WO2019130862A1 - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
WO2019130862A1
WO2019130862A1 PCT/JP2018/041896 JP2018041896W WO2019130862A1 WO 2019130862 A1 WO2019130862 A1 WO 2019130862A1 JP 2018041896 W JP2018041896 W JP 2018041896W WO 2019130862 A1 WO2019130862 A1 WO 2019130862A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetostrictive element
adhesive
power generation
frame
generation device
Prior art date
Application number
PCT/JP2018/041896
Other languages
French (fr)
Japanese (ja)
Inventor
佳子 高橋
笹岡 達雄
学 五閑
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019130862A1 publication Critical patent/WO2019130862A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials

Definitions

  • the present invention relates to a power generator using vibration.
  • the present invention relates to a power generator using a magnetostrictive material.
  • Vibration power generation can be used to generate power on the equipment itself.
  • Vibration power generation includes a piezoelectric method, an electrostatic induction method, an electromagnetic induction method, and a magnetostrictive method.
  • the piezoelectric method using a piezoelectric element has low mechanical durability due to the fragility of the element.
  • the electromagnetic induction method there is a problem in downsizing because there is a movable portion.
  • the magnetostrictive system using an iron-based magnetostrictive material is excellent in mechanical properties and processability because the magnetostrictive element is a ductile material.
  • this magnetostrictive method is useful for application to a wireless sensor module because the impedance is also low electrically.
  • this magnetostrictive vibrational power generation applying a stress to the magnetostrictive element changes the lines of magnetic force generated by the inverse magnetostrictive effect. According to the law of electromagnetic induction, a change in the lines of magnetic force generates an electromotive force in the coil wound around the magnetostrictive element. That is, this magnetostrictive vibrational power generation is a power generation method that converts mechanical energy into electrical energy.
  • Patent Document 1 proposes an actuator that uses a structure of a power generation element and a power generation element that can continue vibration for a long time while suppressing the loss of kinetic energy during vibration.
  • the power generation device 100 is roughly configured of a power generation unit 160, a frame 110, a magnet 170, and a weight 140.
  • the power generation unit 160 is provided to perform power generation by the inverse magnetostrictive effect by the displacement of the free end side 120 of the frame 110.
  • the power generation unit 160 includes a magnetostrictive element 161, a coil 162, and a magnetic plate 163.
  • the magnetostrictive element 161 is a plate-like member made of a magnetic material. Magnetic lines of force from the magnet 170 pass through the frame 110 and the magnetostrictive element 161 to form a magnetic circuit.
  • the free end 120 of the frame 110 is deformed to open or close from the fixed end 130.
  • the weight 140 By attaching the weight 140 to the end of the free end side 120, the weight 140 once started to vibrate continues to vibrate for a long time by the inertial force, so that the vibration of the entire frame 110 can be sustained for a long time.
  • a large impact force F in the vertical direction to the end of the fixed end side 130, a large inertia force is applied to the weight 140 to vibrate the frame 110.
  • a tensile force or a compressive force is applied to the magnetostrictive element 161, and an induced current is generated in the coil 162 by the inverse magnetostrictive effect to generate electric power.
  • the present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a power generation device that improves power generation efficiency by transmitting the magnetostrictive element 161 without attenuating bending of the frame 110.
  • a magnetostrictive element made of a magnetostrictive material, a coil into which the magnetostrictive element is inserted, and the magnetostrictive element are disposed, and one end in the longitudinal direction is a fixed end, the other in the longitudinal direction
  • the frame has a free end, a first adhesive for fixing the magnetostrictive element to the frame, and the frame has a magnet disposed, and the longitudinal end of the magnetostrictive element is at the end.
  • the power generator of the present invention it is possible to efficiently convert vibrational energy into electric power.
  • FIG. 1 is a schematic configuration diagram of a power generation device according to Embodiment 1 of the present invention.
  • FIG. 2A is a schematic AA ′ cross-sectional view of the power generation device according to Embodiment 1 of the present invention.
  • FIG. 2B is a schematic BB ′ cross-sectional view of the power generation device in Embodiment 1 of the present invention.
  • FIG. 2C is a schematic BB ′ cross-sectional view of Modification Example 1 of the power generation device in Embodiment 1 of the present invention.
  • FIG. 2D is a schematic BB ′ cross-sectional view of Modification 2 of the power generation device in Embodiment 1 of the present invention.
  • FIG. 1 is a schematic configuration diagram of a power generation device according to Embodiment 1 of the present invention.
  • FIG. 2A is a schematic AA ′ cross-sectional view of the power generation device according to Embodiment 1 of the present invention.
  • FIG. 2B is a schematic BB
  • FIG. 3 is a vibration analysis model diagram of the power generation device according to Embodiment 1 of the present invention.
  • FIG. 4A is a graph showing the relationship between the adhesive Young's modulus and the magnetostrictive element strain of the power generation apparatus according to Embodiment 1 of the present invention.
  • FIG. 4B is a diagram showing the type of adhesive of the power generation device and the durability of the power generation device in the first embodiment of the present invention.
  • FIG. 4C is a graph showing the relationship between the thickness of the adhesive and the magnetostrictive element strain of the power generation apparatus according to Embodiment 1 of the present invention.
  • FIG. 5A is a schematic AA ′ cross-sectional view of a power generation device according to Embodiment 2 of the present invention.
  • FIG. 5B is a schematic BB ′ cross-sectional view of the power generation device in Embodiment 2 of the present invention.
  • FIG. 5C is a schematic BB ′ cross-sectional view of Modification 1 of the power generation device in the second embodiment of the present invention.
  • FIG. 5D is a schematic BB ′ cross-sectional view of Modification Example 2 of the power generation device in Embodiment 2 of the present invention.
  • FIG. 6 is a side view of a schematic configuration of a power generation device according to Patent Document 1.
  • FIG. 7 is a cross-sectional view of a schematic configuration of a power generation unit according to Patent Document 1.
  • FIG. 1 is a schematic configuration diagram of a power generation device according to Embodiment 1 of the present invention.
  • FIG. 2A is a schematic AA ′ sectional view of the power generation apparatus in the first embodiment of the present invention
  • FIG. 2B is a schematic BB ′ sectional view of the power generation apparatus in the first embodiment of the present invention
  • FIG. 2D is a schematic BB ′ sectional view of a second modification of the power generation device according to the first embodiment of the present invention.
  • the power generation device 1 includes a frame 2, a magnetostrictive element 3, a first adhesive 4, a magnet 5, and a coil 6.
