WO2019137295A1 - 放疗设备及放疗*** - Google Patents

放疗设备及放疗*** Download PDF

Info

Publication number
WO2019137295A1
WO2019137295A1 PCT/CN2019/070274 CN2019070274W WO2019137295A1 WO 2019137295 A1 WO2019137295 A1 WO 2019137295A1 CN 2019070274 W CN2019070274 W CN 2019070274W WO 2019137295 A1 WO2019137295 A1 WO 2019137295A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
radiotherapy apparatus
source device
devices
point
Prior art date
Application number
PCT/CN2019/070274
Other languages
English (en)
French (fr)
Inventor
刘海峰
Original Assignee
西安大医集团有限公司
深圳市奥沃医学新技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团有限公司, 深圳市奥沃医学新技术发展有限公司 filed Critical 西安大医集团有限公司
Publication of WO2019137295A1 publication Critical patent/WO2019137295A1/zh
Priority to US16/928,440 priority Critical patent/US11452886B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • A61N5/1082Rotating beam systems with a specific mechanical construction, e.g. gantries having multiple beam rotation axes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1084Beam delivery systems for delivering multiple intersecting beams at the same time, e.g. gamma knives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/01Devices for producing movement of radiation source during therapy

Definitions

  • the present application relates to the field of medical device technology, and in particular, to a radiotherapy device and a radiotherapy system.
  • Radiation therapy is one of the three main methods of treating tumors. About 65-70% of cancer patients receive radiation therapy to varying degrees.
  • the existing conventional radiotherapy apparatus is shown in FIG. 1.
  • the radiotherapy apparatus includes a rotatable rack 16, a treatment head 13 disposed on the rack, and a treatment bed 17.
  • the gantry 16 is rotated along the gantry rotation axis L with the treatment head 13 to form a treatment head rotation plane M
  • the treatment bed 17 is rotated about the treatment bed rotation axis H to form a treatment bed rotation plane N, thereby utilizing the treatment bed and Rotation of the treatment head achieves non-coplanar rotational focus, increasing the ratio of the caribou (the ratio of the therapeutic dose of the target area to the dose of normal tissue) to kill with the radiation beam Cancer cells simultaneously maximize the protection of normal tissues and cells of the body.
  • FIG. 3 and 4 are schematic views of another radiotherapy apparatus, including a drum 12, a treatment head 13 disposed on the drum 12, and a treatment bed 17.
  • the drum 12 is rotatable about a drum rotating shaft (i.e., a rotating shaft of the drum) G, and the treatment head 13 is moved along the arc-shaped guide rail 15 in the axial direction of the drum 12, thereby utilizing the circumference of the treatment head to rotate and the drum
  • the axis motion achieves non-coplanar rotational focusing.
  • the present application provides a radiotherapy apparatus, which solves the problem that the existing radiotherapy apparatus is easy to issue a collision when the non-coplanar focusing treatment is realized or the treatment plan design is difficult and the treatment time is long.
  • a radiotherapy apparatus comprising at least two source devices, the source device emitting a beam, at least two beams emitted by the source device intersecting at an intersection, the source device being rotatable about a circumference of the rotating shaft
  • the source points or virtual source points of at least two of the source devices are on different axial sections.
  • a radiotherapy system comprising: a treatment bed and the aforementioned radiotherapy apparatus.
  • the present invention provides a radiotherapy apparatus and a radiotherapy system, comprising at least two source devices, the source device can emit a beam, the beams emitted by at least two source devices intersect at an intersection, and the source device can be wound around the circumference of the rotating shaft Rotating, the source points or virtual source points of the at least two source devices are on different axial sections, and the beams emitted by each source device respectively form a rotating surface, and the beam rotation of at least two of the source devices
  • the surface is not coincident, that is, the non-coplanar rotational focusing treatment of radiation therapy is realized, and the focal length ratio is increased to maximize the protection of the normal tissues and cells of the human body while killing the cancer cells by using the radiation beam.
  • the radiotherapy apparatus of the present application does not need to achieve non-coplanar irradiation through the treatment bed, so that the collision problem between the source device and the treatment bed can be avoided.
  • Figure 1 is a schematic view of a conventional radiotherapy apparatus provided by the present application.
  • Figure 2 is a schematic view showing the non-coplanar illumination of the radiotherapy apparatus shown in Figure 1;
  • FIG. 3 is a schematic view of another conventional radiotherapy apparatus provided by the present application.
  • Figure 4 is a schematic view showing the non-coplanar illumination of the radiotherapy apparatus shown in Figure 3;
  • FIG. 5 is a schematic diagram of a virtual source point of the source device provided by the present application.
  • FIG. 6 is a schematic diagram of relationships between planes in a three-dimensional space provided by the present application.
  • FIG. 7 is a side view of a radiotherapy apparatus provided by the present application.
  • Figure 8 is a schematic view showing a beam rotating surface of the field device of the radiotherapy apparatus shown in Figure 7;
  • FIG. 9 is a side view of another radiotherapy apparatus provided by the present application.
  • FIG. 10 is a side view of another radiotherapy apparatus provided by the present application.
  • Figure 11 is a perspective view showing the axial section of the treatment head and the intersection of the radiotherapy apparatus shown in Figure 7;
  • Figure 12 is a front elevational view of a radiotherapy apparatus provided by the present application.
  • FIG. 13 is a side view of another radiotherapy apparatus provided by the present application.
  • FIG. 14 is a side view of another radiotherapy apparatus provided by the present application.
  • Figure 15 is a side elevational view of another radiotherapy apparatus provided by the present application.
  • Figure 16 is a top plan view of the treatment head of the radiotherapy apparatus shown in Figure 15;
  • Figure 17 is another top plan view of the treatment head of the radiotherapy apparatus shown in Figure 15;
  • 20 is a schematic view of another collimator conformal provided by the present application.
  • the present application provides a radiotherapy apparatus comprising at least two source devices, the source device can emit a beam, the beams emitted by the at least two source devices intersect at an intersection, and the source device can rotate around the circumference of the rotating shaft, at least
  • the source or virtual source points of the two source devices are on different axial sections.
  • the axial section of the source point or the virtual source point of each source device refers to a section perpendicular to the axis of rotation.
  • the rotation axes of the respective source devices are parallel (usually collinear), and each shot The source cross-section of the source device or the virtual source point is at least parallel to each other.
  • the source of the source device may be an isotope source, such as cobalt-60, and the source of the source device may be an isotope source, and the beam emitted by the source device may be a gamma shot. bundle.
  • the source device may be an accelerator.
  • the accelerator generates an electron beam 111 and strikes the target body 112 to emit an X-ray beam 113.
  • the virtual origin may be as shown in FIG. The intersection of the inverse extension of the beam 113.
  • the source device is rotated around the circumference of the rotating shaft 1 (that is, equivalent to the rotating shaft L in FIGS. 1 and 2, and the rotating shaft G in FIGS.
  • the axial section is the face 3, which is a section perpendicular to the axis of rotation 1, wherein the face 3 is parallel to the plane of rotation 4, and the plurality of planes of rotation formed are parallel due to the different positions of the different source devices.
  • the rotation of the source device about the circumference of the rotating shaft may be that the source device reciprocally rotates about the axis of rotation (for example, rotating clockwise by a certain angle and then rotating counterclockwise by a certain angle) or 360° continuous rotation.
  • Rotation of the source device about the axis of rotation can be accomplished by mounting the source device on a frame or robotic arm.
  • the rack can be a C-shaped rack (see Figure 1), or the rack can be an annular rack.
  • the rotation of the source device about the axis of rotation can be achieved by a roller (shown in Figures 3 and 4). As shown in Fig.
  • the radiotherapy apparatus includes a drum (i.e., a type of an annular frame) to which the source device is fixed, and the source device is rotated about the drum rotating shaft by the drum.
  • the rotation of the source device about the circumference of the rotating shaft may be implemented by connecting each of the source devices to one rotating device, that is, each of the source devices is rotated around the rotating shaft by a rotating device, or The plurality of source devices are rotated about the axis of rotation by the same rotating device, and all of the source devices are rotated about the axis of rotation by a rotating device, which is not limited in this application.
  • the present invention provides a radiotherapy apparatus in which a radiotherapy apparatus includes a drum, and a plurality of source devices are disposed on the drum, and the drum drives the plurality of source devices to rotate around the axis of the drum as an example.
  • the radiotherapy apparatus 10 includes a drum 12 and three source devices disposed on the drum 12, respectively, the source device 11a, the source device 11b, and the source device 11c.
  • the source point or the virtual source point of the source device 11a, the source device 11b, and the source device 11c are respectively in three different axial sections (ie, three broken lines shown in FIG. 7), three shots.
  • the source devices respectively emit beams, and the beams emitted by the three source devices intersect at the intersection point J.
  • the present application takes the intersection point J as an example on the drum rotation axis, and the source device 11a, the source device 11b, and the source device 11c are The drum 12 is rotated along the drum rotation axis G.
  • the source point or the virtual source point of the source device is in different axial sections, and the source device rotates around the circumference of the rotating shaft to form a plane of rotation.
  • the beam emitted by the source device is a cone beam.
  • the present application will be described by taking a beam emitted from the source device as a beam and taking the beam as a straight beam. Referring to FIG. 8 as an example, the source device 11a rotates around the drum rotation axis to form a rotation plane 11a' (correspondingly, the beam rotation surface formed by the beam rotation is 11a'), and the source device 11b rotates around the drum axis.
  • the source device 11c is rotated about the axis of rotation of the drum to form a plane of rotation 11c' (correspondingly, the plane of rotation of the beam
  • a plane of rotation 11c' correspondly, the plane of rotation of the beam
  • the dotted line of the dotted line shown in Fig. 8 since the source point or the virtual source point of the source device is in different axial sections, the rotating faces of the three beams emitted by the three source devices do not coincide. That is, the beam of the source device is non-coplanar, so that rotational non-coplanar radiation therapy can be achieved without movement through the source device or the treatment bed.
  • each of the source devices rotates around the rotation axis to form a rotation plane, and the corresponding beam forms a beam rotation surface, and the source points or virtual source points of the at least two source devices are different.
