WO2019138705A1 - X線位相撮像システム - Google Patents

X線位相撮像システム Download PDF

Info

Publication number
WO2019138705A1
WO2019138705A1 PCT/JP2018/043465 JP2018043465W WO2019138705A1 WO 2019138705 A1 WO2019138705 A1 WO 2019138705A1 JP 2018043465 W JP2018043465 W JP 2018043465W WO 2019138705 A1 WO2019138705 A1 WO 2019138705A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
image
phase
grating
processing unit
Prior art date
Application number
PCT/JP2018/043465
Other languages
English (en)
French (fr)
Inventor
哲 佐野
木村 健士
太郎 白井
允信 佐藤
貴弘 土岐
日明 堀場
直樹 森本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US16/767,528 priority Critical patent/US11175241B2/en
Priority to JP2019564325A priority patent/JP6897799B2/ja
Priority to CN201880080701.7A priority patent/CN111465841B/zh
Publication of WO2019138705A1 publication Critical patent/WO2019138705A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/32Accessories, mechanical or electrical features adjustments of elements during operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing

Definitions

  • the present invention relates to an X-ray phase imaging system, and more particularly to an X-ray phase imaging system that performs imaging using a plurality of gratings.
  • an X-ray phase imaging system that performs imaging using a plurality of gratings is known.
  • Such an X-ray phase contrast imaging system is disclosed, for example, in WO 2009/104560.
  • the X-ray phase imaging system disclosed in WO2009 / 104560 is configured to perform X-ray imaging with a Talbot interferometer and generate a phase contrast image by fringe scanning.
  • imaging is performed using a phase grating and an absorption grating.
  • one of the plurality of gratings is imaged a plurality of times while being translated in a direction orthogonal to the pattern of the gratings.
  • the fringe scanning method is a method of generating a phase contrast image based on a change in intensity of pixel values of each pixel of an X-ray image captured a plurality of times while translating a grating.
  • the phase contrast image includes an absorption image, a phase differential image and a dark field image.
  • An absorption image is an image imaged based on attenuation of X-rays generated when X-rays pass through an object.
  • the phase differential image is an image formed based on the phase shift of the X-rays generated when the X-rays pass through the subject.
  • a dark field image is a Visibility image obtained by a change in Visibility based on small angle scattering of an object.
  • the dark field image is also referred to as a small angle scattering image.
  • “Visibility” is the definition.
  • a moiré fringe formed by interfering the self-image of the phase grating formed at a predetermined position with the absorption grating , To visualize the internal structure of the subject.
  • the pixel values of each pixel of the moiré fringes captured while translating the phase grating or absorption grating by at least one period of the grating in the direction orthogonal to the grating pattern.
  • a phase contrast image is generated based on the waveform of the intensity change.
  • the Talbot interferometer used in the X-ray phase imaging system of WO2009 / 104560 generates a phase contrast image based on the intensity change of the pixel value of each pixel of a plurality of X-ray images. . Therefore, when imaging is performed while translating the grating by one period of the grating period, when movement other than translational movement for fringe scanning occurs in at least one of the plurality of gratings, the obtained intensity change The waveform changes. In addition, when focal movement occurs in the X-ray source during imaging while translating the grating by one period of the grating period, the position of the self-image of the phase grating moves, so the waveform of the intensity change obtained is Change.
  • the period of the lattice fluctuates, and thus the waveform of the obtained intensity change changes. That is, when a positional shift other than the positional shift caused by the translational movement of the grating occurs at the relative position between the self-image and the plurality of gratings, the waveform of the intensity change obtained changes and the phase contrast image generated There is a problem that the image quality is degraded. There is also a need to improve the phase sensitivity of the phase contrast image, and further miniaturization of the grating period (pitch) is in progress.
  • the relative position between the self-image and the plurality of gratings changes in the waveform of the intensity change caused by the displacement other than the displacement caused by the translational movement of the grating (image quality Degradation) becomes more pronounced.
  • the present invention has been made to solve the problems as described above, and one object of the present invention is to provide a positional deviation associated with translational movement of a grid to a relative position between a self-image and a plurality of grids. It is an object of the present invention to provide an X-ray phase imaging system capable of suppressing deterioration of the image quality of the obtained phase contrast image even when a positional deviation other than that occurs.
  • an X-ray phase imaging system comprises an X-ray source, a first grating irradiated with X-rays from the X-ray source, and X-rays from the first grating A plurality of gratings including a second grating to be illuminated, a detector for detecting X-rays emitted from the X-ray source, a grating moving mechanism for moving at least one of the plurality of gratings, and the detector And an image processing unit configured to generate a phase contrast image from an X-ray image set including a plurality of detected X-ray images, wherein the image processing unit is configured to perform a plurality of X scans obtained by performing fringe scanning a plurality of times in a short time.
  • a feature quantity including at least one of an amplitude, an average pixel value intensity, and a phase is extracted from the line image set, and a phase contrast image is generated based on the extracted feature quantities. It is done.
  • the X-ray image set is a set of a plurality of X-ray images acquired by one stripe scan.
  • the X-ray phase imaging system performs phase contrast based on feature quantities extracted from a plurality of X-ray image sets acquired by performing fringe scanning a plurality of times in a short time. It is configured to generate an image.
  • the lattice movement mechanism may cause thermal deformation due to heat generation from the X-ray source and / or heat from the outside.
  • the lattice movement mechanism causes thermal deformation, the relative position between the lattices of the plurality of lattices changes.
  • the relative position between the grids of the plurality of grids is constantly changing, as heat generation from the x-ray source and / or thermal fluctuations due to external heat also occur during imaging.
  • heat generation from the X-ray source and / or external heat may cause thermal deformation of the grid.
  • the period of the lattice fluctuates. Variations of the grating period also occur constantly during imaging.
  • the focus of the X-ray source may move.
  • the self-image of the grid is moved. Movement of the lattice's self-image also always occurs during imaging. That is, during imaging, movement of the grid due to thermal fluctuation, fluctuation of the grid period, and movement of the focal point of the X-ray source occur in addition to translational movement of the fringe scan of the grid.
  • the fringe scanning by configuring the fringe scanning to be performed a plurality of times in a short time as described above, it is possible to shorten the scanning time per image capturing while translating the grating by one period of the grating period. Therefore, it is possible to suppress the change in relative position between the self-image and the grid that occurs during fringe scanning. As a result, it is possible to suppress the change in the waveform of the obtained intensity change, and it is possible to suppress the deterioration of the image quality of the generated phase contrast image.
  • the image processing unit performs the fringe scanning a plurality of times within a short time within a range in which imaging conditions caused by heat between a plurality of X-ray images do not substantially change.
  • the phase contrast image is generated based on the plurality of feature quantities extracted from the X-ray image set acquired by According to this structure, the fringe scanning can be performed within a time range in which the imaging condition caused by the heat does not substantially change. As a result, it is possible to suppress the deterioration of the image quality of the phase contrast image due to the change of the imaging condition caused by heat.
  • the imaging condition is the relative position between the self-image and the lattice
  • the change in the imaging condition is the relative position between the self-image and the lattice accompanying the translational movement of the lattice.
  • the misalignment of the relative position between the self-image and the grid other than the misalignment of.
  • phase contrast is preferably determined based on a plurality of feature quantities extracted from an X-ray image set acquired by performing fringe scanning a plurality of times within a short time of 100 seconds. It is configured to generate an image. According to this configuration, since the X-ray image set is acquired in a short time of 100 seconds or less, it is possible to minimize the influence of the change in the imaging condition caused by the heat when performing the fringe scanning. As a result, it is possible to further suppress the change in the waveform of the obtained intensity change, and to further suppress the deterioration of the image quality of the obtained phase contrast image.
  • the image processing unit generates a plurality of X-ray image sets captured from a plurality of X-ray image sets captured by performing fringe scanning multiple times in a short time without arranging the subject.
  • the fringe scanning is performed in a short time, the first feature amount and the second feature amount acquired in a state of receiving as little as possible the change in the imaging condition caused by the heat generated during the acquisition of the X-ray image set You can get the quantity.
  • the image processing unit acquires one feature amount data from the plurality of first feature amounts and generates a phase contrast image using one feature amount data and the plurality of second feature amounts. It is configured to According to this configuration, feature amount data is acquired from a plurality of first feature amounts whose exposure time (charge storage time) is short in order to capture an image in a short time. The contrast of the feature amount can be added. Then, a phase contrast image can be generated using feature amount data with a contrast higher than that of each of the plurality of first feature amounts and the second feature amount. As a result, since it becomes possible to use feature amount data in which the contrast of the feature amount is sharper than each of the plurality of first feature amounts imaged in a short time, the image quality of the generated phase contrast image is improved. Can.
  • the image processing unit preferably adds or averages the plurality of first feature amounts. It is configured to obtain quantitative data. According to this configuration, the quantum noise is smaller than each of the plurality of first feature amounts imaged in a short time from the plurality of first feature amounts, so that feature amount data with a clear contrast of the feature amounts can be easily obtained. It can be acquired.
  • the image processing unit is based on each of the plurality of second feature amounts and the feature amount data.
  • the phase contrast image can be generated using the feature amount data and each of the plurality of second feature amounts.
  • the image processing unit is based on each of the plurality of second feature amounts and the feature amount data.
  • the image processing unit is based on each of the plurality of second feature amounts and the feature amount data.
  • the image processing unit is based on each of the plurality of second feature amounts and the feature amount data.
  • the image processing unit performs extraction and correction processing of feature amounts from the X-ray image set in fringe scanning, and acquisition of the X-ray image set in next fringe scanning In parallel.
  • the extraction and correction processing of the feature amount from the X-ray image set and the acquisition of the X-ray image set in the next fringe scan can be performed in parallel. Therefore, the extraction and correction processing of the feature amount
  • the generation efficiency of the phase contrast image can be improved as compared with the case where the generation of the phase contrast image is performed each time the X-ray image set is acquired.
  • the phase contrast image includes a phase differential image
  • the image processing unit performs, as a correction process, an unwrapping process for continuously making a phase discontinuity point caused by phase folding on the phase differential image. It is configured to do.
  • the phase discontinuity is likely to occur at the boundary between the subject and the background. Therefore, if configured as described above, it is possible to eliminate phase discontinuities caused by phase folding. As a result, even when the position where the subject appears is different in each X-ray image, it is possible to suppress that the phase discontinuity point is synthesized, and suppress the deterioration of the image quality of the generated phase differential image. be able to.
  • the image processing unit detects, as the correction process, an X-ray image detected by a detector including at least a change in X-ray dose emitted from the X-ray source. It is configured to perform luminance correction to correct the change of. According to this structure, it is possible to correct an artifact caused by a change in X-ray image caused by an imaging device such as a detector due to a short imaging time. As a result, even when one phase contrast image is generated from a plurality of phase contrast images, it is possible to correct an artifact caused by an imaging device such as a detector that occurs in each phase contrast image due to a short imaging time. Therefore, it is possible to suppress the deterioration of the image quality of the phase contrast image due to the accumulation of the artifact caused by the change of the X-ray image caused by the imaging device such as the detector.
  • control unit is further provided to control movement of the grating in the grating moving mechanism, and the control unit controls the stripes based on the period of the grating moved by the grating moving mechanism. It is configured to determine the time to perform the scan. According to this structure, for example, when the period of the grating to be translated is 10 ⁇ m, fringe scanning can be performed in an appropriate time based on the period of the grating, such as shortening the scanning time to 10 seconds.
  • the relative position between the self-image and the plurality of grids can be subjected to fringe scanning within a time range that can sufficiently suppress the influence of position shifts other than the position shift caused by the translational movement of the grids. Since it becomes possible to secure the exposure time as much as possible, the deterioration of the image quality can be further reduced.
  • the control unit acquires the moving speed of the focal point of the X-ray source based on the position of the position reference unit captured in each of the X-ray images. It is configured to determine the time to perform the fringe scan based on the moving speed of the focus of the radiation source.
  • the movement of the focal point of the X-ray source can be detected based on the position of the position reference part captured in the X-ray image.
  • the exposure time can be secured as much as possible, it is possible to suppress the deterioration of the image quality of the image caused by the movement of the self-image caused by the movement of the focus of the X-ray source.
  • the X-ray phase imaging system in the above one aspect preferably further comprises an imaging system constituted by an X-ray source, a detector, and a plurality of gratings, and a rotation mechanism for relatively rotating an object, and the image processing unit
  • a three-dimensional phase contrast image is generated from a plurality of phase contrast images captured at a plurality of rotation angles while relatively rotating the subject and the imaging system.
  • the imaging time is long, and the deterioration of the image quality of the generated three-dimensional phase contrast image is effectively suppressed even in the acquisition of the three-dimensional phase contrast image in which the influence of changes in imaging conditions due to heat is likely to occur. be able to.
  • the plurality of gratings further include a third grating disposed between the X-ray source and the first grating.
  • the third grating can increase the coherence of the X-rays emitted from the X-ray source.
  • the freedom of selection of the X-ray source can be improved.
  • FIG. 1 is a view of the X-ray phase imaging system 100 as viewed from the X direction.
  • the X-ray phase imaging system 100 includes an X-ray source 1, a first grating 2, a second grating 3, a detector 4, an image processing unit 5, a control unit 6, and storage.
  • a unit 7 and a lattice moving mechanism 8 are provided.
  • the direction from the X-ray source 1 toward the first grating 2 is taken as the Z2 direction, and the opposite direction is taken as the Z2 direction.
  • the horizontal direction in the plane orthogonal to the Z direction is taken as the X direction
  • the direction toward the back of the paper is taken as the X2 direction
  • the direction toward the front of the paper is taken as the X1 direction
  • the vertical direction in the plane orthogonal to the Z direction is taken as the Y direction, the upper direction as the Y1 direction, and the lower direction as the Y2 direction.
  • the X-ray source 1 generates an X-ray by applying a high voltage based on a signal from the control unit 6 and irradiates the generated X-ray toward the detector 4 (Z direction) Is configured.
  • the first grating 2 has a plurality of slits 2a arranged in a predetermined direction at a predetermined period (pitch) p1 and an X-ray phase change portion 2b.
  • Each of the slits 2a and the X-ray phase change portion 2b is formed to extend linearly. Further, each slit 2a and the X-ray phase change portion 2b are formed to extend in parallel with each other.
  • the slits 2a and the X-ray phase change portions 2b are arranged in the Y direction with a predetermined period (pitch) p1 and formed to extend in the X direction.
  • the first grating 2 is a so-called phase grating.
  • the first grating 2 is disposed between the X-ray source 1 and the second grating 3 and is irradiated with X-rays from the X-ray source 1.
  • the first grating 2 is provided to form a self-image (not shown) of the first grating 2 by the Talbot effect.
  • an image (self-image) of the grid is formed at a predetermined distance (talbot distance) from the grid. This is called Talbot effect.
  • the second grating 3 has a plurality of X-ray transmitting portions 3a and X-ray absorbing portions 3b arranged in a predetermined direction at a predetermined period (pitch) p2.
  • Each of the X-ray transmitting parts 3a and the X-ray absorbing parts 3b is formed to extend in a straight line. Further, each of the X-ray transmitting parts 3a and the X-ray absorbing parts 3b is formed to extend in parallel.
  • the X-ray transmitting portions 3a and the X-ray absorbing portions 3b are arranged in the Y direction with a predetermined period (pitch) p2 and formed to extend in the X direction.
  • the second grating 3 is a so-called absorption grating.
  • the first grating 2 has a function of changing the phase of the X-ray due to the difference in refractive index between the X-ray phase change portion 2b and the slit 2a.
  • the second grating 3 has a function of shielding a part of X-rays by the X-ray absorbing portion 3 b.
  • the second grating 3 is disposed between the first grating 2 and the detector 4 and is irradiated with X-rays that have passed through the first grating 2.
  • the second grating 3 is disposed at a position separated from the first grating 2 by a Talbot distance.
  • the second grating 3 interferes with the self-image of the first grating 2 to form moire fringes (not shown) on the detection surface of the detector 4.
  • the detector 4 is configured to detect X-rays, convert the detected X-rays into an electrical signal, and read the converted electrical signal as an image signal.
  • the detector 4 is, for example, an FPD (Flat Panel Detector).
