値を測定する気圧測定部を含む携帯端末と通信する空気調和機であって、風向及び風量を変更することのできる空調部と、前記携帯端末と通信することで、前記携帯端末から前記気圧値を受信する空調通信部と、前記空調通信部で受信される複数の前記気圧値の変化量から、前記携帯端末が受ける風の風速を算出するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速算出部と、前記風速及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えることを特徴とする。
 本発明の第2の態様に係る空気調和機は、気圧値を測定する気圧測定部、温度を測定する温度測定部及び湿度を測定する湿度測定部を備える携帯端末と通信する空気調和機であって、風向及び風量を変更することのできる空調部と、前記携帯端末と通信することで、前記携帯端末から前記気圧値、前記温度及び前記湿度を受信する空調通信部と、前記空調通信部で受信される複数の前記気圧値の変化量から、前記携帯端末が受ける風の風速を算出するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速算出部と、前記風速、前記温度及び前記湿度から、前記携帯端末のユーザの体感温度を特定し、前記体感温度及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えることを特徴とする。
 本発明の第3の態様に係る空気調和機は、雑音量を示す出力値を出力する集音部を含む携帯端末と通信する空気調和機であって、風向及び風量を変更することのできる空調部と、前記携帯端末と通信することで、前記携帯端末から前記出力値を受信する空調通信部と、前記空調通信部で受信される複数の前記出力値の変化量から、前記携帯端末が受ける風の風速を特定するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速特定部と、前記風速及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えることを特徴とする。
 本発明の1又は複数の態様によれば、ユーザが希望する場所を、空気調和機により好適にすることができる。
実施の形態1に係る空調制御システムの構成を概略的に示すブロック図である。 (A)及び(B)は、ハードウェア構成例を示すブロック図である。 風速を算出する処理を示すフローチャートである。 風向の設定値に対応する気圧値の変動を示すグラフの一例を示す概略図である。 (A)及び(B)は、気圧測定部に風が当たる角度と、気圧測定部で測定される気圧値との関係を説明するための概略図である。 実施の形態2に係る空調制御システムの構成を概略的に示すブロック図である。 実施の形態3に係る空調制御システムの構成を概略的に示すブロック図である。 実施の形態4に係る空調制御システムの構成を概略的に示すブロック図である。 実施の形態4に係る空調制御システムの利用方法を示す概略図である。
実施の形態1.
 図1は、実施の形態1に係る空調制御システム100の構成を概略的に示すブロック図である。
 空調制御システム100は、携帯端末110と、空気調和機130とを備える。
 携帯端末110及び空気調和機130は、LAN(Local Area Network)等のネットワーク101に接続されている。例えば、ネットワーク101での通信は、無線LAN、Wi-Fi(登録商標)又はBluetooth(登録商標)等の無線通信である。
 携帯端末110は、気圧測定部111と、端末制御部112と、端末通信部113とを備える。
 気圧測定部111は、気圧値を測定する。例えば、気圧測定部111は、気圧を測定する気圧センサにより実現することができる。
 端末制御部112は、携帯端末110での処理を制御する。例えば、端末制御部112は、気圧測定部111から、測定された気圧値を受け取り、端末通信部113に与える。
 端末通信部113は、ネットワーク101との間で通信を行う。例えば、端末通信部113は、端末制御部112から与えられる気圧値を空気調和機130に送信する。端末通信部113は、例えば、NIC(Network Interface Card)により実現することができる。
 以上に記載された端末制御部112の一部又は全部は、例えば、図2(A)に示されているように、メモリ10と、メモリ10に格納されているプログラムを実行するCPU(Central Processing Unit)等のプロセッサ11とにより構成することができる。このようなプログラムは、ネットワークを通じて提供されてもよく、また、記録媒体に記録されて提供されてもよい。即ち、このようなプログラムは、例えば、プログラムプロダクトとして提供されてもよい。
 また、端末制御部112の一部は、例えば、図2(B)に示されているように、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuits)又はFPGA(Field Programmable Gate Array)等の処理回路12で構成することもできる。
 図1に戻り、空気調和機130は、空調通信部131と、風速算出部132と、記憶部133と、空調制御決定部134と、空調制御部135と、空調部136とを備える。
 空調通信部131は、ネットワーク101との間で通信を行う。例えば、空調通信部131は、携帯端末110からの気圧値を受信する。受信された気圧値は、風速算出部132に与えられる。空調通信部131は、例えば、NICにより実現することができる。
 風速算出部132は、空調通信部131から与えられる気圧値を記憶部133に記憶させる。
 風速算出部132は、携帯端末110が受ける風の風速を算出する。例えば、風速算出部132は、記憶部133に記憶されている複数の気圧値の変化量と、空調制御部135から入力される空気調和機130の現在の風向及び風量の設定値とに基づき、携帯端末110が受ける風の風速を算出する。具体的には、風速算出部132は、空気調和機130の現在の風向及び風量において気圧測定部111で測定された第1の気圧値と、空調部136からの風向を左右方向に変化させて、気圧測定部111で複数回測定された複数の第2の気圧値の内の最低値との差分である対象差分により、気圧値の変化量を特定する。そして、風速算出部132は、その変化量を2倍した値を、空気の密度で除算した値の平方根により、風速を算出する。なお、対象差分については、携帯端末110が空調部136からの風を受けている場合には、携帯端末110の気圧測定部111の向きに応じて、補正される。
 また、風速算出部132は、携帯端末110が存在する方向である存在方向を特定する。
 以上のようにして算出された風速及び特定された存在方向は、空調制御決定部134に与えられる。
 記憶部133は、空気調和機130での処理に必要な情報を記憶する。例えば、記憶部133は、風速算出部132から与えられる気圧値を記憶する。記憶部133は、揮発性のメモリ又は不揮発性のメモリにより実現することができる。
 空調制御決定部134は、現在の風向及び風量の設定値、風速算出部132から与えられる風速及び存在方向に従って、空気調和機130の風向及び風量の制御内容を決定し、風向及び風量の制御内容を空調制御部135に与える。
 空調制御部135は、空調制御決定部134から与えられる風向及び風量の制御内容に従い、空気調和機130が風を出力するよう、空調部136に風向及び風量の設定を行うとともに、その設定値を、現在の風向及び風量の設定値として、風速算出部132に与える。