  • the planes of rotation of the at least two source devices do not coincide, and the beam rotation faces of the respective beams do not coincide.
  • the source point or the virtual source point of the three source devices shown in FIG. 7 are exemplified in different axial sections.
  • the planes of rotation formed by the three source devices do not coincide, and the corresponding beams are The beam rotation faces do not coincide.
  • the beam rotation surfaces of the at least two source devices may not overlap.
  • the source point or the virtual source point of the source device 11a and the source device 11b may be in the same axial section as shown in FIG. Then, the source device 11a rotates around the drum rotation axis G to form a rotation plane, and the source device 11b rotates around the drum rotation axis to form a rotational coincidence, and the corresponding beam rotation faces also coincide.
  • the source device 11c and the two source devices are not in the same axial section, and the source device 11c rotates around the drum rotating shaft to form a plane of rotation, and the other two source devices rotate around the drum rotating shaft to form a plane of rotation, and the corresponding The beam rotation surface does not coincide.
  • the beams emitted by at least two of the source devices intersect at an intersection, and the intersection may be on the axis of rotation or not on the axis of rotation. If the point of intersection is not on the axis of rotation, treatment can be achieved by a combination of treatment beds, such as by adjusting the position of the treatment couch (e.g., vertical position and/or horizontal position). In the embodiment of the present application, as shown in FIG. 7 and FIG. 9 , the intersection point is illustrated on the rotating shaft as an example.
  • the beam emitted by the source device is a single beam.
  • a single beam beam may be a cone beam through the beam shape, as shown in FIG.
  • the beam rotating surface formed by rotating the beam of the source device about the rotation axis is a beam rotating surface formed by the rotation of the beam axis emitted from the source device.
  • the source device 11a, the source device 11b, and the source device 11c respectively emit a cone beam, and the beam axis of each cone beam forms a beam rotation surface. Show.
  • the radiotherapy apparatus comprises at least two source devices, each of which emits a beam, the beams emitted by at least two of said source devices intersecting at an intersection J.
  • the radiotherapy apparatus includes three source devices, and the beams emitted by the three source devices intersect at an intersection J.
  • the radiotherapy apparatus comprises four source devices, wherein the beams emitted by the two source devices intersect at one intersection, and the beams emitted by the other two source devices intersect at another intersection.
  • the number of source devices and the position of intersections are not limited.
  • the present invention provides a radiotherapy apparatus comprising at least two source devices, the source device can emit a beam, the beams emitted by the at least two source devices intersect at an intersection, and the source device can rotate around the circumference of the rotating shaft, at least The source points or virtual source points of the two source devices are in different axial sections, and the beams emitted by each source device respectively form a rotating surface, and the beam rotating surfaces of at least two of the source devices do not coincide. That is, non-coplanar rotational focusing treatment that achieves radiation therapy, increasing the focal length ratio to maximize the protection of normal tissues and cells of the human body while killing cancer cells with radiation beams. Moreover, the radiotherapy apparatus of the present application does not need to achieve non-coplanar irradiation through the treatment bed, so that the collision problem between the source device and the treatment bed can be avoided.
  • the confirmation of the non-coplanar angle ie, the angle at which the treatment bed and/or the treatment head rotates
  • the non-coplanar angles made by different patients or different body type treating physicians are different. Therefore, the treatment plan design is more difficult and the treatment time is longer.
  • the beam rotating surfaces of at least two source devices of the present application do not overlap, and the non-coplanar rotating focus is realized, and the non-coplanar angle is not required by the treating physician, thereby reducing the treatment time and improving the treatment efficiency.
  • the present invention provides a radiotherapy apparatus comprising a plurality of source devices, the beams of at least two source devices intersecting at an intersection point, similar to the principle of focusing the magnifying glass, so that the dose rate at the intersection point is significantly increased, Meet the high dose rate requirements of radiotherapy for intersections.
  • the X-ray emitted by one source device is about 1400 Mu
  • the dose rate is about 3.5 Gr.
  • the radiotherapy apparatus includes three source devices, the dose rate at the intersection can reach 10.5. Gr, the dose rate at the intersection can meet the clinical high dose rate requirements, so that a single irradiation treatment can be achieved, the tumor cells are killed at one time, and the treatment efficiency is improved.
  • the present invention provides a radiotherapy apparatus in which a source point or a virtual source point of at least one source device is on an axial section where the intersection point is located.
  • the source point or the virtual source point of one source device is taken as an example in the axial section where the intersection point J is located, that is, the source point or the virtual source point of the source device 11a is at the axis where the intersection point is located.
  • the source point or the virtual source point of the plurality of source devices may be in the axial section where the intersection point is located.
  • the source point or the virtual source point of the source device 11a and the source device 11b are at the intersection point. J is in the axial section.
  • the radiotherapy apparatus includes a plurality of radio source devices, there are many different embodiments according to the clinical design, which is not limited in this application. The present application only uses the two cases shown in FIG. 7 and FIG. The example is illustrated.
  • the present invention provides a radiotherapy apparatus in which the source point or virtual source point of the source device is not in the axial section where the intersection point is located, that is, outside the axial section, the intersection point and the source point or virtual source of the source device.
  • the angle between the line of the point and the axial section where the intersection is located is 0-60°.
  • the numerical values in the present application all include a critical value, that is, 0° or 60°. Of course, the angle may also be 10°, 15°, 25° or 30°, etc., depending on different clinical needs. For example, as shown in FIG. 11, taking the radiotherapy apparatus shown in FIG.
  • the source point or virtual source point of the source device 11a is on the axial section 3 where the intersection point passes, passing through the intersection point and the source of the source device 11b.
  • the angle between the line connecting the point or the virtual source point and the axial section 3 of the intersection point is ⁇
  • the angle between the intersection point of the intersection point and the source point or virtual source point of the source device 11c and the axial section 3 of the intersection point is ⁇ .
  • the angles of ⁇ and ⁇ may be the same or different.
  • the present invention provides a radiotherapy apparatus in which a projection circumference of at least two source devices is distributed in an axial section, and an angle between projections of two adjacent source devices on an axial section to an intersection is 0-180°.
  • the radiotherapy apparatus includes a drum 12, and a source device 11a, a source device 11b, and a source device 11c disposed on the drum 12, and the rollers drive the respective source devices to rotate along the circumference of the drum rotation axis G.
  • the intersection J of the beams of the three source devices is on the drum rotation axis J.
  • the angle between the beam of the source device 11a and the beam of the source device 11b in the axial section is a.
  • the angle a is exemplified by 120°.
  • the projection angle of the beam of any two source devices in the axial section is 0-180°, for example, the beam and source device of the source device 11a shown in FIG.
  • the angle between the projection of the beam of 11c in the axial section, and the angle of the projection of the beam of the source device 11b and the beam of the source device 11c in the axial section may each be 120°.
  • the angle between the projections of the beams of the respective source devices in the axial cross section is not limited in the present application, and only FIG. 12 is taken as an example for illustration.
  • each of the source devices is provided with a rotating device, that is, each of the source devices is connected to a rotating device, and the rotating device drives the source device to rotate around the circumference of the rotating shaft.
  • each of the source devices is rotated by a mechanical arm to rotate around the circumference of the rotating shaft.
  • at least two of the source devices are disposed on a rotating device that drives at least two of the source devices to rotate about the circumference of the rotating shaft.
  • the three source devices are disposed on an annular frame that rotates around the circumference of the drum rotation axis.
  • the driving device may also be a device other than a robot arm or a frame, which is not limited in this application.
  • the radiotherapy device provided by the present application, in the case that the frame is an annular frame, a plurality of source devices are disposed on the annular frame, and the annular frame drives the plurality of source devices to rotate around the axis of the ring frame, or The source device is rotatable about the circumference of the annular frame on the annular frame.
  • the present invention provides a radiotherapy apparatus in which a source device can be swung and/or moved relative to a rotating device such as a robot arm or a frame.
  • the swing example may be realized by a universal wheel or the like, and the source device may not change in position, but the swing causes the beam direction of the source device to fluctuate.
  • the movement can be realized by means of a guide rail or a gear ring, etc., which is not limited in this application.
  • the source device can be swung and/or moved relative to a rotating device (such as a robot arm or a frame), for example, the source device can be oscillated relative to the arm or frame, or the source device can be moved relative to the arm or frame. Moving, it is also possible that the source device swings and moves relative to the robot arm or the frame.
  • the oscillating and/or moving of the source device relative to the rotating device is achieved by oscillating and/or moving the source device in the axial direction of the rotating shaft, as shown in FIG.
  • the radiotherapy apparatus further includes guide rails 15, each of which is respectively disposed corresponding to one of the guide rails 15, and the source device 11a and the source device 11b are respectively movable along the guide rails 15, respectively.
  • the movement of the device 11a along the guide rail 15 is taken as an example, and the position of the intersection of the source device 11a before and after the movement with the source device 11b does not change.
  • a radiotherapy apparatus provided by the present application as shown in FIG. 13, after the source device is swung and/or moved relative to a rotating device (such as a robot arm or a frame), the position of the intersection is unchanged.
  • a rotating device such as a robot arm or a frame
  • the position of the intersection of the source device after it has been swung and/or moved relative to the rotating device may also change. For example, as shown in FIG.
