WO2019131600A1 - Method for producing tetraalkoxysilane using calcium oxide - Google Patents

Method for producing tetraalkoxysilane using calcium oxide Download PDF

Info

Publication number
WO2019131600A1
WO2019131600A1 PCT/JP2018/047501 JP2018047501W WO2019131600A1 WO 2019131600 A1 WO2019131600 A1 WO 2019131600A1 JP 2018047501 W JP2018047501 W JP 2018047501W WO 2019131600 A1 WO2019131600 A1 WO 2019131600A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetraalkoxysilane
calcium oxide
reaction
silicon
alcohol
Prior art date
Application number
PCT/JP2018/047501
Other languages
French (fr)
Japanese (ja)
Inventor
訓久 深谷
星集 崔
準哲 崔
堀越 俊雄
▲祥▼ 片岡
テュイ ゲェン
佐藤 一彦
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019561700A priority Critical patent/JP6934683B2/en
Publication of WO2019131600A1 publication Critical patent/WO2019131600A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/04Esters of silicic acids

Definitions

  • the present invention relates to a highly efficient method for producing tetraalkoxysilane, and more particularly to a method for producing tetraalkoxysilane using calcium oxide.
  • Tetraalkoxysilane is used as a raw material for producing various silane compounds, organic silicone polymers, various silylating agents, colloidal silica, ceramics and the like.
  • a method for industrially producing alkoxysilanes conventionally known, for example, natural silicon dioxide is used as a starting material, mixed with carbon and reduced under high temperature to obtain metal silicon, which is converted to chlorine and the like.
  • silicon dioxide is used as a starting material, mixed with carbon and reduced under high temperature to obtain metal silicon, which is converted to chlorine and the like.
  • silicon tetrachloride As a method of reacting silicon tetrachloride as a raw material, which is obtained by reaction, with an alcohol (see Patent Document 1).
  • a production method in which metal silicon and alcohol are directly reacted is known (see Patent Document 2).
  • these methods all need to go through metal silicon production processes that require high temperatures, and the problem is that energy efficiency is poor.
  • tetramethoxysilane can be produced from methanol and silicon oxide as raw materials, react methanol with silicon oxide in the presence of carbon dioxide, and remove by-produced water using molecular sieves.
  • Has developed a method for obtaining tetramethoxysilane in high yield see Patent Document 5).
  • An object of the present invention is to provide a method capable of producing tetraalkoxysilane with energy saving and high yield.
  • the present inventors reacted tetrachlorosilane with tetraalkoxysilane by reacting alcohol with silicon oxide to form tetraalkoxysilane in the presence of calcium oxide.
  • the inventors have found that they can be produced in high yield and complete the present invention.
  • the present invention is as follows.
  • a method for producing tetraalkoxysilane comprising a reaction step of reacting alcohol and silicon oxide to produce tetraalkoxysilane, The method for producing tetraalkoxysilane, wherein the reaction step is carried out in the presence of calcium oxide.
  • ⁇ 3> The method according to ⁇ 1> or ⁇ 2>, wherein the amount of calcium oxide used in the reaction step is an amount such that the amount of substance of calcium atoms / mass of silicon atoms of silicon oxide is 1 to 50.
  • the amount of calcium oxide used in the reaction step is an amount such that the amount of substance of calcium atoms / mass of silicon atoms of silicon oxide is 1 to 50.
  • tetraalkoxysilane can be produced in high yield.
  • the method for producing tetraalkoxysilane which is one embodiment of the present invention (hereinafter sometimes abbreviated as “production method of the present invention”) is a reaction process (hereinafter referred to as “reaction of alcohol and silicon oxide to produce tetraalkoxysilane”) , which may be abbreviated as “reaction step”, characterized in that the reaction step is carried out in the presence of calcium oxide.
  • reaction step characterized in that the reaction step is carried out in the presence of calcium oxide.
  • the present inventors have found that tetraalkoxysilane can be produced in high yield by performing a reaction of alcohol and silicon oxide to form tetraalkoxysilane in the presence of calcium oxide. .
  • Calcium oxide is considered to play a role as a dehydrating agent for removing water by-produced by the reaction of alcohol and silicon oxide, and the reverse reaction is suppressed by removing water, so high yield of tetraalkoxysilane is obtained. It is believed that it can be manufactured at a rate.
  • calcium oxide used in the reaction reacts with water to be converted to calcium hydroxide, but calcium hydroxide can be easily regenerated to calcium oxide, so it can be reused and industrially It is very suitable for Hereinafter, the conditions of “alcohol”, “silicon oxide”, “reaction step” and the like will be described in detail.
  • the type of alcohol used in the reaction step is not particularly limited, and can be appropriately selected according to the tetraalkoxysilane which is the production object.
  • tetramethoxysilane can be produced using methanol as alcohol and tetraethoxysilane using ethanol.
  • the alcohol may be either an aliphatic alcohol or an aromatic alcohol, and the hydrocarbon group in the alcohol may have a branched structure, a cyclic structure, a carbon-carbon unsaturated bond, and the like.
  • the number of carbon atoms of the alcohol is usually 1 or more, preferably 2 or more, preferably 15 or less, more preferably 10 or less, still more preferably 8 or less, and in the case of an aromatic alcohol, the number of carbon atoms is usually 6 It is above.
  • Specific alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, benzyl alcohol, phenol and the like.
  • Be The amount of alcohol used is usually 1 or more, preferably 5 or more, more preferably 10 or more, and usually 10000 or less, preferably 5000 or less, more preferably 1 to 5 times the amount of the silicon oxide. Is less than 3000 times.
  • Silicon oxide used in the reaction step means a compound containing silicon atoms (Si) and oxygen atoms (O) as main constituent elements, and is silicon monoxide (SiO), silicon dioxide (SiO 2 ), zeolite or the like. It may be a composite oxide with another metal. Specific examples of silicon oxides include natural minerals such as silica, silica sand, diatomaceous earth, quartz, calcined ash of silicon-containing plants, volcanic ash, silicates, silica gel derived from silica sol, fumed silica, silica alumina, zeolite Etc.
  • the reaction step is characterized in that it is carried out in the presence of calcium oxide, but the amount of calcium oxide used in the reaction step is the amount of calcium atoms / mass of calcium atoms / mass of silicon atoms of silicon oxides (Ca / Si Is usually 1 to 50, preferably 2 or more, more preferably 3 or more, preferably 30 or less, more preferably 10 or less.
  • a tetraalkoxysilane can be manufactured with a higher yield as it is in the said range.
  • the reaction step is preferably carried out in the presence of an alkali metal compound and / or an alkaline earth metal compound other than calcium oxide.
  • an alkali metal compound or an alkaline earth metal compound other than calcium oxide the cleavage of the silicon-oxygen bond of silicon oxide is promoted, and a tetraalkoxysilane can be produced in a higher yield.
  • alkali metals and alkaline earth metals in alkali metal compounds other than alkali metal compounds and calcium oxide include lithium (Li), sodium (Na), magnesium (Mg), potassium (K), cesium (Cs), etc. It can be mentioned.
  • hydroxides, halides, oxides, carbonates, hydrogencarbonates, alkoxides, silicates, aluminates, phosphates, organic acid salts, sulfates, nitrates and the like can be mentioned.
  • hydroxides, halides, carbonates and hydrogencarbonates are preferable, and alkali metal hydroxides, alkali metal halides, alkali metal carbonates and alkali metal hydrogencarbonates are more preferable.
  • alkali metal compounds and alkaline earth metal compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, sodium fluoride and potassium fluoride And cesium fluoride.
  • the alkali metal compound and the alkaline earth metal compound other than calcium oxide may be used alone or in combination of two or more.
  • the total amount of alkali metal compounds and alkaline earth metal compounds other than calcium oxide is usually 0 mol or more, preferably 0.001 mol or more, and usually 20 mol or less, preferably 1 mol per 1 mol of silicon oxide (in the case of silicon dioxide) Is less than 10 mol.
  • a tetraalkoxysilane can be manufactured with a higher yield as it is in the said range.
  • the reaction conditions in the reaction step are not particularly limited, and can be appropriately selected depending on the purpose.
  • the reaction temperature in the reaction step is usually 100 ° C. or more, preferably 130 ° C. or more, more preferably 150 ° C. or more, and usually 300 ° C. or less, preferably 280 ° C. or less, more preferably 250 ° C. or less.
  • the reaction pressure in the reaction step is usually 0.1 MPa or more, preferably 0.3 MPa or more, more preferably 0.5 MPa or more, and usually 20 MPa or less, preferably 10 MPa or less, more preferably 8 MPa or less.
  • reaction time of the reaction step is usually 1 minute or more, preferably 5 minutes or more, more preferably 19 minutes or more, and usually 10 hours or less, preferably 5 hours or less, more preferably 1 hour It is below.
  • reaction time of the reaction step is usually 10 minutes or more, preferably 30 minutes or more, more preferably 60 minutes or more, and usually 24 hours or less, preferably 8 hours or less, more Preferably it is 6 hours or less.
  • a tetraalkoxysilane can be manufactured with a higher yield as it is in the said range.
  • the reactor for causing alcohol and silicon oxide to react in the reaction step, the operation procedure, the reaction conditions, and the like are not particularly limited, and can be appropriately selected depending on the purpose.
  • the reactor includes a batch reactor (see FIG. 1A), a continuous tubular reactor (see FIGS. 1B and 1C), and the like.
  • the batch reactor is preferably a pressure resistant reactor such as an autoclave.
  • the continuous tubular reactor is preferably a fluidized bed reactor or a fixed bed reactor.
  • the operation procedure for example, when using a batch reactor, alcohol, silicon oxide, calcium oxide, an alkali metal compound, etc. are charged into the reactor, the inside of the reaction vessel is scavenged with gas to be used as a gas phase, and then the gas is filled.
  • the filling pressure of the gas at 25 ° C. is preferably 0.1 to 10 MPa. Within the above range, tetraalkoxysilane can be produced with higher yield.
  • a carrier gas may be used to introduce silicon oxide, calcium oxide, an alkali metal compound or the like.
  • an inert gas such as nitrogen gas or argon gas can be used.
  • the carrier gas supply rate can be appropriately selected according to the size of the reactor, reaction conditions, and the like.
  • a continuous tubular reactor for example, a mixture containing silicon oxide, calcium oxide, an alkali metal compound and the like is charged at a predetermined position of the reactor, and the reactor is heated to the reaction temperature, and then alcohol is continuously applied. Method (see FIG. 1C).
  • a carrier gas may or may not be used.
  • an inert gas such as nitrogen gas or argon gas can be used.
  • the supply rate of alcohol and the like can be appropriately selected according to the size of the reactor, reaction conditions, and the like.
  • the pressure in the tubular reactor is 0.1 to 1.0 MPa (absolute pressure), and the raw material alcohol is sent at a flow rate of 0.01 to 1.000 mL / min for 10 minutes to 24 hours.
  • the continuous tube reactor may be produced by itself or a commercially available product may be used. Examples of commercially available products include a flow reactor (FFX-1000G) manufactured by Tokyo Rika Kikai Co., Ltd. and KeyChem (registered trademark) -Integral manufactured by YMC.
  • Example 1 Silicon dioxide (Wako Pure Chemical Industries Wakogel 60N 63 to 212 ⁇ m) 4.5 mmol, potassium hydroxide 0.45 mmol, ethanol 24 g, calcium oxide in a 30 mL volume made of SUS autoclave (made by pressure resistant glass industry) containing a mechanical stirrer (Wako Pure Chemical Industries, Ltd.) 18 mmol was added and sealed. Thereafter, while stirring the inside of the autoclave at 1200 rpm, the temperature was raised to a reaction temperature of 180 ° C., and the reaction was allowed to proceed for 30 minutes. After cooling, the reaction mixture was analyzed by gas chromatography (Shimadzu GC-2014 ATF / SPL). The yield of tetraethoxysilane based on silicon dioxide was 72%. The results are shown in Table 1.
  • Example 2 Production of tetraethoxysilane was carried out in the same manner as in Example 1 except that calcium oxide was changed to 13.5 mmol with respect to the reaction conditions of Example 1. The yield of tetraethoxysilane based on silicon dioxide was 71%. The results are shown in Table 1.
  • Example 3 Production of tetraethoxysilane was performed in the same manner as in Example 1 except that calcium chloride was changed to 9.0 mmol with respect to the reaction conditions of Example 1. The yield of tetraethoxysilane based on silicon dioxide was 52%. The results are shown in Table 1.
  • Example 4 Production of tetraethoxysilane was carried out in the same manner as in Example 1 except that calcium chloride was changed to 4.5 mmol with respect to the reaction conditions of Example 1. The yield of tetraethoxysilane based on silicon dioxide was 33%. The results are shown in Table 1.
  • Example 5 Production of tetraethoxysilane is carried out in the same manner as in Example 1 except that for the reaction conditions in Example 1, 9.0 mmol of silicon dioxide, 45 mmol of calcium oxide, the reaction temperature is 195 ° C., and the time is 20 minutes. went. The yield of tetraethoxysilane based on silicon dioxide was 62%. The results are shown in Table 1.
  • Example 6 Example 1 was repeated except that the alcohol was changed from ethanol to 24 g of methanol, 9.0 mmol of silicon dioxide, 27 mmol of calcium oxide, and the reaction temperature was 220 ° C., and the reaction time was 45 minutes. The same procedure was followed to produce tetramethoxysilane. The yield of tetramethoxysilane based on silicon dioxide was 43%. The results are shown in Table 1.
  • Example 7 Silicon dioxide (Wako Pure Chemical Industries Wakogel 60N 63-212 ⁇ m) 1.1 mmol is added to and mixed with a solution of 0.11 mmol of potassium hydroxide in 5 mL of ethanol, and then ethanol is distilled off under reduced pressure to obtain silicon dioxide A mixture of potassium hydroxide and potassium hydroxide was prepared. To this mixture, 4.4 mmol of calcium oxide (Wako Pure Chemical Industries, Ltd. special grade) was further added, and this mixture was filled in a tube made of SUS316 with an inner diameter of 4.6 mm.
  • Example 8 For the reaction conditions of Example 7, the amount of calcium oxide used was 5.5 mmol, and tetramethoxysilane was produced by the same operation as in Example 7 except that the alcohol to be fed was methanol. The yield of tetramethoxysilane based on silicon dioxide was 54%. The results are shown in Table 1.
  • tetraalkoxysilane used as a raw material for producing various silane compounds, organic silicone polymers, various silylating agents, colloidal silica, ceramics and the like can be produced with high efficiency.
  • 101a, 101b, 101c Device which can be used in the production method of the present invention 102 alcohol 103 mixture of silicon oxide, calcium oxide, alkali metal compound etc. 104 mixture of alcohol, silicon oxide, calcium oxide, alkali metal compound etc. 105 tetraalkoxy Silane

Abstract

The purpose of the present invention is to provide a method whereby tetraalkoxysilane can be produced in an energy-efficient manner and at high yield. Through the present invention, tetraalkoxysilane can be produced at high yield by performing, in the presence of calcium oxide, a reaction for generating tetraalkoxysilane by reacting an alcohol and silicon oxide.

Description

酸化カルシウムを用いるテトラアルコキシシランの製造方法Method for producing tetraalkoxysilane using calcium oxide
 本発明は、テトラアルコキシシランの高効率な製造方法に関し、より詳しくは酸化カルシウムを用いるテトラアルコキシシランの製造方法に関する。 The present invention relates to a highly efficient method for producing tetraalkoxysilane, and more particularly to a method for producing tetraalkoxysilane using calcium oxide.
 テトラアルコキシシランは、各種シラン化合物、有機シリコーンポリマー、各種シリル化剤、コロイダルシリカおよびセラミックス等を製造する為の原料として用いられている。
 従来から知られているアルコキシシラン類の工業的製造方法としては、例えば、天然の二酸化ケイ素を出発原料とし、炭素と混合して高温下で還元することによって金属ケイ素を得て、これを塩素と反応させて得られる、四塩化ケイ素を原料としてアルコールと反応させる方法が知られている(特許文献1参照)。また金属ケイ素とアルコールを直接反応させる製造方法も知られている(特許文献2参照)。
 しかし、これらの方法は、いずれも高温を要する金属ケイ素製造過程を経由する必要があり、エネルギー効率が悪いことが問題となっている。
 他方、シリカから直接アルコキシシランを製造する方法として、アルカリ金属元素あるいはアルカリ土類金属元素を触媒としてシリカとアルキルカーボネートとを反応させて、アルコキシシランを製造する方法が知られている(特許文献3、4参照)。これらの方法は上記金属ケイ素を原料としないため、エネルギー効率的には有利である一方、比較的高価な化合物であるアルキルカーボネートを、化学量論としてシリカに対して少なくとも2倍のモル量を投入する必要があり、テトラアルコキシシランの工業的製法としては経済的な課題がある。
 本発明者らは、メタノールと酸化ケイ素を原料としてテトラメトキシシランを製造できることを見出し、二酸化炭素の存在下でメタノールと酸化ケイ素を反応させ、かつモレキュラーシーブを用いて副生した水を除去することによりテトラメトキシシランを高収率で得られる方法を開発した(特許文献5参照)。
Tetraalkoxysilane is used as a raw material for producing various silane compounds, organic silicone polymers, various silylating agents, colloidal silica, ceramics and the like.
As a method for industrially producing alkoxysilanes conventionally known, for example, natural silicon dioxide is used as a starting material, mixed with carbon and reduced under high temperature to obtain metal silicon, which is converted to chlorine and the like. There is known a method of reacting silicon tetrachloride as a raw material, which is obtained by reaction, with an alcohol (see Patent Document 1). Also, a production method in which metal silicon and alcohol are directly reacted is known (see Patent Document 2).
However, these methods all need to go through metal silicon production processes that require high temperatures, and the problem is that energy efficiency is poor.
On the other hand, as a method for producing alkoxysilane directly from silica, there is known a method for producing an alkoxysilane by reacting silica with an alkyl carbonate using an alkali metal element or an alkaline earth metal element as a catalyst (Patent Document 3) , 4). Since these methods do not use the above-mentioned metal silicon as a raw material, they are advantageous in energy efficiency, but at the same time, they are charged with a relatively expensive compound, alkyl carbonate, at least twice the molar amount with respect to silica as stoichiometry. There is an economic problem in the industrial preparation of tetraalkoxysilanes.
The present inventors have found that tetramethoxysilane can be produced from methanol and silicon oxide as raw materials, react methanol with silicon oxide in the presence of carbon dioxide, and remove by-produced water using molecular sieves. Has developed a method for obtaining tetramethoxysilane in high yield (see Patent Document 5).
特開昭62-114991号公報Japanese Patent Application Laid-Open No. 62-114991 米国特許第2473260号明細書U.S. Pat. No. 2,473,260 特開2001-114786号公報JP 2001-114786 A 特許第3026371号公報Patent No. 3026371 特開2017-88498号公報JP, 2017-88498, A
 本発明は、テトラアルコキシシランを省エネルギーかつ高収率で製造することができる方法を提供することを目的とする。 An object of the present invention is to provide a method capable of producing tetraalkoxysilane with energy saving and high yield.
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、アルコールと酸化ケイ素を反応させてテトラアルコキシシランを生成する反応を酸化カルシウムの存在下で行うことにより、テトラアルコキシシランを高収率で製造することができることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors reacted tetrachlorosilane with tetraalkoxysilane by reacting alcohol with silicon oxide to form tetraalkoxysilane in the presence of calcium oxide. The inventors have found that they can be produced in high yield and complete the present invention.
 即ち、本発明は以下の通りである。
<1> アルコールと酸化ケイ素を反応させてテトラアルコキシシランを生成する反応工程を含むテトラアルコキシシランの製造方法であって、
 前記反応工程が、酸化カルシウムの存在下で行われることを特徴とする、テトラアルコキシシランの製造方法。
<2> 前記反応工程が、さらにアルカリ金属化合物及び/又は酸化カルシウム以外のアルカリ土類金属化合物の存在下で行われる、<1>に記載のテトラアルコキシシランの製造方法。
<3> 前記反応工程における酸化カルシウムの使用量が、酸化カルシウムのカルシウム原子の物質量/酸化ケイ素のケイ素原子の物質量が1~50となる量である、<1>又は<2>に記載のテトラアルコキシシランの製造方法。
That is, the present invention is as follows.
<1> A method for producing tetraalkoxysilane, comprising a reaction step of reacting alcohol and silicon oxide to produce tetraalkoxysilane,
The method for producing tetraalkoxysilane, wherein the reaction step is carried out in the presence of calcium oxide.
<2> The method for producing tetraalkoxysilane according to <1>, wherein the reaction step is further performed in the presence of an alkali metal compound and / or an alkaline earth metal compound other than calcium oxide.
<3> The method according to <1> or <2>, wherein the amount of calcium oxide used in the reaction step is an amount such that the amount of substance of calcium atoms / mass of silicon atoms of silicon oxide is 1 to 50. Of the preparation of tetraalkoxysilanes.
 本発明によれば、テトラアルコキシシランを高収率で製造することができる。 According to the present invention, tetraalkoxysilane can be produced in high yield.
本発明のテトラアルコキシシランの製造方法に使用することができる装置の一例の概念図である。It is a conceptual diagram of an example of the apparatus which can be used for the manufacturing method of tetraalkoxysilane of this invention. 本発明のテトラアルコキシシランの製造方法に使用することができる装置の一例の概念図である。It is a conceptual diagram of an example of the apparatus which can be used for the manufacturing method of tetraalkoxysilane of this invention. 本発明のテトラアルコキシシランの製造方法に使用することができる装置の一例の概念図である。It is a conceptual diagram of an example of the apparatus which can be used for the manufacturing method of tetraalkoxysilane of this invention.
 本発明を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。 While the present invention will be described by way of specific examples, the present invention is not limited to the following contents without departing from the spirit of the present invention, and can be appropriately modified and implemented.
<テトラアルコキシシランの製造方法>
 本発明の一態様であるテトラアルコキシシランの製造方法(以下、「本発明の製造方法」と略す場合がある。)は、アルコールと酸化ケイ素を反応させてテトラアルコキシシランを生成する反応工程(以下、「反応工程」と略す場合がある。)を含む方法であり、反応工程が、酸化カルシウムの存在下で行われることを特徴とする。
 本発明者らは、アルコールと酸化ケイ素を反応させてテトラアルコキシシランを生成する反応を酸化カルシウムの存在下で行うことにより、テトラアルコキシシランを高収率で製造することができることを見出したのである。
 酸化カルシウムは、アルコールと酸化ケイ素の反応によって副生した水を除去する脱水剤としての役割を果たすものと考えられ、水を除去することによって逆反応が抑制されるため、テトラアルコキシシランを高収率で製造することができるものと考えられる。また、反応に使用した酸化カルシウムは、水と反応して水酸化カルシウムに変化することになるが、水酸化カルシウムは容易に酸化カルシウムに再生することができるため、再利用が可能で、工業的に非常に適していると言える。
 以下、「アルコール」、「酸化ケイ素」、「反応工程」の条件等について詳細に説明する。
<Method of producing tetraalkoxysilane>
The method for producing tetraalkoxysilane which is one embodiment of the present invention (hereinafter sometimes abbreviated as “production method of the present invention”) is a reaction process (hereinafter referred to as “reaction of alcohol and silicon oxide to produce tetraalkoxysilane”) , Which may be abbreviated as “reaction step”, characterized in that the reaction step is carried out in the presence of calcium oxide.
The present inventors have found that tetraalkoxysilane can be produced in high yield by performing a reaction of alcohol and silicon oxide to form tetraalkoxysilane in the presence of calcium oxide. .
Calcium oxide is considered to play a role as a dehydrating agent for removing water by-produced by the reaction of alcohol and silicon oxide, and the reverse reaction is suppressed by removing water, so high yield of tetraalkoxysilane is obtained. It is believed that it can be manufactured at a rate. In addition, calcium oxide used in the reaction reacts with water to be converted to calcium hydroxide, but calcium hydroxide can be easily regenerated to calcium oxide, so it can be reused and industrially It is very suitable for
Hereinafter, the conditions of “alcohol”, “silicon oxide”, “reaction step” and the like will be described in detail.
 反応工程に使用するアルコールの種類は、特に限定されず、製造目的であるテトラアルコキシシランに応じて適宜選択することができる。例えばアルコールとしてメタノールを用いるとテトラメトキシシランを、エタノールを用いるとテトラエトキシシランを製造することができる。
 アルコールは、脂肪族アルコールと芳香族アルコールのどちらでもよく、またアルコール中の炭化水素基は、分岐構造、環状構造、炭素-炭素不飽和結合等のそれぞれを有していてもよい。
 アルコールの炭素原子数は、通常1以上、好ましくは2以上であり、好ましくは15以下、より好ましくは10以下、さらに好ましくは8以下であり、芳香族アルコールである場合の炭素原子数は通常6以上である。
 具体的なアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、ベンジルアルコール、フェノール等が挙げられる。
 なお、アルコールの使用量は、酸化ケイ素の物質量に対して、通常1倍以上、好ましくは5倍以上、より好ましくは10倍以上であり、通常10000倍以下、好ましくは5000倍以下、より好ましくは3000倍以下である。
The type of alcohol used in the reaction step is not particularly limited, and can be appropriately selected according to the tetraalkoxysilane which is the production object. For example, tetramethoxysilane can be produced using methanol as alcohol and tetraethoxysilane using ethanol.
The alcohol may be either an aliphatic alcohol or an aromatic alcohol, and the hydrocarbon group in the alcohol may have a branched structure, a cyclic structure, a carbon-carbon unsaturated bond, and the like.
The number of carbon atoms of the alcohol is usually 1 or more, preferably 2 or more, preferably 15 or less, more preferably 10 or less, still more preferably 8 or less, and in the case of an aromatic alcohol, the number of carbon atoms is usually 6 It is above.
Specific alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, benzyl alcohol, phenol and the like. Be
The amount of alcohol used is usually 1 or more, preferably 5 or more, more preferably 10 or more, and usually 10000 or less, preferably 5000 or less, more preferably 1 to 5 times the amount of the silicon oxide. Is less than 3000 times.
 反応工程に使用する酸化ケイ素は、ケイ素原子(Si)と酸素原子(O)を主要な構成元素として含む化合物を意味し、一酸化ケイ素(SiO)、二酸化ケイ素(SiO)、或いはゼオライト等の他の金属との複合酸化物であってもよい。
 具体的な酸化ケイ素としては、ケイ石、ケイ砂、ケイ藻土、石英等の天然鉱物、ケイ素含有植物の焼成灰、火山灰、ケイ酸塩類、シリカゾル由来のシリカゲル、ヒュームドシリカ、シリカアルミナ、ゼオライト等が挙げられる。
Silicon oxide used in the reaction step means a compound containing silicon atoms (Si) and oxygen atoms (O) as main constituent elements, and is silicon monoxide (SiO), silicon dioxide (SiO 2 ), zeolite or the like. It may be a composite oxide with another metal.
Specific examples of silicon oxides include natural minerals such as silica, silica sand, diatomaceous earth, quartz, calcined ash of silicon-containing plants, volcanic ash, silicates, silica gel derived from silica sol, fumed silica, silica alumina, zeolite Etc.
 反応工程は、酸化カルシウムの存在下で行われることを特徴とするが、反応工程における酸化カルシウムの使用量は、酸化カルシウムのカルシウム原子の物質量/酸化ケイ素のケイ素原子の物質量(Ca/Si)が通常1~50となる量であり、好ましくは2以上、より好ましくは3以上で、好ましくは30以下、より好ましくは10以下である。上記範囲内であると、テトラアルコキシシランをより高収率で製造することができる。 The reaction step is characterized in that it is carried out in the presence of calcium oxide, but the amount of calcium oxide used in the reaction step is the amount of calcium atoms / mass of calcium atoms / mass of silicon atoms of silicon oxides (Ca / Si Is usually 1 to 50, preferably 2 or more, more preferably 3 or more, preferably 30 or less, more preferably 10 or less. A tetraalkoxysilane can be manufactured with a higher yield as it is in the said range.
 反応工程は、アルカリ金属化合物及び/又は酸化カルシウム以外のアルカリ土類金属化合物の存在下で行われることが好ましい。アルカリ金属化合物や酸化カルシウム以外のアルカリ土類金属化合物の存在下であると、酸化ケイ素のケイ素-酸素結合の開裂が促進されて、テトラアルコキシシランをより収率良く生成することができる。
 アルカリ金属化合物及び酸化カルシウム以外のアルカリ土類金属化合物におけるアルカリ金属及びアルカリ土類金属としては、リチウム(Li)、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)、セシウム(Cs)等が挙げられる。また、対イオンについては、水酸化物、ハロゲン化物、酸化物、炭酸塩、炭酸水素塩、アルコキシド、ケイ酸塩、アルミン酸塩、リン酸塩、有機酸塩、硫酸塩、硝酸塩等が挙げられる。中でも水酸化物、ハロゲン化物、炭酸塩、炭酸水素塩が好ましく、アルカリ金属水酸化物、アルカリ金属ハロゲン化物、アルカリ金属炭酸塩、及びアルカリ金属炭酸水素塩がより好ましい。
 具体的なアルカリ金属化合物及びアルカリ土類金属化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等が挙げられる。なお、アルカリ金属化合物及び酸化カルシウム以外のアルカリ土類金属化合物は、1種類のみならず、2種類以上を組み合わせて使用してもよい。
 アルカリ金属化合物と酸化カルシウム以外のアルカリ土類金属化合物の総使用量は、酸化ケイ素(二酸化ケイ素の場合)1molに対して、通常0mol以上、好ましくは0.001mol以上であり、通常20mol以下、好ましくは10mol以下である。上記範囲内であると、テトラアルコキシシランをより高収率で製造することができる。
The reaction step is preferably carried out in the presence of an alkali metal compound and / or an alkaline earth metal compound other than calcium oxide. In the presence of an alkali metal compound or an alkaline earth metal compound other than calcium oxide, the cleavage of the silicon-oxygen bond of silicon oxide is promoted, and a tetraalkoxysilane can be produced in a higher yield.
Examples of alkali metals and alkaline earth metals in alkali metal compounds other than alkali metal compounds and calcium oxide include lithium (Li), sodium (Na), magnesium (Mg), potassium (K), cesium (Cs), etc. It can be mentioned. Further, as the counter ion, hydroxides, halides, oxides, carbonates, hydrogencarbonates, alkoxides, silicates, aluminates, phosphates, organic acid salts, sulfates, nitrates and the like can be mentioned. . Among them, hydroxides, halides, carbonates and hydrogencarbonates are preferable, and alkali metal hydroxides, alkali metal halides, alkali metal carbonates and alkali metal hydrogencarbonates are more preferable.
Specific examples of alkali metal compounds and alkaline earth metal compounds include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, sodium fluoride and potassium fluoride And cesium fluoride. The alkali metal compound and the alkaline earth metal compound other than calcium oxide may be used alone or in combination of two or more.
The total amount of alkali metal compounds and alkaline earth metal compounds other than calcium oxide is usually 0 mol or more, preferably 0.001 mol or more, and usually 20 mol or less, preferably 1 mol per 1 mol of silicon oxide (in the case of silicon dioxide) Is less than 10 mol. A tetraalkoxysilane can be manufactured with a higher yield as it is in the said range.
 反応工程における反応条件は、特に限定されず、目的に応じて適宜選択することができる。
 反応工程における反応温度は、通常100℃以上、好ましくは130℃以上、より好ましくは150℃以上であり、通常300℃以下、好ましくは280℃以下、より好ましくは250℃以下である。
 反応工程における反応圧力は、通常0.1MPa以上、好ましくは0.3MPa以上、より好ましくは0.5MPa以上であり、通常20MPa以下、好ましくは10MPa以下、より好ましくは8MPa以下である。なお、反応工程において気相として利用するガスの種類は、窒素ガス、アルゴンガス等の不活性ガスが挙げられ、2種類以上の混合ガスであってもよい。
 回分反応器を用いる場合、反応工程の反応時間は、通常1分以上、好ましくは5分以上、より好ましくは19分以上であり、通常10時間以下、好ましくは5時間以下、より好ましくは1時間以下である。また、連続管型反応器を用いる場合、反応工程の反応時間は、通常10分以上、好ましくは30分以上、より好ましくは60分以上であり、通常24時間以下、好ましくは8時間以下、より好ましくは6時間以下である。
 上記範囲内であると、テトラアルコキシシランをより高収率で製造することができる。
The reaction conditions in the reaction step are not particularly limited, and can be appropriately selected depending on the purpose.
The reaction temperature in the reaction step is usually 100 ° C. or more, preferably 130 ° C. or more, more preferably 150 ° C. or more, and usually 300 ° C. or less, preferably 280 ° C. or less, more preferably 250 ° C. or less.
The reaction pressure in the reaction step is usually 0.1 MPa or more, preferably 0.3 MPa or more, more preferably 0.5 MPa or more, and usually 20 MPa or less, preferably 10 MPa or less, more preferably 8 MPa or less. In addition, inert gas, such as nitrogen gas and argon gas, is mentioned as a kind of gas utilized as a gaseous phase in a reaction process, and 2 or more types of mixed gas may be sufficient.
When a batch reactor is used, the reaction time of the reaction step is usually 1 minute or more, preferably 5 minutes or more, more preferably 19 minutes or more, and usually 10 hours or less, preferably 5 hours or less, more preferably 1 hour It is below. When a continuous tubular reactor is used, the reaction time of the reaction step is usually 10 minutes or more, preferably 30 minutes or more, more preferably 60 minutes or more, and usually 24 hours or less, preferably 8 hours or less, more Preferably it is 6 hours or less.
A tetraalkoxysilane can be manufactured with a higher yield as it is in the said range.
 反応工程においてアルコールと酸化ケイ素を反応させるための反応器、操作手順、反応条件等は、特に限定されず、目的に応じて適宜選択することができる。
 反応器としては、回分反応器(図1A参照)、連続管型反応器(図1B、図1C参照)等が挙げられる。なお、回分反応器は、オートクレーブ等の耐圧反応器であることが好ましい。また、連続管型反応器は、流動床反応器または固定床反応器であることが好ましい。
 操作手順は、例えば回分反応器を用いる場合、反応器にアルコール、酸化ケイ素、酸化カルシウム、アルカリ金属化合物等を投入し、気相として利用するガスで反応容器内を掃気した後、ガスを充填して密閉し、反応温度まで加熱を行う方法が挙げられる。なお、ガスの25℃における充填圧力は、0.1~10MPaであることが好ましい。上記範囲内であると、より高収率でテトラアルコキシシランを製造することができる。
 また、連続管型反応器を用いる場合、反応容器を反応温度まで加熱した後、アルコール、酸化ケイ素、酸化カルシウム、アルカリ金属化合物等を含む混合物を反応容器に連続的に投入する方法が挙げられる(図1B参照。)。なお、酸化ケイ素、酸化カルシウム、アルカリ金属化合物等を投入するためにキャリアーガスを用いてもよい。キャリアーガスとしては、窒素ガス、アルゴンガス等の不活性ガスを用いることができる。なお、キャリアーガスの供給速度等は、反応器の大きさや反応条件等に応じて適宜選択することができる。
 また、連続管型反応器を用いる場合、例えば、酸化ケイ素、酸化カルシウム、アルカリ金属化合物等を含む混合物を反応器の所定の位置に充填し、反応器を反応温度まで加熱した後、アルコールを連続的に投入する方法が挙げられる(図1C参照。)。この場合、キャリアーガスを用いてもよいし、用いなくてもよい。キャリアーガスとしては、窒素ガス、アルゴンガス等の不活性ガスを用いることができる。アルコールの供給速度等は、反応器の大きさや反応条件等に応じて適宜選択することができる。反応条件としては、例えば、管型反応器内の圧力を0.1~1.0MPa(絶対圧)として、原料アルコールを0.01~1.000mL/分の流速で10分~24時間送液することが挙げられる。連続管型反応器は自作してもよいし、市販品を用いてもよい。市販品としては、例えば、東京理化器械株式会社製フローリアクター(FFX-1000G)、株式会社ワイエムシィ製KeyChem(登録商標)-Integralが挙げられる。
The reactor for causing alcohol and silicon oxide to react in the reaction step, the operation procedure, the reaction conditions, and the like are not particularly limited, and can be appropriately selected depending on the purpose.
The reactor includes a batch reactor (see FIG. 1A), a continuous tubular reactor (see FIGS. 1B and 1C), and the like. The batch reactor is preferably a pressure resistant reactor such as an autoclave. Also, the continuous tubular reactor is preferably a fluidized bed reactor or a fixed bed reactor.
In the operation procedure, for example, when using a batch reactor, alcohol, silicon oxide, calcium oxide, an alkali metal compound, etc. are charged into the reactor, the inside of the reaction vessel is scavenged with gas to be used as a gas phase, and then the gas is filled. Closed and heated to the reaction temperature. The filling pressure of the gas at 25 ° C. is preferably 0.1 to 10 MPa. Within the above range, tetraalkoxysilane can be produced with higher yield.
Moreover, when using a continuous tubular reactor, after heating a reaction container to reaction temperature, the method of continuously injecting the mixture containing alcohol, a silicon oxide, a calcium oxide, an alkali metal compound etc. into a reaction container is mentioned. See Figure 1 B). Note that a carrier gas may be used to introduce silicon oxide, calcium oxide, an alkali metal compound or the like. As the carrier gas, an inert gas such as nitrogen gas or argon gas can be used. The carrier gas supply rate can be appropriately selected according to the size of the reactor, reaction conditions, and the like.
When a continuous tubular reactor is used, for example, a mixture containing silicon oxide, calcium oxide, an alkali metal compound and the like is charged at a predetermined position of the reactor, and the reactor is heated to the reaction temperature, and then alcohol is continuously applied. Method (see FIG. 1C). In this case, a carrier gas may or may not be used. As the carrier gas, an inert gas such as nitrogen gas or argon gas can be used. The supply rate of alcohol and the like can be appropriately selected according to the size of the reactor, reaction conditions, and the like. As the reaction conditions, for example, the pressure in the tubular reactor is 0.1 to 1.0 MPa (absolute pressure), and the raw material alcohol is sent at a flow rate of 0.01 to 1.000 mL / min for 10 minutes to 24 hours. To be mentioned. The continuous tube reactor may be produced by itself or a commercially available product may be used. Examples of commercially available products include a flow reactor (FFX-1000G) manufactured by Tokyo Rika Kikai Co., Ltd. and KeyChem (registered trademark) -Integral manufactured by YMC.
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 EXAMPLES The present invention will be described more specifically by the following Examples and Comparative Examples, but may be modified as appropriate without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as limited by the specific examples shown below.
<実施例1>
 機械式撹拌機を入れた30mL容積のSUS製オートクレーブ(耐圧硝子工業社製)に、二酸化ケイ素(和光純薬 ワコーゲル 60N 63~212μm)4.5mmol、水酸化カリウム0.45mmol、エタノール24g、酸化カルシウム(和光純薬 特級)18mmolを加え、密封した。その後、オートクレーブ内を1200rpmに撹拌しつつ、反応温度180℃まで加熱し、30分反応させた。冷却後、反応混合物をガスクロマトグラフィー(島津製作所 GC-2014ATF/SPL)により分析した。二酸化ケイ素基準のテトラエトキシシランの収率は72%であった。結果を表1に示す。
Example 1
Silicon dioxide (Wako Pure Chemical Industries Wakogel 60N 63 to 212 μm) 4.5 mmol, potassium hydroxide 0.45 mmol, ethanol 24 g, calcium oxide in a 30 mL volume made of SUS autoclave (made by pressure resistant glass industry) containing a mechanical stirrer (Wako Pure Chemical Industries, Ltd.) 18 mmol was added and sealed. Thereafter, while stirring the inside of the autoclave at 1200 rpm, the temperature was raised to a reaction temperature of 180 ° C., and the reaction was allowed to proceed for 30 minutes. After cooling, the reaction mixture was analyzed by gas chromatography (Shimadzu GC-2014 ATF / SPL). The yield of tetraethoxysilane based on silicon dioxide was 72%. The results are shown in Table 1.
<実施例2>
 実施例1の反応条件に対し、酸化カルシウムを13.5mmolとした以外は、実施例1と同様の操作によりテトラエトキシシランの製造を行った。二酸化ケイ素基準のテトラエトキシシランの収率は71%であった。結果を表1に示す。
Example 2
Production of tetraethoxysilane was carried out in the same manner as in Example 1 except that calcium oxide was changed to 13.5 mmol with respect to the reaction conditions of Example 1. The yield of tetraethoxysilane based on silicon dioxide was 71%. The results are shown in Table 1.
<実施例3>
 実施例1の反応条件に対し、酸化カルシウムを9.0mmolとした以外は、実施例1と同様の操作によりテトラエトキシシランの製造を行った。二酸化ケイ素基準のテトラエトキシシランの収率は52%であった。結果を表1に示す。
Example 3
Production of tetraethoxysilane was performed in the same manner as in Example 1 except that calcium chloride was changed to 9.0 mmol with respect to the reaction conditions of Example 1. The yield of tetraethoxysilane based on silicon dioxide was 52%. The results are shown in Table 1.
<実施例4>
 実施例1の反応条件に対し、酸化カルシウムを4.5mmolとした以外は、実施例1と同様の操作によりテトラエトキシシランの製造を行った。二酸化ケイ素基準のテトラエトキシシランの収率は33%であった。結果を表1に示す。
Example 4
Production of tetraethoxysilane was carried out in the same manner as in Example 1 except that calcium chloride was changed to 4.5 mmol with respect to the reaction conditions of Example 1. The yield of tetraethoxysilane based on silicon dioxide was 33%. The results are shown in Table 1.
<実施例5>
 実施例1の反応条件に対し、二酸化ケイ素を9.0mmol、酸化カルシウムを45mmol、反応温度を195℃、時間を20分とした以外は、実施例1と同様の操作によりテトラエトキシシランの製造を行った。二酸化ケイ素基準のテトラエトキシシランの収率は62%であった。結果を表1に示す。
Example 5
Production of tetraethoxysilane is carried out in the same manner as in Example 1 except that for the reaction conditions in Example 1, 9.0 mmol of silicon dioxide, 45 mmol of calcium oxide, the reaction temperature is 195 ° C., and the time is 20 minutes. went. The yield of tetraethoxysilane based on silicon dioxide was 62%. The results are shown in Table 1.
<実施例6>
 実施例1の反応条件に対し、アルコールをエタノールからメタノール24gに変更し、二酸化ケイ素を9.0mmol、酸化カルシウムを27mmol、反応温度を220℃、時間を45分とした以外は、実施例1と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は43%であった。結果を表1に示す。
Example 6
Example 1 was repeated except that the alcohol was changed from ethanol to 24 g of methanol, 9.0 mmol of silicon dioxide, 27 mmol of calcium oxide, and the reaction temperature was 220 ° C., and the reaction time was 45 minutes. The same procedure was followed to produce tetramethoxysilane. The yield of tetramethoxysilane based on silicon dioxide was 43%. The results are shown in Table 1.
<実施例7>
 水酸化カリウム0.11mmolをエタノール5mLに溶かした溶液に、二酸化ケイ素(和光純薬 ワコーゲル 60N 63~212μm)1.1mmolを加えて混合した後、減圧下でエタノールを留去することにより、二酸化ケイ素と水酸化カリウムの混合物を調製した。この混合物に対して、さらに酸化カルシウム(和光純薬 特級)4.4mmolを加え、この混合物を内径4.6mmのSUS316製チューブ内に充填した。このチューブを東京理化器械製フローリアクター(FFX-1000G)に接続し、200℃に加熱しながら、チューブ内の圧力を0.8MPaとして、0.025mL/分の流速でエタノールを6時間送液することにより図1Cタイプの装置構成でテトラエトキシシランの製造を行った。フローリアクター下流で溶液を回収し、生成したテトラエトキシシラン量を求めたところ、二酸化ケイ素基準のテトラエトキシシランの収率は73%であった。結果を表1に示す。
Example 7
Silicon dioxide (Wako Pure Chemical Industries Wakogel 60N 63-212 μm) 1.1 mmol is added to and mixed with a solution of 0.11 mmol of potassium hydroxide in 5 mL of ethanol, and then ethanol is distilled off under reduced pressure to obtain silicon dioxide A mixture of potassium hydroxide and potassium hydroxide was prepared. To this mixture, 4.4 mmol of calcium oxide (Wako Pure Chemical Industries, Ltd. special grade) was further added, and this mixture was filled in a tube made of SUS316 with an inner diameter of 4.6 mm. Connect this tube to the Tokyo Rika Kikai flow reactor (FFX-1000G) and transfer the ethanol for 6 hours at a flow rate of 0.025 mL / min with the pressure in the tube being 0.8 MPa while heating to 200 ° C. Thus, tetraethoxysilane was produced with the apparatus configuration of FIG. 1C type. The solution was recovered downstream of the flow reactor, and the amount of tetraethoxysilane generated was determined. The yield of tetraethoxysilane based on silicon dioxide was 73%. The results are shown in Table 1.
<実施例8>
 実施例7の反応条件に対し、用いる酸化カルシウムの量を5.5mmolとし、送液するアルコールをメタノールとした以外は、実施例7と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は54%であった。結果を表1に示す。
Example 8
For the reaction conditions of Example 7, the amount of calcium oxide used was 5.5 mmol, and tetramethoxysilane was produced by the same operation as in Example 7 except that the alcohol to be fed was methanol. The yield of tetramethoxysilane based on silicon dioxide was 54%. The results are shown in Table 1.
<比較例1>
 実施例1の反応条件に対し、酸化カルシウムを加えなかった以外は、実施例1と同様の操作によりテトラエトキシシランの製造を行った。二酸化ケイ素基準のテトラエトキシシランの収率は6%であった。結果を表1に示す。
Comparative Example 1
Production of tetraethoxysilane was carried out in the same manner as in Example 1 except that calcium oxide was not added to the reaction conditions of Example 1. The yield of tetraethoxysilane based on silicon dioxide was 6%. The results are shown in Table 1.
<比較例2>
 実施例6の反応条件に対し、酸化カルシウムを加えなかった以外は、実施例6と同様の操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラエトキシシランの収率は4%であった。結果を表1に示す。
Comparative Example 2
With respect to the reaction conditions of Example 6, tetramethoxysilane was produced in the same manner as in Example 6, except that calcium oxide was not added. The yield of tetraethoxysilane based on silicon dioxide was 4%. The results are shown in Table 1.
<比較例3>
 実施例7の反応条件に対し、酸化カルシウムを加えなかった以外は、実施例7と同様のフローリアクターの操作によりテトラエトキシシランの製造を行った。二酸化ケイ素基準のテトラエトキシシランの収率は3%であった。結果を表1に示す。
Comparative Example 3
For the reaction conditions of Example 7, tetraethoxysilane was produced by the same operation of the flow reactor as in Example 7 except that calcium oxide was not added. The yield of tetraethoxysilane based on silicon dioxide was 3%. The results are shown in Table 1.
<比較例4>
 実施例8の反応条件に対し、酸化カルシウムを加えなかった以外は、実施例8と同様のフローリアクターの操作によりテトラメトキシシランの製造を行った。二酸化ケイ素基準のテトラメトキシシランの収率は13%であった。結果を表1に示す。
Comparative Example 4
Production of tetramethoxysilane was performed by the same flow reactor operation as in Example 8 except that calcium oxide was not added to the reaction conditions in Example 8. The yield of tetramethoxysilane based on silicon dioxide was 13%. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本出願は、2017年12月27日出願の日本特許出願(特願2017-252112)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application (Japanese Patent Application No. 2017-252112) filed on Dec. 27, 2017, the contents of which are incorporated herein by reference.
 本発明の製造方法によれば、各種シラン化合物、有機シリコーンポリマー、各種シリル化剤、コロイダルシリカ、セラミックス等を製造するための原料として用いられるテトラアルコキシシランを高効率に製造することができる。 According to the production method of the present invention, tetraalkoxysilane used as a raw material for producing various silane compounds, organic silicone polymers, various silylating agents, colloidal silica, ceramics and the like can be produced with high efficiency.
 101a、101b、101c  本発明の製造方法に使用することができる装置
 102             アルコール
 103             酸化ケイ素、酸化カルシウム、アルカリ金属化合物等の混合物
 104             アルコール、酸化ケイ素、酸化カルシウム、アルカリ金属化合物等の混合物
 105             テトラアルコキシシラン
101a, 101b, 101c Device which can be used in the production method of the present invention 102 alcohol 103 mixture of silicon oxide, calcium oxide, alkali metal compound etc. 104 mixture of alcohol, silicon oxide, calcium oxide, alkali metal compound etc. 105 tetraalkoxy Silane

Claims (3)

  1.  アルコールと酸化ケイ素を反応させてテトラアルコキシシランを生成する反応工程を含むテトラアルコキシシランの製造方法であって、
     前記反応工程が、酸化カルシウムの存在下で行われることを特徴とする、テトラアルコキシシランの製造方法。
    A method for producing tetraalkoxysilane, comprising the reaction step of reacting alcohol and silicon oxide to produce tetraalkoxysilane,
    The method for producing tetraalkoxysilane, wherein the reaction step is carried out in the presence of calcium oxide.
  2.  前記反応工程が、さらにアルカリ金属化合物及び/又は酸化カルシウム以外のアルカリ土類金属化合物の存在下で行われる、請求項1に記載のテトラアルコキシシランの製造方法。 The method for producing tetraalkoxysilane according to claim 1, wherein the reaction step is further performed in the presence of an alkali metal compound and / or an alkaline earth metal compound other than calcium oxide.
  3.  前記反応工程における酸化カルシウムの使用量が、酸化カルシウムのカルシウム原子の物質量/酸化ケイ素のケイ素原子の物質量が1~50となる量である、請求項1又は2に記載のテトラアルコキシシランの製造方法。 The tetraalkoxysilane according to claim 1 or 2, wherein the amount of calcium oxide used in the reaction step is such that the amount of material of calcium atoms of calcium oxide / the amount of material of silicon atoms of silicon oxide is 1 to 50. Production method.
PCT/JP2018/047501 2017-12-27 2018-12-25 Method for producing tetraalkoxysilane using calcium oxide WO2019131600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019561700A JP6934683B2 (en) 2017-12-27 2018-12-25 Method for producing tetraalkoxysilane using calcium oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017252112 2017-12-27
JP2017-252112 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131600A1 true WO2019131600A1 (en) 2019-07-04

Family

ID=67067383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047501 WO2019131600A1 (en) 2017-12-27 2018-12-25 Method for producing tetraalkoxysilane using calcium oxide

Country Status (3)

Country Link
JP (1) JP6934683B2 (en)
TW (1) TWI740084B (en)
WO (1) WO2019131600A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115518629A (en) * 2022-09-27 2022-12-27 中触媒新材料股份有限公司 Catalyst for synthesizing tetraalkoxysilane, preparation method and use method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS331776B1 (en) * 1956-05-11 1958-03-17
JP2002348292A (en) * 2001-05-24 2002-12-04 National Institute Of Advanced Industrial & Technology Method for producing metal alkoxide using mixture of alcohol and carbonic acid ester
JP2003252879A (en) * 2001-12-25 2003-09-10 Nippon Shokubai Co Ltd Method for producing alkoxysilane
WO2015170665A1 (en) * 2014-05-09 2015-11-12 国立研究開発法人産業技術総合研究所 Method for producing tetraalkoxysilane
WO2015170666A1 (en) * 2014-05-09 2015-11-12 国立研究開発法人産業技術総合研究所 Method for producing tetraalkoxysilane
JP2017088498A (en) * 2015-11-02 2017-05-25 国立研究開発法人産業技術総合研究所 Manufacturing method of tetramethoxysilane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723384B2 (en) * 1986-12-29 1995-03-15 三菱化学株式会社 Method for producing tetraalkoxysilane
JP3717211B2 (en) * 1995-10-02 2005-11-16 三菱化学株式会社 Process for producing alkoxysilanes
CN102516280B (en) * 2011-12-08 2016-04-27 云南省化工研究院 A kind of method being prepared positive silicon ester and fluorochemical by silicon tetrafluoride alcoholysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS331776B1 (en) * 1956-05-11 1958-03-17
JP2002348292A (en) * 2001-05-24 2002-12-04 National Institute Of Advanced Industrial & Technology Method for producing metal alkoxide using mixture of alcohol and carbonic acid ester
JP2003252879A (en) * 2001-12-25 2003-09-10 Nippon Shokubai Co Ltd Method for producing alkoxysilane
WO2015170665A1 (en) * 2014-05-09 2015-11-12 国立研究開発法人産業技術総合研究所 Method for producing tetraalkoxysilane
WO2015170666A1 (en) * 2014-05-09 2015-11-12 国立研究開発法人産業技術総合研究所 Method for producing tetraalkoxysilane
JP2017088498A (en) * 2015-11-02 2017-05-25 国立研究開発法人産業技術総合研究所 Manufacturing method of tetramethoxysilane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115518629A (en) * 2022-09-27 2022-12-27 中触媒新材料股份有限公司 Catalyst for synthesizing tetraalkoxysilane, preparation method and use method thereof

Also Published As

Publication number Publication date
JP6934683B2 (en) 2021-09-15
JPWO2019131600A1 (en) 2020-12-24
TW201930325A (en) 2019-08-01
TWI740084B (en) 2021-09-21

Similar Documents

Publication Publication Date Title
US10000514B2 (en) Method for producing tetraalkoxysilane
US8772525B2 (en) Method for preparing a diorganodihalosilane
WO2015050056A1 (en) Method for purifying phosphorus pentafluoride
WO2019131600A1 (en) Method for producing tetraalkoxysilane using calcium oxide
JP6238384B2 (en) Method for producing tetraalkoxysilane
WO2012011524A1 (en) Process for producing difluoroacetic esters
WO2019131672A1 (en) Method for producing tetraalkoxysilane
JP6624430B2 (en) Method for producing tetramethoxysilane
JP2018131351A (en) Method for recovering co2 in air to separate carbon
WO2019131518A1 (en) Method for producing tetraalkoxysilane with entrainer
JP2003252879A (en) Method for producing alkoxysilane
JP5489766B2 (en) Method for producing alkali metal silicofluoride and nitric acid from waste liquid
JP4663079B2 (en) Method for producing silane from trialkoxysilane and method for producing trialkoxysilane from tetraalkoxysilane
JPH04338393A (en) Production of alkoxysilane
JP7035725B2 (en) Alkaline silicic acid regeneration method and CO2 recovery / decomposition method
JP2011148707A (en) Method for producing difluoroacetic acid ester
JP2001019418A (en) Production of monosilane and tetraalkoxysilane
RU2542274C1 (en) Method for preparing silicon
JPS60255612A (en) Production of silicon hydride
JPS61275125A (en) Stabilizing method for hexachlorodisilane
JPS63210012A (en) Production of gaseous silane
JPH11349593A (en) Production of high purity tetraalkoxysilane
JP2019104702A (en) Method for producing a 3&#39;-trifluoromethyl group-substituted aromatic ketone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561700

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893976

Country of ref document: EP

Kind code of ref document: A1