WO2019149251A1 - 射频探测装置、探测方法和微波炉 - Google Patents

射频探测装置、探测方法和微波炉 Download PDF

Info

Publication number
WO2019149251A1
WO2019149251A1 PCT/CN2019/074232 CN2019074232W WO2019149251A1 WO 2019149251 A1 WO2019149251 A1 WO 2019149251A1 CN 2019074232 W CN2019074232 W CN 2019074232W WO 2019149251 A1 WO2019149251 A1 WO 2019149251A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
detection
frequency
detecting
Prior art date
Application number
PCT/CN2019/074232
Other languages
English (en)
French (fr)
Inventor
陈礼康
唐相伟
邓洋
吴添洪
陈茂顺
陈宗龙
方友平
Original Assignee
广东美的厨房电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的厨房电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的厨房电器制造有限公司
Priority to EP19746729.3A priority Critical patent/EP3629013A4/en
Priority to US16/627,322 priority patent/US11490470B2/en
Priority to JP2020520710A priority patent/JP6892556B2/ja
Publication of WO2019149251A1 publication Critical patent/WO2019149251A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/6467Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using detectors with R.F. transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators

Definitions

  • the present application relates to the field of microwave oven technology, and in particular to a radio frequency detecting device, a detecting method and a microwave oven.
  • temperature detection For the detection device or sensor used in the microwave oven, temperature detection, spectrum detection, infrared detection, imaging detection, etc. are generally used; temperature detection must be in contact with the target, the spectral detection cost is high and the system is complicated, and the infrared detection can only detect the surface.
  • the temperature is sensitive to interference
  • the imaging detection is sensitive to the color of the light, and the recognition is difficult.
  • these detections have certain application scenarios, and there is nothing that can be done beyond the scene.
  • the present application is intended to address at least one of the technical problems existing in the related art or related art.
  • an object of the present application is to provide a radio frequency detecting device.
  • Another object of the present application is to provide a radio frequency detecting method.
  • Still another object of the present application is to provide a microwave oven.
  • the technical solution of the first aspect of the present application provides a radio frequency detecting apparatus, including: a signal transmitting module configured to sequentially generate and transmit a plurality of forward frequency detecting signals of different frequencies; and the signal receiver is configured to Receiving a plurality of reverse frequency detection signals reflected by the load; the first detection module is coupled to the signal transmission module, the first detection module is configured to detect each of the first parameters corresponding to each of the forward frequency detection signals; a detection module, coupled to the signal receiver, the second detection module configured to detect each second parameter of each reverse frequency detection signal; and the microcontroller configured to control the signal transmission module to generate multiple forward frequency detections of different frequencies
  • the signal, the microcontroller is further configured to determine a state parameter of the load based on the plurality of frequencies and the first parameter and the second parameter corresponding to each of the frequencies.
  • the radio frequency detecting device detects the load, does not need to contact with the load, and improves the food.
  • Hygienic load-like reducing the possibility of changing or destroying the load state due to contact, and reducing the damage to the testing equipment or the injury to personnel when detecting dangerous loads.
  • the signal transmission module generates and transmits a plurality of different a signal of a frequency, wherein a plurality of reflected signals reflected by the load are obtained; each first parameter corresponding to each forward frequency detection signal is detected by the first detecting module, and detected by the second detecting module corresponding to each Each second parameter of the reverse frequency detection signal is further calculated by the microcontroller according to the plurality of frequencies and the first parameter and the second parameter corresponding to each frequency, and the specific information about the load can be obtained, and After the pre-stored information is compared, the state parameters such as the type, volume, and temperature of the load can be obtained,
  • the signal transmitting module includes: a signal generating component configured to generate a forward frequency detecting signal; and a signal transmitter configured to transmit the forward frequency detecting signal.
  • the signal transmitting module includes a signal generating component and a signal transmitter, so that the signal generating component and the signal transmitter work independently, reduce mutual interference, and facilitate connection of two components with other components to realize more functions. .
  • the radio frequency detecting device further includes: a power splitting module, a signal generating component, an antenna, a first detecting module, and a second detecting module.
  • the first terminal of the power separation module is connected to the antenna
  • the second terminal of the power isolation module is connected to the first detection module
  • the third terminal of the power isolation module is connected to the second detection module.
  • the fourth terminal of the sub-isolation module is connected to the signal generating component.
  • the signal transmitter and the signal receiver share the same antenna, which simplifies the structure, saves space, and facilitates the application range and application scenario of the RF detection device.
  • the power separation is set in the RF detection device. a module, and the first terminal of the power separation module is connected to the antenna, the second terminal of the power isolation module is connected to the first detection module, and the third terminal of the power isolation module is connected to the second detection module, and the power is divided
  • the fourth terminal of the isolation module is connected to the signal generating component, so that when the forward frequency detection signal is transmitted, the forward frequency detection signal can be divided into two after entering the power separation isolation module through the fourth terminal.
  • the terminal and the second terminal flow out, that is, flow through the first terminal to the antenna to transmit a forward frequency detection signal to the load, start detecting the load, and also flow to the first detection module through the second terminal, so as to be first
  • the detection module converts the forward frequency detection signal into a forward analog voltage, thereby obtaining a forward voltage of the forward frequency detection signal, that is, a forward direction Rate the first parameter of the detection signal; on the other hand, when the antenna receives the reverse frequency detection signal reflected by the load, the reverse frequency detection signal can be divided into two after flowing into the power separation isolation module through the first terminal.
  • the reverse voltage that is, the second parameter of the reverse frequency detection signal; by acquiring a plurality of frequencies and a forward voltage and a reverse voltage corresponding to each frequency, the specific information about the load can be obtained after calculation, and pre-stored After the information is compared, the state parameters such as the type, volume, and temperature of the load can be obtained, and finally the purpose of detecting the state parameter of the load without contact is realized. It should be specially pointed out that through the setting of the power separation isolation module, the separation and independent detection of the transmitted forward frequency detection signal and the reflected reverse frequency detection signal are also realized, and the detection accuracy is improved.
  • the method further includes: a power amplifying module disposed between the fourth terminal of the power splitting module and the signal generating component, wherein the fourth terminal is connected to the signal generating component by the power amplifying module, wherein The power amplification module is configured to amplify the forward frequency detection signal.
  • the detection signal is amplified accordingly, which improves the sensitivity of the detection; the isolation between the power separation isolation module and the signal generation component is also increased, and the reflected reverse frequency detection signal is received at the antenna, and the power separation isolation module is
  • the reverse frequency detecting signal can be absorbed by the power amplifying module, which reduces the possibility of the signal generating component receiving the impact, improves the safety of the signal generating component, and prolongs the service life of the RF detecting device.
  • the utility model reduces the use cost; similarly, the power split isolation module is disposed between the antenna and the power amplification module, and also increases the isolation between the antenna and the power amplification module, and reduces the high power signal backflow into the power amplification module when the device is in operation. , causing the power amplification module to be burned down.
  • the power amplification module includes: a first capacitor, one end is connected to the signal generating module; one end of the amplifier is connected to the other end of the first capacitor; and the second capacitor is connected at one end to the other end of the amplifier, The other end of the second capacitor is connected to the fourth terminal of the power split isolation module.
  • the method further includes: at least one PI network disposed between the signal generating component and the power amplifying module; and the PI network is configured to adjust a size of the forward frequency detecting signal or the reverse frequency detecting signal, and further Configured to increase the isolation of its own circuits.
  • the size of the forward frequency detecting signal can be adjusted, the isolation between the signal generating component and the power amplifying module is increased, and the safety of the circuit is improved.
  • the method further includes: at least one PI network disposed between the first detection module and the second terminal of the power separation module; and the PI network configured to adjust the forward frequency detection signal Or the size of the reverse frequency detection signal is also configured to increase the isolation of the circuit at its own end.
  • the size of the forward frequency detecting signal can be adjusted, and the first detecting module and the power dividing module are added.
  • the isolation improves the safety of the circuit.
  • the method further includes: at least one PI network disposed between the second detection module and the third terminal of the power separation module; the PI network configured to adjust the forward frequency detection signal Or the size of the reverse frequency detection signal is also configured to increase the isolation of the circuit at its own end.
  • the size of the reverse frequency detecting signal can be adjusted, and the second detecting module and the power dividing module are added.
  • the isolation between the three terminals improves the safety of the circuit.
  • the size of the forward frequency detection signal and the reverse frequency detection signal, and the isolation of the entire circuit can be more flexibly adjusted to adapt to more different scenarios and different
  • the load increases the overall safety of the RF detection device and extends the life of the RF detection device.
  • the technical solution of the second aspect of the present application provides a radio frequency detecting method, which is configured as the radio frequency detecting device according to any one of the above aspects, comprising: the signal transmitting module sequentially generating according to a control signal sent by the microcontroller a plurality of forward frequency detection signals of different frequencies; transmitting a plurality of forward frequency detection signals to the load through the signal transmission module, and detecting each first parameter corresponding to each forward frequency detection signal by the first detection module; The signal receiver receives the plurality of reverse frequency detection signals reflected by the load, and detects each second parameter of each reverse frequency detection signal through the second detection module; according to the plurality of frequencies and each frequency by the microcontroller Corresponding first parameter and second parameter determine a state parameter of the load.
  • the signal transmitting module receives and according to the control signal sent by the microcontroller, it is convenient to sequentially generate and transmit multiple forward frequency detecting signals of different frequencies to improve the detection of the load in various scenarios. Possibly, and the detection signal does not contact the load, which improves the safety and sanitation of the load; and based on the control signal from the microcontroller, the frequency of the forward-frequency detection signal sequentially transmitted can match the preset frequency.