  • the detector 4 is composed of a plurality of conversion elements (not shown) and pixel electrodes (not shown) disposed on the plurality of conversion elements. The plurality of conversion elements and the pixel electrodes are arrayed in the X direction and the Y direction at a predetermined period (pixel pitch). Further, the detector 4 is configured to output the acquired image signal to the image processing unit 5.
  • the image processing unit 5 is configured to generate an X-ray image set R (see FIG. 3) including a plurality of X-ray images 11 (see FIG. 3) based on the image signal output from the detector 4 There is. In addition, the image processing unit 5 generates the first feature 12 (see FIG. 3), the feature data 13 (see FIG. 3), and the second feature 14 (see FIG. 4) based on the generated X-ray image set R. Is configured to get). Further, the image processing unit 5 is configured to generate the phase contrast image 15 (see FIG. 4) based on the feature amount data 13 and the second feature amount 14.
  • the image processing unit 5 includes, for example, a processor such as a graphics processing unit (GPU) or a field-programmable gate array (FPGA) configured for image processing.
  • a processor such as a graphics processing unit (GPU) or a field-programmable gate array (FPGA) configured for image processing.
  • the control unit 6 is configured to step-move the second grating 3 in the grating plane in a direction (X direction) orthogonal to the grating direction (Y direction) via the grating moving mechanism 8. Further, based on the period p2 of the second grating 3 and the movement of the focal point of the X-ray source 1, the control unit 6 moves the second grating 3 stepwise in the direction (X direction) orthogonal to the grating direction (Y direction). It is configured to determine the time. The detailed configuration in which the control unit 6 determines the time for stepping the second grating 3 will be described later.
  • control unit 6 includes, for example, a processor such as a CPU (Central Processing Unit).
  • the storage unit 7 is configured to store the X-ray image set R generated by the image processing unit 5, the first feature amount 12, the feature amount data 13, the second feature amount 14, the phase contrast image 15, and the like.
  • Storage unit 7 includes, for example, an HDD (Hard Disk Drive), a non-volatile memory, and the like.
  • the scanning time is the time when the second grid 3 is moved stepwise M times by the grid moving mechanism 8.
  • FIG. 2 shows the difference in the waveform 10 of the intensity change when the time for translating the second grating 3 by the grating moving mechanism 8 is changed when the image processing unit 5 generates the phase contrast image 15 by the fringe scanning method.
  • M 8.
  • M 8.
  • the fluctuation due to the external factor is, for example, a fluctuation accompanying the thermal deformation of the lattice moving mechanism 8 due to the heat generation from the X-ray source 1 and / or the heat from the outside.
  • the lattice moving mechanism 8 causes thermal deformation, the relative position between the lattices of the plurality of lattices changes. Since the heat generated from the X-ray source 1 and / or the thermal fluctuation due to the external heat also occur during imaging, the relative position among the grids of the plurality of grids is constantly changing. In addition, the heat generation from the X-ray source 1 and / or the heat from the outside may cause thermal deformation of the second grating 3.
  • the period p2 of the second grating 3 fluctuates.
  • the variation of the period p2 of the second grating 3 also occurs constantly during imaging.
  • the focal point of the X-ray source 1 may move.
  • the self-image of the first grating 2 moves. Movement of the self-image of the first grating 2 also occurs constantly during imaging. That is, during imaging, movement of the second grating 3 due to thermal fluctuation, fluctuation of the period p2 of the second grating 3 and movement of the focal point of the X-ray source 1 occur in addition to translational movement of the grating.
  • the intensity change waveform 10a (solid line graph), the intensity change waveform 10b (broken line graph), and the intensity change waveform 10c (dashed dotted line graph) are intensities when one fringe scan is performed in a short time Change waveform 10.
  • the scan time of the intensity change waveforms 10a to 10c is, for example, 10 seconds.
  • the waveform 10d of intensity change (two-dot chain line graph) is a waveform 10 of intensity change when one fringe scan is performed at a time three times the scanning time of the intensity change waveforms 10a to 10c.
  • the intensity change waveforms 10a to 10c have shapes that can be regarded as approximately sine waves although their initial phases are different.
  • the waveform 10d of the intensity change is distorted as the step progresses and is a waveform that can not be regarded as a sine wave.
  • the phase contrast image 15 is generated assuming that the obtained waveform 10 of intensity change is a sine wave, the phase contrast is generated when the waveform 10 of the obtained intensity change is distorted.
  • the image quality of the image 15 is degraded. Therefore, in the first embodiment, the X-ray phase imaging system 100 is configured to be less affected by the thermal fluctuation as much as possible and to suppress the change in the waveform 10 of the obtained intensity change.
  • a detailed configuration capable of suppressing the change in the waveform 10 of the obtained intensity change will be described.
  • the image processing unit 5 generates at least at least an amplitude, an average pixel value intensity, and a phase from a plurality of X-ray image sets R acquired by performing a fringe scan a plurality of times in a short time.
  • the feature quantity 12 (and the feature quantity 14) including any is extracted, and the phase contrast image 15 is generated on the basis of the plurality of extracted feature quantities 12 (and the feature quantity 14).
  • the image processing unit 5 obtains an X-ray image set obtained by performing a plurality of fringe scans in a short time within a range in which the imaging condition caused by heat between the plurality of X-ray images 11 does not substantially change.
  • a phase contrast image 15 is generated based on a plurality of feature quantities 12 (and feature quantities 14) extracted from R.
  • the image processing unit 5 acquires an X-ray image acquired by performing the stripe scanning a plurality of times within a short time within 100 seconds as a short time within a range where the imaging condition caused by heat does not substantially change.
  • the phase contrast image 15 is configured to be generated based on the plurality of feature quantities 12 (and the feature quantities 14) extracted from the set R.
  • the first feature quantity 12 includes an absorption image feature quantity 12a acquired based on the average pixel value intensity of the waveform 10 of intensity variation obtained by imaging in a state where the subject Q is not disposed. Further, the first feature quantity 12 includes a phase derivative image feature quantity 12 b acquired based on the phase of the waveform 10 of intensity change obtained by imaging in a state where the subject Q is not disposed. In addition, the first feature quantity 12 includes a dark-field image feature quantity 12c acquired based on the amplitude of the intensity change waveform 10 and the average pixel value intensity obtained by imaging in a state where the subject Q is not disposed. .
  • the second feature quantity 14 includes an absorption image feature quantity 14a acquired based on the average pixel value intensity of the intensity change waveform 10 obtained by imaging in a state where the subject Q is arranged.
  • the second feature quantity 14 includes a phase derivative image feature quantity 14b acquired based on the phase of the intensity change waveform 10 obtained by imaging in a state where the subject Q is arranged.
  • the first feature quantity 12 includes a dark-field image feature quantity 14c acquired based on the amplitude of the intensity change waveform 10 and the average pixel value intensity obtained by imaging in a state where the subject Q is arranged.
  • the image processing unit 5 generates the plurality of first feature amounts 12 from the plurality of first X-ray image sets Ra captured by performing the fringe scanning a plurality of times in a short time without arranging the subject Q.
  • a plurality of second feature quantities 14 are acquired from a plurality of second X-ray image sets Rb acquired by acquiring and arranging the subject Q and performing fringe scanning a plurality of times in a short time, and a plurality of first feature quantities 12
  • the phase contrast image 15 is generated using at least one of each of the plurality of second feature quantities 14.
  • the image processing unit 5 acquires the first feature amount 12 based on the X-ray image set R captured by performing one stripe scan in a short time of 100 seconds or less. Is configured as. Therefore, the exposure time per charge (charge accumulation time) is shortened. Therefore, the contrast of each of the plurality of first feature quantities 12 is not very high. Therefore, in the first embodiment, the image processing unit 5 acquires one feature amount data 13 from the plurality of first feature amounts 12 and uses one feature amount data 13 and a plurality of second feature amounts 14 Is configured to generate a phase contrast image 15.
  • FIG. 3 is a schematic diagram for explaining a process in which the image processing unit 5 according to the first embodiment acquires the first feature amount 12 and the feature amount data 13.
  • the image processing unit 5 is configured to acquire, as the first feature amount 12, the feature amount for absorption image 12a, the feature amount for phase differential image 12b, and the feature amount 12c for dark field imaging. . Specifically, the image processing unit 5 performs M (four) X-ray images 11 (X-rays) captured while moving the second grating 3 M times (four times) in a state where the subject Q is not disposed. A plurality of first X-ray image sets Ra including the images 11a to 11d) are configured to be acquired.
  • the pixel value of the pixel of the X-ray image 11 captured without arranging the subject Q is I air jk (x, y), and S air j (x, y) below is defined.
  • M is the number of times of translational movement of the second grating 3.
  • k is the number of each step when translating the second grating 3 and is a positive integer from 1 to M.
  • j is a positive integer from 1 to the number of sets (number) of X-ray image sets R to be acquired.
  • j is a positive integer from 1 to 10.
  • x and y are the x coordinate and y coordinate of each pixel in the x-ray image 11.
  • the image processing unit 5 uses the first X-ray image set Ra to the first feature amount 12 as a feature amount 12a for an absorption image, a feature amount 12b for a phase differential image and a feature amount 12b for phase differential image based on the following equations (2) to (4).
  • the dark-field image feature amount 12 c is configured to be acquired.
  • I air — sum j (x, y) is the absorption image feature 12 a.
  • ⁇ air j (x, y) is the phase differential image feature 12 b.
  • V air j (x, y) is the dark field image feature 12 c.
  • the image processing unit 5 captures M images (four images) while moving the second grid 3 M times (four times) with the object Q arranged.
  • the second feature quantity 14 is acquired from the second X-ray image set Rb including the X-ray images 11 (X-ray images 11e to 11h) of
  • the pixel value of the pixel of the X-ray image 11 captured by arranging the object Q is I obj jk (x, y), and the following S obj j (x, y) is defined.
  • the pixel value of the X-ray image 11 acquired by one stripe scan can be expressed by the following equation (9).
  • phase at the time of imaging in a state where the subject Q is arranged can be expressed by the following equation (10).
  • ⁇ obj j (x, y) is the phase differential image feature amount 14 b.
  • V obj j (x, y) is the dark-field image feature 14 c.
  • the absorption image 15a, the phase differential image 15b, and the dark field image 15c can be represented by the following equations (12) to (14).
  • T j (x, y) is a pixel value of each pixel of the absorption image 15 a.
  • ⁇ j (x, y) is a pixel value of each pixel of the phase differential image 15 b.
  • D j (x, y) is a pixel value of each pixel of the dark field image 15 c.
  • the image processing unit 5 generates a plurality of absorption image feature amounts 14a acquired based on the equation (9) and the absorption image feature amount data 13a acquired based on the equation (5).
  • the plurality of absorption images 15a are generated using the equation (12) and the equation (12).
  • the image processing unit 5 further includes: the phase differential image feature amount data 13b acquired based on the equation (6); and the plurality of phase differential image feature amounts 14b acquired based on the equation (10)
  • the plurality of phase differential images 15 b are generated using the above equation (13).
  • the image processing unit 5 includes the dark-field image feature amount data 13 c acquired based on the equation (7) and the plurality of dark-field image feature amounts 14 c acquired based on the equation (11).
  • the plurality of dark field images 15c are generated using the above equation (14).
  • the image processing unit 5 is configured to perform averaging on the phase contrast image 15 generated based on each of the plurality of second feature quantities 14 and the feature quantity data 13. .
  • the image processing unit 5 adds or averages the plurality of (three hundred) generated absorption images 15 a, the phase differential image 15 b, and the dark field image 15 c to generate one absorption image 15 a, One phase differential image 15 b and one dark field image 15 c may be generated.
  • FIG. 5A is a schematic view of the feature amount data 13 acquired by the image processing unit 5 according to the first embodiment.
  • FIG. 5B is a schematic view of the second feature amount 14 acquired by the image processing unit 5 according to the first embodiment.
  • FIG. 5C is a schematic view of the phase contrast image 15 generated by the image processing unit 5 according to the first embodiment.
  • the feature amount data 13 and the second feature amount 14 have a gradation-like artifact A in the background.
  • the image processing unit 5 generates the phase contrast image 15 using the feature amount data 13 in which the artifact A is generated and the second feature amount 14. From the phase contrast image 15 generated based on the feature amount data 13 and the second feature amount 14, it can be seen that the gradation-like artifact A in the background is removed.
  • the control unit 6 is configured to set the time of one stripe scan to a short time in order to minimize the influence of the thermal fluctuation.
  • the control unit 6 is configured to determine the scanning time such that the movement of the second grating 3 due to thermal fluctuation is 1 ⁇ m or less. ing.
  • the moving speed of the second grating 3 due to thermal fluctuation is assumed to be constant.
  • control unit 6 obtains the moving speed of the focal point of the X-ray source 1 based on the position of the position reference unit 16 (see FIG. 6) shown in each of the X-ray images 11 It is comprised and the control part 6 is comprised so that the time which performs a fringe scan may be determined based on the moving speed of the focus of X-ray source 1 acquired.
  • FIG. 6 is a diagram for explaining processing in which the control unit 6 acquires the focal velocity of the X-ray source 1.
  • the image processing unit 5 acquires the position (x1, y1) of the position reference unit 16 captured in the X-ray image 11i. Thereafter, the image processing unit 5 acquires the position (x2, y2) of the position reference unit 16 captured in the X-ray image 11j captured after t seconds.
  • the image processing unit 5 is configured to obtain the moving distance d of the position reference unit 16 from the X-ray image 11i and the X-ray image 11j.
  • control unit 6 uses the acquired movement distance d of the position reference unit 16 and the time t seconds between the photographing of the X-ray image 11i and the photographing of the X-ray image 11j to determine the moving speed of the position reference unit 16 It is configured to get
  • the position reference unit 16 is fixedly disposed between the X-ray source 1 and the first grating 2 or between the first grating 2 and the second grating 3. Further, the position reference portion 16 is formed of an X-ray high absorption material having a high X-ray absorptivity.
  • the X-ray superabsorbent is, for example, a heavy metal. In the first embodiment, a heavy metal such as tungsten, gold, lead or the like is used as the position reference unit 16, for example. Since the position reference unit 16 is fixedly arranged, it is considered that when the position of the position reference unit 16 in the X-ray image 11 changes, movement of the focal point of the X-ray source 1 occurs.
  • the image processing unit 5 detects the moving speed of the position reference unit 16 acquired based on the change in the position of the position reference unit 16 captured in the plurality of X-ray images 11. It is configured to be acquired as the movement speed of the focus.
  • the control unit 6 determines the scanning time of the second grating 3 It is configured to determine in a short time of 10 seconds.
  • step S 1 the control unit 6 determines the scanning time of the second grating 3 before acquiring the X-ray image set R.
  • step S2 the image processing unit 5 acquires the first X-ray image set Ra captured without arranging the subject Q. Thereafter, the process proceeds to step S3.
  • step S3 the image processing unit 5 acquires a second X-ray image set Rb captured by arranging the subject Q. Thereafter, in step S4, the image processing unit 5 generates the phase contrast image 15, and ends the processing.
  • step S10 the image processing unit 5 acquires a plurality of X-ray images 11 captured by the position reference unit 16. Then, the control unit 6 acquires the moving speed of the focus of the X-ray source 1 from the plurality of X-ray images 11 captured by the position reference unit 16. Next, in step S11, the control unit 6 determines whether the focal point of the X-ray source 1 is moving based on the acquired moving speed of the focal point of the X-ray source 1. If the focus of the X-ray source 1 is moving, the process proceeds to step S12. If the focal point of the X-ray source 1 has not moved, the process proceeds to step S13.
  • step S12 the image processing unit 5 determines the scanning time of the second grating 3 based on the moving speed of the focal point of the X-ray source 1. Thereafter, the process returns to step S2.
  • step S13 the control unit 6 determines the time for performing the fringe scanning based on the period p2 of the second grating 3 moved by the grating moving mechanism 8. Specifically, for example, when the period p2 of the second grating 3 is 10 ⁇ m, the time for performing the fringe scanning is determined so that the movement of the second grating 3 due to thermal fluctuation is 1 ⁇ m or less. Thereafter, the process returns to step S2.
  • step S20 the image processing unit 5 acquires M (four) X-ray images 11 captured while translating the second grating 3 M times (four times) in a state where the subject Q is not disposed.
  • One set of M (four) X-ray images 11 acquired in step S20 is the first X-ray image set Ra. Thereafter, the process proceeds to step S21.
  • step S21 the control unit 6 determines whether a predetermined number of times of stripe scanning has been performed. In other words, the control unit 6 determines whether the first X-ray image set Ra has been acquired by a predetermined number of sets. If the first X-ray image set Ra has been acquired by a predetermined number, the process proceeds to step S3. If the first X-ray image set Ra has not been acquired by a predetermined number, the process returns to step S20. As a result, j sets (10 sets) of the first X-ray image set Ra are obtained.
  • step S30 the image processing unit 5 acquires M (four) X-ray images 11 captured while translating the second grating 3 M times (four times) with the object Q arranged.
  • One set of M (four) X-ray images 11 acquired in step S30 is the second X-ray image set Rb. Thereafter, the process proceeds to step S31.
  • step S31 the control unit 6 determines whether a predetermined number of times of stripe scanning has been performed. In other words, the control unit 6 determines whether the second X-ray image set Rb has been acquired by a predetermined number of sets. If the second X-ray image set Rb has been acquired by a predetermined number, the process proceeds to step S4. If the second X-ray image set Rb has not been acquired by a predetermined number, the process returns to step S30. As a result, j sets (300 sets) of the second X-ray image set Rb are obtained.