  • the radiotherapy apparatus further includes guide rails 15, each of which is disposed corresponding to one of the guide rails 15, and the beams of the source device 11a and the source device 11b intersect at the intersection point A, and the source device 11a After the oscillating, the source device 11b moves along the guide rail 15, the beam of the source device 11a and the source device 11b intersect at the intersection B, and the treatment can be performed by the movement of the treatment bed in accordance with the change of the intersection.
  • the swinging and moving positions and intersections of the source device relative to the rotating device are not limited, and only the examples shown in FIGS. 13 and 14 are exemplified.
  • the present invention provides a radiotherapy apparatus in which a plurality of source devices are X-ray generators; or a plurality of source devices are gamma-ray devices; or, a plurality of source devices include an X-ray generator and a gamma ray device .
  • the plurality of source devices are all X-ray generators.
  • the radiotherapy apparatus includes three source devices, and all of the three source devices emit X-rays.
  • the plurality of source devices are all gamma ray devices.
  • the radiotherapy apparatus includes three source devices, each of which includes a cobalt-60 ray source that emits gamma rays, and the gamma rays pass through a collimator beam shape. After the formation of a single beam is emitted.
  • the plurality of source devices include an X-ray generator and a gamma ray device.
  • the radiotherapy apparatus includes three source devices, two of which may be X-ray generators and one of which is a gamma ray device.
  • the radiotherapy device can realize the combined application of X-ray and ⁇ -ray.
  • the X-ray generator may be an X-knife, that is, the X-ray is emitted after forming a single beam through the light-limiting tube.
  • the gamma rays emitted by the gamma ray device may also be emitted by a beam of the collimator to form a single beam.
  • the source device emits an X-ray
  • the source device may be an X-knife, and a beam having a diameter of 2-60 mm is formed through the collimating light-limiting tube to perform a focused focus irradiation treatment on the tumor.
  • the radiotherapy apparatus further comprises a multi-leaf collimator, the source device emits an X-ray beam, conforms through a multi-leaf collimator, forms a field region similar to the shape of the tumor, and achieves intensity modulated radiation therapy (intensity modulated radiation) Therapy, IMRT).
  • intensity modulated radiation therapy intensity modulated radiation
  • the present invention provides a radiotherapy apparatus that includes three source devices, all of which are X-ray generators.
  • Each ray generator may be a circular or approximately circular X-ray beam formed by a collimator, and the X beams of the three source devices intersect at the intersection, which is approximately spherical at the intersection.
  • the radiotherapy apparatus may include a plurality of source devices, and the source devices may each be an X-ray generator, and each of the ray generators may be formed by a collimator to form a circular or approximately circular X-ray beam.
  • the X-beams of the source devices intersect at the intersection, which can form more three-dimensional shapes at the intersection.
  • three source devices are disposed on a fixture, and the fixture is fixed on the frame, and the frame drives the fixture to rotate around the axis of the frame.
  • three source devices that is, the source device 11a, the source device 11b, and the source device 11c are disposed on one fixture 13.
  • the source device can then effect a circular motion of the source device by rotation of the fixture.
  • the frame of the radiotherapy apparatus may be a drum, and the fixing device may be fixed on the drum, and the rotation of the drum drives the source device to rotate around the circumference of the rotating shaft.
  • the present invention provides a radiotherapy apparatus in which the source points or virtual source points of three source devices are on different axial sections of the rotating shaft; or the source points or virtual source points of the two source devices are in the same axial direction. In cross section, and in a different axial section from the source point or virtual source point of the third said source device.
  • FIG. 16 is a top plan view of the treatment head of the radiotherapy apparatus shown in FIG.
  • the Y axis is parallel to the rotation axis
  • the X axis is parallel to the axial section.
  • the source point or the virtual source point of the source device 11a, the source device 11b, and the source device 11c are in different axial sections, and then the circumference is rotated.
  • the beam rotating faces of the three source devices do not coincide.
  • FIG. 17 is another top plan view of the treatment head of the radiotherapy apparatus shown in FIG. 15, in which the Y axis is parallel to the rotation axis, the X axis is parallel to the axial section, and the source device 11b and the source are provided.
  • the device 11c is rotated in the same axial cross section, and the beam rotating surfaces of the source device 11b and the source device 11c are superposed.
  • the source device 11b, the source device 11c, and the source device 11a have different beam cross sections, and the beam rotating surface of the source device 11b does not overlap with the beam rotating surface of the source device 11a, and the source device 11c The beam rotating surface does not coincide with the beam rotating surface of the source device 11a.
  • the application provides a radiotherapy apparatus.
  • the radiotherapy apparatus includes a plurality of X-ray generators
  • the plurality of X-ray generators respectively include one acceleration module, or the plurality of source devices share one acceleration module.
  • the radiotherapy apparatus includes three radio source devices, and the source device 11a, the source device 11b, and the source device 11c are both X-ray generators, the source device 11a, and the source device 11b.
  • the source device 11c may share an acceleration module, for example, sharing an electron beam generator or a waveguide.
  • the source device 11a, the source device 11b, and the source device 11c each include an acceleration module. This application does not limit this, and only the above is taken as an example for illustration.
  • the present invention provides a radiotherapy apparatus in which each source device is respectively disposed corresponding to a collimator, and the collimator provides a beam-shaped beam path for the beam, and the collimators of the plurality of source devices are the same or different.
  • the source device is an X-ray generator
  • the principle of action is that the accelerator accelerates the particles to form photons, and the photons strike the target to emit X-rays.
  • the rays are scattered outward, and in order to make the radiation meet the clinical treatment requirements, the X-rays are beam-shaped by the collimator.
  • the source device includes a cobalt-60, the cobalt-60 emits a gamma beam, and the gamma beam is beam shaped by the collimator in order to meet the clinical therapeutic requirements for the radiation.
  • the collimator 14 is provided with a plurality of beam passages 141 having different aperture sizes, and the focus treatment can be performed in a filling manner.
  • 18 is exemplified by a beam path in which five different apertures are disposed on the collimator 14.
  • FIG. 19 is an example of a beam path 141 on the collimator 14. This application does not specify the size and shape of the specific beam path. Make a limit.
  • the collimator can conform to beam channels of different sizes and/or shapes.
  • the collimator may also be a multi-leaf collimator comprising two sets of oppositely disposed plurality of blades, which can conform to the beam passages of different sizes and/or shapes by the movement of the blades, and can be conformed Irradiation therapy.
  • the collimator 14 includes a plurality of diaphragm plates 142 to conform to beam channels of different sizes and/or shapes, and the beam of the beam channel can also be filled. Focus on treatment.
  • FIG. 20 is exemplified by taking four diaphragm plates as an example, and the number of the diaphragm plates is not limited in the present application.
  • each of the source devices is respectively disposed corresponding to one collimator, and the collimators corresponding to the plurality of source devices are the same or different.
  • the collimators corresponding to the plurality of source devices are the same.
  • the radiotherapy apparatus includes three source devices, and the collimators corresponding to each of the source devices are the same, for example, as shown in FIGS. 18 and 19.
  • the collimators either both may be collimators as shown in Figure 20, or both may be multi-leaf collimators.
  • the collimator corresponding to the plurality of source devices is different.
  • the radiotherapy apparatus includes three source devices, and the collimators corresponding to the two source devices may each be a multi-leaf collimator, wherein one of the emitter devices corresponds to The collimator can be as shown in Figures 18, 19 or a collimator as shown in Figure 20.
  • the radiotherapy apparatus comprises a three-source device, the collimator corresponding to one source device may be a multi-leaf collimator, and the collimator corresponding to one source device may be a collimator as shown in FIGS. 18 and 19.
  • the collimator corresponding to the other source device may be a collimator as shown in FIG.
  • the present application does not limit the types of collimators corresponding to the plurality of source devices and the source devices, and only the above is exemplified.
  • the present invention provides a radiotherapy apparatus, further comprising an imaging device, the imaging device comprising a beam generator and a beam receiving detector.
  • the imaging device may be provided on the radiotherapy device or on the ceiling or the ground of the radiotherapy room.
  • the image device may also be disposed on the drum.
  • the beam from the beam generator of the imaging device is received by the beam receiving detector through the intersection.
  • the imaging device may comprise two beam generators and two beam receiving detectors, the beams emitted by the two beam generators intersecting.
  • the present invention provides a radiotherapy apparatus comprising a detecting plate disposed on an opposite side of the source device and capable of receiving a beam of the source device for detecting a dose size or a field shape of the beam of the source device, It is thus possible to confirm the parameters of the beam in order to check against the treatment plan and determine the effectiveness of the treatment.
  • the radiotherapy apparatus of the present application includes a plurality of source devices.
  • one probe plate can receive a beam of at least two source devices, or a probe plate can receive a beam of the source device and the beam generator, thereby It can improve the utilization rate of the detection plate, reduce the usage of the detection plate, reduce the equipment cost, and increase the treatment space.
  • the detector plate can be received by moving through a mechanical arm or sliding through a slide rail or track to be opposite to the source device at different positions.
  • the beam of the source device There are a plurality of implementations for detecting the motion of the tablet. The present application does not limit this, and only the above is taken as an example for illustration.
  • the present application provides a radiotherapy system, including a radiotherapy bed and a radiotherapy apparatus, which may be the radiotherapy apparatus according to any of the foregoing embodiments of the present application, such as FIG. 7, FIG. 9, FIG. 10, FIG. 12, FIG. 14 or the radiotherapy apparatus 10 shown in FIG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种放疗设备及放疗***,涉及医疗器械技术领域,解决了现有的放疗设备实现非共面照射容易发生碰撞或治疗时间长的问题。放疗设备(10),包括至少两个射源装置(11),射源装置(11)可发出射束,至少两个射源装置(11)发出的射束相交于交点,射源装置(11)可绕旋转轴圆周旋转,至少两个射源装置(11)的源点或虚拟源点在不同的轴向截面上。

Description

放疗设备及放疗***
本申请要求于2018年1月15日提交、申请号为201810036767.8、发明名称为“一种放疗设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,尤其涉及一种放疗设备及放疗***。
背景技术
放射治疗是***的三大主要手段之一,约有65-70%的癌症患者不同程度上接受放射治疗。
现有的常用放疗设备如图1所示,放疗设备包括一个可旋转的机架16、设置在机架上的治疗头13、治疗床17。如图2所示,机架16带着治疗头13沿机架旋转轴L旋转形成治疗头旋转平面M,治疗床17绕治疗床旋转轴H旋转形成治疗床旋转平面N,从而利用治疗床和治疗头的旋转实现非共面(non-coplanar)旋转聚焦,增大焦皮比(焦皮比指的是靶区的治疗剂量和正常组织的照射剂量的比值),以在利用放射束杀死癌细胞的同时最大化的保护人体的正常组织和细胞。
图3、图4为另一种放疗设备示意图,包括滚筒12、设置于滚筒12上的治疗头13、治疗床17。参照图4所示,滚筒12可绕滚筒旋转轴(即滚筒的旋转轴)G进行旋转,且治疗头13沿滚筒12的轴向沿弧形导轨15运动,从而利用治疗头的圆周旋转和滚筒的轴线运动实现非共面旋转聚焦。
发明内容
本申请提供一种放疗设备,解决了现有的放疗设备在实现非共面聚焦治疗时容易发出碰撞或者治疗计划设计比较困难,治疗时间较长的问题。
本申请采用如下技术方案是:
一种放疗设备,包括至少两个射源装置,所述射源装置可发出射束,至少两个所述射源装置发出的射束相交于交点,所述射源装置可绕旋转轴圆周旋转,至少两个所述射源装置的源点或虚拟源点在不同的轴向截面上。
一种放疗***,包括:治疗床和前述放疗设备。
本申请提供的一种放疗设备及放疗***,包括至少两个射源装置,射源装置可发出射束,至少两个射源装置发出的射束相交于交点,射源装置可绕旋转轴圆周旋转,至少两个射源装置的源点或虚拟源点在不同的轴向截面上,则每个射源装置发出的射束分别形成一个旋转面,且至少两个射源装置的射束旋转面不重合,即实现了放射治疗的非共面旋转聚焦治疗,增大焦皮比,以在利用放射束杀死癌细胞的同时最大化的保护人体的正常组织和细胞。且本申请的放疗设备,无需通过治疗床实现非共面照射,因此可以避免射源装置与治疗床的碰撞问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1本申请提供的一种现有放疗设备示意图;
图2是图1所示放疗设备实现非共面照射的示意图;
图3是本申请提供的另一种现有放疗设备示意图;
图4是图3所示放疗设备实现非共面照射的示意图;
图5是本申请提供的射源装置的虚拟源点示意图;
图6是本申请提供的一种三维空间中各个平面的关系示意图;
图7是本申请提供的一种放疗设备的侧面示意图;
图8是图7所示放疗设备的射野装置的射束旋转面示意图;
图9是本申请提供的另一种放疗设备的侧面示意图;
图10是本申请提供的另一种放疗设备的侧面示意图;
图11是图7所示放疗设备的治疗头与交点的轴向截面的夹角示意图;
图12是本申请提供的一种放疗设备的主视图;
图13是本申请提供的另一种放疗设备的侧面示意图;
图14是本申请提供的另一种放疗设备的侧面示意图;
图15是本申请提供的另一种放疗设备的侧面示意图;
图16是图15所示放疗设备的治疗头的一种顶面示意图;
图17是图15所示放疗设备的治疗头的另一种顶面示意图;
图18、19是本申请提供的一种准直器示意图;
图20是本申请提供的另一种准直器适形示意图。
附图标记:
10-放疗设备;11,11a,11b,11c-射源装置;电子束-111;靶体-112;X射束-113;12-滚筒;13-治疗头;14-准直器;141-射束通道;142-光阑板;15-导轨;16-机架;17-治疗床。
具体实施方式
下面结合具体实施方式对本申请的技术方案作进一步更详细的描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
治疗医师在应用现有放疗设备时发现,当治疗床与治疗头同时发生旋转后,治疗床与治疗头容易发生碰撞。
本申请提供了一种放疗设备,包括至少两个射源装置,射源装置可发出射束,至少两个射源装置发出的射束相交于交点,射源装置可绕旋 转轴圆周旋转,至少两个射源装置的源点或虚拟源点在不同的轴向截面上。每个射源装置的源点或虚拟源点所在的轴向截面指的是垂直该旋转轴的截面,在本申请实施例中,各个射源装置的旋转轴平行(通常共线),各个射源装置的源点或虚拟源点所在的轴向截面至少相互平行。
需要说明的是,本申请中,射源装置的射线源可以是同位素放射源,例如钴-60,则射源装置的源点可以是同位素放射源,射源装置发出的射束可以是γ射束。或者射源装置可以是加速器,加速器产生电子束111,打在靶体112上,发出X射束113,本申请中,射源装置为加速器时,其虚拟原点可以如图5所示,为X射束113的反向延长线的交点。如图6所示,射源装置绕旋转轴1圆周(即等同为图1、图2中的旋转轴L,图4、图7中的旋转轴G)旋转形成旋转平面4,面2、面3和面5为相互垂直的三个平面,用以说明图7中的各平面之间的关系,以方便理解本申请的实施例。本申请中,轴向截面即为面3,其为垂直于旋转轴1的截面,其中,面3与旋转平面4平行,则因不同射源装置的位置不同,形成的多个旋转平面平行。
射源装置绕旋转轴圆周旋转可以是射源装置绕旋转轴往复旋转(例如沿顺时针旋转一定角度再沿逆时针旋转一定角度)或360°连续旋转。射源装置绕旋转轴旋转可以通过将射源装置安装在机架或机械臂上实现。机架可以是C形机架(参照图1所示),或者,机架可以是环形机架。或者,射源装置绕旋转轴旋转可以通过滚筒(参照图3和图4所示)实现。如图7所示,放疗设备包括滚筒(即环形机架的一种),射源装置固定在滚筒上,射源装置通过滚筒绕滚筒旋转轴旋转。且本申请中,射源装置绕旋转轴圆周旋转的实现方式,可以是每个射源装置分别与一个旋转装置连接,即每个射源装置分别通过一个旋转装置绕旋转轴旋转,还可以是多个射源装置通过同一个旋转装置绕旋转轴旋转,还可以是所有射源装置均通过一个旋转装置绕旋转轴旋转,本申请对此不做限定。
本申请提供的一种放疗设备,以放疗设备包括滚筒,多个射源装置设置在滚筒上,滚筒带动多个射源装置绕滚筒的轴线旋转为例。示例的,如图7所示,本申请实施例以放疗设备10包括滚筒12、设置在滚筒12上的三个射源装置,分别为射源装置11a、射源装置11b、射源装置11c为例进行示例说明,射源装置11a、射源装置11b、射源装置11c的源 点或虚拟源点分别在三个不同的轴向截面(即图7所示的三条虚线)上,三个射源装置分别发出射束,且三个射源装置发出的射束相交于交点J,本申请以交点J在滚筒旋转轴上为例,射源装置11a、射源装置11b、射源装置11c在滚筒12的带动下,沿滚筒旋转轴G旋转。