 空調部136は、空気の調和を実行する部分である。例えば、空調部136は、冷凍サイクルを用いて、空気を冷却又は加熱し、冷却又は加熱された空気を、設定された風向及び風量で排出する。空調部136は、風向及び風量を変更することができる。
 以上に記載された風速算出部132、空調制御決定部134及び空調制御部135の一部又は全部は、例えば、図2(A)に示されているように、メモリ10と、メモリ10に格納されているプログラムを実行するCPU等のプロセッサ11とにより構成することができる。このようなプログラムは、ネットワークを通じて提供されてもよく、また、記録媒体に記録されて提供されてもよい。即ち、このようなプログラムは、例えば、プログラムプロダクトとして提供されてもよい。
 また、風速算出部132、空調制御決定部134及び空調制御部135の一部又は全部は、例えば、図2(B)に示されているように、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC又はFPGA等の処理回路12で構成することもできる。
 次に、空調制御システム100での動作について説明する。
 まず、空調制御システム100での動作の概要を説明する。
 空気調和機130から排出された風により、室内の気圧が変化する。気圧の変化は、空気調和機130が出力した風の風向、風速及び温度が同じであっても、室内の場所によって異なる。
 空気調和機130から排出された風は、空気調和機130からの距離、空気調和機130と測定場所との間に設置された家具、測定場所周辺に置かれた物、人の動き、空気調和機130以外の装置が排出した風、又は、窓若しくは戸等の開口部から入り込む風等の影響を受けている。
 本実施の形態では、風を検知する場所を携帯端末110が設置された場所とし、携帯端末110の気圧測定部111で測定された気圧値により、携帯端末110が受けた風を算出する。
 気圧測定部111で測定された気圧値は、携帯端末110の端末通信部113に送られる。測定された気圧値は、端末通信部113から空気調和機130に送信されて、空調通信部131で受信される。受信された気圧値は、風速算出部132に与えられ、風速算出部132は、空調通信部131から与えられる気圧値と、空調制御部135から与えられる現在の風向及び風量の設定値とに基づき、携帯端末110が受けた風の風速を算出する。
 図3は、風速算出部132において風速を算出する処理を示すフローチャートである。
 まず、風速算出部132は、空調制御部135から与えられた最新の風向及び風量の設定値と、携帯端末110から与えられた最新の気圧値を記憶部133に記憶させる(S10)。
 そして、風速算出部132は、空調制御決定部134に空調部136の風向を左右方向にスイング制御するよう指示する(S11)。このような指示を受けた空調制御決定部134は、風速の算出のため、風速算出部132の指示に従い、空調部136から出力する風向及び風量を制御する風向及び風量制御命令を決定して、空調制御部135に与える。空調制御部135は、空調制御決定部134から与えられた風向及び風量制御命令に従い、風向及び風量を制御する。このような制御に従って、空調部136は、風向を左又は右の方向に予め定められた量だけ変更する。なお、風向を変更する方向については、予め定められていてもよく、また、現在の風向位置から、より変更量の多い方向に決められてもよい。また、空調部136への制御後、空調制御部135は、変更後の風向及び風量の設定値を風速算出部132に与える。
 次に、携帯端末110の気圧測定部111は、気圧値を測定する(S12)。
 端末制御部112は、測定された気圧値を気圧測定部111から受け取り、端末通信部113から空気調和機130に送る(S13)。
 そして、風速算出部132は、ステップS11において空調制御部135から与えられた現在の風向及び風量の設定値と、ステップS13において携帯端末110から与えられた気圧値を記憶部133に記憶させる(S14)。
 次に、風速算出部132は、記憶部133に記憶されている風向の設定値が、空調部136で設定可能な左右方向の右端から左端まで変化したか否かを判定する(S15)。風向の設定値が右端から左端まで変化した場合(S15でYes)には、処理はステップS16に進み、風向の設定値が右端から左端までは、未だ変化していない場合(S15でNo)には、処理はステップS11に戻る。
 なお、ステップS11~S14の処理では、空調制御部135は、風向を右端から順に変更する必要はない。例えば、図3に示されているフローの開始時の風向が設定されている位置から、右又は左の一方に風向を変更し、端まできたら、他方に変更するという処理を繰り返せばよい。これにより、記憶部133に、風向が最も右に設定された場合と、最も左に設定された場合と、その中間に設定された場合の風向及び風量の設定値と、その設定値における気圧値とが記憶されればよい。なお、中間に設定された場合は、複数必要である。例えば、最も右と最も左の中間の10以上の風向位置について気圧値が測定される。
 ステップS16では、風速算出部132は、ステップS14で記憶部133に記憶された風向の設定値及び気圧値から、風向の設定値に対応する気圧値の変動を示すグラフを作成する。
 図4は、ステップS16で作成される、風向の設定値に対応する気圧値の変動を示すグラフの一例を示す概略図である。
 このグラフは、横軸に風向の設定値、縦軸に気圧値(hPa)が割り振られている。
 風速算出部132は、記憶部133に記憶されている風向の設定値と、その設定値における気圧値とを、図4のグラフにプロットし、プロットされた点を結ぶ。
 そして、風速算出部132は、気圧値の微小変化であるノイズを除去する処理を施す(S17)。これは、その後の処理において、気圧値の微小変化の影響を受けないようにするためである。具体的には、風速算出部132は、気圧値に対してフィルタをかけることで値を平滑化する。平滑化のフィルタとしては、平均値フィルタ又はガウシアンフィルタ等のフィルタが用いられる。
 図4に示されている曲線a~dは、ステップS16でノイズが除去された後の気圧値の変動を示す。曲線a及び曲線bは、携帯端末110の位置を変更せず、携帯端末110の向きだけを変更した場合の気圧値の変動を示している。例えば、携帯端末110がスマートフォンであった場合、ディスプレイがある方を天井に向けたときと、ディスプレイがない方を天井に向けたときとの差が曲線a及び曲線bで示されている。
 また、曲線c及び曲線dは、携帯端末110が空気調和機130からの風の当たらない位置にある場合の気圧値の変動を示している。
 なお、空気調和機130から排出する風の風量は、変更されない。曲線の違いの詳細は、下記のステップで説明する。
 図3に戻り、次に、風速算出部132は、気圧値の変動を示す曲線における最大値と最小値とを特定し、その差分を算出する。そして、風速算出部132は、その差分が予め定められた閾値よりも大きいか否かを判断する(S18)。ここで、その差分が予め定められた閾値よりも大きい場合(S18でYes)には、携帯端末110に風が直接当たっていると判断し、処理はステップS19に進む。その差分が予め定められた閾値以下である場合(S18でNo)には、携帯端末110に風が直接当たっていないと判断し、処理はステップS22に進む。ここでの閾値は、例えば、1.36hPaとする。この値は、室温20℃において、顔に風を感じない最大の風速である1.5m/s以上の風がないことを意味している。空気の密度は、室温によって変動し、0℃で1.293、10℃で1.247、30℃で1.165である。後述するように、風速は、気圧値の変化量と空気の密度とに依存する。