  • step S40 the image processing unit 5 acquires a plurality of first feature amounts 12 from the plurality of first X-ray image sets Ra based on the above equations (2) to (4). Thereafter, in step S41, the image processing unit 5 acquires one piece of feature amount data 13 from the plurality of first feature amounts 12 based on the above formulas (5) to (7). Thereafter, the process proceeds to step S42.
  • step S42 the image processing unit 5 acquires the plurality of second feature amounts 14 from the plurality of second X-ray image sets Rb based on the above equations (9) to (11). Thereafter, in step S43, the image processing unit 5 generates a plurality of phase contrasts from one feature amount data 13 and each of the plurality of second feature amounts 14 based on the above equations (12) to (14). An image 15 is generated. Thereafter, the process proceeds to step S44.
  • step S44 the image processing unit 5 obtains one phase contrast image 15 by averaging the plurality of phase contrast images 15. Thereafter, the process ends.
  • the following effects can be obtained.
  • the X-ray phase imaging system 100 includes the X-ray source 1, the first grating 2 to which X-rays are emitted from the X-ray source 1, and the X-rays from the first grating 2 , A plurality of gratings including a second grating 3 to be irradiated, a detector 4 for detecting X-rays emitted from the X-ray source 1, a grating moving mechanism 8 for moving the second grating 3, and a detector 4 And an image processing unit 5 for generating a phase contrast image 15 from an X-ray image set R including a plurality of X-ray images 11 detected by the image processing unit 5.
  • a plurality of features extracted by extracting each of the features 12 (and the features 14) including at least one of the amplitude, the average pixel value intensity, and the phase from the plurality of acquired X-ray image sets R Phase contrast based on quantity 12 (and feature quantity 14) It is configured to generate an image 15. This makes it possible to shorten the time for performing one fringe scan for imaging while translating the second grating 3 by one period of the period p2 of the second grating 3 so that the self-image generated during the fringe scan It is possible to suppress a change in relative position between the second grid 3 and the second grid 3. As a result, it is possible to suppress the change in the waveform 10 of the obtained intensity change, and it is possible to suppress the deterioration of the image quality of the generated phase contrast image 15.
  • the image processing unit 5 performs the stripe scanning a plurality of times in a short time within a range in which the imaging condition caused by the heat between the plurality of X-ray images 11 does not substantially change.
  • the phase contrast image 15 is generated on the basis of the plurality of feature quantities 12 (and the feature quantities 14) extracted from the X-ray image set R acquired by the above.
  • the fringe scan can be performed within a time range in which the imaging condition caused by the heat does not substantially change.
  • the X-ray phase imaging system 100 extracts a plurality of features extracted from the X-ray image set R acquired by performing the fringe scanning a plurality of times in a short time within 100 seconds.
  • the phase contrast image 15 is configured to be generated based on the quantity 12 (and the feature quantity 14).
  • the image processing unit 5 generates a plurality of the first X-ray image sets Ra captured by performing the stripe scanning a plurality of times in a short time without arranging the subject Q.
  • the plurality of second feature amounts 14 are acquired from a plurality of second X-ray image sets Rb captured by acquiring the first feature amounts 12 of the first embodiment, arranging the subject Q, and performing stripe scanning a plurality of times in a short time
  • the phase contrast image 15 is generated using at least one of each of the first feature quantity 12 and the plurality of second feature quantities 14.
  • the fringe scanning is performed in a short time, the first feature quantity 12 and the second feature quantity 14 acquired in a state of receiving as little as possible changes in imaging conditions caused by heat generated during acquisition of the X-ray image set R You can get As a result, the first feature 12 and the second feature 14 can be made as insensitive as possible to changes in imaging conditions caused by heat generated during acquisition of the X-ray image set R, so that the generated phase is generated. Deterioration of the image quality of the contrast image 15 can be further suppressed.
  • the image processing unit 5 acquires one piece of feature amount data 13 from the plurality of first feature amounts 12 and, at the same time, one piece of feature amount data 13 and a plurality of second features
  • the quantity 14 is used to generate a phase contrast image 15.
  • the feature amount data 13 is acquired from the plurality of first feature amounts 12 having short exposure times (charge accumulation time) in order to capture an image in a short time
  • each of the plurality of first feature amounts 12 The quantum noise is reduced, and the contrast of the feature amount can be added.
  • the phase contrast image 15 can be generated using the feature amount data 13 and the second feature amount 14 that have a contrast higher than that of each of the plurality of first feature amounts 12.
  • the image quality of the generated phase contrast image 15 It can be improved.
  • the image processing unit 5 is configured to acquire the feature amount data 13 by averaging the plurality of first feature amounts 12. As a result, feature amount data 13 can be easily acquired from the plurality of first feature amounts 12 captured in a short time.
  • the image processing unit 5 is configured to generate the phase contrast image 15 based on each of the plurality of second feature amounts 14 and the feature amount data 13. ing.
  • the phase contrast image 15 can be generated using the feature amount data 13 and each of the plurality of second feature amounts 14.
  • the phase generated from each of the plurality of second feature quantities 14 as compared to the case where the phase contrast image 15 is generated using the first feature quantity 12 and each of the plurality of second feature quantities 14
  • the image quality of the contrast image 15 can be improved.
  • the image processing unit 5 adds or averages the phase contrast image 15 generated based on each of the plurality of second feature quantities 14 and the feature quantity data 13. It is configured to Thus, one phase contrast image 15 can be generated from the plurality of phase contrast images 15 generated based on the plurality of second feature quantities 14 captured in a short time. As a result, even when imaging is performed with a long exposure time, for example, it is possible to perform fringe scanning a plurality of times in a short time as compared to the phase contrast image 15 imaged by one fringe scan. It can suppress that the influence of the change of the imaging condition resulting from is accumulated.
  • the control unit 6 further controls the movement of the lattice in the lattice movement mechanism 8, and the control unit 6 controls the period of the second lattice 3 moved by the lattice movement mechanism 8. Based on p2, it is configured to determine the time to perform the fringe scan.
  • the period p2 of the second grating 3 to be translated is 10 ⁇ m
  • fringe scanning is performed in an appropriate time based on the period p2 of the second grating 3, such as shortening the scanning time to 10 seconds. be able to.
  • the fringe scanning is performed within a time range in which the influence of the displacement other than the displacement caused by the translational movement of the second grating 3 can be sufficiently suppressed.
  • the exposure time As it becomes possible to secure the exposure time as much as possible, it is possible to further reduce the deterioration of the image quality.
  • the image processing unit 5 acquires the moving speed of the focal point of the X-ray source 1 based on the position of the position reference unit 16 captured in each of the X-ray images 11.
  • the controller 6 is configured to determine the time for performing the fringe scan based on the acquired moving speed of the focal point of the X-ray source 1.
  • the movement of the focus of the X-ray source 1 can be detected.
  • the exposure time can be secured as much as possible, it is possible to suppress the deterioration of the image quality of the phase contrast image 15 caused by the movement of the self-image caused by the movement of the focus of the X-ray source 1.
  • an X-ray phase imaging system 200 according to a second embodiment of the present invention will be described with reference to FIGS. 1 and 14.
  • a plurality of X-ray image sets R are acquired, and the first feature amount 12, the feature amount data 13 and the second feature amount 14 are obtained from each of the plurality of X-ray image sets R to generate a phase contrast image 15
  • the image processing unit 5 extracts and corrects the feature 12 (and the feature 14) from the X-ray image set R in fringe scanning, and X in the next fringe scanning. It is configured to perform acquisition of the line image set R in parallel.
  • the same reference numerals are given to the same components as those in the first embodiment, and the description will be omitted.
  • the image processing unit 5 extracts and corrects the feature 12 (and the feature 14) from the X-ray image set R in fringe scanning, and acquires the X-ray image set R in the next fringe scanning And are configured to do in parallel. Further, in the second embodiment, the image processing unit 5 is configured to perform, as a correction process, an unwrapping process of continuously making discontinuous points of the phase generated by the folding of the phase on the phase differential image 15b. . In addition, as the correction processing, the image processing unit 5 performs luminance correction to correct the change of the X-ray image 11 detected by the detector 4 including at least the change of the dose of the X-ray irradiated from the X-ray source 1 Is configured. Specifically, the luminance correction is performed as follows.
  • the X-ray image 11 of the image area without the first grating 2 and the second grating 3 is used as the brightness correction image 110. Further, the X-ray image 11 captured by arranging the subject Q is used as the brightness correction image 111.
  • the pixel values in the luminance correction image 110 I air_bright jk (x, y ), the pixel values in the luminance correction image 111 I obj_bright jk (x, y ) and, I air_bright jk (x, y ) and I obj_bright jk ( Assuming that the average values of the pixel values of the entire image of x, y) are B air jk and B obj jk , the following equations (15) and (16) are obtained.
  • n x and n y are the numbers of pixels in the X direction and the Y direction in the brightness correction image 110 and the brightness correction image 111.
  • the luminance correction coefficient is defined as C air jk and C obj jk as follows. That is, as shown in the equation (17) and (18), determines the brightness correction coefficient, the first average pixel value B 11 of the first step of an image captured without placing an object Q as a reference.
  • the X-ray image 11 captured without disposing the subject Q and the X-ray image 11 captured by disposing the subject Q after luminance correction may be expressed by the following Equation (19) and Equation (20), respectively. it can.
  • the image processing unit 5 sets S air j (x, y) and S obj j (x, y) among the expressions used in the first embodiment to the expressions (21) and (21). Is replaced with S air j (x, y) and S obj j (x, y), and the phase contrast image 15 is generated by the same processing as in the first embodiment.
  • step S22 the control unit 6 confirms whether there is the acquired first X-ray image set Ra. If there is the acquired first X-ray image set Ra, the process proceeds to step S23. If there is no acquired first X-ray image set Ra, the process proceeds to step S24.
  • step S23 the image processing unit 5 performs correction processing on each X-ray image 11 of the first X-ray image set Ra. Thereafter, the image processing unit 5 acquires a plurality of first feature amounts 12 from the plurality of first X-ray image sets Ra subjected to the correction processing. Further, in step S23, the image processing unit 5 acquires the next first X-ray image set Ra in parallel with the correction process of each X-ray image 11 of the first X-ray image set Ra and the acquisition of the first feature quantity 12. I do. In step S24, the image processing unit 5 acquires the first X-ray image set Ra. The acquisition process of the first X-ray image set Ra in steps S23 and S24 is the same as that in step S2 of the first embodiment, and thus detailed description will be omitted.
  • step S21 when the first X-ray image set Ra has been acquired a predetermined number of sets (j sets), the process proceeds to an acquisition process of the second X-ray image set Rb (step S3).
  • step S32 the image processing unit 5 acquires a plurality of second feature amounts 14 from the plurality of second X-ray image sets Rb. Further, in step S33, the image processing unit 5 acquires the next second X-ray image set Rb in parallel with the acquisition of the second feature amount 14. Further, in step S34, the image processing unit 5 acquires a second X-ray image set Rb.
  • the acquisition process of the second X-ray image set Rb in steps S33 and S34 is the same as step S3 in the first embodiment, and thus the detailed description is omitted.
  • step S31 when the second X-ray image set Rb is acquired for a predetermined number of sets (j sets), the process proceeds to the generation process of the phase contrast image 15 (step S4).
  • step S45 the image processing unit 5 generates a phase contrast image 15 using at least one or more of the plurality of first feature amounts 12 and the plurality of second feature amounts 14 after correction. Thereafter, the process proceeds to step S46.
  • step S46 the image processing unit 5 performs correction processing on the generated phase contrast image 15, and ends the processing.
  • the image processing unit 5 performs correction processing of the plurality of X-ray images 11 included in the first X-ray image set Ra and acquisition of the plurality of first feature amounts 12 and the next first X-ray image set Ra. It is configured to perform in parallel with the acquisition of Further, in the second embodiment, the image processing unit 5 is configured to perform acquisition of the second feature quantity 14 and acquisition of the next second X-ray image set Rb in parallel.
  • the remaining structure of the second embodiment is similar to that of the aforementioned first embodiment.
  • the image processing unit 5 extracts and corrects the feature 12 (and the feature 14) from the X-ray image set R in the fringe scan, and the X-ray in the next fringe scan. It is configured to perform acquisition of the image set R in parallel. As a result, the extraction and correction processing of the feature 12 (and the feature 14) from the X-ray image set R can be performed in parallel with the acquisition of the X-ray image set R in the next fringe scan.
  • the generation efficiency of the phase contrast image 15 can be improved as compared with the case where the extraction of 12 (and the feature 14), the correction process, and the generation of the phase contrast image 15 are performed each time the X-ray image set R is acquired. .
  • the phase contrast image 15 includes the phase differential image 15 b, and the image processing unit 5 performs phase correction on the phase differential image 15 b as a result of phase folding. It is comprised so that the unwrapping process which serializes the discontinuous point of may be performed.
  • the phase discontinuity is likely to occur at the boundary between the subject Q and the background. Therefore, by performing the unwrapping process, it is possible to eliminate phase discontinuities caused by phase folding. As a result, even when the position where the subject Q appears is different in each X-ray image 11, it is possible to suppress that the phase discontinuity point is synthesized, and the image quality of the generated phase differential image 15b is degraded. Can be suppressed.
  • the image processing unit 5 detects an X-ray image detected by the detector 4 including at least a change in X-ray dose emitted from the X-ray source 1 as the correction process. It is configured to perform luminance correction to correct 11 changes. As a result, it is possible to correct an artifact A caused by a change in the X-ray image 11 caused by the imaging device such as the detector 4 due to the short imaging time. As a result, even when one phase contrast image 15 is generated from a plurality of phase contrast images 15, an artifact A caused by an imaging device such as a detector 4 generated in each phase contrast image 15 due to a short imaging time is corrected. Since this becomes possible, it is possible to suppress the deterioration of the image quality of the phase contrast image 15 caused by the accumulation of the artifact A caused by the change of the X-ray image 11 caused by the imaging device such as the detector 4.
  • the present invention is not limited to this.
  • an imaging system 17 configured by the X-ray source 1, the detector 4, and a plurality of gratings, and a rotation mechanism 18 for relatively rotating the object Q
  • the image processing unit 5 is configured to generate a three-dimensional phase contrast image from a plurality of phase contrast images 15 captured at a plurality of rotation angles while relatively rotating the subject Q and the imaging system 17. It is also good.
  • the rotation mechanism 18 is configured to rotate the subject Q and the imaging system 17 relative to each other based on a signal from the control unit 6.
  • the rotation mechanism 18 includes, for example, a rotation stage driven by a motor or the like.
  • the third grating 19 may be provided between the X-ray source 1 and the first grating 2.
  • the third grating 19 has a plurality of slits 19a and an X-ray absorbing portion 19b which are arranged in the Y direction at a predetermined period (pitch) p3. Each of the slits 19a and the X-ray absorbing portion 19b is formed to extend linearly.
  • the slits 19a and the X-ray absorbing portions 19b are formed to extend in parallel, respectively.
  • the third grating 19 is disposed between the X-ray source 1 and the first grating 2, and the X-ray source 1 emits X-rays.
  • the third grating 19 is configured such that the X-rays that have passed through the slits 19a become line light sources corresponding to the positions of the slits 19a. Thereby, the coherence of the X-ray irradiated from the X-ray source 1 can be enhanced by the third grating 19.
  • the third grating 19 moves the third grating 19 even when the focal point of the X-ray source 1 moves, since the third grating 19 sets the X-rays that have passed through the slits 19a as a linear light source corresponding to the positions of the slits 19a. Otherwise, the focal points of the X-rays emitted from the slits 19a do not move, so the self-image of the first grating 2 also does not move. Therefore, it is possible to make the change in the imaging condition caused by the movement of the focal point of the X-ray source 1 less likely to be received, thereby further suppressing the deterioration of the image quality of the generated phase contrast image 15 .
  • this invention is not limited to this.
  • an absorption grating may be used as the first grating 2.
  • the image processing unit 5 When an absorption grating is used as the first grating 2, the image processing unit 5 generates a phase contrast image 15 from the striped pattern of X-rays transmitted through the first grating 2 and the second grating 3. Therefore, since it becomes possible to acquire the phase contrast image 15 without using the self-image of the first grating 2, the degree of freedom of the arrangement position of the first grating 2 can be improved.
  • phase contrast image 15 when it is desired to obtain the phase contrast image 15 of high quality, it is better to use the phase grating as the first grating 2. preferable.
  • the image processing unit 5 may be configured to perform offset processing and loss processing as the correction processing.
  • the first grid 2 may be translated.
  • the grid to be moved may be any grid.
  • X-ray source 2 first grating 3 second grating 4 detector 5 image processing unit 8 lattice movement mechanism 11 X-ray image 12 first feature (feature) 13 feature data 14 second feature (feature) 15 phase contrast image 16 position reference unit 17 imaging system 18 rotation mechanism 19 third grating 100, 200, 300, 400 X-ray phase imaging system Q object R X-ray image set p 2 grating period

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

X線位相撮像システム(100)は、X線源(1)と、複数の格子(2,3)と、検出器(4)と、格子移動機構(8)と、画像処理部(5)とを備え、画像処理部(5)は、縞走査を短時間で複数回行うことにより取得された複数のX線画像セット(R)から抽出した複数の第1特徴量(12)および第2特徴量(14)に基づいて、位相コントラスト画像(15)を生成するように構成されている。

Description

X線位相撮像システム
 本発明は、X線位相撮像システムに関し、特に、複数の格子を用いて撮像を行うX線位相撮像システムに関する。
 従来、複数の格子を用いて撮像を行うX線位相撮像システムが知られている。このようなX線位相差撮像システムは、たとえば、国際公開第2009/104560号に開示されている。
 国際公開第2009/104560号に開示されているX線位相撮像システムは、タルボ干渉計によってX線撮像を行い、縞走査法によって位相コントラスト画像を生成するように構成されている。
 ここで、タルボ干渉計では、位相格子と、吸収格子とを用いて撮像が行われる。具体的には、複数の格子のどちらか一方を、格子のパターンと直交する方向に並進させながら複数回撮像する。また、縞走査法とは、格子を並進移動させながら複数回撮像されたX線画像の各画素の画素値の強度変化に基づいて、位相コントラスト画像を生成する手法である。位相コントラスト画像には、吸収像、位相微分像および暗視野像が含まれる。吸収像とは、X線が被写体を通過した際に生じるX線の減衰に基づいて画像化した像である。また、位相微分像とは、X線が被写体を通過した際に発生するX線の位相のずれをもとに画像化した像である。また、暗視野像とは、物体の小角散乱に基づくVisibilityの変化によって得られる、Visibility像のことである。また、暗視野像は、小角散乱像とも呼ばれる。「Visibility」とは、鮮明度のことである。
 タルボ干渉計では、可干渉性の高いX線を位相格子に照射することにより、所定の位置に形成される位相格子の自己像と吸収格子とを干渉させることにより形成されるモアレ縞に基づいて、被写体の内部構造を画像化する。縞走査法を用いて位相コントラスト画像を生成する際は、位相格子または吸収格子を格子パターンと直交する方向に少なくとも格子の1周期分、並進移動させながら撮像したモアレ縞の各画素の画素値の強度変化の波形に基づいて位相コントラスト画像を生成する。
国際公開第2009/104560号
 しかしながら、国際公開第2009/104560号のX線位相撮像システムで用いられているタルボ干渉計では、複数のX線画像の各画素の画素値の強度変化に基づいて位相コントラスト画像を生成している。そのため、格子を格子の周期の1周期分だけ並進移動させながら撮像を行う際に、複数の格子の少なくともいずれかに縞走査のための並進移動以外の移動が生じた場合、得られる強度変化の波形が変化する。また、格子を格子の周期の1周期分だけ並進移動させながら撮影する際にX線源に焦点移動が生じた場合、位相格子の自己像の位置が移動するため、得られる強度変化の波形が変化する。また、X線源や外部からの熱により、格子が熱変形した場合、格子の周期が変動するため、得られる強度変化の波形が変化する。すなわち、自己像と複数の格子との間の相対位置に、格子の並進移動に伴う位置ずれ以外の位置ずれが生じた場合、得られる強度変化の波形が変化し、生成される位相コントラスト画像の画質が劣化するという問題点がある。また、位相コントラスト画像の位相感度の向上のニーズがあり、格子の周期(ピッチ)の更なる微細化が進められている。格子の周期(ピッチ)を更に微細化すれば、自己像と複数の格子との間の相対位置に、格子の並進移動に伴う位置ずれ以外の位置ずれに起因する強度変化の波形の変化(画質の劣化)がさらに顕著になる。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、自己像と複数の格子との間の相対位置に、格子の並進移動に伴う位置ずれ以外の位置ずれが生じた場合でも、得られる位相コントラスト画像の画質が劣化することを抑制することが可能なX線位相撮像システムを提供することである。
 上記目的を達成するために、この発明の一の局面におけるX線位相撮像システムは、X線源と、X線源からX線が照射される第1格子と、第1格子からのX線が照射される第2格子とを含む複数の格子と、X線源から照射されたX線を検出する検出器と、複数の格子の少なくともいずれか1つを移動させる格子移動機構と、検出器により検出された複数のX線画像を含むX線画像セットから位相コントラスト画像を生成する画像処理部とを備え、画像処理部は、縞走査を短時間で複数回行うことにより取得された複数のX線画像セットから、振幅と、平均画素値強度と、位相とのうち、少なくともいずれかを含む特徴量をそれぞれ抽出し、抽出した複数の特徴量に基づいて、位相コントラスト画像を生成するように構成されている。なお、X線画像セットとは、1回の縞走査によって取得される複数のX線画像のセットのことである。
 この発明の一の局面におけるX線位相撮像システムは、上記のように、縞走査を短時間で複数回行うことにより取得された複数のX線画像セットから抽出した特徴量に基づいて、位相コントラスト画像を生成するように構成されている。ここで、X線源からの発熱および/または外部からの熱により、格子移動機構が熱変形を起こす場合がある。格子移動機構が熱変形を起こした場合、複数の格子の格子間における相対位置が変化する。X線源からの発熱および/または外部からの熱による熱変動は撮像中にも生じているため、複数の格子の格子間における相対位置は、常に変化している。また、X線源からの発熱および/または外部からの熱により格子に熱変形が生じる場合がある。格子が熱変形した場合、格子の周期が変動する。格子の周期の変動も撮像中は常に生じている。また、X線を照射している際に、X線源の焦点が移動する場合がある。X線源の焦点が移動した場合、格子の自己像が移動する。格子の自己像の移動も、撮像中は常に生じている。すなわち、撮像中は、格子の縞走査の並進移動以外に熱変動における格子の移動、格子の周期の変動およびX線源の焦点の移動が生じている。したがって、上記のように縞走査を短時間で複数回行うように構成することにより、格子の周期の1周期分、格子を並進移動させながら撮像する1回あたりの走査時間を短くすることができるので、縞走査の間に生じる自己像と格子との間の相対位置の変化を抑制することができる。その結果、得られる強度変化の波形が変化することを抑制することが可能となり、生成する位相コントラスト画像の画質が劣化することを抑制することができる。
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、画像処理部は、複数のX線画像間の熱に起因する撮像条件が略変化しない範囲内の短時間で複数回縞走査を行うことにより取得されたX線画像セットから抽出した複数の特徴量に基づいて、位相コントラスト画像を生成するように構成されている。このように構成すれば、熱に起因する撮像条件が略変化しない時間範囲内で縞走査を行うことができる。その結果、熱に起因する撮像条件が変化することによる位相コントラスト画像の画質の劣化を抑制することができる。なお、本明細書において、撮像条件とは、自己像と格子との間の相対位置のことであり、撮像条件の変化とは、格子の並進移動に伴う自己像と格子との間の相対位置の位置ずれ以外の自己像と格子との間の相対位置の位置ずれのことである。
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、100秒以内の短時間で複数回縞走査を行うことにより取得されたX線画像セットから抽出した複数の特徴量に基づいて、位相コントラスト画像を生成するように構成されている。このように構成すれば、100秒以内という、短時間でX線画像セットを取得するので、縞走査を行う際における熱に起因する撮像条件の変化の影響を極力受けにくくすることができる。その結果、得られる強度変化の波形が変化することをさらに抑制することが可能となり、得られる位相コントラスト画像の画質が劣化することをさらに抑制することができる。
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、画像処理部は、被写体を配置せずに短時間で複数回縞走査を行うことにより撮像された複数のX線画像セットから複数の第1特徴量を取得し、被写体を配置して短時間で複数回縞走査を行うことにより撮像され複数のX線画像セットから複数の第2特徴量を取得し、複数の第1特徴量と、複数の第2特徴量とのうちそれぞれ少なくとも1つずつを用いて、位相コントラスト画像を生成するように構成されている。このように構成すれば、短時間で縞走査を行うので、X線画像セットの取得中に生じる熱に起因する撮像条件の変化を極力受けない状態で取得された第1特徴量および第2特徴量を取得することができる。その結果、第1特徴量および第2特徴量を、X線画像セットの取得中に生じる熱に起因する撮像条件の変化を極力受けにくくすることが可能となるので、生成される位相コントラスト画像の画質が劣化することをより一層抑制することができる。
 この場合、好ましくは、画像処理部は、複数の第1特徴量から1つの特徴量データを取得するとともに、1つの特徴量データと複数の第2特徴量とを用いて、位相コントラスト画像を生成するように構成されている。このように構成すれば、短時間で撮影するために、各々の露光時間(電荷蓄積時間)が短い複数の第1特徴量から特徴量データを取得するので、複数の第1特徴量の各々よりもより特徴量のコントラストを付けることができる。そして、複数の第1特徴量の各々よりもコントラストがついた特徴量データと第2特徴量とを用いて位相コントラスト画像を生成することができる。その結果、短時間で撮像された複数の第1特徴量の各々よりも特徴量のコントラストが鮮明な特徴量データを用いることが可能となるので、生成される位相コントラスト画像の画質を向上させることができる。
 上記1つの特徴量データと複数の第2特徴量とを用いて位相コントラスト画像を生成する構成において、好ましくは、画像処理部は、複数の第1特徴量を加算または平均化することにより、特徴量データを取得するように構成されている。このように構成すれば、短時間で撮像された複数の第1特徴量から複数の第1特徴量の各々よりも、量子ノイズが小さくなることにより特徴量のコントラストが鮮明な特徴量データを容易に取得することができる。
 上記1つの特徴量データと複数の第2特徴量とを用いて位相コントラスト画像を生成する構成において、好ましくは、画像処理部は、複数の第2特徴量の各々と、特徴量データとに基づいて、位相コントラスト画像を生成するように構成されている。このように構成すれば、特徴量データと複数の第2特徴量の各々とを用いて、位相コントラスト画像を生成することができる。その結果、たとえば、第1特徴量と複数の第2特徴量の各々とを用いて位相コントラスト画像を生成する場合と比較して、複数の第2特徴量の各々から生成した位相コントラスト画像の画質を向上させることができる。
 上記1つの特徴量データと複数の第2特徴量とを用いて位相コントラスト画像を生成する構成において、好ましくは、画像処理部は、複数の第2特徴量の各々と、特徴量データとに基づいて生成された位相コントラスト画像を加算または平均化するように構成されている。このように構成すれば、短時間で撮像された複数の第2特徴量に基づいて生成された複数の位相コントラスト画像から1つの位相コントラスト画像を生成することができる。その結果、たとえば、露光時間を長くして撮像する場合でも、1回の縞走査によって撮像された位相コントラスト画像と比べて、短時間で複数回縞走査を行うことが可能となるので、熱に起因する撮像条件の変化の影響が蓄積されることを抑制することができる。
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、画像処理部は、縞走査におけるX線画像セットからの特徴量の抽出および補正処理と、次の縞走査におけるX線画像セットの取得とを並行して行うように構成されている。このように構成すれば、X線画像セットからの特徴量の抽出および補正処理と次の縞走査におけるX線画像セットの取得とを並行して行うことができるので、特徴量の抽出、補正処理および位相コントラスト画像の生成をX線画像セットを取得するたびに行う場合と比較して、位相コントラスト画像の生成効率を向上させることができる。
 この場合、好ましくは、位相コントラスト画像は、位相微分像を含み、画像処理部は、補正処理として、位相微分像に対して、位相の折り返しにより生じる位相の不連続点を連続化するアンラップ処理を行うように構成されている。ここで、位相の不連続点は、被写体と背景との境界などで生じやすい。したがって、上記のように構成すれば、位相の折り返しにより生じる位相の不連続点をなくすことができる。その結果、被写体の写る位置が各X線画像において異なる場合でも、位相の不連続点が合成されることを抑制することが可能となり、生成される位相微分像の画質が劣化することを抑制することができる。
 上記X線画像セットの補正処理を行う構成において、好ましくは、画像処理部は、補正処理として、少なくともX線源から照射されるX線の線量の変化を含む検出器で検出されるX線画像の変化を補正する輝度補正を行うように構成されている。このように構成すれば、撮像時間が短いことによる、検出器などの撮像装置に起因するX線画像の変化に伴って生じるアーチファクトを補正することができる。その結果、複数の位相コントラスト画像から1つの位相コントラスト画像を生成する場合でも、撮像時間が短いことによって各位相コントラスト画像に生じる検出器などの撮像装置に起因するアーチファクトを補正することが可能となるので、検出器などの撮像装置に起因するX線画像の変化に伴って生じるアーチファクトが蓄積することによる位相コントラスト画像の画質の劣化を抑制することができる。
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、格子移動機構における格子の移動を制御する制御部をさらに備え、制御部は、格子移動機構により移動される格子の周期に基づいて、縞走査を行う時間を決定するように構成されている。このように構成すれば、たとえば、並進移動させる格子の周期が10μmの場合、走査時間を10秒の短時間にするなど、格子の周期に基づいて適切な時間で縞走査を行うことができる。その結果、自己像と複数の格子との間の相対位置に、格子の並進移動に伴う位置ずれ以外の位置ずれによる影響を十分に抑制することが可能な時間範囲内で縞走査を行うことが可能となり、かつ、極力露光時間を確保することが可能となるので、画質の劣化をより一層低減することができる。
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、制御部は、X線画像のそれぞれに写る位置基準部の位置に基づいて、X線源の焦点の移動速度を取得し、取得したX線源の焦点の移動速度に基づいて、縞走査を行う時間を決定するように構成されている。このように構成すれば、X線画像に写る位置基準部の位置に基づいて、X線源の焦点の移動を検知することができる。その結果、X線源の焦点が移動していた場合でも、X線源の焦点の移動に伴う影響を十分に抑制することが可能な時間範囲内で縞走査を行うことが可能となり、かつ、極力露光時間を確保することが可能となるので、X線源の焦点が移動することによって生じる自己像の移動に伴う画像の画質の劣化を抑制することができる。
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、X線源と検出器と複数の格子とによって構成される撮像系と、被写体とを相対回転させる回転機構をさらに備え、画像処理部は、被写体と撮像系とを相対回転させながら複数の回転角度において撮像された複数の位相コントラスト画像から、3次元位相コントラスト画像を生成するように構成されている。このように構成すれば、熱に起因する撮像条件の変化に伴う画質の劣化が抑制された各位相コントラスト画像を用いて3次元位相コントラスト画像を生成することができる。その結果、撮像時間が長時間となり、熱による撮像条件の変化の影響が生じやすい3次元位相コントラスト画像の取得においても、生成する3次元位相コントラスト画像の画質が劣化することを効果的に抑制することができる。
 上記一の局面におけるX線位相撮像システムにおいて、好ましくは、複数の格子は、X線源と第1格子との間に配置された第3格子をさらに含んでいる。このように構成すれば、第3格子によってX線源から照射されるX線の可干渉性を高めることができる。その結果、X線源の焦点径に依存することなく第1格子の自己像を形成させることが可能となるので、X線源の選択の自由度を向上させることができる。
 本発明によれば、上記のように、自己像と複数の格子との間の相対位置に、格子の並進移動に伴う位置ずれ以外の位置ずれが生じた場合でも、得られる位相コントラスト画像の画質が劣化することを抑制することが可能なX線位相撮像システムを提供することができる。
本発明の第1実施形態によるX線位相撮像システムをX方向から見た模式図である。 走査時間と画素における画素値の強度変化の波形の変化との関係を説明するための模式図である。 本発明の第1実施形態による画像処理部が特徴量データを取得する処理を説明するための模式図である。 本発明の第1実施形態による画像処理部が位相コントラスト画像を生成する処理を説明するための模式図である。 特徴量データを示す模式図(A)、第2特徴量を示す模式図(B)および位相コントラスト画像を示す模式図(C)である。 本発明の第1実施形態による制御部がX線源の焦点の移動速度を取得する処理を説明するための模式図である。 本発明の第1実施形態による位相コントラスト画像取得処理を説明するためのフローチャートである。 本発明の第1実施形態による走査時間決定処理を説明するための模式図である。 本発明の第1実施形態による第1X線画像セット取得処理を説明するための模式図である。 本発明の第1実施形態による第2X線画像セット取得処理を説明するための模式図である。 本発明の第1実施形態による位相コントラスト画像生成処理を説明するための模式図である。 本発明の第2実施形態による第1X線画像セット取得処理を説明するための模式図である。 本発明の第2実施形態による第2X線画像セット取得処理を説明するための模式図である。 本発明の第2実施形態による位相コントラスト画像生成処理を説明するための模式図である。 本発明の第1実施形態の第1変形例によるX線位相撮像システムをX方向から見た模式図である。 本発明の第1実施形態の第2変形例によるX線位相撮像システムをX方向から見た模式図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
 [第1実施形態]
 図1~図6を参照して、本発明の第1実施形態によるX線位相撮像システム100の構成について説明する。
 (X線位相撮像システムの構成)
 まず、図1を参照して、本発明の第1実施形態によるX線位相撮像システム100の構成について説明する。
 図1は、X線位相撮像システム100をX方向から見た図である。図1に示すように、X線位相撮像システム100は、X線源1と、第1格子2と、第2格子3と、検出器4と、画像処理部5と、制御部6と、記憶部7と、格子移動機構8とを備えている。なお、本明細書において、X線源1から第1格子2に向かう方向をZ2方向、その逆向きの方向をZ2方向とする。また、Z方向と直交する面内の左右方向をX方向とし、紙面の奥に向かう方向をX2方向、紙面の手前側に向かう方向をX1方向とする。また、Z方向と直交する面内の上下方向をY方向とし、上方向をY1方向、下方向をY2方向とする。
 X線源1は、制御部6からの信号に基づいて高電圧が印加されることにより、X線を発生させるとともに、発生させたX線を検出器4(Z方向)に向けて照射するように構成されている。
 第1格子2は、一定方向に所定の周期(ピッチ)p1で配列される複数のスリット2aおよび、X線位相変化部2bを有している。各スリット2aおよびX線位相変化部2bはそれぞれ、直線状に延びるように形成されている。また、各スリット2aおよびX線位相変化部2bはそれぞれ、平行に延びるように形成されている。図1に示す例では、各スリット2aおよびX線位相変化部2bはそれぞれ、Y方向に所定の周期(ピッチ)p1で配列され、X方向に延びるように形成されている。第1格子2は、いわゆる位相格子である。
 第1格子2は、X線源1と、第2格子3との間に配置されており、X線源1からX線が照射される。第1格子2は、タルボ効果により、第1格子2の自己像(図示せず)を形成するために設けられている。可干渉性を有するX線が、スリットが形成された格子を通過すると、格子から所定の距離(タルボ距離)離れた位置に、格子の像(自己像)が形成される。これをタルボ効果という。
 第2格子3は、一定方向に所定の周期(ピッチ)p2で配列される複数のX線透過部3aおよびX線吸収部3bを有する。各X線透過部3aおよびX線吸収部3bはそれぞれ、直線状に延びるように形成されている。また、各X線透過部3aおよびX線吸収部3bはそれぞれ、平行に延びるように形成されている。図1に示す例では、各X線透過部3aおよびX線吸収部3bはそれぞれ、Y方向に所定の周期(ピッチ)p2で配列され、X方向に延びるように形成されている。第2格子3は、いわゆる、吸収格子である。第1格子2は、X線位相変化部2bとスリット2aとの屈折率の違いによってX線の位相を変化させる機能を有する。第2格子3は、X線吸収部3bによりX線の一部を遮蔽する機能を有する。
 第2格子3は、第1格子2と検出器4との間に配置されており、第1格子2を通過したX線が照射される。また、第2格子3は、第1格子2からタルボ距離離れた位置に配置される。第2格子3は、第1格子2の自己像と干渉して、検出器4の検出表面上にモアレ縞(図示せず)を形成する。
 検出器4は、X線を検出するとともに、検出されたX線を電気信号に変換し、変換された電気信号を画像信号として読み取るように構成されている。検出器4は、たとえば、FPD(Flat Panel Detector)である。検出器4は、複数の変換素子(図示せず)と複数の変換素子上に配置された画素電極(図示せず)とにより構成されている。複数の変換素子および画素電極は、所定の周期(画素ピッチ)で、X方向およびY方向にアレイ状に配列されている。また、検出器4は、取得した画像信号を、画像処理部5に出力するように構成されている。
 画像処理部5は、検出器4から出力された画像信号に基づいて、複数のX線画像11(図3参照)を含むX線画像セットR(図3参照)を生成するように構成されている。また、画像処理部5は、生成したX線画像セットRに基づいて、第1特徴量12(図3参照)、特徴量データ13(図3参照)、および第2特徴量14(図4参照)を取得するように構成されている。また、画像処理部5は、特徴量データ13と第2特徴量14とに基づいて、位相コントラスト画像15(図4参照)を生成するように構成されている。画像処理部5が第1特徴量12、特徴量データ13、第2特徴量14を取得する処理および位相コントラスト画像15を生成する処理の詳細については後述する。画像処理部5は、たとえば、GPU(Graphics Processing Unit)または画像処理用に構成されたFPGA(Field-Programmable Gate Array)などのプロセッサを含む。
 制御部6は、格子移動機構8を介して、第2格子3を格子面内において格子方向(Y方向)と直交する方向(X方向)にステップ移動させるように構成されている。また、制御部6は、第2格子3の周期p2およびX線源1の焦点の移動に基づいて、第2格子3を格子方向(Y方向)と直交する方向(X方向)にステップ移動させる時間を決定するように構成されている。制御部6が第2格子3をステップ移動させる時間を決定する詳細な構成については後述する。また、制御部6は、たとえば、CPU(Central Processing Unit)などのプロセッサを含む。
 記憶部7は、画像処理部5が生成したX線画像セットR、第1特徴量12、特徴量データ13、第2特徴量14および位相コントラスト画像15などを保存するように構成されている。記憶部7は、たとえば、HDD(ハードディスクドライブ)や不揮発性のメモリなどを含む。
 格子移動機構8は、制御部6からの信号に基づいて、第2格子3を格子面内(XY面内)において格子方向(Y方向)と直交する方向(X方向)にステップ移動させるように構成されている。具体的には、格子移動機構8は、第2格子3の周期p2をM分割し、p2/Mずつ第2格子3をステップ移動させる。なお、Mは正の整数であり、第1実施形態では、たとえば、M=4である。また、格子移動機構8は、たとえば、ステッピングモータやピエゾアクチュエータなどを含む。
 (走査時間の違いと強度変化の波形との関係)
 次に、図2を参照して、走査時間の違いと強度変化の波形10との関係について説明する。なお、走査時間とは、格子移動機構8によって第2格子3をM回ステップ移動させる際の時間の事である。
 図2は、画像処理部5が縞走査法によって位相コントラスト画像15を生成する際に格子移動機構8によって第2格子3を並進移動させる時間を変更した際の強度変化の波形10の違いを示す模式図である。図2に示す例では、強度変化の波形10を分かりやすくするため、M=8として、第2格子3を8ステップ分並進移動させた際の強度変化の波形10を図示している。ここで、第1格子2と第2格子3の相対的な位置関係は、縞走査の並進運動以外に熱変動等の外的要因による一定の速度で変動が生じているとする。
 外的要因による変動としては、たとえば、X線源1からの発熱および/または外部からの熱によって、格子移動機構8が熱変形することに伴う変動がある。格子移動機構8が熱変形を起こした場合、複数の格子の格子間における相対位置が変化する。X線源1からの発熱および/または外部からの熱による熱変動は撮像中にも生じているため、複数の格子の格子間における相対位置は、常に変化している。また、X線源1からの発熱および/または外部からの熱により第2格子3に熱変形が生じる場合がある。第2格子3が熱変形した場合、第2格子3の周期p2が変動する。第2格子3の周期p2の変動も撮像中は常に生じている。また、X線を照射している際に、X線源1の焦点が移動する場合がある。X線源1の焦点が移動した場合、第1格子2の自己像が移動する。第1格子2の自己像の移動も、撮像中は常に生じている。すなわち、撮像中は、格子の並進移動以外に熱変動における第2格子3の移動、第2格子3の周期p2の変動およびX線源1の焦点の移動が生じている。これらにより、第1格子2の自己像と複数の格子との間の相対位置に、第2格子3の並進移動に伴う位置ずれ以外の位置ずれが生じる。したがって、図2に示すように、1回の縞走査の時間が長くなると、上記熱変動による影響により、第1格子2の自己像と複数の格子との間の相対位置に、第2格子3の並進移動に伴う位置ずれ以外の位置ずれが生じ、得られる強度変化の波形10が変化する。
 強度変化の波形10a(実線のグラフ)、強度変化の波形10b(破線のグラフ)、および強度変化の波形10c(一点鎖線のグラフ)は、1回の縞走査を短時間で行った際の強度変化の波形10である。強度変化の波形10a~10cの走査時間は、たとえば、10秒である。強度変化の波形10d(二点鎖線のグラフ)は、1回の縞走査を、強度変化の波形10a~10cの走査時間の3倍の時間で行った際の強度変化の波形10である。強度変化の波形10a~10cは、それぞれの初期位相が異なるが、おおむね正弦波とみなすことができる形状をしている。一方、強度変化の波形10dは、ステップが進むにつれて波形が歪み、正弦波とみなすことができない波形となっていることがわかる。縞走査法では、得られた強度変化の波形10が正弦波であるものとみなして位相コントラスト画像15を生成しているため、得られた強度変化の波形10が歪むと、生成される位相コントラスト画像15の画質が劣化する。そこで、第1実施形態では、X線位相撮像システム100は、熱変動による影響を極力受けにくくし、得られる強度変化の波形10が変化することを抑制することができるように構成されている。以下、得られる強度変化の波形10が変化することを抑制することができる詳細な構成について説明する。
 (画像処理部の構成)
 次に、図3~図5を参照して、第1実施形態による画像処理部5が位相コントラスト画像15を生成する処理について説明する。
 第1実施形態では、画像処理部5は、縞走査を短時間で複数回行うことにより取得された複数のX線画像セットRから、振幅と、平均画素値強度と、位相とのうち、少なくともいずれかを含む特徴量12(および特徴量14)をそれぞれ抽出し、抽出した複数の特徴量12(および特徴量14)に基づいて、位相コントラスト画像15を生成するように構成されている。具体的には、画像処理部5は、複数のX線画像11間の熱に起因する撮像条件が略変化しない範囲内の短時間で複数回縞走査を行うことにより取得されたX線画像セットRから抽出した複数の特徴量12(および特徴量14)に基づいて、位相コントラスト画像15を生成するように構成されている。第1実施形態では、画像処理部5は、熱に起因する撮像条件が略変化しない範囲内の短時間として、100秒以内の短時間で複数回縞走査を行うことにより取得されたX線画像セットRから抽出した複数の特徴量12(および特徴量14)に基づいて、位相コントラスト画像15を生成するように構成されている。
 ここで、第1特徴量12には、被写体Qを配置しない状態で撮像して得られる強度変化の波形10の平均画素値強度に基づいて取得される吸収像用特徴量12aが含まれる。また、第1特徴量12には、被写体Qを配置しない状態で撮像して得られる強度変化の波形10の位相に基づいて取得される位相微分像用特徴量12bが含まれる。また、第1特徴量12には、被写体Qを配置しない状態で撮像して得られる強度変化の波形10の振幅および平均画素値強度に基づいて取得される暗視野像用特徴量12cが含まれる。また、特徴量データ13には、複数の第1特徴量12を加算平均することにより取得される1つの吸収像用特徴量データ13a、1つの位相微分像用特徴量データ13bおよび1つの暗視野像用特徴量データ13cが含まれる。また、第2特徴量14には、被写体Qを配置した状態で撮像して得られる強度変化の波形10の平均画素値強度に基づいて取得される吸収像用特徴量14aが含まれる。また、第2特徴量14には、被写体Qを配置した状態で撮像して得られる強度変化の波形10の位相に基づいて取得される位相微分像用特徴量14bが含まれる。また、第1特徴量12には、被写体Qを配置した状態で撮像して得られる強度変化の波形10の振幅および平均画素値強度に基づいて取得される暗視野像用特徴量14cが含まれる。
 第1実施形態では、画像処理部5は、被写体Qを配置せずに短時間で複数回縞走査を行うことにより撮像された複数の第1X線画像セットRaから複数の第1特徴量12を取得し、被写体Qを配置して短時間で複数回縞走査を行うことにより撮像され複数の第2X線画像セットRbから複数の第2特徴量14を取得し、複数の第1特徴量12と、複数の第2特徴量14とのうちそれぞれ少なくとも1つずつを用いて、位相コントラスト画像15を生成するように構成されている。
 ここで、第1実施形態では、画像処理部5は、100秒以内の短時間で1回の縞走査を行って撮像されたX線画像セットRに基づいて、第1特徴量12を取得するように構成されている。したがって、1回あたりの露光時間(電荷蓄積時間)が短くなる。そのため、複数の第1特徴量12の各々のコントラストはあまり高くない。そこで、第1実施形態では、画像処理部5は、複数の第1特徴量12から1つの特徴量データ13を取得するとともに、1つの特徴量データ13と複数の第2特徴量14とを用いて、位相コントラスト画像15を生成するように構成されている。
 (第1特徴量および特徴量データの取得)
 図3は、第1実施形態による画像処理部5が第1特徴量12および特徴量データ13を取得する処理を説明するための模式図である。
 第1実施形態では、画像処理部5は、第1特徴量12として、吸収像用特徴量12a、位相微分像用特徴量12bおよび暗視野像用特徴量12cを取得するように構成されている。具体的には、画像処理部5は、被写体Qを配置しない状態で、第2格子3をM回(4回)ステップ移動させながら撮像したM枚(4枚)のX線画像11(X線画像11a~11d)を含む第1X線画像セットRaを複数セット取得するように構成されている。
 被写体Qを配置せずに撮像したX線画像11の画素の画素値をIair jk(x、y)とし、以下のSair j(x、y)を定義する。
Figure JPOXMLDOC01-appb-M000001
 ここで、Mは、第2格子3を並進移動させる回数である。また、kは第2格子3を並進移動させる際の各ステップの番号であり、1からMまでの正の整数である。また、jは、1から取得するX線画像セットRのセット数(個数)までの正の整数である。第1実施形態では、たとえば、jは1から10までの正の整数である。また、xおよびyは、X線画像11における各画素のx座標およびy座標である。
 画像処理部5は、第1X線画像セットRaから第1特徴量12として、以下の式(2)~式(4)に基づいて、吸収像用特徴量12a、位相微分像用特徴量12bおよび暗視野像用特徴量12cを取得するように構成されている。
Figure JPOXMLDOC01-appb-M000002
 ここで、Iair_sum j(x、y)は、吸収像用特徴量12aである。また、φair j(x、y)は、位相微分像用特徴量12bである。また、Vair j(x、y)は、暗視野像用特徴量12cである。
 図3に示す例では、画像処理部5は、第1X線画像セットRaを複数セット(j=1から10の10セット)取得し、それぞれから特徴量12を取得するように構成されている。そして、第1実施形態では、画像処理部5は、10セットの第1X線画像セットRaから、1つの特徴量データ13を取得するように構成されている。具体的には、以下の式(5)~式(7)に示すように、画像処理部5は、複数の第1特徴量12を加算平均することにより、特徴量データ13を取得するように構成されている。
Figure JPOXMLDOC01-appb-M000003
 (第2特徴量の取得および位相コントラスト画像の生成処理)
 次に、図4および図5を参照して、第1実施形態による画像処理部5が第2特徴量14を取得する構成および位相コントラスト画像15を生成する構成について説明する。
 図4に示すように、第1実施形態では、画像処理部5は、被写体Qを配置した状態で、第2格子3をM回(4回)ステップ移動させながら撮像したM枚(4枚)のX線画像11(X線画像11e~11h)を含む第2X線画像セットRbから、第2特徴量14を取得するように構成されている。
 被写体Qを配置して撮像したX線画像11の画素の画素値をIobj jk(x、y)とし、以下のSobj j(x、y)を定義する。
Figure JPOXMLDOC01-appb-M000004
 また、被写体Qを配置した状態で、1回の縞走査で取得されるX線画像11の画素値は、以下の式(9)により示すことができる。
Figure JPOXMLDOC01-appb-M000005
 また、被写体Qを配置した状態で撮像した際の位相は、以下の式(10)により示すことができる。
Figure JPOXMLDOC01-appb-M000006
 ここで、φobj j(x、y)は、位相微分像用特徴量14bである。
 また、被写体Qを配置した状態で撮像した際のVisibilityは、以下の式(11)により示すことができる。
Figure JPOXMLDOC01-appb-M000007
 ここで、Vobj j(x、y)は、暗視野像用特徴量14cである。
 吸収像15a、位相微分像15bおよび暗視野像15cは、以下の式(12)~式(14)により示すことができる。
Figure JPOXMLDOC01-appb-M000008
 ここで、Tj(x、y)は、吸収像15aの各画素の画素値である。また、φj(x、y)は、位相微分像15bの各画素の画素値である。また、Dj(x、y)は、暗視野像15cの各画素の画素値である。
 第1実施形態では、上記式(12)~式(14)により、画像処理部5は、複数の第2特徴量14の各々と、特徴量データ13とに基づいて、位相コントラスト画像15を生成するように構成されている。図4に示す例では、画像処理部5は、第2X線画像セットRbを複数セット(j=1から300の300セット)取得し、それぞれから第2特徴量14を取得するように構成されている。そして、第1実施形態では、画像処理部5は、複数の第2X線画像セットRbから取得した第2特徴量14のそれぞれと、特徴量データ13とを用いて、複数の位相コントラスト画像15を生成するように構成されている。
 具体的には、画像処理部5は、上記式(5)に基づいて取得される吸収像用特徴量データ13aと、上記式(9)に基づいて取得される複数の吸収像用特徴量14aと、上記式(12)とを用いて、複数の吸収像15aを生成するように構成されている。また、画像処理部5は、上記式(6)に基づいて取得される位相微分像用特徴量データ13bと、上記式(10)に基づいて取得される複数の位相微分像用特徴量14bと、上記式(13)とを用いて、複数の位相微分像15bを生成するように構成されている。また、画像処理部5は、上記式(7)に基づいて取得される暗視野像用特徴量データ13cと、上記式(11)に基づいて取得される複数の暗視野像用特徴量14cと、上記式(14)とを用いて、複数の暗視野像15cを生成するように構成されている。
 また、上述したように、第2特徴量14の取得に用いる第2X線画像セットRbも短時間の縞走査によって撮像されているため、露光時間(電荷蓄積時間)が短い。したがって、第1実施形態では、画像処理部5は、複数の第2特徴量14の各々と、特徴量データ13とに基づいて生成された位相コントラスト画像15を加算平均するように構成されている。図4に示す例では、画像処理部5は、生成した複数(300枚)の吸収像15a、位相微分像15bおよび暗視野像15cをそれぞれ加算または平均化することにより、1つの吸収像15a、1つの位相微分像15b、および1つの暗視野像15cを生成してもよい。
 図5(A)は、第1実施形態による画像処理部5が取得する特徴量データ13の模式図である。図5(B)は、第1実施形態による画像処理部5が取得する第2特徴量14の模式図である。図5(C)は、第1実施形態による画像処理部5が生成する位相コントラスト画像15の模式図である。
 図5(A)および図5(B)に示すように、特徴量データ13および第2特徴量14には、背景にグラデーション状のアーチファクトAが生じている。第1実施形態では、図5(C)に示すように、画像処理部5は、アーチファクトAが生じている特徴量データ13および第2特徴量14を用いて位相コントラスト画像15を生成するため、特徴量データ13と第2特徴量14とに基づいて生成された位相コントラスト画像15からは、背景のグラデーション状のアーチファクトAが除去されていることがわかる。
 (走査時間の決定)
 また、上述したように、撮像中は、X線源1および/または外部からの熱により、格子の並進移動以外に第2格子3の移動、第2格子3の周期p2の変動およびX線源1の焦点の移動が生じている。そこで、第1実施形態では、制御部6は、熱変動による影響を極力受けないようにするために、1回の縞走査の時間を短時間に設定するように構成されている。第1実施形態では、制御部6は、たとえば、第2格子3の周期p2が10μmの場合、熱変動による第2格子3の移動が1μm以下になるように走査時間を決定するように構成されている。なお、第1実施形態では、熱変動による第2格子3の移動速度は一定であるものとする。
 また、第1実施形態では、制御部6は、X線画像11のそれぞれに写る位置基準部16(図6参照)の位置に基づいて、X線源1の焦点の移動速度を取得するように構成されており、制御部6は、取得されたX線源1の焦点の移動速度に基づいて、縞走査を行う時間を決定するように構成されている。
 図6は、制御部6がX線源1の焦点速度を取得する処理を説明するための図である。図6に示すように、画像処理部5は、X線画像11i中に写る位置基準部16の位置(x1、y1)を取得する。その後、画像処理部5は、t秒後に撮像されたX線画像11j中に写る位置基準部16の位置(x2、y2)を取得する。画像処理部5は、X線画像11iとX線画像11jとから、位置基準部16の移動距離dを取得するように構成されている。また、制御部6は、取得した位置基準部16の移動距離dとX線画像11iの撮影とX線画像11jの撮影との間の時間t秒とを用いて、位置基準部16の移動速度を取得するように構成されている。
 ここで、位置基準部16は、X線源1と第1格子2との間または第1格子2と第2格子3との間に固定して配置されている。また、位置基準部16は、X線の吸収率が高いX線高吸収体により形成されている。X線高吸収体は、たとえば、重金属である。第1実施形態では、位置基準部16として、たとえば、タングステン、金、鉛などの重金属を用いる。位置基準部16は固定して配置されているため、X線画像11中における位置基準部16の位置が変化した場合は、X線源1の焦点の移動が生じたと考えられる。したがって、第1実施形態では、画像処理部5は、複数のX線画像11中に写る位置基準部16の位置の変化に基づいて取得した位置基準部16の移動速度を、X線源1の焦点の移動速度として取得するように構成されている。
 第1実施形態では、制御部6は、たとえば、X線源1の焦点の移動速度が10μm/100秒であり、第2格子3の周期p2が10μmの場合、第2格子3の走査時間を10秒の短時間に決定するように構成されている。
 (位相コントラスト画像の生成処理)
 次に、図7~図11を参照して、第1実施形態による位相コントラスト画像15の生成処理について説明する。
 図7に示すように、ステップS1において、制御部6は、X線画像セットRを取得する前に、第2格子3の走査時間を決定する。次に、ステップS2において、画像処理部5は、被写体Qを配置せずに撮像された第1X線画像セットRaを取得する。その後、処理はステップS3へ進む。
 ステップS3において、画像処理部5は、被写体Qを配置して撮像された第2X線画像セットRbを取得する。その後、ステップS4において、画像処理部5は、位相コントラスト画像15を生成し、処理を終了する。
 次に、図8~図11を参照して、各処理の詳細について説明する。まず、図8を参照して、図7のステップS1における、第2格子3の走査時間を決定する処理について説明する。
 ステップS10において、画像処理部5は、位置基準部16が写る複数のX線画像11を取得する。そして、制御部6は、位置基準部16が写る複数のX線画像11から、X線源1の焦点の移動速度を取得する。次に、ステップS11において、制御部6は、取得されたX線源1の焦点の移動速度に基づいて、X線源1の焦点が移動しているか否かを判定する。X線源1の焦点が移動している場合、処理はステップS12へ進む。X線源1の焦点が移動していない場合、処理はステップS13へ進む。
 ステップS12において、画像処理部5は、X線源1の焦点の移動速度に基づいて、第2格子3の走査時間を決定する。その後、処理はステップS2へ戻る。
 また、ステップS13において、制御部6は、格子移動機構8により移動される第2格子3の周期p2に基づいて、縞走査を行う時間を決定する。具体的には、たとえば、第2格子3の周期p2が10μmの場合、熱変動による第2格子3の移動が1μm以下になるように縞走査を行う時間を決定する。その後、処理はステップS2へ戻る。
 次に、図9を参照して、図7のステップS2における第1X線画像セットRaを取得する処理について説明する。
 ステップS20において、画像処理部5は、被写体Qを配置しない状態で第2格子3をM回(4回)並進移動させながら撮像されたM枚(4枚)のX線画像11を取得する。ステップS20において取得されたM枚(4枚)のX線画像11の1セットが第1X線画像セットRaである。その後、ステップS21へ進む。
 ステップS21において、制御部6は、所定の回数縞走査が行われたかを判定する。言い換えると、制御部6は、所定のセット数だけ第1X線画像セットRaが取得されたかを判定する。所定の数だけ第1X線画像セットRaが取得された場合、処理はステップS3へ進む。所定の数だけ第1X線画像セットRaが取得されていない場合、処理は、ステップS20へ戻る。この結果、jセット(10セット)の第1X線画像セットRaが得られる。
 次に、図10を参照して、図7のステップS3における第2X線画像セットRbを取得する処理について説明する。
 ステップS30において、画像処理部5は、被写体Qを配置した状態で第2格子3をM回(4回)並進移動させながら撮像されたM枚(4枚)のX線画像11を取得する。ステップS30において取得されたM枚(4枚)のX線画像11の1セットが第2X線画像セットRbである。その後、ステップS31へ進む。
 ステップS31において、制御部6は、所定の回数縞走査が行われたかを判定する。言い換えると、制御部6は、所定のセット数だけ第2X線画像セットRbが取得されたかを判定する。所定の数だけ第2X線画像セットRbが取得された場合、処理はステップS4へ進む。所定の数だけ第2X線画像セットRbが取得されていない場合、処理は、ステップS30へ戻る。この結果、jセット(300セット)の第2X線画像セットRbが得られる。
 次に、図11を参照して、画像処理部5が、図7のステップS4における位相コントラスト画像15を生成する処理について説明する。
 ステップS40において、画像処理部5は、上記式(2)~式(4)に基づいて、複数の第1X線画像セットRaから、複数の第1特徴量12を取得する。その後、ステップS41において、画像処理部5は、上記式(5)~式(7)に基づいて、複数の第1特徴量12から、1つの特徴量データ13を取得する。その後、処理はステップS42へ進む。
 ステップS42において、画像処理部5は、上記式(9)~式(11)に基づいて、複数の第2X線画像セットRbから、複数の第2特徴量14を取得する。その後、ステップS43において、画像処理部5は、上記式(12)~式(14)に基づいて、1つの特徴量データ13と、複数の第2特徴量14の各々とから、複数の位相コントラスト画像15を生成する。その後、処理はステップS44へ進む。
 ステップS44において、画像処理部5は、複数の位相コントラスト画像15を加算平均することにより、1つの位相コントラスト画像15を取得する。その後、処理を終了する。
 (第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、X線位相撮像システム100は、X線源1と、X線源1からX線が照射される第1格子2と、第1格子2からのX線が照射される第2格子3とを含む複数の格子と、X線源1から照射されたX線を検出する検出器4と、第2格子3を移動させる格子移動機構8と、検出器4により検出された複数のX線画像11を含むX線画像セットRから位相コントラスト画像15を生成する画像処理部5とを備え、画像処理部5は、縞走査を短時間で複数回行うことにより取得された複数のX線画像セットRから、振幅と、平均画素値強度と、位相とのうち、少なくともいずれかを含む特徴量12(および特徴量14)をそれぞれ抽出し、抽出した複数の特徴量12(および特徴量14)に基づいて、位相コントラスト画像15を生成するように構成されている。これにより、第2格子3の周期p2の1周期分、第2格子3を並進移動させながら撮像する1回の縞走査を行う時間を短くすることができるので、縞走査の間に生じる自己像と第2格子3との間の相対位置の変化を抑制することができる。その結果、得られる強度変化の波形10が変化することを抑制することが可能となり、生成する位相コントラスト画像15の画質が劣化することを抑制することができる。
 また、第1実施形態では、上記のように、画像処理部5は、複数のX線画像11間の熱に起因する撮像条件が略変化しない範囲内の短時間で複数回縞走査を行うことにより取得されたX線画像セットRから抽出した複数の特徴量12(および特徴量14)に基づいて、位相コントラスト画像15を生成するように構成されている。これにより、熱に起因する撮像条件が略変化しない時間範囲内で縞走査を行うことができる。その結果、熱に起因する撮像条件が変化することによる位相コントラスト画像15の画質の劣化を抑制することができる。
 また、第1実施形態では、上記のように、X線位相撮像システム100は、100秒以内の短時間で複数回縞走査を行うことにより取得されたX線画像セットRから抽出した複数の特徴量12(および特徴量14)に基づいて、位相コントラスト画像15を生成するように構成されている。これにより、100秒以内という、短時間でX線画像セットRを取得するので、縞走査を行う際における熱に起因する撮像条件の変化の影響を極力受けにくくすることができる。その結果、得られる強度変化の波形10が変化することをさらに抑制することが可能となり、得られる位相コントラスト画像15の画質が劣化することをさらに抑制することができる。
 また、第1実施形態では、上記のように、画像処理部5は、被写体Qを配置せずに短時間で複数回縞走査を行うことにより撮像された複数の第1X線画像セットRaから複数の第1特徴量12を取得し、被写体Qを配置して短時間で複数回縞走査を行うことにより撮像され複数の第2X線画像セットRbから複数の第2特徴量14を取得し、複数の第1特徴量12と、複数の第2特徴量14とのうちそれぞれ少なくとも1つずつを用いて、位相コントラスト画像15を生成するように構成されている。これにより、短時間で縞走査を行うので、X線画像セットRの取得中に生じる熱に起因する撮像条件の変化を極力受けない状態で取得された第1特徴量12および第2特徴量14を取得することができる。その結果、第1特徴量12および第2特徴量14を、X線画像セットRの取得中に生じる熱に起因する撮像条件の変化を極力受けにくくすることが可能となるので、生成される位相コントラスト画像15の画質が劣化することをより一層抑制することができる。
 また、第1実施形態では、上記のように、画像処理部5は、複数の第1特徴量12から1つの特徴量データ13を取得するとともに、1つの特徴量データ13と複数の第2特徴量14とを用いて、位相コントラスト画像15を生成するように構成されている。これにより、短時間で撮影するために、各々の露光時間(電荷蓄積時間)が短い複数の第1特徴量12から特徴量データ13を取得するので、複数の第1特徴量12の各々よりも量子ノイズが小さくなり、より特徴量のコントラストを付けることができる。そして、複数の第1特徴量12の各々よりもコントラストがついた特徴量データ13と第2特徴量14とを用いて位相コントラスト画像15を生成することができる。その結果、短時間で撮像された複数の第1特徴量12の各々よりも特徴量のコントラストが鮮明な特徴量データ13を用いることが可能となるので、生成される位相コントラスト画像15の画質を向上させることができる。
 また、第1実施形態では、上記のように、画像処理部5は、複数の第1特徴量12を加算平均することにより、特徴量データ13を取得するように構成されている。これにより、短時間で撮像された複数の第1特徴量12から容易に特徴量データ13を取得することができる。
 また、第1実施形態では、上記のように、画像処理部5は、複数の第2特徴量14の各々と、特徴量データ13とに基づいて、位相コントラスト画像15を生成するように構成されている。これにより、特徴量データ13と複数の第2特徴量14の各々とを用いて、位相コントラスト画像15を生成することができる。その結果、たとえば、第1特徴量12と複数の第2特徴量14の各々とを用いて位相コントラスト画像15を生成する場合と比較して、複数の第2特徴量14の各々から生成した位相コントラスト画像15の画質を向上させることができる。
 また、第1実施形態では、上記のように、画像処理部5は、複数の第2特徴量14の各々と、特徴量データ13とに基づいて生成された位相コントラスト画像15を加算または平均化するように構成されている。これにより、短時間で撮像された複数の第2特徴量14に基づいて生成された複数の位相コントラスト画像15から1つの位相コントラスト画像15を生成することができる。その結果、たとえば、露光時間を長くして撮像する場合でも、1回の縞走査によって撮像された位相コントラスト画像15と比べて、短時間で複数回縞走査を行うことが可能となるので、熱に起因する撮像条件の変化の影響が蓄積されることを抑制することができる。
 また、第1実施形態では、上記のように、格子移動機構8における格子の移動を制御する制御部6をさらに備え、制御部6は、格子移動機構8により移動される第2格子3の周期p2に基づいて、縞走査を行う時間を決定するように構成されている。これにより、たとえば、並進移動させる第2格子3の周期p2が10μmの場合、走査時間を10秒の短時間にするなど、第2格子3の周期p2に基づいて適切な時間で縞走査を行うことができる。その結果、自己像と複数の格子との間の相対位置に、第2格子3の並進移動に伴う位置ずれ以外の位置ずれによる影響を十分に抑制することが可能な時間範囲内で縞走査を行うことが可能となり、かつ、極力露光時間を確保することが可能となるので、画質の劣化をより一層低減することができる。
 また、第1実施形態では、上記のように、画像処理部5は、X線画像11のそれぞれに写る位置基準部16の位置に基づいて、X線源1の焦点の移動速度を取得するように構成されており、制御部6は、取得されたX線源1の焦点の移動速度に基づいて、縞走査を行う時間を決定するように構成されている。これにより、X線画像11に写る位置基準部16の位置に基づいて、X線源1の焦点の移動を検知することができる。その結果、X線源1の焦点が移動していた場合でも、X線源1の焦点の移動に伴う影響を十分に抑制することが可能な時間範囲内で縞走査を行うことが可能となり、かつ、極力露光時間を確保することが可能となるので、X線源1の焦点が移動することによって生じる自己像の移動に伴う位相コントラスト画像15の画質の劣化を抑制することができる。
 [第2実施形態]
 次に、図1および図14を参照して、本発明の第2実施形態によるX線位相撮像システム200について説明する。複数のX線画像セットRを取得し、複数のX線画像セットRそれぞれから第1特徴量12、特徴量データ13および第2特徴量14を取得して、位相コントラスト画像15を生成する第1実施形態とは異なり、第2実施形態では、画像処理部5は、縞走査におけるX線画像セットRからの特徴量12(および特徴量14)の抽出および補正処理と、次の縞走査におけるX線画像セットRの取得とを並行して行うように構成されている。なお、上記第1実施形態と同様の構成については同様の符号を付し、説明を省略する。
 第2実施形態では、画像処理部5は、縞走査におけるX線画像セットRからの特徴量12(および特徴量14)の抽出および補正処理と、次の縞走査におけるX線画像セットRの取得とを並行して行うように構成されている。また、第2実施形態では、画像処理部5は、補正処理として、位相微分像15bに対して、位相の折り返しにより生じる位相の不連続点を連続化するアンラップ処理を行うように構成されている。また、画像処理部5は、補正処理として、少なくともX線源1から照射されるX線の線量の変化を含む検出器4で検出されるX線画像11の変化を補正する輝度補正を行うように構成されている。具体的には、輝度補正は、以下のようにして行う。
 第1格子2、第2格子3のない画像領域のX線画像11を輝度補正用画像110として用いる。また、被写体Qを配置して撮像されたX線画像11を輝度補正用画像111として用いる。輝度補正用画像110における画素値をIair_bright jk(x、y)、輝度補正用画像111における画素値をIobj_bright jk(x、y)とし、Iair_bright jk(x、y)およびIobj_bright jk(x、y)の画像全体の画素値の平均値をそれぞれBair jk、Bobj jkとすると、以下の式(15)および式(16)が得られる。
Figure JPOXMLDOC01-appb-M000009
 ここで、nx、nyは輝度補正用画像110および輝度補正用画像111におけるX方向およびY方向の画素数である。また、最初の画像(j=1)の最初のステップ(k=1)の平均画素値Bは、B11になる。
 次に、輝度補正係数をCair jk、Cobj jk以下のように定義する。
Figure JPOXMLDOC01-appb-M000010
 すなわち、上記式(17)および式(18)に示すように、輝度補正係数を、被写体Qを配置せずに撮像した最初の画像の最初のステップの平均画素値B11を基準として決定する。
 輝度補正した後の、被写体Qを配置せずに撮像したX線画像11および被写体Qを配置して撮像したX線画像11は、それぞれ以下の式(19)および式(20)で示すことができる。
Figure JPOXMLDOC01-appb-M000011
 すると、第1実施形態で用いた式(1)および式(8)は、それぞれ以下の式(21)および式(22)のように書き換えることができる。
Figure JPOXMLDOC01-appb-M000012
 第2実施形態では、画像処理部5は、第1実施形態で用いた式のうち、Sair j(x、y)およびSobj j(x,y)を上記式(21)および式(21)のSair j(x、y)およびSobj j(x,y)に置き換えて、第1実施形態と同様の処理により、位相コントラスト画像15を生成するように構成されている。
 (位相コントラスト画像の生成処理)
 次に、図7および図12~図14を参照して、第2実施形態による位相コントラスト画像15の生成方法について説明する。
 まず、図12を参照して、図7のステップS2における第1X線画像セットRaの取得処理について説明する。
 ステップS22において、制御部6は、取得済みの第1X線画像セットRaがあるか否かを確認する。取得済みの第1X線画像セットRaがある場合、処理はステップS23へ進む。取得済みの第1X線画像セットRaがない場合、処理はステップS24へ進む。
 ステップS23において、画像処理部5は、第1X線画像セットRaの各X線画像11に対して、補正処理を行う。その後、画像処理部5は、補正処理を行った複数の第1X線画像セットRaから複数の第1特徴量12を取得する。また、ステップS23において、画像処理部5は、第1X線画像セットRaの各X線画像11の補正処理および第1特徴量12の取得と並行して、次の第1X線画像セットRaの取得を行う。また、ステップS24において、画像処理部5は、第1X線画像セットRaの取得を行う。ステップS23およびステップS24における第1X線画像セットRaの取得処理は、上記第1実施形態のステップS2と同様であるため、詳しい説明は省略する。
 その後、処理はステップS21へ進み、第1X線画像セットRaが所定セット数(jセット)取得されている場合は第2X線画像セットRbの取得処理(ステップS3)へ進む。
 次に、図13を参照して、図7のステップS3における第2X線画像セットRbを取得する処理について説明する。
 ステップS32において、画像処理部5は、複数の第2X線画像セットRbから複数の第2特徴量14を取得する。また、ステップS33において、画像処理部5は、第2特徴量14の取得と並行して、次の第2X線画像セットRbの取得を行う。また、ステップS34において、画像処理部5は、第2X線画像セットRbの取得を行う。ステップS33およびステップS34における第2X線画像セットRbの取得処理は、上記第1実施形態のステップS3と同様であるため、詳しい説明は省略する。
 その後、処理はステップS31へ進み、第2X線画像セットRbが所定セット数(jセット)取得されている場合は位相コントラスト画像15の生成処理(ステップS4)へ進む。
 次に、図14を参照して、図7のステップS4における位相コントラスト画像15の生成処理について説明する。
 ステップS45において、画像処理部5は、補正後の複数の第1特徴量12と複数の第2特徴量14とのうち、少なくとも1つ以上を用いて位相コントラスト画像15を生成する。その後、処理はステップS46へ進む。
 ステップS46において、画像処理部5は、生成した位相コントラスト画像15に対して補正処理を行い、処理を終了する。
 第2実施形態では、画像処理部5は、第1X線画像セットRaに含まれる複数のX線画像11の補正処理および複数の第1特徴量12の取得と、次の第1X線画像セットRaの取得とを並行して行うように構成されている。また、第2実施形態では、画像処理部5は、第2特徴量14の取得と次の第2X線画像セットRbの取得とを並行して行うように構成されている。
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
 (第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
 第2実施形態では、上記のように、画像処理部5は、縞走査におけるX線画像セットRからの特徴量12(および特徴量14)の抽出および補正処理と、次の縞走査におけるX線画像セットRの取得とを並行して行うように構成されている。これにより、X線画像セットRからの特徴量12(および特徴量14)の抽出および補正処理と次の縞走査におけるX線画像セットRの取得とを並行して行うことができるので、特徴量12(および特徴量14)の抽出、補正処理および位相コントラスト画像15の生成をX線画像セットRを取得するたびに行う場合と比較して、位相コントラスト画像15の生成効率を向上させることができる。
 また、第2実施形態では、上記のように、位相コントラスト画像15は、位相微分像15bを含み、画像処理部5は、補正処理として、位相微分像15bに対して、位相の折り返しにより生じる位相の不連続点を連続化するアンラップ処理を行うように構成されている。ここで、位相の不連続点は、被写体Qと背景との境界などで生じやすい。したがって、アンラップ処理をおこなうことにより、位相の折り返しにより生じる位相の不連続点をなくすことができる。その結果、被写体Qの写る位置が各X線画像11において異なる場合でも、位相の不連続点が合成されることを抑制することが可能となり、生成される位相微分像15bの画質が劣化することを抑制することができる。
 また、第2実施形態では、上記のように、画像処理部5は、補正処理として、少なくともX線源1から照射されるX線の線量の変化を含む検出器4で検出されるX線画像11の変化を補正する輝度補正を行うように構成されている。これにより、撮像時間が短いことによる、検出器4などの撮像装置に起因するX線画像11の変化に伴って生じるアーチファクトAを補正することができる。その結果、複数の位相コントラスト画像15から1つの位相コントラスト画像15を生成する場合でも、撮像時間が短いことによって各位相コントラスト画像15に生じる検出器4などの撮像装置に起因するアーチファクトAを補正することが可能となるので、検出器4などの撮像装置に起因するX線画像11の変化に伴って生じるアーチファクトAが蓄積することによる位相コントラスト画像15の画質の劣化を抑制することができる。
 なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
 (変形例)
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく、請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記第1および第2実施形態では、被写体Qを固定して撮像する例を示したが、本発明はこれに限られない。たとえば、図15に示すX線位相撮像システム300のように、X線源1と検出器4と複数の格子とによって構成される撮像系17と、被写体Qとを相対回転させる回転機構18をさらに備え、画像処理部5は、被写体Qと撮像系17とを相対回転させながら複数の回転角度において撮像された複数の位相コントラスト画像15から、3次元位相コントラスト画像を生成するように構成されていてもよい。このように構成すれば、熱に起因する撮像条件の変化に伴う画質の劣化が抑制された各位相コントラスト画像15を用いて3次元位相コントラスト画像を生成することができる。その結果、撮像時間が長時間となり、熱による撮像条件の変化の影響が生じやすい3次元位相コントラスト画像の取得においても、生成する3次元位相コントラスト画像の画質が劣化することを効果的に抑制することができる。なお、回転機構18は、制御部6からの信号に基づき、被写体Qと撮像系17とを相対回転させるように構成されている。回転機構18は、たとえば、モータなどによって駆動される回転ステージを含む。
 また、上記第1および第2実施形態では、複数の格子として、第1格子2および第2格子3を設ける例を示したが、本発明はこれに限られない。たとえば、図16に示すX線位相撮像システム400のように、X線源1と第1格子2との間に、第3格子19を設ける構成でもよい。第3格子19は、Y方向に所定の周期(ピッチ)p3で配列される複数のスリット19aおよびX線吸収部19bを有している。各スリット19aおよびX線吸収部19bはそれぞれ、直線状に延びるように形成されている。また、各スリット19aおよびX線吸収部19bはそれぞれ、平行に延びるように形成されている。また、第3格子19は、X線源1と第1格子2との間に配置されており、X線源1からX線が照射される。第3格子19は、各スリット19aを通過したX線を、各スリット19aの位置に対応する線光源とするように構成されている。これにより、第3格子19によってX線源1から照射されるX線の可干渉性を高めることができる。その結果、X線源1の焦点径に依存することなく第1格子2の自己像を形成させることが可能となるので、X線源1の選択の自由度を向上させることができる。また、第3格子19は、各スリット19aを通過したX線を、各スリット19aの位置に対応する線光源とするため、X線源1の焦点が移動した場合でも、第3格子19が移動しなければ各スリット19aから照射されるX線の各焦点は移動しないため、第1格子2の自己像も移動しない。したがって、X線源1の焦点の移動に起因する撮像条件の変化をより受けにくくすることが可能となるので、生成される位相コントラスト画像15の画質が劣化することをより一層抑制することができる。
 また、上記第1および第2実施形態では、第1格子2として、位相格子を用いる例を示したが、本発明はこれに限られない。たとえば、第1格子2として、吸収格子を用いてもよい。第1格子2として吸収格子を用いた場合、画像処理部5は、第1格子2を透過したX線の縞模様と第2格子3とにより位相コントラスト画像15を生成する。したがって、第1格子2の自己像を用いることなく位相コントラスト画像15を取得することが可能となるので、第1格子2の配置位置の自由度を向上させることができる。しかし、第1格子2として吸収格子を用いる場合、得られる位相コントラスト画像15の画質が劣化するため、高画質の位相コントラスト画像15を得たい場合は、第1格子2として位相格子を用いる方が好ましい。
 また、上記第2実施形態では、補正処理として、アンラップ処理および輝度補正を行う例を示したが、本発明はこれに限られない。たとえば、画像処理部5は、補正処理として、オフセット処理や欠損処理を行うように構成されていてもよい。
 また、上記第1および第2実施形態では、格子移動機構8が第2格子3を並進移動させる例を示したが、本発明はこれに限られない。第1格子2を並進移動させてもよい。移動させる格子はいずれの格子でもよい。
 1 X線源
 2 第1格子
 3 第2格子
 4 検出器
 5 画像処理部
 8 格子移動機構
 11 X線画像
 12 第1特徴量(特徴量)
 13 特徴量データ
 14 第2特徴量(特徴量)
 15 位相コントラスト画像
 16 位置基準部
 17 撮像系
 18 回転機構
 19 第3格子
 100、200、300、400X線位相撮像システム
 Q 被写体
 R X線画像セット
 p2 格子の周期

Claims (15)

  1.  X線源と、
     前記X線源からX線が照射される第1格子と、前記第1格子からのX線が照射される第2格子とを含む複数の格子と、
     前記X線源から照射されたX線を検出する検出器と、
     前記複数の格子の少なくともいずれか1つを移動させる格子移動機構と、
     前記検出器により検出された複数のX線画像を含むX線画像セットから位相コントラスト画像を生成する画像処理部とを備え、
     前記画像処理部は、
      縞走査を短時間で複数回行うことにより取得された複数の前記X線画像セットから、振幅と、平均画素値強度と、位相とのうち、少なくともいずれかを含む特徴量をそれぞれ抽出し、
      抽出した複数の前記特徴量に基づいて、前記位相コントラスト画像を生成するように構成されている、X線位相撮像システム。
  2.  前記画像処理部は、複数の前記X線画像間の熱に起因する撮像条件が略変化しない範囲内の短時間で複数回縞走査を行うことにより取得された前記X線画像セットから抽出した複数の前記特徴量に基づいて、前記位相コントラスト画像を生成するように構成されている、請求項1に記載のX線位相撮像システム。
  3.  前記画像処理部は、100秒以内の短時間で複数回縞走査を行うことにより取得された前記X線画像セットから抽出した複数の前記特徴量に基づいて、前記位相コントラスト画像を生成するように構成されている、請求項1に記載のX線位相撮像システム。
  4.  前記画像処理部は、
      被写体を配置せずに短時間で複数回縞走査を行うことにより撮像された複数の前記X線画像セットから複数の第1特徴量を取得し、
      被写体を配置して短時間で複数回縞走査を行うことにより撮像され複数の前記X線画像セットから複数の第2特徴量を取得し、
      複数の第1特徴量と、複数の第2特徴量とのうちそれぞれ少なくとも1つずつを用いて、前記位相コントラスト画像を生成するように構成されている、請求項1に記載のX線位相撮像システム。
  5.  前記画像処理部は、複数の前記第1特徴量から1つの特徴量データを取得するとともに、1つの前記特徴量データと複数の前記第2特徴量とを用いて、前記位相コントラスト画像を生成するように構成されている、請求項4に記載のX線位相撮像システム。
  6.  前記画像処理部は、複数の前記第1特徴量を加算または平均化することにより、前記特徴量データを取得するように構成されている、請求項5に記載のX線位相撮像システム。
  7.  前記画像処理部は、複数の前記第2特徴量の各々と、前記特徴量データとに基づいて、前記位相コントラスト画像を生成するように構成されている、請求項5に記載のX線位相撮像システム。
  8.  前記画像処理部は、複数の前記第2特徴量の各々と、前記特徴量データとに基づいて生成された前記位相コントラスト画像を加算または平均化するように構成されている、請求項5に記載のX線位相撮像システム。
  9.  前記画像処理部は、縞走査における前記X線画像セットからの前記特徴量の抽出および補正処理と、次の縞走査における前記X線画像セットの取得とを並行して行うように構成されている、請求項1に記載のX線位相撮像システム。
  10.  前記位相コントラスト画像は、位相微分像を含み、
     前記画像処理部は、前記補正処理として、前記位相微分像に対して、位相の折り返しにより生じる位相の不連続点を連続化するアンラップ処理を行うように構成されている、請求項9に記載のX線位相撮像システム。
  11.  前記画像処理部は、前記補正処理として、少なくとも前記X線源から照射されるX線の線量の変化を含む前記検出器で検出される前記X線画像の変化を補正する輝度補正を行うように構成されている、請求項9に記載のX線位相撮像システム。
  12.  前記格子移動機構における格子の移動を制御する制御部をさらに備え、
     前記制御部は、前記格子移動機構により移動される格子の周期に基づいて、縞走査を行う時間を決定するように構成されている、請求項1に記載のX線位相撮像システム。
  13.  前記制御部は、前記X線画像のそれぞれに写る位置基準部の位置に基づいて、前記X線源の焦点の移動速度を取得し、取得した前記X線源の焦点の移動速度に基づいて、縞走査を行う時間を決定するように構成されている、請求項12に記載のX線位相撮像システム。
  14.  前記X線源と前記検出器と前記複数の格子とによって構成される撮像系と、被写体とを相対回転させる回転機構をさらに備え、
     前記画像処理部は、被写体と前記撮像系とを相対回転させながら複数の回転角度において撮像された複数の前記位相コントラスト画像から、3次元位相コントラスト画像を生成するように構成されている、請求項1に記載のX線位相撮像システム。
  15.  前記複数の格子は、前記X線源と前記第1格子との間に配置された第3格子をさらに含んでいる、請求項1に記載のX線位相撮像システム。
PCT/JP2018/043465 2018-01-12 2018-11-27 X線位相撮像システム WO2019138705A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/767,528 US11175241B2 (en) 2018-01-12 2018-11-27 X-ray phase image capturing system
JP2019564325A JP6897799B2 (ja) 2018-01-12 2018-11-27 X線位相撮像システム
CN201880080701.7A CN111465841B (zh) 2018-01-12 2018-11-27 X射线相位摄像***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-003803 2018-01-12
JP2018003803 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019138705A1 true WO2019138705A1 (ja) 2019-07-18

Family

ID=67218235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043465 WO2019138705A1 (ja) 2018-01-12 2018-11-27 X線位相撮像システム

Country Status (4)

Country Link
US (1) US11175241B2 (ja)
JP (1) JP6897799B2 (ja)
CN (1) CN111465841B (ja)
WO (1) WO2019138705A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061300A (ja) * 2010-08-19 2012-03-29 Fujifilm Corp 放射線撮影システム及びその画像処理方法
WO2012073710A1 (ja) * 2010-11-29 2012-06-07 富士フイルム株式会社 放射線撮影システム及び放射線撮影方法
JP2012143537A (ja) * 2010-12-24 2012-08-02 Fujifilm Corp 放射線撮影システム及び画像処理方法
JP2014223091A (ja) * 2011-09-12 2014-12-04 富士フイルム株式会社 放射線撮影装置及び画像処理方法
JP2016000139A (ja) * 2014-06-12 2016-01-07 キヤノン株式会社 位相情報取得装置及び撮像システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158699B2 (ja) 2008-02-20 2013-03-06 国立大学法人 東京大学 X線撮像装置、及び、これに用いるx線源
CN101726503B (zh) * 2008-10-17 2012-08-29 清华大学 用于x射线相衬层析成像的***和方法
US7949095B2 (en) * 2009-03-02 2011-05-24 University Of Rochester Methods and apparatus for differential phase-contrast fan beam CT, cone-beam CT and hybrid cone-beam CT
WO2011114845A1 (ja) * 2010-03-18 2011-09-22 コニカミノルタエムジー株式会社 X線撮影システム
JP2011224329A (ja) * 2010-03-30 2011-11-10 Fujifilm Corp 放射線撮影システム及び方法
JP2012030039A (ja) * 2010-07-09 2012-02-16 Fujifilm Corp 放射線撮影システム及びその画像処理方法
JP2014090967A (ja) * 2012-11-06 2014-05-19 Canon Inc X線撮像装置
US9916655B2 (en) * 2013-06-07 2018-03-13 Paul Scherrer Institut Image fusion scheme for differential phase contrast imaging
AU2013273822A1 (en) * 2013-12-23 2015-07-09 Canon Kabushiki Kaisha Modulation guided phase unwrapping

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061300A (ja) * 2010-08-19 2012-03-29 Fujifilm Corp 放射線撮影システム及びその画像処理方法
WO2012073710A1 (ja) * 2010-11-29 2012-06-07 富士フイルム株式会社 放射線撮影システム及び放射線撮影方法
JP2012143537A (ja) * 2010-12-24 2012-08-02 Fujifilm Corp 放射線撮影システム及び画像処理方法
JP2014223091A (ja) * 2011-09-12 2014-12-04 富士フイルム株式会社 放射線撮影装置及び画像処理方法
JP2016000139A (ja) * 2014-06-12 2016-01-07 キヤノン株式会社 位相情報取得装置及び撮像システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding

Also Published As

Publication number Publication date
US11175241B2 (en) 2021-11-16
US20210148839A1 (en) 2021-05-20
JP6897799B2 (ja) 2021-07-07
CN111465841A (zh) 2020-07-28
CN111465841B (zh) 2023-05-23
JPWO2019138705A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
JP5475737B2 (ja) 放射線撮影装置及び画像処理方法
JP6187298B2 (ja) X線撮影システム及び画像処理方法
WO2019138705A1 (ja) X線位相撮像システム
JP2012143549A (ja) 放射線画像生成方法および放射線画像撮影装置
JP2011101686A (ja) 放射線撮影装置
JP6673188B2 (ja) X線位相撮影装置
JP6969691B2 (ja) X線位相撮像システム
WO2019220689A1 (ja) X線イメージング装置
WO2019239624A1 (ja) X線イメージング装置
JPWO2019073760A1 (ja) X線位相差撮影システムおよび位相コントラスト画像補正方法
JP2013116313A (ja) 放射線撮影装置及び放射線撮影方法
JP2013146537A (ja) 放射線撮影装置及び画像処理方法
JP7031371B2 (ja) X線位相差撮像システム
WO2017212687A1 (ja) X線位相差撮像システム、x線位相差撮像装置およびx線位相差撮像方法
WO2020188856A1 (ja) X線イメージング装置
JP2014223091A (ja) 放射線撮影装置及び画像処理方法
JP7021676B2 (ja) X線位相差撮像システム
JP7131625B2 (ja) X線位相イメージング装置
JP2013063166A (ja) 放射線撮影装置及び画像処理方法
JPWO2020054158A1 (ja) X線位相撮像システム
JP2019072367A (ja) X線位相差撮影装置および位相コントラスト画像補正方法
WO2013051647A1 (ja) 放射線撮影装置及び画像処理方法
JP2013063098A (ja) 放射線撮影装置及び画像処理方法
JPWO2018168621A1 (ja) 放射線画像生成装置
WO2013084657A1 (ja) 放射線撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019564325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899723

Country of ref document: EP

Kind code of ref document: A1