本申请中,射源装置的源点或虚拟源点在不同的轴向截面上,则射源装置绕旋转轴圆周旋转分别形成一个旋转平面。一般的,射源装置发出的射束为锥形束,为了方便说明,本申请以射源装置发出的射束为细射束,并以射束为直线束为例进行说明。示例的参照图8所示,射源装置11a绕滚筒旋转轴旋转形成旋转平面11a',(相应的,射束旋转所形成的射束旋转面为11a'),射源装置11b绕滚筒旋转轴旋转形成旋转平面11b'(相应的,射束旋转面如图8所示的实线锥形面),射源装置11c绕滚筒旋转轴旋转形成旋转平面11c'(相应的,射束旋转面如图8所示的虚线锥形面)。如图7、图8所示的,由于射源装置的源点或虚拟源点在不同的轴向截面上,则该三个射源装置发出的三个射束的旋转面两两不重合,即射源装置的射束为非共面照射,从而无需通过射源装置或治疗床的运动,就可以实现旋转非共面放射治疗。
需要说明的是,本申请中,每个射源装置绕旋转轴旋转分别形成一个旋转平面,相应的射束形成一个射束旋转面,至少两个射源装置的源点或虚拟源点在不同轴向截面上,则至少两个射源装置的旋转平面不重合,相应射束的射束旋转面不重合。图7所示的以三个射源装置的源点或虚拟源点在不同的轴向截面上为例,则如图8所示,三个射源装置形成的旋转平面不重合,相应射束的射束旋转面均不重合。示例的,至少两个射源装置的射束旋转面不重合的实现方式还可以是如图9所示,射源装置11a和射源装置11b的源点或虚拟源点在同一轴向截面,则射源装置11a绕滚筒旋转轴G旋转形成旋转平面与射源装置11b绕滚筒旋转轴旋转形成旋转重合,相应的射束旋转面也重合。射源装置11c与该两个射源装置不在同一轴向截面,射源装置11c绕滚筒旋转轴旋转形成旋转平面与该另外两个射源装置绕滚筒旋转轴旋转形成旋转平面不重合,相应的射束旋转面也不重合。
本申请中,至少两个所述射源装置发出的射束相交于交点,交点可以是在旋转轴上,也可以是不在旋转轴上。若交点不在旋转轴上,可以通过治疗床配合实现治疗,例如通过调整治疗床的位置(如竖直位置和 /或水平位置)实现治疗。本申请实施例,如图7、图9所示,均以交点在旋转轴上为例进行示例说明。
本申请提供的一种放疗设备,射源装置发出的射束为单束。示例的,如图7所示。当然单束射束经过束形有可能为锥形束,即如图10所示。
本申请中,射束为锥形束时,以射源装置的射束绕旋转轴旋转形成的射束旋转面为射源装置发出的射束轴线旋转形成的射束旋转面。示例的,如图10所示,射源装置11a、射源装置11b、射源装置11c分别发出锥形射束,则各锥形射束的射束轴线形成射束旋转面可参照图8所示。
本申请中,放疗设备包括至少两个射源装置,每个射源装置可发出射束,至少两个所述的射源装置发出的射束相交于交点J。示例的,可以是如图7-图10所示的,放疗设备包括三个射源装置,且三个射源装置发出的射束相交于一个交点J。或者,还是可以是,放疗设备包括四个射源装置,其中两个射源装置发出的射束相交于一个交点,另外两个射源装置发出的射束相交于另一个交点,本申请对射源装置的数量及交点的位置等不做限定。
本申请提供的一种放疗设备,包括至少两个射源装置,射源装置可发出射束,至少两个射源装置发出的射束相交于交点,射源装置可绕旋转轴圆周旋转,至少两个射源装置的源点或虚拟源点在不同的轴向截面上,则每个射源装置发出的射束分别形成一个旋转面,且至少两个射源装置的射束旋转面不重合,即实现了放射治疗的非共面旋转聚焦治疗,增大焦皮比,以在利用放射束杀死癌细胞的同时最大化的保护人体的正常组织和细胞。且本申请的放疗设备,无需通过治疗床实现非共面照射,因此可以避免射源装置与治疗床的碰撞问题。
此外,相关技术中,非共面角度(即治疗床和/或治疗头旋转的角度)的确认完全依靠治疗医师的主观判断,根据不同患者或者不同体型治疗医师做出的非共面角度不同,从而治疗计划设计比较困难,治疗时间较长。本申请至少两个射源装置的射束旋转面不重合,实现非共面旋转聚焦,无需治疗医师设定非共面角度,从而可以缩减治疗时间,提高治疗效率。
此外,本申请提供的一种放疗设备,包括多个射源装置,至少两个射源装置的射束相交于交点,类似于放大镜聚焦的原理,从而在交点处的剂量率明显增大,可以满足放射治疗对交点的高剂量率要求。示例的, 以现有的加速器为例,则一个射源装置发出的X射线大约为1400Mu,剂量率大概为3.5Gr,若放疗设备包括三个射源装置,则在交点的剂量率可以达到10.5Gr,交点处的剂量率能够满足临床上的高剂量率要求,从而可以实现单次照射治疗,一次性将肿瘤细胞杀死,提升治疗效率。
本申请提供的一种放疗设备,至少一个射源装置的源点或虚拟源点在交点所在的轴向截面上。示例的,如图7所示,以一个射源装置的源点或虚拟源点在交点J所在的轴向截面上为例,即射源装置11a的源点或虚拟源点在交点所在的轴向截面上。或者,也可以是多个射源装置的源点或虚拟源点在交点所在的轴向截面上,如图9所示,射源装置11a和射源装置11b的源点或虚拟源点在交点J所在的轴向截面上。在放疗设备包括多个射源装置的情况下,根据临床设计,可以有多种不同的实施方案,本申请对此不做限定,本申请仅以图7、图9所示的两种情况为例进行示例说明。
本申请提供的一种放疗设备,射源装置的源点或虚拟源点不在交点所在的轴向截面上,也即是在该轴向截面之外,交点以及射源装置的源点或虚拟源点的连线与交点所在的轴向截面的夹角为0-60°。本申请中的数值均包括临界值,即可以是0°或60°,当然,夹角也可以是10°、15°、25°或30°等,根据不同临床需求,可以不同。示例的,如图11所示,以图7所示的放疗设备为例,射源装置11a的源点或虚拟源点在交点所在的轴向截面3上,经过交点以及射源装置11b的源点或虚拟源点的连线与交点的轴向截面3的夹角为β,经过交点以及射源装置11c的源点或虚拟源点的连线与交点的轴向截面3的夹角为α。示例的,α和β的角度可以相同,也可以不同。
本申请提供的一种放疗设备,至少两个射源装置在轴向截面上的投影圆周分布,且相邻两个射源装置在轴向截面上的投影到交点的夹角为0-180°。示例的,如图12所示,放疗设备包括滚筒12以及设置在滚筒12上的射源装置11a、射源装置11b以及射源装置11c,滚筒带动各射源装置沿滚筒旋转轴G圆周旋转,三个射源装置的射束的交点J在滚筒旋转轴J上,图12中以射源装置11a的射束和射源装置11b的射束在轴向截面上的投影的夹角为a为例,夹角a示例的为120°。当然,本申请中,任意两个射源装置的射束在轴向截面上的投影夹角为0-180°,示例的,图12中所示的射源装置11a的射束和射源装置11c 的射束在轴向截面上的投影的夹角,以及射源装置11b的射束和射源装置11c的射束在轴向截面上的投影的夹角均可以是120°。本申请对各射源装置的射束在轴向截面上的投影的夹角不做限定,仅以图12为例进行示例说明。
本申请提供的一种放疗设备,每个射源装置分别设置有一个旋转装置,也即是每个射源装置与一个旋转装置连接,通过该旋转装置带动射源装置绕旋转轴圆周旋转。示例的,每个射源装置分别通过一个机械臂带动其绕旋转轴圆周旋转。或者,至少两个射源装置设置在一个旋转装置上,旋转装置带动至少两个射源装置绕旋转轴圆周旋转。如图7、图9所示的,三个射源装置设置一个环形机架上,环形机架带动其绕滚筒旋转轴圆周旋转。当然,驱动装置还可以是除机械臂或机架之外的装置,本申请对此不做限定。
本申请提供的放疗设备,在机架为环形机架的情况下,多个射源装置设置在环形机架上,环形机架带动多个射源装置绕环形机架的轴线旋转,或者,射源装置可在环形机架上沿环形机架的轴线圆周旋转运动。
本申请提供的一种放疗设备,射源装置可相对旋转装置(如机械臂或机架)摆动和/或移动。摆动示例的可以是通过万向轮等实现,射源装置可以不发生位置的变化,但摆动使得射源装置的射束方向发生变动。移动可以通过导轨或齿轮齿圈等方式实现,本申请对此不做限定。射源装置可相对旋转装置(如机械臂或机架)摆动和/或移动,例如,实现方式可以是射源装置相对机械臂或机架摆动,还可以是射源装置相对机械臂或机架移动,还可以是射源装置相对机械臂或机架摆动和移动。
示例的,射源装置相对旋转装置(如机械臂或机架)摆动和/或移动的实现方式为射源装置沿旋转轴的轴向摆动和/或移动,如图13所示,以放疗设备包括两个射源装置为例,放疗设备还包括导轨15,每个射源装置分别与一个导轨15对应设置,射源装置11a和射源装置11b分别可沿导轨15移动,图13以射源装置11a沿导轨15移动为例,射源装置11a移动前后与射源装置11b的交点的位置不变。
本申请提供的一种放疗设备,如图13所示,射源装置相对旋转装置(如机械臂或机架)摆动和/或移动后,其交点的位置不变。当然,射源装置相对旋转装置摆动和/或移动后,其交点的位置也可以发生变 化。示例的,如图14所示,放疗设备还包括导轨15,每个射源装置分别与一个导轨15对应设置,射源装置11a和射源装置11b的射束相交于交点A,射源装置11a摆动,射源装置11b沿导轨15移动后,射源装置11a和射源装置11b的射束相交于交点B,则还可以通过治疗床的运动来配合交点的变化进行治疗。本申请对射源装置相对旋转装置的摆动及移动位置及交点不做限定,仅以图13及图14所示的为例进行示例说明。
本申请提供的一种放疗设备,多个射源装置均为X射线发生器;或者,多个射源装置均为γ射线装置;或者,多个射源装置包括X射线发生器和γ射线装置。
多个射源装置均为X射线发生器,示例的,放疗设备包括三个射源装置,三个射源装置均发出X射线。多个射源装置均为γ射线装置,示例的,放疗设备包括三个射源装置,三个射源装置均包括一个钴-60射线源,其发出γ射线,γ射线经过准直器束形后形成单束射束发出。多个射源装置包括X射线发生器和γ射线装置,示例的,放疗设备包括三个射源装置,其中两个可以是X射线发生器,一个为γ射线装置。即放疗设备可以实现X射线和γ射线的组合应用。其中,X射线发生器可以是X刀,即X射线经过限光筒形成单束后发出。γ射线装置发出的γ射线也可以是经过准直器束形后形成单束射束发出。
射源装置发出X射束,则射源装置可以是X刀,经过准直限光筒形成直径为2-60mm的射束,以对肿瘤进行填充式的聚焦照射治疗。或者,放疗设备还包括多叶准直器,射源装置发出X射束,通过多叶准直器适形,形成与肿瘤形状类似的射野区域,实现适形调强放射治疗(intensity modulated radiation therapy,IMRT)。
本申请提供的一种放疗设备,放疗设备包括三个射源装置,均为X射线发生器。每个射线发生器可以是通过准直器形成圆形或近似圆形的X射束,则三个射源装置的X射束在交点处相交,其在交点处近似球形。
当然,放疗设备可以是包括多个射源装置,且射源装置均可以是X射线发生器,每个射线发生器可以是通过准直器形成圆形或近似圆形的X射束,则多个射源装置的X射束在交点处相交,其在交点能够形成更多的立体形状。
本申请提供的放疗设备,三个射源装置设置在一个固定装置上,固 定装置固定在机架上,机架带动固定装置绕机架的轴线旋转。示例的,如图15所示,三个射源装置即射源装置11a、射源装置11b、射源装置11c设置在一个固定装置13上。则射源装置可以是通过固定装置的旋转实现射源装置的圆周运动。示例的,放疗设备的机架可以是滚筒,固定装置可以固定在滚筒上,通过滚筒转动带动射源装置绕旋转轴圆周转动。
本申请提供的一种放疗设备,三个射源装置的源点或虚拟源点在旋转轴的不同的轴向截面上;或者,两个射源装置的源点或虚拟源点在同一轴向截面上,且与第三个所述射源装置的源点或虚拟源点在不同的轴向截面上。
三个射源装置的源点或虚拟源点在不同的轴向截面上,示例的,如图16所示,图16是图15所示放疗设备的治疗头一种顶面示意图,图16中Y轴平行于旋转轴,X轴平行于轴向截面,射源装置11a、射源装置11b、射源装置11c的源点或虚拟源点在不同的轴向截面上,则其圆周旋转后,三个射源装置的射束旋转面均不重合。
或者,两个射源装置的射束旋转面重合,且两个射源装置与第三个射源装置的射束旋转面不重合。如图17所示,图17是图15所示放疗设备的治疗头另一种顶面示意图,图17中Y轴平行于旋转轴,X轴平行于轴向截面,射源装置11b、射源装置11c在同一轴向截面上,其圆周旋转后,射源装置11b、射源装置11c的射束旋转面重合。射源装置11b、射源装置11c与射源装置11a在不同的轴向截面上,则射源装置11b的射束旋转面与射源装置11a的射束旋转面不重合,射源装置11c的射束旋转面与射源装置11a的射束旋转面不重合。
当然,三个射源装置的位置分布不局限于图16和图17所示,本申请仅以图16和图17所示的两种情况为例进行说明。
本申请提供了放疗设备,在放疗设备包括多个X射线发生器的情况下,多个X射线发生器分别包括一个加速模块,或者多个射源装置共用一个加速模块。以图7所示的放疗设备为例,放疗设备包括三个射源装置,射源装置11a、射源装置11b、射源装置11c均为X射线发生器,射源装置11a、射源装置11b、射源装置11c可以共用一个加速模块,例如共用一个电子束生成器或波导等。或者,射源装置11a、射源装置11b、射源装置11c分别包括一个加速模块。本申请对此不做限定,仅 以以上为例进行示例说明。
本申请提供的一种放疗设备,每个射源装置分别与一个准直器对应设置,准直器为射束提供束形的射束通道,多个射源装置的准直器相同或不同。
需要说明的是,若射源装置为X射线发生器,则其作用原理为加速器对粒子加速形成光子,光子打在靶体上发出X射线。一般射线向外发散射出,为了使得射线满足临床的治疗要求,通过准直器对X射线进行束形。若射源装置包括一个钴-60,则钴-60发出γ射束,为了使得射线满足临床的治疗要求,通过准直器对γ射束进行束形。
示例的,如图18和图19所示,准直器14上设置有多个孔径大小不同的射束通道141,可以填充的方式进行聚焦治疗。图18以准直器14上设置有5个不同孔径的射束通道为例,图19以准直器14上的一个射束通道141为例,本申请对于具体的射束通道尺寸和形状不做限定。或者,准直器可适形出不同尺寸和/或形状的射束通道。示例的,准直器还可以是多叶准直器,其包括两组相对设置的多个叶片,可以通过叶片的运动,适形出不同尺寸和/或形状的射束通道,可以实现适形照射治疗。当然,还可以如图20所示,准直器14包括多个光阑板142,以适形出不同尺寸和/或形状的射束通道,射束通道的射束也可以以填充的方式进行聚焦治疗。图20以四个光阑板为例进行示例说明,本申请对光阑板的数量不做限定。
本申请中,每个射源装置分别与一个准直器对应设置,多个射源装置对应的准直器相同或不同。示例的,多个射源装置对应的准直器相同,示例的,放疗设备包括三个射源装置,每个射源装置对应的准直器相同,例如都可以是如图18、19所示的准直器,或者都可以是如图20所示的准直器,或者都可以是多叶准直器。多个射源装置对应的准直器不同,示例的,放疗设备包括三个射源装置,两个射源装置对应的准直器均可以是多叶准直器,其中一个射源装置对应的准直器可以是如图18、19所示或者是如图20所示的准直器。再或者,放疗设备包括三射源装置,一个射源装置对应的准直器可以是多叶准直器,一个射源装置对应的准直器可以是如图18、19所示的准直器,另一个射源装置对应的准直器可以是如图20所示的准直器。本申请对多个射源装置及射源装置对应的准直器类型不做限定,仅以上述为例进行示例说明。
本申请提供的一种放疗设备,还包括影像装置,影像装置包括射束发生器和射束接收探测器。影像装置可以是设置在放疗设备上,也可以是设置在放疗室的天花板或地面上。在放疗设备包括滚筒的情况下,影像装置还可以设置在滚筒上。影像装置的射束发生器发出的射束穿过交点被射束接收探测器接收。进一步的,影像装置可以包括两个射束发生器和两个射束接收探测器,两个射束发生器发出的射束相交。
本申请提供的一种放疗设备,包括探测平板,探测平板设置在射源装置的相对侧,可接收射源装置的射束,以便检测射源装置的射束的剂量大小或射野形状等,从而可以对射束的参数进行确认,以便与治疗计划进行核对,确定治疗的有效性。
本申请中放疗设备包括多个射源装置,示例的,一个探测平板可接收至少两个射源装置的射束,或者,一个探测平板可以接收射源装置和射束发生器的射束,从而可以提高探测平板的利用率,减少探测平板的使用数量,降低设备成本,增大治疗空间。示例的,以一个探测平板可接收至少两个射源装置的射束为例,探测器平板可以是通过机械臂移动或通过滑轨或轨道的滑动以在不同位置与射源装置相对,来接收射源装置的射束。探测平板运动的实现方式有多种,本申请对此不做限定,仅以上述为例进行示例说明。
本申请提供一种放疗***,包括放疗床和放疗设备,该放疗设备可以为本申请前述实施例任一所述的放疗设备,例如图7、图9、图10、图12、图13、图14或图15所示的放疗设备10。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种放疗设备(10),其特征在于,包括至少两个射源装置(11),所述射源装置(11)可发出射束,至少两个所述射源装置(11)发出的射束相交于交点,所述射源装置(11)可绕旋转轴圆周旋转,至少两个所述射源装置(11)的源点或虚拟源点在不同的轴向截面上。
  2. 根据权利要求1所述的放疗设备(10),其特征在于,所述交点在所述旋转轴上。
  3. 根据权利要求1所述的放疗设备(10),其特征在于,至少一个所述射源装置(11)的源点或虚拟源点在所述交点所在的轴向截面上。
  4. 根据权利要求1所述的放疗设备(10),其特征在于,所述射源装置(11)的源点或虚拟源点在所述交点所在的轴向截面之外,则所述交点以及所述射源装置(11)的源点或虚拟源点的连线与所述交点所在的轴向截面的夹角为0-60°。
  5. 根据权利要求1所述的放疗设备(10),其特征在于,
    每个所述射源装置(11)分别与一个旋转装置连接,所述旋转装置带动所述射源装置(11)绕旋转轴圆周旋转;或者,
    至少两个所述射源装置(11)设置在一个旋转装置上,所述旋转装置带动所述至少两个所述射源装置(11)绕旋转轴圆周旋转。
  6. 根据权利要求5所述的放疗设备(10),其特征在于,所述旋转装置(11)为机械臂或机架(16),其中,所述机架(16)是环形机架或C形机架。
  7. 根据权利要求6所述的放疗设备(10),其特征在于,所述射源装置(11)可相对所述旋转装置摆动和/或移动。
  8. 根据权利要求7所述的放疗设备(10),其特征在于,所述射源装置(11)可相对所述旋转装置沿所述旋转轴的轴向摆动和/或移动。
  9. 根据权利要求7所述的放疗设备(10),其特征在于,所述射源装置(11)相对所述旋转装置摆动和/或移动后,所述交点的位置不变。
  10. 根据权利要求1所述的放疗设备(10),其特征在于,所述多个射源装置(11)均为X射线发生器;或者,所述多个射源装置(11)均为γ射线装置;或者,所述多个射源装置(11)包括X射线发生器和 γ射线装置。
  11. 根据权利要求10所述的放疗设备(10),其特征在于,所述放疗设备(10)包括三个射源装置(11),所述三个射源装置(11)均为X射线发生器。
  12. 根据权利要求11所述的放疗设备(10),其特征在于,三个所述X射线发生器设置在一个固定装置上,所述固定装置设置在机架上,所述机架带动所述固定装置绕机架的轴线旋转。
  13. 根据权利要求11所述的放疗设备(10),其特征在于,三个所述射源装置(11)的源点或虚拟源点在不同的轴向截面上;或者,两个所述射源装置(11)的源点或虚拟源点在同一轴向截面上,且与第三个所述射源装置(11)的源点或虚拟源点在不同的轴向截面上。
  14. 根据权利要求11所述的放疗设备(10),其特征在于,在所述放疗设备(10)包括多个X射线发生器的情况下,所述多个X射线发生器分别包括一个加速模块,或者,多个X射线发生器共用一个加速模块。
  15. 根据权利要求1所述的放疗设备(10),其特征在于,每个所述射源装置(11)分别与一个准直器(14)对应设置,所述准直器(14)为射束提供束形的射束通道(141),多个所述射源装置(11)的准直器(14)相同或不同。
  16. 根据权利要求15所述的放疗设备(10),其特征在于,所述准直器(14)上设置有多个孔径大小不同的射束通道(141);或者,所述准直器(14)可适形出不同尺寸和/或形状的射束通道(141)。
  17. 根据权利要求1所述的放疗设备(10),其特征在于,所述放疗设备(10)还包括影像装置,所述影像装置包括射束发生器和射束接收探测器。
  18. 根据权利要求1或17所述的放疗设备(10),其特征在于,所述放疗设备(10)还包括探测平板,所述探测平板设置在所述射源装置(11)的相对侧,可接收所述射源装置(11)的射束。
  19. 根据权利要求18所述的放疗设备(10),其特征在于,一个所述探测平板可接收至少两个所述射源装置(11)的射束;或者,
    一个所述探测平板可接收所述射源装置(11)和所述射束发生器的射束。
  20. 一种放疗***,其特征在于,包括:治疗床(17)和权利要求1 至19任一所述的放疗设备(10)。
PCT/CN2019/070274 2018-01-15 2019-01-03 放疗设备及放疗*** WO2019137295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/928,440 US11452886B2 (en) 2018-01-15 2020-07-14 Radiotherapy equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810036767.8 2018-01-15
CN201810036767.8A CN108175955A (zh) 2018-01-15 2018-01-15 一种放疗设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/928,440 Continuation US11452886B2 (en) 2018-01-15 2020-07-14 Radiotherapy equipment

Publications (1)

Publication Number Publication Date
WO2019137295A1 true WO2019137295A1 (zh) 2019-07-18

Family

ID=62550714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070274 WO2019137295A1 (zh) 2018-01-15 2019-01-03 放疗设备及放疗***

Country Status (3)

Country Link
US (1) US11452886B2 (zh)
CN (1) CN108175955A (zh)
WO (1) WO2019137295A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108175955A (zh) * 2018-01-15 2018-06-19 西安大医数码科技有限公司 一种放疗设备
CN108042931A (zh) * 2018-01-15 2018-05-18 西安大医数码科技有限公司 一种放射治疗***
CN109350869A (zh) * 2018-10-17 2019-02-19 洛阳易枫辰医疗科技有限公司 ***的装置
WO2021046779A1 (zh) * 2019-09-11 2021-03-18 西安大医集团股份有限公司 医疗设备
WO2022141569A1 (zh) * 2020-12-31 2022-07-07 深圳市奥沃医学新技术发展有限公司 放疗***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927064A (zh) * 2009-06-18 2010-12-29 东莞市益普生医疗设备发展有限公司 一种医用电子直线加速器非共面照射的方法
US8139714B1 (en) * 2009-06-25 2012-03-20 Velayudhan Sahadevan Few seconds beam on time, breathing synchronized image guided all fields simultaneous radiation therapy combined with hyperthermia
WO2015062093A1 (zh) * 2013-11-01 2015-05-07 西安大医数码技术有限公司 一种多用途放射治疗***
CN108175955A (zh) * 2018-01-15 2018-06-19 西安大医数码科技有限公司 一种放疗设备
CN208493021U (zh) * 2018-01-15 2019-02-15 西安大医数码科技有限公司 一种放疗设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9902163D0 (sv) * 1999-06-09 1999-06-09 Scanditronix Medical Ab Stable rotable radiation gantry
DE102004048212B4 (de) * 2004-09-30 2007-02-01 Siemens Ag Strahlentherapieanlage mit Bildgebungsvorrichtung
CN1853739A (zh) * 2005-04-18 2006-11-01 李宜 伽玛射线治疗装置
US7263165B2 (en) * 2005-07-14 2007-08-28 Siemens Medical Solutions Usa, Inc. Flat panel detector with KV/MV integration
CN100574827C (zh) * 2005-08-25 2009-12-30 深圳市海博科技有限公司 放射治疗装置
US8173983B1 (en) * 2010-01-07 2012-05-08 Velayudhan Sahadevan All field simultaneous radiation therapy
US8917813B2 (en) * 2010-02-24 2014-12-23 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
MX2010008470A (es) * 2010-07-29 2012-01-30 Ct Investig Y Estudios Del Ipn Aparato y metodo para efectuar radioterapia guiada por imagenes con haces de rayos-x de kilovoltaje en presencia de un agente de contraste.
CN103386168B (zh) * 2013-07-17 2016-09-14 官爱平 一种集成数字成像设备的放疗***
US9694210B2 (en) * 2015-04-21 2017-07-04 Cybermed Technologies (Xi'an) Co., Ltd. Multi-purpose radiation therapy system
JP6591886B2 (ja) * 2015-12-14 2019-10-16 株式会社東芝 粒子線治療装置
CN205924726U (zh) * 2016-06-16 2017-02-08 四川大学 放射治疗***
WO2017219291A1 (zh) * 2016-06-22 2017-12-28 深圳市奥沃医学新技术发展有限公司 一种准直器、治疗头及治疗设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101927064A (zh) * 2009-06-18 2010-12-29 东莞市益普生医疗设备发展有限公司 一种医用电子直线加速器非共面照射的方法
US8139714B1 (en) * 2009-06-25 2012-03-20 Velayudhan Sahadevan Few seconds beam on time, breathing synchronized image guided all fields simultaneous radiation therapy combined with hyperthermia
WO2015062093A1 (zh) * 2013-11-01 2015-05-07 西安大医数码技术有限公司 一种多用途放射治疗***
CN108175955A (zh) * 2018-01-15 2018-06-19 西安大医数码科技有限公司 一种放疗设备
CN208493021U (zh) * 2018-01-15 2019-02-15 西安大医数码科技有限公司 一种放疗设备

Also Published As

Publication number Publication date
US20200338368A1 (en) 2020-10-29
US11452886B2 (en) 2022-09-27
CN108175955A (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2019137295A1 (zh) 放疗设备及放疗***
JP6853214B2 (ja) 放射誘導の放射線治療の方法および装置
US9694210B2 (en) Multi-purpose radiation therapy system
US9155912B2 (en) Method and system for stereotactic intensity-modulated arc therapy
KR101108806B1 (ko) 다중실 방사선 치료 시스템
US9044604B2 (en) Radiotherapy system
WO2015062093A1 (zh) 一种多用途放射治疗***
US11504553B2 (en) Radiation therapy device and system
WO2015176265A1 (zh) 多源聚焦治疗和适形调强治疗放疗设备及其准直器组合
WO2016030772A1 (en) Radiotherapy apparatus with on-board stereotactic imaging system
WO2020038225A1 (zh) 准直体、放疗设备及其驱动控制方法
CN113082558B (zh) 一种载源体、射源装置及放射治疗***
WO2019196137A1 (zh) 放射治疗头及放射治疗装置
WO2020038220A1 (zh) 放射治疗设备
CN208493021U (zh) 一种放疗设备
US6968035B2 (en) System to present focused radiation treatment area
CN112439131A (zh) X-射线笔形束扫描调强治疗直线加速器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19738676

Country of ref document: EP

Kind code of ref document: A1