 次に、風速算出部132は、気圧値の変動を示す曲線における極大値の数を算出する。そして、風速算出部132は、極大値と最大値とが同じであり、かつ、極大値が1つであるか否かを判断する(S19)。極大値と最大値とが同じであり、かつ、極大値が1つである場合(S19でYes)には、携帯端末110が空気調和機130からの風を受けていると判断し、処理はステップS20に進む。極大値と最大値とが異なる場合、又は、極大値が複数ある場合(S19でNo)には、携帯端末110が空気調和機130からの風を受けていないと判断し、処理はステップS22に進む。
 携帯端末110の気圧測定部111が測定した気圧値が最大となるのは、空気調和機130から出力される風の方向に携帯端末110があるときである。このため、気圧測定部111が測定した気圧値が最大になった風向の設定値の方向に、携帯端末110があるといえる。図4においては、曲線a及び曲線bがこのような場合に相当する。
 ここで、図4における曲線aと曲線bの違いを説明する。
 図5(A)に示すように、気圧測定部111で気圧値を検出する際に、風が気圧測定部111に当たる角度により気圧値が異なる。
 図5(A)に示されているように、風が気圧測定部111に当たる角度Rを設定する。
 図5(B)に、この角度Rにおける気圧値の変化割合である角度変化割合を示す。角度変化割合は、角度が0°のときを1としている。言い換えると、各々の角度における気圧値を、角度が0°のときの気圧値、即ち、気圧値の最大値で除算することで、角度変化割合を算出することができる。風速算出部132は、角度変化割合を用いて、気圧測定部111の向きにより変化した気圧値の差を補正し、携帯端末110が受ける風を推定する。
 図5(B)の変化より、図4に示されている曲線aは、気圧測定部111に対して垂直に近い方向から風が当たり、曲線bは、気圧測定部111に対して背面方向から風が当たったと想定される。
 そこで、図3のステップS21では、風速算出部132は、気圧測定部111に風が当たる角度を特定する。例えば、記憶部133には、気圧値の最大値と最小値との差分に対応する角度を示す角度情報が予め記憶されており、風速算出部132は、その角度情報を参照することにより、ステップS18で算出された差分に対応する角度を特定する。
 また、風速算出部132は、ステップS21で特定された角度に対応する角度変化割合(以下、これを効率と呼ぶ)を特定する(S21)。例えば、記憶部133には、図5(b)に示されているような角度と効率との関係を示す効率情報が予め記憶されており、風速算出部132は、その効率情報を参照することで、ステップS21で特定された角度に対応する効率を特定する。
 なお、風速算出部132は、そのような関係を示す情報を、空調通信部131を介してネットワーク101から取得してもよい。
 または、風速算出部132は、ユーザに携帯端末110を回転させる指示を行い、回転角度とその時の気圧値とから、そのような関係を算出してもよい。
 なお、ステップS18において、気圧値の最大値と最小値との差分が予め定められた閾値以下である場合(S18でNo)には、風速算出部132は、携帯端末110に風が当たっていないと判断する。図4における曲線cは、このような場合にあたる。
 また、ステップS19において、気圧値の極大値が2つ以上ある場合(S19でNo)には、風速算出部132は、複数の方向から風が当たっていると判断する。図4における曲線dは、このような場合にあたる。
 以上のような場合(ステップS18でNo又はステップS19でNo)には、処理はステップS22に進む。
 ステップS22では、風速算出部132は、風による気圧値の変化量を算出する。気圧値の変化量の算出方法は、1つ前のステップにより異なる。一つ前のステップが、ステップS21の場合、風速算出部132は、ステップS10で記憶させた気圧値からステップS16で作成したグラフの最小値を減算した値を、ステップS21で特定した効率で除算した値を、気圧値の変化量とする。
 一つ前のステップが、ステップS18又はステップS19の場合、風速算出部132は、ステップS10で記憶させた気圧値から、ステップS16で作成したグラフの最小値を減算した値を、気圧値の変化量とする。
 なお、ステップS10で記憶させた気圧値からステップS16で作成したグラフの最小値を減算した値を対象差分ともいう。
 次に、風速算出部132は、ステップS22で算出した気圧値の変化量を用いて、下記の(1)式により風速を算出する(S23)。
 (1)式において、Vは、風速(m/s)、dは、空気の密度(kg/m)、Pvは、気圧値の変化量(hPa)である。空気の密度は、温度によって異なるが、ここでは室温20℃のときの空気の密度である「1.205」が用いられる。
Figure JPOXMLDOC01-appb-M000001
 なお、(1)式は、ベルヌーイの定理から導かれる式である。
 以上のように、風速算出部132は、携帯端末110で測定された気圧値からベルヌーイの定理を用いて、風速を算出することができる。
 以上のようにして算出された風速は、空調制御決定部134に与えられる。
 また、風速算出部132は、ステップS18及びS19の判断結果から、携帯端末110が存在する方向である存在方向を特定して、特定された存在方向を空調制御決定部134に与える。例えば、ステップS18及びS19の判断結果がYesである場合には、風速算出部132は、ステップS16において、気圧値の最大値に対応する風向の設定値の方向に携帯端末110が存在すると判断する。
 一方、ステップS18又はS19の判断結果がNoである場合には、風速算出部132は、空気調和機130の風向を設定できる範囲に携帯端末110がないと判断する。言い換えると、空気調和機130の風向を設定できない範囲に携帯端末110が存在すると判断する。
 風速算出部132は、以上のような判断結果を、携帯端末110の存在方向として、空調制御決定部134に与える。
 空調制御決定部134は、現在の風向及び風量の設定値と、風速算出部132が算出した風速と、携帯端末110の存在方向とを用いて、空調制御方法を決定する。このとき、空調制御決定部134は、携帯端末110がユーザの側に置かれていると仮定して、例えば、ユーザに風が直接当たらないように制御したり、ユーザが心地よいと感じる風速になるよう制御したり、時間又は時刻により風の当たり具合を制御したりする。なお、空調制御方法は、現在の風向及び風量の設定値と、風速と、存在方向との組み合わせに応じて、予め定められているものとする。
 なお、快適性を考慮した気流速度は、夏期の冷房において設定温度27℃未満では0.3m/s以下、並びに、冬期の暖房時及び夏期の冷房において設定温度27℃以上の時は、0.5m/s~1.0m/sが望ましいとされている。また、風速と人の感じ方については、例えば、ビューフォード風力階級表等を参照して、ユーザが心地よいと感じる風速が予め決定されているものとする。
 なお、携帯端末110は、スマートフォン又は携帯電話を想定しているが、気圧センサ及び気圧センサで計測された気圧値を送信する通信装置を備えるものであればこれに限らない。例えば、携帯端末110は、気圧センサ及び通信装置を備えた目覚まし時計、又は、気圧センサ及び通信装置を備えたモジュールを後から付けた目覚まし時計でもよい。
 また、実施の形態1では、空気調和機130が出力する風の風向及び風量の設定値を空調制御部135が風速算出部132に与える構成を説明したが、風向及び風量の設定値を、空調制御決定部134が風速算出部132に与えてもよい。この場合、空調制御決定部134が決定した風向及び風量の制御命令が空調制御部135で実施されたとして処理されることとなる。
 また、実施の形態1では、風速算出部132は、気圧測定部111で計測された気圧値を用いて、風速を算出しているが、実施の形態1は、このような例に限定されない。
 例えば、風速算出部132は、携帯端末110に内蔵されている図示しないマイクによって検知される音を用いて、風速を算出することもできる。風による空気の揺らぎは、集音部としてのマイクの雑音として検知される。風による雑音は、超低周波であるため、端末制御部112は、マイクで検知された雑音(ゲイン)から、ローパスフィルタを通して低周波領域のみを取り出すことで、雑音量を示す出力値を風速算出部132に与えることができる。
 また、マイクの代わりに、携帯端末110に内蔵されている図示しないスピーカによって検知される音を用いて、風速を算出することもできる。スピーカを用いる場合には、風によるスピーカの振動板の振動を検知し、検知された振動を増幅して信号として風速算出部132に伝達する回路を追加することで、風速を求めることができる程度の雑音の変化量を検出することができる。
 風速算出部132は、複数の気圧値の変化量の代わりに、マイクによって検知された雑音の低周波領域の複数の出力値の変化量を用いて、風速を求めることができる。例えば、記憶部133が、変化量と、風速とを対応付ける風速情報を予め記憶することで、風速算出部132は、風速を特定することができる。このような場合、風速算出部132は、風速特定部として機能する。
 なお、このような場合には、図3に示されているフローチャートにおいて、ステップS12及びS13において、気圧値の代わりに、マイクで検知された雑音の低周波領域の出力値を測定及び記憶する。
 マイクによる雑音の低周波領域の出力値は、気圧値と同時に測定及び記憶することで、風速算出部132は、気圧測定部111のみによる風速を補完し、風速推定精度を上げることもできる。このような場合、例えば、気圧値から算出された風速と、雑音から算出された風速との平均値を用いることで、風速推定精度を上げることができる。
 以上のように、実施の形態1に係る空調制御システム100によれば、携帯端末110が置かれた場所における風速を特定し、空気調和機130の制御にフィードバックさせることができる。このため、携帯端末110が置かれた場所を、好適な環境にすることができる。従って、ユーザは、希望する時に、快適な空間を提供したい人、ペット又は食品等の対象の近くに携帯端末110を配置することで、その対象に快適な空調を提供することができる。
 また、実施の形態1に係る空調制御システム100では、携帯端末110は、気圧測定部111で気圧値を測定し、その気圧値を空気調和機130に送信するだけでよいので、空調制御に関する機能を持たない携帯端末110を用いることができる。
 また、実施の形態1に係る空調制御システム100では、携帯端末110が受けている風と、気圧測定部111に当たる風との違いを区別することにより、気圧測定部111の設置向きによる気圧値の変化を補正することができる。
 さらに、実施の形態1に係る空調制御システム100では、携帯端末110に備えられている気圧測定部111で測定される気圧値により、携帯端末110が存在する方向を特定することができるため、携帯端末110が存在する方向を快適な空間とすることができる。
 また、実施の形態1に係る空調制御システム100では、気圧センサと通信装置とを携帯対象物に後付けすることにより、携帯端末110とすることができる。このため、携帯端末110は、スマートフォン又は携帯電話のみならず、目覚まし時計等の携帯対象物により実現することができる。例えば、目覚まし時計は、ユーザが空気調和機130をリモコンで制御できない就寝中に、ユーザの側に設置されることが多いため、ユーザに代わって環境を見守ることができる。
実施の形態2.
 図6は、実施の形態2に係る空調制御システム200の構成を概略的に示すブロック図である。
 空調制御システム200は、携帯端末210と、空気調和機230とを備える。
 携帯端末210及び空気調和機230は、ネットワーク101に接続されている。
 携帯端末210は、気圧測定部111と、端末制御部112と、端末通信部113と、風速算出部214と、記憶部215と、空調制御決定部216とを備える。
 実施の形態2における気圧測定部111、端末制御部112及び端末通信部113は、実施の形態1と同様である。但し、実施の形態2における端末制御部112は、気圧測定部111から与えられる気圧値を、風速算出部214に与える。また、実施の形態2における端末通信部113は、空調制御決定部216から与えられる風向及び風量の制御内容を空気調和機230に送信し、空気調和機230から現在の風向及び風量の設定値を受信して、その設定値を風速算出部214に与える。
 風速算出部214は、端末制御部112から与えられる気圧値を記憶部215に記憶させる。そして、風速算出部214は、記憶部215に記憶されている複数の気圧値の変化量と、端末通信部113から与えられる空気調和機230の現在の風向及び風量の設定値とに基づき、携帯端末210が受けた風の風速を算出するとともに、携帯端末210の存在方向を特定する。算出された風速及び特定された存在方向は、空調制御決定部216に与えられる。
 記憶部215は、携帯端末210での処理に必要な情報を記憶する。例えば、記憶部215は、風速算出部214から与えられる気圧値を記憶する。記憶部215は、揮発性のメモリ又は不揮発性のメモリにより実現することができる。
 空調制御決定部216は、現在の風向及び風量の設定値、風速算出部214から与えられる風速及び存在方向に従って、空気調和機230の風向及び風量の制御内容を決定し、端末通信部113に、風向及び風量の制御内容を空気調和機230へ送信させる。例えば、空調制御決定部216としては、スマートフォンのリモコン用のアプリケーションを利用することができる。
 以上に記載された端末制御部112、風速算出部214及び空調制御決定部216の一部又は全部は、例えば、図2(A)に示されているように、メモリ10と、プロセッサ11とにより構成することができる。
 また、端末制御部112、風速算出部214及び空調制御決定部216の一部は、例えば、図2(B)に示されているように、処理回路12で構成することもできる。
 空気調和機230は、空調通信部131と、空調制御部235と、空調部136とを備える。
 実施の形態2における空調通信部131及び空調部136は、実施の形態1と同様である。但し、空調通信部131は、携帯端末210から風向及び風量の制御内容を受信し、その風向及び風量の制御内容を空調制御部235に与える。また、空調通信部131は、空調制御部235から現在の風向及び風量の設定値を受け取り、その現在の風向及び風量の設定値を携帯端末210に送信する。
 空調制御部235は、空調通信部131から与えられる風向及び風量の制御内容に従い、空気調和機230が風を出力するよう、空調部136に風向及び風量の設定を行うとともに、その設定値を、現在の風向及び風量の設定値として、空調通信部131に与える。
 以上に記載された空調制御部235の一部又は全部は、例えば、図2(A)に示されているように、メモリ10と、プロセッサ11とにより構成することができる。
 また、空調制御部235の一部又は全部は、例えば、図2(B)に示されているように、処理回路12で構成することもできる。
 以上のように、実施の形態2によれば、空気調和機230は、携帯端末210からの制御に従えばよいので、既設の空気調和機230を用いることができる。
実施の形態3.
