WO2019138916A1 - 眼底撮影装置 - Google Patents

眼底撮影装置 Download PDF

Info

Publication number
WO2019138916A1
WO2019138916A1 PCT/JP2018/048339 JP2018048339W WO2019138916A1 WO 2019138916 A1 WO2019138916 A1 WO 2019138916A1 JP 2018048339 W JP2018048339 W JP 2018048339W WO 2019138916 A1 WO2019138916 A1 WO 2019138916A1
Authority
WO
WIPO (PCT)
Prior art keywords
fundus
light
image
eye
pupil
Prior art date
Application number
PCT/JP2018/048339
Other languages
English (en)
French (fr)
Inventor
雅幸 芳野
真也 岩田
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018002250A external-priority patent/JP6958367B2/ja
Priority claimed from JP2018002249A external-priority patent/JP2019118720A/ja
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to EP18899048.5A priority Critical patent/EP3738501B1/en
Publication of WO2019138916A1 publication Critical patent/WO2019138916A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes

Definitions

  • the present disclosure relates to a fundus imaging apparatus for obtaining a front image of a fundus.
  • a fundus imaging apparatus for capturing a front image of the fundus of a subject's eye is widely used in the ophthalmology field.
  • a slit-like illumination light is scanned on the fundus, and an image of the illuminated fundus area is sequentially projected on a two-dimensional imaging surface according to the scan to obtain a front image of the fundus
  • An apparatus for obtaining in Patent Document 1, a two-hole aperture having two apertures formed along the scanning direction of the slit is disposed on a plane conjugate to the pupil of the light projection system, and illumination light is There is disclosed an apparatus for simultaneously emitting light from two apertures of an aperture stop and for taking out fundus reflected light from a gap between the two aperture stops projected on the pupil for imaging.
  • the present disclosure has been made in view of the problems of the prior art, and it is an object of the present disclosure to provide a fundus imaging apparatus that can easily capture an eye to be examined having a smaller pupil diameter.
  • a first fundus imaging apparatus mutually transmits a light projection area through which illumination light passes on the pupil of an eye to be examined and a light reception area from which fundus reflection light of the illumination light is extracted on the pupil of the eye to be examined Adjusting the positional relationship between the subject's eye and the imaging optical system, including an imaging optical system including light emitting and receiving separating means and light receiving elements for receiving the reflected light from the fundus taken out from the light receiving area, which are formed at different positions
  • a fundus imaging apparatus for acquiring a fundus oculi image based on a signal from the light receiving element, and further as an alignment reference position as a reference of alignment between an eye to be examined and the imaging optical system.
  • a first reference position assuming that all of the light emitting area and the light receiving area are formed within the pupil area of the subject's eye, and a second reference position different from the first reference position, the light emitting area And It is possible to selectively set one of a second reference position on the assumption that a part of any one of the light receiving areas is formed outside the pupil area of the subject eye, and the set alignment standard
  • An imaging control unit that guides alignment based on an alignment deviation from a position
  • the second fundus imaging apparatus is, in the first fundus imaging apparatus, provided with an anterior segment observation optical system for acquiring an anterior segment observation image, and the imaging control means is an object to be acquired from the anterior segment observation image.
  • the alignment reference position is set based on information on the pupil region of the optometry.
  • the information on the pupil area includes a ratio of the light projection area and the light receiving area to the pupil area.
  • the fourth fundus imaging apparatus further includes an observation image acquisition unit configured to acquire a fundus observation image by the fundus image, and the imaging control unit includes the fundus observation image.
  • the alignment reference position is set based on the information on the brightness of.
  • the fifth fundus imaging apparatus receives an operation by the examiner and an anterior segment observation optical system that acquires an anterior segment observation image of the eye to be examined in any of the first to fourth fundus imaging apparatuses.
  • Operation control means for driving the drive unit to adjust the relative position according to the imaging control means for displaying the anterior eye observation image on the monitor and for displaying the anterior eye observation image
  • display control means for displaying a guide for guiding an operation to the target position based on the alignment reference position.
  • the imaging control unit drives and controls the drive unit based on an alignment deviation from the alignment reference position. Induce alignment.
  • the light emitting and receiving separating unit forms two light projection areas different in position on the pupil of the eye to be examined.
  • the imaging control means determines, as the second reference position, a position at which one of the two light emitting areas together with the light receiving area is disposed within the pupil of the eye to be examined preferentially over the remaining one light emitting area.
  • the eighth fundus imaging apparatus according to the seventh fundus imaging apparatus, wherein at the second reference position, the remaining one of the two light projection areas is arranged outside the pupil.
  • the ninth fundus imaging apparatus according to the seventh or eighth fundus imaging apparatus, wherein at the first reference position, the center of the light receiving area coincides with the pupil center or cornea center of the eye to be examined.
  • the imaging control unit when the imaging control unit guides alignment to the second reference position, alignment is performed to the first reference position. In the case of guidance, at least one of the light amount of the illumination light and the gain of the imaging device is increased to capture the fundus image.
  • the imaging control unit when guiding alignment to the first reference position, captures the fundus image.
  • the illumination light is projected onto the fundus from both of the two projection areas and alignment is guided to the second reference position, when the fundus image is taken, The illumination light is projected onto the ocular fundus from only one side which is preferentially placed in the pupil.
  • the twelfth fundus imaging apparatus according to any one of the seventh to eleventh fundus imaging apparatuses, wherein the light emitting and receiving separating means separates the two light emitting areas and the light receiving area in the lateral direction. To form.
  • the thirteenth fundus imaging apparatus according to any one of the seventh to eleventh fundus imaging apparatuses, wherein the light emitting and receiving separating means forms the two light emitting areas at vertically separated positions, and the imaging control In the means, the second reference position is set such that one of the two light projection areas formed on the lower side is disposed in the pupil, and illumination light is emitted from the one when photographing the fundus oculi image. It is lighted.
  • the fourteenth fundus imaging apparatus according to any one of the seventh to the thirteenth fundus imaging apparatuses, wherein the light emitting / receiving separating means is configured to place the light receiving area on the pupil of the eye to be examined between the two light emitting areas.
  • the fifteenth fundus imaging apparatus includes a slit forming unit for forming illumination light in a slit shape on the fundus of an eye to be examined;
  • the scanning unit scans the formed illumination light in a direction orthogonal to the slit on the fundus, and the light emitting / receiving separating unit is configured to scan the light projection area on the pupil of the eye to be examined
  • the light-receiving area is formed on the pupil of the subject eye so as to be sandwiched between the two light-projecting areas, while being formed at two positions separated from each other in the scanning direction.
  • the sixteenth fundus imaging apparatus according to any one of the seventh to fifteenth fundus imaging apparatuses, wherein the imaging control means projects light from one of the two light projection areas after completion of alignment to the first reference position.
  • a first fundus image which is a fundus image based on the illuminated illumination light
  • a second fundus image which is a fundus image based on the illumination light projected from the other of the two light projection areas
  • the fundus imaging apparatus further includes image processing means for generating a composite image using at least two of the first fundus image and the second fundus image.
  • the seventeenth fundus imaging apparatus is a slit forming portion that forms illumination light in a slit on the fundus of the eye to be examined, and scans the illumination light formed in a slit on the fundus in a direction intersecting the slit. And a projection area through which the illumination light passes on the pupil of the eye to be examined is formed at two positions separated from each other in the scanning direction of the illumination light, and a fundus of the illumination light on the pupil of the eye to be examined A light receiving area from which reflected light is extracted is formed so as to be sandwiched between the two light emitting areas, and light emitting / receiving separation means is provided, and a fundus oculi image is taken based on the fundus reflected light extracted from the light receiving area.
  • the photographing optical system and whether to pass the illumination light are set individually for the two light projection areas, and the illumination light selectively projected from any of the two light projection areas is set. Fundus image based on And a photographing control means for photographing.
  • An eighteenth fundus imaging apparatus according to the seventeenth fundus imaging apparatus, wherein the light emitting and receiving separating means is disposed at two positions different from each other in the scanning direction at positions conjugate with the pupil of the eye to be examined. , And two apparent illumination light sources, and the photographing control means controls, for each light source, the projection state of the illumination light from the two illumination light sources or the two apparent illumination light sources. Whether to allow the illumination light to pass or not is set individually for the two floodlight areas.
  • the nineteenth fundus imaging apparatus according to the seventeenth or eighteenth fundus imaging apparatus, wherein the imaging control unit is a first fundus image that is a fundus image based on the illumination light projected from one of the two light projection areas.
  • An image and a second fundus image, which is a fundus image based on the illumination light projected from the other of the two light projection areas, are photographed, and the fundus imaging apparatus comprises the first fundus image and the first fundus image.
  • An image processing unit is provided that generates a composite image using at least two of the two fundus images.
  • the twentieth fundus imaging apparatus according to any one of the sixteenth and nineteenth fundus imaging apparatuses, wherein the image processing means combines a region corresponding to the second fundus image with a region including an artifact in the first fundus image. By doing this, the composite image is generated.
  • the twenty-first fundus imaging apparatus according to any one of the sixteenth, nineteenth, and twentieth fundus imaging apparatuses, wherein the imaging control unit transmits the illumination light after the imaging of the first fundus image. To continuously capture the second fundus image with the first fundus image.
  • a twenty-second fundus imaging apparatus according to the twenty-first fundus imaging apparatus, wherein the imaging optical system is capable of irradiating the eye with the illumination light by visible light, and an image center of the first fundus image is The combined front image is generated by replacing the corresponding region in the two fundus images.
  • a twenty-third fundus imaging apparatus according to the twenty-second fundus imaging apparatus, wherein the imaging control means further includes a third fundus image based on the illumination light simultaneously projected from both of the two light projection areas.
  • the fundus image is taken, and the image processing means generates the composite image using the first fundus image, the second fundus image, and the third fundus image.
  • the twenty-fourth fundus imaging apparatus according to the twenty-third fundus imaging apparatus, wherein the image processing means includes a central portion of the image in the third fundus image, a part of a corresponding region in the first fundus image, and The synthetic front image is generated by replacing each of the two fundus images with a part of the corresponding region.
  • the twenty-fifth fundus imaging apparatus according to the twenty-fourth fundus imaging apparatus, wherein the imaging optical system can emit the illumination light by visible light to the eye to be examined, and the imaging control means captures the third fundus image After that, the light projection area through which the illumination light passes is switched to continuously capture the first fundus image and the second fundus image.
  • the twenty-sixth fundus imaging apparatus according to any one of the seventh to the twenty-fifth fundus imaging apparatuses, wherein the light emitting and receiving separating unit changes the clearance between the two light emitting areas and the light receiving area on the pupil of the eye to be examined. It is possible.
  • a twenty-seventh fundus imaging apparatus includes the detection unit that detects a pupil area of an eye to be examined and the control unit that changes the clearance on the basis of a detection result of the pupil area in the twenty-sixth fundus imaging apparatus.
  • a fundus imaging apparatus according to the present disclosure will be described with reference to the drawings.
  • an apparatus is disclosed in which an artifact caused by reflection / scattering in the eye or the apparatus is suppressed.
  • an apparatus capable of favorably photographing a fundus image even when the pupil diameter of the eye to be examined is small is disclosed.
  • Each embodiment can appropriately utilize a part of the other embodiments.
  • the fundus imaging apparatus at least includes an imaging optical system (see FIG. 10) and a control unit (see FIG. 12). Additionally, the fundus imaging apparatus may have an image processing unit.
  • the photographing optical system emits and receives illumination light to the fundus of an eye to be examined, and is used to capture a fundus image. More specifically, the illumination light is projected so that the illumination light is formed in a slit shape on the fundus of the subject's eye. The slit-like illumination light is scanned on the fundus. A fundus oculi image is taken with the scanning range as the imaging range.
  • the photographing optical system includes at least a slit forming unit, a scanning unit, and a light emitting and receiving separation unit.
  • the imaging optical system may have a light source, an imaging device, an optical path branching portion, and the like.
  • the slit forming unit forms illumination light in a slit shape on the fundus of the eye to be examined.
  • the slit forming portion may be, for example, a slit-like light transmitting portion (for example, an opening) disposed in a plane conjugate to the fundus.
  • conjugate is not necessarily limited to a perfect conjugate relationship, and includes “substantially conjugate”. That is, as far as the relationship with the technical meaning of each part is permitted, the case where the position is deviated from the complete conjugate position is also included in the “conjugate” in the present disclosure.
  • the scanning unit scans the slit-shaped illumination light on the fundus in a direction intersecting the slit (specifically, a direction intersecting the longitudinal direction of the slit).
  • the scanning unit may scan the illumination light by moving the slit forming unit in a direction crossing the slit. Examples of this type of scanning unit include mechanical shutters, liquid crystal shutters, optical choppers, and drum reels.
  • the scanning direction of the slit is preferably a direction orthogonal to the slit.
  • the direction may be oblique to the orthogonal direction of the slit.
  • the scanning unit may be a member that changes the direction of the light that has passed through the slit forming unit.
  • various optical scanners such as a galvano scanner may be used as the scanning unit.
  • a scanning unit of a type that pivots light to perform scanning may be placed at a position conjugate to the pupil of the subject's eye.
  • the imaging optical system may further include an optical path coupling unit and an objective lens.
  • the optical path coupling unit couples and separates the projection light path of the illumination light and the light reception path of the fundus reflected light.
  • An objective lens is disposed on a common optical path formed by the optical path coupling portion between the light projection optical path and the light receiving optical path. At this time, it is desirable that the optical axis of the photographing optical system (hereinafter also referred to as “photographing optical axis”) and the optical axis of the objective lens coincide with each other.
  • the optical path coupling portion may be a perforated mirror, a simple mirror, a half mirror, or another beam splitter.
  • the light emitting / receiving separating unit separates an area (light emitting area) where the illumination light is projected and an area (light receiving area) where the fundus reflected light by the illumination light is extracted on the pupil of the eye to be examined.
  • the light emitting / receiving area forms the light projection areas at two positions separated from each other in the scanning direction of the illumination light.
  • the two light emitting areas may be formed to sandwich the imaging optical axis.
  • the light transmission / reception separation unit may be one that forms at least two light projection areas, and may form three or more light projection areas.
  • the illumination light that has passed through each light projection area illuminates the same slit-like area on the fundus. Then, along with the driving of the scanning unit, the slit-like area is scanned.
  • the light receiving area is formed so as to be sandwiched between two light emitting areas by the light emitting and receiving separation section. That is, the respective areas are formed in line in the order of the one light emitting area, the light receiving area, and the other light emitting area.
  • the light receiving area may be formed on the photographing optical axis.
  • the light emitting area and the light receiving area may be arranged so as not to overlap each other. In that case, it is reduced that a part of illumination light is reflected and scattered by the cornea or the intermediate light transmitting body to cause flare in the fundus image.
  • the light emitting and receiving separation unit may include a plurality of members respectively disposed in the light projection light path of the illumination light and the light receiving light path.
  • a part of the light emitting and receiving separating section sets the irradiation positions of the illumination light at at least two positions apart from each other in the scanning direction of the illumination light, for example, on the pupil conjugate plane in the projection light path of the illumination light It may be.
  • light sources emitting illumination light may be respectively disposed at two irradiation positions, and openings at which illumination light is allowed to pass may be respectively arranged at two irradiation positions.
  • the light emitting and receiving separating portion includes at least two illumination light sources or two apparent illumination light sources disposed at positions different from each other in the scanning direction at positions conjugate to the pupil of the subject eye It may be.
  • the light projection areas are formed at two positions separated from each other in the scanning direction of the illumination light.
  • the two illumination light sources or the two apparent illumination light sources may be arranged symmetrically with respect to the imaging optical axis. Thereby, two light projection areas can be formed symmetrically with respect to the photographing optical axis.
  • the light emission state from two light sources or two apparent light sources may be controllable for each light source by a control unit described later. As a result of the light emission state being controlled for each light source, it is individually set for each light emission area whether to pass illumination light.
  • the light emitting / receiving separation unit may include three or more illumination light sources or three or more apparent illumination light sources.
  • a light projection state there can be at least two states of a state in which illumination light from a light source or an apparent light source reaches the eye to be examined and a state in which the illumination light does not reach the eye.
  • the switching of the light projection state may be realized by lighting control of the light source. Further, switching of the light projection state may be realized by drive control of a shutter that selectively blocks a light flux from the light source or apparent light source toward the eye to be examined.
  • the light emitting / receiving separation section allows the fundus reflected light from the light receiving area, which is an area sandwiched between two light emitting areas, to pass to the imaging surface side on the pupil conjugate plane in the light receiving light path of the illumination light.
  • the light other than that may not pass to the imaging surface side.
  • the light emitting / receiving separation unit may include a light blocking member that transmits the fundus reflected light from the light receiving area to the imaging surface side and blocks the other light.
  • the light blocking member may be disposed, for example, on the pupil conjugate plane in the light receiving optical path. For example, in the case where a stop having an opening centered on the photographing optical axis is provided as the light shielding member, a light receiving area is formed by the opening image of the stop.
  • the light blocking member When the light blocking member is included in the light emitting / receiving separation portion, the light blocking member may be shared with the aforementioned optical path coupling portion or may be separate.
  • the control unit is a processing device (processor) that performs control processing of each unit and arithmetic processing.
  • the control unit is realized by a central processing unit (CPU), a memory, and the like.
  • control unit individually sets whether to pass illumination light for two light projection areas on the pupil of the eye to be examined. Further, a fundus oculi image is taken based on the illumination light selectively projected from one (one) of the two light projection areas.
  • a reflected image (a bright spot image, a kind of artifact) may occur at a position near the photographing optical axis in the fundus image due to the illumination light being reflected at the central part of the lens surface of the objective lens. Since the light projection area is away from the imaging optical axis, the reflected image is likely to appear at a position slightly offset from the position of the imaging optical axis in the fundus image.
  • a fundus oculi image captured by simultaneously projecting illumination light from both of two projection regions is shown in FIG.
  • reflection images can be generated at two places across the imaging optical axis at the image center of the fundus image. The two reflection images appear side by side in the scanning direction (that is, at different positions in the scanning direction).
  • the illumination light is selectively projected onto the fundus from one of the two light projection areas, and the fundus image is captured.
  • the portion for producing a reflected image is halved with respect to the above case, so that the reflected image in the fundus image can be halved as shown in FIG.
  • photographing the fundus image by selectively projecting the illumination light to the fundus from one of the two light projection areas on the pupil of the eye to be examined is advantageous in reducing the artifact. is there.
  • photographing an eye fundus image by selectively projecting illumination light to the eye fundus from one of the two light projection areas is advantageous when photographing an eye to be examined having a small pupil diameter. Even if the pupil diameter is small and two light emitting areas can not be arranged satisfactorily in the pupil area, if there is a pupil diameter sufficient to allow the arrangement of one light emitting area and light receiving area, the fundus image is photographed well it can.
  • the light emitting and receiving separation unit may be capable of changing the clearance between the two light emitting areas and the light receiving area on the pupil of the eye to be examined.
  • the larger the clearance the less likely it is for the objective lens to produce a reflected image. If the clearance is small, the light emitting area and the light receiving area are closer to each other, which is advantageous for photographing the small pupil eye.
  • FIG. 5 shows an image of two sets of light sources formed on the pupil of the eye to be examined and an aperture image of the stop.
  • a light projection area is formed on the pupil by the two sets of light source images, and a light reception area is formed by the aperture image of the stop.
  • Either of the two sets may be selected depending on the pupil diameter of the eye to be examined. That is, when the pupil diameter is sufficiently large, the light source may be selected from a set of more outside. In this case, the reflected image is likely to be reduced. In addition, when the pupil diameter is small, the light source may be selected from a set of the inner side.
  • the clearance may be changed by switching the size or the shape of the light receiving area.
  • the clearance may be changed by switching one disposed on the light path among a plurality of apertures whose apertures have different sizes.
  • the clearance may be changed by using a variable aperture stop as the stop.