  • the first parameter is a forward analog voltage of the forward frequency detection signal; and the second parameter is a reverse analog voltage of the reverse frequency detection signal.
  • further determining the state parameter of the load specifically: determining, according to the first parameter and the second parameter corresponding to each frequency, a standing wave corresponding to each frequency; according to the multiple frequencies and each The standing wave corresponding to the frequency determines the frequency-standing wave relationship diagram; compares the frequency-standing wave relationship diagram with the pre-stored pattern associated with the state parameter of the load, and determines the preset pattern corresponding to the frequency-standing wave relationship diagram ; Determine the state parameters of the load based on the preset graph.
  • the standing wave corresponding to each frequency is determined by the first parameter and the second parameter corresponding to each frequency, so that the two parameters are integrated into a specific frequency by a certain operation rule.
  • a specific parameter related to the load state reduces the number of parameters, simplifies the judgment standard, and reduces the difficulty of subsequent operations; determines the frequency-standing wave relationship graph by multiple frequencies and standing waves corresponding to each frequency, and Comparing the frequency-standing wave relationship graph with the pre-stored graph associated with the state parameters of the load, determining the preset graph corresponding to the frequency-standing wave relationship map, converting the complicated calculation process into the graph contrast, reducing the The calculation error leads to the possibility of incorrect detection results, which makes the detection and judgment of the load state parameters intuitive and simple, and improves the detection speed and the accuracy of detection.
  • determining the state parameters of the load is based on the premise that a large and accurate graphics library needs to be established, that is, the final implementation of the method requires first, different state parameters of various loads. Detecting, and performing radio frequency scanning under the state parameter to obtain a preset pattern of a specific load in a specific state, that is, detecting and determining a preset pattern corresponding to a specific state parameter of a specific load, and how many different states each load has Parameters, there will be a corresponding number of preset graphics, and the load is different, so the above-mentioned preset graphics library corresponding to different state parameters of various loads is established, and the state parameters of the load are determined according to the preset graphics, so that the load is The detection of state parameters can be achieved, and the speed and accuracy of the detection is improved, and no direct contact with the load is made, which improves the hygiene and safety of the load.
  • the technical solution of the third aspect of the present invention provides a microwave oven, comprising the radio frequency detecting device according to any one of the above aspects, wherein the number of the radio frequency detecting devices is at least one.
  • radio frequency detecting devices when a plurality of the above-mentioned radio frequency detecting devices are used in a microwave oven, and a plurality of radio frequency detecting devices are dispersedly disposed, a plurality of detecting signals of different frequencies can be simultaneously transmitted from multiple angles, thereby further improving the detecting speed and Accuracy of detection and improved work efficiency.
  • FIG. 1 shows a working principle diagram of a radio frequency detecting device according to an embodiment of the present application
  • FIG. 2 is a schematic diagram showing the circuit structure of a radio frequency detecting device according to an embodiment of the present application
  • FIG. 3 is an enlarged schematic view showing the power split isolation module 20 of FIG. 2;
  • FIG. 4 is a graph showing a standing wave-frequency function obtained by applying the radio frequency detecting device of the embodiment when the load of the microwave oven is empty according to an embodiment of the present application;
  • FIG. 5 is a graph showing a standing wave-frequency function obtained by scanning the radio frequency detecting device of the embodiment when the load of the microwave oven is 250 ml 4 ° C according to an embodiment of the present application;
  • FIG. 6 is a graph showing a standing wave-frequency function obtained by scanning the radio frequency detecting device of the embodiment when the load of the microwave oven according to an embodiment of the present application is 250 ml of 40 ° C;
  • FIG. 7 shows a flow chart of a radio frequency detecting method according to an embodiment of the present application.
  • FIG. 8 shows a flow chart of a radio frequency detection method in accordance with another embodiment of the present application.
  • 10 antenna 20 power split isolation module, 21 first terminal, 22 second terminal, 23 third terminal, 24 fourth terminal, 30 first detection circuit, 300 forward detection tube, 40 second detection circuit , 400 reverse detection tube, 50 power amplifier module, 500 amplifier, 60 signal generation components, 600 oscillator, 70PI network.
  • FIG. 1 is a schematic diagram of the operation of a radio frequency detecting device according to an embodiment of the present application.
  • the radio frequency detecting device mainly includes an antenna 10, a power dividing module 20, a forward detecting tube 300 and a reverse detecting tube 400, and an amplifier 500 and an oscillator 600, wherein the antenna 10 is configured to transmit forward detection.
  • the power isolation module 20 can be a bridge or a coupler, and the power isolation module 20 is disposed on the antenna 10, the amplifier 500, and the forward detection tube.
  • the power isolation module 20 has four terminals, the first terminal 21 of the power separation module 20 is connected to the antenna 10, and the second terminal 22 is connected to the forward detection tube 300.
  • the third terminal 23 is connected to the reverse detection tube 400, the fourth terminal 24 is connected to the amplifier 500, and the amplifier 500 is connected to the voltage controlled oscillator.
  • the power split isolation module 20 is configured to separate the forward detection signal and the reverse detection signal and increase the isolation between the antenna 10 and the amplifier 500; the amplifier 500 is configured to amplify the forward detection signal and perform the reverse detection signal Absorption; the forward detection tube 300 is configured to convert the forward detection signal to an analog voltage to obtain a forward voltage of the forward detection signal; the inverse detection tube 400 is configured to convert the reflected reverse detection signal into a reverse simulation Voltage to get the reverse voltage of the reverse detection signal.
  • the oscillator 600 first generates a forward frequency detecting signal at a specific frequency f0 according to a control signal sent from the microcontroller, and The forward frequency detection signal is sent to the amplifier 500, and the forward frequency detection signal is amplified by the amplifier 500, and then input to the fourth terminal 24 of the power separation module 20; in the power separation module 20, the forward frequency detection The signal is divided into two parts by the power split isolation module 20, that is, the forward frequency detection signal is divided into two parts with equal power, and the power of each part is half of the original forward frequency detection signal.
  • the two-part forward frequency detection signal after the second power split is output from the first terminal 21 and the second terminal 22 of the power split isolation module 20, wherein the forward frequency detection signal output antenna of the first terminal 21 is output. 10, transmitting to the load via the antenna 10; the forward frequency detection signal outputted by the second terminal 22 is input into the forward detection tube 300, and after being converted into an analog voltage, the forward direction of the transmitted forward frequency detection signal is obtained. Voltage Vout.
  • the forward frequency detection signal transmitted through the antenna 10 is sent back to the load, and is reflected back by the load to form a reverse frequency detection signal, which is received by the antenna 10, and the antenna 10 receives After that, the reverse frequency detection signal is sent to the first terminal 21 of the power split isolation module 20, and the reverse frequency detection signal is also divided by the power split isolation module 20, and the two parts are reversed.
  • the detection signals are output to the inverse detection tube 400 and the amplifier 500 via the third terminal 23 and the fourth terminal 24 of the power division isolation module 20, respectively, wherein the reverse frequency detection signal entering the reverse detection tube 400 is converted into The analog voltage is obtained to obtain the forward voltage Vref of the reverse frequency detection signal, and the power of the reverse frequency detection signal entering the amplifier 500 is absorbed by the amplifier 500, reducing the impact on the voltage controlled oscillator.
  • a preset pattern of a plurality of frequency-standing waves is prestored, and each preset pattern corresponds to a specific state parameter of the load at a specific frequency, and therefore, the RF detecting device is swept to obtain the frequency-
  • the function graphic of the standing wave is compared with the preset graphic in the database. After the corresponding preset graphic is found, the state parameter of the load corresponding thereto can be determined according to the preset graphic, and the contact state is completed without contacting the load. Detection of the status parameters of the load.
  • the radio frequency detecting device of the present application When the radio frequency detecting device of the present application is applied to a microwave oven, state parameters such as temperature and volume of the load in the microwave oven can be detected, and the situation of no-load can also be detected.
  • FIG. 4 shows a frequency- standing wave function pattern when the microwave oven is idling
  • FIG. 5 shows the frequency of the boxed milk with a load of 250 ml 4 ° C in the microwave oven.
  • Figure 3 shows the function of the frequency-standing wave of a boxed milk with a load of 250 ml at 40 °C in a microwave oven; placing these graphics in a pre-stored library, such as a radio frequency detector
  • the detected frequency-standing wave function pattern is the same as in Fig. 5, and it can be determined that the load in the microwave oven is boxed milk having a volume of 250 ml and a temperature of 4 °C.
  • the radio frequency detecting device includes:
  • microcontroller and signal generating component 60, the microcontroller being configured to issue a control signal to the signal generating component 60 in accordance with a predetermined frequency range such that the signal generating component 60 sequentially generates a plurality of frequencies corresponding to a predetermined frequency range Multiple forward frequency detection signals.
  • the signal generating component 60 is connected to the power amplifying module 50, and the other end of the power amplifying module 50 is connected to the power dividing module 20; the power dividing module 20 includes a directional coupler having six terminals, as shown in FIG. The two terminals of the device are both grounded, and the fourth terminal 24 of the other four terminals is connected to the other end of the power amplifying module 50.
  • the radio frequency detecting device of the embodiment further includes an antenna 10, and a first detecting module, a second detection module, wherein the antenna 10 is connected to the first terminal 21 of the directional coupler, the first detection module is connected to the second terminal 22 of the directional coupler, and the third terminal 23 of the second detection module and the directional coupler connection.
  • the antenna 10 is configured to transmit a forward frequency detection signal generated by the signal generating component 60 and a reverse frequency detection signal reflected by the load.
  • the power split isolation module 20 can be a directional coupler, or a bridge, or other similar functional circuit structure or electrical component.
  • a PI network 70 is provided to adjust the forward direction.
  • the PI network 70 can also be set only at one or two of the above three locations according to specific needs.
  • the oscillator 600 includes a plurality of terminals and a plurality of capacitors, the plurality of capacitors being at least divided into two groups, and one end of each capacitor in each group is commonly One terminal or two terminals of the oscillator 600 are connected, and the other end of each capacitor is grounded.
  • the oscillator 600 preferably uses a voltage controlled oscillator to save cost and simplify the structure.
  • the oscillator 600 can also be selected from other crystal oscillators and the like.
  • the first capacitor is included, and one end of the first capacitor is connected to the signal generating component 60; the amplifier 500 has one end of the amplifier 500 connected to the other end of the first capacitor; the second capacitor is second. One end of the capacitor is connected to the other end of the amplifier 500, and the other end of the second capacitor is connected to the fourth terminal 24 of the directional coupler.
  • the isolation between the power split isolation module 20 and the signal generating component 60 is received by the antenna 10 upon receipt of the reflected reverse frequency detection signal, and when the fourth terminal 24 of the directional coupler flows to the signal generating component 60,
  • the frequency detecting signal can be absorbed by the power amplifying module 50, which reduces the possibility of the signal generating component 60 being impacted, improves the safety of the signal generating component 60, prolongs the service life of the RF detecting device, and reduces the use cost.
  • the sub-isolation module 20 also increases the isolation between the power amplifying module 50 and the antenna 10, reducing the possibility that the high-power signal received by the antenna 10 is poured into the power amplifying module 50 to cause damage.
  • the first detecting module of the embodiment includes a first detecting circuit 30 and a first computing component.
  • the first detecting circuit 30 includes a detecting chip, and a first resistor and a third capacitor respectively connected to the detecting chip, wherein the first resistor and the first resistor The third capacitor is not connected to the detecting chip, and the second capacitor is connected to the detecting chip, and the second resistor is connected to the first resistor. The other end of the two resistors is grounded.
  • the first detection circuit 30 is configured to convert the forward frequency detection signal into a forward analog voltage to sample the forward voltage of the forward frequency detection signal by the first operational component.
  • the second detecting module includes a second detecting circuit 40 and a second arithmetic component, wherein the second detecting circuit 40 has the same structure as the first detecting circuit 30, and the second detecting circuit 40 is configured to reflect the reverse frequency reflected by the load.
  • the detection signal is converted to a reverse analog voltage to be sampled by the second operational component to obtain a reverse voltage of the reverse frequency detection signal.
  • a standing wave corresponding to the frequency can be calculated; after the frequency sweep is performed according to the preset frequency range, A standing wave corresponding to each frequency in the preset frequency range can be obtained, thereby obtaining a frequency-standing wave function relationship diagram, and the frequency-standing wave function relationship diagram is correlated with the pre-stored state parameter of the load by the microcontroller
  • the preset graphics corresponding to the frequency-standing wave relationship map can be determined, and then the state parameters of the load are determined according to the preset graphics to realize the detection of the load. State parameters of the load, including temperature, volume, etc.
  • the radio frequency detecting device of the embodiment is convenient for detecting the state of various loads without contact, thereby improving the convenience and safety of the detection, and reducing the possibility of damage and failure of the load due to contact detection. It is also possible to reduce the possibility that the detection of some dangerous loads causes the detection instrument to be damaged or the detection personnel to be injured, such as a high temperature object; and the radio frequency detection device of the embodiment has a simple structure and low cost; in the detection process, it will be complicated The calculation is changed to graphical comparison, which is simple and intuitive, and improves work efficiency.
  • the radio frequency detecting device is different from Embodiment 1 in that the power splitting module 20 and the power amplifying module 50 are not used, and the signals are transmitted and received by the signal transmitter and the signal, respectively.
  • the radio frequency detecting device of the embodiment includes a microcontroller, a signal transmitting module, a signal receiver, a first detecting module and a second detecting module.
  • the signal transmitting module sequentially generates and transmits a plurality of forward frequency detecting signals of different frequencies according to the control signal of the microcontroller, and after detecting the forward voltage by the first detecting module, is sent from the signal transmitter of the signal transmitting module, and is reflected by the load.
  • the second detection module After receiving the reflected reverse detection signal by the signal receiver, the second detection module is connected to the signal receiver, so that the reverse voltage of the reverse frequency detection signal can be detected; the first detection module and the second detection module are both micro-
  • the controller is connected to facilitate feedback of the detected forward voltage and reverse voltage to the microcontroller, so that the frequency-standing wave function relationship diagram of the load can be obtained by the operation of the microcontroller, and then the preset is obtained after comparison and retrieval.
  • the graphics, as well as the status parameters of the load associated with the preset graphics, enable detection of load conditions.
  • the power amplifying module 50 may not reduce, but increase the number thereof, thereby obtaining a better detection dynamic range and improving the sensitivity of the detection.
  • an auxiliary circuit such as a temperature compensation circuit can be added according to a specific application scenario and device to obtain more and more targeted functions.
  • the radio frequency detecting method is configured as the radio frequency detecting device of any one of the foregoing embodiments, and specifically includes the following steps:
  • Step 10 receiving a control signal sent by a microcontroller of the radio frequency detecting device, and the signal generating component generates a plurality of forward frequency detecting signals of different frequencies according to the control signal;
  • Step 12 transmitting, by the antenna, a plurality of forward frequency detection signals to the load, and detecting, by the first detection module, each first parameter corresponding to each forward frequency detection signal;
  • Step 14 receiving, by the signal receiver, a plurality of reverse frequency detection signals reflected by the load, and detecting, by the second detection module, each second parameter of each reverse frequency detection signal;
  • Step 16 The state parameter of the load is determined by the microcontroller according to the plurality of frequencies and the first parameter and the second parameter corresponding to each frequency.
  • a plurality of forward frequency detection signals of different frequencies are sequentially generated by the signal generating component, so as to improve detection of the load in various scenarios, and the detection signal is The load is not in contact, which improves the safety and sanitation of the load; and based on the control signal from the microcontroller, the frequency of the forward frequency detection signal sequentially transmitted can be matched with the preset frequency, which is convenient for later data processing and Comparing, improving work efficiency and accuracy of detection; transmitting a plurality of forward frequency detection signals to the load through the signal transmission module, and detecting each first parameter corresponding to each forward frequency detection signal by the first detection module, and Receiving, by the signal receiver, a plurality of reverse frequency detection signals reflected by the load, and detecting, by the second detection module, each second parameter of each reverse frequency detection signal, so as to obtain a first parameter corresponding to each frequency and a second parameter, which is then passed by the microcontroller according to a plurality of frequencies and a first parameter
  • the first parameter and the second parameter may be voltage, current, or power, and are flexibly selected according to actual application scenarios, so as to improve detection convenience and detection efficiency.
  • the radio frequency detecting method is configured as the radio frequency detecting device of any one of the foregoing embodiments, and specifically includes the following steps:
  • Step 20 receiving a control signal sent by a microcontroller of the radio frequency detecting device, and the signal generating component generates a plurality of forward frequency detecting signals of different frequencies according to the control signal;
  • Step 22 Amplify the forward frequency detection signal
  • Step 24 The amplified forward frequency detection signal is divided into a first forward sub-detection signal whose power is half of the forward frequency detection signal, and a second forward sub-detection signal;
  • the two-power splitting of the forward frequency detection signal facilitates reducing the power of the signal, reducing the impact on the electrical detection components, and prolonging the service life of the RF detection device.
  • Step 26 transmitting a first forward sub-detection signal to the load
  • Step 28 Convert the second forward sub-detection signal into a forward analog voltage
  • Step 30 sampling the forward analog voltage to determine a forward voltage of the forward frequency detection signal
  • Using the voltage as the first parameter facilitates the sensitivity of the detection and the convenience of detection, as well as the accuracy of the detection.
  • Step 32 Receive a reverse frequency detection signal reflected by the load
  • Step 34 The reverse frequency detection signal is divided into a first reverse sub-detection signal whose power is half of the power of the reverse frequency detection signal, and a second reverse sub-detection signal;
  • Step 36 Convert the first reverse sub-detection signal into a reverse analog voltage
  • Step 38 sampling the reverse analog voltage to determine the reverse voltage of the reverse frequency detection signal
  • Step 40 Determine a standing wave corresponding to each frequency according to a forward voltage and a reverse voltage corresponding to each frequency;
  • Step 42 Determine a frequency-standing wave relationship map according to multiple frequencies and standing waves corresponding to each frequency
  • Step 44 Comparing the frequency-standing wave relationship diagram with a graphic associated with the state parameter of the load in the preset gallery, and determining a preset graphic corresponding to the frequency-standing wave relationship diagram;
  • Step 46 Determine a state parameter of the load according to the preset graphic.
  • the complex calculation process is converted into a graphical comparison, which reduces the possibility of detection errors due to calculation errors, and makes the detection and judgment of the load state parameters change. It is intuitive and simple, and improves the detection speed and the accuracy of detection. Moreover, the radio frequency detection method of the embodiment does not need to be in contact with the load, and the judgment process is quick and simple, and the possibility that the load is damaged or failed due to the contact detection is reduced.
  • a microwave oven according to an embodiment of the present application employs the radio frequency detecting device of any of the above embodiments.
  • the radio frequency detecting device of the present application has a simple structure and has no influence on matching, and can be applied to various high-medium and low-end microwave ovens, and can also be used in equipments such as an oven, a rice cooker, and a steamer.
  • the technical solution of the present application is described in detail above with reference to the accompanying drawings.
  • the purpose of detecting the state parameter of the load without contacting the load is effectively realized, the convenience and safety of the detection are improved, and the load is reduced.
  • the contact detection leads to the possibility of damage and failure, and can also reduce the possibility that the detection of some dangerous loads causes the detection instrument to be damaged or the detection personnel to be injured; and the RF detection device of the present application has a simple structure and low cost; In the process, the complex calculations are changed to graphic contrast, which is simple and intuitive, and improves work efficiency.
  • the terms “first”, “second”, “third” are used for descriptive purposes only, and are not to be construed as indicating or implying relative importance; the term “plurality” means two or two. Above, unless otherwise explicitly defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly. For example, “connecting” may be a fixed connection, a detachable connection, or an integral connection; “connected” may They are directly connected or indirectly connected through an intermediary. For those skilled in the art, the specific meanings of the above terms in the present application can be understood on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Transmitters (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Electric Ovens (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种射频探测装置、探测方法和微波炉,其中,射频探测装置包括:信号发射模块,配置为产生并发射不同频率的多个正向频率探测信号;信号接收器,配置为接收由负载反射回来的多个反向频率探测信号;第一检测模块,配置为检测对应于每个正向频率探测信号的每个第一参数;第二检测模块,配置为检测每个反向频率探测信号的每个第二参数;微控制器,配置为根据多个频率和与每个频率对应的第一参数和第二参数,确定负载的状态参数。本技术方案,有效地实现了不接触而检测负载的状态参数的目的,提高了检测的便利性和安全性;且射频探测装置结构简单,成本低廉;在检测过程中,将复杂的计算改为图形对比,简单直观,提高了工作效率。

Description

射频探测装置、探测方法和微波炉
本申请要求于2018年01月31日提交至中国专利局、申请号为201810098845.7、发明名称为“射频探测装置、探测方法和微波炉”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及微波炉技术领域,具体而言,涉及一种射频探测装置、探测方法和一种微波炉。
背景技术
对于微波炉中应用的探测装置,或传感器,一般采用温度探测、光谱探测、红外探测、成像探测等;温度探测必须要对目标进行接触,光谱探测成本巨高且***复杂,红外探测只能探测表面温度且易受干扰,成像探测对光线颜色敏感,识别困难,另外这些探测都有一定的应用场景,超出场景之外就无能为力了。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
有鉴于此,本申请的一个目的在于提供一种射频探测装置。
本申请的另一个目的在于提供一种射频探测方法。
本申请的又一个目的在于提供一种微波炉。
为了实现上述目的,本申请第一方面的技术方案提供了一种射频探测装置,包括:信号发射模块,配置为依次产生并发射不同频率的多个正向频率探测信号;信号接收器,配置为接收由负载反射回来的多个反向频率探测信号;第一检测模块,与信号发射模块连接,第一检测模块配置为检测对应于每个正向频率探测信号的每个第一参数;第二检测模块,与信号 接收器连接,第二检测模块配置为检测每个反向频率探测信号的每个第二参数;微控制器,配置为控制信号发射模块产生不同频率的多个正向频率探测信号,微控制器还配置为根据多个频率和与每个频率对应的第一参数和第二参数,确定负载的状态参数。
在该技术方案中,通过采用射频探测装置,便于在各种场景下对负载进行探测,提高了探测装置对不同场景的适应能力;射频探测装置探测负载,不需要与负载进行接触,提高了食物类负载的卫生,减少了因接触而改变或破坏负载状态的可能,还减少了在检测一些具有危险性的负载时,可以减少对检测设备的破坏或者对人员的伤害。
具体而言,在该技术方案中,通过设置信号发射模块,便于依次产生并发射多个不同频率的多个正向频率探测信号,以提高在各种场景下对负载进行探测可能,且探测信号与负载不接触,提高了负载的安全性和卫生,以及检测设备的安全性;通过信号接收器的设置,便于接收由负载反射回来的反向频率探测信号;信号发射模块产生和发射多个不同频率的信号,可得到由负载反射的多个反射信号;经过第一检测模块检测得到对应于每个正向频率探测信号的每个第一参数,以及经第二检测模块检测得到对应于每个反向频率探测信号的每个第二参数,再通过微控制器根据多个频率以及和与每个频率对应的第一参数和第二参数,经过计算后,可以获得关于负载的特定信息,与预存信息比较后,可以得到负载的类型、体积、温度等状态参数,最终实现不接触而检测负载的状态参数的目的。
在上述技术方案中,进一步地,信号发射模块包括:信号产生组件,配置为产生正向频率探测信号;信号发射器,配置为发射正向频率探测信号。
在该技术方案中,信号发射模块包括信号产生组件和信号发射器,便于信号产生组件和信号发射器各自独立工作,减少相互干扰,还便于两个部件与其它部件的连接,实现更多的功能。
在上述技术方案中,可选地,信号发射器与信号接收器,共用相同的天线;射频探测装置还包括:功分隔离模块,与信号产生组件、天线、第一检测模块和第二检测模块连接,其中,功分隔离模块的第一接线端与天 线连接,功分隔离模块的第二接线端与第一检测模块连接,功分隔离模块的第三接线端与第二检测模块连接,功分隔离模块的第四接线端与信号产生组件连接。
在该技术方案中,信号发射器与信号接收器共用相同的天线,简化了结构,节省了空间,便于扩大射频探测装置的应用范围和应用场景;进一步地,在射频探测装置中设置功分隔离模块,且功分隔离模块的第一接线端与天线连接,功分隔离模块的第二接线端与第一检测模块连接,功分隔离模块的第三接线端与第二检测模块连接,功分隔离模块的第四接线端与信号产生组件连接,便于在发射正向频率探测信号时,正向频率探测信号在通过第四接线端进入功分隔离模块后,可一分为二的从第一接线端、第二接线端流出,即通过第一接线端流向天线,以向负载发射正向频率探测信号,开始对负载的检测,同时还通过第二接线端流向第一检测模块,以便第一检测模块将正向频率探测信号转换成正向模拟电压,从而获取正向频率探测信号的正向电压,即正向频率探测信号的第一参数;另一方面,在天线接收到负载反射的反向频率探测信号时,反向频率探测信号在通过第一接线端流入功分隔离模块后,可一分为二的从第三接线端、第四接线端流出,即通过第三接线端流向第二检测模块,以便第二检测模块将反向频率探测信号转换成反向模拟电压,从而获取反向频率探测信号的反向电压,即反向频率探测信号的第二参数;通过获取多个频率以及与每个频率对应的正向电压和反向电压,则可以经过计算后,获得关于负载的特定信息,与预存信息比较后,可以得到负载的类型、体积、温度等状态参数,最终实现不接触而检测负载的状态参数的目的。需要特别指出的是,通过功分隔离模块的设置,还实现了发射的正向频率探测信号和反射的反向频率探测信号的分离和独立检测,提高了检测的准确度。
在上述技术方案中,可选地,还包括:功率放大模块,设于功分隔离模块的第四接线端和信号产生组件之间,第四接线端通过功率放大模块与信号产生组件相连,其中,功率放大模块配置为放大正向频率探测信号。
在该技术方案中,通过在功分隔离模块的第四接线端和信号产生组件之间设置功率放大模块,便于放大信号产生组件所产生正向频率探测信号, 使天线向负载发射的正向频率探测信号随之放大,提高了探测的灵敏度;还增加了功分隔离模块与信号产生组件之间的隔离度,在天线接收到反射回来的反向频率探测信号,且经功分隔离模块的第四接线端流向信号产生组件时,反向频率探测信号能够被功率放大模块吸收掉,减少了信号产生组件收到冲击的可能,提高了信号产生组件的安全性,延长了射频探测装置的使用寿命,降低了使用成本;同样地,功分隔离模块设置在天线与功率放大模块之间,也增加了天线与功率放大模块的隔离度,减少设备在工作时,大功率的信号倒灌进功率放大模块,导致功率放大模块被烧毁的可能。
在上述技术方案中,进一步地,功率放大模块包括:第一电容,一端与信号产生模块连接;放大器,一端与第一电容的另一端连接;第二电容,一端与放大器的另一端连接,第二电容的另一端与功分隔离模块的第四接线端连接。
在该技术方案中,通过设置第一电容与第二电容以及放大器,便于在正向频率探测信号通过功率放大模块时,放大正向频率探测信号;在反向频率探测信号通过功率放大模块时,将其吸收。
在上述技术方案中,可选地,还包括:至少一个PI网络,设于信号产生组件与功率放大模块之间;PI网络配置为调节正向频率探测信号或反向频率探测信号的大小,还配置为增加其自身两端电路的隔离度。
在该技术方案中,通过在信号产生组件与功率放大模块之间设置PI网络,可以调节正向频率探测信号的大小,增加信号产生组件与功率放大模块之间的隔离度,提高电路的安全性。
在上述任一项技术方案中,可选地,还包括:至少一个PI网络,设于第一检测模块与功分隔离模块的第二接线端之间;PI网络配置为调节正向频率探测信号或反向频率探测信号的大小,还配置为增加其自身两端电路的隔离度。
在该技术方案中,通过在第一检测模块与功分隔离模块的第二接线端之间设置PI网络,可以调节正向频率探测信号的大小,增加第一检测模块与功分隔离模块之间的隔离度,提高电路的安全性。
在上述任一项技术方案中,可选地,还包括:至少一个PI网络,设于第二检测模块与功分隔离模块的第三接线端之间;PI网络配置为调节正向频率探测信号或反向频率探测信号的大小,还配置为增加其自身两端电路的隔离度。
在该技术方案中,通过在第二检测模块与功分隔离模块的第三接线端之间设置PI网络,可以调节反向频率探测信号的大小,增加第二检测模块与功分隔离模块的第三接线端之间的隔离度,提高电路的安全性。
可选地,当同时设置上述三个位置的PI网络时,可以更加灵活地调节正向频率探测信号和反向频率探测信号的大小,以及整个电路的隔离度,适应更多不同的场景和不同的负载,并提高射频探测装置整体的安全性,延长射频探测装置的使用寿命。
本申请第二方面的技术方案提供了一种射频探测方法,配置为上述第一方面中的任一项技术方案的射频探测装置,包括:信号发射模块根据微控制器发出的控制信号,依次生成不同频率的多个正向频率探测信号;通过信号发射模块向负载发射多个正向频率探测信号,并通过第一检测模块检测对应于每个正向频率探测信号的每个第一参数;通过信号接收器接收由负载反射的多个反向频率探测信号,并通过第二检测模块检测每个反向频率探测信号的每个第二参数;通过微控制器根据多个频率和与每个频率对应的第一参数和第二参数,确定负载的状态参数。