 図7は、実施の形態3に係る空調制御システム300の構成を概略的に示すブロック図である。
 空調制御システム300は、第1の携帯端末110Aと、第2の携帯端末110Bと、空気調和機330とを備える。
 第1の携帯端末110A、第2の携帯端末110B及び空気調和機330は、ネットワーク101に接続されている。
 第1の携帯端末110Aは、気圧測定部111Aと、端末制御部112Aと、端末通信部113Aとを備える。
 第1の携帯端末110Aにおける気圧測定部111A、端末制御部112A及び端末通信部113Aは、実施の形態1における携帯端末110の気圧測定部111、端末制御部112及び端末通信部113と同様である。
 第2の携帯端末110Bは、気圧測定部111Bと、端末制御部112Bと、端末通信部113Bとを備える。
 第2の携帯端末110Bにおける気圧測定部111B、端末制御部112B及び端末通信部113Bは、実施の形態1における携帯端末110の気圧測定部111、端末制御部112及び端末通信部113と同様である。
 空気調和機330は、空調通信部131と、風速算出部332と、記憶部133と、空調制御決定部334と、空調制御部135と、空調部136とを備える。
 実施の形態3における空調通信部131、記憶部133、空調制御部135及び空調部136は、実施の形態1と同様である。
 風速算出部332は、空調通信部131から与えられる、第1の携帯端末110Aで測定された気圧値及び第2の携帯端末110Bで測定された気圧値を記憶部133に記憶させる。そして、風速算出部332は、記憶部133に記憶されている、第1の携帯端末110Aの気圧値の変化量と、空調制御部135から入力される空気調和機130の現在の風向及び風量の設定値とに基づき、第1の携帯端末110Aが受けた風の風速を算出するとともに、第1の携帯端末110Aが存在する方向である存在方向を特定する。また、風速算出部332は、記憶部133に記憶されている、第2の携帯端末110Bの気圧値の変化量と、空調制御部135から入力される空気調和機130の現在の風向及び風量の設定値とに基づき、第2の携帯端末110Bが受けた風の風速を算出するとともに、第2の携帯端末110Bが存在する方向である存在方向を特定する。第1の携帯端末110Aにおいて算出された風速及び特定された存在方向、並びに、第2の携帯端末110Bにおいて算出された風速及び特定された存在方向は、空調制御決定部334に与えられる。
 空調制御決定部334は、現在の風向及び風量の設定値、風速算出部332から与えられる、第1の携帯端末110Aにおいて算出された風速及び特定された存在方向、並びに、第2の携帯端末110Bにおいて算出された風速及び特定された存在方向に従って、空気調和機330の風向及び風量の制御内容を決定し、風向及び風量の制御内容を空調制御部135に与える。
 ここで、空調制御決定部334は、第1の携帯端末110A及び第2の携帯端末110Bの両方に快適な空調制御ができればよいが、同じ場所に異なる制御が求められる場合は、優先順位を付けてどちらかを優先する。
 また、実施の形態3では2つの携帯端末110を用いているが、携帯端末110の数は2つに限定されず、3つ以上の携帯端末110が備えられていてもよい。
 実施の形態3によれば、携帯端末110が複数ある場合でも、特定の場所に対して快適な空調制御を行うことができる。
実施の形態4.
 図8は、実施の形態4に係る空調制御システム400の構成を概略的に示すブロック図である。
 空調制御システム400は、携帯端末410と、空気調和機230と、開閉装置450とを備える。
 携帯端末410、空気調和機230及び開閉装置450は、ネットワーク101に接続されている。
 実施の形態4における空気調和機230は、実施の形態2と同様である。
 携帯端末410は、気圧測定部111と、端末制御部412と、端末通信部413と、風速算出部414と、記憶部415と、空調制御決定部416と、温度測定部417と、湿度測定部418とを備える。
 実施の形態4における気圧測定部111は、実施の形態1と同様である。
 温度測定部417は、温度を測定し、測定された温度を端末制御部412に与える温度センサである。
 湿度測定部418は、湿度を測定し、測定された湿度を端末制御部412に与える湿度センサである。
 端末制御部412は、携帯端末410での処理を制御する。例えば、端末制御部412は、気圧測定部111から与えられる気圧値及び温度測定部417から与えられる温度を、風速算出部414に与える。端末制御部412は、温度測定部417から与えられる温度及び湿度測定部418から与えられる湿度を、空調制御決定部416に与える。
 風速算出部414は、端末制御部412から与えられる気圧値を記憶部415に記憶させる。そして、風速算出部414は、記憶部415に記憶されている複数の気圧値の変化量と、端末通信部413から与えられる空気調和機230の現在の風向及び風量の設定値と、温度測定部417から与えられる温度とに基づき、携帯端末410が受けた風の風速を算出するとともに、携帯端末410の存在方向を特定する。算出された風速及び特定された存在方向は、空調制御決定部416に与えられる。
 ここで、風速算出部414では、温度測定部417から与えられる温度に対応する空気の密度を用いて、上記の(1)式により、風速を算出する。
 記憶部415は、携帯端末410での処理に必要な情報を記憶する。例えば、記憶部415は、風速算出部414から与えられる気圧値を記憶する。記憶部415は、気温と空気の密度とを対応付けた密度情報を記憶する。風速算出部414は、密度情報を参照することで、温度測定部417から与えられる温度に対応する空気の密度を特定すればよい。記憶部415には、風速、温度及び湿度の組み合わせと、体感温度とを対応付ける体感温度情報を記憶する。なお、記憶部415は、揮発性のメモリ又は不揮発性のメモリにより実現することができる。
 空調制御決定部416は、風速算出部414から与えられる風速、温度測定部417から与えられる温度及び湿度測定部418から与えられる湿度を用いて、体感温度を特定する。例えば、空調制御決定部416は、記憶部415に記憶されている体感温度情報を参照することで、風速、温度及び湿度に対応する体感温度を特定する。
 そして、空調制御決定部416は、現在の風向及び風量の設定値、風速算出部414から与えられる存在方向及び特定された体感温度に従って、空気調和機230の風向及び風量の制御内容を決定する。なお、風向及び風量の制御内容は、現在の風向及び風量の設定値と、存在方向と、体感温度との組み合わせに応じて、予め定められているものとする。空調制御決定部416は、その風向及び風量の制御内容を端末通信部413に与える。
 また、空調制御決定部416は、特定された体感温度に従って、開閉装置450の開閉度合いを決定する。なお、開閉度合いは、体感温度に応じて、予め定められているものとする。空調制御決定部416は、その開閉度合いを端末通信部413に与える。
 端末通信部413は、空調制御決定部416から与えられる風向及び風量の制御内容を空気調和機230に送信する。
 また、端末通信部413は、空調制御決定部416から与えられる開閉度合いを開閉装置450に送信する。
 さらに、端末通信部413は、空気調和機230から現在の風向及び風量の設定値を受信して、その設定値を風速算出部414に与える。
 開閉装置450は、開閉通信部451と、開閉制御部452と、開閉部453とを備える。
 開閉通信部451は、ネットワーク101との間で通信を行う。例えば、開閉通信部451は、携帯端末410から開閉度合いを受信し、その開閉度合いを開閉制御部452に与える。
 開閉制御部452は、開閉通信部451から与えられる開閉度合いに従い、開閉対象に取り付けられている開閉部453を制御する。
 開閉部453は、開閉対象に取り付けられており、開閉通信部451から与えられる開閉度合いとなるように、開閉対象の開閉を行う。ここで、開閉対象は、扉、戸、襖又は窓等である。
 以上に記載された開閉制御部452の一部又は全部は、例えば、図2(A)に示されているように、メモリ10と、プロセッサ11とにより構成することができる。
 また、開閉制御部452の一部又は全部は、例えば、図2(B)に示されているように、処理回路12で構成することもできる。
 図9は、実施の形態4に係る空調制御システム400の利用方法を示す概略図である。
 携帯端末410は、就寝中の人の横に置かれ、空気調和機230から出力される風を受ける。このとき、携帯端末410は、人の空気調和機230側に置かれた方がよい。
 また、開閉装置450は、窓460及び扉461に取り付けられており、窓460及び扉461のそれぞれを開閉する。窓460及び扉461を開閉する開閉部453の構成は、公知の構成を採用すればよいため、詳細な説明は省略する。
 以上のように、実施の形態4によれば、空気の密度は、温度により異なるため、温度を測定することにより風速をより正確に推定することができる。
 また、実施の形態4に係る空調制御システム400では、温度、湿度及び風速により、体感温度を特定することができるため、体感温度に合わせた制御を行うことができる。
 なお、実施の形態4では、携帯端末410に、風速算出部414、記憶部415及び空調制御決定部416が備えられているが、実施の形態4は、このような例に限定されない。例えば、風速算出部414、記憶部415及び空調制御決定部416が、空気調和機230及び開閉装置450の何れか一方、又は、両方に備えられていてもよい。このような場合、携帯端末410は、測定された気圧値、温度及び湿度を、空気調和機230及び開閉装置450の何れか一方、又は、両方に送信すればよい。
 なお、空気調和機230及び開閉装置450の何れか一方に、風速算出部414、記憶部415及び空調制御決定部416が備えられている場合には、空調制御決定部416は、空気調和機230及び開閉装置450の制御内容を決定し、他装置の制御内容を他装置に送信すればよい。
 また、空気調和機230及び開閉装置450の両方に、風速算出部414、記憶部415及び空調制御決定部416が備えられている場合には、空調制御決定部416は、自装置の制御内容を決定すればよい。
 100,200,300,400 空調制御システム、 101 ネットワーク、 110,210,410 携帯端末、 111 気圧測定部、 112,412 端末制御部、 113,413 端末通信部、 214,414 風速算出部、 215,415 記憶部、 216,416 空調制御決定部、 417 温度測定部、 418 湿度測定部、 130,230,330 空気調和機、 131 空調通信部、 132,332 風速算出部、 133 記憶部、 134,334 空調制御決定部、 135,235 空調制御部、 136 空調部、 450 開閉装置、 451 開閉通信部、 452 開閉制御部、 453 開閉部。

Claims (13)

  1.  気圧値を測定する気圧測定部を含む携帯端末と、風向及び風量を変更することのできる空調部を含む空気調和機とを備える空調制御システムであって、
     前記気圧測定部で測定される複数の前記気圧値の変化量から、前記携帯端末が受ける風の風速を算出するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速算出部と、
     前記風速及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、
     前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えること
     を特徴とする空調制御システム。
  2.  前記風速算出部は、前記空調部の現在の風向及び風量において前記気圧測定部で測定される第1の気圧値と、前記空調制御部により前記空調部の風向を左右方向に変化させて、前記気圧測定部で複数回測定される複数の第2の気圧値の内の最低値との差分である対象差分により、前記変化量を特定すること
     を特徴とする請求項1に記載の空調制御システム。
  3.  前記気圧測定部に風が当たる角度と、前記空調制御部により前記空調部の風向を左右方向に変化させた場合に、前記角度において、前記気圧測定部で測定される気圧値の最大値及び最小値の差分とを対応付けた角度情報、並びに、前記角度と、前記角度において前記気圧測定部で測定される気圧値を、前記角度を変化させた場合に前記気圧測定部で測定される気圧値の最大値で除算した値である効率とを対応付けた効率情報を記憶する記憶部をさらに備え、
     前記風速算出部は、前記角度情報を参照することで、前記複数の第2の気圧値の最大値と最小値との差分に対応する角度を特定し、前記効率情報を参照することで、前記特定された角度に対応する効率を特定するとともに、前記対象差分を前記特定された効率で除算することで、前記対象差分を補正し、前記補正された対象差分を、前記変化量として用いること
     を特徴とする請求項2に記載の空調制御システム。
  4.  前記風速算出部は、前記気圧測定部に前記空調部からの風が当たる場合に、前記対象差分を補正し、前記気圧測定部に前記空調部からの風が当たらない場合に、前記対象差分を補正せずに、前記対象差分を前記変化量として用いること
     を特徴とする請求項3に記載の空調制御システム。
  5.  前記風速算出部は、前記対象差分が予め定められた閾値よりも大きく、かつ、前記複数の第2の気圧値に1つの極大値が含まれている場合に、前記気圧測定部に前記空調部からの風が当たると判断すること
     を特徴とする請求項4に記載の空調制御システム。
  6.  前記風速算出部は、前記変化量を2倍して空気の密度で除算した値の平方根により、前記風速を算出すること
     を特徴とする請求項1から5の何れか一項に記載の空調制御システム。
  7.  前記携帯端末は、温度を測定する温度測定部をさらに備え、
     前記風速算出部は、前記温度に対応する前記空気の密度を用いて、前記風速を算出することを特徴とする請求項6に記載の空調制御システム。
  8.  気圧値を測定する気圧測定部、温度を測定する温度測定部及び湿度を測定する湿度測定部を備える携帯端末と、風向及び風量を変更することのできる空調部を備える空気調和機とを備える空調制御システムであって、
     前記気圧測定部で測定される複数の前記気圧値の変化量から、前記携帯端末が受ける風の風速を算出するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速算出部と、
     前記風速、前記温度及び前記湿度から、前記携帯端末のユーザの体感温度を特定し、前記体感温度及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、
     前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えること
     を特徴とする空調制御システム。
  9.  対象を開閉する開閉部を含む開閉装置をさらに備え、
     前記空調制御決定部は、前記体感温度に従って、前記開閉部の開閉度合いを決定し、
     前記決定された開閉度合いとなるように、前記開閉部を制御する開閉制御部をさらに備えること
     を特徴とする請求項8に記載の空調制御システム。
  10.  雑音量を示す出力値を出力する集音部を含む携帯端末と、風向及び風量を変更することのできる空調部を含む空気調和機とを備える空調制御システムであって、
     前記集音部から出力される複数の前記出力値の変化量から、前記携帯端末が受ける風の風速を特定するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速特定部と、
     前記風速及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、
     前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えること
     を特徴とする空調制御システム。
  11.  気圧値を測定する気圧測定部を含む携帯端末と通信する空気調和機であって、
     風向及び風量を変更することのできる空調部と、
     前記携帯端末と通信することで、前記携帯端末から前記気圧値を受信する空調通信部と、
     前記空調通信部で受信される複数の前記気圧値の変化量から、前記携帯端末が受ける風の風速を算出するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速算出部と、
     前記風速及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、
     前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えること
     を特徴とする空気調和機。
  12.  気圧値を測定する気圧測定部、温度を測定する温度測定部及び湿度を測定する湿度測定部を備える携帯端末と通信する空気調和機であって、
     風向及び風量を変更することのできる空調部と、
     前記携帯端末と通信することで、前記携帯端末から前記気圧値、前記温度及び前記湿度を受信する空調通信部と、
     前記空調通信部で受信される複数の前記気圧値の変化量から、前記携帯端末が受ける風の風速を算出するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速算出部と、
     前記風速、前記温度及び前記湿度から、前記携帯端末のユーザの体感温度を特定し、前記体感温度及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、
     前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えること
     を特徴とする空気調和機。
  13.  雑音量を示す出力値を出力する集音部を含む携帯端末と通信する空気調和機であって、
     風向及び風量を変更することのできる空調部と、
     前記携帯端末と通信することで、前記携帯端末から前記出力値を受信する空調通信部と、
     前記空調通信部で受信される複数の前記出力値の変化量から、前記携帯端末が受ける風の風速を特定するとともに、前記空気調和機から前記携帯端末が存在している方向である存在方向を特定する風速特定部と、
     前記風速及び前記存在方向に従って、前記空調部の風向及び風量を決定する空調制御決定部と、
     前記決定された風向及び風量となるように、前記空調部を制御する空調制御部と、を備えること
     を特徴とする空気調和機。
PCT/JP2018/003073 2018-01-31 2018-01-31 空調制御システム及び空気調和機 WO2019150457A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019568449A JP6847275B2 (ja) 2018-01-31 2018-01-31 空調制御システム及び空気調和機
PCT/JP2018/003073 WO2019150457A1 (ja) 2018-01-31 2018-01-31 空調制御システム及び空気調和機
US16/962,957 US11708992B2 (en) 2018-01-31 2018-01-31 Air conditioning control system and air conditioner
EP18904089.2A EP3748249B1 (en) 2018-01-31 2018-01-31 Air conditioning control system and air conditioner
CN201880087702.4A CN111656103B (zh) 2018-01-31 2018-01-31 空调控制***和空调机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003073 WO2019150457A1 (ja) 2018-01-31 2018-01-31 空調制御システム及び空気調和機

Publications (1)

Publication Number Publication Date
WO2019150457A1 true WO2019150457A1 (ja) 2019-08-08

Family

ID=67477972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003073 WO2019150457A1 (ja) 2018-01-31 2018-01-31 空調制御システム及び空気調和機

Country Status (5)

Country Link
US (1) US11708992B2 (ja)
EP (1) EP3748249B1 (ja)
JP (1) JP6847275B2 (ja)
CN (1) CN111656103B (ja)
WO (1) WO2019150457A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115013891A (zh) * 2022-05-27 2022-09-06 成都归谷环境科技有限责任公司 一种针对过敏性鼻炎的室内空气调节***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875772A4 (en) * 2018-11-02 2021-12-29 Panasonic Intellectual Property Management Co., Ltd. Environmental control system and environmental control system method
FR3088261B1 (fr) * 2018-11-09 2021-01-22 Valeo Systemes Thermiques Systeme de gestion thermique pour un habitacle de vehicule automobile
TWI778474B (zh) * 2020-12-21 2022-09-21 研能科技股份有限公司 室內氣體汙染過濾方法
CN112902385A (zh) * 2021-02-03 2021-06-04 珠海格力电器股份有限公司 控制方法、新风***及空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217641A (ja) * 1985-03-23 1986-09-27 Takasago Thermal Eng Co Ltd 空調換気設備における室内絶対圧制御法
JPH11351651A (ja) * 1998-06-05 1999-12-24 Toshiba Corp 空気調和機
JP2004020132A (ja) * 2002-06-19 2004-01-22 Mitsubishi Electric Building Techno Service Co Ltd 空調設備制御装置
JP2007309628A (ja) * 2006-05-18 2007-11-29 Riitekku:Kk 熱風発生装置の熱出力測定装置およびその測定方法並びに空調機
JP2008064335A (ja) * 2006-09-05 2008-03-21 Matsushita Electric Ind Co Ltd レンジフードの送風装置
JP2008144519A (ja) * 2006-12-12 2008-06-26 Aisin Seiki Co Ltd 建築物窓自動開閉装置
US20140167837A1 (en) 2012-11-12 2014-06-19 Chaologix, Inc. Charge distribution control for secure systems
WO2017208344A1 (ja) * 2016-05-31 2017-12-07 三菱電機株式会社 空調システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625627B2 (ja) 1986-03-18 1994-04-06 ダイキン工業株式会社 空気調和装置
JP4038352B2 (ja) * 2001-08-24 2008-01-23 株式会社日立産機システム クリーンルーム
JP2003279115A (ja) 2002-03-25 2003-10-02 Keyence Corp ファンフィルター装置のリモコンユニット
CN102053572A (zh) * 2009-10-30 2011-05-11 何仁城 内部环境监测控制***及其方法
US9605857B2 (en) * 2010-08-11 2017-03-28 Evergreen Telemetry Llc Wireless sensors system and method of using same
JP2013036647A (ja) 2011-08-05 2013-02-21 Daikin Industries Ltd 空調機用リモコン
JP2014074554A (ja) * 2012-10-05 2014-04-24 Mitsubishi Electric Corp 換気システム、換気方法、換気制御装置及びプログラム
JP6286808B2 (ja) 2013-04-12 2018-03-07 パナソニックIpマネジメント株式会社 空調システムおよびコントローラ
JP5877459B2 (ja) * 2013-10-29 2016-03-08 石橋 晃 睡眠時無意識体動情報活用システム及び方法並びに就寝状況検知システム及び方法
CN105363298B (zh) * 2014-08-15 2017-11-03 台达电子工业股份有限公司 具滤网脏污检测功能的换气设备及其检测方法
JP6505514B2 (ja) * 2015-06-10 2019-04-24 パナソニック株式会社 空気調和機、センサシステムおよびその温冷感推定方法
CN106338105B (zh) * 2015-07-08 2020-04-10 松下知识产权经营株式会社 吸气装置以及吸气方法
FR3039461B1 (fr) * 2015-07-30 2018-12-07 Valeo Systemes Thermiques Systeme de commande pour installation de conditionnement d'air d'un vehicule automobile
CN106885334B (zh) * 2017-02-07 2020-05-26 深圳达实智能股份有限公司 空调风量控制方法与装置
US10670285B2 (en) * 2017-04-20 2020-06-02 Trane International Inc. Personal comfort variable air volume diffuser

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217641A (ja) * 1985-03-23 1986-09-27 Takasago Thermal Eng Co Ltd 空調換気設備における室内絶対圧制御法
JPH11351651A (ja) * 1998-06-05 1999-12-24 Toshiba Corp 空気調和機
JP2004020132A (ja) * 2002-06-19 2004-01-22 Mitsubishi Electric Building Techno Service Co Ltd 空調設備制御装置
JP2007309628A (ja) * 2006-05-18 2007-11-29 Riitekku:Kk 熱風発生装置の熱出力測定装置およびその測定方法並びに空調機
JP2008064335A (ja) * 2006-09-05 2008-03-21 Matsushita Electric Ind Co Ltd レンジフードの送風装置
JP2008144519A (ja) * 2006-12-12 2008-06-26 Aisin Seiki Co Ltd 建築物窓自動開閉装置
US20140167837A1 (en) 2012-11-12 2014-06-19 Chaologix, Inc. Charge distribution control for secure systems
WO2017208344A1 (ja) * 2016-05-31 2017-12-07 三菱電機株式会社 空調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748249A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115013891A (zh) * 2022-05-27 2022-09-06 成都归谷环境科技有限责任公司 一种针对过敏性鼻炎的室内空气调节***
CN115013891B (zh) * 2022-05-27 2023-09-15 成都归谷环境科技有限责任公司 一种针对过敏性鼻炎的室内空气调节***

Also Published As

Publication number Publication date
US20200340703A1 (en) 2020-10-29
US11708992B2 (en) 2023-07-25
CN111656103A (zh) 2020-09-11
EP3748249A1 (en) 2020-12-09
EP3748249A4 (en) 2021-01-13
EP3748249B1 (en) 2022-09-07
JP6847275B2 (ja) 2021-03-24
JPWO2019150457A1 (ja) 2020-07-02
CN111656103B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2019150457A1 (ja) 空調制御システム及び空気調和機
US10866003B2 (en) Thermostat with preemptive heating, cooling, and ventilation in response to elevated occupancy detection via proxy
US11009248B2 (en) Adaptive comfort control system
US10386795B2 (en) Methods and apparatus for parameter based learning and adjusting temperature preferences
JP6537719B2 (ja) 空調制御装置、空気調和機、及び空調システム
JP6940623B2 (ja) 無風感制御方法、装置及び読み取り可能な記憶媒体、エアコン
CN103574837B (zh) 空调静音模式启动方法及空调
JP6552381B2 (ja) 制御装置、制御システムおよびプログラム
CN105222278A (zh) 门禁空调联动***及其控制方法
JP2009150590A (ja) 空調システム
JP2014153030A (ja) 空気調和システム、指示装置
JP2009257617A (ja) 空調システム及びその制御方法
KR101990931B1 (ko) 실내 환경 모니터링 센서 장치
CN110726209B (zh) 空调控制方法、装置、存储介质以及处理器
US9933175B2 (en) Apparatus and method for improved control of a mini split HVAC system
JP2009019860A (ja) 空調システム及び電磁波等発振等装置位置特定システム
CN113819607A (zh) 一种空调智能控制方法、控制装置、空调器及电子设备
CN112178785A (zh) 一种空调器除湿控制方法及除湿控制设备
CN112128954A (zh) 空调器及其控制方法
CN109405212A (zh) 空调器及其控制方法、控制装置、可读存储介质
CN109028490A (zh) 一种房门内外温差控制方法、装置及空调器
CN110986327A (zh) 空调器的睡眠模式控制方法与空调器
WO2023035682A1 (zh) 用于控制空调器的方法及装置、空调器
EP3505839A1 (en) Control device and control method for an air modification device
CN106288187B (zh) 空调控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018904089

Country of ref document: EP

Effective date: 20200831