  • the control unit selectively emits the illumination light to the fundus from one of the two light projection areas and captures the first fundus image, and then the light emission area to which the illumination light is projected is
  • the second fundus image may be taken by switching to the other and selectively projecting illumination light from the other side.
  • the present embodiment there is no need to change the positional relationship between the eye to be examined and the imaging optical system when taking two fundus images, and it is relatively possible to switch on the light source or drive the shutter.
  • the light projection area on the pupil of the eye to be examined can be switched in a short time.
  • two fundus images can be taken in a short time.
  • the burden on the subject is suppressed.
  • the second image is taken immediately after the first image is taken, so the pupillary constriction caused by the first image is given in the second image. You can control the impact.
  • the fundus oculi image becomes dark by vignetting of the illumination light and the fundus reflection light at the iris.
  • the vignetting effect (brightness change) between the image center and the image periphery is not necessarily uniform. For example, in the peripheral portion of an image, the larger the imaging angle of view, the more susceptible to vignetting.
  • one fundus image (hereinafter, referred to as a “composite image”) may be generated by subjecting these two fundus images to a synthesis process.
  • the combining process is performed by the image processing unit.
  • the image processing unit may be an image processing processor separate from the control unit, or part or all of the image processing unit may be shared by the processor of the control unit.
  • a combining process is performed to obtain an image in which the influence of an artifact is suppressed.
  • the synthesis method may have various methods as exemplified below.
  • a composite image may be generated by replacing a region including an artifact in one fundus image of two fundus images with a part of the other fundus image corresponding to the region (see FIG. 6).
  • replacement may be performed in units of scanning lines.
  • a composite image may be generated by replacing the reflection image generated at the image center of one fundus image with the corresponding region in the other fundus image.
  • a composite image may be generated as an averaged image of two fundus images.
  • addition averaging processing may be performed by providing different addition ratios between the reflection image and the other area.
  • region which a reflected image produces has some fluctuation
  • the present invention is not necessarily limited to this, and a reflected image detection process may be performed on a fundus image, and regions to be combined may be individually set based on the result of the detection process. Further, an area to be synthesized may be set according to the diopter. Further, execution / non-execution of the combining process may be selected according to the diopter of the subject eye.
  • the control unit captures the first fundus image based on scanning of only a part of the scanning range corresponding to the composite image, switches the light projection area, and then performs 2 on the basis of the remaining part of the scanning.
  • the composite fundus image may be generated by capturing the first fundus image and combining (collaging) each fundus image.
  • the scan range is divided into two around the imaging optical axis, and that the fundus image is captured in each of the two divided scan ranges.
  • the combining process is not necessarily limited to the image process.
  • a composite image can be formed on the imaging surface by switching the light projection area to which the illumination light is projected at the timing when the illumination light reaches the divided position of the scanning range.
  • the relationship between the scanning area on the fundus and the light projection area to which the illumination light is projected cross between the two fundus images between the two fundus images.
  • the illumination light is allowed to pass from the upper light projection area
  • the second fundus image is taken based on the scan of the upper half of the fundus, and from both A composite image may be generated.
  • the reflection image of the objective lens and the images obtained by capturing a portion that is less likely to contain an artifact such as flare are combined with each other in relation to each light projection area. Therefore, it is possible to obtain a composite image in which an artifact is suppressed.
  • the following imaging control may be executed instead of this combining process. That is, the light projection area may be switched by the control unit at a timing when the illumination light for scanning the ocular fundus at the time of photographing arrives at the boundary position of the two divisions.
  • the composite image in which the reflection image is suppressed is generated without the need for the composition processing.
  • the third fundus image taken by irradiating illumination light from both of the two light projection areas simultaneously is taken, and artifact is suppressed by combining these three fundus images.
  • a composite image may be generated.
  • a central portion of the image in the third fundus image (regions of two reflected images) is a part of the corresponding region in the first fundus image and a part of the corresponding region in the second fundus image. By replacing each of them, a composite front image may be generated.
  • the unevenness of brightness is less than that of the first fundus oculi image and the second fundus oculi image.
  • the composite image since only the peripheral region of the artifact in the third fundus image is changed from the third fundus image, unevenness in brightness can be suppressed.
  • ⁇ Correction processing> various correction processes may be involved when combining a plurality of fundus images. For example, shading may be performed to smooth the joints. In addition, differences in brightness between images may be corrected. Brightness correction is useful for reducing the influence of miosis when multiple fundus images are photographed using visible light.
  • Alignment between images During the composition processing, alignment (image registration) of each fundus image may be performed by the image processing unit.
  • the alignment referred to here may include at least one of translation, rotation, scaling, affine transformation, non-linear deformation, and the like.
  • any of phase information in a fundus image and position information of a characteristic portion for example, any of a blood vessel, a macula, a nipple, etc. may be used.
  • the present invention is applicable to artifacts occurring at different positions.
  • the above-described synthesis process can be applied to eyelashes, flares, and the like.
  • the fundus imaging apparatus has at least an imaging optical system (see FIG. 10), a drive unit (see FIGS. 9 and 12), and a control unit (see FIG. 12). Good. Additionally, the fundus imaging apparatus may have at least one of an anterior eye observation optical system, an input interface, and a monitor.
  • the imaging optical system in the second embodiment is used to emit and receive illumination light to the fundus of the eye to be examined and to capture a fundus image.
  • the imaging optical system in the second embodiment at least includes a light emitting and receiving separation unit and a light receiving element.
  • the photographing optical system may have at least one of a light source, an objective optical system (for example, an objective lens), and an optical path branching portion.
  • the imaging optical system may be a scanning optical system that scans imaging light by scanning imaging light on the tissue of the eye to be examined, or may be a non-scanning optical system.
  • a scanning type optical system a spot scan type optical system which two-dimensionally scans spot-like imaging light on a tissue may be used, or a line which scans linear imaging light in one direction It may be a scan type optical system.
  • any one of a point light receiving element, a line sensor, a two-dimensional light receiving element (photographing element), and the like can be appropriately adopted as the light receiving element.
  • the optical system of the first embodiment is an example of a line scan type optical system. Further, as an example of the non-scanning type optical system, an optical system of a general fundus camera and the like can be mentioned.
  • the light emitting and receiving separating portion in the second embodiment includes at least an area (light emitting area) where the illumination light is projected and an area (light receiving area) where the fundus reflected light by the illumination light is extracted on the pupil of the eye to be examined. To separate. Then, the fundus reflected light extracted from the light receiving area is received by the light receiving element.
  • the light emitting / receiving separating section may form each area on the pupil conjugate plane such that one of the light emitting area and the light receiving area sandwiches the other.
  • one region in the first embodiment, the light projecting region
  • the other region in the first embodiment
  • a light receiving area may be formed.
  • the light projection area and the light reception area may be formed concentrically as in a general fundus camera and the like.
  • the light emitting and receiving separating portion is composed of one or more members disposed in one or both of the light emitting light path and the light receiving light path.
  • the light emitting / receiving separation unit may include a plurality of members respectively disposed in the light projection optical path of the illumination light and the light receiving optical path.
  • an optical path branching unit that couples and branches the light projecting optical path and the light receiving optical path may be used as the light emitting and receiving separating section.
  • the ophthalmologic imaging apparatus of the second embodiment may have an anterior eye observation optical system (see FIG. 10), and may be capable of acquiring an anterior eye observation image through the anterior eye observation optical system.
  • the anterior eye observation optical system may have at least an imaging element.
  • the anterior segment observation image is used to adjust the positional relationship between the eye to be examined and the imaging optical system (that is, alignment, tracking, etc.).
  • the anterior segment observation image may be, for example, a front image of the anterior segment.
  • the anterior segment observation image may be displayed on a monitor. This enables the examiner to grasp the real-time alignment state.
  • the imaging optical system and the anterior eye observation optical system may be unitized, and the positional relationship with the eye to be examined may be integrally changed by a drive unit described later.
  • the anterior eye observation image may be captured by an imaging element separate from the imaging element of the imaging optical system.
  • the anterior eye observation optical system may include various optical elements such as a light source.
  • the fundus imaging apparatus may have an alignment index projection optical system that projects the alignment index onto the eye to be examined. Then, alignment may be induced based on an alignment index formed in the observation image of the anterior segment or the fundus.
  • the drive unit is a mechanism that changes (adjusts) the positional relationship between the eye to be examined and the imaging optical system. By changing the positional relationship, the positional relationship between the light emitting region and the light receiving region on the pupil of the eye to be examined and the pupil region changes.
  • the drive unit may have an actuator that changes the positional relationship between the eye to be examined and the imaging optical system based on a signal from the control unit, and the positional relationship between the eye to be examined and the imaging optical system is an examiner It may be a mechanical mechanism that changes in accordance with the force given by.
  • the drive unit may displace, for example, an imaging unit including an imaging optical system (and an anterior eye observation optical system), or a face support unit (for example, a chin support for supporting the face of a subject)
  • the table may be displaced, or a combination of the two.
  • control unit executes an alignment reference position setting process and an alignment guiding process.
  • the control unit sets an alignment reference position which is a reference (alignment reference) of the alignment between the eye and the photographing optical system in consideration of vignetting of a light beam passing through the light projection area and the light reception area. .
  • the positional relationship between the eye to be examined and the imaging optical system is adjusted (that is, aligned) with the alignment reference position as a target.
  • the control unit may be capable of selectively setting at least one of the first reference position and the second reference position different from the first reference position.
  • the first reference position is a position assuming that all of the light emitting area and the light receiving area are formed in the pupil area of the eye to be examined.
  • the second reference position is a position assuming that a part of one of the light emitting area and the light receiving area is formed outside the pupil area of the eye to be examined.
  • the second reference position is a position on the assumption that the remaining part (at least each part of the light emitting area and the light receiving area) of the light emitting area and the light receiving area is formed in the pupil area.
  • each of the first reference position and the second reference position may be predetermined, or may be set for each eye to be examined.
  • each of the first reference position and the second reference position may be set based on the observation image of the anterior segment or the fundus.
  • the fundus oculi observation image is a type of fundus oculi image acquired through the imaging optical system, and may be a moving image captured using invisible light such as infrared light as illumination light.
  • the first reference position may be, for example, a position where it is assumed that all of the light emitting area and the light receiving area are formed in the pupil area in the required pupil diameter (design value).
  • the first reference position may be a position where the photographing optical axis coincides with the center of the eye to be examined (for example, the corneal apex or the pupil center).
  • the second reference position may be a position where the positional relationship between the eye to be examined and the imaging optical system is offset in a direction intersecting the imaging optical axis with respect to the first reference position. Further, the second reference position may be a position different from any of a position where the imaging optical axis coincides with the corneal apex and a position where the imaging optical axis coincides with the pupil center. Since the positional relationship between the light emitting area and the light receiving area and the pupil area of the eye to be examined changes due to the offset from the case of the first reference position, the influence of vignetting can be improved.
  • the direction and amount of the offset of the second reference position with respect to the first reference position are, for example, based on the pupil diameter and the first reference position, a part of each of the light emitting area and the light receiving area It may be suitably set in the range which is formed out of the pupil area of the above, and the remaining part (at least each part of the light emitting area and the light receiving area) is formed in the pupil area.
  • the pupil diameter used to determine the offset may be a design value or an actual measurement value.
  • At least one of the direction and the amount of the offset of the second reference position with respect to the first reference position may be determined in advance according to the positional relationship between the light projection area and the light reception area.
  • the direction of the offset may be determined in the direction in which the ratio between the light emitting area and the light receiving area included in the pupil area changes.
  • At least one of the direction and the amount of the offset may be set based on the observation image of the anterior segment or the fundus.
  • the area ratio of the light emitting area to the light receiving area arranged in the pupil area is calculated based on the anterior eye image, and at least one of the offset direction and the amount is set according to the area ratio. Good.
  • the alignment reference position may be set in consideration of vignetting due to the iris.
  • vignetting may be considered in setting the alignment reference position.
  • the vignetting state may be grasped from, for example, an observation image of the anterior segment or the fundus.
  • the control unit may set the alignment reference position based on the information on the pupil area of the subject's eye.
  • the information on the pupil area may be, for example, information indicating at least the size of the pupil area (as a specific example, area information of the pupil area, pupil diameter information, etc.).
  • the information on the pupil area may be information indicating the position and shape of the pupil area.
  • Information on the pupil region can be detected, for example, based on the anterior segment observation image.
  • the light emitting area and the light receiving area are formed at substantially known positions and sizes on the pupil of the eye to be examined. For this reason, it becomes possible to determine based on the information on the pupil region whether the light emission / reception is more suitably performed in the first reference position or the second reference position. Therefore, for example, the control unit selectively selects one of the first reference position and the second reference position where one of the light emitting area and the light receiving area can be more uniformly disposed in the pupil area. It may be set.
  • the information regarding a pupil area may be acquired from an anterior ocular segment observation image, and may be acquired as a result of measurement or imaging
  • Various methods are known as a method of setting a pupil region from an anterior ocular segment observation image, and they may be appropriately used.
  • information on the pupil region is acquired via any of a network connected to the ophthalmologic imaging device, an external storage medium, an input interface, and the like. It may be done.
  • control unit may set the alignment reference position based on the information on the brightness in the fundus oculi observation image.
  • at least the second reference position may be set based on the information related to the brightness in the fundus oculi observation image.
  • the information related to the brightness may be, for example, information based on various statistics obtained from the histogram of the luminance value of the fundus image.
  • the control unit acquires a plurality of fundus observation images in a plurality of alignment states in which the positional relationship between the subject eye and the imaging optical system is different from each other, and based on the information on the brightness of the plurality of fundus observation images
  • the alignment reference position may be set. For example, a position at which dispersion of luminance in the fundus image is maximized may be predicted from a plurality of fundus observation images, and the position may be set as the alignment reference position. Further, for example, a position at which the average luminance value in the fundus image is maximized may be predicted from a plurality of fundus observation images, and the position may be set as the alignment reference position. In this case, a positional relationship that makes the light emission and reception efficiency better can be set as the alignment reference position.
  • the control unit guides the alignment based on the alignment deviation from the alignment reference position.
  • alignment guidance may be a so-called auto alignment method or a manual alignment method.
  • the control unit may drive and control the drive unit based on the alignment deviation from the alignment reference position.
  • the control unit causes the monitor to display the anterior eye observation image and a guide (for example, an electronic reticle) for guiding the operation to the target position on the anterior eye observation image. It may be displayed based on the set alignment reference position.
  • the ophthalmologic imaging apparatus may include an operation input unit that receives the operation of the examiner and drives the drive unit to adjust the relative position according to the operation.
  • the operation input unit may be an input interface for inputting an operation for driving an actuator of the drive unit, or may directly act on a mechanical drive unit.
  • the alignment may be completed when the deviation from the alignment reference position is within the allowable range. Subsequently, fine adjustment based on the fundus observation image, diopter correction and the like may be performed. Then, after completion of various adjustments, the control unit may automatically execute fundus imaging. In addition, when photographing is performed based on a release operation by the examiner, a display prompting the release operation may be displayed on the monitor.
  • the ophthalmologic imaging apparatus may further include a fixation optical system for presenting a fixation target to the eye to be examined.
  • the fixation optical system may be capable of changing the direction of fixation by switching the position of the fixation target.
  • the control unit can properly capture the fundus image of the subject's eye at the presenting position of each fixation target by setting the alignment reference position according to the presenting position of the fixation target.
  • the light emitting / receiving separation unit may form at least two light projecting areas on the pupil of the eye to be examined which are different in position from each other.
  • the light receiving area is preferably formed so as to be sandwiched between two light emitting areas.
  • the light receiving area and one of the two light emitting areas may be disposed in the pupil area of the eye to be examined preferentially to the remaining one light emitting area.
  • the control unit may select at least one of the first reference position and the second reference position to guide the alignment.
  • the first reference position may be a position where the center of the eye to be examined (for example, any of the corneal apex and the pupil center, etc.) coincides with the imaging optical axis, and the first reference position is It may be a position where the center of the eye to be examined and the barycentric position of the two light emitting areas and the light receiving area coincide with each other.
  • the two light emitting areas are equally disposed within the pupil area of the eye to be inspected together with the light receiving area, and thus the pupil area of the eye to be inspected is sufficiently large. It is easy to take a good fundus image with a sufficient amount of light.
  • the pupil diameter is small, it is difficult to place both of the two light projection areas simultaneously in the pupil, or when each of the two light projection areas is arranged so as to partially overlap the iris, It is conceivable that the light amount of the illumination light reaching the light source may be insufficient or not (see FIG. 8A). Therefore, in this case, it is preferable that the alignment be performed based on the second reference position.
  • one of the two light emitting areas is disposed together with the light receiving area in the pupil of the eye to be examined preferentially over the remaining one light emitting area (see FIG. 8B).
  • the remaining one floodlight region may be arranged outside the pupil.
  • the first reference position and the second reference position may be selected according to, for example, the size of the pupil area of the eye to be examined. For example, if the size of the pupil area is larger than the threshold, the first reference position may be selected, and if the pupil area is smaller than the threshold, the second reference position may be set. . That is, the second imaging mode is used to capture an eye having a relatively small pupil diameter.
  • the threshold may be, for example, a value according to the arrangement interval of the two light projection areas on the pupil of the eye to be examined.
  • the area through which the illumination light passes in fundus imaging may be different from each other between the first reference position and the second reference position.
  • the illumination light may be projected to the fundus from both of the two light projection areas formed on the pupil conjugate plane to capture the fundus image.
  • the illumination light may be simultaneously transmitted from both of the two light projection areas to capture an eye fundus image.
  • one that transmits illumination light may be alternately switched between two light projection areas, and a fundus oculi image may be captured for each switching.
  • a composite image may be generated from at least two fundus images captured by alternately projecting light.
  • the illumination light may be projected onto the fundus from only one of the two light projection areas to capture a fundus image. At this time, it is preferable that the illumination light is projected from one of the two light projection areas which is preferentially disposed in the pupil area.
  • the fundus image is increased by increasing at least one of the light amount of the illumination light and the gain of the imaging device by aligning to the first reference position and imaging.
  • You may take pictures of The light amount or gain may be set according to the size of the pupil area.
  • the light amount or the gain may be set according to the ratio of the light projection area and a part of the light reception area to the total area of the light transmission area and the light reception area.
  • the light emitting and receiving separation section may form the two light emitting areas and the light receiving area at positions separated in the left and right direction on the pupil conjugate plane.
  • the width in the vertical direction can be easily narrowed compared to the total length in the horizontal direction in these three regions. As a result, it becomes difficult for the eyelids to overlap with the light emitting area and the light receiving area, and vignetting due to blinking is easily suppressed.
  • the light emitting / receiving separation unit may form the two light projection areas at positions separated in the vertical direction on the pupil conjugate surface of the eye to be examined.
  • the second reference position may be determined such that one of the two light projection areas formed on the lower side is preferentially placed in the pupil.
  • the control unit may align the second reference position, and may project illumination light from one of the light projection areas preferentially disposed when capturing the fundus image, and may capture the fundus image. In this case, since it becomes difficult for the light projection area to overlap with the eyelid at the time of blink, vignetting due to blink is easily suppressed.
  • control unit may further select the third reference position as the alignment reference position and capture the fundus image.
  • the third reference position is a position where the other light projecting area is preferentially arranged together with the light receiving area, as compared with one of the two light projecting areas which is preferentially arranged to the pupil area at the second reference position.
  • the control unit first guides the alignment to the second reference position, and the first fundus image based on at least illumination light from one of the two light projection areas that is preferentially placed in the pupil area at the second reference position. And then guides alignment to the third reference position, and the second image based on at least illumination light from those preferentially placed in the pupil region at the third reference position among the two light projection regions.
  • a fundus image may be taken.
  • the first fundus image and the second fundus image are different from each other in the position where the reflected image of the objective lens and the artifact such as flare occur. Therefore, as in the first embodiment, a composite image of two fundus images may be generated.
  • the fundus imaging apparatus 1 (hereinafter simply referred to as “imaging apparatus 1”) forms illumination light in the form of a slit on the fundus of the eye to be examined, scans the area formed in the form of a slit on the fundus, and performs illumination By receiving the fundus reflected light of light, a front image of the fundus is photographed.
  • the appearance configuration of the photographing device 1 will be described with reference to FIG.
  • the photographing device 1 has a photographing unit 3.
  • the imaging unit 3 mainly includes the optical system shown in FIG.
  • the imaging apparatus 1 has a base 7, a drive unit 8, a face support unit 9, and a face imaging camera 110, and adjusts the positional relationship between the eye E and the imaging unit 3 using these.
  • the driving unit 8 can move in the left-right direction (X direction) and the front-rear direction (Z direction, in other words, the working distance direction) with respect to the base 7. Furthermore, the drive unit 8 further moves the imaging unit 3 in the three-dimensional direction with respect to the eye E on the drive unit 8.
  • the drive unit 8 has an actuator for moving the drive unit 8 or the imaging unit 3 in each of the predetermined movable directions, and is driven based on a control signal from the control unit 80.
  • the face support unit 9 supports the face of the subject. The face support unit 9 is fixed to the base 7.
  • the face photographing camera 110 is fixed to the housing 6 so that the positional relationship with respect to the photographing unit 3 becomes constant.
  • the face photographing camera 110 photographs the face of the subject.
  • the control unit 100 specifies the position of the subject's eye E from the photographed face image and controls the drive unit 8 to align the imaging unit 3 with the specified position of the subject's eye E.
  • the imaging device 1 further includes a monitor 120.
  • the monitor 120 displays a fundus oculi observation image, a fundus oculi taken image, an anterior segment observation image, and the like.
  • the imaging apparatus 1 includes an imaging optical system (fundus oculi imaging optical system) 10 and an anterior segment observation optical system 40. These optical systems are provided in the imaging unit 3.
  • FIG. 10 “ ⁇ ” is shown on the photographing optical axis at a position conjugate with the pupil of the subject eye, and “x” is shown on the photographing optical axis at the fundus conjugate position.
  • the photographing optical system 10 has an irradiation optical system 10 a and a light receiving optical system 10 b.
  • the irradiation optical system 10 a includes the light source unit 11, the lens 13, the slit-like member 15 a, the lenses 16 and 17, the mirror 18, the perforated mirror 20, and the objective lens 22.
  • the light receiving optical system 10 b includes an objective lens 22, a perforated mirror 20, lenses 24 and 26, a slit-like member 15 b, and an imaging element 28.
  • the perforated mirror 20 is an optical path coupling portion that couples the optical paths of the irradiation optical system 10a and the light receiving optical system 10b.
  • the perforated mirror 20 reflects illumination light from the light source toward the subject's eye E, and of the fundus reflected light from the subject's eye E, transmits a part of the fundus reflected light that has passed through the opening toward the imaging device.
  • Various beam splitters other than the perforated mirror 20 can be used.
  • a mirror in which the perforated mirror 20 and the light transmitting part and the reflecting part are reversed may be used as the optical path coupling part.
  • the independent optical path of the light receiving optical system 10b is placed on the reflection side of the mirror
  • the independent optical path of the light projection optical system 10a is placed on the transmission side of the mirror.
  • the perforated mirror and the mirror as an alternative means can be further replaced with a combination of a half mirror and a light shielding portion, respectively.
  • the light source unit 11 has a plurality of types of light sources having different wavelength bands.
  • the light source unit 11 includes visible light sources 11a and 11b and infrared light sources 11c and 11d.
  • two light sources are provided for each wavelength.
  • Two light sources of the same wavelength are arranged apart from the imaging optical axis L on the pupil conjugate plane.
  • the two light sources are arranged along the X direction which is the scanning direction in FIG. 10, and are arranged in axial symmetry with respect to the photographing optical axis L.
  • the outer peripheral shape of the two light sources may be a rectangular shape longer in the direction intersecting the scanning direction than in the scanning direction.
  • the slit-like member 15a has a light transmitting portion (opening) elongated along the Y direction.
  • the illumination light is formed in the shape of a slit in the fundus conjugate plane (the region illuminated in the shape of the slit on the fundus is illustrated as a reference symbol B).
  • the slit-like member 15a is displaced by the drive unit 15c such that the light-transmissive portion crosses the photographing optical axis L in the X direction.
  • scanning of the illumination light in the present embodiment is realized.
  • scanning by the slit-like member 15b is also performed on the light receiving system side.
  • the slit-like members on the light emitting side and the light receiving side are interlocked and driven by one drive unit (actuator).
  • the image of each light source is relayed by the optical system from the lens 13 to the objective lens 22 and is imaged on the pupil conjugate plane. That is, on the pupil conjugate plane, images of the two light sources are formed at positions separated in the scanning direction.
  • the two light projection areas P1 and P2 on the pupil conjugate plane are formed as images of two light sources.
  • the slit-like light having passed through the slit-like member 15a is relayed by the optical system from the lens 16 to the objective lens 22 and forms an image on the fundus Er.
  • the illumination light is formed in a slit shape on the fundus Er.
  • the illumination light is reflected on the fundus Er and is extracted from the pupil Ep.
  • the aperture of the perforated mirror 20 is conjugate to the pupil of the subject's eye, the fundus reflected light used for photographing the fundus image passes the image (pupil image) of the perforated mirror opening on the pupil of the subject's eye Limited to some.
  • the image of the opening on the pupil of the eye to be examined is the light receiving region R in the present embodiment.
  • the light receiving area R is formed so as to be sandwiched between two light emitting areas P1 and P2 (images of two light sources).
  • the light receiving area R and the two light projecting areas P1 and P2 do not overlap each other on the pupil. Is formed. As a result, the occurrence of flare is favorably reduced.
  • harmful light is removed by arranging the light transmitting portion of the slit-like member 15b at the position of image formation.
  • the imaging device 28 is disposed at the fundus conjugate position.
  • a relay system 27 is provided between the slit-like member 15 b and the imaging device 28, whereby both the slit-like member 15 b and the imaging device 28 are disposed at the fundus conjugate position.
  • the relay system 27 between the imaging device 28 and the slit-like member 15b may be omitted, and both may be arranged close to each other.
  • a device having a two-dimensional light receiving surface is used as the imaging element 28.
  • a CMOS, a two-dimensional CCD, or the like may be used.
  • the imaging device 28 is sensitive to both infrared light and visible light.
  • an image (a slit-like image) at a scanning position on the fundus Er is sequentially projected for each scanning line of the imaging device.
  • the entire image of the scanning range is projected on the imaging device in time division.
  • a front image of the fundus Er is captured as the entire image of the scanning range.
  • the scanning unit in the light receiving system is a device which mechanically scans the slit, but it is not necessarily limited to this.
  • the scanning unit on the light receiving optical system side may be a device that electronically scans a slit.
  • the imaging device 28 is a CMOS
  • scanning of the slit may be realized by a rolling shutter function of the CMOS. In this case, by displacing the area to be exposed on the imaging surface in synchronization with the scanning unit in the light projection system, it is possible to efficiently photograph while removing harmful light.
  • a liquid crystal shutter or the like can be used as a scanning unit that electronically scans the slit.
  • the photographing optical system 10 has a diopter correction unit.
  • a diopter correction unit is provided in each of the independent optical path of the irradiation optical system 10a and the independent optical path of the light receiving optical system 10b.
  • the light emitting optical system 10a can change the distance between the lenses 16 and 17, and the light receiving optical system 10b can change the distance between the lenses 24 and 26, thereby performing diopter correction.
  • the photographing apparatus 1 has drive units 16a and 26a (see FIG. 12) for changing the respective lens intervals, and the drive units 16a and 26a of the irradiation optical system 10a and the light receiving optical system 10b mutually It is driven in conjunction.
  • the diopter correction unit is not limited to this. For example, even if the positional relationship between at least three of the light sources 11a to 11d, the slit members 15a and 15b, and the imaging device 28 is maintained, the diopter correction is performed by moving it in the optical axis direction. Good.
  • the scanning unit of the ophthalmologic apparatus may be, for example, an optical chopper as shown in FIG.
  • the optical chopper has a wheel having a plurality of slits formed on the outer periphery, and can scan the slits at high speed by rotating the wheel.
  • the optical chopper can be applied as a scanning unit by rotating the directions of the open mirror 20 and the mirror 18 by 90 ° from the illustrated state and arranging the both in parallel in the Y direction.
  • the light axis of the irradiation optical system 10a and the light axis of the light receiving optical system 10b are transversely cut at two points, the upper end and the lower end of the wheel, so that the light projection system and the light receiving system are one optical chopper.
  • the scan of can be easily synchronized.
  • the anterior eye observation optical system 40 shares the objective lens 22 and the dichroic mirror 43 with the photographing optical system 10.
  • the anterior eye observation optical system 40 further includes a light source 41, a half mirror 45, an imaging device 47, and the like.
  • the imaging device 47 is a two-dimensional imaging device, and is disposed, for example, at a position optically conjugate with the pupil Ep.
  • the anterior eye observation optical system 40 illuminates the anterior eye with infrared light and captures a front image of the anterior eye.
  • the anterior eye observation optical system 40 shown in FIG. 10 is merely an example, and the anterior eye may be imaged by an optical path independent of other optical systems.
  • control unit 100 controls each part of the photographing apparatus 1. Further, for the sake of convenience, the control unit 100 also performs image processing of various images obtained by the photographing device 1. In other words, in the present embodiment, the control unit 100 doubles as the image processing unit.
  • the control unit 100 is a processing device (processor) having an electronic circuit that performs control processing of each part and arithmetic processing.
  • the control unit 100 is realized by a CPU (Central Processing Unit), a memory, and the like.
  • the control unit 100 is electrically connected to the storage unit 101 via a bus or the like.
  • the storage unit 101 stores various control programs, fixed data, and the like.
  • the storage unit 101 may also store temporary data and the like.
  • Images captured by the imaging device 1 may be stored in the storage unit 101.
  • the present invention is not necessarily limited to this, and the photographed image may be stored in an external storage device (for example, a storage device connected to the control unit 100 by a LAN and a WAN).
  • control unit 100 includes all units such as the drive unit 8, the light sources 11a to 11d, the drive unit 15c, the drive unit 16a, the drive unit 26a, the imaging device 28, the light source 41, the imaging device 47, the input interface 110, and the monitor 120. It is electrically connected.
  • control unit 100 controls each of the above-described members based on an operation signal output from the input interface 110 (operation input unit).
  • the input interface 110 is an operation input unit that receives an operation of the examiner. For example, it may be a mouse and a keyboard.
  • the imaging apparatus 1 may automatically start the imaging operation when the face of the subject is disposed with respect to the face support unit 9 and included in the imaging range of the face detection camera 110.
  • imaging by the face detection camera 110 and the anterior segment observation optical system 40 is performed in parallel (S1), and alignment adjustment using both imaging results is performed (S2).
  • control unit 100 detects one of the positions of the left and right eyes included in the face image, and drives the drive unit 8 based on the position information. Thereby, the position of the imaging unit 4 is adjusted to the position where the anterior segment observation is possible.
  • an alignment reference position is set based on the anterior segment front image, and alignment is guided to the set alignment reference position.
  • the control unit 100 adjusts the positional relationship between the eye E and the imaging unit 3 based on the front image of the anterior segment.
  • the control unit 100 based on the signal from the imaging device 47, the control unit 100 substantially matches the position where the pupil center in the anterior segment observation image and the image center (in the present embodiment, the position of the photographing optical axis L) coincide.
  • a first reference position that targets the relationship is set. Then, the alignment deviation from the first reference position is detected, and the imaging unit 4 is moved in the vertical and horizontal directions in the direction in which the alignment deviation is eliminated.
  • an alignment deviation with the first reference position may be detected based on the deviation amount between the pupil center and the photographing optical axis on the anterior eye observation image.
  • the alignment shift may be detected based on the shift amount between the alignment index and the imaging optical axis. .
  • control unit 100 moves the imaging unit 4 in the front-rear direction so that the anterior segment observation image is focused on the pupil Ep.
  • the positional relationship between the eye to be examined and the photographing unit 4 is such that the center of the light receiving region R on the pupil of the eye to be examined (that is, the photographing optical axis)
  • the position is adjusted to a position (a first reference position in the present embodiment) that coincides with
  • pupil diameter detection processing (pupil information acquisition processing) is performed (S3).
  • the pupil region Ep is detected from the anterior ocular segment observation image, and the diameter of the detected pupil region Ep is determined. In the present embodiment, it is preferable to determine the diameter in the scanning direction. In the present embodiment, the value of the diameter of the pupil region Ep acquired in the process of S3 is acquired as pupil diameter information and stored in the memory.
  • the control unit 100 sets an imaging mode according to the acquired pupil diameter (S4, S5, S11).
  • the pupil diameter is compared with the threshold (S4).
  • the threshold is a value corresponding to the arrangement interval of the two light emitting areas P1 and P2 on the pupil of the eye to be examined, and in the present embodiment, the total length W (see FIG. 10) is used as an example of the threshold.
  • the threshold value is a fixed value regardless of the diopter correction amount. For example, a fixed value assuming a 0D eye is used as a threshold.
  • the threshold value may be obtained each time according to the diopter correction amount of (1), and the obtained threshold value may be compared with the pupil diameter.
  • the first imaging mode is set (S5).
  • the second imaging mode is set (S11).
  • the control unit 100 determines that the center of the light receiving area R (in the present embodiment, the position of the photographing optical axis L and the center of gravity of the two light emitting areas P1 and P2 and the light receiving area R) is substantially the pupil center.
  • the drive unit 8 is driven to adjust the positional relationship between the eye E and the imaging unit 4 with the matching alignment state as the target (that is, the first reference position as the target).
  • the control unit 100 After the first imaging mode is set, the control unit 100 starts imaging and display of the fundus oculi observation image (S6). Specifically, the control unit 100 simultaneously turns on the light sources 11c and 11d and starts driving the drive unit 15c, and the slit-like illumination light is repeatedly scanned in a predetermined range on the fundus Er. A fundus image taken substantially in real time is generated as needed as a fundus observation image based on the signal output from the imaging device 28 every predetermined number of scans (at least one scan). The control unit 100 may display the fundus oculi observation image on the monitor 120 as a substantially real-time moving image.
  • various adjustment processes are performed based on the fundus oculi observation image (S7). For example, diopter correction, fine adjustment of the alignment target position, or the like may be performed.
  • photographing control of the fundus oculi photographing image is executed automatically or based on the release operation.
  • control unit 100 alternately turns on the light sources 11a and 11b that emit visible light, and scans the illumination light on the fundus Er each time the light sources 11a and 11b are turned on.
  • the image and the second fundus image are photographed (S8, S9).
  • the control unit 100 combines the first fundus image and the second fundus image to generate a combined image. Since miosis starts immediately after the first fundus image is taken, of the two fundus images, the second fundus image captured later is the first fundus image due to the influence of vignetting due to miosis. The image may be darker than it is.
  • corresponds in a 2nd fundus image is produced
  • a fundus image in which the influence of the reflected image is suppressed can be obtained as a composite image with respect to the first fundus image and the second fundus image, and the influence of vignetting due to miosis can be suppressed.
  • the control unit 100 sets the second reference position based on the anterior eye observation image.
  • the second reference position is an alignment reference position such that one of the two light emitting areas P1 and P2 (here, the area P1) is placed in the pupil Ep together with the light receiving area R in preference to the other. (S12).
  • a second reference position is set in which an intermediate state between the light emitting area P1 and the light receiving area R targets an alignment state coincident with the pupil center.
  • the positional relationship between the eye to be examined and the imaging optical system may be offset in the X direction with respect to the alignment reference position (that is, the first reference position) in the alignment process of S2.
  • it is offset by W / 4 (see FIG. 10 for W).
  • the offset amount is not necessarily limited to this.
  • the control unit 100 detects an alignment deviation from the second reference position, and moves the imaging unit 4 in the vertical and horizontal directions in a direction in which the alignment deviation is eliminated. At this time, for example, even if the misalignment between the second reference position is detected based on the offset amount between the pupil center (or the corneal apex) on the anterior eye observation image and the photographing optical axis, and the above offset. Good.
  • the light emitting area P1 and the light receiving area R are favorably disposed in the pupil Ep. Note that which of the two light projection areas P1 and P2 is to be preferentially arranged in the pupil Ep may be determined in advance or may be selectable.
  • imaging of the fundus oculi observation image is started.
  • the two light sources 11c and 11d are simultaneously turned on.
  • the light projection area P1 preferentially disposed in the pupil Ep And the corresponding light source in the present embodiment, the light source 11c
  • the observation light of the fundus Er may be acquired by irradiating the fundus with illumination light for observation only from the light projection area P1.
  • the present invention is not necessarily limited thereto, and the light source corresponding to both of the light projection areas P1 and P2 may be turned on to acquire the observation image of the fundus oculi Er.
  • the control unit 100 turns on only the light source 11a corresponding to the light projection area P1 preferentially disposed in the pupil Ep, of the two light sources 11a and 11b emitting visible light.
  • the fundus image is taken.
  • the fundus image is stored in the memory as a photographed image.
  • the number of places where strong reflection occurs on the objective lens 22 is reduced, so the influence of the reflected image is reduced.
  • illumination light is irradiated to the outside of the pupil Ep of the iris, sclera or the like, and the reflected light is suppressed to be harmful light and to affect the fundus image. Therefore, even when the pupil diameter of the eye to be examined is small, it is possible to capture a good fundus image.
  • the control unit 100 controls the control unit 100 to calculate the amount of light from the light sources 11a and 11b emitted at the time of shooting in the second imaging mode and the gain of the imaging device 28 that receives the fundus reflected light. At least one of them is increased relative to the time of shooting in the first shooting mode. Thereby, the brightness and the contrast of the fundus oculi image captured in the second imaging mode can be improved.
  • the light amount and the gain may be set in accordance with the size (e.g., pupil diameter) of the pupil area of the subject.
  • control unit automatically adjusts the positional relationship between the eye to be examined and the imaging unit.
  • the present invention is not necessarily limited thereto, and the examiner may manually adjust the positional relationship between the subject's eye and the imaging unit.
  • the control unit may display at least an anterior segment observation image on the monitor.
  • the examiner can adjust the positional relationship between the eye to be examined and the imaging unit while viewing the anterior segment observation image.
  • an electronic index Ip corresponding to at least two light projection areas be displayed on the anterior eye observation image.
  • an index Ip corresponding to the light receiving area may be displayed. The positions and the sizes of the indices Ip and Ir may be constant on the anterior eye observation image, or may be changed according to the diopter correction amount in the photographing optical system.
  • the fundus oculi observation image may be simultaneously displayed on the monitor. Since the positional relationship between the eye to be examined and the imaging unit can be adjusted while checking the state of unevenness of brightness in the fundus image, etc., it is easy to adjust to the positional relationship in which a better fundus image can be obtained.
  • control unit individually displays the illumination light from each light projection area (ON / OFF of the illumination light) based on the operation on the input interface together with the display of the anterior eye observation image and the fundus observation image. It may be set to Then, the set irradiation state may be reflected in photographing of the fundus oculi observation image.
  • the examiner can search for imaging conditions under which a good fundus image can be obtained while manually changing the positional relationship between the eye to be examined and the imaging unit and the illumination state of the illumination light from each light projection area.
  • the cursor C is selected together with the index Ip on the anterior segment image to switch ON / OFF of the illumination light from the light projection area corresponding to the index Ip.
  • Reference Signs List 1 fundus imaging apparatus 10 photographing optical system 15a, 15b slit-like member 15c drive unit 100 control unit P1, P2 light projection area R light reception area

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

眼底撮影装置1は撮影光学系10、駆動部8、および制御部100を有する。撮影光学系10は、被検眼Eの瞳上において投光領域P1、P2と受光領域Rとを、互いに異なる位置に形成する。駆動部8は、被検眼Eと撮影光学系10との位置関係を調整する。制御部100は、アライメント基準位置として、投光領域P1、P2および受光領域Rの全部が被検眼の瞳孔領域内Epに形成されることを想定した第1基準位置と、投光領域P1,P2および受光領域Rのうちいずれかの領域の一部が瞳孔領域Epの外に形成されることを想定した第2基準位置と、のいずれかを選択的に設定可能であり、設定した前記アライメント基準位置からのアライメントずれに基づいてアライメントを誘導する。

Description

眼底撮影装置
 本開示は、眼底の正面画像を得るための眼底撮影装置に関する。
 被検眼の眼底の正面画像を撮影する眼底撮影装置が、眼科分野において広く利用されている。
 眼底撮影装置の1種として、例えば、眼底上でスリット状の照明光を走査し、照明された眼底領域の像を、走査に従って2次元的な撮像面に逐次投影させることで、眼底の正面画像を得る装置が知られている。この種の装置として、特許文献1には、2つの開口がスリットの走査方向に沿って形成された2つ孔絞りを、投光系の瞳孔と共役な面に配置して、照明光を2つ孔絞りの2つの開口から同時に照射させると共に、瞳上において投影される2つ穴絞りの隙間から眼底反射光を取り出して撮影する装置が開示されている。
特公昭61-48940号公報
 しかしながら、特許文献1の装置では、被検眼の瞳孔径が小さい場合に、2つ孔絞りによる2つの開口の像を、被検眼の瞳孔内に配置できず、虹彩で照明光がケラレてしまい、眼底画像が暗くなってしまう場合が考えられる。
 本開示は、従来技術の問題点に鑑みてなされたものであり、より瞳孔径の小さな被検眼を撮影しやすい眼底撮影装置を提供すること、を技術課題とする。
 本開示に係る第1の眼底撮影装置は、被検眼の瞳上において照明光が通過する投光領域と、被検眼の瞳上において前記照明光の眼底反射光が取り出される受光領域とを、互いに異なる位置に形成する、投受光分離手段、および、前記受光領域から取り出された前記眼底反射光を受光する受光素子、を備える撮影光学系と、被検眼と前記撮影光学系との位置関係を調整する駆動部と、を備え、前記受光素子からの信号に基づいて眼底画像を取得する眼底撮影装置であって、更に、被検眼と前記撮影光学系とのアライメントの基準となるアライメント基準位置として、前記投光領域および前記受光領域の全部が被検眼の瞳孔領域内に形成されることを想定した第1基準位置と、第1基準位置とは異なる第2基準位置であって、前記投光領域および前記受光領域のうちいずれかの領域の一部が被検眼の瞳孔領域外に形成されることを想定した第2基準位置と、のいずれかを選択的に設定可能であり、設定した前記アライメント基準位置からのアライメントずれに基づいてアライメントを誘導する撮影制御手段、を備える。
 第2の眼底撮影装置は、第1の眼底撮影装置において、前眼部観察画像を取得する前眼部観察光学系を備え、前記撮影制御手段は、前記前眼部観察画像から取得される被検眼の瞳孔領域に関する情報に基づいて前記アライメント基準位置を設定する。
 第3の眼底撮影装置は、第2の眼底撮影装置において、前記瞳孔領域に関する情報には、前記投光領域および前記受光領域のうち前記瞳孔領域内に配置される割合を含む。
 第4の眼底撮影装置は、第1~第3の眼底撮影装置のうちいずれかにおいて、前記眼底画像による眼底観察画像を取得する観察画像取得手段を備え、前記撮影制御手段は、前記眼底観察画像の明るさに関する情報に基づいて前記アライメント基準位置を設定する。
 第5の眼底撮影装置は、第1~第4の眼底撮影装置のうちいずれかにおいて、被検眼の前眼部観察画像を取得する前眼部観察光学系と、検者の操作を受け付け、操作に応じて前記駆動部を駆動させて前記相対位置を調整する、操作入力手段と、を備え、前記撮影制御手段は、モニタに前記前眼部観察画像を表示させると共に、前眼部観察画像上に、前記目標位置への操作を案内するガイドを、前記アライメント基準位置に基づいて表示させる表示制御手段と、を含む。
 第6の眼底撮影装置は、第1~第5の眼底撮影装置のうちいずれかにおいて、前記撮影制御手段は、前記アライメント基準位置からのアライメントずれに基づいて前記駆動部を駆動制御することで、アライメントを誘導する。
 第7の眼底撮影装置は、第1~第6の眼底撮影装置のうちいずれかにおいて、前記投受光分離手段は、被検眼の瞳上において互いに位置が異なる2つの投光領域を形成し、前記撮影制御手段は、前記第2基準位置として、前記受光領域と共に2つの前記投光領域のうち1つが、残り1つの前記投光領域よりも優先的に被検眼の瞳孔内に配置される位置を設定する。
 第8の眼底撮影装置は、第7の眼底撮影装置において、前記第2基準位置では、前記2つの前記投光領域のうち残り1つは、瞳孔外に配置される。
 第9の眼底撮影装置は、第7又は第8の眼底撮影装置において、第1基準位置では、前記受光領域の中心と、被検眼の瞳孔中心又は角膜中心とが一致する。
 第10の眼底撮影装置は、第7~第9の眼底撮影装置のうちいずれかにおいて、前記撮影制御手段は、前記第2基準位置へアライメントを誘導する場合は、前記第1基準位置へアライメントを誘導する場合に対して、前記照明光の光量または前記撮像素子のゲインのうち少なくとも一方を増大させて前記眼底画像を撮影する。
 第11の眼底撮影装置は、第7~第10の眼底撮影装置のうちいずれかにおいて、前記撮影制御手段は、前記第1基準位置へアライメントを誘導する場合は、眼底画像を撮影する際に、2つの前記投光領域のうち両方から前記照明光を眼底へ投光させ、前記第2基準位置へアライメントを誘導する場合は、眼底画像を撮影する際に、2つの前記投光領域のうち、優先的に瞳孔内に配置される一方のみから前記照明光を眼底へ投光させる。
 第12の眼底撮影装置は、第7~第11の眼底撮影装置のうちいずれかにおいて、前記投受光分離手段は、2つの前記投光領域、および、前記受光領域を、左右方向に分離した位置に形成する。
 第13の眼底撮影装置は、第7~第11の眼底撮影装置のうちいずれかにおいて、 前記投受光分離手段は、2つの前記投光領域を上下方向に分離した位置に形成し、前記撮影制御手段は、2つの投光領域のうち下側に形成される一方が瞳孔内に配置されるように前記第2基準位置が設定され、眼底画像を撮影する際に、前記一方から照明光が投光される。
 第14の眼底撮影装置は、第7~第13の眼底撮影装置のうちいずれかにおいて 前記投受光分離手段は、被検眼の瞳上において前記受光領域を、2つの前記投光領域に挟まれるように形成する。
 第15の眼底撮影装置は、第7~第14の眼底撮影装置のうちいずれかにおいて、前記撮影光学系は、被検眼の眼底上で照明光をスリット状に形成するスリット形成部、スリット状に形成された照明光を、スリットに対して直交する方向へ眼底上で走査する走査部、更に有し、前記投受光分離手段は、被検眼の瞳上において前記投光領域を、前記走査部の走査方向に関して互いに分離した2つの位置に形成すると共に、被検眼の瞳上において前記受光領域を、2つの前記投光領域に挟まれるように形成する。
 第16の眼底撮影装置は、第7~第15の眼底撮影装置のうちいずれかにおいて、前記撮影制御手段は、前記第1基準位置へのアライメント完了後、2つの前記投光領域の一方から投光された前記照明光に基づく眼底画像である第1眼底画像と、2つの前記投光領域のうち他方から投光された前記照明光に基づく眼底画像である第2眼底画像と、を撮影し、 前記眼底撮影装置は、前記第1眼底画像と前記第2眼底画像との少なくとも2枚を用いて合成画像を生成する画像処理手段を更に備える。
 第17の眼底撮影装置は、被検眼の眼底上で照明光をスリット状に形成するスリット形成部、眼底上でスリット状に形成された照明光を、スリットに対して交差する方向へ走査する走査部、および、被検眼の瞳上において前記照明光が通過する投光領域を、前記照明光の走査方向に関して互いに分離した2つの位置に形成すると共に、被検眼の瞳上において前記照明光の眼底反射光が取り出される受光領域を、2つの前記投光領域に挟まれるように形成する、投受光分離手段を有し、前記受光領域から取り出された前記眼底反射光に基づいて眼底画像を撮影する撮影光学系と、前記照明光を通過させるか否かを2つの前記投光領域に対して個別に設定し、2つの前記投光領域のいずれかから選択的に投光された前記照明光に基づく眼底画像を撮影する撮影制御手段と、を備える。
 第18の眼底撮影装置は、第17の眼底撮影装置において、前記投受光分離手段は、被検眼の瞳と共役な位置において前記走査方向に関して互いに異なる位置に配置される、2つの照明光源、または、2つの見かけ上の照明光源を、含み、前記撮影制御手段は、2つの前記照明光源、または、2つの前記見かけ上の照明光源からの照明光の投光状態を光源毎に制御することにより、前記照明光を通過させるか否かを2つの前記投光領域に対して個別に設定する。
 第19の眼底撮影装置は、第17又は第18の眼底撮影装置において、前記撮影制御手段は、2つの前記投光領域の一方から投光された前記照明光に基づく眼底画像である第1眼底画像と、2つの前記投光領域のうち他方から投光された前記照明光に基づく眼底画像である第2眼底画像と、を撮影し、前記眼底撮影装置は、前記第1眼底画像と前記第2眼底画像との少なくとも2枚を用いて合成画像を生成する画像処理手段を備える。
 第20の眼底撮影装置は、第16又は19の眼底撮影装置のいずれかにおいて、前記画像処理手段は、前記第1眼底画像におけるアーチファクトを含む領域に、前記第2眼底画像において対応する領域を合成することで、前記合成画像を生成する。
 第21の眼底撮影装置は、第16,第19,第20の眼底撮影装置のいずれかにおいて、前記撮影制御手段は、前記第1眼底画像の撮影後、前記照明光を通過させる前記投光領域を切換えて、前記第2眼底画像を前記第1眼底画像と連続的に撮影する。
 第22の眼底撮影装置は、第21の眼底撮影装置において、前記撮影光学系は、可視光による前記照明光を被検眼へ照射可能であり、前記第1眼底画像の画像中心部を、前記第2眼底画像において対応する領域と置き換えることにより、前記合成正面画像を生成する。
 第23の眼底撮影装置は、第22の眼底撮影装置において、前記撮影制御手段は、更に、2つの前記投光領域のうち両方から同時に投光された前記照明光に基づく眼底画像である第3眼底画像を撮影し、前記画像処理手段は、前記第1眼底画像と前記第2眼底画像と前記第3眼底画像とを用いて、前記合成画像を生成する。
 第24の眼底撮影装置は、第23の眼底撮影装置において、前記画像処理手段は、前記第3眼底画像における画像中心部を、前記第1眼底画像において対応する領域の一部、および、前記第2眼底画像において対応する領域の一部と、それぞれ置き換えることにより、前記合成正面画像を生成する。
 第25の眼底撮影装置は、第24の眼底撮影装置において、前記撮影光学系は、可視光による前記照明光を被検眼へ照射可能であり、前記撮影制御手段は、前記第3眼底画像の撮影後、前記照明光を通過させる前記投光領域を切換えて、前記第1眼底画像および前記第2眼底画像を連続的に撮影する。
 第26の眼底撮影装置は、第7~第25の眼底撮影装置において、前記投受光分離部は、被検眼の瞳上における、2つの前記投光領域と前記受光領域との間のクリアランスを変更可能である。
 第27の眼底撮影装置は、第26の眼底撮影装置において、被検眼の瞳孔領域を検出する検出手段と、前記クリアランスを、前記瞳孔領域の検出結果に基づいて変更する制御手段と、を備える。
撮影光学系による、眼底に対する照明光の照射および走査の態様を示した図である。 撮影光学系によって被検眼の瞳孔上に形成される、投光領域と受光領域とを示した図である。 2つの投光領域から同時に、照明光を眼底へ照射して撮影される眼底画像を示した図である。 2つの投光領域のうち一方から選択的に照明光を眼底へ照射して撮影される眼底画像を示した図である。 投光領域と受光領域とのクリアランスを変更可能な装置構成を説明するための図である。 第1の合成手法において合成正面画像を形成する際の処理の概要を示した図である。 第2の合成手法において合成正面画像を形成する際の処理の概要を示した図である。 被検眼と撮影ユニット(撮影光学系)との位置関係を変更することで、小瞳孔眼を撮影する方法を示す図である。 実施例に係る装置の外観構成を示した図である。 実施例の撮影ユニットに収容される光学系を示した図である。 走査部として適用可能なオプティカルチョッパーを示した図である。 実施例に係る装置の制御系を示したブロック図である。 装置の撮影動作を示すフローチャートである。 図13から連続したフローチャートである。 眼底観察画像の表示画面を例示した図である。
 以下、図面を参照しつつ、本開示に係る眼底撮影装置の実施形態を説明する。以下では、第1実施形態として、被検眼または装置内部での反射・散乱によって生じるアーチファクトが抑制される装置を開示する。また、第2実施形態として、被検眼の瞳孔径が小さい場合であっても、良好に眼底画像を撮影できる装置を開示する。各実施形態は、他の実施形態の一部を適宜利用できる。
 <第1実施形態>
 まず、第1実施形態について説明する。第1実施形態において、眼底撮影装置は、少なくとも、撮影光学系(図10参照)と、制御部(図12参照)と、を有する。追加的に、眼底撮影装置は、画像処理部を有していてもよい。
 <撮影光学系>
 撮影光学系は、被検眼の眼底へ照明光を投受光して、眼底画像を撮影するために利用される。より詳細には、被検眼の眼底上で照明光がスリット状に形成されるように、照明光が投光される。スリット状の照明光は、眼底上で走査される。走査範囲を撮影範囲として、眼底画像が撮影される。
 撮影光学系は、スリット形成部、走査部、および、投受光分離部、を少なくとも有する。追加的に、撮影光学系は、光源、撮像素子、および、光路分岐部等を有していてもよい。
 スリット形成部は、被検眼の眼底上で照明光をスリット状に形成する。スリット形成部は、例えば、スリット状の透光部(例えば、開口)が、眼底と共役な面内に配置されたものであってもよい。
 なお、本開示において「共役」とは、必ずしも完全な共役関係に限定されるものではなく、「略共役」を含むものとする。即ち、各部の技術意義との関係で許容される範囲で、完全な共役位置からズレて配置される場合についても、本開示における「共役」に含まれる。
 図1に示すように、走査部は、スリット状に形成された照明光を、眼底上で、スリットと交差する方向(詳細には、スリットの長手方向と交差する方向)に走査する。走査部は、スリット形成部をスリットと交差する方向に移動させることによって、照明光を走査するものであってもよい。この種の走査部としては、メカニカルシャッター、液晶シャッター、オプティカルチョッパー、および、ドラムリール等が例示される。
 スリットの走査方向は、好ましくは、スリットと直交する方向である。但し、スリットの直交方向に対して斜め方向であってもよい。
 また、走査部は、スリット形成部を通過した光の向きを、変化させる部材であってもよい。例えば、ガルバノスキャナ等の各種の光スキャナが、走査部として利用されてもよい。光を旋回させて走査を行うタイプの走査部は、被検眼の瞳と共役な位置に置かれてもよい。
 撮影光学系は、更に、光路結合部、および、対物レンズを有していてもよい。
 光路結合部は、照明光の投光光路と眼底反射光の受光光路とを結合および分離する。光路結合部によって形成される、投光光路と受光光路との共通光路上に、対物レンズは配置される。このとき、撮影光学系の光軸(以下、「撮影光軸」ともいう)と、対物レンズの光軸とが一致していることが望ましい。
 各種のビームスプリッターを、光路結合部として利用できる。この場合、光路結合部は、穴開きミラーであってもよいし、単なるミラーであってもよいし、ハーフミラーであってもよいし、その他のビームスプリッターであってもよい。
 <被検眼瞳上の投受光分離>
 投受光分離部は、被検眼の瞳上において、照明光が投光される区域(投光領域)と、照明光による眼底反射光が取り出される区域(受光領域)と、を分離する。
 詳細には、図2に示すように、投受光分離部によって、投光領域が、照明光の走査方向に関して互いに分離した2つの位置に形成される。2つの投光領域は、撮影光軸を挟むように形成されてもよい。なお、第1実施形態において、投受光分離部は、投光領域を少なくとも2つ形成するものであればよく、3つ以上の投光領域を形成するものであってもよい。各々の投光領域を通過した照明光は、眼底上で、同一のスリット状領域を照射する。そして、走査部の駆動に伴い、スリット状の領域が走査される。
 図2に示すように、投受光分離部によって、受光領域が、2つの投光領域に挟まれるように形成される。つまり、一方の投光領域、受光領域、他方の投光領域、の順に、各領域が一列に並んで形成される。また、受光領域は、撮影光軸上に形成されてもよい。投光領域と受光領域とは、互いに重なり合わないように配置されてもよい。その場合、角膜や中間透光体で、照明光の一部が反射および散乱を起こし、眼底画像にフレアーを生じさせることが軽減される。
 投受光分離部は、照明光の投光光路、および、受光光路にそれぞれ配置される複数の部材を含んでいてもよい。
 投受光分離部は、その一部が、例えば、照明光の投光光路における瞳共役面上において、照明光の走査方向に関して互いに離れた少なくとも2つの位置に照明光の照射位置を設定するものであってもよい。この場合、2つの照射位置に、照明光を発する光源がそれぞれ配置されてもよいし、2つの照射位置に、照明光を通過させる開口がそれぞれ配置されてもよい。
 換言すれば、投受光分離部は、被検眼の瞳と共役な位置において走査方向に関して互いに異なる位置に配置される、2つの照明光源、または、2つの見かけ上の照明光源を、少なくとも含むものであってもよい。これにより、投光領域は、照明光の走査方向に関して互いに分離した2つの位置に形成される。より好ましくは、2つの照明光源、または、2つの見かけ上の照明光源は、撮影光軸に対して対称に配置されてもよい。これにより、2つの投光領域を、撮影光軸に関して対称に形成できる。2つの光源、または、2つの見かけ上の光源からの投光状態は、後述の制御部によって、光源毎に制御可能であってもよい。投光状態が光源毎に制御される結果として、照明光を通過させるか否かが、各々の投光領域に対して個別に設定される。勿論、投受光分離部は、3つ以上の照明光源、または、3つ以上の見かけ上の照明光源を含むものであってもよい。
 なお、投光状態としては、光源または見かけ上の光源からの照明光が被検眼に到達する状態と、到達しない状態と、の2種類の状態が少なくともあり得る。投光状態の切換は、光源の点灯制御によって実現されてもよい。また、光源、又は、見かけ上の光源から、被検眼へ向かう光束を、選択的に遮ぎるシャッターを駆動制御することによって、投光状態の切換が実現されてもよい。
 また、投受光分離部は、その一部が、照明光の受光光路における瞳共役面上において、2つの投光領域に挟まれる領域である受光領域からの眼底反射光を撮像面側へ通過させ、それ以外の光を撮像面側へ通過させなくするものであってもよい。例えば、投受光分離部は、受光領域からの眼底反射光を撮像面側へ通過させ、それ以外の光を遮光する遮光部材を含むものであってもよい。遮光部材は、例えば、受光光路において瞳共役面上に配置されてもよい。例えば、遮光部材として、撮影光軸を中心に開口を有する絞りが設けられた場合、絞りの開口像によって、受光領域が形成される。
 投受光分離部に遮光部材が含まれる場合、遮光部材は、前述の光路結合部と共用されていてもよいし、別体であってもよい。
 <制御部>
 制御部は、各部の制御処理と、演算処理とを行う処理装置(プロセッサ)である。例えば、制御部は、CPU(Central Processing Unit)およびメモリ等で実現される。
 第1実施形態において、制御部は、照明光を通過させるか否かを、被検眼の瞳上の2つの投光領域に対して個別に設定する。また、2つの投光領域の一方(いずれか)から選択的に投光された照明光に基づいて、眼底画像を撮影する。
 ところで、眼底画像における撮影光軸の近傍位置には、対物レンズのレンズ面の中心部で照明光が反射されることによる、反射像(輝点像、アーチファクトの一種)が生じる場合がある。投光領域は撮影光軸から離れていることから、反射像は、眼底画像における撮影光軸の位置からややズレた位置に出現しやすい。一例として、2つの投光領域の両方から照明光を同時に投光して撮影した眼底画像を、図3に示す。図3に示すように、2つの投光領域に対応して、眼底画像の画像中心部において、撮影光軸を挟んだ2箇所で、反射像が生じ得る。2つの反射像は、走査方向に並んで(つまり、走査方向に関して異なる位置に)出現する。
 これに対し、本実施形態では、2つの投光領域のうち一方から選択的に照明光を眼底へ投光して、眼底画像が撮影される。これによって、対物レンズにおいて、反射像を生じさせる箇所が上記の場合に対して半減するので、図4に示すように、眼底画像における反射像を半減できる。このように、被検眼の瞳上の2つの投光領域のうち、一方から選択的に照明光を眼底へ投光して、眼底画像を撮影することは、アーチファクトを軽減するうえで、有利である。
 なお、2つの投光領域のうち、一方から選択的に照明光を眼底へ投光して眼底画像を撮影することは、瞳孔径が小さい被検眼を撮影する場合に有利である。瞳孔径が小さく、2つの投光領域を瞳孔領域内に満足に配置できない場合でも、1つの投光領域と受光領域との配置を許容するだけの瞳孔径があれば、良好に眼底画像を撮影できる。
 <投光領域と受光領域との間のクリアランスの変更>
 投受光分離部は、被検眼の瞳上における、2つの投光領域と受光領域との間のクリアランスを変更可能であってもよい。クリアランスが大きいほど、対物レンズによる反射像は生じ難くなる。クリアランスが小さければ、投光領域と受光領域とがより近づくので小瞳孔眼の撮影に有利になる。
 この場合、例えば、瞳共役面上で撮影光軸から離れた位置に光源が配置されることで、被検眼の瞳上に投光領域を形成する場合、2つ1組の光源を、図5に示すように、2組配置してもよい。2組の間では、撮影光軸から光源までの距離が互いに異なっていてもよい。また、すべての光源は、走査方向に並んで配置される。図5は、被検眼の瞳上に結像した2組の光源の像と、絞りの開口像と、を示している。この場合、2組の光源の像によって、瞳上には投光領域が形成され、絞りの開口像によって受光領域が形成される。
 2組のうち、いずれを用いて撮影するかは、被検眼の瞳孔径に応じて選択されてもよい。つまり、瞳孔径が十分に大きい場合は、より外側に配置された1組の中から光源を選択してもよい。この場合、反射像が低減されやすい。また、瞳孔径が小さい場合は、より内側に配置された1組の中から光源を選択してもよい。
 また、例えば、受光領域の大きさ又は形状を切換えることで、クリアランスが変更されてもよい。例えば、受光領域が絞りの開口像として形成される場合、開口の大きさが互いに異なる複数個の絞りの間で、光路上に配置される1つを切換えることで、クリアランスが変更されてもよい。また、絞りとして、可変開口絞りを用いることで、クリアランスが変更されてもよい。
 <画像処理によるアーチファクト除去>
 制御部は、2つの投光領域のうち一方から選択的に照明光を眼底へ投光して1枚目の眼底画像を撮影した後、更に、照明光が投光される投光領域を他方へ切換え、他方から選択的に照明光を投光して2枚目の眼底画像を撮影してもよい。このような2回の撮影によって、対物レンズによる反射像等のアーチファクトの出現位置が、撮影に利用した投光領域に応じて互いに異なる、2枚の眼底画像が得られる。1回目の撮影と2回目の撮影の間で、被検眼と撮影光学系との位置関係を変化させずに撮影が行われてもよい。また、2枚目の眼底画像の撮影は、1枚目の眼底画像の撮影から連続的に、且つ、自動的に実行されることが望ましい。
 本実施形態では、2枚の眼底画像を撮影する際に、被検眼と撮影光学系との位置関係を変化させる必要が無く、しかも、光源の点灯切換、あるいは、シャッターの駆動等により、比較的短時間で、被検眼の瞳上における投光領域を切換えできる。よって、2枚の眼底画像が短時間で撮影可能である。結果、1枚目の眼底画像と2枚目の眼底画像とを連続的に撮影しても、被検者の負担が抑制される。また、照明光が可視光であったとしても、1枚目の撮影後、速やかに2枚目の撮影が行われるので、1枚目の撮影に起因する縮瞳が2枚目の撮影において与える影響を抑制できる。
 ここで、縮瞳の影響としては、照明光および眼底反射光が虹彩でケラレることで、眼底画像が暗くなること等が例示される。画像中心部と画像周辺部との間におけるケラレの影響(明るさの変化)は、必ずしも一様ではない。例えば、画像の周辺部では、撮影画角が大きくなるほどケラレの影響を受けやすくなることがあり得る。
 本実施形態では、これらの2枚の眼底画像を合成処理することによって、1枚の眼底画像(以下、「合成画像」と称する)を生成してもよい。合成処理は、画像処理部によって実行される。画像処理部は、制御部とは別体の画像処理プロセッサであってもよいし、制御部のプロセッサによって一部または全部が兼用されていてもよい。
 本実施形態では、アーチファクトの影響が抑制された画像を得るために、合成処理が行われる。合成手法には、以下に例示するように、種々の手法がありうる。
 例えば、2枚の眼底画像のうち、一方の眼底画像におけるアーチファクトを含む領域を、その領域と対応する他方の眼底画像の一部と置き換えることで、合成画像が生成されてもよい(図6参照)。このとき、走査線単位で置き換えが行われてもよい。例えば、アーチファクトとして前述の反射像が生じる場合、一方の眼底画像の画像中心部に生じる反射像を、他方の眼底画像において対応する領域と置き換えられることで、合成画像が生成されてもよい。
 また、2枚の眼底画像の加算平均画像として、合成画像を生成してもよい。この場合、反射像と、それ以外の領域との間で、異なる加算比率を与えて加算平均処理が行われてもよい。
 なお、反射像が生じる領域は、視度によって多少の変動はあるものの、撮影光軸を基準とする略一定の範囲となる。このため、2枚の眼底画像において、合成処理で他方の画像と合成される領域は、予め定められていてもよい。但し、必ずしもこれに限られるものではなく、眼底画像に対して反射像の検出処理を行い、検出処理の結果に基づいて、合成される領域を個別に設定してもよい。また、視度に応じて合成される領域が設定されてもよい。また、被検眼の視度に応じて、合成処理の実行/非実行が選択されてもよい。
 なお、制御部は、合成画像と対応する走査範囲の一部のみの走査に基づいて1枚目の眼底画像を撮影し、投光領域を切換えたうえで、残り一部の走査に基づいて2枚目の眼底画像を撮影し、各眼底画像を合成(コラージュ)することで、合成画像を生成してもよい。この場合、走査範囲は、撮影光軸を中心として2分割され、分割された2つの走査範囲において、それぞれ眼底画像を撮影することが好ましい。なお、この場合、合成処理は、必ずしも画像処理に限定されるものでは無い。例えば、照明光が、走査範囲の分割位置に到来したタイミングで、照明光を投光させる投光領域を切換えることで、撮像面上に、合成画像を形成できる。
 この場合において、2枚の眼底画像の間で、眼底上の走査範囲と照明光が投光される投光領域との関係は、2枚の眼底画像の間で交差していることが好ましい。例えば、2つの投光領域が上下方向に並べて配置されると共に、眼底上で照明光が上下方向に走査される場合、上側の投光領域から照明光を通過させるときは、眼底の下半分の走査に基づいて1枚目の眼底画像を撮影し、下側の投光領域から照明光を通過させるときは、眼底の上半分の走査に基づいて2枚目の眼底画像を撮影し、両者から合成画像を生成してもよい。この場合、各々の投光領域との関係で、対物レンズの反射像、および、フレアー等のアーチファクトが含まれ難い部分を撮影した画像同士が合成される。従って、アーチファクトが抑制された合成画像を得ることができる。
 この合成処理に代えて、次のような撮影制御が実行されてもよい。即ち、撮影時に眼底上を走査する照明光が、2分割の境界位置に到来したタイミングで、投光領域が制御部によって切換えられてもよい。合成処理を必要とせずに、反射像が抑制された合成画像が生成される。
 <3枚の眼底画像による合成>
 図7に示すように、2つの投光領域の一方から照明光を選択的に照射させて撮影した第1眼底画像と、他方から照明光を選択的に照射させて撮影した第2眼底画像と、に加え、更に、2つの投光領域の両方から照明光を同時に照射させて撮影した第3眼底画像と、の撮影を行い、これら3枚の眼底画像を合成することによって、アーチファクトの抑制された合成画像を生成するようにしてもよい。この場合、第3眼底画像における画像中心部(2か所の反射像の領域)を、第1眼底画像において対応する領域の一部、および、第2眼底画像において対応する領域の一部と、それぞれ置き換えることにより、合成正面画像を生成してもよい。
 第3眼底画像は、2つの投光領域の両方から照明光を同時に照射されて撮影されたことから、明るさのムラが第1眼底画像,第2眼底画像に比べて少ない。合成画像は、第3眼底画像においてアーチファクトの周辺領域のみが第3眼底画像から変更されたものなので、明るさのムラを抑制できる。
 <補正処理>
 上記の合成処理では、複数枚の眼底画像を合成する際に、各種の補正処理を伴ってもよい。例えば、つなぎ目を滑らかにするために、シェーディングが行われてもよい。また、画像間の明るさの違いが補正されてもよい。明るさ補正は、可視光を用いて複数枚の眼底画像を撮影した際に、縮瞳の影響を軽減するうえで有用である。
 <画像間の位置合わせ>
 合成処理に際し、各眼底画像の位置合わせ(イメージレジストレーション)が画像処理部によって行われてもよい。ここでいう位置合わせには、平行移動,回転,拡大縮小,アフィン変換,および,非線形変形,等の少なくともいずれかが含まれていてもよい。位置合わせには、例えば、眼底画像における位相情報、および、特徴部分(例えば、血管、黄斑、乳頭、のいずれか等)の位置情報等のいずれかが利用されてもよい。
 <撮影順序について>
 上記の置き換えによる合成処理のように、合成処理に用いる複数の眼底画像のうち、1枚の眼底画像をベース画像とし、ベース画像におけるアーチファクトの近傍領域のみに対して、他の眼底画像を合成し、合成画像を生成する場合、複数の眼底画像のうち、いずれをベース画像とし、いずれを他の眼底画像とするかについては、各画像の撮影順序に応じて選択されてもよい。
 例えば、可視光を照明光として、複数の眼底画像を連続的に撮影した場合、最初の1枚の撮影直後から縮瞳が始まるので、その後に撮影される眼底画像は、縮瞳の影響を受けている恐れがある。そこで、上記のような合成処理では、最初に撮影された1枚をベース画像とすることで、縮瞳の影響が軽減された合成画像が得られる。
<他のアーチファクトへの適用>
 以上の説明では、対物レンズのレンズ面による反射像を、合成処理によって抑制する場合を説明したが、上記の合成処理は、反射像以外のアーチファクトに対しても適用可能である。詳細には、2つの投光領域の一方から照明光を選択的に照射させて撮影した第1眼底画像と、他方から照明光を選択的に照射させて撮影した第2眼底画像と、において、互いに異なる位置に発生するアーチファクトに対して適用可能である。一例として、まつ毛、および、フレアー等を対象として、上記の合成処理を適用できる。
 <第2実施形態>
 次に、第2実施形態について説明する。第2実施形態において、眼底撮影装置は、少なくとも、撮影光学系(図10参照)と、駆動部(図9、図12参照)と、制御部(図12参照)と、を有していてもよい。追加的に、眼底撮影装置は、前眼部観察光学系、入力インターフェイス、および、モニタの少なくともいずれかを有していてもよい。
 <撮影光学系>
 第2実施形態における撮影光学系は、被検眼の眼底へ照明光を投受光して、眼底画像を撮影するために利用される。第2実施形態における撮影光学系は、投受光分離部と、受光素子と、を少なくとも有する。追加的に、撮影光学系は、光源、対物光学系(例えば、対物レンズ)、および、光路分岐部等の少なくともいずれかを有していてもよい。
 第2実施形態では、撮影光学系として、少なくとも第1実施形態と同様の光学系を利用できる。但し、これに限らず、種々の光学系を、第2実施形態の撮影光学系として利用できる。より詳細には、撮影光学系は、被検眼の組織上で撮影光をスキャンして撮影を行う走査型の光学系であってもよいし、非走査型の光学系であってもよい。走査型の光学系の一例としては、組織上でスポット状の撮影光を二次元的にスキャンするスポットスキャンタイプの光学系であってもよいし、ライン状の撮影光を一方向にスキャンするラインスキャンタイプの光学系であってもよい。この場合、点受光素子、ラインセンサ、二次元受光素子(撮影素子)等の中からいずれかを、受光素子として適宜採用し得る。なお、第1実施形態の光学系は、ラインスキャンタイプの光学系の一例である。また、非走査型の光学系の一例としては、一般的な眼底カメラの光学系等が挙げられる。
 第2実施形態における投受光分離部は、少なくとも、被検眼の瞳上において、照明光が投光される区域(投光領域)と、照明光による眼底反射光が取り出される区域(受光領域)と、を分離する。そして、受光領域から取り出された眼底反射光が、受光素子によって受光される。
 投受光分離部は、瞳共役面上において、投光領域および受光領域の一方が他方を挟むように、各領域を形成するものであってもよい。具体例として、第1実施形態のように、一方の領域(第1実施形態では投光領域)が、完全に分離した2つの位置に形成され、その間に、他方の領域(第1実施形態では受光領域)を形成されてもよい。また、別の具体例として、一般的な眼底カメラらのように、投光領域および受光領域が同心円状に形成されてもよい。
 第2実施形態において、投受光分離部は、投光光路および受光光路の一方または両方に配置される、1つ以上の部材からなる。第1実施形態のように、投受光分離部は、照明光の投光光路、および、受光光路にそれぞれ配置される複数の部材を含んでいてもよい。例えば、投光光路と受光光路とを結合・分岐する光路分岐部が、投受光分離部と兼用されていてもよい。
 <前眼部観察光学系>
 第2実施形態の眼科撮影装置は、前眼部観察光学系(図10参照)を持ち、前眼部観察光学系を介して前眼部観察画像を取得可能であってもよい。前眼部観察光学系は、撮像素子を少なくとも有していてもよい。前眼部観察画像は、被検眼と撮影光学系との位置関係を調整するために(つまり、アライメント、トラッキング等に)利用される。前眼部観察画像は、例えば、前眼部の正面画像であってもよい。アライメントの際、前眼部観察画像は、モニタに表示されてもよい。これにより、リアルタイムなアライメント状態を、検者に把握させることができる。
 前眼部観察光学系は、撮影光学系と光学系の一部が共用されていてもよい。撮影光学系と、前眼部観察光学系と、は、ユニット化されていてもよく、後述の駆動部によって、両者は一体的に、被検眼との位置関係が変化されてもよい。
 前眼部観察画像は、撮影光学系の撮像素子とは別体の撮像素子で撮像されてもよい。この撮像素子の他に、前眼部観察光学系は、光源等の種々の光学素子を備えていてもよい。
 更に、眼底撮影装置は、被検眼にアライメント指標を投影するアライメント指標投影光学系を有していてもよい。そして、前眼部または眼底の観察画像に形成されるアライメント指標に基づいて、アライメントが誘導されてもよい。
 <駆動部>
 駆動部は、被検眼と撮影光学系との位置関係を変更(調整)する機構である。位置関係が変更されることで、被検眼の瞳上における投光領域および受光領域と、瞳孔領域との位置関係が変化する。
 なお、駆動部は、被検眼と撮影光学系との位置関係を制御部からの信号に基づいて変更するアクチュエータを有していてもよいし、被検眼と撮影光学系との位置関係を検者から与えられる力に応じて変更するメカニカルな機構であってもよい。
 駆動部は、例えば、撮影光学系(および前眼部観察光学系)を含む撮影ユニットを、変位させるものであってもよいし、被検者の顔を支持する顔支持ユニット(例えば、顎受け台)を変位させるものであってもよいし、両者を組み合わせたものであってもよい。
 <制御部>
 第2実施形態において、制御部は、アライメント基準位置の設定処理と、アライメント誘導処理と、を実行する。設定処理において、制御部は、被検眼と撮影光学系とのアライメントの基準(アライメントずれの基準)となるアライメント基準位置を、投光領域および受光領域を通過する光束のケラレを考慮して設定する。アライメント基準位置を目標として、被検眼と撮影光学系との位置関係が調整(つまり、アライメント)される。
 制御部は、第1基準位置と、第1基準位置とは異なる第2基準位置との少なくともいずれかを、選択的に設定可能であってもよい。ここでいう、第1基準位置は、投光領域および受光領域の全部が被検眼の瞳孔領域内に形成されることを想定した位置である。第2基準位置は、投光領域および受光領域のうちいずれかの領域の一部が被検眼の瞳孔領域外に形成されることを想定した位置である。なお、第2基準位置は、投光領域および受光領域のうち残り一部(投光領域および受光領域の少なくとも各一部)については、瞳孔領域内に形成されることを想定した位置である。
 例えば、第1基準位置および第2基準位置のそれぞれは、予め定められていてもよいし、被検眼毎に設定可能であってもよい。例えば、第1基準位置および第2基準位置のそれぞれは、前眼部または眼底の観察画像に基づいて設定されてもよい。眼底観察画像は、撮影光学系を介して取得される眼底画像の一種であり、赤外光等の不可視光を照明光として撮影される動画像であってもよい。
 第1基準位置は、例えば、所要瞳孔径(設計値)において、投光領域および受光領域の全部が瞳孔領域内に形成されることが想定される位置であってもよい。この場合、例えば、第1基準位置は、撮影光軸と被検眼の中心(例えば、角膜頂点、又は、瞳孔中心)とが一致するような位置であってもよい。
 第2基準位置は、第1基準位置に対して、被検眼と撮影光学系との位置関係が撮影光軸と交差する方向にオフセットされた位置であってもよい。また、第2基準位置は、撮影光軸と角膜頂点とが一致する位置、および、撮影光軸と瞳孔中心とが一致する位置とのいずれとも異なる位置であってもよい。オフセットによって投光領域および受光領域と、被検眼の瞳孔領域との位置関係が、第1基準位置の場合とは変化するので、ケラレの影響が改善され得る。
 第1基準位置に対する第2基準位置のオフセットの方向および量は、例えば、瞳孔径と第1基準位置とに基づいて、投光領域および受光領域の各々のいずれかの領域の一部が被検眼の瞳孔領域外に形成され、且つ、残り一部(投光領域および受光領域の少なくとも各一部)が瞳孔領域内に形成される範囲で、適宜設定されてもよい。このとき、オフセットを定めるうえで利用される瞳孔径は、例えば、設計値であってもよいし、実測値であってもよい。
 また、第1基準位置に対する第2基準位置のオフセットの方向および量の少なくとも一方は、投光領域と受光領域との位置関係に応じて予め定められていてもよい。例えば、オフセットの方向は、瞳孔領域内に含まれる投光領域と受光領域との比率が変化する方向に定められていてもよい。
 また、オフセットする方向および量の少なくとも一方は、前眼部または眼底の観察画像に基づいて設定されてもよい。例えば、前眼部画像に基づいて瞳孔領域内に配置される投光領域と受光領域との面積比を算出し、その面積比に応じて、オフセットする方向および量の少なくとも一方が設定されてもよい。
 ここでは、虹彩によるケラレが考慮されて、アライメント基準位置が設定されてもよい。これに代えて、又は、追加的に、アライメント基準位置の設定に際し、瞼によるケラレが考慮されてもよい。ケラレの状態は、例えば、前眼部または眼底の観察画像から把握されてもよい。
 ここで、制御部は、被検眼の瞳孔領域に関する情報に基づいて、アライメント基準位置を設定してもよい。瞳孔領域に関する情報は、例えば、少なくとも瞳孔領域の大きさを示す情報(具体例としては、瞳孔領域の面積情報、瞳孔径情報等)であってもよい。また、瞳孔領域に関する情報は、瞳孔領域の位置、および、形状を示す情報であってもよい。瞳孔領域に関する情報は、例えば、前眼部観察画像に基づいて検出できる。投光領域および受光領域は、被検眼の瞳上において、ほぼ既知の位置および大きさで形成される。このため、第1基準位置と第2基準位置とのいずれの場合で投受光がより好適に行われるのかを、瞳孔領域に関する情報に基づいて判別可能となる。そこで、例えば、制御部は、第1基準位置と第2基準位置とのうち、投光領域および受光領域の両者が、より万遍なく瞳孔領域内に配置可能な一方の位置を、選択的に設定してもよい。
 なお、瞳孔領域に関する情報は、前眼部観察画像から取得されてもよいし、他の装置での測定または撮影の結果として、取得されてもよい。前眼部観察画像から瞳孔領域を設定する手法としては、種々の処理が知られており、それらが適宜利用され得る。また、他の装置で測定または撮影に基づいて取得される場合、瞳孔領域に関する情報は、眼科撮影装置に接続されるネットワーク、外部記憶媒体、及び、入力インターフェイス、等のいずれかを介して、取得されてもよい。
 また、制御部は、眼底観察画像における明るさに関する情報に基づいてアライメント基準位置を設定してもよい。本実施形態では、少なくとも第2基準位置が、眼底観察画像における明るさに関する情報に基づいて設定されてもよい。明るさに関する情報は、例えば、眼底画像の輝度値のヒストグラムから取得される各種の統計量に基づく情報であってもよい。ここで、ケラレの影響が少ないほど、眼底観察画像は明るくなり、各位置における明るさのムラが低減される。そこで、例えば、制御部は、被検眼と撮影光学系との位置関係が互いに異なる複数のアライメント状態で、複数枚の眼底観察画像を取得し、その複数の眼底観察画像の明るさに関する情報に基づいて、アライメント基準位置を設定してもよい。例えば、眼底画像における輝度の分散が最大化する位置を複数枚の眼底観察画像から予測して、当該位置をアライメント基準位置として設定してもよい。また、例えば、眼底画像における平均輝度値が最大化する位置を複数枚の眼底観察画像から予測して、当該位置をアライメント基準位置として設定してもよい。この場合、より投受光の効率が良好になる位置関係が、アライメント基準位置として設定され得る。
 制御部は、アライメント基準位置からのアライメントずれに基づいてアライメントを誘導する。ここで、アライメントの誘導は、いわゆるオートアライメント方式であってもよいし、マニュアルアライメント方式であってもよい。オートアライメント方式では、制御部は、アライメント基準位置からのアライメントずれに基づいて駆動部を駆動制御してもよい。
 また、マニュアルアライメント方式では、制御部は、モニタに前眼部観察画像を表示させると共に、前眼部観察画像上に、目標位置への操作を案内するガイド(例えば、電子的なレチクル)を、設定されたアライメント基準位置に基づいて表示させてもよい。この場合、眼科撮影装置は、検者の操作を受け付け、操作に応じて駆動部を駆動させて相対位置を調整する、操作入力部を備えてもよい。操作入力部としては、駆動部のアクチュエータを駆動させるための操作を入力する入力インターフェイスであってもよいし、メカニカルな駆動部へ直接作用するものであってもよい。
 アライメント誘導の結果として、アライメント基準位置からのズレが、許容範囲となった段階で、アライメントが完了されてもよい。引き続き、眼底観察画像に基づく微調整、視度補正等が実行されてもよい。そして、各種調整の完了後、制御部は、眼底撮影を自動的に実行してもよい。また、検者によるレリーズ操作に基づいて撮影が行われる場合、モニタ上に、レリーズ操作を促す表示が行われてもよい。
 <固視標の呈示位置に応じたアライメント基準位置設定>
 また、アライメント基準位置の設定は、固視標の呈示位置と連動して行われてもよい。この場合、眼科撮影装置は、被検眼に対して固視標を呈示する固視光学系を、更に備えていてもよい。固視光学系は、固視標の位置を切換えることで、固視の向きを変更可能であってもよい。
 固視標の呈示位置が切換り、被検眼の視軸と撮影光軸との角度が変わることで、瞳共役面上における瞳孔領域の形状等が変化する。そこで、制御部は、固視標の呈示位置に応じてアライメント基準位置を設定することで、各々の固視標の呈示位置において、被検眼の眼底画像を良好に撮影できる。
 <投受光分離部が少なくとも2つの投光領域を形成する態様での動作>
 投受光分離部は、第1実施形態と同様に、被検眼の瞳上において互いに位置が異なる少なくとも2つの投光領域を形成するものであってもよい。受光領域は、2つの投光領域に挟まれるように形成されることが好ましい。
 この場合、第2基準位置では、受光領域と共に2つの投光領域のうち1つが、残り1つの投光領域よりも優先的に被検眼の瞳孔領域内に配置される位置であってもよい。制御部は、第1基準位置と第2基準位置との少なくとも2つからいずれかを選択してアライメントを誘導してもよい。なお、第1基準位置は、被検眼の中心(例えば、角膜頂点、および、瞳孔中心のいずれか等)と、撮影光軸とが一致する位置であってもよいし、第1基準位置は、被検眼の中心と、2つの投光領域および受光領域の重心位置と、が一致する位置であってもよい。
 このように、第1基準位置を基準としてアライメントが行われる場合、受光領域と共に2つの投光領域が被検眼の瞳孔領域内に均等に配置されるので、被検眼の瞳孔領域が十分に大きい場合に、十分な光量で、良好な眼底画像を撮影しやすい。しかし、瞳孔径が小さい場合は、2つの投光領域の両方を同時に瞳孔内に配置することが困難であったり、2つの投光領域のそれぞれを一部虹彩と重なる状態で配置させると、眼底へ到達する照明光の光量が不足したり、することが考えられる(図8(a)参照)。そこで、この場合は、第2基準位置を基準としてアライメントが行われるが好ましい。第2基準位置では、2つの投光領域のうち1つが受光領域と共に、残り1つの投光領域よりも優先的に被検眼の瞳孔内に配置される(図8(b)参照)。このとき、残り1つの投光領域は、瞳孔外に配置されていてもよい。第2基準位置へのアライメントが完了した場合、瞳孔内に1つの投光領域と受光領域との両方が良好に配置されるので、より瞳孔径の小さな被検眼を良好に撮影できる。
 第1基準位置と、第2基準位置とは、例えば、被検眼の瞳孔領域の大きさに応じて選択されてもよい。例えば、瞳孔領域の大きさが、閾値に対して大きい場合には、第1基準位
置を選択し、瞳孔領域が閾値に対して小さい場合には第2基準位置が設定されるようにしてもよい。つまり、第2撮影モードは、相対的に瞳孔径の小さな眼を撮影するために利用される。このとき、閾値は、例えば、被検眼の瞳上における2つの投光領域の配置間隔に応じた値であってもよい。
 また、瞳共役面上に形成される2つの投光領域のうち、眼底撮影において照明光を通過させる領域が、第1基準位置と第2基準位置との間で、互いに異なっていてもよい。例えば、第1基準位置へアライメントされる場合に、瞳共役面上に形成される2つの投光領域のうち両方から照明光を眼底へ投光させて眼底画像を撮影してもよい。このとき、2つの投光領域の両方から同時に照明光を通過させて眼底画像を撮影してもよい。また、第1実施形態のように、2つの投光領域の間で照明光を通過させるものを交互に切換え、切換え毎に眼底画像を撮影してもよい。更に、交互に投光して撮影された少なくとも2枚の眼底画像から、合成画像が生成されてもよい。
 また、第2基準位置へアライメントされる場合に、2つの投光領域のうち一方のみから照明光を眼底へ投光させて眼底画像を撮影してもよい。このとき、2つの投光領域のうち瞳孔領域内に優先配置されているものから照明光が投光されることが好ましい。
 また、第2基準位置へアライメントして撮影を行う場合には、照明光の光量または撮像素子のゲインのうち少なくとも一方を、第1基準位置へアライメントし撮影する場合に対して増大させて眼底画像を撮影してもよい。光量またはゲインは、瞳孔領域の大きさに応じて設定されてもよい。また、光量またはゲインは、瞳孔領域内に配置される投光領域および受光領域の一部についての、投光領域および受光領域の全体面積に対する割合に応じて設定されてもよい。
 <2つの投光領域と受光領域との並べ方>
 投受光分離部は、2つの投光領域、および、受光領域を、瞳共役面上において、左右方向に分離した位置に形成してもよい。この場合、これら3つの領域における左右方向の全長に比べて、上下方向の幅を狭くしやすくなる。その結果、瞼が投光領域、および、受光領域と重なり難くなり、瞬きによるケラレが抑制されやすくなる。
 また、投受光分離部は、2つの投光領域を、被検眼の瞳共役面上において、上下方向に分離した位置に形成してもよい。この場合、第2基準位置は、2つの投光領域のうち下側に形成される一方が瞳孔内に優先配置されるように定められていてもよい。そして、制御部は、第2基準位置へアライメントし、眼底画像を撮影する際に、優先配置された一方の投光領域から照明光を投光させて、眼底画像を撮影してもよい。この場合、瞬きの際に投光領域が瞼と重なり難くなるので、瞬きによるケラレが抑制されやすくなる。
 <第2基準位置で撮影した眼底画像のアーチファクト補正>
 投受光分離部が少なくとも2つの投光領域を形成する場合において、制御部は、更に、第3基準位置をアライメント基準位置として選択して眼底画像を撮影してもよい。
 ここで、第3基準位置は、2つの投光領域のうち第2基準位置において瞳孔領域に優先配置される一方に比べて、他方の投光領域が受光領域と共に優先配置される位置である。
 制御部は、まず第2基準位置にアライメントを誘導して、2つの投光領域のうち第2基準位置において瞳孔領域に優先配置されるものからの照明光に少なくとも基づいて1枚目の眼底画像を撮影した後、更に、第3基準位置へアライメントを誘導して、2つの投光領域のうち第3基準位置において瞳孔領域に優先配置されるものからの照明光に少なくとも基づいて2枚目の眼底画像を撮影してもよい。ここで、1枚目の眼底画像と、2枚目の眼底画像とは、対物レンズの反射像およびフレアー等のアーチファクトの発生位置が互いに異なると考えられる。そこで、第1実施形態のように、2枚の眼底画像による合成画像を生成してもよい。
 <実施例>
 次に、図9から図15を参照して、第1実施形態及び第2実施形態に係る眼底撮影装置の実施例を示す。
 眼底撮影装置1(以下、単に、「撮影装置1」と省略する)は、被検眼の眼底上で照明光をスリット状に形成し、眼底上でスリット状に形成された領域を走査し、照明光の眼底反射光を受光することで、眼底の正面画像を撮影する。
 <装置の外観>
 図9を参照して、撮影装置1の外観構成を説明する。撮影装置1は、撮影ユニット3を有する。撮影ユニット3は、図10で示す光学系を主に備える。撮影装置1は、基台7、駆動部8、顔支持ユニット9、および、顔撮影カメラ110を有し、これらを用いて、被検眼Eと撮影ユニット3との位置関係を調整する。
 駆動部8は、基台7に対して左右方向(X方向)及び前後方向(Z方向であり、換言すれば、作動距離方向)に移動できる。また、駆動部8は、更に、撮影ユニット3を、駆動部8上で被検眼Eに対して3次元方向に移動させる。駆動部8には、予め定められた各可動方向に駆動部8または撮影ユニット3を移動させるためのアクチュエータを有しており、制御部80からの制御信号に基づいて駆動される。顔支持ユニット9は、被検者の顔を支持する。顔支持ユニット9は基台7に固定されている。
 顔撮影カメラ110は、撮影ユニット3に対する位置関係が一定となるように、筐体6に固定されている。顔撮影カメラ110は、被検者の顔を撮影する。制御部100は、撮影された顔画像から被検眼Eの位置を特定し、駆動部8を駆動制御することで、特定した被検眼Eの位置に対して撮影ユニット3を位置合わせする。
 また、撮影装置1は、モニタ120を更に有している。モニタ120には、眼底観察像、眼底撮影像、前眼部観察像等が表示される。
 <実施例の光学系>
 次に、図10を参照して、撮影装置1の光学系を説明する。撮影装置1は、撮影光学系(眼底撮影光学系)10と、前眼部観察光学系40と、を有している。これらの光学系は、撮影ユニット3に設けられている。
 図10において、被検眼の瞳と共役な位置には撮影光軸上に『△』を、眼底共役位置には撮影光軸上に『×』を付して、それぞれ示す。
 撮影光学系10は、照射光学系10aと、受光光学系10bと、を有する。実施例において、照射光学系10aは、光源ユニット11、レンズ13、スリット状部材15a、レンズ16,17、ミラー18、穴開きミラー20、および、対物レンズ22を有する。受光光学系10bは、対物レンズ22、穴開きミラー20、レンズ24,26、スリット状部材15b、および、撮像素子28を有する。なお、穴開きミラー20は、照射光学系10aと受光光学系10bとの光路を結合する光路結合部である。穴開きミラー20は、光源からの照明光を、被検眼E側へ反射し、被検眼Eからの眼底反射光のうち、開口を通過した一部を、撮像素子側へ通過させる。穴開きミラー20以外の種々のビームスプリッターを用いることができる。例えば、穴開きミラー20に代えて、穴開きミラー20と透光部と反射部が逆転したミラーが光路結合部として用いられてもよい。但し、この場合、ミラーの反射側に受光光学系10bの独立光路が置かれ、ミラーの透過側に投光光学系10aの独立光路が置かれる。また、穴開きミラー、および、その代替手段としてのミラーは、それぞれ、ハーフミラーと遮光部との組み合わせに、更に置き換えることができる。
 本実施例において、光源ユニット11は、波長帯が異なる複数種類の光源を有している。例えば、光源ユニット11は、可視光源11a,11bと、赤外光源11c,11dとを有する。このように、本実施例の光源ユニット11には、波長毎に光源が2つずつ設けられている。同じ波長の2つの光源は、瞳共役面上において、撮影光軸Lから離れて配置される。2つの光源は、図10における走査方向であるX方向に沿って並べられており、撮影光軸Lに関して軸対称に配置される。図10に示すように、2つの光源の外周形状は、走査方向に比べて、走査方向と交差する方向が長い矩形形状であってもよい。
 2つの光源からの光は、レンズ13を通過して、スリット状部材15に照射される。本実施例において、スリット状部材15aは、Y方向に沿って細長く形成された透光部(開口)を持つ。これにより、眼底共役面において、照明光がスリット状に形成される(眼底上でスリット状に照明された領域を、符号Bとして図示する)。
 図10において、スリット状部材15aは、透光部が撮影光軸LをX方向に横切るようにして、駆動部15cによって変位される。これにより、本実施例における照明光の走査が実現される。なお、本実施例では、受光系側でも、スリット状部材15bによる走査が行われる。本実施例では、投光側と受光側のスリット状部材は、1つの駆動部(アクチュエータ)によって、連動して駆動される。
 照射光学系10aでは、各光源の像が、レンズ13から対物レンズ22までの光学系によってリレーされて、瞳共役面上で結像される。つまり、瞳共役面上において、走査方向に関して分離した位置に、2つの光源の像が形成される。このようにして、本実施例では、瞳共役面上における2つの投光領域P1,P2は、2つの光源の像として形成される。
 また、スリット状部材15aを通過したスリット状の光は、レンズ16から対物レンズ22までの光学系によってリレーされて、眼底Er上に結像する。これにより、眼底Er上で照明光がスリット状に形成される。照明光は、眼底Er上で反射され、瞳孔Epから取り出される。
 ここで、穴開きミラー20の開口は、被検眼の瞳と共役なので、眼底画像の撮影に利用される眼底反射光は、被検眼の瞳上において穴開きミラー開口の像(瞳像)を通過する一部に制限される。このように、被検眼の瞳上における開口の像が、本実施例における受光領域Rとなる。受光領域Rは、2つの投光領域P1,P2(2つの光源の像)に挟まれて形成される。また、各像の結像倍率、開口の径、2つの光源の配置間隔が適宜設定された結果として、受光領域Rと、2つの投光領域P1,P2とは、瞳上において互いに重ならないように形成される。これにより、フレアーの発生が良好に軽減される。
 対物レンズ22および穴開きミラー20の開口を通過した眼底反射光は、レンズ24,26を介して、眼底共役位置に、眼底Erのスリット状領域を結像する。このとき、結像の位置にスリット状部材15bの透光部が配置されていることで、有害光が除去される。
 撮像素子28は、眼底共役位置に配置されている。本実施例では、スリット状部材15bと撮像素子28の間にリレー系27が設けられており、これにより、スリット状部材15bと撮像素子28との双方が、眼底共役位置で配置される。その結果、有害光の除去と、結像との両方が、良好に行われる。これに代えて、撮像素子28とスリット状部材15bとの間のリレー系27を省略し、両者を近接配置してもよい。本実施例では、撮像素子28として、2次元的な受光面を持つデバイスが用いられている。例えば、CMOS、二次元CCD等であってもよい。撮像素子28には、スリット状部材15bの透光部で結像した、眼底Erのスリット状領域の像が投影される。撮像素子28は、赤外光および可視光の両方に感度を持つ。
 本実施例では、スリット状の照明光が眼底Er上で走査されるに従って、撮像素子28の走査線毎に、眼底Er上の走査位置の像(スリット状の像)が順次投影される。このように、撮像素子には、時分割で走査範囲の全体像が投影される。結果として、走査範囲の全体像として、眼底Erの正面画像が撮像される。
 なお、実施例において受光系における走査部は、メカニカルにスリットを走査するデバイスであったが、必ずしもこれに限定されるものではない。例えば、受光光学系側の走査部は、電子的にスリットを走査するデバイスであってもよい。一例として、撮像素子28がCMOSである場合、CMOSのローリングシャッター機能によって、スリットの走査が実現されてもよい。この場合、撮像面上で露光される領域を、投光系における走査部と同期して変位させることで、有害光を除去しつつ、効率良く撮影できる。また、液晶シャッター等を、電子的にスリットを走査する走査部として用いることもできる。
 撮影光学系10は、視度補正部を有している。本実施例では、照射光学系10aの独立光路、受光光学系10bの独立光路、のそれぞれに視度補正部が設けられている。投光光学系10aは、レンズ16,17の間隔を、受光光学系10bは、レンズ24,26の間隔を変更でき、これにより視度補正が行われる。撮影装置1は、各々のレンズ間隔を変更するための駆動部16a,26a(図12参照)を有しており、照射光学系10a,受光光学系10bの各々の駆動部16a,26aは、互いに連動して駆動される。
 なお、視度補正部は、これに限られるものではない。例えば、光源11a~11d、スリット状部材15a,15b、および撮像素子28の少なくとも3者の位置関係が維持されたまま、これが光軸方向へ移動されることで、視度補正が行われてもよい。
 なお、眼科装置の走査部は、例えば、図11に示すようなオプティカルチョッパーであってもよい。オプティカルチョッパーは、外周に複数のスリットが形成されたホイール持ち、ホイールを回転させることで、高速にスリットをスキャンできる。
 ここで、図10では、照射光学系10aの光源ユニット11からミラー18までと、受光光学系10bの穴開きミラー20から撮像素子28までとが、X方向に並列されているが、例えば、穴開きミラー20とミラー18との向きを、図示した状態から90°回転させ、両者をY方向に並列させることによって、オプティカルチョッパーを走査部として適用可能になる。この場合、ホイールの上端と下端との2箇所で、照射光学系10aの光軸と受光光学系10bの光軸とをそれぞれ横切らせることで、1体のオプティカルチョッパーで、投光系および受光系の走査を、容易に同期させることができる。
 <前眼部観察光学系>
 次いで、前眼部観察光学系40を説明する。前眼部観察光学系40は、対物レンズ22とダイクロイックミラー43と、を撮影光学系10と共用する。前眼部観察光学系40は、更に、光源41、ハーフミラー45、撮像素子47等を含む。撮像素子47は、二次元撮像素子であり、例えば瞳孔Epと光学的に共役な位置に配置される。前眼部観察光学系40は、赤外光で前眼部を照明し、前眼部の正面画像を撮影する。
 なお、図10に示した前眼部観察光学系40は一例に過ぎず、他の光学系とは独立した光路で前眼部を撮像してもよい。
 <実施例の制御系>
 次に、図12を参照して、撮影装置1の制御系を説明する。本実施例では、制御部100によって、撮影装置1の各部の制御が行われる。また、便宜上、撮影装置1で得られた各種画像の画像処理についても、制御部100によって行われるものとする。換言すれば、本実施例では、制御部100が、画像処理部を兼用している。
 制御部100は、各部の制御処理と、演算処理とを行う電子回路を有する処理装置(プロセッサ)である。制御部100は、CPU(Central Processing Unit)およびメモリ等で実現される。制御部100は、記憶部101と、バス等を介して電気的に接続されている。
 記憶部101には、各種の制御プログラムおよび固定データ等が格納される。また、記憶部101には、一時データ等が記憶されてもよい。
 撮影装置1による撮影画像は、記憶部101に記憶されていてもよい。但し、必ずしもこれに限られるものではなく、外部の記憶装置(例えば、LANおよびWANで制御部100に接続される記憶装置)へ撮影画像が記憶されてもよい。
 また、制御部100は、駆動部8、光源11a~11d、駆動部15c、駆動部16a、駆動部26a、撮像素子28、光源41、撮像素子47、入力インターフェイス110、およびモニタ120等の各部とも電気的に接続されている。
 また、制御部100は、入力インターフェイス110(操作入力部)から出力される操作信号に基づいて、上記の各部材を制御する。入力インターフェイス110は、検者の操作を受け付ける操作入力部である。例えば、マウスおよびキーボード等であってもよい。   
 <実施例の動作説明>
 次に、図13,図14のフローチャートに基づいて、撮影動作を説明する。
 撮影装置1は、被検者の顔が顔支持部9に対して配置され、顔検出カメラ110の撮影範囲に含まれることによって、自動的に撮影動作がスタートしてもよい。
 まず、顔検出カメラ110と前眼部観察光学系40とによる撮影が並行して行われるようになり(S1)、両者の撮影結果を用いたアライメント調整が実行される(S2)。
 詳細には、制御部100は、顔画像に含まれる左右眼の一方の位置を検出し、その位置情報に基づいて駆動部8を駆動させる。これにより、前眼部観察が可能な位置まで、撮影ユニット4の位置を調整する。
 次に、前眼部正面画像に基づいて、アライメント基準位置が設定され、設定されたアライメント基準位置へとアライメントが誘導される。本実施例では、前眼部正面画像に基づいて被検眼Eと撮影ユニット3との位置関係が、制御部100によって調整される。本実施例において、制御部100は撮像素子47からの信号に基づいて、前眼部観察像における瞳孔中心と、画像中心(本実施例では、撮影光軸Lの位置)とが略一致する位置関係を目標とする第1基準位置が、設定される。そして、第1基準位置からのアライメントずれを検出し、アライメントずれが解消される方向へと撮影ユニット4を上下左右方向へ移動させる。このとき、例えば、前眼部観察画像上における瞳孔中心と撮影光軸とのズレ量に基づいて第1基準位置とのアライメントずれが検出されてもよい。また、眼底撮影装置1が、例えば、角膜頂点にアライメント指標を投影するアライメント投影光学系を有している場合、アライメント指標と撮影光軸とのズレ量に基づいてアライメントずれが検出されてもよい。
 また、制御部100は、瞳孔Epに前眼部観察画像のピントが合うように撮影ユニット4を前後方向へ移動させる。
 このように、本実施例では、S2のアライメント調整の結果として、被検眼と撮影ユニット4との位置関係が、被検眼の瞳上における受光領域Rの中心(つまり、撮影光軸)が瞳孔中心と一致するような位置(本実施例における第1基準位置)へと調整される。
 本実施例では、第1基準位置へのアライメント完了後、瞳孔径検出処理(瞳孔情報取得処理)が実行される(S3)。本実施例では、前眼部観察画像から瞳孔領域Epを検出し、検出された瞳孔領域Epの直径を求める。本実施例では、走査方向の直径を求めることが好ましい。本実施例では、S3の処理で取得された瞳孔領域Epの直径の値が、瞳孔径情報として取得され、メモリに記憶される。
 次に、制御部100は、取得された瞳孔径に応じて、撮影モードを設定する(S4,S5,S11)。本実施例では、まず、瞳孔径が閾値と比較される(S4)。閾値は、被検眼の瞳上における2つの投光領域P1、P2の配置間隔に応じた値であって、本実施例では、全長W(図10参照)が、閾値の一例として用いられる。全長Wの代わりに、例えば、投光領域P1,P2の中心間距離が、閾値として用いられてもよい。ここで、本実施例では、閾値は、視度補正量によらず、固定値であるものとする。例えば、0D眼を想定した固定値が、閾値として用いられる。
 但し、2つの投光領域P1、P2の配置間隔は、視度補正の状態に応じて変動するので、被検眼の視度の誤差に応じて(或いは、スリット像が眼底Erに結像するときの視度補正量に応じて)、都度、閾値を求め、求めた閾値と瞳孔径とを比較するようにしてもよい。
 瞳孔径と閾値との比較の結果、瞳孔径が閾値に対して大きい場合は(S4;Yes)、第1撮影モードが設定される(S5)。一方、瞳孔径が閾値以下である場合は(S4;No)、第2撮影モードが設定される(S11)。
 <第1撮影モード>
 上記の閾値に対して瞳孔径が大きければ、瞳孔Ep内に2つの投光領域P1、P2および受光領域Rの3者を配置できる。そこで、制御部100は、受光領域Rの中心(本実施例では、撮影光軸Lの位置であり、2つの投光領域P1,P2と受光領域Rとの重心でもある)が瞳孔中心と略一致するアライメント状態を目標に(つまり、第1基準位置を目標に)、被検眼Eと撮影ユニット4との位置関係を、駆動部8を駆動させ調整する。
 第1撮影モードが設定された後、制御部100は、眼底観察画像の撮影および表示を開始する(S6)。詳細には、制御部100は、光源11c,11dを同時に点灯させると共に、駆動部15cの駆動を開始させ、眼底Er上の所定の範囲で、スリット状の照明光が、繰り返し走査される。所定回数(少なくとも1回)の走査毎に、撮像素子28から出力される信号に基づいて、略リアルタイムに撮影された眼底画像が、眼底観察画像として、随時生成される。制御部100は、眼底観察画像を、略リアルタイムな動画像として、モニタ120へ表示させてもよい。
 次に、眼底観察画像に基づいて、各種の調整処理が実行される(S7)。例えば、視度補正、アライメント目標位置の微調整等が実行されてもよい。
 その後、眼底撮影画像の撮影制御が、自動的に、又は、レリーズ操作に基づいて、実行される。
 本実施例において、制御部100は、可視光を発する光源11a,11bを交互に点灯させると共に、各光源11a,11bが点灯される度に、眼底Er上で照明光を走査し、第1眼底画像と、第2眼底画像と、を撮影する(S8,S9)。
 そして、制御部100は、第1眼底画像と、第2眼底画像とを合成して、合成画像を生成する。第1眼底画像の撮影が行われた直後から縮瞳が始まるので、2枚の眼底画像のうち、後から撮影された第2眼底画像は、縮瞳によるケラレの影響で、第1眼底画像に比べて画像が暗くなっているおそれがある。
 そこで、本実施例では、第1眼底画像において中心部の反射像が生じる領域を、第2眼底画像において対応する領域によって置き換えた画像を、合成画像として生成する。その結果、第1眼底画像、および、第2眼底画像に対して、反射像の影響が抑制された眼底画像を合成画像として得ることができるうえ、縮瞳によるケラレの影響を抑制できる。
 <第2撮影モード>
 次に、第2撮影モードが設定された場合の動作を説明する。S4の処理で判定されたように、瞳孔径が閾値以下であると、瞳孔Ep内に2つの投光領域P1、P2および受光領域Rの3者を満足に配置できない。そこで、制御部100は、アライメント状態を再調整する。その際、制御部100は、第2基準位置を前眼部観察画像に基づいて設定する。第2基準位置は、2つの投光領域P1,P2のうち一方(ここでは、領域P1)を、他方に優先して、受光領域Rと共に瞳孔Ep内に配置されるようなアライメント基準位置である(S12)。一例として、投光領域P1と、受光領域Rとの中間点が、瞳孔中心に一致するアライメント状態を目標とする、第2基準位置が設定される。ここでは、例えば、S2のアライメント処理におけるアライメント基準位置(つまり、第1基準位置)に対してX方向に、被検眼と撮影光学系との位置関係がオフセットされてもよい。ここでは、W/4だけ(Wについては、図10参照)だけ、オフセットされるものする。但し、オフセット量は、必ずしもこれに限られるものでは無い。
 そして、制御部100は、第2基準位置からのアライメントずれを検出し、アライメントずれが解消される方向へと撮影ユニット4を上下左右方向へ移動させる。このとき、例えば、前眼部観察画像上における瞳孔中心(又は、角膜頂点)と撮影光軸とのズレ量と、上記のオフセットとに基づいて第2基準位置とのアライメントずれが検出されてもよい。第2基準位置に対するアライメントの結果、投光領域P1と受光領域Rとについては、瞳孔Ep内に良好に配置されるようになる。なお、2つの投光領域P1,P2のうちいずれを、瞳孔Ep内に優先配置するかについては、予め定められていてもよいし、選択可能であってもよい。
 アライメント状態の再調整後、眼底観察画像の撮影が開始される。ここで、第1撮影モードで眼底観察画像を得る際には、2つの光源11c,11dを同時に点灯させるものとしたが、第2撮影モードでは、瞳孔Ep内に優先配置された投光領域P1と対応する光源(本実施例では、光源11c)のみを点灯させてもよい。これにより、投光領域P1のみから観察用の照明光を眼底へ照射して、眼底Erの観察画像を取得してもよい。但し、必ずしもこれに限られるものではなく、投光領域P1とP2の両方と対応する光源を点灯させて、眼底Erの観察画像を取得してもよい。
 そして、眼底観察画像に基づいて、各種の調整処理が実行され(S14)、調整完了後、自動的に、又は、レリーズ操作に基づいて、第2撮影モードにおける眼底撮影画像の撮影動作が実行される(S15)。
 本実施例の第2撮影モードにおいて、制御部100は、可視光を発する2つの光源11a,11bのうち、瞳孔Ep内に優先配置された投光領域P1と対応する、光源11aのみを点灯させて眼底画像を撮影する。この眼底画像が、撮影画像として、メモリに記憶される。この撮影画像は、2つの光源11a,11bを同時に点灯させる場合に比べて、対物レンズ22上で強く反射が生じる箇所が少なくなるので、反射像の影響が軽減される。また、虹彩、強膜等の瞳孔Ep外に照明光が照射され、その反射光が有害光となって眼底画像に影響することが抑制される。従って、被検眼の瞳孔径が小さい場合でも、良好な眼底画像を撮影することができる。
 ここで、本実施例において、制御部100は、制御部100は、第2撮影モードの撮影時発せられる光源11a,11bからの光量、および、眼底反射光を受光する撮像素子28におけるゲインのうち少なくともいずれかを、第1撮影モードでの撮影時に対して増加させる。これにより、第2撮影モードにおいて撮影される眼底画像の、明るさおよびコントラストを、向上させることができる。なお、光量およびゲインは、被検者の瞳孔領域の大きさ(例えば、瞳孔径)に応じて設定されてもよい。
 以上、実施形態に基づいて説明を行ったが、本開示を実施するうえで、実施形態の内容を適宜変更することができる。
 例えば、上記実施例では、被検眼と撮影ユニットとの位置関係が、制御部によって自動的に調整された。しかし、必ずしもこれに限られるものではなく、被検眼と撮影ユニットとの位置関係は、検者が手動で調整可能であってもよい。
 この場合、図15に示すように、制御部は、少なくとも前眼部観察画像をモニタ上に表示させてもよい。これにより、検者は、前眼部観察画像を見ながら被検眼と撮影ユニットとの位置関係を調整できる。また、前眼部観察画像上には、少なくとも2つの投光領域と対応する電子的な指標Ipが表示されることが好ましい。更に、受光領域と対応する指標Ipが表示されてもよい。指標Ip,Irの位置および大きさは、前眼部観察画像上において一定であってもよいし、撮影光学系における視度補正量に応じて変更されてもよい。
 指標Ip,Irが表示されることで、投光領域および受光領域と、瞳孔との位置関係をリアルタイムに確認しながら、被検眼と撮影ユニットの位置関係を調整できる。
 更にこのとき、眼底観察画像が同時にモニタ上に表示されていてもよい。眼底画像における明るさのムラの状態等を確認しながら、被検眼と撮影ユニットの位置関係を調整できるので、より良好な眼底画像が得られる位置関係へと調整しやすい。
 更に、制御部は、前眼部観察画像、および、眼底観察画像の表示と共に、入力インターフェイスに対する操作に基づいて、各投光領域からの照明光を照射状態(照明光のON/OFF)を個別に設定してもよい。そして、設定された照射状態を、眼底観察画像の撮影に反映させてもよい。これにより、被検眼と撮影ユニットの位置関係、および、各投光領域からの照明光を照射状態を手動で変更しながら、良好な眼底画像が得られる撮影条件を、検者は探すことができる。なお、図15の例では、前眼部画像上の指標IpにカーソルCを併せて、選択することで、指標Ipと対応する投光領域からの照明光のON/OFFを切換えできる。
1    眼底撮影装置
10   撮影光学系
15a,15b スリット状部材
15c   駆動部
100   制御部
P1,P2 投光領域
R   受光領域

Claims (24)

  1.  被検眼の瞳上において照明光が通過する投光領域と、被検眼の瞳上において前記照明光の眼底反射光が取り出される受光領域とを、互いに異なる位置に形成する、投受光分離手段、および、前記受光領域から取り出された前記眼底反射光を受光する受光素子、を備える撮影光学系と、
     被検眼と前記撮影光学系との位置関係を調整する駆動部と、を備え、前記受光素子からの信号に基づいて眼底画像を取得する眼底撮影装置であって、
     更に、
     被検眼と前記撮影光学系とのアライメントの基準となるアライメント基準位置として、前記投光領域および前記受光領域の全部が被検眼の瞳孔領域内に形成されることを想定した第1基準位置と、第1基準位置とは異なる第2基準位置であって、前記投光領域および前記受光領域のうちいずれかの領域の一部が被検眼の瞳孔領域外に形成されることを想定した第2基準位置と、のいずれかを選択的に設定可能であり、設定した前記アライメント基準位置からのアライメントずれに基づいてアライメントを誘導する撮影制御手段、を備える眼底撮影装置。
  2.  前眼部観察画像を取得する前眼部観察光学系を備え、
     前記撮影制御手段は、前記前眼部観察画像から取得される被検眼の瞳孔領域に関する情報に基づいて前記アライメント基準位置を設定する請求項1記載の眼底撮影装置。
  3.  前記瞳孔領域に関する情報には、前記投光領域および前記受光領域のうち前記瞳孔領域内に配置される割合を含む、請求項2記載の眼底撮影装置。
  4.  前記眼底画像による眼底観察画像を取得する観察画像取得手段を備え、
     前記撮影制御手段は、前記眼底観察画像の明るさに関する情報に基づいて前記アライメント基準位置を設定する請求項1から3のいずれかに記載の眼底撮影装置。
  5.  被検眼の前眼部観察画像を取得する前眼部観察光学系と、
     検者の操作を受け付け、操作に応じて前記駆動部を駆動させて前記相対位置を調整する、操作入力手段と、を備え、
     前記撮影制御手段は、モニタに前記前眼部観察画像を表示させると共に、前眼部観察画像上に、前記目標位置への操作を案内するガイドを、前記アライメント基準位置に基づいて表示させる表示制御手段と、を含む請求項1から4のいずれかに記載の眼底撮影装置。
  6.  前記撮影制御手段は、前記アライメント基準位置からのアライメントずれに基づいて前記駆動部を駆動制御することで、アライメントを誘導する請求項1から5のいずれかに記載の眼底撮影装置。
  7.  前記投受光分離手段は、被検眼の瞳上において互いに位置が異なる2つの投光領域を形成し、
     前記撮影制御手段は、前記第2基準位置として、前記受光領域と共に2つの前記投光領域のうち1つが、残り1つの前記投光領域よりも優先的に被検眼の瞳孔内に配置される位置を設定する請求項1から6のいずれかに記載の眼底撮影装置。
  8.  前記第2基準位置では、前記2つの前記投光領域のうち残り1つは、瞳孔外に配置される、請求項7記載の眼底撮影装置。
  9.  第1基準位置では、前記受光領域の中心と、被検眼の瞳孔中心又は角膜中心とが一致する、請求項7又は8記載の眼底撮影装置。
  10.  前記撮影制御手段は、前記第2基準位置へアライメントを誘導する場合は、前記第1基準位置へアライメントを誘導する場合に対して、前記照明光の光量または前記撮像素子のゲインのうち少なくとも一方を増大させて前記眼底画像を撮影する、請求項7から9のいずれかに記載の眼底撮影装置。
  11.  前記撮影制御手段は、前記第1基準位置へアライメントを誘導する場合は、眼底画像を撮影する際に、2つの前記投光領域のうち両方から前記照明光を眼底へ投光させ、前記第2基準位置へアライメントを誘導する場合は、眼底画像を撮影する際に、2つの前記投光領域のうち、優先的に瞳孔内に配置される一方のみから前記照明光を眼底へ投光させる、請求項7から10のいずれかに記載の眼底撮影装置。
  12.  前記投受光分離手段は、2つの前記投光領域、および、前記受光領域を、左右方向に分離した位置に形成する請求項7から11のいずれかに記載の眼底撮影装置。
  13.  前記投受光分離手段は、2つの前記投光領域を上下方向に分離した位置に形成し、
     前記撮影制御手段は、2つの投光領域のうち下側に形成される一方が瞳孔内に配置されるように前記第2基準位置が設定され、眼底画像を撮影する際に、前記一方から照明光が投光される、請求項7から11のいずれかに記載の眼底撮影装置。
  14.  前記投受光分離手段は、被検眼の瞳上において前記受光領域を、2つの前記投光領域に挟まれるように形成する7から13のいずれかに記載の眼底撮影装置。
  15.  前記撮影光学系は、
     被検眼の眼底上で照明光をスリット状に形成するスリット形成部、
     スリット状に形成された照明光を、スリットに対して直交する方向へ眼底上で走査する走査部、更に有し、
     前記投受光分離手段は、被検眼の瞳上において前記投光領域を、前記走査部の走査方向に関して互いに分離した2つの位置に形成すると共に、被検眼の瞳上において前記受光領域を、2つの前記投光領域に挟まれるように形成する7から14のいずれかに記載の眼底撮影装置。
  16.  前記撮影制御手段は、前記第1基準位置へのアライメント完了後、2つの前記投光領域の一方から投光された前記照明光に基づく眼底画像である第1眼底画像と、2つの前記投光領域のうち他方から投光された前記照明光に基づく眼底画像である第2眼底画像と、を撮影し、
     前記眼底撮影装置は、
     前記第1眼底画像と前記第2眼底画像との少なくとも2枚を用いて合成画像を生成する画像処理手段を更に備える請求項7から15のいずれかに記載の眼底撮影装置。
  17.  前記画像処理手段は、前記第1眼底画像におけるアーチファクトを含む領域に、前記第2眼底画像において対応する領域を合成することで、前記合成画像を生成する、請求項16記載の眼底撮影装置。
  18.  前記撮影制御手段は、前記第1眼底画像の撮影後、前記照明光を通過させる前記投光領域を切換えて、前記第2眼底画像を前記第1眼底画像と連続的に撮影する請求項16又は17記載の眼底撮影装置。
  19.  前記撮影光学系は、可視光による前記照明光を被検眼へ照射可能であり、
     前記第1眼底画像の画像中心部を、前記第2眼底画像において対応する領域と置き換えることにより、前記合成正面画像を生成する請求項18記載の眼底撮影装置。
  20.  前記撮影制御手段は、更に、2つの前記投光領域のうち両方から同時に投光された前記照明光に基づく眼底画像である第3眼底画像を撮影し、
     前記画像処理手段は、前記第1眼底画像と前記第2眼底画像と前記第3眼底画像とを用いて、前記合成画像を生成する請求項19記載の眼底撮影装置。
  21.  前記画像処理手段は、前記第3眼底画像における画像中心部を、前記第1眼底画像において対応する領域の一部、および、前記第2眼底画像において対応する領域の一部と、それぞれ置き換えることにより、前記合成正面画像を生成する請求項20記載の眼底撮影装置。
  22.  前記撮影光学系は、可視光による前記照明光を被検眼へ照射可能であり、
     前記撮影制御手段は、前記第3眼底画像の撮影後、前記照明光を通過させる前記投光領域を切換えて、前記第1眼底画像および前記第2眼底画像を連続的に撮影する請求項21記載の眼底撮影装置。
  23.  前記投受光分離部は、被検眼の瞳上における、2つの前記投光領域と前記受光領域との間のクリアランスを変更可能である、請求項7から22のいずれかに記載の眼底撮影装置。
  24.  被検眼の瞳孔領域を検出する検出手段と、
     前記クリアランスを、前記瞳孔領域の検出結果に基づいて変更する制御手段と、
    を備える請求項23記載の眼底撮影装置。
     
PCT/JP2018/048339 2018-01-10 2018-12-27 眼底撮影装置 WO2019138916A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18899048.5A EP3738501B1 (en) 2018-01-10 2018-12-27 Fundus imaging device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018002250A JP6958367B2 (ja) 2018-01-10 2018-01-10 眼底撮影装置
JP2018002249A JP2019118720A (ja) 2018-01-10 2018-01-10 眼底撮影装置
JP2018-002250 2018-01-10
JP2018-002249 2018-01-10

Publications (1)

Publication Number Publication Date
WO2019138916A1 true WO2019138916A1 (ja) 2019-07-18

Family

ID=67219014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048339 WO2019138916A1 (ja) 2018-01-10 2018-12-27 眼底撮影装置

Country Status (2)

Country Link
EP (1) EP3738501B1 (ja)
WO (1) WO2019138916A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049428A1 (ja) * 2019-09-11 2021-03-18 株式会社トプコン 眼科装置、その制御方法、及びプログラム
JP2021040850A (ja) * 2019-09-10 2021-03-18 株式会社トプコン 眼科装置、及びその制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11369372B2 (en) 2018-11-28 2022-06-28 Covidien Lp Surgical stapler adapter with flexible cable assembly, flexible fingers, and contact clips

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148940B2 (ja) * 1978-08-18 1986-10-27 Canon Kk
JPS61276534A (ja) * 1985-04-04 1986-12-06 アラ−ガン ハンフリ− 眼底カメラ
JPH11253403A (ja) * 1998-03-12 1999-09-21 Kowa Co 眼科装置
JP2002051985A (ja) * 2000-08-10 2002-02-19 Kowa Co 眼底カメラ
JP2005087546A (ja) * 2003-09-18 2005-04-07 Canon Inc 眼科撮影装置
JP2005529669A (ja) * 2002-06-14 2005-10-06 フィジカル サイエンシーズ, インコーポレイテッド ラインスキャン検眼鏡
JP2005312751A (ja) * 2004-04-30 2005-11-10 Nidek Co Ltd 眼底カメラ
US20060177205A1 (en) * 2005-02-07 2006-08-10 Steinkamp Peter N System and method for reflex-free coaxial illumination
JP2012213632A (ja) * 2011-03-31 2012-11-08 Canon Inc 制御装置,眼科装置,システム,制御方法およびプログラム
JP2014113385A (ja) * 2012-12-11 2014-06-26 Topcon Corp 眼科装置
JP2016030181A (ja) * 2014-07-30 2016-03-07 興和株式会社 眼底撮影装置
JP2016049368A (ja) * 2014-09-01 2016-04-11 株式会社ニデック 眼科撮影装置
JP2016185192A (ja) * 2015-03-27 2016-10-27 キヤノン株式会社 眼科装置及び眼科装置の制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4359489B2 (ja) * 2003-11-28 2009-11-04 株式会社ニデック 眼底カメラ
JP6349878B2 (ja) * 2014-03-31 2018-07-04 株式会社ニデック 眼科撮影装置、眼科撮影方法、及び眼科撮影プログラム
JP6464565B2 (ja) * 2014-03-31 2019-02-06 株式会社ニデック 眼底撮影装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148940B2 (ja) * 1978-08-18 1986-10-27 Canon Kk
JPS61276534A (ja) * 1985-04-04 1986-12-06 アラ−ガン ハンフリ− 眼底カメラ
JPH11253403A (ja) * 1998-03-12 1999-09-21 Kowa Co 眼科装置
JP2002051985A (ja) * 2000-08-10 2002-02-19 Kowa Co 眼底カメラ
JP2005529669A (ja) * 2002-06-14 2005-10-06 フィジカル サイエンシーズ, インコーポレイテッド ラインスキャン検眼鏡
JP2005087546A (ja) * 2003-09-18 2005-04-07 Canon Inc 眼科撮影装置
JP2005312751A (ja) * 2004-04-30 2005-11-10 Nidek Co Ltd 眼底カメラ
US20060177205A1 (en) * 2005-02-07 2006-08-10 Steinkamp Peter N System and method for reflex-free coaxial illumination
JP2012213632A (ja) * 2011-03-31 2012-11-08 Canon Inc 制御装置,眼科装置,システム,制御方法およびプログラム
JP2014113385A (ja) * 2012-12-11 2014-06-26 Topcon Corp 眼科装置
JP2016030181A (ja) * 2014-07-30 2016-03-07 興和株式会社 眼底撮影装置
JP2016049368A (ja) * 2014-09-01 2016-04-11 株式会社ニデック 眼科撮影装置
JP2016185192A (ja) * 2015-03-27 2016-10-27 キヤノン株式会社 眼科装置及び眼科装置の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3738501A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021040850A (ja) * 2019-09-10 2021-03-18 株式会社トプコン 眼科装置、及びその制御方法
JP7325272B2 (ja) 2019-09-10 2023-08-14 株式会社トプコン 眼科装置、及びその制御方法
WO2021049428A1 (ja) * 2019-09-11 2021-03-18 株式会社トプコン 眼科装置、その制御方法、及びプログラム
JPWO2021049428A1 (ja) * 2019-09-11 2021-03-18
JP7214880B2 (ja) 2019-09-11 2023-01-30 株式会社トプコン 眼科装置、その制御方法、及びプログラム

Also Published As

Publication number Publication date
EP3738501A4 (en) 2022-03-02
EP3738501B1 (en) 2024-05-22
EP3738501A1 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP6354979B2 (ja) 眼底撮影装置
JP5606813B2 (ja) 眼科装置
JP6899632B2 (ja) 眼科撮影装置
JP6349878B2 (ja) 眼科撮影装置、眼科撮影方法、及び眼科撮影プログラム
WO2019138916A1 (ja) 眼底撮影装置
JP7302342B2 (ja) 眼底撮影装置
JP2015066242A (ja) 眼科撮影装置
JP2012034925A (ja) 眼科撮影装置
WO2018135175A1 (ja) 眼科装置
JP2019118720A (ja) 眼底撮影装置
JP6319616B2 (ja) 走査型レーザー検眼鏡
WO2016189890A1 (ja) 眼科撮影装置
JP2013244363A (ja) 眼底撮影装置
JP6788445B2 (ja) 眼科装置
JP6739183B2 (ja) 眼科装置
JP6713297B2 (ja) 眼科装置
US11219362B2 (en) Fundus imaging apparatus
JP6958367B2 (ja) 眼底撮影装置
JP7200516B2 (ja) 眼底撮影装置
JP2015195874A (ja) 眼底撮影装置
JP7118197B2 (ja) 眼科装置
JP6625251B2 (ja) 眼科撮影装置
JP7375323B2 (ja) 眼底撮影装置
JP7421062B2 (ja) 眼底撮影装置
JP2023002782A (ja) 眼底撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018899048

Country of ref document: EP

Effective date: 20200810