在该技术方案中,通过信号发射模块接收并根据微控制器发出的控制信号,便于依次产生并发射多个不同频率的多个正向频率探测信号,以提高在各种场景下对负载进行探测可能,且探测信号与负载不接触,提高了负载的安全性和卫生;并且以微控制器发出的控制信号为依据,使依次发射的正向频率探测信号的频率,能够与预设的频率吻合,便于后期数据处理和对比,提高工作效率和探测的准确度;通过信号发射模块向负载发射多个正向频率探测信号,并通过第一检测模块检测对应于每个正向频率探测信号的每个第一参数,以及通过信号接收器接收由负载反射的多个反向频率探测信号,并通过第二检测模块检测每个反向频率探测信号的每个第二参数,便于获取与每个频率对应的第一参数和第二参数,再通过微控制 器根据多个频率以及和与每个频率对应的第一参数和第二参数,经过计算后,可以获得关于负载的特定信息,与预存信息比较后,可以得到负载的类型、体积、温度等状态参数,最终实现不接触而检测负载的状态参数的目的。
优选地,第一参数为正向频率探测信号的正向模拟电压;第二参数为反向频率探测信号的反向模拟电压。
在上述技术方案中,进一步地,确定负载的状态参数,具体包括:根据与每个频率对应的第一参数和第二参数,确定与每个频率对应的驻波;根据多个频率和与每个频率对应的驻波,确定频率-驻波关系图;将频率-驻波关系图与预存的与负载的状态参数相关联的图形进行比较,确定与频率-驻波关系图对应的预设图形;根据预设图形,确定负载的状态参数。
在该技术方案中,通过与每个频率对应的第一参数和第二参数,确定与每个频率对应的驻波,从而将两个参数经过一定的运算规则,整合成在特定的频率下,与负载状态相关的一个特定参数,减少了参数的数量,简化了判断标准,降低了后续运算的难度;通过多个频率和与每个频率对应的驻波,确定频率-驻波关系图,并将频率-驻波关系图与预存的与负载的状态参数相关联的图形进行比较,确定与频率-驻波关系图对应的预设图形,将复杂的计算过程转换成图形的对比,减少了由于计算错误导致检测结果错误的可能,使对负载状态参数的检测和判断,变得直观而简便,提高了检测速度和检测的准确性。
需要特别指出的是,根据预设图形,确定负载的状态参数,是需要建立在一个庞大而又准确的图形库作为前提,即本方法的最终实现,首先需要对各种负载的不同状态参数进行检测,并在该状态参数下进行射频扫描,以得到特定负载在特定状态下的预设图形,即检测并确定与特定负载的特定状态参数对应的预设图形,每种负载具有多少不同的状态参数,就会有对应数量的预设图形,而负载又有不同,因此建立上述与各种负载的不同状态参数对应的预设图形库,并根据预设图形确定负载的状态参数,使负载的状态参数的检测能够得以实现,并提高了检测的速度和准确性,而且与负载不产生直接接触,提高了负载的卫生和安全性。
本申请第三方面的技术方案提供了一种微波炉,包括上述第一方面中任一项技术方案的射频探测装置,射频探测装置的数量为至少一个。
在该技术方案中,通过采用上述第一方面中任一项技术方案的射频探测装置,从而具有上述技术方案的全部有益技术效果,在此不再赘述。
需要特别指出的是,当在微波炉中采用多个上述射频探测装置时,且多个射频探测装置分散布设时,可以同时从多角度发射多个不同频率的探测信号,从而进一步提高检测速度和检测的准确度,提高工作效率。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
图1示出了根据本申请的一个实施例的射频探测装置的工作原理图;
图2示出了根据本申请的一个实施例的射频探测装置的电路结构示意图;
图3示出了图2中的功分隔离模块20的放大示意图;
图4示出了根据本申请的一个实施例的微波炉的负载为空时,应用该实施例的射频探测装置扫描得到的驻波-频率的函数图形;
图5示出了根据本申请的一个实施例的微波炉的负载为250ml 4℃的盒装牛奶时,应用该实施例的射频探测装置扫描得到的驻波-频率的函数图形;
图6示出了根据本申请的本申请的一个实施例的微波炉的负载为250ml 40℃的盒装牛奶时,应用该实施例的射频探测装置扫描得到的驻波-频率的函数图形;
图7示出了根据本申请的一个实施例的射频探测方法的流程图;
图8示出了根据本申请的另一个实施例的射频探测方法的流程图。
其中,图1至图8中附图标记与部件名称之间的对应关系为:
10天线,20功分隔离模块,21第一接线端,22第二接线端,23第三接线端,24第四接线端,30第一检波电路,300正向检波管,40第二检波电路,400反向检波管,50功率放大模块,500放大器,60信号产生组件,600振荡器,70PI网络。
具体实施方式
为了可以更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图8描述根据本申请的一些实施例。
实施例1
图1是根据本申请的一个实施例的射频探测装置的工作原理示意图。
如图1所示,射频探测装置主要包括天线10、功分隔离模块20,正向检波管300和反向检波管400,以及放大器500和振荡器600,其中,天线10配置为发射正向探测信号和接收反射回来的反向探测信号;如图1与图3所示,功分隔离模块20可以采用电桥或耦合器,功分隔离模块20设于天线10、放大器500、正向检波管300和反向检波管400之间,功分隔离模块20具有四个接线端,功分隔离模块20的第一接线端21与天线10连接,第二接线端22与正向检波管300连接,第三接线端23与反向检波管400连接,第四接线端24与放大器500连接,而放大器500与压控振荡器连接。功分隔离模块20配置为分离正向探测信号和反向探测信号,并增大天线10与放大器500之间的隔离度;放大器500配置为对正向探测信号进行放大和对反向探测信号进行吸收;正向检波管300配置为将正向探测信号转换为模拟电压,以便获取正向探测信号的正向电压;反向检波管400配置为将反射得到的反向探测信号转换成反向模拟电压,以得到反向探测信号的反向电压。
具体而言,当射频探测装置开始工作时,如图1中的实心箭头所示,首先由振荡器600根据微控制器发送的控制信号,产生在特定频率f0下的正向频率探测信号,并将该正向频率探测信号发送到放大器500,经放大器500将该正向频率探测信号放大后,输入功分隔离模块20的第四接线端24;在功分隔离模块20中,正向频率探测信号被功分隔离模块20进行了二功分,即将正向 频率探测信号分为了功率相等的两部分,每一部分的功率都是原正向频率探测信号的一半。二功分后的两部分正向频率探测信号,分别从功分隔离模块20的第一接线端21和第二接线端22输出,其中,第一接线端21输出的正向频率探测信号输入天线10内,经天线10向负载发射;第二接线端22输出的正向频率探测信号则输入到正向检波管300内,经转换成模拟电压后,得到发射的正向频率探测信号的正向电压Vout。
同样,如图1中的空心箭头所示,经天线10发射出去的正向频率探测信号发送到负载后,会由负载反射回来,形成反向频率探测信号,并由天线10接收,天线10接收后,将反向频率探测信号送入功分隔离模块20的第一接线端21,反向频率探测信号同样被功分隔离模块20进行了二功分,二功分后的两部分反向频率探测信号,分别经功分隔离模块20的第三接线端23和第四接线端24输出到反向检波管400和放大器500,其中,进入反向检波管400的反向频率探测信号被转换成模拟电压,得到反向频率探测信号的正向电压Vref,而进入放大器500的反向频率探测信号的功率被放大器500吸收掉,减少了对压控振荡器的冲击。
确定正向电压和反向电压后,经过微控制器计算处理,得到与特定频率f0相对应的驻波SWR=F(Vref,Vout)。
射频探测装置继续工作,依次产生多个不同频率下的正向频率探测信号,进行扫频,从而可以得到与多个频率中每个频率对应的一个驻波,即多个频率和相对应的多个驻波,从而可以获得频率-驻波的函数图形y=F(fi,SWR)。
在微控制器的数据库中,预存有多个频率-驻波的预设图形,每个预设图形对应着一个特定频率下的负载的特定状态参数,因此,将射频探测装置扫频获得频率-驻波的函数图形与数据库中的预设图形进行对比,找到对应的预设图形后,即可根据该预设图形,确定与其对应的负载的状态参数,完成在不接触负载的情况下,对负载的状态参数的检测。
将本申请的射频探测装置,运用于微波炉,则可以检测微波炉内负载的温度、体积等状态参数,也可以检测空载的情况。
具体而言,例如在一个微波炉中,采用了本申请的射频探测装置。如图4、图5、图6所示,图4示出了微波炉空载时的频率-驻波的函数图形;图5示出 了微波炉中的负载为250ml4℃的盒装牛奶的频率-驻波的函数图形;图6示出了微波炉中的负载为250ml40℃的盒装牛奶的频率-驻波的函数图形;将这些图形放入预存的图库中,在使用微波炉时,如射频探测装置所检测的频率-驻波函数图形与图5相同,则可以确定微波炉中的负载为盒装牛奶,其体积为250ml,温度为4℃。
具体地,根据本申请的一个实施例的射频探测装置,如图2所示,包括:
微控制器和信号产生组件60,微控制器配置为根据预设的频率范围,向信号产生组件60发出控制信号,以使信号产生组件60依次产生与预设频率范围中的多个频率相对应的多个正向频率探测信号。
信号产生组件60,与功率放大模块50连接,功率放大模块50的另一端与功分隔离模块20连接;功分隔离模块20包括具有6个接线端的定向耦合器,如图3所示,定向耦合器的两个接线端均接地,另外四个接线端中的第四接线端24与功率放大模块50的另一端连接;本实施例的射频探测装置还包括天线10,和第一检测模块、第二检测模块,其中,天线10与定向耦合器的第一接线端21连接,第一检测模块与定向耦合器的第二接线端22连接,第二检测模块与定向耦合器的第三接线端23连接。天线10配置为发射信号产生组件60产生的正向频率探测信号和由负载反射的反向频率探测信号。
功分隔离模块20可以采用定向耦合器,也可以采用电桥,或其他类似功能的电路结构或电气元件。
进一步地,在第一检测模块与定向耦合器之间,第二检测模块与定向耦合器之间,以及信号产生组件60与功率放大模块50之间,均设有PI网络70,以调整正向频率探测信号或反向频率探测信号的大小,以及增加电路之间的隔离度,提高电路整体的安全性;同时,在上述三个位置均设置有PI网络70,可以更加灵活地调节正向频率探测信号和反向频率探测信号的大小,以及整个电路的隔离度,适应更多不同的场景和不同的负载,并提高射频探测装置整体的安全性,延长射频探测装置的使用寿命。当然,也可以根据具体需要,仅在上述三个位置中的一处或两处设置PI网络70。
更具体地,在信号产生组件60中,包括:振荡器600,振荡器600包括多个接线端以及多个电容,多个电容至少分为两组,每组中的每个电容的一端共同与振荡器600的一个接线端或两个接线端连接,每个电容的另一端接地。通过信号产生组件60的设置,便于灵活地产生不同频率的正向频率探测信号。本实施例中,振荡器600优选采用压控振荡器,以节省成本,简化结构,振荡器600也可以选用其他如晶体振荡器等。
在本实施例的功率放大模块50中,包括第一电容,第一电容的一端与信号产生组件60连接;放大器500,放大器500的一端与第一电容的另一端连接;第二电容,第二电容的一端与放大器500的另一端连接,第二电容的另一端与定向耦合器的第四接线端24连接。通过功率放大模块50的设置,便于放大信号产生组件60所产生正向频率探测信号,使天线10向负载发射的正向频率探测信号随之放大,提高了探测的灵敏度;功率放大模块50还增加了功分隔离模块20与信号产生组件60之间的隔离度,在天线10接收到反射回来的反向频率探测信号,且经定向耦合器的第四接线端24流向信号产生组件60时,反向频率探测信号能够被功率放大模块50吸收掉,减少了信号产生组件60受到冲击的可能,提高了信号产生组件60的安全性,延长了射频探测装置的使用寿命,降低了使用成本,而功分隔离模块20也增加了功率放大模块50与天线10之间的隔离度,减少了天线10接收的大功率信号倒灌入功率放大模块50导致破坏的可能。
本实施例的第一检测模块包括第一检波电路30和第一运算组件,第一检波电路30包括检波芯片,以及与检波芯片分别相连的第一电阻和第三电容,其中,第一电阻与第三电容未与检波芯片连接的一端均接地,而第三电容与检波芯片连接的一端,还连接有第二电阻,第二电阻与第三电容连接的一端,与第一运算组件相连,第二电阻的另一端接地。第一检波电路30配置为将正向频率探测信号转换为正向模拟电压,以便通过第一运算组件采样得到正向频率探测信号的正向电压。
第二检测模块包括第二检波电路40和第二运算组件,其中,第二检波电路40的结构与第一检波电路30的结构相同,第二检波电路40配置为将由负载反射回来的反向频率探测信号转换为反向模拟电压,以便通过第二 运算组件采样得到反向频率探测信号的反向电压。
获得在特定频率下的正向频率探测信号的正向电压和反向频率探测信号的反向电压后,可计算出与该频率对应的驻波;按照上述预设频率范围,进行扫频后,可以获得与该预设频率范围中的每个频率对应的驻波,从而得到频率-驻波函数关系图,经微控制器将该频率-驻波函数关系图与预存的与负载的状态参数相关联的图形进行比较,可以确定与频率-驻波关系图对应的预设图形,进而根据预设图形,确定负载的状态参数,实现对负载的检测。负载的状态参数,包括温度、体积等。
采用本实施例的射频探测装置,便于在不接触的情况下,对各种负载的状态进行检测,提高了检测的便利性和安全性,减少了负载因为接触式检测导致破坏、失效的可能,还可以减少某些危险性较大的负载的检测导致检测仪器被破坏或检测人员受伤的可能,例如高温物体;并且本实施例的射频探测装置结构简单,成本低廉;在检测过程中,将复杂的计算改为图形对比,简单直观,提高了工作效率。
实施例2
根据本申请提出的另一个实施例的射频探测装置,与实施例1的不同之处在于,不采用功分隔离模块20和功率放大模块50,且信号的发射和接收分别由信号发射器和信号接收器进行,具体而言,本实施例的射频探测装置,包括微控制器、信号发射模块、信号接收器、第一检测模块和第二检测模块。信号发射模块根据微控制器的控制信号,依次产生和发射多个不同频率的正向频率探测信号,经第一检测模块检测正向电压后,从信号发射模块的信号发射器发出,经负载反射后,由信号接收器接收反射的反向探测信号,第二检测模块与信号接收器连接,从而可以检测到反向频率探测信号的反向电压;第一检测模块和第二检测模块均与微控制器连接,便于将检测到正向电压和反向电压反馈给微控制器,从而能通过微控制器的运算得到与负载的频率-驻波函数关系图,进而经对比检索后,得到预设图形,以及与预设图形相关联的负载的状态参数,实现对负载状态的检测。
当然,功率放大模块50,也可以不减少,而是增加其数量,从而获得更佳的检测动态范围,提高检测的灵敏度。
本实施例还可以根据具体应用场景和设备,增加例如温补电路等辅助电路,以获得更多更具有针对性的功能。
实施例3
如图7所示,根据本申请提出的一个实施例的射频探测方法,配置为上述任一个实施例的射频探测装置,具体包括以下步骤:
步骤10:通过接收射频探测装置的微控制器发出的控制信号,信号产生组件根据控制信号,生成不同频率的多个正向频率探测信号;
步骤12:通过天线向负载发射多个正向频率探测信号,并通过第一检测模块检测对应于每个正向频率探测信号的每个第一参数;
步骤14:通过信号接收器接收由负载反射的多个反向频率探测信号,并通过第二检测模块检测每个反向频率探测信号的每个第二参数;
步骤16:通过微控制器根据多个频率和与每个频率对应的第一参数和第二参数,确定负载的状态参数。
通过信号产生组件接收并根据微控制器发出的控制信号,便于依次产生并发射多个不同频率的多个正向频率探测信号,以提高在各种场景下对负载进行探测可能,且探测信号与负载不接触,提高了负载的安全性和卫生;并且以微控制器发出的控制信号为依据,使依次发射的正向频率探测信号的频率,能够与预设的频率吻合,便于后期数据处理和对比,提高工作效率和探测的准确度;通过信号发射模块向负载发射多个正向频率探测信号,并通过第一检测模块检测对应于每个正向频率探测信号的每个第一参数,以及通过信号接收器接收由负载反射的多个反向频率探测信号,并通过第二检测模块检测每个反向频率探测信号的每个第二参数,便于获取与每个频率对应的第一参数和第二参数,再通过微控制器根据多个频率以及和与每个频率对应的第一参数和第二参数,经过计算后,可以获得关于负载的特定信息,与预存信息比较后,可以得到负载的类型、体积、温度等状态参数,最终实现不接触而检测负载的状态参数的目的。
第一参数和第二参数可以是电压,也可以是电流,或者功率,具体根据实际应用的场景,灵活选用,以便提高检测的便利性和检测效率。
实施例4
如图8所示,根据本申请提出的一个实施例的射频探测方法,配置为上述任一个实施例的射频探测装置,具体包括以下步骤:
步骤20:通过接收射频探测装置的微控制器发出的控制信号,信号产生组件根据控制信号,生成不同频率的多个正向频率探测信号;
步骤22:放大正向频率探测信号;
通过放大正向频率探测信号,便于增强信号,提高探测的灵敏度。
步骤24:将放大后的正向频率探测信号分为功率均为正向频率探测信号一半功率的第一正向子探测信号,和第二正向子探测信号;
对正向频率探测信号进行二功分,便于减小信号的功率,减少对电气检测元器件的冲击,延长射频探测装置的使用寿命。
步骤26:向负载发射第一正向子探测信号;
步骤28:将第二正向子探测信号转换成正向模拟电压;
步骤30:对正向模拟电压采样,确定正向频率探测信号的正向电压;
将电压作为第一参数,便于提高检测的灵敏度和检测的便利性,以及检测的准确度。
步骤32:接收由负载反射的反向频率探测信号;
步骤34:将反向频率探测信号分为功率均为反向频率探测信号一半功率的第一反向子探测信号,和第二反向子探测信号;
步骤36:将第一反向子探测信号转换成反向模拟电压;
步骤38:对反向模拟电压采样,确定反向频率探测信号的反向电压;
步骤40:根据与每个频率对应的正向电压和反向电压,确定与每个频率对应的驻波;
计算正向电压和反向电压所对应的驻波,即将与每个频率对应的两个参数,简化为一个参数,从而简化了判断标准,降低了后续运算的难度。
步骤42:根据多个频率和与每个频率对应的驻波,确定频率-驻波关系图;
步骤44:将频率-驻波关系图与预设图库中与负载的状态参数关联的图形进行比较,确定与频率-驻波关系图对应的预设图形;
步骤46:根据预设图形,确定负载的状态参数。
通过将频率-驻波的内在联系转化为函数关系图,从而将复杂的计算过程转换成图形的对比,减少了由于计算错误导致检测结果错误的可能,使对负载状态参数的检测和判断,变得直观而简便,提高了检测速度和检测的准确性,并且采用本实施例的射频探测方法,不需要与负载接触,判断过程快速简单,减少了负载因为接触式检测导致破坏、失效的可能。
实施例5
根据本申请提出的一个实施例的微波炉,采用上述任一项实施例的射频探测装置。
通过采用上述任一项实施例的射频探测装置,因而具有上述实施例的全部有益技术效果,在此不再详细赘述。
需要特别指出的是,本申请的射频探测装置,结构简单,对匹配无影响,可以应用在各种高中低端的微波炉中,也可以运用与烤箱、电饭煲、蒸锅等设备中。
以上结合附图详细说明了本申请的技术方案,通过本申请的技术方案,有效地实现了不接触负载而检测负载的状态参数的目的,提高了检测的便利性和安全性,减少了负载因为接触式检测导致破坏、失效的可能,还可以减少某些危险性较大的负载的检测导致检测仪器被破坏或检测人员受伤的可能;并且本申请的射频探测装置结构简单,成本低廉;在检测过程中,将复杂的计算改为图形对比,简单直观,提高了工作效率。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种射频探测装置,其中,包括:
    信号发射模块,配置为依次产生并发射不同频率的多个正向频率探测信号;
    信号接收器,配置为接收由负载反射回来的多个反向频率探测信号;
    第一检测模块,与所述信号发射模块连接,所述第一检测模块配置为检测对应于每个所述正向频率探测信号的每个第一参数;
    第二检测模块,与所述信号接收器连接,所述第二检测模块配置为检测每个所述反向频率探测信号的每个第二参数;
    微控制器,配置为控制所述信号发射模块产生不同频率的多个所述正向频率探测信号,所述微控制器还配置为根据所述多个频率和与每个所述频率对应的所述第一参数和所述第二参数,确定所述负载的状态参数。
  2. 根据权利要求1所述的射频探测装置,其中,所述信号发射模块包括:
    信号产生组件,配置为产生所述正向频率探测信号;
    信号发射器,配置为发射所述正向频率探测信号。
  3. 根据权利要求2所述的射频探测装置,其中,所述信号发射器与所述信号接收器,共用相同的天线;
    所述射频探测装置还包括:
    功分隔离模块,与所述信号产生组件、所述天线、所述第一检测模块和所述第二检测模块连接,
    其中,所述功分隔离模块的第一接线端与所述天线连接,所述功分隔离模块的第二接线端与所述第一检测模块连接,所述功分隔离模块的第三接线端与所述第二检测模块连接,所述功分隔离模块的第四接线端与所述信号产生组件连接。
  4. 根据权利要求3所述的射频探测装置,其中,还包括:
    功率放大模块,设于所述功分隔离模块的第四接线端和所述信号产生组件之间,所述第四接线端通过所述功率放大模块与所述信号产生组件相 连,
    其中,所述功率放大模块配置为放大所述正向频率探测信号。
  5. 根据权利要求4所述的射频探测装置,其中,
    所述功率放大模块包括:
    第一电容,一端与所述信号产生模块连接;
    放大器,一端与所述第一电容的另一端连接;
    第二电容,一端与所述放大器的另一端连接,所述第二电容的另一端与所述功分隔离模块的第四接线端连接。
  6. 根据权利要求4所述的射频探测装置,其中,还包括:
    至少一个PI网络,设于所述信号产生组件与所述功率放大模块之间;所述PI网络配置为调节所述正向频率探测信号或所述反向频率探测信号的大小,还配置为增加其自身两端电路的隔离度。
  7. 根据权利要求4或6中任一项所述的射频探测装置,其中,还包括:
    至少一个PI网络,设于所述第一检测模块与所述功分隔离模块的第二接线端之间;所述PI网络配置为调节所述正向频率探测信号或所述反向频率探测信号的大小,还配置为增加其自身两端电路的隔离度。
  8. 根据权利要求4或6或7中任一项所述的射频探测装置,其中,还包括:至少一个PI网络,设于所述第二检测模块与所述功分隔离模块的第三接线端之间;
    所述PI网络配置为调节所述正向频率探测信号或所述反向频率探测信号的大小,还配置为增加其自身两端电路的隔离度。
  9. 一种射频探测方法,配置为权利要求1-8中任一项所述的射频探测装置,其中,包括:
    信号发射模块根据微控制器发出的控制信号,依次生成不同频率的多个正向频率探测信号;
    通过所述信号发射模块向负载发射多个所述正向频率探测信号,并通过所述第一检测模块检测对应于每个所述正向频率探测信号的每个第一参数;
    通过信号接收器接收由所述负载反射的多个反向频率探测信号,并通 过第二检测模块检测每个所述反向频率探测信号的每个第二参数;
    通过所述微控制器根据所述多个频率和与每个所述频率对应的所述第一参数和所述第二参数,确定所述负载的状态参数。
  10. 根据权利要求9所述的射频探测方法,其中,所述确定所述负载的状态参数,具体包括:
    根据与每个所述频率对应的所述第一参数和所述第二参数,确定与每个所述频率对应的驻波;
    根据多个所述频率和与每个所述频率对应的所述驻波,确定频率-驻波关系图;
    将所述频率-驻波关系图与预存的与所述负载的状态参数相关联的图形进行比较,确定与所述频率-驻波关系图对应的预设图形;
    根据所述预设图形,确定所述负载的状态参数。
  11. 一种微波炉,其中,包括权利要求1-8中任一项所述的射频探测装置,所述射频探测装置的数量为至少一个。
PCT/CN2019/074232 2018-01-31 2019-01-31 射频探测装置、探测方法和微波炉 WO2019149251A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19746729.3A EP3629013A4 (en) 2018-01-31 2019-01-31 RADIO FREQUENCY DETECTION DEVICE AND MICROWAVE OVEN
US16/627,322 US11490470B2 (en) 2018-01-31 2019-01-31 Radio frequency detection device and detection method, and microwave oven
JP2020520710A JP6892556B2 (ja) 2018-01-31 2019-01-31 無線周波数検知装置、検知方法及び電子レンジ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810098845.7A CN108333585B (zh) 2018-01-31 2018-01-31 射频探测装置、探测方法和微波炉
CN201810098845.7 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019149251A1 true WO2019149251A1 (zh) 2019-08-08

Family

ID=62926835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074232 WO2019149251A1 (zh) 2018-01-31 2019-01-31 射频探测装置、探测方法和微波炉

Country Status (5)

Country Link
US (1) US11490470B2 (zh)
EP (1) EP3629013A4 (zh)
JP (1) JP6892556B2 (zh)
CN (1) CN108333585B (zh)
WO (1) WO2019149251A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333585B (zh) 2018-01-31 2021-03-16 广东美的厨房电器制造有限公司 射频探测装置、探测方法和微波炉

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256254A (ja) * 2009-04-27 2010-11-11 Panasonic Corp 電磁波検出装置、それを備えた加熱装置および冷凍装置
CN102262096A (zh) * 2011-04-28 2011-11-30 吉林大学 基于混频技术的反射式微波含水率测量装置
CN102495082A (zh) * 2011-12-10 2012-06-13 太原理工大学 乙醇水溶液组分的微波在线检测装置及其检测方法
CN102721709A (zh) * 2012-07-05 2012-10-10 长春市龙应科技开发有限公司 一种基于微波技术的粮食含水率检测装置及检测方法
CN102735697A (zh) * 2011-04-07 2012-10-17 中国科学院电子学研究所 深层土壤湿度微波遥感探测方法与装置
CN103630555A (zh) * 2013-11-21 2014-03-12 烟台大学 一种液体危险品检测中采用微波多频点矢量检测的方法
CN106102480A (zh) * 2014-03-17 2016-11-09 皇家飞利浦有限公司 用于控制食物的烹饪过程的方法和装置
CN108333585A (zh) * 2018-01-31 2018-07-27 广东美的厨房电器制造有限公司 射频探测装置、探测方法和微波炉

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE506168C2 (sv) 1996-01-17 1997-11-17 Allgon Ab Sätt och anordning för mätning av reflektionsförlusten hos en radiofrekvent signal
DK199801471A (da) * 1998-11-13 2000-05-14 Polar Lab V Hans Erik Iversen Metode og apparat til præcis måling af returtab over et stort dynamikområde
US6452141B1 (en) * 2001-06-30 2002-09-17 Samsung Electronics Co., Ltd. Microwave oven with magnetic field detecting device
JP4049075B2 (ja) * 2003-10-17 2008-02-20 アイシン精機株式会社 近接センサ
JP2006023239A (ja) * 2004-07-09 2006-01-26 Optex Co Ltd マイクロウエーブセンサ
JP5362836B2 (ja) * 2008-11-10 2013-12-11 ゴジ リミテッド Rfエネルギを使用して加熱する装置および方法
JP5233861B2 (ja) * 2009-06-22 2013-07-10 株式会社デンソー モータ制御装置
CN102474925B (zh) 2009-07-10 2013-11-06 松下电器产业株式会社 微波加热装置以及微波加热控制方法
CN103078689A (zh) * 2012-12-28 2013-05-01 成都泰格微波技术股份有限公司 WiMAX射频前端驻波检测***及方法
US10333474B2 (en) * 2014-05-19 2019-06-25 Skyworks Solutions, Inc. RF transceiver front end module with improved linearity
KR102381231B1 (ko) * 2014-05-30 2022-04-01 스카이워크스 솔루션즈, 인코포레이티드 개선된 선형성을 갖는 rf 송수신기 프런트 엔드 모듈
CN105423363B (zh) * 2016-01-06 2018-03-16 广东美的厨房电器制造有限公司 微波源***、微波炉及在微波源***中执行的方法
CN105698228B (zh) * 2016-04-05 2019-01-15 苏州矗联电子技术有限公司 一种固态微波炉及实现方法
CN105974994B (zh) * 2016-04-28 2018-09-11 广东美的厨房电器制造有限公司 一种微波炉的功率输出电路和方法
CN106322452B (zh) * 2016-08-31 2019-09-06 广东美的厨房电器制造有限公司 微波炉空载检测方法、设备及微波炉
CN107559903B (zh) * 2017-09-21 2019-10-01 广东美的厨房电器制造有限公司 判断空载的方法、***、计算机设备、存储介质及微波炉

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256254A (ja) * 2009-04-27 2010-11-11 Panasonic Corp 電磁波検出装置、それを備えた加熱装置および冷凍装置
CN102735697A (zh) * 2011-04-07 2012-10-17 中国科学院电子学研究所 深层土壤湿度微波遥感探测方法与装置
CN102262096A (zh) * 2011-04-28 2011-11-30 吉林大学 基于混频技术的反射式微波含水率测量装置
CN102495082A (zh) * 2011-12-10 2012-06-13 太原理工大学 乙醇水溶液组分的微波在线检测装置及其检测方法
CN102721709A (zh) * 2012-07-05 2012-10-10 长春市龙应科技开发有限公司 一种基于微波技术的粮食含水率检测装置及检测方法
CN103630555A (zh) * 2013-11-21 2014-03-12 烟台大学 一种液体危险品检测中采用微波多频点矢量检测的方法
CN106102480A (zh) * 2014-03-17 2016-11-09 皇家飞利浦有限公司 用于控制食物的烹饪过程的方法和装置
CN108333585A (zh) * 2018-01-31 2018-07-27 广东美的厨房电器制造有限公司 射频探测装置、探测方法和微波炉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3629013A4 *

Also Published As

Publication number Publication date
EP3629013A1 (en) 2020-04-01
US11490470B2 (en) 2022-11-01
JP2020526003A (ja) 2020-08-27
JP6892556B2 (ja) 2021-06-23
US20200154533A1 (en) 2020-05-14
CN108333585A (zh) 2018-07-27
CN108333585B (zh) 2021-03-16
EP3629013A4 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
US7511472B1 (en) Power measuring apparatus
KR20110110525A (ko) 무선 전력 전송 장치 및 방법
CN104081170B (zh) 料位测量装置
CN106324336B (zh) 一种功率检测电路、功率放大器模块及功率校准电路
JP2009238226A (ja) オンライン位相較正用システム及び方法
CN105577198A (zh) 阻抗调谐控制装置及方法
WO2019149251A1 (zh) 射频探测装置、探测方法和微波炉
TWI670931B (zh) 可量測傳送端鏡像抑制比的傳送電路
CN114069884A (zh) 阻抗检测装置及其控制方法、无线充电装置及电子设备
CN105391422A (zh) 基于ZigBee技术的相控阵探头自适应阻抗匹配***及方法
TWI500256B (zh) 振盪頻率偏移偵測方法以及振盪頻率偏移偵測電路
CN110581741A (zh) 驻波异常位置检测方法、设备及介质
CN107192473A (zh) 基于相控阵天线的声表面波温度检测***及检测方法
KR101178600B1 (ko) 위상을 이용한 전파 선로의 핌 불량점 검출장치
TWI290331B (en) Apparatus and method of improving impedance matching between an RF signal and a multi-segmented electrode
CN105321313A (zh) 用于双频、多频微波链路测量降水量的采集装置以及基于这一采集装置的测量方法
CN203745542U (zh) 一种快速无损阻抗谱测量***
JP2009065376A (ja) アンテナ装置
TWM439805U (en) Composite fiber events inspection and test device
TW201324499A (zh) 頻率偵測振盪裝置、超音波收發系統及其頻率偵測方法
CN113848423B (zh) 非线性结点检测方法及***
CN103698607A (zh) 一种基于无线数字电极的阻抗谱测量***
CN104092460A (zh) 一种振荡器的校准控制方法、装置和电子设备
JP2003315395A (ja) ベクトル・ネットワーク・アナライザおよびその位相測定方法
EP3557722B1 (en) Systems and methods for object detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019746729

Country of ref document: EP

Effective date: 20191216

ENP Entry into the national phase

Ref document number: 2020520710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE