WO2019142592A1 - Humidity detection device - Google Patents

Humidity detection device Download PDF

Info

Publication number
WO2019142592A1
WO2019142592A1 PCT/JP2018/047077 JP2018047077W WO2019142592A1 WO 2019142592 A1 WO2019142592 A1 WO 2019142592A1 JP 2018047077 W JP2018047077 W JP 2018047077W WO 2019142592 A1 WO2019142592 A1 WO 2019142592A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
humidity detection
detection device
humidity
columnar body
Prior art date
Application number
PCT/JP2018/047077
Other languages
French (fr)
Japanese (ja)
Inventor
尚信 大川
矢澤 久幸
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2019142592A1 publication Critical patent/WO2019142592A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance

Definitions

  • the present invention relates to a humidity detection device, and more particularly to a humidity detection device provided with two electrodes and a humidity sensing unit.
  • a humidity detection device there is known a configuration in which a humidity sensitive unit is provided between two electrodes, and the humidity is detected based on a change in capacitance or electric resistance.
  • a humidity sensitive unit is provided between two electrodes, and the humidity is detected based on a change in capacitance or electric resistance.
  • capacitance detection apparatus in an apparatus that detects humidity by a change in capacitance (capacitive humidity detection apparatus), the facing area of the electrode and the humidity sensitive part and the electrode layout become important factors that determine the sensitivity and responsiveness in humidity detection. .
  • Patent Document 1 discloses a sensor module for the purpose of countermeasure against drift.
  • the sensor module includes a substrate, and on the substrate, on different level surfaces, an electrically conductive first shielding structure, an electrically conductive second shielding structure, and an electrode for measuring a predetermined characteristic quantity.
  • a structure is disposed, and an electrode structure is disposed between the first shielding structure and the second shielding structure.
  • Patent Document 2 discloses a sensor chip with less exposure of the sensor element during sensor chip processing.
  • the sensor chip includes a substrate and an opening in the substrate.
  • the substrate comprises a front surface and a back surface, and the opening penetrates from the back surface of the substrate to the front surface of the substrate.
  • a stack of dielectric and conductive layers is disposed on the front side of the substrate, with a portion of the stack extending across the opening in the substrate.
  • the capacitance type humidity detection device there are a comb-tooth type and a parallel plate type as a structure of the electrode.
  • the humidity detection device using the parallel plate type electrode structure although the sensitivity becomes high, the response is not high because the inflow path of the moisture becomes long. In addition, long-term output fluctuation tends to be large.
  • the humidity detection device using the comb-teeth-shaped electrode structure although the response is high because the inflow path of moisture is short, in order to increase the capacity, it is necessary to form a thick electrode. Variations in electrode dimensions are likely to occur.
  • An object of the present invention is to provide a humidity detector which can achieve high sensitivity and good response and is easy to manufacture.
  • one aspect of the present invention is to provide a substrate, a first electrode provided on the substrate, and a substrate provided on the substrate and spaced apart from the first electrode.
  • a humidity detection apparatus comprising: two electrodes; and a humidity-sensitive unit provided between a first electrode and a second electrode, wherein the first electrode is disposed on a first main surface of a substrate, The two electrodes are disposed apart from the first electrode in the normal direction of the first main surface.
  • the first electrode and the second electrode are disposed apart from each other in the normal direction of the first main surface, the first electrode and the second electrode are opposed to the first main surface. Come to face diagonally. Thereby, compared with the case where the 1st electrode and the 2nd electrode are juxtaposed along the 1st principal surface without the difference in height, the capacity
  • the base may be provided with the insulating columnar body, and the second electrode may be disposed on the insulating columnar body.
  • the insulating columnar body on the base material, it is possible to easily manufacture an electrode structure in which the first electrode and the second electrode are separated from each other in the normal direction of the first main surface.
  • the insulating columnar body may be formed of a moisture-sensitive material.
  • the lower part (the first main surface side) of the second electrode also becomes a moisture sensitive area that constitutes a capacitance effective for humidity detection.
  • the first electrode has a plurality of first electrode pieces provided in parallel to each other
  • the second electrode has a plurality of second electrode pieces provided in parallel to each other
  • the first main surface When viewed in the normal direction of each of the plurality of first electrode pieces, each of the plurality of second electrode pieces may be alternately disposed.
  • (A) And (b) is a figure which illustrates the humidity detection apparatus concerning this embodiment.
  • (A) And (b) is sectional drawing which illustrates the electrode structure which concerns on a reference example.
  • (A)-(c) is a figure which illustrates the result of electric field simulation.
  • (A) And (b) is a figure explaining the capacity
  • (A) to (c) are cross-sectional views illustrating the method for manufacturing the humidity detection device according to the present embodiment.
  • (A) And (b) is sectional drawing which illustrates the manufacturing method of the humidity detection apparatus which concerns on this embodiment.
  • (A) And (b) is a figure explaining the state without an alignment shift.
  • (A) And (b) is a figure explaining the state which has misalignment.
  • (A) And (b) is a figure which shows the characteristic change with respect to misalignment.
  • FIG. 1A and FIG. 1B illustrate the humidity detection device according to the present embodiment.
  • FIG. 1A shows a cross-sectional view of the humidity detection device 1
  • FIG. 1B shows a plan view of the humidity detection device 1.
  • the cross-sectional view shown in FIG. 1 (a) is an enlarged cross-sectional view of a portion A shown in FIG. 1 (b).
  • the humidity detection apparatus 1 is an apparatus for detecting the humidity of the outside air as an electric signal, and includes a humidity detection unit 10 provided on a base 50 and a reference unit 20. Prepare.
  • the humidity detection device 1 detects the humidity based on the capacity difference between the humidity detection unit 10 and the reference unit 20.
  • the reference unit 20 has a structure equivalent to that of the humidity detection unit 10, but has a structure which is not exposed to the outside air so as not to be affected by a change in capacity due to the humidity.
  • the structure of the humidity detection unit 10 will be mainly described.
  • silicon is used as the substrate 50.
  • the humidity detection unit 10 includes a first electrode 11, a second electrode 12, and a humidity sensing unit 13.
  • the first electrode 11 is provided on the first insulating layer 55 on the substrate 50.
  • ruthenium (Ru) for example, is used as the first electrode 11.
  • the first electrode 11 has a plurality of first electrode pieces 111 which are parallel to each other and provided at predetermined intervals. Each first electrode piece 111 extends along the first major surface 50 a of the base 50 and is provided so as to be conductive with each other at the end.
  • the second electrode 12 is provided on the substrate 50 (on the first major surface 50 a side), and is separated in the direction along the first electrode 11 and the first major surface 50 a and in the normal direction of the first major surface 50 a Will be placed. Similarly to the first electrode 11, ruthenium (Ru), for example, is used for the second electrode 12.
  • the second electrode 12 has a plurality of second electrode pieces 121 provided in parallel with each other and at a predetermined interval. Each second electrode piece 121 extends along the first major surface 50 a of the base material 50 and is provided so as to be conductive with each other at the end.
  • the insulating columnar body 60 is provided on the first insulating layer 55 on the base 50, and the second electrode piece 121 of the second electrode 12 is provided on the upper surface 60u of the insulating columnar body 60.
  • the second electrode piece 121 of the second electrode 12 is disposed apart from the first electrode piece 111 of the first electrode 11 in the normal direction of the first major surface 50a. That is, the first electrode piece 111 of the first electrode 11 and the second electrode piece 121 of the second electrode 12 are disposed at different heights in the normal direction of the first major surface 50a.
  • the moisture sensitive portion 13 is provided so as to be interposed between the first electrode 11 and the second electrode 12. That is, the moisture sensitive portion 13 is provided between each first electrode piece 111 of the first electrode 11 and each second electrode piece 121 of the second electrode 12. A polyimide resin is used as the moisture sensitive portion 13.
  • the humidity detection device 1 the humidity is detected based on the change of the capacitance formed by the first electrode 11, the second electrode 12, and the humidity sensing unit 13 according to the humidity of the outside air.
  • the dielectric constant of the moisture sensitive unit 13 in the humidity detection unit 10 changes with the humidity of the outside air, and the output voltage changes according to the change in capacitance between the first electrode 11 and the second electrode 12.
  • the relative humidity is calculated based on the difference between the output voltage and the output voltage of the reference unit 20.
  • the first electrode 11 and the second electrode 12 are arranged separately from each other in the direction along the first major surface 50a and in the normal direction of the first major surface 50a.
  • the side surface of the first electrode piece 111 of the first electrode 11 and the side surface of the second electrode piece 121 of the second electrode 12 obliquely face the first major surface 50 a.
  • a moisture sensitive material for example, the same material as the moisture sensitive portion 13 (for example, a polyimide resin) may be used as the insulating columnar body 60.
  • a moisture sensitive material for example, the same material as the moisture sensitive portion 13 (for example, a polyimide resin)
  • the insulating columnar body 60 may be used as the insulating columnar body 60.
  • FIGS. 2A and 2B are cross-sectional views illustrating an electrode structure according to a reference example.
  • the first electrode 11 and the second electrode 12 are juxtaposed on the first major surface 50a of the base 50 without any difference in height. That is, each of the plurality of first comb-tooth electrode portions 115 of the first electrode 11 and each of the plurality of second comb-tooth electrode portions 125 of the second electrode 12 are alternately arranged on the first insulating layer 55 It is an electrode structure.
  • the first electrode 11 (first comb electrode portion 115) and the second electrode 12 (second comb electrode portion 125) are arranged at a pitch P1 in the plane direction of the first major surface 50a.
  • the side surface of the first comb-tooth electrode portion 115 and the side surface of the second comb-tooth electrode portion 125 face each other at an interval d1.
  • the distance between the opposing electrodes constituting the capacitance is the distance d1.
  • the first electrode 11 is formed along the first major surface 50 a of the substrate 50, and the second electrode 12 is formed to face the first electrode 11. . That is, a parallel plate type electrode structure is configured by the first electrode 11 and the second electrode 12. In this electrode structure, the distance between the opposing electrodes forming the capacitance is the distance d2 in the normal direction of the first major surface 50a.
  • the area of the opposing electrode constituting the capacitance is the opposing area of the first electrode 11 and the second electrode 12, so that the sensitivity can be enhanced.
  • the outside air side is covered by the second electrode 12, it is necessary to take in moisture through a hole (not shown) provided in the second electrode 12, and the moisture inflow path becomes long. Therefore, the responsiveness of humidity detection is not high.
  • the first electrode 11 has a short inflow path of moisture.
  • the distance between the opposing electrodes of (the first electrode piece 111) and the second electrode (the second electrode piece 121) can be set obliquely with respect to the first major surface 50a, and the pitch shown in FIG. Even if the electrodes are arranged at the same pitch as P1, the humidity detection is compared to the case where the first electrode 11 (first electrode piece 111) and the second electrode 12 (second electrode piece 121) are juxtaposed without any difference in height Capacity can be increased. Therefore, the sensitivity can be enhanced without reducing the responsiveness in the humidity detection.
  • FIGS. 3A to 3C illustrate the results of the electric field simulation.
  • FIG. 3 (a) shows the result of electric field simulation in the electrode structure according to this embodiment shown in FIG. 1 (a)
  • FIG. 3 (b) shows the electric field in the electrode structure shown in FIG. 2 (a)
  • the simulation results are shown.
  • the result of the electric field simulation in the electrode structure shown in FIG.2 (c) is shown by FIG.3 (b).
  • a potential difference of 3.5 V was applied between the electrodes to perform electric field simulation.
  • the electrode structure according to the present embodiment As a result of this electric field simulation, compared with the electrode structure (usually comb teeth) shown in FIG. 2A, in the electrode structure according to the present embodiment, the area of the side surface of the two opposing electrodes is smaller and the distance between the electrodes is wider. The capacity was reduced by 8%.
  • the humidity sensitive portion 13 contributing to humidity detection is located in a region where a strong electric field is generated between the electrodes, and the electric field hardly reaches the first insulating layer 55 not contributing to humidity detection. The sensitivity was increased by 0.74% as compared with the generally comb-like electrode structure (FIG. 2 (a)). As described above, in the electrode structure according to the present embodiment, the sensitivity of humidity detection can be enhanced without increasing the thickness of the electrode film.
  • the second electrode 12 (second electrode piece 121) is disposed at a position separated from the first insulating layer 55, and the first electrode 11 (first electrode piece 111). And the second electrode 12 (second electrode piece 121) are diagonally opposed to the first major surface 50a. Therefore, the electric field generated in the region obliquely below the second electrode 12 (second electrode piece 121) also acts effectively on the moisture sensitive portion 13. Therefore, as compared with the case where the first electrode 11 (first electrode piece 111) and the second electrode 12 (second electrode piece 121) are juxtaposed without any difference in height, the capacity effective for humidity detection is increased. Is possible.
  • FIGS. 4A and 4B are diagrams for explaining the change in capacitance due to the difference in height (gap) between the electrodes.
  • Fig.4 (a) the difference of the height of the 1st electrode 11 (1st electrode piece 111) and the 2nd electrode 12 (2nd electrode piece 121) in the normal line direction of 1st main surface 50a As gap G.
  • the width of the first electrode 11 (first electrode piece 111) is W1
  • the width of the second electrode 12 (second electrode piece 121) is W2
  • the first electrode 11 (first electrode piece 111) and the second electrode 12 A gap with (the second electrode piece 121) is S1.
  • FIG.4 (b) The result of having simulated the change of the capacity
  • the increase of the gap G widens the range through which the electric field passes, and the capacity effective for humidity detection increases. However, if the gap G becomes too wide, the distance between the electrodes constituting the capacitance becomes wide, so the effective capacitance decreases. As an example, when the gap S1 is 1 ⁇ m, the optimal gap G is about 0.3 ⁇ m or more and 0.5 ⁇ m or less.
  • 5 (a) to 6 (b) are cross-sectional views illustrating the method for manufacturing the humidity detection device according to the present embodiment.
  • 5 and 6 show enlarged cross-sectional views of the electrode portion for convenience of explanation.
  • the first insulating layer 55 is formed on the first major surface 50 a of the base 50, and the second insulating layer 65 is formed on the first insulating layer 55.
  • silicon is used for the substrate 50.
  • aluminum oxide (Al 2 O 3 ) is used for the first insulating layer 55.
  • the thickness of the first insulating layer 55 is about 50 nm or more and 100 nm or less.
  • silicon nitride (SiN) is used for the second insulating layer 65.
  • the thickness of the second insulating layer 65 is about 1 ⁇ m to 10 ⁇ m.
  • a resist 70 is applied and patterned.
  • the pattern of the resist 70 is about 1 ⁇ m to 3 ⁇ m in width and about 1 ⁇ m to 3 ⁇ m in pattern interval.
  • the second insulating layer 65 is etched using the resist 70 as a mask.
  • the second insulating layer 65 is etched in the portion without the resist 70.
  • the first insulating layer 55 serves as an etching stopper.
  • the insulating columnar body 60 is formed by the etching of the second insulating layer 65.
  • an electrode material layer 80 is formed.
  • ruthenium (Ru) is used for the electrode material layer 80.
  • the thickness of the electrode material layer 80 is about 0.15 ⁇ m.
  • the ruthenium (Ru) electrode material layer 80 is formed, for example, by chemical vapor deposition (CVD) or sputtering.
  • a protective film for example, silicon oxide or silicon nitride may be formed on the electrode material layer 80. By forming the protective film, the reliability of the first electrode 11 and the second electrode 12 formed from the electrode material layer 80 is improved.
  • a resist 71 is applied on the electrode material layer 80 and patterned. This patterning leaves a part of the applied resist 70 on the insulating pillars 60 and between the adjacent insulating pillars 60. Subsequently, the electrode material layer 80 is etched using the resist 71 as a mask. Thereby, the electrode material layer 80 is etched in the portion without the resist 71. At this time, the first insulating layer 55 serves as an etching stopper.
  • the electrode material layer 80 on the insulating columnar body 60 masked by the resist 71 and the electrode material layer 80 between the adjacent insulating columnar bodies 60 are left.
  • the electrode material layer 80 between the adjacent insulating pillars 60 is the first electrode 11
  • the electrode material layer 80 left on the insulating pillars 60 is the second electrode It will be 12.
  • the moisture sensitive portion 13 is formed on the entire surface.
  • polyimide is used for the moisture sensitive portion 13.
  • the humidity detection device 1 is completed.
  • FIG. 7A shows a cross-sectional view in the absence of misalignment
  • FIG. 7B shows the result of electric field simulation in the absence of misalignment
  • FIG. 8 (a) shows a cross-sectional view in a state in which there is an alignment deviation
  • FIG. 8 (b) shows the result of electric field simulation in the state in which there is an alignment deviation.
  • the distance between the first electrode 11 and the second electrode 12 along the first major surface 50a is constant.
  • the electric field strength distribution between the electrodes becomes uniform.
  • the distance between the first electrode 11 and the second electrode 12 along the first major surface 50a is not constant, but is alternately narrow and wide by an offset amount. It will repeat. Therefore, as shown in FIG. 8 (b), the electric field strength distribution becomes strong in the narrow electrode interval portion, and the electric field strength distribution becomes weak in the wide electrode interval portion.
  • the capacitances formed between one second electrode 12 and the two second electrodes 12 located on both sides thereof differ. Specifically, when the gap S1 is wide, the capacity decreases, and when the gap S1 becomes narrow, the capacity increases.
  • the humidity detection device 1 since the capacitances formed between the first electrode 11 and the second electrode 12 are electrically connected in parallel, the sum of the capacitances formed between the first electrode 11 and the second electrode 12 It does not change as. Therefore, in the humidity detection device 1 according to the present embodiment, it is unlikely to be affected by misalignment.
  • FIGS. 9A and 9B are diagrams showing characteristic changes with respect to misalignment.
  • FIG. 9A shows a change in sensitivity (simulation result) to misalignment
  • FIG. 9B shows a change in capacitance to misalignment (simulation result).
  • the humidity detection device 1 has the cross-sectional structure shown in FIG. 4, the insulating columnar body 60 is formed of an oxide of silicon (SiO 2 ), and the width W1 of the first electrode 11 is 1.50 ⁇ m.
  • the width W2 of the second electrode 12 was 1.50 ⁇ m, the gap S1 was 1.00 ⁇ m, and the gap G was 0.60 ⁇ m.
  • the humidity detection device 1 has the cross-sectional structure shown in FIG. 4, and the insulating columnar body 60 is formed of an oxide of silicon (SiO 2 ), and the width W1 of the first electrode 11 is 1.00 ⁇ m.
  • the width W2 of the second electrode 12 was 1.00 ⁇ m, the gap S1 was 1.00 ⁇ m, and the gap G was 0.60 ⁇ m.
  • the humidity detection device 1 has the cross-sectional structure shown in FIG. 4, the insulating columnar body 60 is formed of polyimide (PI), the width W1 of the first electrode 11 is 1.50 ⁇ m, and the second electrode The width W2 of 12 was 1.50 ⁇ m, the gap S1 was 1.00 ⁇ m, and the gap G was 0.60 ⁇ m.
  • PI polyimide
  • the humidity detection device 1 has the cross-sectional structure shown in FIG. 4, the insulating columnar body 60 is formed of polyimide (PI), the width W1 of the first electrode 11 is 1.00 ⁇ m, and the second electrode The width W2 of 12 was 1.00 ⁇ m, the gap S1 was 1.00 ⁇ m, and the gap G was 0.60 ⁇ m.
  • PI polyimide
  • the lower side of the second electrode 12 also functions as the moisture sensitive portion 13, and the width W1 of the first electrode 11 and the width W1 of the first electrode 11
  • the humidity detection device 1 according to Example 4 in which the width W2 of the second electrode 12 is relatively narrow was the highest in the sensitivity among Examples 1 to 4.
  • the humidity detection device 1 according to the third embodiment and the width W1 of the first electrode 11 and the width W1 of the first electrode 11 according to the third embodiment have a width W1 of the first electrode 11 and a width W2 of the second electrode 12 relatively wider than those of the fourth embodiment.
  • the width W2 of the second electrode 12 is the same as that of the fourth embodiment, but the insulating columnar body 60 is formed of an oxide of silicon (SiO 2 ), and the humidity detection device 1 according to the second embodiment is more than the first embodiment.
  • the humidity detection device 1 according to the first embodiment is obtained in which the width W1 of the electrode 11 and the width W2 of the second electrode 12 are relatively wide.
  • the change in sensitivity was 0.5 point or less in comparison with the case where there is no misalignment.
  • the insulating columnar body 60 is formed of an oxide of silicon (SiO 2 ), and the width W1 of the first electrode 11 and the width W2 of the second electrode 12 are relatively narrow.
  • the humidity detection device 1 according to Example 2 had the highest capacity among Examples 1 to 4.
  • the width W1 of the first electrode 11 and the width W2 of the second electrode 12 are the same as in Example 2, but the humidity according to Example 4 in which the insulating columnar body 60 is formed of polyimide (PI)
  • the humidity detection apparatus 1 according to the first embodiment has a width W1 of the first electrode 11 and the width W2 of the second electrode 12 relatively wider than the detection apparatus 1 and the width of the first electrode 11 than the fourth embodiment.
  • the humidity detection device 1 according to the third embodiment is obtained in which the width W2 of the W1 and the second electrode 12 is relatively wide.
  • the change in capacitance was 10% or less based on the case of no misalignment.
  • the present embodiment it is possible to achieve high sensitivity and good response, and to provide the humidity detection device 1 that is easy to manufacture.
  • the present invention is not limited to these examples.
  • the example which uses ruthenium (Ru) as the electrode material layer 80 was shown, the electrode material layer 80 is not limited to this, For example, you may use other materials, such as aluminum and copper.
  • the first electrode 11 is formed along the first major surface 50a
  • the second electrode 12 is formed of the insulating columnar body 60.
  • the electrode shapes of the first electrode 11 and the second electrode 12 are not limited to the shapes described above.
  • the first electrode 11 and the second electrode 12 may be respectively formed in a comb-like electrode shape, and the comb teeth may be alternately arranged as viewed in the normal direction of the first major surface 50a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

This humidity detection device which can attain high sensitivity and excellent responsivity and which can be easily produced, is provided with: a base material; a first electrode provided on the base material; a second electrode provided on the base material so as to be separated from the first electrode; and a humidity sensing unit provided between the first electrode and the second electrode. The first electrode is disposed on a first main surface of the base material, and the second electrode is disposed so as to be separated, in the normal direction of the first main surface, from the first electrode. In the humidity detection device, an insulating columnar body may be provided on the base material, and the second electrode may be disposed on the insulating columnar body.

Description

湿度検知装置Humidity detector
 本発明は湿度検知装置に関し、より詳しくは、2つの電極および感湿部が設けられた湿度検知装置に関するものである。 The present invention relates to a humidity detection device, and more particularly to a humidity detection device provided with two electrodes and a humidity sensing unit.
 湿度検知装置として、2つの電極間に感湿部を設け、静電容量や電気抵抗の変化に基づき湿度を検知する構成が知られている。このうち静電容量の変化によって湿度を検知する装置(容量式の湿度検知装置)では、電極と感湿部との対向面積や電極レイアウトが湿度検知における感度や応答性を決める重要な要素となる。 As a humidity detection device, there is known a configuration in which a humidity sensitive unit is provided between two electrodes, and the humidity is detected based on a change in capacitance or electric resistance. Among them, in an apparatus that detects humidity by a change in capacitance (capacitive humidity detection apparatus), the facing area of the electrode and the humidity sensitive part and the electrode layout become important factors that determine the sensitivity and responsiveness in humidity detection. .
 特許文献1には、ドリフト対策を目的としたセンサモジュールが開示される。このセンサモジュールでは、基板を含み、基板上で、異なるレベル面に、導電性の第1の遮蔽構造部と、導電性の第2の遮蔽構造部と、所定の特性量を測定するための電極構造部とが配置され、電極構造部が、第1の遮蔽構造部と第2の遮蔽構造部との間に配置されている。 Patent Document 1 discloses a sensor module for the purpose of countermeasure against drift. The sensor module includes a substrate, and on the substrate, on different level surfaces, an electrically conductive first shielding structure, an electrically conductive second shielding structure, and an electrode for measuring a predetermined characteristic quantity. A structure is disposed, and an electrode structure is disposed between the first shielding structure and the second shielding structure.
 特許文献2には、センサチップ処理中の、センサエレメントの露出が少ない、センサチップが開示される。このセンサチップでは、基板と、基板内の開口部とを含んでいる。基板は、前面と後面とを備えており、開口部は、基板の後面から基板の前面へと貫通している。誘電層と導電層とから成るスタックが基板の前面に配置されており、スタックの一部分は、基板内の開口部にわたって延在している。 Patent Document 2 discloses a sensor chip with less exposure of the sensor element during sensor chip processing. The sensor chip includes a substrate and an opening in the substrate. The substrate comprises a front surface and a back surface, and the opening penetrates from the back surface of the substrate to the front surface of the substrate. A stack of dielectric and conductive layers is disposed on the front side of the substrate, with a portion of the stack extending across the opening in the substrate.
実用新案登録第3196370号公報Utility model registration 3196370 gazette 特開2016-070931号公報JP, 2016-070931, A
 容量式の湿度検知装置において、電極の構造として櫛歯型と平行平板型とがある。平行平板型の電極構造を用いた湿度検知装置では、感度は高くなるものの、湿気の流入経路が長くなるため応答性は高くない。また、長期の出力変動が大きくなる傾向にある。一方、櫛歯型の電極構造を用いた湿度検知装置では、湿気の流入経路が短いため応答性は高いが、容量を大きくするためには厚い電極を形成する必要があり、製造工数の増加や電極寸法のばらつきが生じやすい。 In the capacitance type humidity detection device, there are a comb-tooth type and a parallel plate type as a structure of the electrode. In the humidity detection device using the parallel plate type electrode structure, although the sensitivity becomes high, the response is not high because the inflow path of the moisture becomes long. In addition, long-term output fluctuation tends to be large. On the other hand, in the humidity detection device using the comb-teeth-shaped electrode structure, although the response is high because the inflow path of moisture is short, in order to increase the capacity, it is necessary to form a thick electrode. Variations in electrode dimensions are likely to occur.
 本発明は、高感度および良好な応答性を達成でき、製造容易な湿度検知装置を提供することを目的とする。 An object of the present invention is to provide a humidity detector which can achieve high sensitivity and good response and is easy to manufacture.
 上記課題を解決するため、本発明の一態様は、基材と、基材の上に設けられた第1電極と、基材の上に設けられ、第1電極と離間して配置された第2電極と、第1電極と第2電極との間に設けられた感湿部と、を備えた湿度検知装置であって、第1電極は基材の第1主面上に配置され、第2電極は第1主面の法線方向に第1電極と離間して配置される。 In order to solve the above problems, one aspect of the present invention is to provide a substrate, a first electrode provided on the substrate, and a substrate provided on the substrate and spaced apart from the first electrode. A humidity detection apparatus comprising: two electrodes; and a humidity-sensitive unit provided between a first electrode and a second electrode, wherein the first electrode is disposed on a first main surface of a substrate, The two electrodes are disposed apart from the first electrode in the normal direction of the first main surface.
 このような構成によれば、第1電極と第2電極とが互いに第1主面の法線方向に離間して配置されるため、第1電極と第2電極とが第1主面に対して斜めに対向するようになる。これにより、第1電極と第2電極とが第1主面に沿って高さの差なく並置されている場合に比べ、湿度検知に有効な容量を大きくすることができる。 According to such a configuration, since the first electrode and the second electrode are disposed apart from each other in the normal direction of the first main surface, the first electrode and the second electrode are opposed to the first main surface. Come to face diagonally. Thereby, compared with the case where the 1st electrode and the 2nd electrode are juxtaposed along the 1st principal surface without the difference in height, the capacity | capacitance effective for humidity detection can be enlarged.
 上記湿度検知装置において、基材には絶縁性柱状体が設けられ、第2電極は絶縁性柱状体の上に配置されていてもよい。これにより、基材に絶縁性柱状体を形成することで、第1電極と第2電極とが第1主面の法線方向に互いに離間する電極構造を容易に製造することができる。 In the humidity detection device, the base may be provided with the insulating columnar body, and the second electrode may be disposed on the insulating columnar body. Thus, by forming the insulating columnar body on the base material, it is possible to easily manufacture an electrode structure in which the first electrode and the second electrode are separated from each other in the normal direction of the first main surface.
 上記湿度検知装置において、絶縁性柱状体は感湿性材料によって形成されていてもよい。これにより、第2電極の下方(第1主面側)についても湿度検知に有効な容量を構成する感湿領域となる。 In the humidity detection device, the insulating columnar body may be formed of a moisture-sensitive material. As a result, the lower part (the first main surface side) of the second electrode also becomes a moisture sensitive area that constitutes a capacitance effective for humidity detection.
 上記湿度検知装置において、第1電極は互いに平行に設けられた複数の第1電極片を有し、第2電極は互いに平行に設けられた複数の第2電極片を有し、第1主面の法線方向にみて、複数の第1電極片のそれぞれと、複数の第2電極片のそれぞれとが交互に配置されていてもよい。これにより、湿気の流入経路が短い電極が構成され、湿度検知の応答性を高めることができる。 In the humidity detecting device, the first electrode has a plurality of first electrode pieces provided in parallel to each other, and the second electrode has a plurality of second electrode pieces provided in parallel to each other, and the first main surface When viewed in the normal direction of each of the plurality of first electrode pieces, each of the plurality of second electrode pieces may be alternately disposed. As a result, an electrode having a short inflow path of moisture is configured, and the responsiveness of humidity detection can be enhanced.
 本発明によれば、高感度および良好な応答性を達成でき、製造容易な湿度検知装置を提供することが可能になる。 According to the present invention, it is possible to achieve a high sensitivity and a good response, and to provide a humidity detector which is easy to manufacture.
(a)および(b)は、本実施形態に係る湿度検知装置を例示する図である。(A) And (b) is a figure which illustrates the humidity detection apparatus concerning this embodiment. (a)および(b)は、参考例に係る電極構造を例示する断面図である。(A) And (b) is sectional drawing which illustrates the electrode structure which concerns on a reference example. (a)~(c)は、電界シミュレーションの結果を例示する図である。(A)-(c) is a figure which illustrates the result of electric field simulation. (a)および(b)は、電極間の高さの差(ギャップ)による容量変化について説明する図である。(A) And (b) is a figure explaining the capacity | capacitance change by the difference (gap) of the height between electrodes. (a)~(c)は、本実施形態に係る湿度検知装置の製造方法を例示する断面図である。(A) to (c) are cross-sectional views illustrating the method for manufacturing the humidity detection device according to the present embodiment. (a)および(b)は、本実施形態に係る湿度検知装置の製造方法を例示する断面図である。(A) And (b) is sectional drawing which illustrates the manufacturing method of the humidity detection apparatus which concerns on this embodiment. (a)および(b)はアライメントずれがない状態について説明する図である。(A) And (b) is a figure explaining the state without an alignment shift. (a)および(b)はアライメントずれがある状態について説明する図である。(A) And (b) is a figure explaining the state which has misalignment. (a)および(b)は、アライメントずれに対する特性変化を示す図である。(A) And (b) is a figure which shows the characteristic change with respect to misalignment.
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。 Hereinafter, embodiments of the present invention will be described based on the drawings. In the following description, the same members are denoted by the same reference numerals, and the description of the members once described will be omitted as appropriate.
(湿度検知装置の構成)
 図1(a)および(b)は、本実施形態に係る湿度検知装置を例示する図である。
 図1(a)には湿度検知装置1の断面図が示され、図1(b)には湿度検知装置1の平面図が示される。図1(a)に示す断面図は、図1(b)に示すA部を拡大した断面図である。
(Configuration of humidity detection device)
FIG. 1A and FIG. 1B illustrate the humidity detection device according to the present embodiment.
FIG. 1A shows a cross-sectional view of the humidity detection device 1, and FIG. 1B shows a plan view of the humidity detection device 1. The cross-sectional view shown in FIG. 1 (a) is an enlarged cross-sectional view of a portion A shown in FIG. 1 (b).
 図1に示すように、本実施形態に係る湿度検知装置1は外気の湿度を電気信号として検知する装置であり、基材50の上に設けられた湿度検知部10と、参照部20とを備える。湿度検知装置1は、湿度検知部10と参照部20との容量差に基づいて湿度を検知する。参照部20は湿度検知部10と同等な構造であるが、湿度による容量変化の影響を受けないように外気に晒されない構造となっている。以下においては、湿度検知部10の構造を中心として説明する。 As shown in FIG. 1, the humidity detection apparatus 1 according to the present embodiment is an apparatus for detecting the humidity of the outside air as an electric signal, and includes a humidity detection unit 10 provided on a base 50 and a reference unit 20. Prepare. The humidity detection device 1 detects the humidity based on the capacity difference between the humidity detection unit 10 and the reference unit 20. The reference unit 20 has a structure equivalent to that of the humidity detection unit 10, but has a structure which is not exposed to the outside air so as not to be affected by a change in capacity due to the humidity. Hereinafter, the structure of the humidity detection unit 10 will be mainly described.
 基材50としては、例えばシリコンが用いられる。基材50の第1主面50a上には例えば酸化シリコンの第1絶縁層55が形成されており、この第1絶縁層55の上に湿度検知部10および参照部20が形成される。また、第1絶縁層55の上には湿度検知部10および参照部20と導通するパッド電極15や、接地電位となるパッド電極16が設けられる。 For example, silicon is used as the substrate 50. A first insulating layer 55 of silicon oxide, for example, is formed on the first major surface 50 a of the base 50, and the humidity detection unit 10 and the reference unit 20 are formed on the first insulating layer 55. Further, on the first insulating layer 55, a pad electrode 15 electrically connected to the humidity detection unit 10 and the reference unit 20, and a pad electrode 16 serving as a ground potential are provided.
 湿度検知部10は、第1電極11、第2電極12および感湿部13を有する。第1電極11は、基材50上の第1絶縁層55の上に設けられる。本実施形態では、第1電極11として例えばルテニウム(Ru)が用いられる。第1電極11は、互いに平行かつ所定間隔で設けられた複数本の第1電極片111を有する。各第1電極片111は、基材50の第1主面50aに沿って延在し、端部で互いに導通するように設けられる。 The humidity detection unit 10 includes a first electrode 11, a second electrode 12, and a humidity sensing unit 13. The first electrode 11 is provided on the first insulating layer 55 on the substrate 50. In the present embodiment, ruthenium (Ru), for example, is used as the first electrode 11. The first electrode 11 has a plurality of first electrode pieces 111 which are parallel to each other and provided at predetermined intervals. Each first electrode piece 111 extends along the first major surface 50 a of the base 50 and is provided so as to be conductive with each other at the end.
 第2電極12は、基材50の上(第1主面50a側)に設けられ、第1電極11と第1主面50aに沿った方向および第1主面50aの法線方向に離間して配置される。第2電極12も第1電極11と同様に、例えばルテニウム(Ru)が用いられる。第2電極12は、互いに平行かつ所定間隔で設けられた複数本の第2電極片121を有する。各第2電極片121は、基材50の第1主面50aに沿って延在し、端部で互いに導通するように設けられる。 The second electrode 12 is provided on the substrate 50 (on the first major surface 50 a side), and is separated in the direction along the first electrode 11 and the first major surface 50 a and in the normal direction of the first major surface 50 a Will be placed. Similarly to the first electrode 11, ruthenium (Ru), for example, is used for the second electrode 12. The second electrode 12 has a plurality of second electrode pieces 121 provided in parallel with each other and at a predetermined interval. Each second electrode piece 121 extends along the first major surface 50 a of the base material 50 and is provided so as to be conductive with each other at the end.
 本実施形態では、基材50上の第1絶縁層55の上に絶縁性柱状体60が設けられ、この絶縁性柱状体60の上面60uに第2電極12の第2電極片121が設けられる。これにより、第2電極12の第2電極片121は、第1主面50aの法線方向に第1電極11の第1電極片111と離間して配置される。すなわち、第1電極11の第1電極片111と、第2電極12の第2電極片121とは、第1主面50aの法線方向に互いに異なる高さで配置される。 In the present embodiment, the insulating columnar body 60 is provided on the first insulating layer 55 on the base 50, and the second electrode piece 121 of the second electrode 12 is provided on the upper surface 60u of the insulating columnar body 60. . Thus, the second electrode piece 121 of the second electrode 12 is disposed apart from the first electrode piece 111 of the first electrode 11 in the normal direction of the first major surface 50a. That is, the first electrode piece 111 of the first electrode 11 and the second electrode piece 121 of the second electrode 12 are disposed at different heights in the normal direction of the first major surface 50a.
 感湿部13は、第1電極11と第2電極12との間に介在するよう設けられる。すなわち、感湿部13は、第1電極11の各第1電極片111と、第2電極12の各第2電極片121との間に設けられる。感湿部13としては、ポリイミド系樹脂が用いられる。 The moisture sensitive portion 13 is provided so as to be interposed between the first electrode 11 and the second electrode 12. That is, the moisture sensitive portion 13 is provided between each first electrode piece 111 of the first electrode 11 and each second electrode piece 121 of the second electrode 12. A polyimide resin is used as the moisture sensitive portion 13.
 湿度検知装置1では、第1電極11、第2電極12および感湿部13で構成される静電容量が外気の湿気に応じて変化することに基づき湿度を検知する。湿度検知部10における感湿部13の誘電率は外気の湿度によって変化し、第1電極11と第2電極12との間の静電容量の変化に応じて出力電圧が変化する。この出力電圧と参照部20での出力電圧との差分に基づき相対湿度が算出される。 In the humidity detection device 1, the humidity is detected based on the change of the capacitance formed by the first electrode 11, the second electrode 12, and the humidity sensing unit 13 according to the humidity of the outside air. The dielectric constant of the moisture sensitive unit 13 in the humidity detection unit 10 changes with the humidity of the outside air, and the output voltage changes according to the change in capacitance between the first electrode 11 and the second electrode 12. The relative humidity is calculated based on the difference between the output voltage and the output voltage of the reference unit 20.
 本実施形態に係る湿度検知装置1では、第1電極11と第2電極12とが互いに第1主面50aに沿った方向および第1主面50aの法線方向に離間して配置されるため、第1電極11の第1電極片111の側面と、第2電極12の第2電極片121の側面とが第1主面50aに対して斜めに対向するようになる。これにより、第1電極と第2電極とが第1主面に沿って高さの差なく並置されている場合に比べ、湿度検知に有効な容量を大きくすることができる。 In the humidity detection device 1 according to the present embodiment, the first electrode 11 and the second electrode 12 are arranged separately from each other in the direction along the first major surface 50a and in the normal direction of the first major surface 50a. The side surface of the first electrode piece 111 of the first electrode 11 and the side surface of the second electrode piece 121 of the second electrode 12 obliquely face the first major surface 50 a. Thereby, compared with the case where the 1st electrode and the 2nd electrode are juxtaposed along the 1st principal surface without the difference in height, the capacity | capacitance effective for humidity detection can be enlarged.
 また、絶縁性柱状体60として感湿性材料(例えば、感湿部13と同じ材料(例えば、ポリイミド系樹脂))を用いるようにしてもよい。これにより、感湿部13とともに第2電極12の下方(第1主面50a側)の絶縁性柱状体60の少なくとも一部も湿度検知に有効な容量となり、感湿領域を拡げることができる。 In addition, a moisture sensitive material (for example, the same material as the moisture sensitive portion 13 (for example, a polyimide resin)) may be used as the insulating columnar body 60. As a result, at least a part of the insulating columnar body 60 below the second electrode 12 (on the first major surface 50a side) together with the moisture sensitive portion 13 also has an effective capacity for detecting the humidity, and the humidity sensitive region can be expanded.
 図2(a)および(b)は、参考例に係る電極構造を例示する断面図である。
 図2(a)に示す電極構造では、基材50の第1主面50aに第1電極11および第2電極12が高さの差なく並置されている。すなわち、第1電極11の複数の第1櫛歯電極部115のそれぞれと、第2電極12の複数の第2櫛歯電極部125のそれぞれとが第1絶縁層55上に交互に配置された電極構造である。この電極構造においては、第1主面50aの面方向で第1電極11(第1櫛歯電極部115)と第2電極12(第2櫛歯電極部125)とがピッチP1で配置され、第1櫛歯電極部115の側面と第2櫛歯電極部125の側面とが間隔d1で対向することになる。この場合、容量を構成する対向電極の間隔は、間隔d1となる。
FIGS. 2A and 2B are cross-sectional views illustrating an electrode structure according to a reference example.
In the electrode structure shown in FIG. 2A, the first electrode 11 and the second electrode 12 are juxtaposed on the first major surface 50a of the base 50 without any difference in height. That is, each of the plurality of first comb-tooth electrode portions 115 of the first electrode 11 and each of the plurality of second comb-tooth electrode portions 125 of the second electrode 12 are alternately arranged on the first insulating layer 55 It is an electrode structure. In this electrode structure, the first electrode 11 (first comb electrode portion 115) and the second electrode 12 (second comb electrode portion 125) are arranged at a pitch P1 in the plane direction of the first major surface 50a. The side surface of the first comb-tooth electrode portion 115 and the side surface of the second comb-tooth electrode portion 125 face each other at an interval d1. In this case, the distance between the opposing electrodes constituting the capacitance is the distance d1.
 容量型の湿度センサにおいて図2(a)に示すような櫛歯型の電極構造を用いた場合、第1電極11と第2電極12との間の感湿部13へ湿気が流入しやすいため応答性は良好となるが、容量を構成する対向電極の面積が電極膜厚に依存するため、感度を高めるためには電極膜厚を厚くする必要がある。 When a comb-like electrode structure as shown in FIG. 2A is used in a capacitive humidity sensor, moisture easily flows into the humidity sensing portion 13 between the first electrode 11 and the second electrode 12 Although the response becomes good, the area of the counter electrode constituting the capacity depends on the electrode film thickness, so the electrode film thickness needs to be increased in order to enhance the sensitivity.
 図2(b)に示す電極構造では、基材50の第1主面50aに沿って第1電極11が形成され、この第1電極11と対向するように第2電極12が形成されている。すなわち、第1電極11および第2電極12によって平行平板型の電極構造が構成されている。この電極構造において容量を構成する対向電極の間隔は、第1主面50aの法線方向の間隔d2となる。 In the electrode structure shown in FIG. 2 (b), the first electrode 11 is formed along the first major surface 50 a of the substrate 50, and the second electrode 12 is formed to face the first electrode 11. . That is, a parallel plate type electrode structure is configured by the first electrode 11 and the second electrode 12. In this electrode structure, the distance between the opposing electrodes forming the capacitance is the distance d2 in the normal direction of the first major surface 50a.
 図2(b)に示すようは平行平板型の電極構造を用いた場合、容量を構成する対向電極の面積は第1電極11および第2電極12の対向面積となるため感度を高めることができる。しかし、外気側が第2電極12で覆われているため、第2電極12に設けた孔(図示せず)を介して湿気を取り込む必要があり、湿気の流入経路が長くなる。したがって、湿度検知の応答性は高くない。 As shown in FIG. 2B, in the case of using a parallel plate type electrode structure, the area of the opposing electrode constituting the capacitance is the opposing area of the first electrode 11 and the second electrode 12, so that the sensitivity can be enhanced. . However, since the outside air side is covered by the second electrode 12, it is necessary to take in moisture through a hole (not shown) provided in the second electrode 12, and the moisture inflow path becomes long. Therefore, the responsiveness of humidity detection is not high.
 そこで、本実施形態のように、絶縁性柱状体60の上面60uに第2電極12(第2電極片121)を形成することによって、湿気の流入経路が短い電極構造でありながら第1電極11(第1電極片111)と第2電極(第2電極片121)との対向電極間の距離を第1主面50aに対して斜めに設定することができ、図2(a)に示すピッチP1と同じピッチで電極を配置したとしても、第1電極11(第1電極片111)と第2電極12(第2電極片121)との高さの差なく並置した場合に比べて湿度検知に有効な容量を大きくすることができる。したがって、湿度検知における応答性を低下させずに感度を高めることができる。 Therefore, as in the present embodiment, by forming the second electrode 12 (second electrode piece 121) on the upper surface 60u of the insulating columnar body 60, the first electrode 11 has a short inflow path of moisture. The distance between the opposing electrodes of (the first electrode piece 111) and the second electrode (the second electrode piece 121) can be set obliquely with respect to the first major surface 50a, and the pitch shown in FIG. Even if the electrodes are arranged at the same pitch as P1, the humidity detection is compared to the case where the first electrode 11 (first electrode piece 111) and the second electrode 12 (second electrode piece 121) are juxtaposed without any difference in height Capacity can be increased. Therefore, the sensitivity can be enhanced without reducing the responsiveness in the humidity detection.
 図3(a)~(c)は、電界シミュレーションの結果を例示する図である。
 図3(a)には図1(a)に示す本実施形態に係る電極構造での電界シミュレーションの結果が示され、図3(b)には図2(a)に示す電極構造での電界シミュレーションの結果が示される。図3(b)には図2(c)に示す電極構造での電界シミュレーションの結果が示される。
 ここでは、電極間に3.5Vの電位差を与えて電界シミュレーションを行った。
FIGS. 3A to 3C illustrate the results of the electric field simulation.
FIG. 3 (a) shows the result of electric field simulation in the electrode structure according to this embodiment shown in FIG. 1 (a), and FIG. 3 (b) shows the electric field in the electrode structure shown in FIG. 2 (a) The simulation results are shown. The result of the electric field simulation in the electrode structure shown in FIG.2 (c) is shown by FIG.3 (b).
Here, a potential difference of 3.5 V was applied between the electrodes to perform electric field simulation.
 この電界シミュレーションの結果、図2(a)に示す電極構造(通常櫛歯)に比べて本実施形態に係る電極構造では、対向する2つの電極の側面の面積が小さく、かつ電極間距離が広がっているため、容量は8%低下した。しかしながら、本実施形態に係る電極構造は、電極間において強い電界が生じる領域には湿度検知に寄与する感湿部13が位置し、湿度検知に寄与しない第1絶縁層55に電界が及びにくいため、通常櫛歯の電極構造(図2(a))に比べて感度は0.74%増加した。このように、本実施形態に係る電極構造では、電極膜厚を厚くすることなく湿度検知の感度を高めることが可能となる。 As a result of this electric field simulation, compared with the electrode structure (usually comb teeth) shown in FIG. 2A, in the electrode structure according to the present embodiment, the area of the side surface of the two opposing electrodes is smaller and the distance between the electrodes is wider. The capacity was reduced by 8%. However, in the electrode structure according to the present embodiment, the humidity sensitive portion 13 contributing to humidity detection is located in a region where a strong electric field is generated between the electrodes, and the electric field hardly reaches the first insulating layer 55 not contributing to humidity detection. The sensitivity was increased by 0.74% as compared with the generally comb-like electrode structure (FIG. 2 (a)). As described above, in the electrode structure according to the present embodiment, the sensitivity of humidity detection can be enhanced without increasing the thickness of the electrode film.
 また、本実施形態に係る電極構造においては、第2電極12(第2電極片121)が第1絶縁層55から離れた位置に配置されており、第1電極11(第1電極片111)と第2電極12(第2電極片121)とが第1主面50aに対して斜めに対向している。したがって、第2電極12(第2電極片121)の斜め下方の領域に発生する電界についても感湿部13に対して有効に作用する。したがって、第1電極11(第1電極片111)と第2電極12(第2電極片121)とが高さの差なく並置されている場合に比べて湿度検知に有効な容量を増加させることが可能となる。 Further, in the electrode structure according to the present embodiment, the second electrode 12 (second electrode piece 121) is disposed at a position separated from the first insulating layer 55, and the first electrode 11 (first electrode piece 111). And the second electrode 12 (second electrode piece 121) are diagonally opposed to the first major surface 50a. Therefore, the electric field generated in the region obliquely below the second electrode 12 (second electrode piece 121) also acts effectively on the moisture sensitive portion 13. Therefore, as compared with the case where the first electrode 11 (first electrode piece 111) and the second electrode 12 (second electrode piece 121) are juxtaposed without any difference in height, the capacity effective for humidity detection is increased. Is possible.
 図4(a)および(b)は、電極間の高さの差(ギャップ)による容量変化について説明する図である。
 図4(a)に示すように、第1主面50aの法線方向における第1電極11(第1電極片111)と、第2電極12(第2電極片121)との高さの差をギャップGとする。また、第1電極11(第1電極片111)の幅をW1、第2電極12(第2電極片121)の幅をW2、第1電極11(第1電極片111)と第2電極12(第2電極片121)との隙間をS1とする。図4(b)には、隙間S1を1μmに固定してギャップGを変えた場合の湿度検知に有効な容量の変化をシミュレーションした結果が示される。
FIGS. 4A and 4B are diagrams for explaining the change in capacitance due to the difference in height (gap) between the electrodes.
As shown to Fig.4 (a), the difference of the height of the 1st electrode 11 (1st electrode piece 111) and the 2nd electrode 12 (2nd electrode piece 121) in the normal line direction of 1st main surface 50a As gap G. In addition, the width of the first electrode 11 (first electrode piece 111) is W1, the width of the second electrode 12 (second electrode piece 121) is W2, the first electrode 11 (first electrode piece 111) and the second electrode 12 A gap with (the second electrode piece 121) is S1. The result of having simulated the change of the capacity | capacitance effective in the humidity detection at the time of fixing gap | interval S1 at 1 micrometer and changing the gap G is shown by FIG.4 (b).
 図4(b)に示すように、ギャップGの増加によって電界の通る範囲が広がり、湿度検知に有効な容量は増加する。しかし、ギャップGが広くなりすぎると容量を構成する電極間距離が広くなるため有効な容量は低下していく。一例として、隙間S1が1μmの場合、最適なギャップGは0.3μm以上0.5μm以下程度となる。 As shown in FIG. 4B, the increase of the gap G widens the range through which the electric field passes, and the capacity effective for humidity detection increases. However, if the gap G becomes too wide, the distance between the electrodes constituting the capacitance becomes wide, so the effective capacitance decreases. As an example, when the gap S1 is 1 μm, the optimal gap G is about 0.3 μm or more and 0.5 μm or less.
(湿度検知装置の製造方法)
 次に、本実施形態に係る湿度検知装置1の製造方法について説明する。
 図5(a)~図6(b)は、本実施形態に係る湿度検知装置の製造方法を例示する断面図である。
 なお、説明の都合上、図5および図6には電極部分の拡大断面図を示す。
(Manufacturing method of humidity detection device)
Next, a method of manufacturing the humidity detection device 1 according to the present embodiment will be described.
5 (a) to 6 (b) are cross-sectional views illustrating the method for manufacturing the humidity detection device according to the present embodiment.
5 and 6 show enlarged cross-sectional views of the electrode portion for convenience of explanation.
 先ず、図5(a)に示すように、基材50の第1主面50a上に第1絶縁層55を形成し、第1絶縁層55の上に第2絶縁層65を形成する。基材50には例えばシリコンが用いられる。第1絶縁層55には例えば酸化アルミニウム(Al)が用いられる。第1絶縁層55の厚さは、50nm以上100nm以下程度である。第2絶縁層65には例えば窒化シリコン(SiN)が用いられる。第2絶縁層65の厚さは、1μm以上10μm以下程度である。 First, as shown in FIG. 5A, the first insulating layer 55 is formed on the first major surface 50 a of the base 50, and the second insulating layer 65 is formed on the first insulating layer 55. For example, silicon is used for the substrate 50. For example, aluminum oxide (Al 2 O 3 ) is used for the first insulating layer 55. The thickness of the first insulating layer 55 is about 50 nm or more and 100 nm or less. For example, silicon nitride (SiN) is used for the second insulating layer 65. The thickness of the second insulating layer 65 is about 1 μm to 10 μm.
 次に、図5(b)に示すように、レジスト70を塗布してパターニングする。レジスト70のパターンとしては、幅1μm以上3μm以下程度、パターン間隔1μm以上3μm以下程度である。続いて、このレジスト70をマスクとして第2絶縁層65をエッチングする。第2絶縁層65は、レジスト70の無い部分においてエッチングされる。この際、第1絶縁層55がエッチングストッパとしての役目を果たす。第2絶縁層65のエッチングによって、絶縁性柱状体60が形成される。 Next, as shown in FIG. 5B, a resist 70 is applied and patterned. The pattern of the resist 70 is about 1 μm to 3 μm in width and about 1 μm to 3 μm in pattern interval. Subsequently, the second insulating layer 65 is etched using the resist 70 as a mask. The second insulating layer 65 is etched in the portion without the resist 70. At this time, the first insulating layer 55 serves as an etching stopper. The insulating columnar body 60 is formed by the etching of the second insulating layer 65.
 次に、図5(c)に示すように、電極材料層80を形成する。電極材料層80には例えばルテニウム(Ru)が用いられる。電極材料層80の厚さは、約0.15μmである。ルテニウム(Ru)による電極材料層80は、例えばCVD(chemical vapor deposition)やスパッタリングによって形成される。なお、電極材料層80の上に保護膜(例えば
、酸化シリコンや窒化シリコン)を形成してもよい。保護膜を形成することで、電極材料層80から形成される第1電極11および第2電極12の信頼性が向上する。
Next, as shown in FIG. 5C, an electrode material layer 80 is formed. For example, ruthenium (Ru) is used for the electrode material layer 80. The thickness of the electrode material layer 80 is about 0.15 μm. The ruthenium (Ru) electrode material layer 80 is formed, for example, by chemical vapor deposition (CVD) or sputtering. Note that a protective film (for example, silicon oxide or silicon nitride) may be formed on the electrode material layer 80. By forming the protective film, the reliability of the first electrode 11 and the second electrode 12 formed from the electrode material layer 80 is improved.
 次に、図6(a)に示すように電極材料層80の上にレジスト71を塗布してパターニングする。このパターニングによって、塗布したレジスト70のうち、絶縁性柱状体60の上、および隣り合う絶縁性柱状体60の間の一部を残す。続いて、このレジスト71をマスクとして電極材料層80をエッチングする。これにより、電極材料層80はレジスト71の無い部分においてエッチングされる。この際、第1絶縁層55がエッチングストッパとしての役目を果たす。 Next, as shown in FIG. 6A, a resist 71 is applied on the electrode material layer 80 and patterned. This patterning leaves a part of the applied resist 70 on the insulating pillars 60 and between the adjacent insulating pillars 60. Subsequently, the electrode material layer 80 is etched using the resist 71 as a mask. Thereby, the electrode material layer 80 is etched in the portion without the resist 71. At this time, the first insulating layer 55 serves as an etching stopper.
 このエッチングによって、レジスト71でマスクされた絶縁性柱状体60の上の電極材料層80、および隣り合う絶縁性柱状体60の間の電極材料層80が残される。残された電極材料層80のうち、隣り合う絶縁性柱状体60の間の電極材料層80が第1電極11となり、絶縁性柱状体60の上に残された電極材料層80が第2電極12となる。 By this etching, the electrode material layer 80 on the insulating columnar body 60 masked by the resist 71 and the electrode material layer 80 between the adjacent insulating columnar bodies 60 are left. Of the remaining electrode material layers 80, the electrode material layer 80 between the adjacent insulating pillars 60 is the first electrode 11, and the electrode material layer 80 left on the insulating pillars 60 is the second electrode It will be 12.
 次に、レジスト71を除去した後、図6(b)に示すように感湿部13を全面に形成する。感湿部13には例えばポリイミドが用いられる。これにより、湿度検知装置1が完成する。このような製造方法によって、第1主面50aの法線方向に互いに高さの異なる第1電極11および第2電極12が形成される。 Next, after removing the resist 71, as shown in FIG. 6B, the moisture sensitive portion 13 is formed on the entire surface. For example, polyimide is used for the moisture sensitive portion 13. Thus, the humidity detection device 1 is completed. By such a manufacturing method, the first electrode 11 and the second electrode 12 having different heights in the normal direction of the first major surface 50 a are formed.
(アライメントずれ)
 次に、第1電極11と第2電極12とのアライメントずれについて説明する。
 第1主面50aに沿った第1電極11と第2電極12の位置とのアライメントにずれが発生した場合、容量の変化が生じる可能性がある。
 図7(a)にはアライメントずれがない状態の断面図が示され、図7(b)にはアライメントずれがない状態での電界シミュレーションの結果が示される。
 一方、図8(a)にはアライメントずれがある状態の断面図が示され、図8(b)にはアライメントずれがある状態での電界シミュレーションの結果が示される。
(Alignment deviation)
Next, misalignment between the first electrode 11 and the second electrode 12 will be described.
When a misalignment occurs in the alignment between the first electrode 11 and the position of the second electrode 12 along the first major surface 50a, a change in capacitance may occur.
FIG. 7A shows a cross-sectional view in the absence of misalignment, and FIG. 7B shows the result of electric field simulation in the absence of misalignment.
On the other hand, FIG. 8 (a) shows a cross-sectional view in a state in which there is an alignment deviation, and FIG. 8 (b) shows the result of electric field simulation in the state in which there is an alignment deviation.
 アライメントがずれていない状態(図7(a)参照)では、第1主面50aに沿った第1電極11と第2電極12との間隔は一定である。第1電極11と第2電極12との間隔が一定の場合には、図7(b)に示すように、電極間の電界強度分布は一様となる。 In the state in which the alignment is not shifted (see FIG. 7A), the distance between the first electrode 11 and the second electrode 12 along the first major surface 50a is constant. When the distance between the first electrode 11 and the second electrode 12 is constant, as shown in FIG. 7B, the electric field strength distribution between the electrodes becomes uniform.
 アライメントずれがある状態(図8(a)参照)では、第1主面50aに沿った第1電極11と第2電極12との間隔は一定ではなく、ずれた分だけ狭い、広いを交互に繰り返すことになる。したがって、図8(b)に示すように、狭い電極間隔の部分では電界強度分布が強くなり、広い電極間隔の部分では電界強度分布が弱くなる。その結果、1つの第2電極12と、その両側に位置する2つの第2電極12との間に形成される容量は異なってしまう。具体的には、隙間S1が広いと容量が低下し、隙間S1が狭くなると容量が増加する。しかしながら、第1電極11と第2電極12との間に形成される容量は電気的に並列で接続されているため、第1電極11と第2電極12との間に形成される容量の総和としては変動しない。それゆえ、本実施形態に係る湿度検知装置1では、アライメントずれによる影響を受けにくい。 In a state in which there is misalignment (see FIG. 8A), the distance between the first electrode 11 and the second electrode 12 along the first major surface 50a is not constant, but is alternately narrow and wide by an offset amount. It will repeat. Therefore, as shown in FIG. 8 (b), the electric field strength distribution becomes strong in the narrow electrode interval portion, and the electric field strength distribution becomes weak in the wide electrode interval portion. As a result, the capacitances formed between one second electrode 12 and the two second electrodes 12 located on both sides thereof differ. Specifically, when the gap S1 is wide, the capacity decreases, and when the gap S1 becomes narrow, the capacity increases. However, since the capacitances formed between the first electrode 11 and the second electrode 12 are electrically connected in parallel, the sum of the capacitances formed between the first electrode 11 and the second electrode 12 It does not change as. Therefore, in the humidity detection device 1 according to the present embodiment, it is unlikely to be affected by misalignment.
 図9(a)および(b)は、アライメントずれに対する特性変化を示す図である。
 図9(a)にはアライメントずれに対する感度の変化(シミュレーション結果)が示され、図9(b)にはアライメントずれに対する容量の変化(シミュレーション結果)が示される。
FIGS. 9A and 9B are diagrams showing characteristic changes with respect to misalignment.
FIG. 9A shows a change in sensitivity (simulation result) to misalignment, and FIG. 9B shows a change in capacitance to misalignment (simulation result).
 実施例1に係る湿度検知装置1は図4に示される断面構造を有し、絶縁性柱状体60はシリコンの酸化物(SiO)によって形成され、第1電極11の幅W1が1.50μm、第2電極12の幅W2が1.50μm、隙間S1が1.00μm、ギャップGが0.60μmであった。 The humidity detection device 1 according to the first embodiment has the cross-sectional structure shown in FIG. 4, the insulating columnar body 60 is formed of an oxide of silicon (SiO 2 ), and the width W1 of the first electrode 11 is 1.50 μm. The width W2 of the second electrode 12 was 1.50 μm, the gap S1 was 1.00 μm, and the gap G was 0.60 μm.
 実施例2に係る湿度検知装置1は図4に示される断面構造を有し、絶縁性柱状体60はシリコンの酸化物(SiO)によって形成され、第1電極11の幅W1が1.00μm、第2電極12の幅W2が1.00μm、隙間S1が1.00μm、ギャップGが0.60μmであった。 The humidity detection device 1 according to the second embodiment has the cross-sectional structure shown in FIG. 4, and the insulating columnar body 60 is formed of an oxide of silicon (SiO 2 ), and the width W1 of the first electrode 11 is 1.00 μm. The width W2 of the second electrode 12 was 1.00 μm, the gap S1 was 1.00 μm, and the gap G was 0.60 μm.
 実施例3に係る湿度検知装置1は図4に示される断面構造を有し、絶縁性柱状体60はポリイミド(PI)によって形成され、第1電極11の幅W1が1.50μm、第2電極12の幅W2が1.50μm、隙間S1が1.00μm、ギャップGが0.60μmであった。 The humidity detection device 1 according to the third embodiment has the cross-sectional structure shown in FIG. 4, the insulating columnar body 60 is formed of polyimide (PI), the width W1 of the first electrode 11 is 1.50 μm, and the second electrode The width W2 of 12 was 1.50 μm, the gap S1 was 1.00 μm, and the gap G was 0.60 μm.
 実施例4に係る湿度検知装置1は図4に示される断面構造を有し、絶縁性柱状体60はポリイミド(PI)によって形成され、第1電極11の幅W1が1.00μm、第2電極12の幅W2が1.00μm、隙間S1が1.00μm、ギャップGが0.60μmであった。 The humidity detection device 1 according to the fourth embodiment has the cross-sectional structure shown in FIG. 4, the insulating columnar body 60 is formed of polyimide (PI), the width W1 of the first electrode 11 is 1.00 μm, and the second electrode The width W2 of 12 was 1.00 μm, the gap S1 was 1.00 μm, and the gap G was 0.60 μm.
 図9(a)に示されるように、絶縁性柱状体60がポリイミド(PI)によって形成されるため第2電極12の下側も感湿部13として機能し、第1電極11の幅W1および第2電極12の幅W2が相対的に狭い実施例4に係る湿度検知装置1が、実施例1から実施例4の中では最も感度が高かった。以下、感度の高い順に、実施例4よりも第1電極11の幅W1および第2電極12の幅W2が相対的に広い実施例3に係る湿度検知装置1、第1電極11の幅W1および第2電極12の幅W2は実施例4と共通するが絶縁性柱状体60はシリコンの酸化物(SiO)によって形成される実施例2に係る湿度検知装置1、実施例2よりも第1電極11の幅W1および第2電極12の幅W2が相対的に広い実施例1に係る湿度検知装置1となった。 As shown in FIG. 9A, since the insulating columnar body 60 is formed of polyimide (PI), the lower side of the second electrode 12 also functions as the moisture sensitive portion 13, and the width W1 of the first electrode 11 and the width W1 of the first electrode 11 The humidity detection device 1 according to Example 4 in which the width W2 of the second electrode 12 is relatively narrow was the highest in the sensitivity among Examples 1 to 4. Hereinafter, the humidity detection device 1 according to the third embodiment and the width W1 of the first electrode 11 and the width W1 of the first electrode 11 according to the third embodiment have a width W1 of the first electrode 11 and a width W2 of the second electrode 12 relatively wider than those of the fourth embodiment. The width W2 of the second electrode 12 is the same as that of the fourth embodiment, but the insulating columnar body 60 is formed of an oxide of silicon (SiO 2 ), and the humidity detection device 1 according to the second embodiment is more than the first embodiment. The humidity detection device 1 according to the first embodiment is obtained in which the width W1 of the electrode 11 and the width W2 of the second electrode 12 are relatively wide.
 いずれの実施例に係る湿度検知装置1も、アライメントずれが0.5μmとなっても、感度の変化はアライメントずれがない場合との対比で0.5ポイント以下であった。 Also in the humidity detection device 1 according to any of the examples, even if the misalignment was 0.5 μm, the change in sensitivity was 0.5 point or less in comparison with the case where there is no misalignment.
 図9(b)に示されるように、絶縁性柱状体60はシリコンの酸化物(SiO)によって形成され、第1電極11の幅W1および第2電極12の幅W2が相対的に狭い実施例2に係る湿度検知装置1が、実施例1から実施例4の中では最も容量が高かった。以下、容量の高い順に、第1電極11の幅W1および第2電極12の幅W2は実施例2と共通するが絶縁性柱状体60がポリイミド(PI)によって形成される実施例4に係る湿度検知装置1、実施例2よりも第1電極11の幅W1および第2電極12の幅W2が相対的に広い実施例1に係る湿度検知装置1、実施例4よりも第1電極11の幅W1および第2電極12の幅W2が相対的に広い実施例3に係る湿度検知装置1となった。 As shown in FIG. 9B, the insulating columnar body 60 is formed of an oxide of silicon (SiO 2 ), and the width W1 of the first electrode 11 and the width W2 of the second electrode 12 are relatively narrow. The humidity detection device 1 according to Example 2 had the highest capacity among Examples 1 to 4. Hereinafter, in the order of increasing capacity, the width W1 of the first electrode 11 and the width W2 of the second electrode 12 are the same as in Example 2, but the humidity according to Example 4 in which the insulating columnar body 60 is formed of polyimide (PI) The humidity detection apparatus 1 according to the first embodiment has a width W1 of the first electrode 11 and the width W2 of the second electrode 12 relatively wider than the detection apparatus 1 and the width of the first electrode 11 than the fourth embodiment. The humidity detection device 1 according to the third embodiment is obtained in which the width W2 of the W1 and the second electrode 12 is relatively wide.
 いずれの実施例に係る湿度検知装置1も、アライメントずれが0.5μmとなっても、容量の変化はアライメントずれがない場合を基準として10%以下であった。 Also in the humidity detection device 1 according to any of the examples, even if the misalignment was 0.5 μm, the change in capacitance was 10% or less based on the case of no misalignment.
 以上説明したように、本実施形態によれば、高感度および良好な応答性を達成でき、製造容易な湿度検知装置1を提供することが可能になる。 As described above, according to the present embodiment, it is possible to achieve high sensitivity and good response, and to provide the humidity detection device 1 that is easy to manufacture.
 なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、電極材料層80としてルテニウム(Ru)を用いる例を示したが、電極材料層80はこれに限定されず、例えばアルミニウムや銅といった他の材料を用いてもよい。 Although the present embodiment has been described above, the present invention is not limited to these examples. For example, although the example which uses ruthenium (Ru) as the electrode material layer 80 was shown, the electrode material layer 80 is not limited to this, For example, you may use other materials, such as aluminum and copper.
 また、図1(a)に示す電極構造および図6(a)に示す電極構造において、第1電極11を第1主面50aに沿って形成し、第2電極12を絶縁性柱状体60の上面60uに形成する例を示したが、第2電極12を第1主面50aに沿って形成し、第1電極11を絶縁性柱状体60の上面60uに形成してもよい。また、第1電極11および第2電極12の電極形状は上記説明した形状に限定されない。例えば、第1電極11および第2電極12をそれぞれ櫛歯型の電極形状として、互いの櫛歯部分を第1主面50aの法線方向にみて交互に配置するようにしてもよい。 Further, in the electrode structure shown in FIG. 1 (a) and the electrode structure shown in FIG. 6 (a), the first electrode 11 is formed along the first major surface 50a, and the second electrode 12 is formed of the insulating columnar body 60. Although the example which forms in upper surface 60u was shown, you may form the 2nd electrode 12 along 1st main surface 50a, and may form the 1st electrode 11 in the upper surface 60u of the insulating columnar body 60. FIG. Further, the electrode shapes of the first electrode 11 and the second electrode 12 are not limited to the shapes described above. For example, the first electrode 11 and the second electrode 12 may be respectively formed in a comb-like electrode shape, and the comb teeth may be alternately arranged as viewed in the normal direction of the first major surface 50a.
 また、前述の実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、実施形態の構成例の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。 Those skilled in the art can appropriately add, delete, or change the design elements from the above-described embodiment, and those appropriately combining the features of the configuration example of the embodiment are also included in the gist of the present invention. As long as it is, it is contained in the scope of the present invention.
1…湿度検知装置
10…湿度検知部
11…第1電極
12…第2電極
13…感湿部
15…パッド電極
16…パッド電極
20…参照部
50…基材
50a…第1主面
55…第1絶縁層
60…絶縁性柱状体
60u…上面
65…第2絶縁層
70…レジスト
71…レジスト
80…電極材料層
111…第1電極片
115…第1櫛歯電極部
121…第2電極片
125…第2櫛歯電極部
d1…間隔
d2…間隔
G…ギャップ
P1…ピッチ
S1…隙間
W1…幅
W2…幅
DESCRIPTION OF SYMBOLS 1 ... Humidity detection apparatus 10 ... Humidity detection part 11 ... 1st electrode 12 ... 2nd electrode 13 ... Moisture sensing part 15 ... Pad electrode 16 ... Pad electrode 20 ... Reference part 50 ... Base material 50a ... 1st main surface 55 ... 1st 1 insulating layer 60 insulating columnar body 60 u upper surface 65 second insulating layer 70 resist 71 resist 80 electrode material layer 111 first electrode piece 115 first comb electrode portion 121 second electrode piece 125 2nd comb-tooth electrode part d1 distance d2 distance G gap P1 pitch S1 gap W1 width W2 width

Claims (4)

  1.  基材と、
     前記基材の上に設けられた第1電極と、
     前記基材の上に設けられ、前記第1電極と離間して配置された第2電極と、
     前記第1電極と前記第2電極との間に設けられた感湿部と、
     を備えた湿度検知装置であって、
     前記第1電極は前記基材の第1主面上に配置され、
     前記第2電極は前記第1主面の法線方向に前記第1電極と離間して配置された、湿度検知装置。
    A substrate,
    A first electrode provided on the substrate;
    A second electrode provided on the substrate and spaced apart from the first electrode;
    A moisture sensitive portion provided between the first electrode and the second electrode;
    A humidity sensor provided with
    The first electrode is disposed on a first major surface of the substrate,
    The humidity detection device according to claim 1, wherein the second electrode is disposed to be separated from the first electrode in a normal direction of the first main surface.
  2.  前記基材には絶縁性柱状体が設けられ、
     前記第2電極は前記絶縁性柱状体の上に配置された、請求項1に記載の湿度検知装置。
    The base material is provided with an insulating columnar body,
    The humidity detection device according to claim 1, wherein the second electrode is disposed on the insulating columnar body.
  3.  前記絶縁性柱状体は感湿性材料によって形成された、請求項2に記載の湿度検知装置。 The humidity detection device according to claim 2, wherein the insulating columnar body is formed of a moisture-sensitive material.
  4.  前記第1電極は互いに平行に設けられた複数の第1電極片を有し、
     前記第2電極は互いに平行に設けられた複数の第2電極片を有し、
     前記第1主面の法線方向にみて、前記複数の第1電極片のそれぞれと、前記複数の第2電極片のそれぞれとが交互に配置された、請求項1から請求項3のいずれか1項に記載の湿度検知装置。
    The first electrode has a plurality of first electrode pieces provided in parallel with each other,
    The second electrode has a plurality of second electrode pieces provided in parallel to each other,
    4. The display device according to claim 1, wherein each of the plurality of first electrode pieces and each of the plurality of second electrode pieces are alternately disposed when viewed in the normal direction of the first main surface. The humidity detection device according to item 1.
PCT/JP2018/047077 2018-01-16 2018-12-20 Humidity detection device WO2019142592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-005140 2018-01-16
JP2018005140A JP2021047014A (en) 2018-01-16 2018-01-16 Humidity detection device

Publications (1)

Publication Number Publication Date
WO2019142592A1 true WO2019142592A1 (en) 2019-07-25

Family

ID=67301730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047077 WO2019142592A1 (en) 2018-01-16 2018-12-20 Humidity detection device

Country Status (2)

Country Link
JP (1) JP2021047014A (en)
WO (1) WO2019142592A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184160A (en) * 1990-11-19 1992-07-01 Rika Kogyo Kk Humidity sensitive element
JP2011080833A (en) * 2009-10-06 2011-04-21 Alps Electric Co Ltd Humidity detection sensor
EP2565635A1 (en) * 2011-09-02 2013-03-06 Sensirion AG Sensor chip and method for manufacturing a sensor chip
JP3196370U (en) * 2013-12-27 2015-03-05 センシリオン アクチエンゲゼルシャフト Sensor module
EP3208610A1 (en) * 2016-02-18 2017-08-23 ams AG Sensor arrangement and method for generating measurement signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184160A (en) * 1990-11-19 1992-07-01 Rika Kogyo Kk Humidity sensitive element
JP2011080833A (en) * 2009-10-06 2011-04-21 Alps Electric Co Ltd Humidity detection sensor
EP2565635A1 (en) * 2011-09-02 2013-03-06 Sensirion AG Sensor chip and method for manufacturing a sensor chip
JP3196370U (en) * 2013-12-27 2015-03-05 センシリオン アクチエンゲゼルシャフト Sensor module
EP3208610A1 (en) * 2016-02-18 2017-08-23 ams AG Sensor arrangement and method for generating measurement signals

Also Published As

Publication number Publication date
JP2021047014A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP4770530B2 (en) Capacitive humidity sensor
US9594041B2 (en) Capacitive humidity sensor
JP5547296B2 (en) Humidity detection sensor and manufacturing method thereof
KR100488432B1 (en) Capacitance type humidity sensor with passivation layer
TWI446253B (en) Single - layer sensing layer of two - dimensional porous touchpad
US7222531B2 (en) Capacitive humidity sensor
US7540198B2 (en) Semiconductor device
CN103748457B (en) Humidity sensor and manufacture method thereof
JP5470512B2 (en) Humidity detection sensor
JP2009092633A (en) Impedance sensor
JP2007010338A (en) Surface pressure distribution sensor
WO2014136337A1 (en) Capacitance type pressure sensor and input apparatus
KR20100073073A (en) Infrared detection sensor and manufacturing method thereof
JP2011080833A (en) Humidity detection sensor
JP3196370U (en) Sensor module
US20180136266A1 (en) Resistive environmental sensor and resistive environmental sensor array
JP5967018B2 (en) Capacitive physical quantity sensor
US7225675B2 (en) Capacitance type dynamic quantity sensor
KR101196064B1 (en) Pressure sensor and method for manufacturing the same
WO2019142592A1 (en) Humidity detection device
US9841393B2 (en) Sensor of volatile substances with integrated heater and process for manufacturing a sensor of volatile substances
WO2019142593A1 (en) Humidity detection device
JP2013527465A (en) Measurement of layer thickness
JP2008292426A (en) Electrostatic capacity type sensor
JP2012145384A (en) Capacitive humidity sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP