WO2019144546A1 - 光源***及照明装置 - Google Patents

光源***及照明装置 Download PDF

Info

Publication number
WO2019144546A1
WO2019144546A1 PCT/CN2018/088523 CN2018088523W WO2019144546A1 WO 2019144546 A1 WO2019144546 A1 WO 2019144546A1 CN 2018088523 W CN2018088523 W CN 2018088523W WO 2019144546 A1 WO2019144546 A1 WO 2019144546A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source system
light
wavelength conversion
excitation light
Prior art date
Application number
PCT/CN2018/088523
Other languages
English (en)
French (fr)
Inventor
王霖
余新
胡飞
孙微
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2019144546A1 publication Critical patent/WO2019144546A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present invention relates to the field of lighting technologies, and in particular, to a light source system and a lighting device.
  • LED (Light Emitting Diode) light source is a clean and energy-saving light source with no pollution in green.
  • LED light source is mainly used in some low-power, low-end color change lamp products.
  • LEDs currently generate large amounts of heat, and the luminous efficiency is not high enough, and a single LED chip cannot withstand high power. Therefore, the high luminous flux of a high-power light source system is often achieved by an LED array or a laser.
  • the present invention provides a light source system having uniform light emission and a lighting device as the light source system.
  • a light source system comprising:
  • the excitation light source being disposed on a first side of the collimating unit
  • the reflecting unit is disposed on the second side of the collimating unit opposite to the first side, and includes:
  • a first reflective layer disposed on a side of the reflective unit opposite to the plurality of light emitting surfaces
  • a wavelength conversion layer provided with a wavelength conversion material disposed between the first reflective layer and the plurality of light emitting surfaces
  • the plurality of total reflection surfaces are disposed obliquely with respect to the wavelength conversion layer, and at least two of the plurality of total reflection surfaces are different in distance from the wavelength conversion layer, and the plurality of total reflection surfaces are different And collimating the collimated excitation light emitted from the collimating unit to different regions on the wavelength conversion layer to generate a laser light, and the laser light is reflected by the first reflective layer to the plurality of light emitting surfaces It is then emitted from the light source system.
  • a lighting device is a light source system as described above.
  • the light source system and the illumination device provided by the invention comprise a reflection unit, and a plurality of reflection surfaces of the reflection unit are arranged opposite to the wavelength conversion layer to reflect the collimated excitation light to different regions on the wavelength conversion layer to
  • the color and brightness generated on the conversion layer are uniformly received by the laser light, and the color and brightness are uniformly reflected by the laser beam by the first reflection layer to obtain the laser beam transmitted in different directions.
  • the light emitted by the light source system and the illumination device is a mixed light of the laser beam transmitted in different directions of the wavelength conversion layer, and the uniformity of the color and brightness of the emitted light is high, thereby improving the uniformity of the light emitted by the illumination device.
  • FIG. 1 is a schematic structural view of a lighting device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a lighting device according to a second embodiment of the present invention.
  • FIG 3 is a schematic structural view of a lighting device according to a third embodiment of the present invention.
  • FIG. 4 is a schematic top plan view of the lighting device shown in FIG. 3.
  • FIG. 5 is a schematic top plan view of a lighting device according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic top plan view of a lighting device according to a fifth embodiment of the present invention.
  • FIG. 7 is a schematic top plan view of a lighting device according to a sixth embodiment of the present invention.
  • Light source system 100 200, 300, 400, 500, 600 Substrate 110, 210 Second reflective layer 112 Excitation source 120, 220, 320, 620 First heat sink 222 illuminator 625 Collimation unit 130,330 Collimation surface 332 Reflection unit 140, 340, 440, 540 Total reflection surface 142, 442, 542 Glossy surface 144, 544 Wavelength conversion layer 150, 250 First reflective layer 160, 260 Second heat sink 262
  • FIG. 1 is a schematic structural diagram of a light source system 100 according to a first embodiment of the present invention.
  • the light source system 100 provided by the embodiment of the invention has high light uniformity and wide application range, and can be used as a lighting device in the fields of automobile lamp, stage lighting and the like.
  • the light source system 100 includes a substrate 110 , an excitation light source 120 , a collimation unit 130 , a reflection unit 140 , a wavelength conversion layer 150 , and a first reflective layer 160 .
  • the excitation light source 120 and the collimating unit 130 are mounted on the substrate 110.
  • the excitation light source 120 is disposed on the first side of the collimating unit 130 for emitting excitation light having a predetermined divergence angle.