  • the frame 2 and the magnetostrictive element 3 are attached by the first adhesive 4 and have a fillet 4a at the end 3a of the magnetostrictive element 3 in the bending direction, and the magnetostrictive element 3 is in the direction perpendicular to the bending direction.
  • a fillet or a bonding portion such as a resin is not formed.
  • the first adhesive 4 bonds the top surface of the frame 2 to the bottom surface of the magnetostrictive element 3.
  • the first adhesive 4 bonds the entire bottom surface of the magnetostrictive element 3 or most of the bottom surface.
  • the frame 2 and the magnetostrictive element 3 are not in contact with each other.
  • the characteristic that the fillet portion of the first adhesive 4 is not formed at the end 3b of the magnetostrictive element 3 which is in the direction perpendicular to the bending direction of the power generator 1 is that the frame 2 and the magnetostrictive element are shown in FIGS. Not only when 3 is the same width, but also when the width of the magnetostrictive element 3 is narrower than the width of the frame 2 as shown in FIG. 2C, or as shown in FIG. The same is true when the width is wide.
  • the magnetostrictive element 3 When the fillet portion is formed at the end 3 b of the magnetostrictive element 3, the magnetostrictive element 3 does not easily bend.
  • the bending direction is the longitudinal direction of the frame 2.
  • the coil 6, the magnet 5 and the like are shown abbreviated.
  • the frame 2 and the magnetostrictive element 3 can be more firmly adhered.
  • the fillet of the first adhesive 4 bends the magnetostrictive element 3. Can be prevented, and the power generation efficiency of the power generation device 1 can be improved.
  • the frame may be bent to be L-shaped, U-shaped, or U-shaped.
  • FIG. 3 is a vibration analysis model diagram of the power generation device in the first embodiment.
  • FIG. 4A shows the Young's modulus of the first adhesive 4 and the magnetostrictive element 3 as a result of vibration analysis by changing the Young's modulus of the first adhesive 4 in the analysis model shown in FIG. 3 of the power generation apparatus 1 according to the first embodiment. It is a figure which shows the relationship of distortion of.
  • FIG. 4B is a diagram illustrating the type of the first adhesive 4 of the power generation device 1 according to Embodiment 1 and the endurance test result of the power generation device 1.
  • FIG. 4C shows vibration analysis by changing the thickness of the first adhesive 4 (the thickness of the first adhesive 4 on the lower surface of the magnetostrictive element 3) in the analysis model shown in FIG. 3 of the power generation apparatus 1 according to the first embodiment. It is a figure which shows the relationship between the thickness of the 1st adhesive agent 4 of the result, and distortion of a magnetostriction element.
  • An epoxy-based adhesive was used as the first adhesive 4. However, other adhesives have a similar tendency.
  • the power generation device 1 comprises a frame 2, a magnetostrictive element 3, a first adhesive 4, a magnet 5, a coil 6, and a weight 8, and the frame 2 has a thickness of 0.8 mm and a width of 8 mm.
  • the magnetostrictive element 3 has a thickness of 1 mm and an iron-gallium based alloy having a width of 8 mm, and the first adhesive 4 has a thickness of 0.2 mm.
  • the first adhesive 4 is preferably a material having a large Young's modulus, since the strain of the magnetostrictive element 3 increases as the Young's modulus increases. As a result, epoxy type or solder type is good.
  • the first adhesive layer 4 be an epoxy type or a silicone type from the viewpoint of durability.
  • the thickness of the first adhesive 4 is preferably 0.25 mm or less as shown in FIG. 4C. At least the thickness of the first adhesive 4 should be thinner than the thickness of the magnetostrictive element 3. Furthermore, the thickness of the first adhesive 4 may be 1/3 or less of the thickness of the magnetostrictive element 3 or may be 1/4 or less.
  • an epoxy resin is used, and the thickness is preferably 0.25 mm or less.
  • the magnetostrictive element 3 is a plate-like member made of a magnetic material.
  • the type of magnetic material is not particularly limited, for example, an iron-gallium based alloy or an iron-cobalt based alloy may be used, but other materials may be used.
  • the magnetostrictive element 3 may not be a crystalline material but an amorphous material.
  • the magnetostrictive element 3 is preferably made of a ductile magnetic material because it expands / contracts under an external force.
  • the coil 6 is provided with a space or an adhesive layer around the magnetostrictive element 3 and wound, and generates a voltage in proportion to a temporal change of magnetic lines of force passing through the magnetostrictive element 3 according to the law of electromagnetic induction.
  • the coil 6 is disposed so as to wrap the laminated body of the magnetostrictive element 3 and the frame 2 on the outer periphery.
  • the material of the coil 6 is not particularly limited, for example, a copper wire or an aluminum wire can be used. Moreover, the magnitude of the voltage can be adjusted by changing the number of turns of the coil 6.
  • the coil may be divided into two or more.
  • the magnet 5 faces the magnetostrictive element 3 and is fixed to the frame 2 to form a magnetic circuit.
  • a neodymium permanent magnet is used as the magnet 5, but the magnet 5 is not particularly limited to a ferrite magnet, a cobalt magnet, or the like.
  • the magnetostrictive element 3 is fixed to be opposite to the magnet 5. However, even if one magnet is fixed to one side, the magnetic circuit may be formed.
  • the weight 8 is made of a magnetic material or a nonmagnetic material having a low permeability. It is fixed on the axis of the magnetostrictive element 3 on the frame 2 on the free end side of the power generation device 1, and a plurality of them may be stacked and fixed.
  • the first adhesive 4 of epoxy type is used for fixing, but it is not particularly limited, and may be fixed mechanically with a bolt or the like. Moreover, although the weight is provided in the first embodiment, the weight may not be provided.
  • Second Embodiment The general structure of the second embodiment is the same as that shown in FIG. The detailed structure of the second embodiment will be described in the following figures.
  • FIG. 5A is a schematic AA ′ cross-sectional view of a power generation device according to Embodiment 2 of the present invention.
  • FIG. 5B is a schematic BB ′ cross-sectional view of the power generation device in Embodiment 2 of the present invention.
  • FIG. 5C is a schematic BB ′ cross-sectional view of Modification 1 of the power generation device in the second embodiment of the present invention.
  • FIG. 5D is a schematic BB ′ cross-sectional view of Modification Example 2 of the power generation device in Embodiment 2 of the present invention.
  • the same reference numerals are used for the same components as in FIG. 1, and the description will be omitted. Matters not described are the same as in the first embodiment.
  • the power generation device 1 is formed of a frame 2, a magnetostrictive element 3, a first adhesive 4, a magnet 5, a coil 6 and a second adhesive 10.
  • the magnet 5 and the coil 6 are the same as that of Embodiment 1, and are not shown in figure.
  • the second adhesive 10 is formed on the end 3 b of the magnetostrictive element 3 in the direction perpendicular to the bending direction of the power generation device 1 to fix the frame 2 and the magnetostrictive element 3.
  • the second adhesive 10 uses a silicone resin as a material so as not to inhibit the bending of the magnetostrictive element 3.
  • At least the Young's modulus of the first adhesive 4 should be greater than the Young's modulus of the second adhesive 10. Young's modulus should be 100 times or more different.
  • the second adhesive 10 fixes the end face of the magnetostrictive element 3 and the end face of the frame 2 in the direction perpendicular to the bending direction of the power generation device 1 Form as you want.
  • the second adhesive 10 fixes the end face of the magnetostrictive element 3 to the surface of the frame 2 on the side of the magnetostrictive element 3 as shown in FIG. 5C. To form.
  • the second adhesive 10 fixes the surface of the magnetostrictive element 3 on the frame 2 side and the end face of the frame 2 as shown in FIG. 5D. To form.
  • Embodiments 1 and 2 can be combined.
  • the frame 2 is a straight rod, but may be a curved or U-shaped frame.
  • the power generation device of the present invention can improve power generation efficiency, and is a key component in IoT where many usage scenes are expected in the industrial field, crime prevention / disaster prevention field, social infrastructure field, medical / welfare field, etc. It is particularly useful for application to wireless sensor modules that are

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Provided is a power generation device having: a magnetostrictive element formed of a magnetostrictive material; a coil into which the magnetostrictive element is inserted; a frame having the magnetostrictive element disposed thereon and having one end in a longitudinal direction as a fixed end and the other end in the longitudinal direction as a free end; a first adhesive fixing the magnetostrictive element to the frame; a magnet disposed on the frame; and a fillet portion of the first adhesive at an end of the magnetostrictive element in the longitudinal direction.

Description

発電装置Power generator
 本発明は、振動を利用した発電装置に関する。特に、磁歪材料を使用した発電装置に関するものである。 The present invention relates to a power generator using vibration. In particular, the present invention relates to a power generator using a magnetostrictive material.
 近年、無線でも使用できる機器が求められている。機器自体で発電するために、振動発電が利用できる。 In recent years, devices that can be used wirelessly are being sought. Vibration power generation can be used to generate power on the equipment itself.
 振動発電には、圧電方式、静電誘導方式、電磁誘導方式、磁歪方式がある。しかし、圧電素子(ピエゾ素子)を使用した圧電方式は、素子の脆弱性により機械的な耐久性が低い。電磁誘導方式では、可動部があるため小型化に課題がある。その中で鉄系の磁歪材料を使用した磁歪方式は、磁歪素子が延性材料のため、機械的特性、加工性に優れる。また、この磁歪方式は、電気的にもインピーダンスが低いため、無線センサーモジュールへの適用に有用である。 Vibration power generation includes a piezoelectric method, an electrostatic induction method, an electromagnetic induction method, and a magnetostrictive method. However, the piezoelectric method using a piezoelectric element (piezo element) has low mechanical durability due to the fragility of the element. In the electromagnetic induction method, there is a problem in downsizing because there is a movable portion. Among them, the magnetostrictive system using an iron-based magnetostrictive material is excellent in mechanical properties and processability because the magnetostrictive element is a ductile material. In addition, this magnetostrictive method is useful for application to a wireless sensor module because the impedance is also low electrically.
 この磁歪方式による振動発電では、磁歪素子に応力を加えることで、逆磁歪効果により発生する磁力線が変化する。電磁誘導の法則により、この磁力線が変化により、磁歪素子の周囲に巻かれたコイルに、起電力を発生する。つまり、この磁歪方式による振動発電は、機械エネルギーを電気エネルギーに変化する発電方式である。 In this magnetostrictive vibrational power generation, applying a stress to the magnetostrictive element changes the lines of magnetic force generated by the inverse magnetostrictive effect. According to the law of electromagnetic induction, a change in the lines of magnetic force generates an electromotive force in the coil wound around the magnetostrictive element. That is, this magnetostrictive vibrational power generation is a power generation method that converts mechanical energy into electrical energy.
 図6に特許文献1による磁歪方式を適用した発電装置の概略構成図を示す。 The schematic block diagram of the electric power generating apparatus which applied the magnetostriction system by patent document 1 to FIG. 6 is shown.
 特許文献1においては、振動中の運動エネルギーの損失を抑えて振動を長時間継続させることができる発電素子と発電素子の構造を利用するアクチュエータが提案されている。 Patent Document 1 proposes an actuator that uses a structure of a power generation element and a power generation element that can continue vibration for a long time while suppressing the loss of kinetic energy during vibration.
 図6に示すように、発電装置100は、発電部160、フレーム110、磁石170、錘140から概略構成される。発電部160は、フレーム110の自由端側120の変位により、逆磁歪効果による発電を行うために設けられている。発電部160は、図7に示すように、磁歪素子161、コイル162、磁性板163から構成されている。磁歪素子161は、磁性材料で構成される板状の部材である。磁石170からの磁力線は、フレーム110と磁歪素子161を通過することで、磁気回路が形成される。 As shown in FIG. 6, the power generation device 100 is roughly configured of a power generation unit 160, a frame 110, a magnet 170, and a weight 140. The power generation unit 160 is provided to perform power generation by the inverse magnetostrictive effect by the displacement of the free end side 120 of the frame 110. As shown in FIG. 7, the power generation unit 160 includes a magnetostrictive element 161, a coil 162, and a magnetic plate 163. The magnetostrictive element 161 is a plate-like member made of a magnetic material. Magnetic lines of force from the magnet 170 pass through the frame 110 and the magnetostrictive element 161 to form a magnetic circuit.
 図6の発電装置100では、フレーム110の自由端側120は、固定端側130から開く、または閉じるように変形する。自由端側120の端部に錘140を取り付けることで、一旦振動を開始した錘140は、慣性力により長時間振動し続けるので、フレーム110全体の振動を長時間持続させられる。また、固定端側130の端部に鉛直方向の大きな衝撃力Fを付加することで、錘140に大きな慣性力を作用させてフレーム110を振動させる。これらの動作により、磁歪素子161に引張力または、圧縮力が加わり、逆磁歪効果によりコイル162に誘導電流が発生して発電される。 In the power generation apparatus 100 of FIG. 6, the free end 120 of the frame 110 is deformed to open or close from the fixed end 130. By attaching the weight 140 to the end of the free end side 120, the weight 140 once started to vibrate continues to vibrate for a long time by the inertial force, so that the vibration of the entire frame 110 can be sustained for a long time. Further, by applying a large impact force F in the vertical direction to the end of the fixed end side 130, a large inertia force is applied to the weight 140 to vibrate the frame 110. By these operations, a tensile force or a compressive force is applied to the magnetostrictive element 161, and an induced current is generated in the coil 162 by the inverse magnetostrictive effect to generate electric power.
国際公開第2015/141414号International Publication No. 2015/141414
 しかしながら、前記従来の構成では、縦弾性率の異なるフレーム110と磁歪素子161を固定端側130でのみ固定するため、発電装置を振動させた時にフレーム110の曲げが磁歪素子161の全体に伝わらず減衰してしまい、発電効率が低下するという課題を有している。 However, in the conventional configuration, since the frame 110 and the magnetostrictive element 161 having different longitudinal elastic moduli are fixed only at the fixed end side 130, the bending of the frame 110 is not transmitted to the entire magnetostrictive element 161 when the power generation apparatus is vibrated. It has the problem that it attenuates and power generation efficiency falls.
 本発明は、前記従来の課題を解決するもので、フレーム110の曲げを減衰させずに磁歪素子161に伝えることで発電効率を向上する発電装置を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a power generation device that improves power generation efficiency by transmitting the magnetostrictive element 161 without attenuating bending of the frame 110.
 上記目的を達成するために、磁歪材料からなる磁歪素子と、上記磁歪素子が挿入されるコイルと、上記磁歪素子が配置され、長手方向の一方の端部が固定端、上記長手方向の他方の端部が自由端であるフレームと、上記磁歪素子を上記フレームへ固定する第1接着剤と、上記フレームは配置された磁石と、を有し、上記磁歪素子の上記長手方向の端部には、上記第1接着剤のフィレット部を有する発電装置を用いる。 In order to achieve the above object, a magnetostrictive element made of a magnetostrictive material, a coil into which the magnetostrictive element is inserted, and the magnetostrictive element are disposed, and one end in the longitudinal direction is a fixed end, the other in the longitudinal direction The frame has a free end, a first adhesive for fixing the magnetostrictive element to the frame, and the frame has a magnet disposed, and the longitudinal end of the magnetostrictive element is at the end. Using a power generator having a fillet portion of the first adhesive.
 本発明の発電装置によれば、振動のエネルギーを効率よく電力に変換することが可能となる。 According to the power generator of the present invention, it is possible to efficiently convert vibrational energy into electric power.
図1は、本発明の実施の形態1における発電装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a power generation device according to Embodiment 1 of the present invention. 図2Aは、本発明の実施の形態1における発電装置の概略AA´断面図である。FIG. 2A is a schematic AA ′ cross-sectional view of the power generation device according to Embodiment 1 of the present invention. 図2Bは、本発明の実施の形態1における発電装置の概略BB´断面図である。FIG. 2B is a schematic BB ′ cross-sectional view of the power generation device in Embodiment 1 of the present invention. 図2Cは、本発明の実施の形態1における発電装置の変形例1の概略BB´断面図である。FIG. 2C is a schematic BB ′ cross-sectional view of Modification Example 1 of the power generation device in Embodiment 1 of the present invention. 図2Dは、本発明の実施の形態1における発電装置の変形例2の概略BB´断面図である。FIG. 2D is a schematic BB ′ cross-sectional view of Modification 2 of the power generation device in Embodiment 1 of the present invention. 図3は、本発明の実施の形態1における発電装置の振動解析モデル図である。FIG. 3 is a vibration analysis model diagram of the power generation device according to Embodiment 1 of the present invention. 図4Aは、本発明の実施の形態1における発電装置の接着剤ヤング率と磁歪素子ひずみの関係グラフである。FIG. 4A is a graph showing the relationship between the adhesive Young's modulus and the magnetostrictive element strain of the power generation apparatus according to Embodiment 1 of the present invention. 図4Bは、本発明の実施の形態1における発電装置の接着剤の種類と発電装置の耐久性を表した図である。FIG. 4B is a diagram showing the type of adhesive of the power generation device and the durability of the power generation device in the first embodiment of the present invention. 図4Cは、本発明の実施の形態1における発電装置の接着剤の厚みと磁歪素子ひずみの関係グラフである。FIG. 4C is a graph showing the relationship between the thickness of the adhesive and the magnetostrictive element strain of the power generation apparatus according to Embodiment 1 of the present invention. 図5Aは、本発明の実施の形態2における発電装置の概略AA´断面図である。FIG. 5A is a schematic AA ′ cross-sectional view of a power generation device according to Embodiment 2 of the present invention. 図5Bは、本発明の実施の形態2における発電装置の概略BB´断面図である。FIG. 5B is a schematic BB ′ cross-sectional view of the power generation device in Embodiment 2 of the present invention. 図5Cは、本発明の実施の形態2における発電装置の変形例1の概略BB´断面図である。FIG. 5C is a schematic BB ′ cross-sectional view of Modification 1 of the power generation device in the second embodiment of the present invention. 図5Dは、本発明の実施の形態2における発電装置の変形例2の概略BB´断面図である。FIG. 5D is a schematic BB ′ cross-sectional view of Modification Example 2 of the power generation device in Embodiment 2 of the present invention. 図6は、特許文献1による発電装置の概略構成の側面図である。FIG. 6 is a side view of a schematic configuration of a power generation device according to Patent Document 1. 図7は、特許文献1による発電部の概略構成の断面図である。FIG. 7 is a cross-sectional view of a schematic configuration of a power generation unit according to Patent Document 1.
 以下本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態1)
 <構造>
 図1は、本発明の実施の形態1における発電装置の概略構成図である。
Embodiment 1
<Structure>
FIG. 1 is a schematic configuration diagram of a power generation device according to Embodiment 1 of the present invention.
 図2Aは、本発明の実施の形態1における発電装置の概略AA´断面図であり、図2Bは、本発明の実施の形態1における発電装置の概略BB´断面図、図2Cは、本発明の実施の形態1における発電装置の変形例1の概略BB´断面図、図2Dは本発明の実施の形態1における発電装置の変形例2の概略BB´断面図である。 FIG. 2A is a schematic AA ′ sectional view of the power generation apparatus in the first embodiment of the present invention, FIG. 2B is a schematic BB ′ sectional view of the power generation apparatus in the first embodiment of the present invention, and FIG. FIG. 2D is a schematic BB ′ sectional view of a second modification of the power generation device according to the first embodiment of the present invention.
 図1、図2A~図2Dにおいて、発電装置1は、フレーム2と、磁歪素子3と、第1接着剤4と、磁石5と、コイル6から構成される。フレーム2と磁歪素子3は、第1接着剤4で貼り付けられており、曲げ方向の磁歪素子3の端部3aにフィレット部4aを有し、曲げ方向と垂直な方向にある磁歪素子3の端部3bにはフィレット部、または、樹脂などの接着部を形成しない。 In FIGS. 1 and 2A to 2D, the power generation device 1 includes a frame 2, a magnetostrictive element 3, a first adhesive 4, a magnet 5, and a coil 6. The frame 2 and the magnetostrictive element 3 are attached by the first adhesive 4 and have a fillet 4a at the end 3a of the magnetostrictive element 3 in the bending direction, and the magnetostrictive element 3 is in the direction perpendicular to the bending direction. In the end 3b, a fillet or a bonding portion such as a resin is not formed.
 第1接着剤4は、フレーム2の上面と磁歪素子3の底面とを接着する。第1接着剤4は、磁歪素子3の底面の全体、または、底面のほとんどを接着する。 The first adhesive 4 bonds the top surface of the frame 2 to the bottom surface of the magnetostrictive element 3. The first adhesive 4 bonds the entire bottom surface of the magnetostrictive element 3 or most of the bottom surface.
 フレーム2と磁歪素子3とは接触しないのが好ましい。 Preferably, the frame 2 and the magnetostrictive element 3 are not in contact with each other.
 この発電装置1の曲げ方向と垂直な方向にある磁歪素子3の端部3bに第1接着剤4のフィレット部を形成しない特徴は、図2A、図2Bに示すように、フレーム2と磁歪素子3が同じ幅の場合のみならず、図2Cに示すように、フレーム2の幅よりも磁歪素子3の幅が狭い場合や、図2Dに示すように、フレーム2の幅よりも磁歪素子3の幅が広い場合も、同様である。 The characteristic that the fillet portion of the first adhesive 4 is not formed at the end 3b of the magnetostrictive element 3 which is in the direction perpendicular to the bending direction of the power generator 1 is that the frame 2 and the magnetostrictive element are shown in FIGS. Not only when 3 is the same width, but also when the width of the magnetostrictive element 3 is narrower than the width of the frame 2 as shown in FIG. 2C, or as shown in FIG. The same is true when the width is wide.
 磁歪素子3の端部3bにはフィレット部を形成すると、磁歪素子3が曲がりにくい。 When the fillet portion is formed at the end 3 b of the magnetostrictive element 3, the magnetostrictive element 3 does not easily bend.
 なお、曲げ方向は、フレーム2の長手方向である。図2B~図2Dでは、コイル6、磁石5等は略して表示している。 The bending direction is the longitudinal direction of the frame 2. In FIG. 2B to FIG. 2D, the coil 6, the magnet 5 and the like are shown abbreviated.
 <効果>
 かかる構成によれば、第1接着剤4でフレーム2と磁歪素子3の底面を接着することにより、磁歪素子3の端部のみでフレーム2と固定する場合よりもフレーム2の曲げを減衰することなく磁歪素子3に伝えることができる。
<Effect>
According to this configuration, by bonding the frame 2 and the bottom surface of the magnetostrictive element 3 with the first adhesive 4, the bending of the frame 2 is attenuated more than in the case where the frame 2 is fixed to the frame 2 only at the end of the magnetostrictive element 3. Can be transmitted to the magnetostrictive element 3.
 また、発電装置1の曲げ方向である磁歪素子3の端部3aに、第1接着剤4のフィレット部4aを形成することで、より強固にフレーム2と磁歪素子3を接着できる。 Further, by forming the fillet portion 4 a of the first adhesive 4 at the end 3 a of the magnetostrictive element 3 in the bending direction of the power generation device 1, the frame 2 and the magnetostrictive element 3 can be more firmly adhered.
 さらに、発電装置1の曲げに垂直な方向にある、磁歪素子3の端部3bには第1接着剤4のフィレット部を形成しないことで、第1接着剤4のフィレットが磁歪素子3の曲げを阻害することを防ぎ、発電装置1の発電効率を向上することができる。 Furthermore, by not forming the fillet portion of the first adhesive 4 at the end 3 b of the magnetostrictive element 3 in the direction perpendicular to the bending of the power generation device 1, the fillet of the first adhesive 4 bends the magnetostrictive element 3. Can be prevented, and the power generation efficiency of the power generation device 1 can be improved.
 なお、本実施の形態において、片持ち梁形状のフレーム2を設けたが、フレームを曲げ、L字形状やU字形状、コの字形状としても良い。 In the present embodiment, although the cantilever-shaped frame 2 is provided, the frame may be bent to be L-shaped, U-shaped, or U-shaped.
 <振動解析モデル>
 図3は、実施の形態1における発電装置の振動解析モデル図である。
Vibration analysis model
FIG. 3 is a vibration analysis model diagram of the power generation device in the first embodiment.
 図4Aは、実施の形態1における発電装置1を図3に示す解析モデルにおいて、第1接着剤4のヤング率を変化させて振動解析した結果の第1接着剤4のヤング率と磁歪素子3のひずみの関係を示す図である。 FIG. 4A shows the Young's modulus of the first adhesive 4 and the magnetostrictive element 3 as a result of vibration analysis by changing the Young's modulus of the first adhesive 4 in the analysis model shown in FIG. 3 of the power generation apparatus 1 according to the first embodiment. It is a figure which shows the relationship of distortion of.
 図4Bは、実施の形態1における発電装置1の第1接着剤4の種類と発電装置1の耐久性実験結果を表した図である。 FIG. 4B is a diagram illustrating the type of the first adhesive 4 of the power generation device 1 according to Embodiment 1 and the endurance test result of the power generation device 1.
 図4Cは、実施の形態1における発電装置1を、図3に示す解析モデルにおいて、第1接着剤4の厚み(磁歪素子3の下面の第1接着材4の厚み)を変化させて振動解析した結果の第1接着剤4の厚みと磁歪素子のひずみの関係を示す図である。第1接着剤4としては、エポキシ系の接着剤を用いた。しかし、他の接着剤でも同様の傾向があった。 FIG. 4C shows vibration analysis by changing the thickness of the first adhesive 4 (the thickness of the first adhesive 4 on the lower surface of the magnetostrictive element 3) in the analysis model shown in FIG. 3 of the power generation apparatus 1 according to the first embodiment. It is a figure which shows the relationship between the thickness of the 1st adhesive agent 4 of the result, and distortion of a magnetostriction element. An epoxy-based adhesive was used as the first adhesive 4. However, other adhesives have a similar tendency.
 図3において、発電装置1は、フレーム2と磁歪素子3と第1接着剤4と磁石5とコイル6と錘8からなり、フレーム2の厚みは0.8mm、幅は8mmの磁性体材料、磁歪素子3の厚みは1mm、幅8mmの鉄ガリウム系の合金、第1接着剤4の厚みは0.2mmで構成される。 In FIG. 3, the power generation device 1 comprises a frame 2, a magnetostrictive element 3, a first adhesive 4, a magnet 5, a coil 6, and a weight 8, and the frame 2 has a thickness of 0.8 mm and a width of 8 mm. The magnetostrictive element 3 has a thickness of 1 mm and an iron-gallium based alloy having a width of 8 mm, and the first adhesive 4 has a thickness of 0.2 mm.
 図4Aに示すように、第1接着剤4は、ヤング率が大きい程、磁歪素子3のひずみが大きくなることから、ヤング率の大きい材料が好ましい。結果、エポキシ系か、はんだ系がよい。 As shown in FIG. 4A, the first adhesive 4 is preferably a material having a large Young's modulus, since the strain of the magnetostrictive element 3 increases as the Young's modulus increases. As a result, epoxy type or solder type is good.
 また、図4Bに示すように、第1接着層4は、耐久性の観点からエポキシ系か、シリコーン系が望ましい。 Further, as shown in FIG. 4B, it is desirable that the first adhesive layer 4 be an epoxy type or a silicone type from the viewpoint of durability.
 第1接着剤4の厚みについては、図4Cに示すように、0.25mm以下が望ましい。少なくとも、第1接着剤4の厚みは、磁歪素子3の厚みより薄いのがよい。さらに、第1接着剤4の厚みは、磁歪素子3の厚みの3分の1以下がよく、4分の1以下でもよい。 The thickness of the first adhesive 4 is preferably 0.25 mm or less as shown in FIG. 4C. At least the thickness of the first adhesive 4 should be thinner than the thickness of the magnetostrictive element 3. Furthermore, the thickness of the first adhesive 4 may be 1/3 or less of the thickness of the magnetostrictive element 3 or may be 1/4 or less.
 結果、エポキシ系樹脂を使用し、厚みは、0.25mm以下が好ましい。 As a result, an epoxy resin is used, and the thickness is preferably 0.25 mm or less.
 <磁歪素子3>
 磁歪素子3は、磁性材料で構成される板状の部材である。磁性材料の種類は特に限定されるものではないが、例えば鉄ガリウム系の合金、鉄コバルト系の合金を用いることができるが、その他の材料であってもよい。
<Magnetostrictive element 3>
The magnetostrictive element 3 is a plate-like member made of a magnetic material. Although the type of magnetic material is not particularly limited, for example, an iron-gallium based alloy or an iron-cobalt based alloy may be used, but other materials may be used.
 また、磁歪素子3は、結晶状態の材料ではなく、アモルファス状態の材料であってもよい。加えて、磁歪素子3は、外力を受けて伸張/収縮するため、延性を有する磁性材料で構成するのが好ましい。 In addition, the magnetostrictive element 3 may not be a crystalline material but an amorphous material. In addition, the magnetostrictive element 3 is preferably made of a ductile magnetic material because it expands / contracts under an external force.
 <コイル6>
 コイル6は、磁歪素子3の周囲に空間もしくは接着層を設けて巻かれており、電磁誘導の法則により磁歪素子3内を通過する磁力線の時間変化に比例して、電圧を発生させる。
<Coil 6>
The coil 6 is provided with a space or an adhesive layer around the magnetostrictive element 3 and wound, and generates a voltage in proportion to a temporal change of magnetic lines of force passing through the magnetostrictive element 3 according to the law of electromagnetic induction.
 図2Aでは、コイル6は、磁歪素子3とフレーム2の積層体を外周を巻くように配置されている。 In FIG. 2A, the coil 6 is disposed so as to wrap the laminated body of the magnetostrictive element 3 and the frame 2 on the outer periphery.
 コイル6の材質は特に限定されるものではないが、例えば銅線、アルミ線を用いることができる。また、コイル6の巻き数を変更することにより電圧の大きさを調整できる。 Although the material of the coil 6 is not particularly limited, for example, a copper wire or an aluminum wire can be used. Moreover, the magnitude of the voltage can be adjusted by changing the number of turns of the coil 6.
 なお、本実施の形態においてコイル6は1つ設けたが、コイルは2つ以上に分割して設けても良い。 Although one coil 6 is provided in the present embodiment, the coil may be divided into two or more.
 <磁石5>
 磁石5は、磁歪素子3に対向してフレーム2に固定することで磁気回路が形成される。
<Magnet 5>
The magnet 5 faces the magnetostrictive element 3 and is fixed to the frame 2 to form a magnetic circuit.
 なお、本実施の形態1では、磁石5はネオジウム系の永久磁石を使用するが、フェライト系、コバルト系など、特に限定されるものではない。また、本実施の形態1では磁石5は磁歪素子3を対向して固定しているが、片側に1つ固定しても磁気回路は形成されるので、1つでもよい。 In the first embodiment, a neodymium permanent magnet is used as the magnet 5, but the magnet 5 is not particularly limited to a ferrite magnet, a cobalt magnet, or the like. In the first embodiment, the magnetostrictive element 3 is fixed to be opposite to the magnet 5. However, even if one magnet is fixed to one side, the magnetic circuit may be formed.
 <錘8>
 錘8は、透磁率の低い磁性材料もしくは、非磁性材料からなる。発電装置1の自由端側のフレーム2に磁歪素子3の軸上に固定されており、複数個重ねて固定してもよい。
<Weight 8>
The weight 8 is made of a magnetic material or a nonmagnetic material having a low permeability. It is fixed on the axis of the magnetostrictive element 3 on the frame 2 on the free end side of the power generation device 1, and a plurality of them may be stacked and fixed.
 本実施の形態1においては、エポキシ系の第1接着剤4を使用して固定しているが、特に限定されるものではなく、ボルトなどで機械的に固定してもよい。また、本実施の形態1では錘を設けているが、設けなくても良い。 In the first embodiment, the first adhesive 4 of epoxy type is used for fixing, but it is not particularly limited, and may be fixed mechanically with a bolt or the like. Moreover, although the weight is provided in the first embodiment, the weight may not be provided.
 (実施の形態2)
 実施の形態2の概略の構造は、図1と同様である。実施の形態2の詳細構造は、以下の図で説明する。
Second Embodiment
The general structure of the second embodiment is the same as that shown in FIG. The detailed structure of the second embodiment will be described in the following figures.
 図5Aは、本発明の実施の形態2における発電装置の概略AA´断面図である。図5Bは、本発明の実施の形態2における発電装置の概略BB´断面図である。図5Cは、本発明の実施の形態2における発電装置の変形例1の概略BB´断面図である。図5Dは、本発明の実施の形態2における発電装置の変形例2の概略BB´断面図である。図5A~図5Dにおいて、図1と同じ構成要素については同じ符号を用い、説明を省略する。説明しない事項は、実施の形態1と同様である。 FIG. 5A is a schematic AA ′ cross-sectional view of a power generation device according to Embodiment 2 of the present invention. FIG. 5B is a schematic BB ′ cross-sectional view of the power generation device in Embodiment 2 of the present invention. FIG. 5C is a schematic BB ′ cross-sectional view of Modification 1 of the power generation device in the second embodiment of the present invention. FIG. 5D is a schematic BB ′ cross-sectional view of Modification Example 2 of the power generation device in Embodiment 2 of the present invention. In FIG. 5A to FIG. 5D, the same reference numerals are used for the same components as in FIG. 1, and the description will be omitted. Matters not described are the same as in the first embodiment.
 図5Aにおいて、発電装置1はフレーム2と、磁歪素子3と、第1接着剤4と、磁石5と、コイル6と第2接着剤10から形成される。なお、磁石5と、コイル6は、実施の形態1と同様であり、図示していない。第2接着剤10は、発電装置1の曲げ方向と垂直な方向にある磁歪素子3の端部3bに形成し、フレーム2と磁歪素子3を固定する。第2接着剤10は磁歪素子3の曲げを阻害しないように、シリコーン系の樹脂を材料に用いる。 In FIG. 5A, the power generation device 1 is formed of a frame 2, a magnetostrictive element 3, a first adhesive 4, a magnet 5, a coil 6 and a second adhesive 10. In addition, the magnet 5 and the coil 6 are the same as that of Embodiment 1, and are not shown in figure. The second adhesive 10 is formed on the end 3 b of the magnetostrictive element 3 in the direction perpendicular to the bending direction of the power generation device 1 to fix the frame 2 and the magnetostrictive element 3. The second adhesive 10 uses a silicone resin as a material so as not to inhibit the bending of the magnetostrictive element 3.
 少なくとも、第1接着剤4のヤング率は、第2接着剤10のヤング率より、大きいのがよい。ヤング率が100倍以上異なるとよい。 At least the Young's modulus of the first adhesive 4 should be greater than the Young's modulus of the second adhesive 10. Young's modulus should be 100 times or more different.
 第2接着剤10は、フレーム2と磁歪素子3が同じ幅の場合、図5Bに示すように、発電装置1の曲げ方向と垂直な方向にある磁歪素子3の端面とフレーム2の端面を固定するように形成する。 When the frame 2 and the magnetostrictive element 3 have the same width, as shown in FIG. 5B, the second adhesive 10 fixes the end face of the magnetostrictive element 3 and the end face of the frame 2 in the direction perpendicular to the bending direction of the power generation device 1 Form as you want.
 また、フレーム2の幅よりも磁歪素子3の幅が狭い場合、第2接着剤10は、図5Cに示すように、磁歪素子3の端面とフレーム2の磁歪素子3側の面を固定するように形成する。 When the width of the magnetostrictive element 3 is narrower than the width of the frame 2, the second adhesive 10 fixes the end face of the magnetostrictive element 3 to the surface of the frame 2 on the side of the magnetostrictive element 3 as shown in FIG. 5C. To form.
 さらに、フレーム2の幅よりも磁歪素子3の幅が広い場合、第2接着剤10は、図5Dに示すように、磁歪素子3のフレーム2側の面と、フレーム2の端面を固定するように形成する。 Furthermore, when the width of the magnetostrictive element 3 is wider than the width of the frame 2, the second adhesive 10 fixes the surface of the magnetostrictive element 3 on the frame 2 side and the end face of the frame 2 as shown in FIG. 5D. To form.
 なお、図5B~図5Dでは、コイル6、磁石5等は略して表示している。 In FIG. 5B to FIG. 5D, the coil 6, the magnet 5 and the like are abbreviated.
 (全体として)
 実施の形態1,2は、組み合わせることができる。
(as a whole)
Embodiments 1 and 2 can be combined.
 実施の形態1,2では、フレーム2は、直線の棒状であったが、湾曲、U字形状のフレームでもよい。 In the first and second embodiments, the frame 2 is a straight rod, but may be a curved or U-shaped frame.
 本発明の発電装置は、発電効率を向上することが可能であり、産業分野、防犯・防災分野、社会インフラ分野、医療・福祉分野などで多くの利用シーンが想定されているIoTにおいて、キーコンポーネントである無線センサーモジュールへの適用に対して特に有用である。 The power generation device of the present invention can improve power generation efficiency, and is a key component in IoT where many usage scenes are expected in the industrial field, crime prevention / disaster prevention field, social infrastructure field, medical / welfare field, etc. It is particularly useful for application to wireless sensor modules that are
 1 発電装置
 2 フレーム
 3 磁歪素子
 3a 端部
 3b 端部
 4 第1接着剤
 4a フィレット部
 5 磁石
 6 コイル
 8 錘
 10 第2接着剤
 100 発電装置
 110 フレーム
 120 自由端側
 130 固定端側
 140 錘
 160 発電部
 161 磁歪素子
 162 コイル
 163 磁性板
 170 磁石
Reference Signs List 1 power generator 2 frame 3 magnetostrictive element 3 a end 3 b end 4 first adhesive 4 a fillet 5 magnet 6 coil 8 weight 10 second adhesive 100 power generator 110 frame 120 free end side 130 fixed end side 140 weight 160 power generation Part 161 Magnetostrictive element 162 Coil 163 Magnetic plate 170 Magnet

Claims (8)

  1. 磁歪材料からなる磁歪素子と、
    前記磁歪素子が挿入されるコイルと、
    前記磁歪素子が配置され、長手方向の一方の端部が固定端、前記長手方向の他方の端部が自由端であるフレームと、
    前記磁歪素子を前記フレームへ固定する第1接着剤と、
    前記フレームは配置された磁石と、を有し、
    前記磁歪素子の前記長手方向の端部には、前記第1接着剤で形成されたフィレット部を有する発電装置。
    A magnetostrictive element made of a magnetostrictive material,
    A coil into which the magnetostrictive element is inserted;
    A frame in which the magnetostrictive element is disposed, and one end in the longitudinal direction is a fixed end, and the other end in the longitudinal direction is a free end;
    A first adhesive for fixing the magnetostrictive element to the frame;
    The frame has a disposed magnet;
    The electric power generating apparatus which has the fillet part formed with the said 1st adhesive agent at the edge part of the said longitudinal direction of the said magnetostriction element.
  2. 前記磁歪素子と前記フレームとの間には、前記第1接着剤の層があり、前記磁歪素子と前記フレームとは接触しない請求項1記載の発電装置。 The power generation apparatus according to claim 1, wherein a layer of the first adhesive is provided between the magnetostrictive element and the frame, and the magnetostrictive element is not in contact with the frame.
  3. 前記長手方向と垂直な方向にある前記磁歪素子の端部には前記第1接着剤のフィレット部を形成しない請求項1記載の発電装置。 The power generation apparatus according to claim 1, wherein a fillet portion of the first adhesive is not formed at an end portion of the magnetostrictive element which is in a direction perpendicular to the longitudinal direction.
  4. 前記第1接着剤がエポキシ樹脂である請求項1に記載の発電装置。 The power generator according to claim 1, wherein the first adhesive is an epoxy resin.
  5. 前記長手方向と垂直な方向にある前記磁歪素子の端部には、前記第1接着材と異なる第2接着剤で前記磁歪素子を固定する請求項1に記載の発電装置。 The power generation device according to claim 1, wherein the magnetostrictive element is fixed to an end portion of the magnetostrictive element in a direction perpendicular to the longitudinal direction with a second adhesive different from the first adhesive.
  6. 前記第1接着剤のヤング率は、前記第2接着剤のヤング率より、大きい請求項5記載の発電装置。 The power generation device according to claim 5, wherein Young's modulus of the first adhesive is larger than Young's modulus of the second adhesive.
  7. 前記第2接着剤がシリコーン樹脂である請求項5記載の発電装置。 The power generator according to claim 5, wherein the second adhesive is a silicone resin.
  8. 前記第1接着剤の前記磁歪素子の底面部での厚みは、前記磁歪素子より薄い請求項1に記載の発電装置。 The electric power generating apparatus according to claim 1, wherein a thickness of the first adhesive at a bottom surface portion of the magnetostrictive element is thinner than the magnetostrictive element.
PCT/JP2018/041896 2017-12-27 2018-11-13 Power generation device WO2019130862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017250638 2017-12-27
JP2017-250638 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019130862A1 true WO2019130862A1 (en) 2019-07-04

Family

ID=67063049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041896 WO2019130862A1 (en) 2017-12-27 2018-11-13 Power generation device

Country Status (1)

Country Link
WO (1) WO2019130862A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264655A1 (en) * 2021-06-14 2022-12-22 スミダコーポレーション株式会社 Magnetostrictive power generation element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007646A1 (en) * 2009-07-17 2011-01-20 株式会社村田製作所 Structure for bonding metal plate and piezoelectric body and bonding method
WO2013038682A1 (en) * 2011-09-16 2013-03-21 国立大学法人金沢大学 Power generating element and power generation device
JP2014107982A (en) * 2012-11-28 2014-06-09 Fujitsu Ltd Power generator
JP2016029873A (en) * 2014-07-25 2016-03-03 株式会社デンソー Power generating apparatus
JP2017072398A (en) * 2015-10-05 2017-04-13 アズビル株式会社 Ultrasonic sensor
US20170309809A1 (en) * 2016-04-20 2017-10-26 Honeywell International Inc. Constrained piezo-electric element to improve drive capability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007646A1 (en) * 2009-07-17 2011-01-20 株式会社村田製作所 Structure for bonding metal plate and piezoelectric body and bonding method
WO2013038682A1 (en) * 2011-09-16 2013-03-21 国立大学法人金沢大学 Power generating element and power generation device
JP2014107982A (en) * 2012-11-28 2014-06-09 Fujitsu Ltd Power generator
JP2016029873A (en) * 2014-07-25 2016-03-03 株式会社デンソー Power generating apparatus
JP2017072398A (en) * 2015-10-05 2017-04-13 アズビル株式会社 Ultrasonic sensor
US20170309809A1 (en) * 2016-04-20 2017-10-26 Honeywell International Inc. Constrained piezo-electric element to improve drive capability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264655A1 (en) * 2021-06-14 2022-12-22 スミダコーポレーション株式会社 Magnetostrictive power generation element

Similar Documents

Publication Publication Date Title
US9571011B2 (en) Power generating element and power generation device
TW201308866A (en) Transducer module
JP5998879B2 (en) Power generator
KR20130028940A (en) Power generation element and power generation apparatus provided with power generation element
US20140333156A1 (en) Electric power generation device
WO2012127859A1 (en) Vibration power generator
JP6016945B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
WO2015141414A1 (en) Power generation element and actuator using structure of said power generation element
JP6053794B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
WO2011077683A1 (en) Electroacoustic transducer, electronic device, method for converting electronic sound, and method for outputting acoustic wave from electronic device
JP5643919B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
WO2019130862A1 (en) Power generation device
WO2014103424A1 (en) Sound generator, sound generation device and electronic device
WO2019044127A1 (en) Linear vibration motor and electronic apparatus
JP6125344B2 (en) Magnetostrictive vibration power generator
JP2014127767A (en) Acoustic generator, acoustic generating device, and electronic apparatus
JP5602978B2 (en) SOUND GENERATOR, SOUND GENERATOR, AND ELECTRONIC DEVICE
JP6914306B2 (en) Magnetostrictive power generation element, power generation device, power generation system
JP5880579B2 (en) Power generator
JP7083985B2 (en) Vibration power generation element and its manufacturing method
WO2014050439A1 (en) Acoustic generator, acoustic generation device, and electronic apparatus
KR20130016004A (en) Transducer module
JP2020088933A (en) Power generation device
KR101085461B1 (en) Apparatus for small sized actuator using different elastic spring
KR20150059512A (en) Energy harvester using magnetic shape memory alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP