WO2019136579A1 - 微型光谱检测设备 - Google Patents

微型光谱检测设备 Download PDF

Info

Publication number
WO2019136579A1
WO2019136579A1 PCT/CN2018/071828 CN2018071828W WO2019136579A1 WO 2019136579 A1 WO2019136579 A1 WO 2019136579A1 CN 2018071828 W CN2018071828 W CN 2018071828W WO 2019136579 A1 WO2019136579 A1 WO 2019136579A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
lens
optical element
optical
grating
Prior art date
Application number
PCT/CN2018/071828
Other languages
English (en)
French (fr)
Inventor
牟涛涛
骆磊
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Priority to CN201880000058.2A priority Critical patent/CN108235730A/zh
Priority to PCT/CN2018/071828 priority patent/WO2019136579A1/zh
Publication of WO2019136579A1 publication Critical patent/WO2019136579A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction

Definitions

  • the present application relates to the field of spectrum detection technologies, and in particular, to a miniature spectrum detecting device.
  • Existing spectral detection devices generally employ a reflective structure or a transmissive structure.
  • the problems of the reflective spectrometer include: because the optical path is mostly crossed or M-shaped structure, the volume cannot be further reduced; the focal length of the mirror is inconvenient to adjust, the debugging efficiency is low; the optical path intersects or has a shared space, which is not conducive to modular design; There are fewer variables to optimize, it is not easy to improve the resolution and shorten the focal length of the lens; the adjustment mechanism is complicated, and it is inconvenient to further reduce the volume and weight of the spectrometer.
  • the focal length of the lens group/lens used is smaller than the length of the entire lens barrel, the following problems are caused: the overall diameter of the device is large, the focal length is long, the volume is large, the weight is heavy, and it is not convenient to further shrink.
  • the volume of the spectrometer since the focal length of the lens group/lens used is smaller than the length of the entire lens barrel, the following problems are caused: the overall diameter of the device is large, the focal length is long, the volume is large, the weight is heavy, and it is not convenient to further shrink.
  • the volume of the spectrometer since the focal length of the lens group/lens used is smaller than the length of the entire lens barrel, the following problems are caused: the overall diameter of the device is large, the focal length is long, the volume is large, the weight is heavy, and it is not convenient to further shrink. The volume of the spectrometer.
  • the present invention provides a micro-spectral detecting device, comprising: a laser, an optical probe, a grating, a first module, and a second module; wherein the first module is located at the optical probe and the Between the gratings, and including a slit and a first optical element, the first optical element comprising a collimating lens, a lens or a mirror; the second module comprising a detector and a second optical element, the second
  • the optical component includes a focusing lens, a lens or a lens group; the grating is located between the first module and the second module; and the length of the first module and/or the second module does not exceed 30 mm .
  • the first module may include a filter, the filter being located between the slit and the first optical element.
  • the spectral detection device may comprise a filter, the filter being located between the first module and the grating.
  • the first module and/or the second module have a length of no more than 25 mm.
  • the first optical element is a cell phone lens or a miniature security lens without a detector and having a medium and long focal length.
  • the second module is a cell phone lens or a miniature security lens with a detector and a medium length focal length.
  • the optical probe includes a third optical element, a dichroic color patch, and a fourth optical element, the dichroic color patch being located between the third optical element and the fourth optical element;
  • the third optical element comprises a collimating lens, a lens or a mirror set, the fourth optical element comprising a focusing lens, a lens or a mirror set.
  • the present invention preferably employs a smaller lens module, the volume of the spectrum detecting device can be effectively reduced, making it easy to use and carry.
  • FIG. 1 shows a schematic structural view of a spectrum detecting apparatus according to an embodiment of the present invention.
  • the reference numerals and corresponding technical features in the figure are as follows: 100 - spectrum detection equipment, 10 - sample to be tested, 11 - laser, 12 - optical probe, 121 - third optical element, 122 - dichroic color, 123 - fourth optical component, 13 - first module, 131 - slit, 132 - first optical component, 14 - second module, 141 - second optical component, 142 - detector, 15-grating, 16 - Filter.
  • the present application can be applied to scenes requiring spectral detection, including but not limited to Raman spectroscopy, infrared spectroscopy, fluorescence spectroscopy, sample component analysis, and the like.
  • the present invention provides a miniature spectrum detecting apparatus 100 including a laser 11, an optical probe 12, a grating 15, a first module 13, and a second module 14.
  • the first module 13 can include a slit 131 and a first optical element 132.
  • the slit 131 is for receiving a Raman signal from the optical probe 12 and spatially filtering the Raman signal to obtain a light beam of a specified width.
  • the first optical element 132 is for collimating a Raman signal that is diverging through the slit 131, and the first optical element 132 can include a collimating lens, a lens, or a mirror.
  • the first module 13 optionally includes a filter 16 and the filter 16 can be positioned between the slit 131 and the first optical element 132.
  • the length of the first module 13 can be set to no more than 25 mm. It will be understood by those skilled in the art that the length of the first module 13 can also be set to other sizes, such as values between 20 mm, 30 mm, or 20 mm-30 mm, and the like.
  • a suitable first optical element 132 can be selected according to the length of the first module 13.
  • a mobile phone lens or a miniature security lens without a detector for example, CCD or CMOS
  • a medium-long focal length can be directly used as the first optical element in the first module 13. Since the lens of the mobile phone has its own focusing function, it can further reduce the complexity of the adjustment of the spectrum detecting equipment.
  • the lens module of the mobile phone can optimize the aberration of the spectral system and improve the speed and consistency of the assembly.
  • the first module can also include other suitable optical components (including lenses and/or mirrors, etc.) to achieve more ideal targets such as collimation, focusing or filtering. .
  • the grating 15 is located between the first module 13 and the second module 14 for splitting the parallel beams from the first module 13. Light of different wavelengths have different diffraction angles. As shown in FIG. 1, a filter 16 may also be preferably disposed between the first module 13 and the grating 15.
  • the second module 14 can include a second optical element 141 and a detector 142.
  • the second optical element 141 focuses the beam split by the grating 15 onto the surface of the detector 142, and the second optical element 141 may comprise a focusing lens, a lens or a mirror set.
  • a detector 142 is used to convert the received optical signal into an electrical signal.
  • the detector 142 may be specifically a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • the second optical element 141 can also adopt a collimating lens, a lens or a lens group, and the collimating lens, the lens or the lens group and the first optical element 132 in the first module 13 , for example
  • the collimating lens, lens or mirror set is symmetrically arranged with respect to the grating 15.
  • the length of the second module 14 can be set to no more than 25 mm. It will be understood by those skilled in the art that the length of the second module 14 can also be set to other sizes, such as values between 20 mm, 30 mm, or 20 mm-30 mm, and the like.
  • a suitable second optical element 141 can be selected according to the length of the second module 14.
  • a mobile phone lens or a miniature security lens with a detector such as CCD or CMOS
  • a medium-long focal length can be directly used as the second module 14.
  • the second module can also include other suitable optical components (including lenses and/or mirrors, etc.) to achieve more ideal collimation, focusing, filtering, or splitting. The goal.
  • the optical probe 12 can employ a structure that is common in the art.
  • the optical probe 12 can include a third optical element 121, a dichroic color patch 122, and a fourth optical element 123.
  • the optical probe 12 may also preferably include a filter 16 that may be disposed between the dichroic color patch 122 and the fourth optical element 123 and that filters out the laser reflected light.
  • spectral analysis is performed using the microspectral detection device described above.
  • the parallel light emitted by the laser 11 enters the optical probe 12 and is irradiated to the dichroic sheet 122.
  • the laser light is reflected by the dichroic sheet 122 to the third optical element 121 in the optical probe 12, and is focused by the third optical element 121 onto the sample 10 to be tested.
  • the third optical element 121 can include, for example, a collimating lens, a lens, or a mirror.
  • the Raman signal is generated after the sample 10 is irradiated with laser light, and the Raman signal is collimated by the third optical element 121 and then passed through the dichroic sheet 122. Preferably, only light having a wavelength greater than the laser wavelength is permeable to the third optical element 121.
  • the optical probe 12 preferably includes a filter 16, the Raman signal passing through the dichroic color patch 122 can pass through the filter 16. It will be understood by those skilled in the art that the filter 16 can be disposed at one of a plurality of locations within the spectral sensing device, such as the position shown by the dashed line in Figure 1, to filter out the laser reflected light.
  • the Raman signal transmitted through the dichroic sheet 122 (and the filter 16) is focused by the fourth optical element 123, exits the optical probe 12, and spatially filtered via the slit 131 to enter the first module 13.
  • the fourth optical element 123 can include a focusing lens, a lens, or a mirror set.
  • the Raman signal is collimated by the first optical element 132 and then directed toward the grating 15.
  • the second optical element 141 can include a focusing lens, a lens, or a mirror set.
  • the detector 142 can be coupled to a computing device or processing module for corresponding processing of signals received by the detector.
  • the exemplary embodiments mentioned in the present invention describe some methods or systems based on a series of steps or devices.
  • the present invention is not limited to the order of the above steps, that is, the steps may be performed in the order mentioned in the embodiment, or may be different from the order in the embodiment, or several steps may be simultaneously performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种微型光谱检测设备,包括:激光器、光学探头、光栅、第一模组以及第二模组;其中,所述第一模组位于所述光学探头与所述光栅之间,并且包括狭缝以及第一光学元件,所述第一光学元件包括准直透镜、镜头或镜组;所述第二模组包括探测器以及第二光学元件,所述第二光学元件包括聚焦透镜、镜头或镜组;所述光栅位于第一模组与所述第二模组之间;所述第一模组和/或所述第二模组的长度不超过30mm。本发明可有效减小现有光谱检测设备的体积,使其便于使用和携带。

Description

微型光谱检测设备 技术领域
本申请涉及光谱检测技术领域,尤其涉及一种微型光谱检测设备。
背景技术
现有的光谱检测设备一般采用反射结构或透射结构。反射式光谱仪存在的问题包括:由于光路多为交叉或M型结构,因此体积无法进一步缩小;反射镜的焦距不便调节,调试效率较低;光路交叉或有共用空间,不利于模块化设计;可优化的变量较少,不易提高分辨率和缩短镜片焦距;调整机构复杂,不便进一步缩小光谱仪的体积和重量。
对于透射式光谱仪来说,由于所采用的透镜组/镜头的焦距小于整个镜头桶的长度,因此导致下述问题:设备整体直径大、焦距长、体积大、重量较重,并且不便于进一步缩小光谱仪的体积。
发明内容
为了解决上述技术问题,本发明提出一种微型光谱检测设备,包括:激光器、光学探头、光栅、第一模组以及第二模组;其中,所述第一模组位于所述光学探头与所述光栅之间,并且包括狭缝以及第一光学元件,所述第一光学元件包括准直透镜、镜头或镜组;所述第二 模组包括探测器以及第二光学元件,所述第二光学元件包括聚焦透镜、镜头或镜组;所述光栅位于第一模组与所述第二模组之间;以及所述第一模组和/或所述第二模组的长度不超过30mm。
根据本发明一实施例,所述第一模组可包括滤光片,所述滤光片位于所述狭缝与所述第一光学元件之间。
根据本发明又一实施例,所述光谱检测设备可包括滤光片,所述滤光片位于所述第一模组与所述光栅之间。
在一个优选的实施例中,所述第一模组和/或所述第二模组的长度不超过25mm。
根据本发明一方面,所述第一光学元件为不带有探测器且具有中长焦距的手机镜头或微型安防镜头。
根据本发明另一方面,所述第二模组为带有探测器且具有中长焦距的手机镜头或微型安防镜头。
在一个实施例中,所述光学探头包括第三光学元件、二向色片以及第四光学元件,所述二向色片位于所述第三光学元件与所述第四光学元件之间;所述第三光学元件包括准直透镜、镜头或镜组,所述第四光学元件包括聚焦透镜、镜头或镜组。
由于本发明优选地采用体积较小的镜头模组,因此能够有效地缩小光谱检测设备的体积,使其便于使用和携带。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请 的一部分。本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。其中:
图1示出根据本发明一个实施例的光谱检测设备的结构示意图。
图中的附图标记及对应的技术特征分别如下:100—光谱检测设备,10—被测样品,11—激光器,12—光学探头,121—第三光学元件,122—二向色片,123—第四光学元件,13—第一模组,131—狭缝,132—第一光学元件,14—第二模组,141—第二光学元件,142—探测器,15—光栅,16—滤光片。
具体实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应当理解的是,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。
需要说明的是,在本说明书中,诸如第一和第二之类的术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅 包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
本申请可应用于需要进行光谱检测的场景,包括但不限于拉曼光谱检测、红外光谱检测、荧光光谱检测、样品成分分析等。
如图1所示,本发明提出一种微型光谱检测设备100,包括激光器11、光学探头12、光栅15、第一模组13以及第二模组14。其中,第一模组13可包括狭缝131以及第一光学元件132。狭缝131用于接收来自光学探头12的拉曼信号,并对该拉曼信号进行空间滤波,以得到指定宽度的光束。第一光学元件132用于准直通过狭缝131发散的拉曼信号,该第一光学元件132可包括准直透镜、镜头或镜组。第一模组13可选地包括滤光片16,并且滤光片16可位于狭缝131与第一光学元件132之间。
在一个实施例中,为了进一步缩小光谱检测设备100的体积,可将第一模组13的长度设置为不超过25mm。本领域技术人员可以理解的是,也可以将第一模组13的长度设置为其他尺寸,例如20mm、30mm或20mm-30mm之间的数值等。可根据第一模组13的长度选择合适的第一光学元件132。
更为优选地,可选用不带探测器(例如CCD或CMOS)且具有中长焦距的手机镜头或者微型安防镜头直接作为第一模组13中的第一光学元件。由于手机镜头自带调焦功能,因此可以进一步降低光谱 检测设备的装调复杂度。另外,利用手机镜头模组还可优化光谱***的像差,提高装配的速度和一致性。
本领域技术人员可以理解的是,第一模组还可以包括其他适当的光学元器件(包括透镜和/或反射镜等),以实现更为理想的准直、聚焦或滤光等相应的目标。
光栅15位于第一模组13与第二模组14之间,用于对来自第一模组13的平行光束进行分光。不同波长的光线具有不同的衍射角。如图1所示,也可优选地在第一模组13与光栅15之间设置滤光片16。
第二模组14可包括第二光学元件141以及探测器142。第二光学元件141将经由光栅15分光的光束聚焦到探测器142的表面,并且该第二光学元件141可包括聚焦透镜、镜头或镜组。探测器142用于将所接收的光信号转换成电信号。在一个实施例中,探测器142可具体是电荷耦合元件CCD(Charge Coupled Device)或互补金属氧化物半导体CMOS(Complementary Metal Oxide Semiconductor)。
本领域技术人员可以理解的是,第二光学元件141也可以采用准直透镜、镜头或镜组,该准直透镜、镜头或镜组与第一模组13中的第一光学元件132,例如准直透镜、镜头或镜组,相对于光栅15而言是对称设置的。
在一个实施例中,为了进一步缩小光谱检测设备的体积,可将第二模组14的长度设置为不超过25mm。本领域技术人员可以理解的是,也可以将第二模组14的长度设置为其他尺寸,例如20mm、30mm 或20mm-30mm之间的数值等。可根据第二模组14的长度选择合适的第二光学元件141。
更为优选地,可选用带有探测器(例如CCD或CMOS)且具有中长焦距的手机镜头或者微型安防镜头直接作为第二模组14。
本领域技术人员可以理解的是,第二模组还可以包括其他适当的光学元器件(包括透镜和/或反射镜等),以实现更为理想的准直、聚焦、滤光或分光等相应的目标。
光学探头12可采用所属技术领域中常见的结构。在一个实施例中,光学探头12可包括第三光学元件121、二向色片122以及第四光学元件123。光学探头12还可优选地包括滤光片16,滤光片16可被设置在二向色片122与第四光学元件123之间,并且用以滤除激光反射光。
在一个优选的实施例中,利用上述微型光谱检测设备进行光谱分析。如图1所示,由激光器11发射的平行光进入光学探头12并照射到二向色片122。激光被二向色片122反射到光学探头12中的第三光学元件121,并被第三光学元件121聚焦到被测样品10上。第三光学元件121可包括例如准直透镜、镜头或镜组。
被测样品10被激光照射后可产生拉曼信号,拉曼信号经第三光学元件121准直后通过二向色片122。优选地,只有波长大于激光波长的光线可透过第三光学元件121。当光学探头12优选地包括滤光片16时,通过二向色片122的拉曼信号可通过该滤光片16。本领域技术人员可以理解的是,滤光片16可被设置在光谱检测设备内多个 位置中的一个,例如图1中虚线所示的位置,以便滤除激光反射光。
透过二向色片122(和滤光片16)的拉曼信号经由第四光学元件123聚焦之后离开光学探头12,并且经由狭缝131进行空间滤波之后进入第一模组13。第四光学元件123可包括聚焦透镜、镜头或镜组。上述拉曼信号经第一光学元件132准直之后射向光栅15。
经由光栅15分光之后的拉曼信号进入第二模组14,经第二光学元件141聚焦之后被探测器142(例如面阵探测器)接收。第二光学元件141可包括聚焦透镜、镜头或镜组。探测器142可与计算设备或处理模块连接,以便对探测器所接收的信号进行相应的处理。
需要说明的是,本发明中提及的示例性实施例基于一系列的步骤或者装置描述一些方法或***。但是,本发明不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
以上所述,仅为本发明的具体实施方式。所属技术领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上面描述的***、模块和单元的具体工作过程可以参考前述方法实施例中的对应过程,在此不再赘述。应当理解的是,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。

Claims (7)

  1. 一种微型光谱检测设备,包括:激光器、光学探头、光栅、第一模组以及第二模组;其中,
    所述第一模组位于所述光学探头与所述光栅之间,并且包括狭缝以及第一光学元件,所述第一光学元件包括准直透镜、镜头或镜组;
    所述第二模组包括探测器以及第二光学元件,所述第二光学元件包括聚焦透镜、镜头或镜组;
    所述光栅位于第一模组与所述第二模组之间;以及
    所述第一模组和/或所述第二模组的长度不超过30mm。
  2. 如权利要求1所述的设备,其特征在于,所述第一模组还包括滤光片,所述滤光片位于所述狭缝与所述第一光学元件之间。
  3. 如权利要求1所述的设备,其特征在于,还包括滤光片,所述滤光片位于所述第一模组与所述光栅之间。
  4. 如权利要求1-3中任一项所述的设备,其特征在于,所述第一模组和/或所述第二模组的长度不超过25mm。
  5. 如权利要求1-4中任一项所述的设备,其特征在于,所述第一光学元件为不带有探测器且具有中长焦距的手机镜头或者微型安防镜头。
  6. 如权利要求1-5中所述的设备,其特征在于,所述第二模组为带有探测器且具有中长焦距的手机镜头或者微型安防镜头。
  7. 如权利要求1所述的设备,其特征在于,所述光学探头包括第三光学元件、二向色片以及第四光学元件,所述二向色片位于所述 第三光学元件与所述第四光学元件之间,所述第三光学元件包括准直透镜、镜头或镜组,所述第四光学元件包括聚焦透镜、镜头或镜组。
PCT/CN2018/071828 2018-01-09 2018-01-09 微型光谱检测设备 WO2019136579A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000058.2A CN108235730A (zh) 2018-01-09 2018-01-09 微型光谱检测设备
PCT/CN2018/071828 WO2019136579A1 (zh) 2018-01-09 2018-01-09 微型光谱检测设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071828 WO2019136579A1 (zh) 2018-01-09 2018-01-09 微型光谱检测设备

Publications (1)

Publication Number Publication Date
WO2019136579A1 true WO2019136579A1 (zh) 2019-07-18

Family

ID=62657997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071828 WO2019136579A1 (zh) 2018-01-09 2018-01-09 微型光谱检测设备

Country Status (2)

Country Link
CN (1) CN108235730A (zh)
WO (1) WO2019136579A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055925A2 (en) * 1999-05-28 2000-11-29 Yokogawa Electric Corporation Biochip reader and electrophoresis system
US20100027001A1 (en) * 2008-08-04 2010-02-04 Ondax, Inc. Method and apparatus using volume holographic wavelength blockers
CN206656801U (zh) * 2017-03-09 2017-11-21 上海星必光电科技有限公司 紧凑型ccd阵列光谱仪以及拉曼光谱检测***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344432A (zh) * 2007-12-18 2009-01-14 上海海事大学 手机内置式微型光谱仪
CN205103147U (zh) * 2015-11-11 2016-03-23 北京微乎科技有限公司 一种智能手机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055925A2 (en) * 1999-05-28 2000-11-29 Yokogawa Electric Corporation Biochip reader and electrophoresis system
US20100027001A1 (en) * 2008-08-04 2010-02-04 Ondax, Inc. Method and apparatus using volume holographic wavelength blockers
CN206656801U (zh) * 2017-03-09 2017-11-21 上海星必光电科技有限公司 紧凑型ccd阵列光谱仪以及拉曼光谱检测***

Also Published As

Publication number Publication date
CN108235730A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
US7548313B2 (en) Compact and rugged imaging Raman spectrograph
EP0746746B1 (en) Image multispectral sensing
JP2007535680A (ja) ラマン分光法を実施する方法及び装置
US7292337B2 (en) Optical processor using detecting assembly and method using same
CN106706589B (zh) 一种用于细胞分析仪的荧光检测***
WO2008024344A2 (en) Compact raman or fluorescence excitation system
CN107884387A (zh) 光谱仪及光谱检测***
US20100328661A1 (en) Apparatus and method for laser induced breakdown spectroscopy using a multiband sensor
US20180292263A1 (en) Recovering spectral shape from spatial output
US7777878B2 (en) Application of digital light processor in scanning spectrometer and imaging ellipsometer and the like systems
CN210603594U (zh) 一种光谱仪
WO2019136579A1 (zh) 微型光谱检测设备
US4289401A (en) Optical system for spectral devices
CN108007570A (zh) 光谱仪及光谱检测***
AU2010214787A1 (en) Quantum Efficiency Enhancement Device for Array Detectors
CN212059104U (zh) 一种宽光谱高灵敏度拉曼光谱仪
CN207423365U (zh) 光谱仪及光谱检测***
CN207423809U (zh) 光谱仪及光谱检测***
JPWO2019038823A1 (ja) 遠赤外分光装置、および遠赤外分光方法
US11092727B2 (en) High-resolution single photodiode spectrometer using a narrowband optical filter
CN212059105U (zh) 一种高分辨率高灵敏度拉曼光谱仪
RU2072480C1 (ru) Устройство контроля пламени
KR102491141B1 (ko) 어퍼처리스 분광기
JPH02304332A (ja) 粒子計測装置
WO2019119274A1 (zh) 一种光谱仪及光谱检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/11/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18899271

Country of ref document: EP

Kind code of ref document: A1