  • the reflecting unit 140 is disposed on the collimating unit 130.
  • the reflective unit 140 includes a plurality of total reflection surfaces 142 and a plurality of light exit surfaces 144.
  • the plurality of total reflection surfaces 142 are spaced apart from each other, and a light is disposed between each two total reflection surfaces 142.
  • the first reflective layer 160 is made of metal aluminum or other reflective material, and is disposed on a side of the reflective unit 140 opposite to the plurality of light-emitting surfaces 144.
  • the wavelength conversion layer 150 is provided with a wavelength conversion material and is disposed on the first reflection.
  • the layer 160 is between the plurality of light exiting surfaces 144.
  • the excitation light emitted from the excitation light source 120 is incident on the reflection unit 140 after being collimated by the collimation unit 130, and the plurality of total reflection surfaces 142 in the reflection unit 140 are inclined with respect to the wavelength conversion layer 150, and the plurality of total reflection surfaces are provided.
  • the distances of at least two total reflection surfaces 142 of 142 to the wavelength conversion layer 150 are different.
  • the direction of propagation of the collimated excitation light is a first direction
  • the second direction is perpendicular to the first direction.
  • the direction perpendicular to the first direction and perpendicular to the wavelength conversion layer 150 is selected to be the second direction. As shown in FIG.
  • any two total reflection surfaces 142 are different in distance from the wavelength conversion layer 150 in the second direction, and along the first direction, the total reflection surfaces 142 are sequentially arranged, and the distance from the excitation light source 120 is higher.
  • the far total total reflection surface 142 is closer to the wavelength conversion layer 150 in the second direction, and the plurality of total reflection surfaces 142 form a stepped structure, so that the collimated excitation light can be in the second direction.
  • the plurality of total reflection surfaces 142 are irradiated onto the different regions on the wavelength conversion layer 150 through the plurality of total reflection surfaces 142 to generate a uniform color and brightness, and the laser light is uniformly received by the first reflection layer 160 by the laser light.
  • any two total reflection surfaces 142 are different in distance from the wavelength conversion layer 150 in the second direction, and in the first direction, the total reflection surfaces 142 are sequentially arranged, and the excitation light source 120 is distanced. The farther the total reflection surface 142, the further the distance from the wavelength conversion layer 150 in the second direction.
  • the adjacent total reflection surface 142 is at a different distance from the wavelength conversion layer 150 in the second direction such that the plurality of total reflection surfaces form a wavy or other irregular shape in a side view.
  • the emitted light of the light source system 100 is a mixed light of the laser beam transmitted in different directions of the wavelength conversion layer 150, and the uniformity of the color and brightness of the emitted light is high, and the uniformity of the light emitted by the light source system 100 is improved. wide range.
  • the light source system 100 in the first embodiment further includes a second reflective layer 112 disposed on the substrate 110 .
  • the second reflective layer 112 is made of metallic aluminum or other lightweight material that has high reflection of light.
  • the excitation light source 120 emits excitation light having a predetermined divergence angle, and a part of the excitation light is reflected by the second reflection layer 112, and another portion of the excitation light emitted from the excitation light source 120 is incident on the collimation unit 130 in the same direction.
  • the transmission light path of the excitation light is equivalent to placing an excitation light source below the excitation light source 120, as shown by the broken line portion in FIG. Therefore, the second reflective layer 112 on the substrate 110 allows the excitation light emitted from the excitation light source 120 to be fully utilized while reducing the size of the light source system 100 to make the structure more compact.
  • the other structure of the light source system 100 in the first embodiment is the same as that of the light source system 100 in the one embodiment, and is specifically as follows.
  • the excitation light source 120 can be a blue light source that emits blue excitation light. It can be understood that the excitation light source 120 is not limited to the blue light source, and the excitation light source 120 may also be an ultraviolet light source, a red light source, or a green light source. In the present embodiment, the excitation light source 120 includes a blue laser for emitting a blue laser light as the excitation light. In one embodiment, the excitation light source 120 includes a blue LED that emits light as the excitation light. It is to be understood that other optical elements known in the art, such as beam expanding elements or scattering elements, etc., may also be included in the excitation source 120.
  • the wavelength conversion layer 150 is provided with a yellow phosphor, and the wavelength conversion layer 150 may further include one or more transparent materials for bonding the yellow phosphors together.
  • the transparent material is a transparent colloid or a transparent glass material, such as silica gel, mixed or dissolved with the yellow phosphor; or a transparent plastic film material, the yellow phosphor is hot pressed onto the transparent plastic film material.
  • the wavelength conversion layer 150 can be provided with phosphors of other colors, such as sub-regional setting of red phosphor and green phosphor, or red phosphor and yellow phosphor, or yellow phosphor. With green phosphors and more.
  • the collimation unit 130 is for collimating the excitation light emitted from the excitation light source 120. As shown in FIG. 1, the excitation light incident on the collimation unit 130 is parallel light. In order to ensure that the collimated excitation light can be completely incident on the total reflection surface 142 of the reflection unit 140, the collimated excitation light is prevented from passing through the light exit surface 144 to cause the light color and brightness unevenness, and the collimation unit 130 selects the material as optical.
  • the plano-convex lens of the glass is completely incident on the plurality of total reflection surfaces 142 by collimating the excitation light to generate excitation light close to the parallel light.
  • the excitation light incident on the collimating unit 130 is gradually narrowed, and the collimating unit 130 may select a concave lens to ensure that the collimated excitation light is completely incident on the plurality of total reflection surfaces 142.
  • the collimating unit 130 and the reflecting unit 140 are discrete components, and the manufacturing process is simple.
  • the reflecting unit 140 is made of a transparent substrate.
  • the total reflection surface 142 is a total reflection mirror or an optical glass plated with a total reflection film for reflecting all light rays.
  • the light-emitting surface 144 may be a transparent optical glass to transmit all of the incident laser light and the unconverted excitation light, or the light-emitting surface 144 is a spectral filter plated with an optical film for the reflection.
  • the excitation light is transmitted through the laser beam.
  • the optical film may be an anti-blue transparent film, and the light emitted from the light source system 100 is yellow light.
  • the light-emitting surface may also transmit only the laser light and reflect the excitation light by processing.
  • the total reflection surface 142 and the light-emitting surface 144 are arranged at a stepped interval.
  • the total reflection surface 142 and the light exit surface 144 have a strip-shaped plane.
  • the total reflection surface 142 is disposed obliquely to the wavelength conversion layer 150, and the angle between the plurality of total reflection surfaces 142 and the wavelength conversion layer 150 may be the same or different.
  • the positional parameters of the total reflection surface 142 and the light exit surface 144 are calculated by the beam size emitted by the excitation light source 120 and the emission light size of the collimation unit 130.
  • the light-emitting surface 144 and the wavelength conversion layer 150 are all parallel to the first direction, and the angle between the plurality of total reflection surfaces 142 and the wavelength conversion layer 150 is the same, and is preferably 45 degrees.
  • the collimated excitation light can be totally irradiated to the total reflection surface 142, and is reflected by the total reflection surface 142 to the wavelength conversion layer 150 to generate a laser beam.
  • the distance between at least two of the plurality of total reflection surfaces 142 and the wavelength conversion layer 150 is not equal, and the size of the total reflection surface 142 and the preset divergence angle of the excitation light emitted by the excitation light source 120 cooperate with each other.
  • the straight excitation light can illuminate at least two total reflection surfaces 142 in the second direction, and the at least two total reflection surfaces 142 direct the incident excitation light to different regions of the wavelength conversion layer 150, thereby improving the wavelength conversion layer 150.
  • the uniformity of the laser can illuminate at least two total reflection surfaces 142 in the second direction, and the at least two total
  • the light source system 100 provided in the first embodiment of the present invention includes a reflection unit 140, and a plurality of reflection surfaces 140 of the reflection unit 140 are disposed obliquely with respect to the wavelength conversion layer 150 to reflect the collimated excitation light to the wavelength conversion layer. Different regions on 150 are used to generate laser light having uniform color and brightness on the wavelength conversion layer 150, and the laser light having uniform color and brightness is reflected by the first reflective layer 160 to obtain laser beams transmitted in different directions. The laser beam exits the light source system 100 through the light exit surface 144.
  • the emitted light of the light source system 100 is a mixed light of the laser beam transmitted in different directions of the wavelength conversion layer 150, and the uniformity of the color and brightness of the emitted light is high, and the uniformity of the light emitted by the light source system 100 is improved. wide range.
  • FIG. 2 is a schematic structural diagram of a light source system 200 according to a second embodiment of the present invention.
  • the difference between the light source system 200 and the light source system 100 in the present embodiment is mainly that the surface of the excitation light source 220 in the light source system 200 is provided with a first heat dissipation device 222, and the surface of the first reflection layer 260 is provided with a second heat dissipation device 262.
  • the specific solutions applicable to the first embodiment may be correspondingly applied to the present embodiment. To save space and avoid repetition, here is No longer.
  • the first heat sink 222 is a transparent heat sink disposed between the substrate 210 and the excitation light source 220 for dissipating heat from the excitation light source 220;
  • the second heat sink 262 is disposed on the surface of the first reflective layer 260, and the second heat dissipation
  • the device 262 is specifically a heat sink, and includes a heat dissipation fin and a heat pipe connecting the heat dissipation fin and the first reflection layer 260.
  • the heat pipe is indirectly connected to the wavelength conversion layer 250 to accelerate heat transfer of the first reflection layer 260.
  • the heat transfer of the wavelength conversion layer 250 is indirectly accelerated, and the utilization ratio of the excitation light and the conversion efficiency of the wavelength conversion layer 250 are improved.
  • FIG. 3 is a schematic structural diagram of a light source system 300 according to a third embodiment of the present invention
  • FIG. 4 is a schematic top view of the light source system 300 illustrated in FIG. 3
  • the main difference between the light source system 300 in the present embodiment and the light source system 100 in the first embodiment is that the collimating unit 330 in the light source system 300 is integrally formed with the reflecting unit 340, and the collimating unit 330 is adjacent to the excitation light source 320.
  • a collimating surface 332 is disposed on the side, and the collimating surface 332 is a curved surface that protrudes toward the excitation light source 320. It will be appreciated that the form of the collimating surface 332 can be determined based on the size of the incident excitation light.
  • the collimating unit 330 is integrally formed with the reflecting unit 340 such that the overall structure of the light source system 300 is more compact, and the stability of the light source system 300 is better because collimation and reflection occur on one piece of material.
  • FIG. 5 is a schematic top plan view of a light source system 400 according to a fourth embodiment of the present invention.
  • the main difference between the light source system 400 provided by the present embodiment and the light source system 100 of the first embodiment is that the total reflection surface 442 of the reflection unit 440 in the light source system 400 is a curved surface.
  • the total reflection surface 442 has an arc shape.
  • each total reflection surface 442 has a fan shape.
  • the total reflection surface 442 It has a three-dimensional wavy line shape, a zigzag shape, a combination of various curved surfaces or other irregular shapes to ensure that the collimated excitation light is reflected into different regions of the wavelength conversion layer to produce a uniform laser light.
  • FIG. 6 is a schematic top plan view of a light source system 500 according to a fifth embodiment of the present invention.
  • the main difference between the light source system 500 provided by the present embodiment and the light source system 200 in the second embodiment is that a plurality of total reflection surfaces 542 and a plurality of light exit surfaces 544 of the reflection unit 540 in the light source system 500 are in the first The direction and the second direction are staggered, and the collimated excitation light can be divided into a plurality of small units by a plurality of total reflection surfaces 542 to uniformly strike different regions of the wavelength conversion layer, thereby ensuring more wavelength conversion materials. Excited, thereby increasing the excitation efficiency of the wavelength conversion layer while achieving uniform illumination.
  • the total reflection surface 542 in the present embodiment is a strip-shaped plane, and it is understood that the total reflection surface 542 may also be a strip-shaped curved surface mentioned in the fourth embodiment.
  • FIG. 7 is a schematic structural diagram of a light source system 600 according to a sixth embodiment of the present invention.
  • the excitation light source 620 in the light source system 600 includes a plurality of illuminants 625 arranged side by side to obtain higher brightness.
  • the light output is beneficial to improve the light uniformity of the light source system 600.
  • the illuminant 625 is a laser, and the light source system 600 has a light output response speed and a higher brightness of the emitted light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明提供一种光源***及照明装置,所述光源***包括:基板、激发光源、准直单元、反射单元、第一反射层及波长转换层;所述反射单元包括:间隔设置的多个全反射面及多个出光面;所述第一反射层设置于所述反射单元上与所述多个出光面相对的一侧;所述波长转换层设置有波长转换材料,设置于所述第一反射层与所述多个出光面之间;其中,所述多个全反射面相对于所述波长转换层倾斜设置,所述多个全反射面中的至少两个全反射面到所述波长转换层的距离不同,所述多个全反射面将从所述准直单元出射的准直后的激发光反射至所述波长转换层上的不同区域以产生受激光,所述受激光经所述第一反射层反射至所述多个出光面后从所述照明装置出射。

Description

光源***及照明装置 技术领域
本发明涉及照明技术领域,特别涉及一种光源***及照明装置。
背景技术
本部分旨在为权利要求书及具体实施方式中陈述的本发明实施例的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
LED(发光二极管)光源为绿色无污染的干净节能光源,目前LED光源主要应用于一些小功率、低端的换色灯产品上。但目前LED发热量大,发光效率还不够高,且单个LED芯片不能承受高功率,因此大功率光源***的高光通量往往要靠LED阵列或激光器来实现。
然而,现有的光源***出光的均匀性有待提升。
发明内容
为解决上述技术问题,本发明提供一种出光均匀的光源***及如所述光源***的照明装置。
一种光源***,包括:
基板;
激发光源,安装于所述基板上,用于发出具有预设发散角的激发光;
准直单元,安装于所述基板上,所述激发光源设置于所述准直单元的第一侧;
反射单元,设置于所述准直单元的与所述第一侧相对的第二侧,包括:
间隔设置的多个全反射面;及
多个出光面,每两个全反射面之间设置有一出光面;
第一反射层,设置于所述反射单元上与所述多个出光面相对的一侧;及
设置有波长转换材料的波长转换层,设置于所述第一反射层与所述多个出光面之间;
其中,所述多个全反射面相对于所述波长转换层倾斜设置,所述多个全反射面中的至少两个全反射面到所述波长转换层的距离不同,所述多个全反射面将从所述准直单元出射的准直后的激发光反射至所述波长转换层上的不同区域以产生受激光,所述受激光经所述第一反射层反射至所述多个出光面后从所述光源***出射。
一种照明装置,为如上所述的光源***。
本发明提供的光源***及照明装置包括反射单元,反射单元中的多个相对于波长转换层倾斜设置的全反射面将准直后的激发光反射至波长转换层上的不同区域,以在波长转换层上产生颜色及亮度均匀受激光,所述颜色及亮度均匀受激光被第一反射层反射得到沿不同方向传输的受激光光束。所述光源***及照明装置的出射光为波长转换层不同区域出射的沿不同方向传输的受激光光束的混合光,出射光颜色及亮度均匀度较高,提高了照明装置出射光的均匀性。
附图说明
图1为本发明第一实施方式提供的照明装置的结构示意图。
图2为本发明第二实施方式提供的照明装置的结构示意图。
图3为本发明第三实施方式提供的照明装置的结构示意图。
图4为如图3所示的照明装置的俯视结构示意图。
图5为本发明第四实施方式提供的照明装置的俯视结构示意图。
图6为本发明第五实施方式提供的照明装置的俯视结构示意图。
图7为本发明第六实施方式提供的照明装置的俯视结构示意图。
主要元件符号说明
光源*** 100、200、300、400、500、600
基板 110、210
第二反射层 112
激发光源 120、220、320、620
第一散热装置 222
发光体 625
准直单元 130、330
准直面 332
反射单元 140、340、440、540
全反射面 142、442、542
出光面 144、544
波长转换层 150、250
第一反射层 160、260
第二散热装置 262
如下具体实施方式将结合所述附图进一步说明本发明。
具体实施方式
请参阅图1,为本发明第一实施方式提供的光源***100的结构示意图。本发明实施方式提供的光源***100出光均匀度高,应用范围广,可以作为照明装置应用于汽车车灯、舞台照明灯等领域。
在一种实施方式中,光源***100包括基板110、激发光源120、准直单元130、反射单元140、波长转换层150及第一反射层160。激发光源120及准直单元130安装于基板110上,激发光源120设置于准直单元130的第一侧,用于发出具有预设发散角的激发光;反射单元140设置于准直单元130的与所述第一侧相对的第二侧,反射单元140包括多个全反射面142及多个出光面144,多个全反射面142间隔设置,每两个全反射面142之间设置有一出光面144;第一反射层160由金属铝或其他反射材料制成,设置于反射单元140上与多个出光面144相对的一侧;波长转换层150设置有波长转换材料,设置于第一 反射层160与多个出光面144之间。
具体地,激发光源120出射的激发光经过准直单元130的准直后入射至反射单元140,反射单元140中的多个全反射面142相对于波长转换层150倾斜设置,多个全反射面142中的至少两个全反射面142到波长转换层150的距离不同。在本实施方式中准直后的激发光的传播方向为第一方向,第二方向垂直于所述第一方向。在本发明实施方式中,选择垂直于所述第一方向并垂直于波长转换层150的方向为第二方向。如图1所示,且任意两个全反射面142在所述第二方向上与波长转换层150的距离不同,并且沿所述第一方向,全反射面142依次排列,距离激发光源120越远的全反射面142,在所述第二方向上与波长转换层150的距离越近,进而多个全反射面142构成台阶状结构,使得准直后的激发光能够在所述第二方向上照射到多个全反射面142,经多个全反射面142反射至波长转换层150上的不同区域以产生颜色及亮度均匀受激光,所述颜色及亮度均匀受激光被第一反射层160反射得到沿不同方向传输的受激光光束,所述受激光光束及未被转换的激发光一同穿过出光面144从光源***100出射。可以理解的是,在一种实施方式中,任意两个全反射面142在第二方向上与波长转换层150的距离不同,并且沿第一方向,全反射面142依次排列,距离激发光源120越远的全反射面142,在所述第二方向上与波长转换层150的距离越远。在又一种实施方式中,相邻全反射面142在第二方向上与波长转换层150的距离不同,从而在侧视图中多个全反射面构成波浪形或其他不规则的形状。
所述光源***100的出射光为波长转换层150不同区域出射的沿不同方向传输的受激光光束的混合光,出射光颜色及亮度均匀度较高,提高光源***100出射光的均匀性,适用范围广。
如图1所示,本发明的第一实施方式中,与所述一种实施方式不同的是,第一实施实施方式中的光源***100还包括设置于基板110上的第二反射层112。所述第二反射层112由金属铝或其他对光线具有高反射的轻薄材料制成。激发光源120出射具有预设发散角的激发 光,其中一部分激发光经过第二反射层112的反射后,与激发光源120出射的另一部分激发光沿相同方向入射至准直单元130。所述激发光的传输光路相当于在激发光源120的下方又放置了一个激发光源,如图1中虚线部分所示。因此基板110上的第二反射层112使激发光源120出射的激发光得到充分利用,同时缩减了光源***100的尺寸,使结构更加紧凑。
第一实施实施方式中的光源***100的其他结构与所述一种实施方式中的光源***100相同,具体如下。
激发光源120可以为蓝色光源,发出蓝色激发光。可以理解的是,激发光源120不限于蓝色光源,激发光源120也可以是紫外光源、红色光源或绿色光源等。本实施方式中,激发光源120包括蓝色激光器,用于发出蓝色激光作为所述激发光。在一种实施方式中,激发光源120包括蓝色LED,所述蓝色LED发出的光作为所述激发光。可以理解的是,激发光源120中还可以包括其他本领域公知的光学元件,比如扩束元件或散射元件等。
本实施方式中,波长转换层150设置有黄色荧光粉,波长转换层150还可以包括一种或一种以上的透明材料,用来将所述黄色荧光粉结合在一起。所述透明材料为透明胶体或透明玻璃材料,例如硅胶,与所述黄色荧光粉混合或溶合成型;或者为透明塑料薄膜材料,所述黄色荧光粉被热压在所述透明塑料薄膜材料上。可以理解的是,在一种实施方式中,波长转换层150可以设置其他颜色的荧光粉,比如,分区域设置红色荧光粉与绿色荧光粉、或红色荧光粉与黄色荧光粉、或黄色荧光粉与绿色荧光粉等等。
准直单元130用于对激发光源120出射的激发光进行准直,如图1所示,入射至准直单元130的激发光为平行光。为保证准直后的激发光能够完全入射至反射单元140的全反射面142,避免准直后的激发光穿过出光面144出射造成出光颜色及亮度不均匀,准直单元130选用材料为光学玻璃的平凸透镜,以将所述激发光准直后产生接近于平行光的激发光完全入射至多个全反射面142。在一种实施方式中, 入射至准直单元130的激发光是逐渐收窄的,准直单元130可以选用凹透镜,以保证准直后的激发光完全入射至多个全反射面142。在本实施方式中,准直单元130与反射单元140为分立元件,制作工艺简单。
反射单元140由透明基质制成。全反射面142为全反射镜或镀设有全反射膜的光学玻璃,用于对所有光线进行反射。出光面144可以为透明的光学玻璃以将入射的受激光及未被转换的激发光全部透射出去,或者出光面144为镀设有光学膜的分光滤光片,所述光学膜用于反射所述激发光并透射所述受激光,在本实施方式中,所述光学膜可为反蓝透黄膜,光源***100的出射光为黄色光。在一种变更实施方式中,出光面也可以通过加工处理只透射受激光,反射激发光。进一步地,全反射面142与出光面144呈台阶状间隔设置。全反射面142及出光面144呈条形平面。全反射面142相对与波长转换层150倾斜设置,多个全反射面142与波长转换层150之间的夹角可以相同也可以不同。全反射面142与出光面144的位置参数通过激发光源120出射的光束尺寸和准直单元130的出射光尺寸计算得到。
在本实施方式中,出光面144及波长转换层150均平行于所述第一方向,多个全反射面142与波长转换层150之间的夹角相同,优选为45度。准直后的激发光能够全部照射至全反射面142,并由全反射面142反射至波长转换层150产生受激光。另一方面,多个全反射面142中的至少两个与波长转换层150之间的距离不等,全反射面142的尺寸与激发光源120出射激发光的预设发散角相互配合,使得准直后的激发光在第二方向上能够照射至少两个全反射面142,至少两个全反射面142将入射的激发光引导至波长转换层150的不同区域,提高了波长转换层150产生受激光的均匀性。
在本发明第一实施方式中提供的光源***100包括反射单元140,反射单元140中的多个相对于波长转换层150倾斜设置的全反射面142将准直后的激发光反射至波长转换层150上的不同区域,以在波长转换层150上产生颜色及亮度均匀的受激光,所述颜色及亮度均匀 的受激光被第一反射层160反射得到沿不同方向传输的受激光光束,所述受激光光束穿过出光面144从光源***100出射。所述光源***100的出射光为波长转换层150不同区域出射的沿不同方向传输的受激光光束的混合光,出射光颜色及亮度均匀度较高,提高光源***100出射光的均匀性,适用范围广。
请参阅图2,为本发明第二实施方式提供的光源***200的结构示意图。本实施方式中的光源***200与光源***100的区别主要在于:光源***200中的激发光源220表面设置有第一散热装置222,第一反射层260表面设置有第二散热装置262。需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于本实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
具体地,第一散热装置222为设置于基板210与激发光源220之间的透明热沉,用于对激发光源220进行散热;第二散热装置262设置于第一反射层260表面,第二散热装置262具体为散热器,其包括散热鳍片和连接所述散热鳍片与第一反射层260的热管,实际上热管就是间接与波长转换层250相连接,加快第一反射层260的热量传递,从而间接加快波长转换层250的热量传递,提高了所述激发光的利用率和波长转换层250的转换效率。
请参阅图3-图4,图3为本发明第三实施方式提供的光源***300的结构示意图,图4为如图3所示的光源***300的俯视结构示意图。本实施方式中的光源***300与第一实施方式中的光源***100的主要区别在于:光源***300中的准直单元330与反射单元340一体成型,准直单元330在邻近激发光源320的一侧设置有准直面332,准直面332为向激发光源320凸出的曲面。可以理解的是,准直面332的形式可以根据入射激发光的尺寸确定。
准直单元330与反射单元340一体成型使得光源***300的整体结构更加紧凑,同时因为准直和反射发生在一块材料上,光源***300的稳定性更好。
需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于本实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
请参阅图5,为本发明第四实施方式提供的光源***400的俯视结构示意图。本实施方式提供的光源***400与第一实施方式中的光源***100相比,主要区别在于:光源***400中反射单元440的全反射面442为曲面。具体地,全反射面442中呈弧形,在本实施方式中,如图5所示,每个全反射面442呈扇环形,可以理解的是,在一种实施方式中,全反射面442呈立体波浪线状、锯齿状、多种曲面的组合或其他不规则形状,以保证将准直后的激发光反射至波长转换层的不同区域中,产生均匀的受激光。
需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于本实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
请参阅图6,为本发明第五实施方式提供的光源***500的俯视结构示意图。本实施方式提供的光源***500与第二实施方式中的光源***200相比,主要区别在于:光源***500中反射单元540的多个全反射面542与多个出光面544在所述第一方向及所述第二方向上交错排布,准直后的激发光可以被多个全反射面542分成很多小单元均匀地打在波长转换层的不同区域,保证了更多区域的波长转换材料被激发,进而提高了所述波长转换层的激发效率,同时实现均匀照明。本实施方式中的全反射面542为条形平面,可以理解的是,全反射面542还可以是第四实施方式中提到的条形曲面。
需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于本实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
请参阅图7,为本发明第六实施方式提供的光源***600的结构示意图。本实施方式提供的光源***600与第二实施方式中的光源***200相比,主要区别在于:光源***600中的激发光源620中包括 并列排布的多个发光体625,得到更高亮度的光输出,同时有利于提高光源***600出光均匀性。优选地,发光体625为激光器,光源***600光输出响应速度快,出射光亮度更高。
需要说明的是,在本发明的精神或基本特征的范围内,适用于第一实施方式中的各具体方案也可以相应的适用于本实施方式中,为节省篇幅及避免重复起见,在此就不再赘述。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种光源***,其特征在于,包括:
    基板;
    激发光源,安装于所述基板上,用于发出具有预设发散角的激发光;
    准直单元,安装于所述基板上,所述激发光源设置于所述准直单元的第一侧;
    反射单元,设置于所述准直单元的与所述第一侧相对的第二侧,包括:
    间隔设置的多个全反射面;及
    多个出光面,每两个全反射面之间设置有一出光面;
    第一反射层,设置于所述反射单元上与所述多个出光面相对的一侧;及
    设置有波长转换材料的波长转换层,设置于所述第一反射层与所述多个出光面之间;
    其中,所述多个全反射面相对于所述波长转换层倾斜设置,所述多个全反射面中的至少两个全反射面到所述波长转换层的距离不同,所述多个全反射面将从所述准直单元出射的准直后的激发光反射至所述波长转换层上的不同区域以产生受激光,所述受激光经所述第一反射层反射至所述多个出光面后从所述光源***出射。
  2. 如权利要求1所述的光源***,其特征在于,所述光源***还包括设置于所述基板上的第二反射层,所述激发光源出射的一部分激发光经过所述第二反射层的反射后,与所述激发光源出射的另一部分激发光沿相同方向入射至所述准直单元。
  3. 如权利要求1或2所述的光源***,其特征在于,所述准直单元包括平凸透镜。
  4. 如权利要求1或2所述的光源***,其特征在于,所述准直单元与所述反射单元一体成型,所述准直单元在邻近所述激发光源的一 侧设置有准直面,所述准直面为向所述激发光源凸出的曲面。
  5. 如权利要求1所述的光源***,其特征在于,所述全反射面为条形平面或条形曲面。
  6. 如权利要求5所述的光源***,其特征在于,第一方向为所述准直单元出射的激发光的传播方向,第二方向与所述第一方向垂直,所述多个全反射面与所述多个出光面在所述第一方向及所述第二方向上交错排布。
  7. 如权利要求1所述的光源***,其特征在于,所述激发光源包括至少一激光器。
  8. 如权利要求1所述的光源***,其特征在于,所述激发光源上设置有第一散热装置,所述第一反射层表面设置有第二散热装置。
  9. 如权利要求2所述的光源***,其特征在于,所述第二反射层由金属铝制成。
  10. 一种照明装置,其特征在于,如权利要求1-9任意一项所述的光源***。
PCT/CN2018/088523 2018-01-27 2018-05-25 光源***及照明装置 WO2019144546A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810080136.6 2018-01-27
CN201810080136.6A CN110094640B (zh) 2018-01-27 2018-01-27 光源***及照明装置

Publications (1)

Publication Number Publication Date
WO2019144546A1 true WO2019144546A1 (zh) 2019-08-01

Family

ID=67395170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088523 WO2019144546A1 (zh) 2018-01-27 2018-05-25 光源***及照明装置

Country Status (2)

Country Link
CN (1) CN110094640B (zh)
WO (1) WO2019144546A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466444A (zh) * 2019-09-04 2019-11-19 深圳市创晶辉精密塑胶模具有限公司 手机无线充电支架

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195118A (zh) * 1997-03-28 1998-10-07 夏普株式会社 前方照明装置和具备该装置的反射型液晶显示装置
US6323919B1 (en) * 1998-10-02 2001-11-27 Sony Corporation Reflection type display with front light
CN1762061A (zh) * 2003-12-05 2006-04-19 三菱电机株式会社 发光装置及利用该发光装置的照明器具
US20130314937A1 (en) * 2012-05-24 2013-11-28 Sharp Kabushiki Kaisha Light projecting device and vehicular headlamp

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369274C (zh) * 2001-11-16 2008-02-13 丰田合成株式会社 发光二极管、led灯及灯具
JP4711155B2 (ja) * 2009-06-30 2011-06-29 カシオ計算機株式会社 光源装置及びプロジェクタ
CN102445827B (zh) * 2010-09-30 2014-08-20 台达电子工业股份有限公司 光源***与投影装置
JP4789026B1 (ja) * 2011-05-10 2011-10-05 鈴木 優一 混色照明装置
WO2013068895A1 (en) * 2011-11-08 2013-05-16 Koninklijke Philips Electronics N.V. Lighting unit comprising a waveguide
DE102014200937A1 (de) * 2014-01-20 2015-07-23 Osram Gmbh Beleuchtungsvorrichtung mit Primärlichteinheit und Leuchtstoffelement
DE102014222130A1 (de) * 2014-10-29 2016-05-04 Osram Gmbh Beleuchtungsvorrichtung mit einer Wellenlängenkonversionsanordnung
CN106681052B (zh) * 2016-11-16 2019-11-15 京东方科技集团股份有限公司 一种背光模组和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1195118A (zh) * 1997-03-28 1998-10-07 夏普株式会社 前方照明装置和具备该装置的反射型液晶显示装置
US6323919B1 (en) * 1998-10-02 2001-11-27 Sony Corporation Reflection type display with front light
CN1762061A (zh) * 2003-12-05 2006-04-19 三菱电机株式会社 发光装置及利用该发光装置的照明器具
US20130314937A1 (en) * 2012-05-24 2013-11-28 Sharp Kabushiki Kaisha Light projecting device and vehicular headlamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466444A (zh) * 2019-09-04 2019-11-19 深圳市创晶辉精密塑胶模具有限公司 手机无线充电支架

Also Published As

Publication number Publication date
CN110094640B (zh) 2021-10-22
CN110094640A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
US7380962B2 (en) Optical manifold for light-emitting diodes
US20170030541A1 (en) Light source device, lighting device, vehicular headlight, and vehicle
US20120106127A1 (en) Light emitting device
CN102437272B (zh) 波长转换装置和发光装置
JP2014527699A (ja) 光源、光合成装置、および光源付投影装置
US10347801B2 (en) Light emitting device
US20210405275A1 (en) Luminaire module having a light guide with a redirecting end-face
CN109991802A (zh) 光源***及投影设备
JP2021529355A (ja) 光源装置
WO2019075935A1 (zh) 光源***及照明设备
WO2019165747A1 (zh) 光源***及照明装置
CN109578823B (zh) 一种激光二极管和荧光粉膜同时冷却的激光白光光源
US9995459B2 (en) Laser stimulated white-light lighting system
WO2019144546A1 (zh) 光源***及照明装置
JP4668131B2 (ja) 導光板、および照明装置
WO2019128079A1 (zh) 光源***及照明装置
US20220082225A1 (en) Laser phosphor light source for intelligent headlights and spotlights
WO2020114199A1 (zh) 一种照明光源及车灯
CN111022942B (zh) 一种激光照明装置
JP2009244693A (ja) 液晶表示装置
CN108692205A (zh) 照明装置和探照灯
TWI546498B (zh) 照明裝置
CN110778926B (zh) 照明装置
CN113258446B (zh) 一种激光模组与激光发射器
CN112824742B (zh) 光源以及照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902136

Country of ref document: EP

Kind code of ref document: A1