WO2019130822A1 - Resin composition, resin layer, and layered sheet - Google Patents

Resin composition, resin layer, and layered sheet Download PDF

Info

Publication number
WO2019130822A1
WO2019130822A1 PCT/JP2018/040971 JP2018040971W WO2019130822A1 WO 2019130822 A1 WO2019130822 A1 WO 2019130822A1 JP 2018040971 W JP2018040971 W JP 2018040971W WO 2019130822 A1 WO2019130822 A1 WO 2019130822A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
weight
acrylate
monomer
resin layer
Prior art date
Application number
PCT/JP2018/040971
Other languages
French (fr)
Japanese (ja)
Inventor
昌嗣 東
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018194150A external-priority patent/JP7185479B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201880082614.5A priority Critical patent/CN111492007A/en
Publication of WO2019130822A1 publication Critical patent/WO2019130822A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/02Copolymers of mineral oil hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present invention relates to a resin composition, a resin layer, and a laminated sheet.
  • the present application claims priority based on Japanese Patent Application No. 2017-254900 filed on December 28, 2017 and Japanese Patent Application No. 2018-194150 filed on October 15, 2018. , The entire contents of that application being incorporated herein by reference.
  • a pressure-sensitive adhesive (also referred to as a pressure-sensitive adhesive, hereinafter the same) exhibits a soft solid (viscoelastic) state in a temperature range around room temperature, and has a property of adhering to an adherend by pressure.
  • the pressure-sensitive adhesive is, for example, in the form of a pressure-sensitive adhesive sheet (laminated sheet) having a laminated structure having a resin layer capable of functioning as a pressure-sensitive adhesive on one side or both sides of a support. It is widely used in various industrial fields.
  • Patent documents 1 and 2 are mentioned as technical documents about an adhesive or a pressure sensitive adhesive sheet.
  • the conventional laminated sheet having an adhesive is a rough surface (surface having a concavo-convex shape) such as concrete, mortar, gypsum board, softwood plywood, wood based cement board, calcium silicate board, tile, and fiber reinforced cement board etc.
  • Adhesion to an adherend having the above and a plastic adherend such as polypropylene, which is generally recognized as a low-polar adherend has a high degree of difficulty and tends to lack adhesion. For this reason, not a pressure-sensitive adhesive but an adhesive is often used for adherends having these rough surfaces.
  • measures such as primer treatment have often been required.
  • a laminated sheet such as an adhesive sheet can be used for the purpose of bonding an adherend or a plastic member having a rough surface as described above.
  • a laminated sheet such as a pressure-sensitive adhesive sheet used for an adherend having a rough surface or a plastic member also needs a holding power from the viewpoint of holding a heavy material fixed to the adherend in a fixed state for a long time It is assumed.
  • the bonding operation of the adherend having a rough surface can be performed also in a low temperature environment such as in the winter outdoors, the laminated sheet such as an adhesive sheet has good adhesiveness to the rough surface even at a low temperature. It is desirable to show.
  • the present invention can strongly adhere to both rough surfaces and plastics while strongly adhering to adherends generally easy to adhere, such as glass, metals such as stainless steel and aluminum, etc. It is an object of the present invention to provide a resin layer that has high holding power and exhibits good adhesion even at low temperatures, and a resin composition suitable for forming the resin layer. Another related objective is to provide a laminated sheet including the above resin layer.
  • a (meth) acrylic polymer having a glass transition temperature (Tg) of -40 ° C. or less and an adhesion of 5 to 40 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer
  • a resin composition containing the application resin.
  • the (meth) acrylic polymer has a homopolymer Tg of ⁇ 50 ° C. or less and an alkyl (meth) acrylate (A1) having a branched alkyl group having 8 to 18 carbon atoms at the end of the ester group and a homopolymer It is a polymer of a monomer component including (meth) acrylate (A2) having a Tg of ⁇ 40 ° C.
  • the monomer component contains 50 to 97% by weight of the alkyl (meth) acrylate (A1) and 3 to 50% by weight of the (meth) acrylate (A2) having the ether bond.
  • alkyl (meth) acrylate (A1) may be described with “monomer A1” below.
  • (meth) acrylate (A2) which has the said ether bond may be described with “monomer A2.”
  • the adhesive force with respect to a to-be-adhered body can be improved by containing the tackifying resin of a specific amount with respect to the said (meth) acrylic-type polymer.
  • the (meth) acrylic polymer is a polymer of a monomer component containing the monomer A1 and the monomer A2 in a specific ratio, a resin layer exhibiting high surface tension and good surface adhesion even at low temperature can be obtained. Easy to form. Therefore, by combining and using the (meth) acrylic polymer and the tackifying resin in the specific amount, high adhesiveness and high holding power to rough surfaces, plastics, etc., and adhesiveness at low temperatures are suitably achieved. be able to.
  • the total proportion of the monomer A1 and the monomer A2 may be 75% by weight or more of the total monomer components forming the (meth) acrylic polymer.
  • the resin composition disclosed herein can be suitably carried out using a (meth) acrylic polymer which is a polymer of monomer components of such composition.
  • R 1 is a hydrogen atom or a methyl group.
  • AO is an alkyleneoxy group having 2 to 3 carbon atoms.
  • n is a number indicating the average added mole number of the above alkyleneoxy group, and may be, for example, 1 to 10.
  • R 2 is an aromatic ring or a linear, branched or alicyclic alkyl group. According to the monomer A2 having such a structure, a resin layer having good adhesion even at low temperature and having appropriate adhesion and holding power in a well-balanced manner is easily formed due to appropriate cohesion.
  • the tackifying resin may include at least one selected from the group consisting of rosin-based tackifying resins, terpene-based tackifying resins, petroleum-based tackifying resins, and styrene-based tackifying resins.
  • the techniques disclosed herein can be suitably practiced using such tackifying resins.
  • the resin composition disclosed herein may include at least one tackifying resin having a softening point of 90 ° C. or higher and 160 ° C.
  • the monomer component constituting the (meth) acrylic polymer may include at least one functional group-containing monomer selected from the group consisting of a monomer having a hydroxyl group, a monomer having a carboxyl group, and a monomer having an epoxy group.
  • a functional group-containing monomer can help to adjust the cohesiveness of the resin layer and the storage elastic modulus G '.
  • the weight average molecular weight (Mw) of the (meth) acrylic polymer is preferably 350,000 or more. According to the (meth) acrylic polymer having such Mw, it is easy to obtain a resin layer having well-balanced adhesion and cohesion to the rough surface and the plastic member.
  • the resin composition can contain a crosslinking agent.
  • the crosslinking agent can help to adjust the cohesiveness of the resin layer and the storage elastic modulus G '.
  • the content of the crosslinking agent can be, for example, 0.01 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer.
  • an isocyanate type crosslinking agent and an epoxy type crosslinking agent may be used preferably.
  • a resin layer formed from any of the resin compositions disclosed herein is provided.
  • Such a resin layer exhibits good adhesion to adherends such as rough surfaces and plastics, and has adequate cohesion so that it has high retention and good adhesion even at low temperatures. It can be something shown.
  • the resin layer has a storage elastic modulus G ′ at 23 ° C. of 1.0 ⁇ 10 4 Pa or more and 5.0 ⁇ 10 4 Pa or less, and a storage elastic modulus G ′ at ⁇ 10 ° C. Is 3.0 ⁇ 10 4 Pa or more and 7.0 ⁇ 10 5 Pa or less.
  • a resin layer having such properties is preferable because it has a good balance between adhesion and holding power in a room temperature range and tends to exhibit good adhesion even in a low temperature range.
  • storage-elastic-modulus G 'in 23 degreeC may be described with “storage-elastic-modulus G' (23 degreeC).”
  • storage elastic modulus G 'at -10.degree. C. may be expressed as “storage elastic modulus G' (-10.degree. C.)”.
  • the polymer gel fraction of the resin layer may range from 20% to 95% by weight. According to the resin layer having the polymer gel fraction in the above-mentioned range, it is possible to easily achieve both the adhesiveness (for example, the adhesiveness at low temperature) to the rough surface and the cohesion.
  • a laminated sheet having any of the resin layers disclosed herein on at least one side of a support.
  • the laminated sheet can be suitably used for bonding or fixing the adherend, for example, in a mode in which the resin layer is attached to the adherend.
  • the adherend include adherends having rough surfaces as described above and various plastic materials.
  • grain containing sheet can be used preferably, for example.
  • the resin layer may have a 180 ° peel adhesion of 10 N / 20 mm or more measured at a peel rate of 300 mm / min in a 23 ° C. environment.
  • the 180 ° peel adhesion at 23 ° C. may be referred to as “room temperature adhesion”.
  • the above room temperature adhesion can be suitably achieved by using the above (meth) acrylic polymer and a specific amount of tackifying resin in combination.
  • the resin layer may have a 180 ° peel adhesion of 5 N / 20 mm or more measured at a peel rate of 300 mm / min in an environment of ⁇ 10 ° C.
  • the 180 ° peel adhesion at ⁇ 10 ° C. may be referred to as “low temperature adhesion”.
  • the (meth) acrylic polymer is a polymer of a monomer component containing the monomer A1 and the monomer A2 in a specific ratio, and therefore, is excellent in flexibility even in a low temperature range. Therefore, according to the technology disclosed herein, the low temperature adhesion can be suitably achieved by using the (meth) acrylic polymer and the specific amount of the tackifying resin in combination.
  • the resin composition, resin layer and laminate sheet disclosed herein can be used, for example, as a pressure-sensitive adhesive composition, a pressure-sensitive adhesive layer and a pressure-sensitive adhesive sheet.
  • (meth) acrylate is a meaning which generally refers to acrylate and methacrylate.
  • (meth) acrylic acid means acrylic acid and methacrylic acid
  • (meth) acryloyl group generically refers to an acryloyl group and a methacryloyl group, respectively.
  • the resin composition disclosed herein is a polymer of a monomer component containing 50 to 97% by weight of monomer A1 and 3 to 50% by weight of monomer A2 and has a Tg of -40 ° C or less (meth) acrylic It contains a polymer and 5 parts by weight or more and 40 parts by weight or less of a tackifier resin with respect to 100 parts by weight of the (meth) acrylic polymer.
  • the above (meth) acrylic polymer is a specific amount of alkyl (meth) acrylate (monomer A1) having a branched alkyl group having 8 to 18 carbon atoms and a specific amount of (meth) acrylate (monomer A2) having an ether bond And are obtained by polymerizing a monomer component containing In addition, each homopolymer of the monomer A1 and the monomer A2 has a low Tg, and the obtained (meth) acrylic polymer also has a low Tg. According to the resin composition containing such (meth) acrylic polymer, high adhesion and high holding power can be expressed to the adherend having a rough surface by the action of the monomer A1 and the monomer A2.
  • Monomer A1 has low Tg and suitable cohesion and tackiness.
  • the monomer A2 has a low Tg and a suitable polarity, and has a suitable interaction with the adherend surface.
  • the resin composition containing the (meth) acrylic polymer has an adequate softness and cohesion, and an interaction with the interface, and has high adhesion and high adhesion to an adherend having a rough surface. It is presumed that the holding power can be exhibited.
  • the resin composition disclosed herein improves the wettability with respect to the low-polar adherend and the interaction with the adherend interface by including the tackifying resin, and further, it is possible to use the adhesive bulk.
  • the elastic modulus By increasing the elastic modulus, appropriate cohesion can be imparted to the resin layer. This can exhibit high adhesion to various adherends such as rough surfaces and plastics.
  • the use of a tackifying resin is particularly effective for low polarity adherends such as polyolefin resins. And by using a specific amount of the tackifying resin in combination with the (meth) acrylic polymer, it is possible to suppress the decrease in adhesiveness at a low temperature while enjoying the effect by the use of the tackifying resin. It is estimated to be.
  • an alkyl (meth) acrylate having a homopolymer Tg of ⁇ 50 ° C. or less and having a branched alkyl group having 8 to 18 carbon atoms at the end of the ester group is used.
  • the Tg of the homopolymer of the monomer A1 is preferably ⁇ 55 ° C. or less, more preferably ⁇ 60 ° C. or less, from the viewpoint of enhancing the adhesion to an adherend having a rough surface.
  • the Tg of the homopolymer of the monomer A1 is preferably ⁇ 80 ° C. or higher, more preferably ⁇ 75 ° C. or higher, from the viewpoint of enhancing the holding power.
  • the carbon number of the alkyl group of the monomer A1 is preferably 8 to 16, and more preferably 8 to 14 from the viewpoint of imparting appropriate softness to the resin layer and from the viewpoint of enhancing the cohesion of the resin layer. preferable.
  • the Tg of the homopolymer of each monomer is the numerical value described in “Polymer Handbook” (Third Edition, John Wiley & Sons, Inc., 1989).
  • the value of conventional is adopted.
  • the catalog values of the monomer manufacturing companies are adopted.
  • a value obtained by the following measuring method is used. That is, in a reactor equipped with a thermometer, a stirrer, a nitrogen introducing pipe and a reflux condenser, 100 parts by weight of the monomer to be measured, 0.1 parts by weight of 2,2'-azobisisobutyronitrile and acetic acid as a polymerization solvent Charge 200 parts by weight of ethyl, and stir for 1 hour while introducing nitrogen gas. After oxygen in the polymerization system is removed in this manner, the temperature is raised to 60 ° C.
  • test sample sheet-like homopolymer having a thickness of about 50 ⁇ m.
  • a 2-3 mg sample is taken from the obtained test sample, placed in an aluminum container, crimped and subjected to DSC measurement (Q-2000 manufactured by TA Instruments).
  • the temperature program is ⁇ 80 ° C. to 150 ° C. (measurement rate 10 ° C./min), and measurement is performed under nitrogen (50 ml / min) atmosphere gas.
  • Tmg mid-point glass transition temperature
  • the monomers A1 can be used alone or in combination of two or more. From the viewpoint of enhancing
  • (meth) acrylate having a homopolymer Tg of ⁇ 40 ° C. or less and having an ether bond in the molecular skeleton is used.
  • the Tg of the homopolymer of the monomer A2 is preferably ⁇ 45 ° C. or less, more preferably ⁇ 50 ° C. or less, from the viewpoint of enhancing the adhesion to an adherend having a rough surface.
  • the Tg of the homopolymer of the monomer A2 is preferably ⁇ 90 ° C. or higher, and more preferably ⁇ 80 ° C. or higher, from the viewpoint of enhancing the adhesion and retention to an adherend having a rough surface.
  • the said ether bond which monomer A2 has in a molecular skeleton means a chain
  • a monomer having an unsaturated double bond of (meth) acryloyl group and having a linear ether bond can be used without particular limitation.
  • Examples of the monomer A2 include monomers represented by general formula (1): CH 2 CRCR 1 -COO- (AO) n -R 2 ;
  • R 1 in the above general formula (1) is a hydrogen atom or a methyl group.
  • AO is an alkyleneoxy group having 2 to 3 carbon atoms.
  • n is a number indicating the average added mole number of the alkyleneoxy group.
  • R 2 is a monovalent organic group which does not contain an ether bond, and is preferably a hydrocarbon group.
  • Monomer A2 can be used individually by 1 type or in combination of 2 or more types.
  • N in the above general formula (1) may be, for example, 1 to 10. From the viewpoint of polarity level and polymerization reactivity, in some embodiments, n in the general formula (1) is preferably 2 to 8, more preferably 2 to 5.
  • R 2 in the above general formula (1) is preferably a non-substituted aromatic ring or a linear, branched or alicyclic alkyl group.
  • aromatic ring of R 2 include a phenyl group and the like.
  • linear alkyl group of R 2 and branched alkyl groups include an isopropyl group, an ethyl group, a methyl group and the like.
  • alicyclic alkyl group of R 2 include a cyclohexyl group and the like.
  • R 2 is preferably a linear alkyl group or a branched alkyl group, and particularly preferably a linear alkyl group, since it tends to be a linear ether bond-containing (meth) acrylate having a low Tg of a homopolymer.
  • the carbon number of R 2 is preferably 1 to 6, more preferably 1 to 5, and even 1 to 4 or 1 to 3 because it tends to be a monomer A2 having appropriate polarity.
  • alkyleneoxy having an AO of 2 carbon atoms such as methoxypolyethylene glycol (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, propoxypolyethylene glycol (meth) acrylate, etc.
  • monomers which are groups; and monomers wherein AO is an alkyleneoxy group having 3 carbon atoms such as methoxypolypropylene glycol (meth) acrylate, ethoxypolypropylene glycol (meth) acrylate, propoxypolypropylene glycol (meth) acrylate and the like.
  • the monomer A2 in which R 1 in the general formula (1) is a hydrogen atom is preferable. That is, the monomer A2 is preferably an acrylate.
  • AO in the above general formula (1) is preferably an alkyleneoxy group having 2 carbon atoms, that is, an oxyethylene group, from the viewpoint of having a suitable polar balance.
  • the amount of monomer A1 used is suitably 50 to 97% by weight of the total monomer components forming the (meth) acrylic polymer.
  • the amount of monomer A1 used is preferably 55% by weight or more, more preferably 58% by weight or more, and still more preferably 59% by weight or more, from the viewpoint of enhancing adhesion to a rough surface and holding power. is there.
  • the amount of monomer A1 used is preferably 95% by weight or less, more preferably 93% by weight or less, still more preferably 91% by weight, from the viewpoint of enhancing adhesion to a rough surface and holding power. It is below.
  • the amount of monomer A2 used is suitably 3 to 50% by weight of the total monomer components forming the (meth) acrylic polymer.
  • the amount of monomer A2 used is preferably 3.5% by weight or more, more preferably 4% by weight or more, of the monomer component from the viewpoint of enhancing the adhesion to a rough surface and holding power. More preferably, it is at least weight percent.
  • the amount of monomer A2 used is preferably 48% by weight or less, more preferably 45% by weight or less, and still more preferably 40% by weight, from the viewpoint of enhancing adhesion to a rough surface and holding power. It is below.
  • the total proportion of monomer A1 and monomer A2 may be, for example, 75% by weight or more of the total monomer components. From the viewpoint of further enhancing the adhesion and retention to an adherend having a rough surface, the proportion of the total of the monomer A1 and the monomer A2 is preferably 80% by weight or more of all monomer components, and is 85% by weight or more Is more preferably 90% by weight or more.
  • the monomer component forming the (meth) acrylic polymer may include at least one functional group-containing monomer selected from the group consisting of a monomer having a hydroxyl group, a monomer having a carboxyl group, and a monomer having an epoxy group. .
  • a functional group-containing monomer By including such a functional group-containing monomer, it becomes possible to control the crosslink network formation and the intermolecular interaction while maintaining the softness of the resin layer, and it is possible to enhance the cohesion of the resin layer and express a higher holding power. can do.
  • the monomer component may contain, for example, a combination of a monomer having a hydroxyl group and a monomer having a carboxyl group.
  • the monomer having a hydroxyl group (hydroxyl group-containing monomer) those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a hydroxyl group are particularly preferable. It can be used without limitation.
  • hydroxyl group-containing monomer for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl ( Hydroxyalkyl (meth) acrylates such as meta) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxy lauryl (meth) acrylate; (4-hydroxymethylcyclohexyl) methyl And hydroxyalkyl cycloalkane (meth) acrylates such as meta) acrylate; and the like.
  • hydroxyl group-containing monomers examples include hydroxyethyl (meth) acrylamide, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, and diethylene glycol monovinyl ether.
  • the hydroxyl group-containing monomers can be used alone or in combination of two or more. Among them, hydroxyalkyl (meth) acrylate is preferable, and 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate are particularly preferable.
  • the monomer having a carboxyl group those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a carboxyl group are particularly limited. It can be used without.
  • the carboxyl group-containing monomer include (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, isocrotonic acid and the like.
  • the carboxyl group-containing monomers can be used alone or in combination of two or more. Among these, acrylic acid and methacrylic acid are preferable, and acrylic acid is particularly preferable.
  • the monomer having an epoxy group examples include those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having an epoxy group are particularly limited. It can be used without.
  • the epoxy group-containing monomer examples include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether and the like.
  • the epoxy group-containing monomers can be used singly or in combination of two or more.
  • the amount used in the case of using a hydroxyl group-containing monomer is preferably 0.01% by weight or more of all monomer components forming the (meth) acrylic polymer, from the viewpoint of enhancing the cohesion, and 0.03% by weight or more It is more preferable that The amount of the hydroxyl group-containing monomer used is suitably 20% by weight or less, preferably 15% by weight or less, from the viewpoint of suppressing excessive increase in viscosity and gelation, preferably 10% by weight or less. % Or less is more preferable, 5% by weight or less is further preferable, 3% by weight or less is further more preferable, and 2% by weight or less is particularly preferable.
  • the amount used is that of all the monomer components forming the (meth) acrylic polymer from the viewpoint of enhancing the cohesion and from the viewpoint of imparting molecular level interaction with the adherend surface. It is preferable that it is 0.1 weight% or more, and it is more preferable that it is 0.2 weight% or more.
  • the amount of the carboxyl group-containing monomer used is preferably 5% by weight or less, and 3% by weight or less, from the viewpoint of enhancing followability to a rough surface and maintaining high adhesive strength at low temperature. Some are more preferable, 2.6% by weight or less is further preferable, and 2.2% by weight or less is particularly preferable.
  • the amount used in the case of using an epoxy group-containing monomer is preferably 0.1% by weight or more of all monomer components forming the (meth) acrylic polymer, from the viewpoint of enhancing the cohesion, 0.2% by weight or more It is more preferable that The amount of the epoxy group-containing monomer used is preferably 1% by weight or less of the above-mentioned monomer component, and more preferably 0.5% by weight or less, from the viewpoint of suppressing gelation and viscosity increase.
  • a (meth) acrylic-type polymer is a graft polymer, it is not this limitation.
  • the weight ratio of the hydroxyl group-containing monomer to the carboxyl group-containing monomer (hydroxyl group-containing monomer / carboxyl group-containing monomer) From the viewpoint of enhancing the adhesive strength to the adherend, it is preferably 0.01 or more, more preferably 0.02 or more, and preferably 1.0 or less, more preferably 0.50 or less.
  • the monomer component forming the (meth) acrylic polymer is, in addition to the above-mentioned monomer A1 and monomer A2, if necessary, a copolymerizable monomer other than the above functional group-containing monomer (corresponding to monomer A1 or monomer A2 May be included).
  • the copolymerizable monomers can be used singly or in combination of two or more.
  • copolymerization monomer for example, a monomer represented by the general formula (2): CH 2 CRCR 3 -COO-R 4 ;
  • R 3 in the above general formula (2) is a hydrogen atom or a methyl group.
  • R 4 is a C 1-24 unsubstituted alkyl group or a substituted alkyl group.
  • the unsubstituted alkyl group having 1 to 24 carbon atoms (more preferably 1 to 18 carbon atoms) or a substituted alkyl group as R 4 in the general formula (2) is a linear or branched alkyl group. Or a cyclic cycloalkyl group.
  • R 4 may be a linear alkyl group having 1 to 18 carbon atoms, a branched alkyl group having 3 to 7 carbon atoms, a cyclic alkyl group, or the like.
  • R 4 is a substituted alkyl group
  • preferable examples of the substituent include an aryl group having 3 to 7 carbon atoms and an aryloxy group having 3 to 7 carbon atoms.
  • the aryl group is not particularly limited, but is preferably, for example, a phenyl group.
  • Examples of the monomer represented by the above general formula (2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate and t-butyl (meth) Acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, isoamyl (meth) acrylate, n-octyl (meth) acrylate, n Nonyl (meth) acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, 3,3,5-trimethylcyclohexyl (meth) acrylate, isobornyl
  • vinyl monomers such as vinyl acetate, vinyl propionate, styrene, ⁇ -methylstyrene, N-vinylcaprolactam, N-vinylpyrrolidone and the like; tetrahydrofurfuryl (meth) acrylate, fluorine (Meth) acrylate monomers such as (meth) acrylates, silicone (meth) acrylates and 2-methoxyethyl acrylate; cyano group-containing monomers such as (meth) acrylonitrile; other, amide group-containing monomers, amino group-containing monomers, Imide group-containing monomers, N-acryloyl morpholine, vinyl ether monomers and the like can also be used.
  • vinyl monomers such as vinyl acetate, vinyl propionate, styrene, ⁇ -methylstyrene, N-vinylcaprolactam, N-vinylpyrrolidone and the like
  • silane type monomer containing a silicon atom and the like can be mentioned.
  • silane monomers include 3-acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 4-vinylbutyltrimethoxysilane, 4-vinylbutyltriethoxysilane, 8-vinyloctyltrimethoxysilane 8-vinyloctyl triethoxysilane, 10-methacryloyloxydecyl trimethoxysilane, 10-acryloyloxydecyl trimethoxysilane, 10-methacryloyloxydecyl triethoxysilane, 10-acryloyloxydecyl triethoxysilane, and the like.
  • the amount of the copolymerizable monomer used is preferably 20% by weight or less, and more preferably 15% by weight or less, of all the monomer components forming the (meth) acrylic polymer.
  • the content of the copolymerizable monomer exceeds 20% by weight, for example, the adhesion to a rough surface may be reduced.
  • the monomer component which forms the said (meth) acrylic-type polymer can contain a polyfunctional monomer as needed for the purpose of preparation of cohesion force etc.
  • a polyfunctional monomer can be used individually by 1 type or in combination of 2 or more types.
  • the above-mentioned polyfunctional monomer is a monomer having at least two polymerizable functional groups ((meth) acryloyl group, vinyl group etc.) having unsaturated double bond, and, for example, (poly) ethylene glycol di (meth) acrylate , (Poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,2- Ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tri (meth
  • the said polyfunctional monomer can be used by 5 weight% or less with respect to all the monomer components which form a (meth) acrylic-type polymer.
  • the above-mentioned polyfunctional monomer varies depending on the molecular weight, the number of functional groups, etc., it is preferably 3% by weight or less, more preferably 2% by weight or less, based on all the monomer components forming the (meth) acrylic polymer. If the content of the polyfunctional monomer is too large, for example, the modulus of elasticity of the resin composition may be too high, and the adhesion to a rough surface (particularly, the adhesion in a low temperature range) may be reduced.
  • the Tg of the (meth) acrylic polymer is ⁇ 40 ° C. or less.
  • the Tg of the (meth) acrylic polymer is preferably ⁇ 45 ° C. or less, more preferably ⁇ 50 ° C. or less, from the viewpoint of enhancing the adhesion to an adherend having a rough surface.
  • the Tg of the (meth) acrylic polymer is, for example, preferably ⁇ 55 ° C. or less, more preferably ⁇ 57 ° C. or less, and still more preferably ⁇ 60 ° C. or less, from the viewpoint of enhancing adhesion at low temperatures.
  • the Tg of the (meth) acrylic polymer is preferably ⁇ 85 ° C. or higher, and more preferably ⁇ 80 ° C. or higher, from the viewpoint of enhancing the adhesion and retention to an adherend having a rough surface. preferable.
  • the Tg of the (meth) acrylic polymer is a theoretical value calculated from the following Fox equation based on the composition of the monomer component constituting the (meth) acrylic polymer.
  • Fox's formula: 1 / Tg W 1 / Tg 1 + W 2 / Tg 2 +... + W n / Tg n
  • Tg is the glass transition temperature (unit: K) of the (meth) acrylic polymer
  • the manufacturing method of the said (meth) acrylic-type polymer is not specifically limited, A well-known manufacturing method can be selected suitably.
  • various radical polymerization methods such as solution polymerization, radiation polymerization by irradiation with electron beam and ultraviolet light (UV), bulk polymerization, emulsion polymerization and the like can be used.
  • the (meth) acrylic polymer to be obtained may be any of a random copolymer, a block copolymer, a graft copolymer and the like.
  • Mw of the said (meth) acrylic-type polymer is controllable by a polymerization initiator, a chain transfer agent, reaction conditions, etc., and the use amount is suitably adjusted according to these kind.
  • solution polymerization for example, ethyl acetate, toluene, a mixed solvent of these, and the like may be used as a polymerization solvent.
  • the above-mentioned solution polymerization is carried out, for example, under a stream of an inert gas such as nitrogen, usually with a polymerization initiator at about 50 to 70 ° C., for about 5 to 30 hours.
  • polymerization initiator examples include, for example, 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [2- (5) -Methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis (2-methylpropionamidine) disulfate, 2,2'-azobis (N, N'-dimethyleneisobutylamidine) Azo initiators such as 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] hydrate (manufactured by Wako Pure Chemical Industries, Ltd., VA-057); potassium persulfate, ammonium persulfate, etc.
  • AIBN 2,2′-azobisisobutyronitrile
  • 2-amidinopropane 2,2′-azobis [2- (5) -Methyl-2-imidazolin-2-
  • the polymerization initiators can be used singly or in combination of two or more.
  • the use amount of the polymerization initiator is usually preferably about 0.005 to 1 part by weight, and more preferably about 0.01 to 0.5 part by weight, with respect to 100 parts by weight of the monomer component. preferable.
  • chain transfer agent examples include lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-ethylhexyl thioglycolate, 2,3-dimercapto-1-propanol and the like.
  • the chain transfer agent can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is usually about 0.1 parts by weight or less based on 100 parts by weight of the total amount of monomer components. Alternatively, chain transfer agents may not be used.
  • Emulsion polymerization is typically carried out using known emulsifiers.
  • the emulsifier include anionic emulsifiers such as sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecyl benzene sulfonate, ammonium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl phenyl ether sulfate, etc .; polyoxyethylene alkyl ether, polyoxyethylene alkyl And nonionic emulsifiers such as phenyl ether, polyoxyethylene fatty acid ester, polyoxyethylene-polyoxypropylene block polymer and the like.
  • emulsifier As said emulsifier, you may use the emulsifier in which radically polymerizable functional groups, such as a propenyl group and allyl ether group, were introduce
  • An emulsifier into which such a polymerizable functional group is introduced is generally referred to as a reactive emulsifier.
  • Specific examples of the reactive emulsifier include Aqualon HS-10, HS-20, KH-10, BC-05, BC-10, BC-20 (all of which are manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), Adekaria Soap SE10 N. (Made by ADEKA company) etc. are mentioned.
  • Reactive emulsifiers are preferred because they are incorporated into the polymer chain after polymerization, which improves the water resistance.
  • An emulsifier can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the emulsifier used is usually about 0.3 to 5 parts by weight with respect to 100 parts by weight of the monomer component, and is about 0.5 to 1 part by weight in view of polymerization stability and mechanical stability. It is preferable to
  • the (meth) acrylic polymer When the (meth) acrylic polymer is produced by radiation polymerization, it can be produced by polymerizing the above-mentioned monomer component by irradiation with radiation such as electron beam and UV.
  • radiation polymerization When the radiation polymerization is performed by an electron beam, it is not particularly necessary to include a photopolymerization initiator in the monomer component.
  • the radiation polymerization is performed by UV polymerization, it is preferable that the monomer component contains a photopolymerization initiator from the viewpoint of shortening the polymerization time and the like.
  • a photoinitiator can be used individually by 1 type or in combination of 2 or more types.
  • the photopolymerization initiator is not particularly limited as long as it can initiate photopolymerization, and can be appropriately selected and used from various known photopolymerization initiators.
  • photopolymerization initiators such as benzoin ether type, acetophenone type, ⁇ -ketol type, photoactive oxime type, benzoin type, benzyl type, benzophenone type, ketal type and thioxanthone type can be used.
  • the amount of the photopolymerization initiator used is 0.05 to 1.5 parts by weight, preferably 0.1 to 1 parts by weight, per 100 parts by weight of the monomer component.
  • the weight average molecular weight (Mw) of the (meth) acrylic polymer is preferably 350,000 or more.
  • the Mw of the (meth) acrylic polymer is more preferably 400,000 or more, and still more preferably 500,000 or more, from the viewpoint of enhancing the durability and cohesion of the resin layer.
  • the Mw of the (meth) acrylic polymer is preferably 3,000,000 or less, more preferably 2,500,000 or less, from the viewpoint of enhancing the adhesiveness at low temperatures and from the viewpoint of suppressing the increase in viscosity of the resin composition. Is more preferably 2,000,000 or less, still more preferably 1.5,000,000 or less, and even more preferably 1.2,000,000 or less.
  • the Mw of the (meth) acrylic polymer can be measured by GPC (gel permeation chromatography) under the following conditions, and calculated in terms of polystyrene.
  • GPC gel permeation chromatography
  • the sample for GPC the sample is dissolved in tetrahydrofuran (THF) to make a 0.1% by weight solution, which is allowed to stand overnight, and then the filtrate filtered through a 0.45 ⁇ m membrane filter is used.
  • THF tetrahydrofuran
  • the resin composition disclosed herein can optionally contain a crosslinking agent.
  • crosslinking agents include isocyanate crosslinking agents, epoxy crosslinking agents, silicone crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, silane crosslinking agents, alkyl etherified melamine crosslinking agents, metal chelate crosslinking agents
  • Cross-linking agents such as, but not limited to, peroxides.
  • an isocyanate type crosslinking agent and an epoxy-type crosslinking agent are mentioned.
  • An isocyanate crosslinking agent and an epoxy crosslinking agent may be used in combination.
  • the crosslinking agents may be used alone or in combination of two or more.
  • the amount of the crosslinking agent used is preferably in the range of 0.005 parts by weight to 10 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer.
  • the content of the crosslinking agent relative to 100 parts by weight of the (meth) acrylic polymer is preferably 0.01 parts by weight or more and 4 parts by weight or less, more preferably 0.02 parts by weight or more and 3 parts by weight or less, More preferably, it is 0.05 parts by weight or more and 2 parts by weight or less.
  • the amount of the polyfunctional monomer used is preferably in the range of 0.001 parts by weight to 2 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer, and is preferably 0.003 parts by weight or more More preferably, it is in the range of 1 part by weight or less.
  • isocyanate type crosslinking agent use is made of a compound having two or more isocyanate groups (which may be isocyanate regenerated functional groups in which an isocyanate group is temporarily protected by a blocking agent or quantification or the like).
  • isocyanate-based crosslinking agent examples include tolylene diisocyanate, aromatic isocyanates such as xylene diisocyanate, alicyclic isocyanates such as isophorone diisocyanate, aliphatic isocyanates such as hexamethylene diisocyanate, and the like.
  • examples of the isocyanate-based crosslinking agent include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate, cycloaliphatic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate, and the like.
  • Aromatic diisocyanates such as 2,4-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, polymethylene polyphenylisocyanate, trimethylolpropane / tolylene diisocyanate trimer adduct (Tosoh Corp., product Name: Coronate L), trimethylolpropane / hexamethylene diisocyanate trimer adduct (made by Tosoh Corp., trade name: Coronate HL), hexamethylole Isocyanate adducts of isocyanurate of diisocyanate (Tosoh Corp., trade name: Coronate HX) etc., trimethylolpropane adduct of xylylene diisocyanate (Mitsui Chemical Co., Ltd., trade name: Takenate D110N), trimethylolose of xylylene diisocyanate Propan
  • An isocyanate type crosslinking agent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the isocyanate crosslinking agent used can be, for example, 0.01 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer, and usually 0.03 parts by weight or more and 8 parts by weight or less It is preferable to set it as 0.05 to 6 parts by weight, or more preferably to 0.08 to 5 parts by weight.
  • the amount of the isocyanate crosslinking agent used can be appropriately set in consideration of cohesion, prevention of peeling in the durability test, and the like.
  • the amount of the isocyanate crosslinking agent used relative to 100 parts by weight of the (meth) acrylic polymer is 5.0 parts by weight from the viewpoint of facilitating exerting good adhesion even at low temperatures in the composition containing the tackifying resin. It may be less than 4.0 parts by weight, preferably less than 3.0 parts by weight, more preferably less than 2.0 parts by weight, and less than 1.5 parts by weight More preferably, it is particularly preferably less than 1.0 part by weight.
  • the amount of the isocyanate crosslinking agent used is preferably, for example, 0.10 parts by weight or more, from the viewpoint of facilitating exerting good holding power in the composition containing the tackifying resin, and is preferably 0 More preferably, it is at least 20 parts by weight.
  • an isocyanate-based crosslinking agent is contained in an aqueous resin composition (for example, a resin composition containing an aqueous dispersion of (meth) acrylic polymer prepared by emulsion polymerization), the isocyanate-based crosslinking agent and water are used.
  • an isocyanate crosslinking agent in which an isocyanate group is temporarily protected by a blocking agent or quantification.
  • an isocyanate crosslinking agent may not be used.
  • epoxy crosslinking agent the polyfunctional epoxy compound which has 2 or more of epoxy groups in 1 molecule can be used.
  • epoxy crosslinking agents include N, N, N ', N'-tetraglycidyl-m-xylenediamine, diglycidyl aniline, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, 1, 6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, penta Erythritol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycid
  • the epoxy crosslinking agents can be used singly or in combination of two or more.
  • the use amount of the epoxy-based crosslinking agent can be, for example, about 0.005 part by weight or more and about 1 part by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer, and 0.01 part by weight or more and 0.5 parts by weight Or less or about 0.015 parts by weight or more and 0.3 parts by weight or less.
  • the use amount of the epoxy-based crosslinking agent can be appropriately set in consideration of cohesion, durability and the like.
  • any radically active species can be generated by heating to promote crosslinking of the above (meth) acrylic polymer of the resin composition, but it is possible to use appropriately, but it is possible to improve workability and stability.
  • a peroxide having a half-life temperature of 80 ° C. to 160 ° C., and more preferably 90 ° C. to 140 ° C.
  • peroxide examples include di (2-ethylhexyl) peroxydicarbonate (one-minute half-life temperature: 90.6 ° C.), di (4-t-butylcyclohexyl) peroxydicarbonate (one-minute half-life) Temperature: 92.1 ° C), di-sec-butylperoxydicarbonate (one-minute half-life temperature: 92.4 ° C), t-butyl peroxy neodecanoate (one-minute half-life temperature: 103.5 ° C) ), T-Hexyl peroxypivalate (one-minute half-life temperature: 109.1 ° C), t-butylperoxypivalate (one-minute half-life temperature: 110.3 ° C), dilauroyl peroxide (one-minute half-life) Temperature: 116.4 ° C.), di-n-octanoyl peroxide (one-minute half-life temperature: 117.4 ° C.), 1,1,
  • di (4-t-butylcyclohexyl) peroxydicarbonate one-minute half-life temperature: 92.1 ° C.
  • dilauroyl peroxide one-minute half-life temperature: 116. 4 ° C.
  • dibenzoyl peroxide one-minute half-life temperature: 130.0 ° C.
  • the half life of the said peroxide is an index showing the decomposition rate of a peroxide, and means the time until the remaining amount of a peroxide becomes half.
  • the decomposition temperature for obtaining the half life at any time and the half life time at any temperature are described in the manufacturer catalog etc. For example, “Organic peroxide catalog 9th edition of NOF Corporation ( May 2003) and the like.
  • the peroxides may be used alone or in combination of two or more.
  • the amount of the peroxide used is usually about 0.02 to 2 parts by weight, preferably about 0.05 to 1 parts by weight, per 100 parts by weight of the (meth) acrylic polymer. It is preferable to do.
  • the amount of the peroxide used is appropriately selected within this range in order to adjust the processability, reworkability, crosslinking stability, peelability and the like.
  • the amount of peroxide remaining after the reaction treatment can be determined, for example, by measuring the amount of peroxide decomposition by HPLC (high performance liquid chromatography). Specifically, for example, a sample of about 0.2 g is collected from the resin layer after reaction treatment, immersed in 10 ml of ethyl acetate, shaken and extracted at 120 rpm for 3 hours at 25 ° C. with a shaker, and then room temperature Let stand for 3 days. Then, add 10 ml of acetonitrile, shake at 120 rpm for 30 minutes at 25 ° C., filter through a membrane filter (0.45 ⁇ m), inject about 10 ⁇ l of the extract into HPLC and analyze, and after reaction treatment The amount of peroxide can be
  • bonds with the atom in an organic compound or coordination bond can be used.
  • polyvalent metals include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, Ti, etc.
  • an oxygen atom and the like can be mentioned.
  • the organic compound include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds and ketone compounds.
  • the tackifying resin used for the resin composition disclosed herein is not particularly limited, and can be appropriately selected from known tackifying resins.
  • tackifying resins for example, rosin-based tackifying resin, terpene-based tackifying resin, phenol-based tackifying resin, hydrocarbon-based tackifying resin, ketone-based tackifying resin, polyamide-based tackifying resin, epoxy-based tackifying resin, elastomer-based tackifying resin Etc.
  • the tackifying resin can be used singly or in combination of two or more.
  • rosin-based tackifying resins examples include unmodified rosin (raw rosin) such as gum rosin, wood rosin, tall oil rosin, and modified rosin obtained by modifying these unmodified rosins by polymerization, disproportionation, hydrogenation, etc.
  • unmodified rosin raw rosin
  • modified rosin obtained by modifying these unmodified rosins by polymerization, disproportionation, hydrogenation, etc.
  • polymerized rosins stabilized rosins, disproportionated rosins, fully hydrogenated rosins, partially hydrogenated rosins, and other chemically modified rosins
  • various rosin derivatives may be mentioned.
  • rosin derivatives examples include rosin phenol resins obtained by adding phenol to an rosin (unmodified rosin, modified rosin, various rosin derivatives and the like) with an acid catalyst and thermally polymerizing it; Ester compounds of rosin obtained by esterifying unmodified rosin with alcohol (unmodified rosin ester), modified rosin such as polymerized rosin, stabilized rosin, disproportionated rosin, fully hydrogenated rosin, partially hydrogenated rosin, etc.
  • Rosin ester-based resins such as ester compounds of modified rosin esterified by esterification (polymerized rosin ester, stabilized rosin ester, disproportionated rosin ester, fully hydrogenated rosin ester, partially hydrogenated rosin ester, etc.); Unsaturated fatty acid modified rosin based resins modified with unsaturated fatty acids such as unmodified rosins and modified rosins (polymerized rosins, stabilized rosins, disproportionated rosins, fully hydrogenated rosins, partially hydrogenated rosins, etc.); Unsaturated fatty acid modified rosin ester resin modified from rosin ester resin with unsaturated fatty acid; Carboxyl group in unmodified rosin, modified rosin (polymerized rosin, stabilized rosin, disproportionated rosin, completely hydrogenated rosin, partially hydrogenated rosin, etc.), unsaturated fatty acid modified rosin resin and
  • terpene-based tackifying resins include terpene-based resins such as ⁇ -pinene polymers, ⁇ -pinene polymers and dipentene polymers, and those terpene-based resins modified (phenol modification, aromatic modification, hydrogenation modification And modified terpene resins (eg, terpene phenol resins, styrene modified terpene resins, aromatic modified terpene resins, hydrogenated terpene resins, etc.) and the like.
  • terpene-based resins such as ⁇ -pinene polymers, ⁇ -pinene polymers and dipentene polymers
  • those terpene-based resins modified phenol modification, aromatic modification, hydrogenation modification And modified terpene resins (eg, terpene phenol resins, styrene modified terpene resins, aromatic modified terpene resins, hydrogenated terpene resins, etc.) and the like.
  • phenol-based tackifying resins include condensates of various phenols (eg, phenol, m-cresol, 3,5-xylenol, p-alkylphenol, resorcin etc.) with formaldehyde (eg, alkylphenol-based resin, xylene formaldehyde) And resins such as resoles obtained by subjecting the above-mentioned phenols and formaldehyde to an addition reaction with an alkali catalyst, and novolaks obtained by subjecting the above-mentioned phenols and formaldehyde to a condensation reaction with an acid catalyst.
  • phenols eg, phenol, m-cresol, 3,5-xylenol, p-alkylphenol, resorcin etc.
  • formaldehyde eg, alkylphenol-based resin, xylene formaldehyde
  • resins such as resoles obtained by subjecting the above-mentioned
  • hydrocarbon-based tackifying resins examples include petroleum-based tackifying resins and styrene-based tackifying resins. More specifically, aliphatic hydrocarbon resins, aromatic hydrocarbon resins, aliphatic cyclic hydrocarbon resins, aliphatic / aromatic petroleum resins (such as styrene-olefin copolymers), aliphatic Aliphatic petroleum resins, hydrogenated hydrocarbon resins, coumarone resins, coumarone indene resins and the like can be mentioned.
  • rosin-based tackifying resins that can be preferably used include Pencel series, which are rosin ester-based tackifying resins manufactured by Arakawa Chemical Industries, Ltd., such as “Pencel AZ”, “Pencel D-125”, and “Pencel D- 135 ",” Pencel D-160 “,” Pencel KK “,” Pencel C "and the like, but not limited thereto.
  • the tackifying resin is suitably used in a range of 5 parts by weight to 40 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer.
  • the amount of tackifier resin used is preferably, for example, 7 parts by weight or more, and more preferably 10 parts by weight or more with respect to 100 parts by weight of the (meth) acrylic polymer.
  • the amount of tackifier resin used is preferably, for example, 38 parts by weight or less, and more preferably 35 parts by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer.
  • the softening point (softening temperature) of the tackifying resin is not particularly limited.
  • the softening point of the tackifying resin is preferably 180 ° C. or less, more preferably 160 ° C. or less, and 150 ° C. or less, 140 ° C. or less from the viewpoint of facilitating exerting good adhesion even at low temperature. Or 135 ° C. or less.
  • the softening point of the tackifying resin is suitably 60 ° C. or more, and is 80 ° C. or more It is preferable that it is 90 degreeC or more.
  • tackifying resin having a softening point in the range of 90 ° C. to 160 ° C., 90 ° C. to 150 ° C., or 90 ° C. to 140 ° C.
  • at least one type of tackifying resin has the above-mentioned softening point.
  • 50% by weight or more, 70% by weight or more, 90% by weight or more or 100% by weight of the total amount of the tackifying resin has the above-mentioned softening point.
  • the softening point of tackifying resin can employ
  • the resin composition disclosed herein may contain (meth) acrylic oligomers.
  • a (meth) acrylic oligomer refers to a polymer containing a monomer unit derived from a monomer having a (meth) acryloyl group (that is, a (meth) acrylic monomer) in a polymer structure, and typically It refers to a polymer containing the monomer unit in a proportion of more than 50% by weight.
  • Tg is higher than said (meth) acrylic-type polymer, and a polymer with small Mw can be used preferably.
  • the (meth) acrylic oligomer may help to improve the adhesion to adherends such as rough surfaces and plastics.
  • the (meth) acrylic oligomer preferably has a Tg of about 0 ° C. to 300 ° C., preferably about 20 ° C. to 300 ° C., and more preferably about 40 ° C. to 300 ° C. If the Tg is less than about 0 ° C., the cohesion of the resin layer may be reduced in a temperature range of room temperature or higher, and the retention characteristics and the adhesiveness at high temperature may be reduced.
  • Tg of a (meth) acrylic-type oligomer is a theoretical value calculated based on the formula of Fox similarly to Tg of a (meth) acrylic-type polymer.
  • the Mw of the (meth) acrylic oligomer may be, for example, 1,000 or more and less than 30,000, preferably 1,500 or more and less than 20,000, and more preferably 2,000 or more and less than 10,000. If the Mw is 30000 or more, the effect of improving the adhesion may not be obtained sufficiently. Moreover, since it becomes low molecular weight as Mw is less than 1000, it may cause the fall of adhesive force and a retention characteristic. Mw of a (meth) acrylic-type oligomer can be calculated
  • methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth), for example is mentioned.
  • the above (meth) acrylic oligomers are alkyl (meth) acrylates having a branched alkyl group such as isobutyl (meth) acrylate and t-butyl (meth) acrylate; cyclohexyl (meth) acrylate and isobornyl (meth)
  • a cyclic structure of an ester of (meth) acrylic acid such as acrylate dicyclopentanyl (meth) acrylate with an alicyclic alcohol, or an aryl (meth) acrylate such as phenyl (meth) acrylate or benzyl (meth) acrylate
  • UV is used for synthesis of (meth) acrylic oligomers and preparation of a resin layer
  • it is an ester of an alcohol and (meth) acrylic acid which does not contain an unsaturated bond in that polymerization inhibition is unlikely to occur.
  • Certain (meth) acrylates are preferred.
  • an alkyl (meth) acrylate in which the alkyl group has a branched structure, or an ester of an alicyclic alcohol and (meth) acrylic acid can be suitably used as a monomer constituting the (meth) acrylic oligomer.
  • suitable (meth) acrylic oligomers include, for example, cyclohexyl methacrylate (CHMA), dicyclopentanyl acrylate (DCPA), dicyclopentanyl methacrylate (DCPMA), isobornyl acrylate (IBXA) And homopolymers such as isobornyl methacrylate (IBXMA) 1-adamantyl acrylate (ADA), 1-adamantyl methacrylate (ADMA), etc .; copolymer of CHMA and isobutyl methacrylate (IBMA), co-polymerization of CHMA and IBXMA Polymer, copolymer of CHMA and acryloyl morpholine (ACMO), copolymer of CHMA and diethyl acrylamide (DEAA), copolymer of ADA and methyl methacrylate (MMA), DCPMA and IBX Copolymers of A, a copolymer of DCPMA and MMA; and
  • the amount thereof to be used is not particularly limited.
  • the amount of the (meth) acrylic oligomer used is preferably 70 parts by weight or less, for example 1 to 70 parts by weight, with respect to 100 parts by weight of the (meth) acrylic polymer, more preferably Is 2 to 50 parts by weight, more preferably 3 to 40 parts by weight.
  • the addition amount of the (meth) acrylic oligomer is too large, the elastic modulus may be too high, and the rough surface adhesion at low temperature may be lowered.
  • the effect of improving the adhesive strength can be suitably exhibited.
  • the technology disclosed herein can be preferably practiced in a form not using (meth) acrylic oligomers.
  • the resin composition disclosed herein may contain a silane coupling agent for the purpose of improving the adhesion reliability at the interface with the adherend, and the like.
  • a silane coupling agent for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4 epoxycyclohexyl) ethyl Epoxy group-containing silane coupling agents such as trimethoxysilane, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N- (1,3 Amino-containing silane coupling agents such as -dimethylbutylidene) propylamine, N-phenyl- ⁇ -aminopropyltrimethoxysilane, 3-acryloxy
  • the amount of the silane coupling agent to be used is preferably 1 part by weight or less, for example 0.01 to 1 part by weight, more preferably 0.02 to 0.6, per 100 parts by weight of the (meth) acrylic polymer. It is a weight part.
  • the amount of the silane coupling agent used is too large, the crosslinking may be inhibited or the adhesion properties may be impaired.
  • the technology disclosed herein can be preferably practiced even in a form that does not use a silane coupling agent.
  • the resin composition disclosed herein may contain other known additives as needed.
  • powders such as colorants and pigments, dyes, surfactants, plasticizers, surface lubricants, leveling agents, softeners, antioxidants, antioxidants, light stabilizers, ultraviolet light absorbers, polymerization inhibitors, Inorganic or organic fillers, metal powders, particles, foils and the like can be added as appropriate depending on the application.
  • a resin layer formed from any of the resin compositions disclosed herein is provided.
  • the thickness of the resin layer is not particularly limited.
  • the thickness of the resin layer may be, for example, about 1 ⁇ m to 1000 ⁇ m, preferably about 2 ⁇ m to 500 ⁇ m, and more preferably 2 ⁇ m to 300 ⁇ m.
  • the thickness of the resin layer may be, for example, 5 ⁇ m or more, 10 ⁇ m or more, 25 ⁇ m or more, 35 ⁇ m or more in some aspects, from the viewpoint of improving adhesion and adhesion to rough asperities. It may be 50 ⁇ m or more or 70 ⁇ m or more.
  • the thickness of the resin layer may be, for example, 200 ⁇ m or less, 150 ⁇ m or less, or 100 ⁇ m or less.
  • the resin layer disclosed herein may have a single layer structure or a multilayer structure of two or more layers.
  • the polymer gel fraction of the resin layer is not particularly limited. From the viewpoint of adhesion to rough surfaces, usually 20 to 98% by weight is suitable. In some embodiments, the polymer gel fraction of the resin layer may be, for example, 20 to 95% by weight.
  • the polymer gel fraction of the resin layer is in the above range, high adhesion and high holding power tend to be suitably developed. It is presumed that when the polymer gel fraction of the resin layer is in the above-mentioned range, the softness of the resin layer can be maintained, and cohesion can be imparted by formation of a suitable crosslinked network. .
  • the polymer gel fraction of the resin layer is, for example, preferably 22% by weight or more, more preferably 25% by weight or more, and more preferably 30% by weight or more from the viewpoint of enhancing the cohesion and retention of the resin layer. It is further preferred that Further, from the viewpoint of enhancing the rough surface adhesion at a low temperature, the polymer gel fraction of the resin layer is, for example, preferably 90% by weight or less, more preferably 85% by weight or less, and 80% by weight or less Is more preferably 75% by weight or less, still more preferably 70% by weight or less.
  • the said resin composition contains a crosslinking agent
  • the influence of a crosslinking process temperature and crosslinking process time is considered, and a gel fraction is controlled. it can.
  • the polymer gel fraction of a resin layer is measured by the method as described in the Example mentioned later.
  • the resin layer disclosed herein preferably has a storage modulus G ′ (23 ° C.) of 1.0 ⁇ 10 4 Pa or more and 5.0 ⁇ 10 4 Pa or less.
  • a storage modulus G ′ (23 ° C.) of the resin layer is lowered, the adhesion of the resin layer to the unevenness of the rough surface (followability to the unevenness shape) tends to be high.
  • the adhesion becomes high the contact area between the resin layer and the rough surface becomes large, and the adhesion becomes easy to improve.
  • the storage elastic modulus G ′ (23 ° C.) of the resin layer is, for example, preferably 4.8 ⁇ 10 4 Pa or less, and 4.6 ⁇ 10 4 Pa or less Is more preferred.
  • the storage elastic modulus G ′ (23 ° C.) of the resin layer may be, for example, 1.2 ⁇ 10 4 Pa or more. Or 1.5 ⁇ 10 4 Pa or more.
  • the storage elastic modulus G ′ (23 ° C.) of the resin layer can be measured using a commercially available dynamic viscoelasticity measuring device, and more specifically, it is measured by the method described in the examples described later.
  • the storage elastic modulus G ′ (23 ° C.) of the resin layer can be adjusted by the composition of the monomer component constituting the acrylic polymer, the use of a crosslinking agent, the use of a tackifying resin, and the like. For example, by increasing the weight fraction of monomer A2 in the monomer component or by decreasing the weight ratio of monomer A1 to monomer A2 (ie, by using more monomer A2 to monomer A1) ), The storage modulus G ′ (23 ° C.) of the resin layer can be reduced.
  • An example of the monomer A2 having a high effect of reducing the storage elastic modulus G ′ (23 ° C.) is a linear ether bond-containing (meth) acrylate represented by the above general formula (1), and the Tg of homopolymer is ⁇ 40 C. or less (more preferably -45.degree. C. or less, more preferably -50.degree. C. or less, for example -55.degree. C. or less) can be mentioned.
  • the resin layer disclosed herein preferably has a storage modulus G ′ ( ⁇ 10 ° C.) of 3.0 ⁇ 10 4 Pa or more and 7.0 ⁇ 10 5 Pa or less.
  • the low storage elastic modulus G ′ ( ⁇ 10 ° C.) of the resin layer is advantageous from the viewpoint of facilitating good adhesion of the resin layer to the irregularities of the rough surface even at low temperatures and enhancing the rough surface adhesion at low temperatures. It is. From such a viewpoint, in some embodiments, the storage elastic modulus G ′ ( ⁇ 10 ° C.) of the resin layer is, for example, preferably 6.5 ⁇ 10 5 Pa or less, and 6.0 ⁇ 10 5 Pa or less Is more preferred.
  • the storage elastic modulus G ′ ( ⁇ 10 ° C.) of the resin layer may be, for example, 5.0 ⁇ 10 4 Pa or more. It may be 7.0 ⁇ 10 4 Pa or more.
  • the storage elastic modulus G ′ ( ⁇ 10 ° C.) of the resin layer can be measured using a commercially available dynamic viscoelasticity measuring apparatus, as with the storage elastic modulus G ′ (23 ° C.), and more specifically, it will be described later It measures by the method as described in the Example which The storage elastic modulus G ′ ( ⁇ 10 ° C.) of the resin layer can be adjusted by the composition of the monomer component constituting the acrylic polymer, the use of a crosslinking agent, the use of a tackifying resin, and the like.
  • the haze value of the resin layer disclosed herein is not particularly limited.
  • the embodiment can be carried out in a mode in which the haze value of the resin layer is 10% or less when the thickness of the resin layer is 85 ⁇ m.
  • the haze value of the resin layer at a thickness of 85 ⁇ m is 1.9% or less.
  • the laminate sheet having the highly transparent resin layer has an application that requires high light transmittance in a configuration having or not having a support, and a performance that allows the adherend to be visually recognized well through the laminate sheet.
  • it is suitable for the use by which the property which can visually recognize the external appearance of the said support body through a resin layer is calculated
  • the haze value of the resin layer at a thickness of 85 ⁇ m is more preferably 1.5% or less, still more preferably 1% or less, and still more preferably 0.7% or less.
  • the lower limit of the haze value of the resin layer is not particularly limited. For example, it can be carried out in an embodiment in which the haze value of the resin layer with a thickness of 85 ⁇ m is 0% or more (for example, 0.05% or more).
  • the haze value of the laminated sheet is not particularly limited. For example, it can carry out in the aspect which is 15% or less in the haze value of a lamination sheet with a base material.
  • the laminated sheet with a substrate having high transparency is suitable for applications in which high light transmittance is required, and applications in which performance capable of favorably visually recognizing an adherend through the laminate sheet is required.
  • the haze value of the base material-laminated sheet is 5% or less, more preferably 1.9% or less, and still more preferably 1.5% or less (e.g. 1% or less).
  • the lower limit of the haze value of the laminated sheet with a substrate is not particularly limited.
  • it can be implemented in the aspect whose haze value of a lamination sheet with a base material is 0% or more (for example, 0.05% or more).
  • the “haze value” refers to the ratio of diffuse transmission light to total transmission light when the measurement target is irradiated with visible light. It is also called cloudy price.
  • the resin layer can be formed, for example, as a laminated sheet by applying the resin composition on one side or both sides of a support and removing the polymerization solvent or the like by heat drying or the like.
  • the support constituting the laminated sheet may be a releasable support (that is, a support capable of releasing the resin layer constituting the laminated sheet) or a non-removable support.
  • a resin layer from the resin composition apply
  • one or more solvents other than the polymerization solvent may be appropriately added, as appropriate, for the purpose of improving the coatability and adjusting the thickness.
  • Various methods can be used as a method of applying the above-mentioned resin composition. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater etc. Methods such as extrusion coating may be mentioned.
  • the heating and drying temperature is preferably 40 to 200 ° C., more preferably 50 to 180 ° C., and particularly preferably 70 to 170 ° C. By making heating temperature into said range, the resin layer which has the outstanding adhesion characteristic can be obtained.
  • the heating and drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 15 minutes, and particularly preferably 10 seconds to 10 minutes.
  • a resin layer can be formed.
  • materials that can be blended into the above-mentioned resin composition such as a crosslinking agent can be appropriately blended.
  • the above monomer components may be used in the form of syrup by polymerizing a part thereof in advance of ultraviolet irradiation.
  • a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp or the like can be used.
  • a polyolefin film mainly composed of polyolefin such as polyethylene (PE), polypropylene (PP) and ethylene-propylene copolymer, and a polyester mainly composed of polyethylene terephthalate (PET) and polybutylene terephthalate etc.
  • Polyester film polyvinyl chloride film containing polyvinyl chloride as a main component, others, polyethersulfone film, polystyrene film, polyacrylic film, polyurethane film, polyimide film, polyamide film, polyamideimide film, cycloolefin film, ethylene- Plastic film such as vinyl alcohol copolymer film; Porous material such as paper, cloth, non-woven fabric, etc .; Net; Air such as polyethylene foam or acrylic foam Containing sheet; metal foil; and can include these complexes, various support film and the like.
  • the composite include, but are not limited to, a laminate of a metal foil and a plastic film, and a plastic film reinforced with an inorganic fiber such as glass fiber and carbon fiber.
  • the concept of air bubbles in the air bubble-containing sheet includes air bubbles not having a solid outer shell and air bubbles having a solid outer shell (for example, by containing hollow particles). Therefore, in this application, the above-mentioned bubble-containing sheet may be referred to as "bubble or particle-containing sheet".
  • the bubble or particle-containing sheet may include one or both of a bubble having no solid shell and a bubble having a solid shell.
  • the thickness of the support film is usually about 5 ⁇ m to about 3000 ⁇ m, preferably about 10 ⁇ m to about 2500 ⁇ m, and more preferably about 20 ⁇ m to about 2000 ⁇ m. In some embodiments, the thickness of the support film may be, for example, 1000 ⁇ m or less, 500 ⁇ m or less, 300 ⁇ m or less, 100 ⁇ m or less, or 50 ⁇ m or less.
  • the support film may be subjected to release treatment and antifouling treatment with a silicone-based, fluorine-based, long-chain alkyl-based or fatty acid amide-based release agent, silica powder, or the like, as necessary.
  • the support film may be subjected to antistatic treatment such as application of an antistatic agent, kneading, deposition, and the like.
  • the laminated sheet 1 includes a support film 10 having a first surface 10A and a second surface 10B, and an adhesive layer 21 which is a resin layer provided on the first surface 10A side.
  • the first surface 10A is non-peelable, whereby the laminate sheet 1 is configured as a single-sided adhesive sheet with a substrate.
  • the laminated sheet 1 before use may further include a release liner 31 for protecting the surface (adhesive surface) 21A of the pressure-sensitive adhesive layer 21, as shown in FIG. .
  • At least the side of the release liner 31 in contact with the adhesive surface 21A is a release surface (release surface). In practical use, the release liner 31 is released from the adhesive surface 21A.
  • the structural example of the lamination sheet which concerns on other one Embodiment is typically shown in FIG.
  • the laminated sheet 2 is provided on the second surface 10B side, the support film 10 having the first surface 10A and the second surface 10B, the pressure-sensitive adhesive layer 21 which is a resin layer provided on the first surface 10A side. And an adhesive layer 22 which is a resin layer.
  • the first surface 10A and the second surface 10B are both non-peelable, whereby the laminate sheet 2 is configured as a double-sided pressure-sensitive adhesive sheet with a substrate.
  • the pressure-sensitive adhesive sheet 2 before use is, as shown in FIG. 2, a release liner 31, 32 for protecting the surface (first adhesive surface) 21A of the adhesive layer 21 and the surface (second adhesive surface) 22A of the adhesive layer 22. May be further included.
  • the release liners 31 and 32 have at least the side in contact with the adhesive surfaces 21A and 22A as the release surfaces, and are peeled off from the adhesive surfaces 21A and 22A in practical use.
  • the laminated sheet 3 includes a pressure-sensitive adhesive layer 21 which is a resin layer, a release liner 31 which protects one surface (first pressure-sensitive adhesive surface) 21A of the pressure-sensitive adhesive layer 21, and the other surface of the pressure-sensitive adhesive layer 21 (second Adhesive surface) a release liner 32 for protecting 21B.
  • the release liners 31, 32 are peeled off from the adhesive surfaces 21A, 21B.
  • the pressure-sensitive adhesive layer 21 of this embodiment can also be grasped as a pressure-sensitive adhesive sheet not having a non-peelable support, that is, a substrate-less pressure-sensitive adhesive sheet.
  • plastic film such as polyethylene, polypropylene, polyethylene terephthalate, polyester film, porous material such as paper, cloth, non-woven fabric, net, bubble-containing sheet, metal foil, laminate of these, etc. And the like.
  • a plastic film can be used suitably from the point which is excellent in surface smoothness.
  • the plastic film is not particularly limited as long as it can protect the resin layer.
  • polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer examples include coalesced films, polyethylene terephthalate films, polybutylene terephthalate films, polyurethane films, ethylene-vinyl acetate copolymer films and the like.
  • the thickness of the release liner is usually about 5 to 300 ⁇ m, preferably about 5 to 200 ⁇ m.
  • the above release liner may, if necessary, be a releasing agent of silicone type, fluorine type, long chain alkyl type or fatty acid amide type, release by silica powder etc., antifouling treatment, coating type, kneading type, vapor deposition It is also possible to carry out antistatic treatment of a mold or the like.
  • the peelability from the resin layer can be further enhanced by appropriately performing the peeling treatment such as silicone treatment, long-chain alkyl treatment, fluorine treatment and the like on the surface of the release liner.
  • the resin layer (a substrate-less pressure-sensitive adhesive sheet, a single-sided pressure-sensitive adhesive sheet with a substrate, or a resin layer constituting a double-sided pressure-sensitive adhesive sheet with a substrate) disclosed herein may be a polypropylene (PP) plate
  • the room temperature 180 ° peel adhesion (hereinafter also referred to as PP room temperature adhesion) measured as an adherend is preferably 10 N / 20 mm or more, more preferably 11 N / 20 mm or more.
  • the room temperature adhesion of the resin layer to PP may be, for example, 12 N / 20 mm or more, or 13 N / 20 mm or more.
  • the upper limit of the adhesion to PP room temperature is not particularly limited, and may be, for example, about 30 N / 20 mm or less.
  • the resin layer disclosed herein preferably has a room temperature of 180 ° peel adhesion (hereinafter also referred to as "plywood room temperature adhesion") of 8 N / 20 mm or more, which is measured using softwood plywood as an adherend.
  • the above-mentioned plywood room temperature adhesion is more preferably 10 N / 20 mm or more, further preferably 15 N / 20 mm or more, and may be 18 N / 20 mm or more or 20 N / 20 mm or more.
  • the upper limit of the room temperature adhesion to the plywood is not particularly limited, and may be, for example, about 50 N / 20 mm or less, or about 40 N / 20 mm or less.
  • the resin layer disclosed herein preferably has a room temperature of 180 ° peel adhesion (hereinafter also referred to as an adhesion to a silica glass plate at room temperature) measured with a calcium silicate plate as an adherend of 10 N / 20 mm or more.
  • the above-mentioned carbonal plate room temperature adhesive strength is more preferably 15 N / 20 mm or more, and may be 20 N / 20 mm or more.
  • low-temperature 180 ° peel adhesion (hereinafter also referred to as low-temperature adhesion to plywood) measured with softwood plywood as an adherend is, for example, 1 N / 20 mm or more or 3 N / 20 mm or more And may preferably be 5 N / 20 mm or more.
  • the above-mentioned low-temperature adhesion to plywood may be, for example, 7 N / 20 mm or more, and 9 N / 20 mm or more.
  • the (meth) acrylic polymer is a polymer of a monomer component containing the monomer A1 and the monomer A2 in a specific ratio, and therefore, is excellent in flexibility even in a low temperature range.
  • the upper limit of the low-temperature adhesion to plywood is not particularly limited, and may be, for example, about 50 N / 20 mm or less, or about 40 N / 20 mm or less.
  • the room temperature 180 ° peel adhesion and the low temperature 180 ° peel adhesion of the resin layer are measured by the methods described in the examples below.
  • a backing material for example, one side of the above-mentioned resin layer
  • a PET film having a thickness of about 25 ⁇ m can be attached and reinforced. The same applies to a retention test to be described later. Further, the same reinforcement can be performed as needed also in the resin layer constituting the single-sided pressure-sensitive adhesive sheet with a substrate or the double-sided pressure-sensitive adhesive sheet with a substrate.
  • the resin layer disclosed herein preferably has a displacement distance of less than 1.0 mm, more preferably 0.8 mm or less, in a holding power test measured by the method described in the examples described later.
  • the resin layer has a moderately high cohesive force. According to such a resin layer, the adherend can be firmly bonded or fixed.
  • the resin layer disclosed herein can be preferably used for applications to be applied to adherends or plastics having rough surfaces.
  • adherends having a rough surface include concrete, mortar, gypsum board, softwood plywood, wood-based cement board, calcium silicate board, tile, and fiber-reinforced cement board, but are not limited thereto.
  • the arithmetic mean roughness Ra of the rough surface may be, for example, about 1 ⁇ m to 800 ⁇ m.
  • the above-mentioned laminated sheet can be preferably used particularly for an adherend having a rough surface having an arithmetic mean roughness Ra of 1 ⁇ m to 500 ⁇ m.
  • the arithmetic mean roughness Ra of the rough surface may be, for example, about 3 ⁇ m to 300 ⁇ m, or about 5 ⁇ m to 150 ⁇ m.
  • the resin layer and the laminate sheet disclosed herein can also be firmly adhered to a smooth adherend, and can be preferably applied to such adherends.
  • the resin layer disclosed herein takes advantage of the characteristic of being able to adhere well to any of rough surfaces and plastics, and uses which can be applied to both rough surfaces and plastics (for example, adherends having rough surfaces and the like) It can be preferably used in the application of joining with a plastic member.
  • the plastic may be a low polarity plastic such as, for example, a polyolefin resin such as PP or PE.
  • (meth) acrylic polymers having a glass transition temperature of ⁇ 40 ° C. or less, 5 parts by weight or more and 40 parts by weight or less of a tackifier resin with respect to 100 parts by weight of the (meth) acrylic polymer
  • a resin composition containing The above (meth) acrylic polymer is 50 to 97% by weight of an alkyl (meth) acrylate (A1) having a branched alkyl group having a carbon number of 8 to 18 and having a glass transition temperature of -50 ° C.
  • a resin composition which is a polymer of a monomer component containing [2] The ratio of the total of the above alkyl (meth) acrylate (A1) and the above (meth) acrylate (A2) having an ether bond is 75 weight with respect to all the monomer components forming the above (meth) acrylic polymer The resin composition as described in said [1] which is% or more.
  • the above-mentioned tackifying resin contains at least one selected from the group consisting of rosin-based tackifying resin, terpene-based tackifying resin, petroleum-based tackifying resin, and styrene-based tackifying resin, The resin composition in any one of 6].
  • the above-mentioned monomer component contains at least one functional group-containing monomer selected from the group consisting of monomers having a hydroxyl group, monomers having a carboxyl group, and monomers having an epoxy group.
  • the adherend is made of concrete, mortar, gypsum board, softwood plywood, wood based cement board, calcium silicate board, tile and fiber reinforced cement board
  • the adherend comprising the adherend having a rough surface, and the laminated sheet according to any one of the above [20] to [23], wherein the resin layer adheres to the rough surface, and the adherend and the above adhere Laminated structure integrated with a laminated sheet.
  • the adherend having the above rough surface is selected from concrete, mortar, gypsum board, softwood plywood, wood based cement board, calcium silicate board, tile and fiber reinforced cement board, the above [26] or [26] 27] laminated structure.
  • Example 1 (Preparation of (meth) acrylic polymer)
  • 2EHA 2-ethylhexyl acrylate
  • CBA ethyl carbitol acrylate
  • 4HBA 4-hydroxybutyl acrylate 0.25 parts and 1 part of acrylic acid (AA)
  • AIBN 2,2'-azobisisobutyronitrile
  • the liquid temperature in the flask was kept at around 60 to 65 ° C., and polymerization reaction was carried out for 10 hours to prepare a (meth) acrylic polymer solution.
  • the (meth) acrylic polymer had a Mw of 850,000 as determined by GPC.
  • a polymerizing rosin ester (trade name: Pencel D125, manufactured by Arakawa Chemical Industries, Ltd., a softening point of 120 to 130 as a tackifying resin in 100 parts of solid content of the polymer in the (meth) acrylic polymer solution obtained above.
  • the resin composition solution was applied to the release surface of the release liner such that the thickness of the resin layer after drying was 85 ⁇ m, and drying was performed at 130 ° C. for 3 minutes to form a resin layer.
  • a laminated sheet having a resin layer on one side of the release liner i.e., a releasable support
  • As the release liner a 38 ⁇ m-thick PET film (Diafoil MRF, manufactured by Mitsubishi Resins Co., Ltd.), one surface of which is a release surface by silicone treatment, was used.
  • the said resin layer may be grasped also as a substrate-less pressure-sensitive adhesive layer.
  • Example 1 the type and composition ratio of the monomer used for preparation of the (meth) acrylic polymer, the type and amount of tackifier resin and the type and amount of the crosslinking agent are as shown in Table 1 respectively.
  • a resin layer having a thickness of 85 ⁇ m was produced on the release surface of the release liner by the same procedure as in Example 1 except that a laminated sheet was obtained.
  • Mw and Tg of the (meth) acrylic polymer according to each example are shown in Table 1.
  • ⁇ Measurement of polymer gel fraction> A sample of a predetermined amount (first weight W1) is taken from the resin layer, immersed in an ethyl acetate solution and left at room temperature for 1 week, then the insoluble matter is taken out and the dried weight (W2) is measured.
  • the polymer gel fraction was calculated from the obtained resin layer gel fraction by the following equation.
  • the number of tackifying resin parts in the following formula means the number of tackifying resin parts contained in the resin layer relative to 100 parts of the polymer contained in the resin layer.
  • Polymer gel fraction (%) resin layer gel fraction (%) ⁇ (100 + number of tackifying resin parts) / 100
  • ⁇ Measurement of storage elastic modulus G '> The resin layers were superposed to prepare a laminate having a thickness of about 2 mm. A sample in which the above laminate was punched into a disk shape having a diameter of 7.9 mm was sandwiched between parallel plates, and temperature dispersion measurement was performed under the following conditions using a viscoelasticity tester. From the results, storage modulus G '(unit; Pa) at 23 ° C and -10 ° C was read.
  • the adhesive surface of the above test piece (that is, the other side of the resin layer) is softwood plywood (obtained from Shimada Holmes, thickness 12 mm) as an adherend, Calcium silicate board (Keikaru board, stained # 400 made by A & A Materials Co., Ltd., thickness 6 mm), or polypropylene board (Kobe Kobel sheet manufactured by Shin-Kobe Electric Co., Ltd., thickness 2 mm) I put it back and forth. After this was allowed to stand for 30 minutes in the above standard environment, the peel adhesion (N / 20 mm) was measured under the conditions of a peeling angle of 180 ° and a peeling speed of 300 mm / min in the same environment.
  • the adhesive surface (that is, the other surface of the resin layer) of the above test piece is a glass plate (made by Matsunami Glass Industry Co., Ltd., thickness 1) as an adherend 1)
  • a 2 kg roller was attached to 1 .2 mm). After this was allowed to stand for 30 minutes in the above standard environment, the peel adhesion (N / 20 mm) was measured under the conditions of a peeling angle of 180 ° and a peeling speed of 300 mm / min in the same environment.
  • ⁇ Holding force measurement> The evaluation sample prepared in the same manner as the above room temperature adhesion measurement was cut into a width of 10 mm and a length of about 100 mm to prepare a test piece. Subsequently, the adhesive surface of the above test piece was crimped to a Bakelite plate (made by Sumitomo Bakelite Co., Ltd., thickness 2 mm) as an adherend with 1 kg of a 2 kg roller reciprocating with a bonding area of 10 mm in width and 20 mm in length. . After leaving the adherend on which the test piece is attached in this manner for 30 minutes at room temperature (23 ° C.), the test piece is suspended so that the length direction of the test piece is in the vertical direction. After a load of 500 g was applied to the free end and the sample was left in a 40 ° C. environment for 1 hour, the displacement distance (mm) from the first application position of the test piece was measured.
  • a Bakelite plate made by Sumitomo Bakelite Co., Ltd., thickness 2
  • the resin layer according to each example is attached to one surface of alkali-free glass with a total light transmittance of 93.3% and a haze value of 0.1% as a test piece, and the haze value of the test piece is a haze meter (MR-100 And Murakami Color Research Laboratory).
  • the above test piece was placed so that the resin layer was on the light source side. Since the haze value of the non-alkali glass is 0.1%, the value obtained by subtracting 0.1% from the measured value is taken as the haze value of the resin layer.
  • C trimethylolpropane / 2,4-tolylene diisocyanate trimer adduct (manufactured by Tosoh Corporation, trade name: Coronate L).
  • DN trimethylolpropane adduct of xylylene diisocyanate (Mitsui Chemical Co., Ltd., trade name: Takenate D110N)
  • D Polymerized rosin ester having a softening point of 120 to 130 ° C. (manufactured by Arakawa Chemical Industries, Ltd., trade name: Pencel D125).
  • A Rosin ester having a softening point of 95 to 105 ° C. (manufactured by Arakawa Chemical Industries, trade name: Pencel AZ).
  • T Terpene phenol resin having a softening point of 125 to 135 ° C. (Yashara Chemical Co., Ltd., trade name: YS Polystar T130)
  • ND Not rated.
  • the resin layers formed from the resin compositions of Examples 1 to 16 exhibit high room temperature adhesion to both rough surfaces and plastics, and have rough surfaces at low temperatures. It showed good adhesion. These resin layers were also excellent in holding power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided are a resin layer capable of strongly adhering to a rough surface and to a plastic, the resin layer having high holding power and exhibiting good adhesion even at low temperature, a resin composition suitable for forming the resin layer, and a layered sheet including the resin layer. The resin composition provided by the present invention contains a (meth)acrylic polymer having a Tg of -40°C or below, and 5-40 parts by weight of a tackifying resin with respect to 100 parts by weight of the (meth)acrylic polymer. The (meth)acrylic polymer is a polymer of monomer components including: 50-97 wt% of an alkyl (meth)acrylate (A1) having a C8-18 branched alkyl group at a terminal end of an ester group, a homopolymer of the alkyl (meth)acrylate (A1) having a Tg of -50°C or below; and 3-50 wt% of a (meth)acrylate (A2) having an ether bond in the molecular skeleton thereof, a homopolymer of the (meth)acrylate (A2) having a Tg of -40°C or below.

Description

樹脂組成物、樹脂層、および積層シートResin composition, resin layer, and laminated sheet
 本発明は、樹脂組成物、樹脂層、および積層シートに関する。本出願は、2017年12月28日に出願された日本国特許出願2017-254900号および2018年10月15日に出願された日本国特許出願2018-194150号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。 The present invention relates to a resin composition, a resin layer, and a laminated sheet. The present application claims priority based on Japanese Patent Application No. 2017-254900 filed on December 28, 2017 and Japanese Patent Application No. 2018-194150 filed on October 15, 2018. , The entire contents of that application being incorporated herein by reference.
 一般に粘着剤(感圧接着剤ともいう。以下同じ。)は、室温付近の温度域において柔らかい固体(粘弾性体)の状態を呈し、圧力により被着体に接着する性質を有する。かかる性質を活かして、粘着剤は、例えば支持体の片面または両面に粘着剤として機能し得る樹脂層を有する積層構造の粘着シート(積層シート)の形態で、家電製品から自動車、OA機器等の各種産業分野において広く利用されている。粘着剤または粘着シートに関する技術文献として、特許文献1,2が挙げられる。 In general, a pressure-sensitive adhesive (also referred to as a pressure-sensitive adhesive, hereinafter the same) exhibits a soft solid (viscoelastic) state in a temperature range around room temperature, and has a property of adhering to an adherend by pressure. Taking advantage of such properties, the pressure-sensitive adhesive is, for example, in the form of a pressure-sensitive adhesive sheet (laminated sheet) having a laminated structure having a resin layer capable of functioning as a pressure-sensitive adhesive on one side or both sides of a support. It is widely used in various industrial fields. Patent documents 1 and 2 are mentioned as technical documents about an adhesive or a pressure sensitive adhesive sheet.
日本国特許出願公開平08-104847号公報Japanese Patent Application Publication No. 08-104847 国際公開第2013/099683号International Publication No. 2013/099683
 粘着剤を有する従来の積層シートは、コンクリート、モルタル、石膏ボード、針葉樹合板、木質系セメント板、ケイ酸カルシウム板、タイル、および繊維強化セメント板等のような粗面(凸凹形状を有する表面)を有する被着体や、一般的に低極性被着体と認識されるポリプロピレン等のプラスチック被着体への接着は、難易度が高く、接着力が不足しがちであった。このため、これら粗面を有する被着体に対しては、粘着剤ではなく、接着剤が用いられることが多かった。また、低極性被着体に接着剤を適用するにあたっては、一般にプライマー処理をする等の対策が必要とされることが多かった。しかし、近年、粗面を有する被着体同士の接合や低極性被着体を含む他の様々な被着体との貼付け固定をより簡便に行いたいというニーズの増加に伴い、プライマー等の使用を必須とすることなく、粘着シート等の積層シートを用いて粗面を有する被着体や低極性被着体を接合することが強く望まれている。 The conventional laminated sheet having an adhesive is a rough surface (surface having a concavo-convex shape) such as concrete, mortar, gypsum board, softwood plywood, wood based cement board, calcium silicate board, tile, and fiber reinforced cement board etc. Adhesion to an adherend having the above and a plastic adherend such as polypropylene, which is generally recognized as a low-polar adherend, has a high degree of difficulty and tends to lack adhesion. For this reason, not a pressure-sensitive adhesive but an adhesive is often used for adherends having these rough surfaces. In addition, when applying an adhesive to a low polarity adherend, generally, measures such as primer treatment have often been required. However, in recent years, with the increase in needs for bonding between adherends having rough surfaces and pasting and fixing to various other adherends including low polarity adherends, the use of primers etc. has increased. It is strongly desired to join adherends having a rough surface and low polarity adherends by using a laminated sheet such as a pressure-sensitive adhesive sheet without making the above
 粘着シート等の積層シートは、上述のような粗面を有する被着体やプラスチック部材を接合する目的で用いられ得る。また、粗面を有する被着体やプラスチック部材に対して用いられる粘着シート等の積層シートには、該被着体に固定した重量物をその固定状態で長期に保持する観点から、保持力も必要とされる。さらに、粗面を有する被着体の接合作業は冬場の屋外等のような低温環境においても行われ得るため、粘着シート等の積層シートは、低温においても粗面に対して良好な接着性を示すことが望ましい。 A laminated sheet such as an adhesive sheet can be used for the purpose of bonding an adherend or a plastic member having a rough surface as described above. In addition, a laminated sheet such as a pressure-sensitive adhesive sheet used for an adherend having a rough surface or a plastic member also needs a holding power from the viewpoint of holding a heavy material fixed to the adherend in a fixed state for a long time It is assumed. Furthermore, since the bonding operation of the adherend having a rough surface can be performed also in a low temperature environment such as in the winter outdoors, the laminated sheet such as an adhesive sheet has good adhesiveness to the rough surface even at a low temperature. It is desirable to show.
 そこで本発明は、ガラス、ステンレス鋼やアルミニウム等の金属、等のように一般的に接着しやすい被着体に強力に接着しつつ、粗面およびプラスチックのいずれにも強固に接着可能であり、保持力が高く、かつ低温においても良好な接着性を示す樹脂層および該樹脂層の形成に適した樹脂組成物を提供することを目的とする。関連する他の目的は、上記樹脂層を含む積層シートを提供することである。 Therefore, the present invention can strongly adhere to both rough surfaces and plastics while strongly adhering to adherends generally easy to adhere, such as glass, metals such as stainless steel and aluminum, etc. It is an object of the present invention to provide a resin layer that has high holding power and exhibits good adhesion even at low temperatures, and a resin composition suitable for forming the resin layer. Another related objective is to provide a laminated sheet including the above resin layer.
 この明細書によると、ガラス転移温度(Tg)が-40℃以下である(メタ)アクリル系ポリマーと、上記(メタ)アクリル系ポリマー100重量部に対して5重量部以上40重量部以下の粘着付与樹脂と、を含有する樹脂組成物が提供される。上記(メタ)アクリル系ポリマーは、ホモポリマーのTgが-50℃以下であり炭素数8~18の分岐したアルキル基をエステル基の末端に有するアルキル(メタ)アクリレート(A1)と、ホモポリマーのTgが-40℃以下であり分子骨格内にエーテル結合を有する(メタ)アクリレート(A2)と、を含むモノマー成分の重合物である。上記モノマー成分は、上記アルキル(メタ)アクリレート(A1)を50~97重量%、上記エーテル結合を有する(メタ)アクリレート(A2)を3~50重量%、の割合で含む。 According to this specification, a (meth) acrylic polymer having a glass transition temperature (Tg) of -40 ° C. or less and an adhesion of 5 to 40 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer There is provided a resin composition containing the application resin. The (meth) acrylic polymer has a homopolymer Tg of −50 ° C. or less and an alkyl (meth) acrylate (A1) having a branched alkyl group having 8 to 18 carbon atoms at the end of the ester group and a homopolymer It is a polymer of a monomer component including (meth) acrylate (A2) having a Tg of −40 ° C. or less and having an ether bond in the molecular skeleton. The monomer component contains 50 to 97% by weight of the alkyl (meth) acrylate (A1) and 3 to 50% by weight of the (meth) acrylate (A2) having the ether bond.
 なお、以下において、上記アルキル(メタ)アクリレート(A1)を「モノマーA1」と表記することがある。また、上記エーテル結合を有する(メタ)アクリレート(A2)を「モノマーA2」と表記することがある。 In addition, the said alkyl (meth) acrylate (A1) may be described with "monomer A1" below. Moreover, the (meth) acrylate (A2) which has the said ether bond may be described with "monomer A2."
 上記構成の樹脂組成物によると、上記(メタ)アクリル系ポリマーに対して特定量の粘着付与樹脂を含むことにより、被着体に対する接着力を向上させることができる。また、上記(メタ)アクリル系ポリマーは、モノマーA1およびモノマーA2を特定の割合で含むモノマー成分の重合物であるので、保持力が高くかつ低温でも良好な粗面接着性を発揮する樹脂層を形成しやすい。したがって、上記(メタ)アクリル系ポリマーと上記特定量の粘着付与樹脂とを組み合わせて用いることにより、粗面やプラスチック等に対する高い接着力および高い保持力と、低温における接着性とを好適に両立することができる。 According to the resin composition of the said structure, the adhesive force with respect to a to-be-adhered body can be improved by containing the tackifying resin of a specific amount with respect to the said (meth) acrylic-type polymer. In addition, since the (meth) acrylic polymer is a polymer of a monomer component containing the monomer A1 and the monomer A2 in a specific ratio, a resin layer exhibiting high surface tension and good surface adhesion even at low temperature can be obtained. Easy to form. Therefore, by combining and using the (meth) acrylic polymer and the tackifying resin in the specific amount, high adhesiveness and high holding power to rough surfaces, plastics, etc., and adhesiveness at low temperatures are suitably achieved. be able to.
 いくつかの態様に係る樹脂組成物において、上記モノマーA1と上記モノマーA2との合計の割合は、上記(メタ)アクリル系ポリマーを形成する全モノマー成分の75重量%以上であり得る。ここに開示される樹脂組成物は、かかる組成のモノマー成分の重合物である(メタ)アクリル系ポリマーを用いて好適に実施することができる。 In the resin composition according to some embodiments, the total proportion of the monomer A1 and the monomer A2 may be 75% by weight or more of the total monomer components forming the (meth) acrylic polymer. The resin composition disclosed herein can be suitably carried out using a (meth) acrylic polymer which is a polymer of monomer components of such composition.
 上記モノマーA2としては、一般式(1):
   CH=CR-COO-(AO)-R
で表されるモノマーを好ましく用いることができる。ここで、上記一般式(1)中、Rは水素原子またはメチル基である。AOは、炭素数2~3のアルキレンオキシ基である。nは、上記アルキレンオキシ基の平均付加モル数を示す数であって、例えば1~10であり得る。Rは、芳香環であるか、または直鎖、分岐鎖もしくは脂環式のアルキル基である。このような構造のモノマーA2によると、低温でも接着性がよく、かつ適度な凝集性により接着力と保持力とをバランスよく両立する樹脂層が形成されやすい。
As said monomer A2, General formula (1):
CH 2 = CR 1 -COO- (AO) n -R 2 ;
The monomer represented by can be preferably used. Here, in the above general formula (1), R 1 is a hydrogen atom or a methyl group. AO is an alkyleneoxy group having 2 to 3 carbon atoms. n is a number indicating the average added mole number of the above alkyleneoxy group, and may be, for example, 1 to 10. R 2 is an aromatic ring or a linear, branched or alicyclic alkyl group. According to the monomer A2 having such a structure, a resin layer having good adhesion even at low temperature and having appropriate adhesion and holding power in a well-balanced manner is easily formed due to appropriate cohesion.
 いくつかの態様において、上記粘着付与樹脂は、ロジン系粘着付与樹脂、テルペン系粘着付与樹脂、石油系粘着付与樹脂およびスチレン系粘着付与樹脂からなる群から選択される少なくとも一種を含み得る。ここに開示される技術は、このような粘着付与樹脂を用いて好適に実施することができる。 In some embodiments, the tackifying resin may include at least one selected from the group consisting of rosin-based tackifying resins, terpene-based tackifying resins, petroleum-based tackifying resins, and styrene-based tackifying resins. The techniques disclosed herein can be suitably practiced using such tackifying resins.
 ここに開示される樹脂組成物は、軟化点が90℃以上160℃である少なくとも一種の粘着付与樹脂を含み得る。軟化点が上記範囲にある粘着付与樹脂を用いることにより、室温域における接着性と凝集性とのバランスがよく、かつ低温域でも粗面に対する良好な接着性を示す樹脂層が形成される傾向にある。 The resin composition disclosed herein may include at least one tackifying resin having a softening point of 90 ° C. or higher and 160 ° C. By using a tackifying resin having a softening point in the above range, a resin layer having a good balance between adhesion and cohesion in a room temperature range and good adhesion to a rough surface even in a low temperature range tends to be formed. is there.
 上記(メタ)アクリル系ポリマーを構成するモノマー成分は、ヒドロキシル基を有するモノマー、カルボキシル基を有するモノマーおよびエポキシ基を有するモノマーからなる群から選択される少なくとも一種の官能基含有モノマーを含み得る。このような官能基含有モノマーは、樹脂層の凝集性や貯蔵弾性率G’の調整に役立ち得る。 The monomer component constituting the (meth) acrylic polymer may include at least one functional group-containing monomer selected from the group consisting of a monomer having a hydroxyl group, a monomer having a carboxyl group, and a monomer having an epoxy group. Such a functional group-containing monomer can help to adjust the cohesiveness of the resin layer and the storage elastic modulus G '.
 上記(メタ)アクリル系ポリマーの重量平均分子量(Mw)は、35万以上であることが好ましい。このようなMwを有する(メタ)アクリル系ポリマーによると、粗面およびプラスチック部材への接着性と凝集性とをバランスよく両立する樹脂層が得られやすい。 The weight average molecular weight (Mw) of the (meth) acrylic polymer is preferably 350,000 or more. According to the (meth) acrylic polymer having such Mw, it is easy to obtain a resin layer having well-balanced adhesion and cohesion to the rough surface and the plastic member.
 上記樹脂組成物には、架橋剤を含有させることができる。架橋剤は、樹脂層の凝集性や貯蔵弾性率G’の調整に役立ち得る。いくつかの態様において、上記架橋剤の含有量は、上記(メタ)アクリル系ポリマー100重量部に対して、例えば0.01重量部以上5重量部以下とすることができる。上記架橋剤としては、イソシアネート系架橋剤およびエポキシ系架橋剤の一方または両方が好ましく用いられ得る。 The resin composition can contain a crosslinking agent. The crosslinking agent can help to adjust the cohesiveness of the resin layer and the storage elastic modulus G '. In some embodiments, the content of the crosslinking agent can be, for example, 0.01 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer. As said crosslinking agent, one or both of an isocyanate type crosslinking agent and an epoxy type crosslinking agent may be used preferably.
 この明細書によると、ここに開示されるいずれかの樹脂組成物から形成される樹脂層が提供される。このような樹脂層は、粗面やプラスチック等の被着体に対して良好な接着力を発揮し、適度な凝集性を有することで保持力が高く、かつ低温域においても良好な接着性を示すものとなり得る。 According to this specification, a resin layer formed from any of the resin compositions disclosed herein is provided. Such a resin layer exhibits good adhesion to adherends such as rough surfaces and plastics, and has adequate cohesion so that it has high retention and good adhesion even at low temperatures. It can be something shown.
 いくつかの態様において、上記樹脂層は、23℃における貯蔵弾性率G’が1.0×10Pa以上5.0×10Pa以下であり、かつ、-10℃における貯蔵弾性率G’が3.0×10Pa以上7.0×10Pa以下であり得る。このような特性を有する樹脂層は、室温域における接着力と保持力とのバランスがよく、かつ低温域でも良好な接着性を示す傾向にあるので好ましい。 In some embodiments, the resin layer has a storage elastic modulus G ′ at 23 ° C. of 1.0 × 10 4 Pa or more and 5.0 × 10 4 Pa or less, and a storage elastic modulus G ′ at −10 ° C. Is 3.0 × 10 4 Pa or more and 7.0 × 10 5 Pa or less. A resin layer having such properties is preferable because it has a good balance between adhesion and holding power in a room temperature range and tends to exhibit good adhesion even in a low temperature range.
 なお、以下において、23℃における貯蔵弾性率G’を「貯蔵弾性率G’(23℃)」と表記することがある。同様に、-10℃における貯蔵弾性率G’を「貯蔵弾性率G’(-10℃)」と表記することがある。 In addition, below, storage-elastic-modulus G 'in 23 degreeC may be described with "storage-elastic-modulus G' (23 degreeC)." Similarly, the storage elastic modulus G 'at -10.degree. C. may be expressed as "storage elastic modulus G' (-10.degree. C.)".
 いくつかの態様において、上記樹脂層のポリマーゲル分率は、20重量%以上95重量%以下の範囲であり得る。ポリマーゲル分率が上記範囲にある樹脂層によると、粗面に対する接着性(例えば、低温における接着性)と凝集性とを好適に両立しやすい。 In some embodiments, the polymer gel fraction of the resin layer may range from 20% to 95% by weight. According to the resin layer having the polymer gel fraction in the above-mentioned range, it is possible to easily achieve both the adhesiveness (for example, the adhesiveness at low temperature) to the rough surface and the cohesion.
 この明細書によると、ここに開示されるいずれかの樹脂層を支持体の少なくとも片側に有する積層シートが提供される。かかる積層シートは、例えば、上記樹脂層を被着体に貼り付ける態様で、該被着体の接合や固定に好適に用いられ得る。上記被着体の非限定的な例には、上述のような粗面を有する被着体や各種のプラスチック材料が含まれる。上記支持体としては、例えば、プラスチックフィルム、紙、不織布および気泡もしくは粒子含有シートの少なくともいずれかを含む構成のものが好ましく用いられ得る。 According to this specification, there is provided a laminated sheet having any of the resin layers disclosed herein on at least one side of a support. The laminated sheet can be suitably used for bonding or fixing the adherend, for example, in a mode in which the resin layer is attached to the adherend. Non-limiting examples of the adherend include adherends having rough surfaces as described above and various plastic materials. As said support body, the thing of the structure containing at least any one of a plastic film, paper, a nonwoven fabric, and a bubble or particle | grain containing sheet can be used preferably, for example.
 いくつかの態様において、上記樹脂層は、23℃の環境において剥離速度300mm/分の条件で測定される180°ピール接着力が10N/20mm以上であり得る。以下、上記23℃における180°ピール接着力を「室温接着力」と表記することがある。ここに開示される技術によると、上記(メタ)アクリル系ポリマーと特定量の粘着付与樹脂とを組み合わせて用いることにより、上記室温接着力を好適に達成することができる。 In some embodiments, the resin layer may have a 180 ° peel adhesion of 10 N / 20 mm or more measured at a peel rate of 300 mm / min in a 23 ° C. environment. Hereinafter, the 180 ° peel adhesion at 23 ° C. may be referred to as “room temperature adhesion”. According to the technology disclosed herein, the above room temperature adhesion can be suitably achieved by using the above (meth) acrylic polymer and a specific amount of tackifying resin in combination.
 いくつかの態様において、上記樹脂層は、-10℃の環境において剥離速度300mm/分の条件で測定される180°ピール接着力が5N/20mm以上であり得る。以下、上記-10℃における180°ピール接着力を「低温接着力」と表記することがある。上記(メタ)アクリル系ポリマーは、モノマーA1およびモノマーA2を特定の割合で含むモノマー成分の重合物であるので、低温域においても柔軟性に優れる。したがって、ここに開示される技術によると、上記(メタ)アクリル系ポリマーと特定量の粘着付与樹脂とを組み合わせて用いることにより、上記低温接着力を好適に達成することができる。 In some embodiments, the resin layer may have a 180 ° peel adhesion of 5 N / 20 mm or more measured at a peel rate of 300 mm / min in an environment of −10 ° C. Hereinafter, the 180 ° peel adhesion at −10 ° C. may be referred to as “low temperature adhesion”. The (meth) acrylic polymer is a polymer of a monomer component containing the monomer A1 and the monomer A2 in a specific ratio, and therefore, is excellent in flexibility even in a low temperature range. Therefore, according to the technology disclosed herein, the low temperature adhesion can be suitably achieved by using the (meth) acrylic polymer and the specific amount of the tackifying resin in combination.
 ここに開示される樹脂組成物、樹脂層および積層シートは、例えば、粘着剤組成物、粘着剤層および粘着シートとして利用可能である。 The resin composition, resin layer and laminate sheet disclosed herein can be used, for example, as a pressure-sensitive adhesive composition, a pressure-sensitive adhesive layer and a pressure-sensitive adhesive sheet.
 なお、上述した各要素を適宜組み合わせたものも、本件特許出願によって特許による保護を求める発明の範囲に含まれ得る。 A combination of the above-described elements as appropriate may also be included in the scope of the invention for which protection by a patent is sought by the present patent application.
一実施形態に係る積層シートの構成を模式的に示す断面図である。It is a sectional view showing typically the composition of the lamination sheet concerning one embodiment. 他の一実施形態に係る積層シートの構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the lamination sheet which concerns on other one Embodiment. さらに他の一実施形態に係る積層シートの構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the lamination sheet which concerns on other one Embodiment.
 以下、本発明の好適な実施形態を説明する。本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、本明細書に記載された発明の実施についての教示と出願時の技術常識とに基づいて当業者に理解され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 なお、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明することがあり、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、実際に提供される製品のサイズや縮尺を必ずしも正確に表したものではない。
Hereinafter, preferred embodiments of the present invention will be described. Matters other than the matters specifically mentioned in the present specification and necessary for the practice of the present invention are based on the teaching of the practice of the invention described in the present specification and the common general knowledge at the time of filing. It can be understood by the vendor. The present invention can be implemented based on the contents disclosed in the present specification and common technical knowledge in the field.
In the following drawings, the same reference numerals may be given to members / parts having the same function, and overlapping descriptions may be omitted or simplified. In addition, the embodiments described in the drawings are schematically illustrated in order to clearly explain the present invention, and the sizes and scales of products actually provided are not necessarily accurately represented.
 また、この明細書において「(メタ)アクリレート」とはアクリレートおよびメタクリレートを包括的に指す意味である。同様に、この明細書において「(メタ)アクリル酸」とはアクリル酸およびメタクリル酸を、「(メタ)アクリロイル基」とは、アクリロイル基およびメタクリロイル基を、それぞれ包括的に指す意味である。 Moreover, in this specification, "(meth) acrylate" is a meaning which generally refers to acrylate and methacrylate. Similarly, in the present specification, “(meth) acrylic acid” means acrylic acid and methacrylic acid, and “(meth) acryloyl group” generically refers to an acryloyl group and a methacryloyl group, respectively.
 ここに開示される樹脂組成物は、50~97重量%のモノマーA1および3~50重量%のモノマーA2を含むモノマー成分の重合物であってTgが-40℃以下である(メタ)アクリル系ポリマーと、上記(メタ)アクリル系ポリマー100重量部に対して5重量部以上40重量部以下の粘着付与樹脂と、を含む。
 上記(メタ)アクリル系ポリマーは、炭素数8~18の分岐したアルキル基を有するアルキル(メタ)アクリレート(モノマーA1)の特定量と、エーテル結合を有する(メタ)アクリレート(モノマーA2)の特定量と、を含有するモノマー成分を重合することにより得られたものである。また、モノマーA1およびモノマーA2のそれぞれのホモポリマーはTgが低く、かつ得られた(メタ)アクリル系ポリマーも低Tgを有するものである。かかる(メタ)アクリル系ポリマーを含む樹脂組成物によると、モノマーA1およびモノマーA2の作用により、粗面を有する被着体に対して、高い接着力および高い保持力を発現することができる。
The resin composition disclosed herein is a polymer of a monomer component containing 50 to 97% by weight of monomer A1 and 3 to 50% by weight of monomer A2 and has a Tg of -40 ° C or less (meth) acrylic It contains a polymer and 5 parts by weight or more and 40 parts by weight or less of a tackifier resin with respect to 100 parts by weight of the (meth) acrylic polymer.
The above (meth) acrylic polymer is a specific amount of alkyl (meth) acrylate (monomer A1) having a branched alkyl group having 8 to 18 carbon atoms and a specific amount of (meth) acrylate (monomer A2) having an ether bond And are obtained by polymerizing a monomer component containing In addition, each homopolymer of the monomer A1 and the monomer A2 has a low Tg, and the obtained (meth) acrylic polymer also has a low Tg. According to the resin composition containing such (meth) acrylic polymer, high adhesion and high holding power can be expressed to the adherend having a rough surface by the action of the monomer A1 and the monomer A2.
 モノマーA1は、低Tgかつ適度な凝集力と粘着性を有する。モノマーA2は、低Tgかつ適度な極性を有し、被着体表面との好適な相互作用を有する。その結果として、上記(メタ)アクリル系ポリマーを含む樹脂組成物は、適度な柔らかさと凝集力、および界面との相互作用を有し、粗面を有する被着体に対して高い接着力と高い保持力を発揮することができるものと推定される。 Monomer A1 has low Tg and suitable cohesion and tackiness. The monomer A2 has a low Tg and a suitable polarity, and has a suitable interaction with the adherend surface. As a result, the resin composition containing the (meth) acrylic polymer has an adequate softness and cohesion, and an interaction with the interface, and has high adhesion and high adhesion to an adherend having a rough surface. It is presumed that the holding power can be exhibited.
 また、ここに開示される樹脂組成物は、粘着付与樹脂を含むことにより、低極性被着体に対しても濡れ性と被着体界面との相互作用を向上させ、また、粘着剤バルクの弾性率を高めることで樹脂層に適度な凝集力を付与し得る。このことによって、粗面やプラスチック等の各種被着体に対して高い接着力を示し得る。ポリオレフィン系樹脂等のような低極性の被着体では、粘着付与樹脂の使用が特に効果的である。そして、上記粘着付与樹脂の特定量を、上記(メタ)アクリル系ポリマーと組み合わせて用いることにより、粘着付与樹脂の使用による効果を享受しつつ、低温における接着性の低下を抑制することができるものと推定される。 In addition, the resin composition disclosed herein improves the wettability with respect to the low-polar adherend and the interaction with the adherend interface by including the tackifying resin, and further, it is possible to use the adhesive bulk. By increasing the elastic modulus, appropriate cohesion can be imparted to the resin layer. This can exhibit high adhesion to various adherends such as rough surfaces and plastics. The use of a tackifying resin is particularly effective for low polarity adherends such as polyolefin resins. And by using a specific amount of the tackifying resin in combination with the (meth) acrylic polymer, it is possible to suppress the decrease in adhesiveness at a low temperature while enjoying the effect by the use of the tackifying resin. It is estimated to be.
<モノマーA1>
 モノマーA1としては、ホモポリマーのTgが-50℃以下であって、かつ炭素数8~18の分岐したアルキル基をエステル基の末端に有するアルキル(メタ)アクリレートが用いられる。モノマーA1のホモポリマーのTgは、粗面を有する被着体に対する接着力を高める観点から、-55℃以下であることが好ましく、-60℃以下であることがより好ましい。モノマーA1のホモポリマーのTgは、保持力を高める観点から、-80℃以上であることが好ましく、-75℃以上であることがより好ましい。モノマーA1のアルキル基の炭素数は、樹脂層に適度な柔らかさを付与する観点、および樹脂層の凝集力を高める観点から、8~16であることが好ましく、8~14であることがより好ましい。
<Monomer A1>
As the monomer A1, an alkyl (meth) acrylate having a homopolymer Tg of −50 ° C. or less and having a branched alkyl group having 8 to 18 carbon atoms at the end of the ester group is used. The Tg of the homopolymer of the monomer A1 is preferably −55 ° C. or less, more preferably −60 ° C. or less, from the viewpoint of enhancing the adhesion to an adherend having a rough surface. The Tg of the homopolymer of the monomer A1 is preferably −80 ° C. or higher, more preferably −75 ° C. or higher, from the viewpoint of enhancing the holding power. The carbon number of the alkyl group of the monomer A1 is preferably 8 to 16, and more preferably 8 to 14 from the viewpoint of imparting appropriate softness to the resin layer and from the viewpoint of enhancing the cohesion of the resin layer. preferable.
 ここに開示される技術において、各モノマーのホモポリマーのTgは、「Polymer Handbook」(第3版、John Wiley & Sons, Inc., 1989年)に記載の数値である。上記Polymer Handbookに複数の数値が記載されている場合には、conventionalの値を採用する。上記Polymer Handbookに記載のないモノマーについては、モノマー製造企業のカタログ値を採用する。 In the technology disclosed herein, the Tg of the homopolymer of each monomer is the numerical value described in “Polymer Handbook” (Third Edition, John Wiley & Sons, Inc., 1989). When a plurality of numerical values are described in the above-mentioned Polymer Handbook, the value of conventional is adopted. For monomers not described in the above-mentioned Polymer Handbook, the catalog values of the monomer manufacturing companies are adopted.
 上記Polymer Handbookに記載がなく、モノマー製造企業のカタログ値も提供されていないモノマーのホモポリマーのTgとしては、以下の測定方法により得られる値を用いる。すなわち、温度計、攪拌機、窒素導入管および還流冷却管を備えた反応器に、測定対象のモノマー100重量部、2,2’-アゾビスイソブチロニトリル0.1重量部および重合溶媒として酢酸エチル200重量部を投入し、窒素ガスを導入しながら1時間攪拌する。このようにして重合系内の酸素を除去した後、60℃に昇温し12時間反応させる。次いで、室温まで冷却し、このホモポリマー溶液を剥離ライナー上に流延塗布し、乾燥して厚さ約50μmの試験サンプル(シート状のホモポリマー)を作製する。得られた試験サンプルから2~3mgの試料を採取し、アルミ製容器に入れ、クリンプしてDSC測定(TA Instruments製 Q-2000)を行う。温度プログラムは-80℃~150℃(測定速度10℃/min)とし、窒素(50ml/min)雰囲気ガス下で測定を行う。得られたチャートからTmg(中点ガラス転移温度)の数値を読み取り、この値をホモポリマーのTgとする。 As a Tg of a homopolymer of a monomer which is not described in the above-mentioned Polymer Handbook and for which a catalog value of a monomer manufacturing company is not provided, a value obtained by the following measuring method is used. That is, in a reactor equipped with a thermometer, a stirrer, a nitrogen introducing pipe and a reflux condenser, 100 parts by weight of the monomer to be measured, 0.1 parts by weight of 2,2'-azobisisobutyronitrile and acetic acid as a polymerization solvent Charge 200 parts by weight of ethyl, and stir for 1 hour while introducing nitrogen gas. After oxygen in the polymerization system is removed in this manner, the temperature is raised to 60 ° C. and reaction is carried out for 12 hours. Then, it is cooled to room temperature, the homopolymer solution is cast-coated on a release liner, and dried to prepare a test sample (sheet-like homopolymer) having a thickness of about 50 μm. A 2-3 mg sample is taken from the obtained test sample, placed in an aluminum container, crimped and subjected to DSC measurement (Q-2000 manufactured by TA Instruments). The temperature program is −80 ° C. to 150 ° C. (measurement rate 10 ° C./min), and measurement is performed under nitrogen (50 ml / min) atmosphere gas. The value of Tmg (mid-point glass transition temperature) is read from the obtained chart, and this value is taken as the Tg of the homopolymer.
 モノマーA1としては、例えば、2-エチルヘキシルアクリレート(炭素数8,ホモポリマーのTg=-70℃)、イソオクチルアクリレート(炭素数8,ホモポリマーのTg=-58℃)、イソノニルアクリレート(炭素数9,ホモポリマーのTg=-58℃)、イソデシルアクリレート(炭素数10,ホモポリマーのTg=-60℃)、イソミスチリルアクリレート(炭素数14,Tg=-56℃)イソウンデシルアクリレート、イソドデシルアクリレート、イソペンタデシルアクリレート、イソヘキサデシルアクリレート、イソヘプタデシルアクリレート、イソオクタデシルアクリレート、および上記例示のメタクリレートを例示できる。モノマーA1は、一種を単独でまたは二種以上を組み合わせて用いることができる。なお、樹脂層の粘着力を高める観点や、重合反応性の観点から、モノマーA1としてはアルキルアクリレートが好適である。 As the monomer A1, for example, 2-ethylhexyl acrylate (carbon number 8, Tg of homopolymer = 80C), isooctyl acrylate (carbon number 8, Tg of homopolymer = 58C), isononyl acrylate (carbon number) 9, Tg of homopolymer = -58 ° C), isodecyl acrylate (carbon number 10, Tg of homopolymer = 60 ° C), isomystyryl acrylate (carbon number 14; Tg = -56 ° C) isoundecyl acrylate, iso Examples are dodecyl acrylate, isopentadecyl acrylate, isohexadecyl acrylate, isoheptadecyl acrylate, isooctadecyl acrylate, and the methacrylates exemplified above. The monomers A1 can be used alone or in combination of two or more. From the viewpoint of enhancing the adhesive strength of the resin layer and the viewpoint of polymerization reactivity, alkyl acrylate is preferable as the monomer A1.
<モノマーA2>
 モノマーA2としては、ホモポリマーのTgが-40℃以下であって、かつ分子骨格内にエーテル結合を有する(メタ)アクリレートが用いられる。モノマーA2のホモポリマーのTgは、粗面を有する被着体に対する接着力を高める観点から、-45℃以下であることが好ましく、-50℃以下であることがより好ましい。モノマーA2のホモポリマーのTgは、粗面を有する被着体に対する接着力および保持力を高める観点から、-90℃以上であることが好ましく、-80℃以上であることがより好ましい。なお、モノマーA2が分子骨格内に有する上記エーテル結合とは、鎖状エーテル結合を意味し、エポキシ基やオキセタン基等のような環状エーテル結合とは区別される。
<Monomer A2>
As the monomer A2, (meth) acrylate having a homopolymer Tg of −40 ° C. or less and having an ether bond in the molecular skeleton is used. The Tg of the homopolymer of the monomer A2 is preferably −45 ° C. or less, more preferably −50 ° C. or less, from the viewpoint of enhancing the adhesion to an adherend having a rough surface. The Tg of the homopolymer of the monomer A2 is preferably −90 ° C. or higher, and more preferably −80 ° C. or higher, from the viewpoint of enhancing the adhesion and retention to an adherend having a rough surface. In addition, the said ether bond which monomer A2 has in a molecular skeleton means a chain | strand-shaped ether bond, and it distinguishes with cyclic ether bonds, such as an epoxy group and an oxetane group.
 モノマーA2としては、(メタ)アクリロイル基の不飽和二重結合を有し、かつ鎖状エーテル結合を有するものを特に制限なく用いることができる。モノマーA2としては、例えば、一般式(1):CH=CR-COO-(AO)-R;で表されるモノマー等が挙げられる。ここで、上記一般式(1)中のRは、水素原子またはメチル基である。AOは、炭素数2~3のアルキレンオキシ基である。nは、アルキレンオキシ基の平均付加モル数を示す数である。Rは、エーテル結合を含まない一価の有機基であって、炭化水素基であることが好ましい。モノマーA2は、一種を単独でまたは二種以上を組み合わせて用いることができる。 As the monomer A2, a monomer having an unsaturated double bond of (meth) acryloyl group and having a linear ether bond can be used without particular limitation. Examples of the monomer A2 include monomers represented by general formula (1): CH 2 CRCR 1 -COO- (AO) n -R 2 ; Here, R 1 in the above general formula (1) is a hydrogen atom or a methyl group. AO is an alkyleneoxy group having 2 to 3 carbon atoms. n is a number indicating the average added mole number of the alkyleneoxy group. R 2 is a monovalent organic group which does not contain an ether bond, and is preferably a hydrocarbon group. Monomer A2 can be used individually by 1 type or in combination of 2 or more types.
 上記一般式(1)中のnは、例えば1~10であり得る。極性レベルと重合反応性の観点から、いくつかの態様において、上記一般式(1)中のnは、2~8であることが好ましく、2~5であることがより好ましい。 N in the above general formula (1) may be, for example, 1 to 10. From the viewpoint of polarity level and polymerization reactivity, in some embodiments, n in the general formula (1) is preferably 2 to 8, more preferably 2 to 5.
 上記一般式(1)中のRは、無置換の芳香環であるか、または直鎖、分岐鎖もしくは脂環式のアルキル基であることが好ましい。Rの芳香環の例としては、フェニル基等が挙げられる。Rの直鎖アルキル基、分岐鎖アルキルの例としては、イソプロピル基、エチル基、メチル基等が挙げられる。Rの脂環式アルキル基の例としては、シクロヘキシル基等が挙げられる。ホモポリマーのTgの低い鎖状エーテル結合含有(メタ)アクリレートとなりやすいことから、Rが直鎖アルキル基または分岐鎖アルキル基であることが好ましく、直鎖アルキル基であることが特に好ましい。また、適度な極性を有するモノマーA2となりやすいことから、Rの炭素数は、1~6であることが好ましく、1~5であることがより好ましく、1~4または1~3でもよい。 R 2 in the above general formula (1) is preferably a non-substituted aromatic ring or a linear, branched or alicyclic alkyl group. Examples of the aromatic ring of R 2 include a phenyl group and the like. Examples of the linear alkyl group of R 2 and branched alkyl groups include an isopropyl group, an ethyl group, a methyl group and the like. Examples of the alicyclic alkyl group of R 2 include a cyclohexyl group and the like. R 2 is preferably a linear alkyl group or a branched alkyl group, and particularly preferably a linear alkyl group, since it tends to be a linear ether bond-containing (meth) acrylate having a low Tg of a homopolymer. In addition, the carbon number of R 2 is preferably 1 to 6, more preferably 1 to 5, and even 1 to 4 or 1 to 3 because it tends to be a monomer A2 having appropriate polarity.
 上記一般式(1)で表されるモノマーの例には、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、プロポキシポリエチレングリコール(メタ)アクリレート等の、AOが炭素数2のアルキレンオキシ基であるモノマー;および、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、プロポキシポリプロピレングリコール(メタ)アクリレート等の、AOが炭素数3のアルキレンオキシ基であるモノマー;が含まれる。重合反応性の観点から、上記一般式(1)中のRが水素原子であるモノマーA2が好ましい。すなわち、モノマーA2はアクリレートであることが好ましい。 As an example of the monomer represented by the above general formula (1), alkyleneoxy having an AO of 2 carbon atoms, such as methoxypolyethylene glycol (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, propoxypolyethylene glycol (meth) acrylate, etc. And monomers which are groups; and monomers wherein AO is an alkyleneoxy group having 3 carbon atoms, such as methoxypolypropylene glycol (meth) acrylate, ethoxypolypropylene glycol (meth) acrylate, propoxypolypropylene glycol (meth) acrylate and the like. From the viewpoint of polymerization reactivity, the monomer A2 in which R 1 in the general formula (1) is a hydrogen atom is preferable. That is, the monomer A2 is preferably an acrylate.
 上記一般式(1)中のAOは、適度な極性バランスを有する観点から、炭素数2のアルキレンオキシ基、すなわちオキシエチレン基であることが好ましい。具体的な化合物としては、エチルカルビトールアクリレート(エトキシエトキシエチルアクリレート)(ホモポリマーのTg=-67℃)、メトキシトリエチレングリコールアクリレート(ホモポリマーのTg=-57℃)等が挙げられる。 AO in the above general formula (1) is preferably an alkyleneoxy group having 2 carbon atoms, that is, an oxyethylene group, from the viewpoint of having a suitable polar balance. Specific examples of the compound include ethyl carbitol acrylate (ethoxyethoxyethyl acrylate) (Tg of homopolymer = -67 ° C), methoxytriethylene glycol acrylate (Tg of homopolymer = -57 ° C) and the like.
 ここに開示される技術において、モノマーA1の使用量は、(メタ)アクリル系ポリマーを形成する全モノマー成分の50~97重量%であることが適当である。粗面に対する接着力および保持力を高める観点から、モノマーA1の使用量は、上記モノマー成分の55重量%以上であることが好ましく、より好ましくは58重量%以上、さらに好ましくは59重量%以上である。また、粗面に対する接着力および保持力を高める観点から、モノマーA1の使用量は、上記モノマー成分の95重量%以下であることが好ましく、より好ましくは93重量%以下、さらに好ましくは91重量%以下である。 In the art disclosed herein, the amount of monomer A1 used is suitably 50 to 97% by weight of the total monomer components forming the (meth) acrylic polymer. The amount of monomer A1 used is preferably 55% by weight or more, more preferably 58% by weight or more, and still more preferably 59% by weight or more, from the viewpoint of enhancing adhesion to a rough surface and holding power. is there. The amount of monomer A1 used is preferably 95% by weight or less, more preferably 93% by weight or less, still more preferably 91% by weight, from the viewpoint of enhancing adhesion to a rough surface and holding power. It is below.
 ここに開示される技術において、モノマーA2の使用量は、(メタ)アクリル系ポリマーを形成する全モノマー成分の3~50重量%であることが適当である。粗面に対する接着力および保持力を高める観点から、モノマーA2の使用量は、上記モノマー成分の3.5重量%以上であることが好ましく、4重量%以上であることがより好ましく、4.5重量%以上であることがさらに好ましい。また、粗面に対する接着力および保持力を高める観点から、モノマーA2の使用量は、上記モノマー成分の48重量%以下であることが好ましく、より好ましくは45重量%以下、さらに好ましくは40重量%以下である。 In the art disclosed herein, the amount of monomer A2 used is suitably 3 to 50% by weight of the total monomer components forming the (meth) acrylic polymer. The amount of monomer A2 used is preferably 3.5% by weight or more, more preferably 4% by weight or more, of the monomer component from the viewpoint of enhancing the adhesion to a rough surface and holding power. More preferably, it is at least weight percent. The amount of monomer A2 used is preferably 48% by weight or less, more preferably 45% by weight or less, and still more preferably 40% by weight, from the viewpoint of enhancing adhesion to a rough surface and holding power. It is below.
 モノマーA1およびモノマーA2の合計の割合は、例えば、全モノマー成分の75重量%以上であり得る。粗面を有する被着体に対する接着力および保持力をさらに高める観点から、モノマーA1およびモノマーA2の合計の割合は、全モノマー成分の80重量%以上であることが好ましく、85重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。 The total proportion of monomer A1 and monomer A2 may be, for example, 75% by weight or more of the total monomer components. From the viewpoint of further enhancing the adhesion and retention to an adherend having a rough surface, the proportion of the total of the monomer A1 and the monomer A2 is preferably 80% by weight or more of all monomer components, and is 85% by weight or more Is more preferably 90% by weight or more.
<官能基含有モノマー>
 上記(メタ)アクリル系ポリマーを形成するモノマー成分は、ヒドロキシル基を有するモノマー、カルボキシル基を有するモノマーおよびエポキシ基を有するモノマーからなる群から選択される少なくとも一種の官能基含有モノマーを含むことができる。かかる官能基含有モノマーを含むことにより、樹脂層の柔らかさを維持しつつ架橋ネットワーク形成と分子間相互作用のコントロールが可能となり、樹脂層の凝集力を高めることができ、より高い保持力を発現することができる。上記モノマー成分は、例えば、ヒドロキシル基を有するモノマーとカルボキシル基を有するモノマーとを組み合わせて含んでいてもよい。
<Functional group-containing monomer>
The monomer component forming the (meth) acrylic polymer may include at least one functional group-containing monomer selected from the group consisting of a monomer having a hydroxyl group, a monomer having a carboxyl group, and a monomer having an epoxy group. . By including such a functional group-containing monomer, it becomes possible to control the crosslink network formation and the intermolecular interaction while maintaining the softness of the resin layer, and it is possible to enhance the cohesion of the resin layer and express a higher holding power. can do. The monomer component may contain, for example, a combination of a monomer having a hydroxyl group and a monomer having a carboxyl group.
 上記ヒドロキシル基を有するモノマー(ヒドロキシル基含有モノマー)としては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつヒドロキシル基を有するものを、特に制限なく用いることができる。ヒドロキシル基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;(4-ヒドロキシメチルシクロへキシル)メチル(メタ)アクリレート等のヒドロキシアルキルシクロアルカン(メタ)アクリレート;等が挙げられる。その他のヒドロキシル基含有モノマーとしては、ヒドロキシエチル(メタ)アクリルアミド、アリルアルコール、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等が挙げられる。ヒドロキシル基含有モノマーは、一種を単独でまたは二種以上を組み合わせて使用できる。なかでもヒドロキシアルキル(メタ)アクリレートが好適であり、特に2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが好ましい。 As the monomer having a hydroxyl group (hydroxyl group-containing monomer), those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a hydroxyl group are particularly preferable. It can be used without limitation. As a hydroxyl group-containing monomer, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl ( Hydroxyalkyl (meth) acrylates such as meta) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxy lauryl (meth) acrylate; (4-hydroxymethylcyclohexyl) methyl And hydroxyalkyl cycloalkane (meth) acrylates such as meta) acrylate; and the like. Examples of other hydroxyl group-containing monomers include hydroxyethyl (meth) acrylamide, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, and diethylene glycol monovinyl ether. The hydroxyl group-containing monomers can be used alone or in combination of two or more. Among them, hydroxyalkyl (meth) acrylate is preferable, and 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate are particularly preferable.
 上記カルボキシル基を有するモノマー(カルボキシル基含有モノマー)としては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつカルボキシル基を有するものを特に制限なく用いることができる。カルボキシル基含有モノマーとしては、例えば、(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸等が挙げられる。カルボキシル基含有モノマーは、一種を単独でまたは二種以上を組み合わせて使用できる。これらのなかでもアクリル酸、メタクリル酸が好適であり、特にアクリル酸が好適である。 As the monomer having a carboxyl group (carboxyl group-containing monomer), those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having a carboxyl group are particularly limited. It can be used without. Examples of the carboxyl group-containing monomer include (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, isocrotonic acid and the like. The carboxyl group-containing monomers can be used alone or in combination of two or more. Among these, acrylic acid and methacrylic acid are preferable, and acrylic acid is particularly preferable.
 上記エポキシ基を有するモノマー(エポキシ基含有モノマー)としては、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつエポキシ基を有するものを特に制限なく用いることができる。エポキシ基含有モノマーとしては、例えば、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等が挙げられる。エポキシ基含有モノマーは、一種を単独でまたは二種以上を組み合わせて使用できる。 As the monomer having an epoxy group (epoxy group-containing monomer), those having a polymerizable functional group having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group and having an epoxy group are particularly limited. It can be used without. Examples of the epoxy group-containing monomer include glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether and the like. The epoxy group-containing monomers can be used singly or in combination of two or more.
 ヒドロキシル基含有モノマーを用いる場合における使用量は、凝集力を高める観点から、(メタ)アクリル系ポリマーを形成する全モノマー成分の0.01重量%以上であることが好ましく、0.03重量%以上であることがより好ましい。ヒドロキシル基含有モノマーの使用量は、過度な粘度上昇やゲル化を抑制する観点から、上記モノマー成分の20重量%以下であることが適当であり、15重量%以下であることが好ましく、10重量%以下であることがより好ましく、5重量%以下であることがさらに好ましく、3重量%以下であることがよりさらに好ましく、2重量%以下であることが特に好ましい。 The amount used in the case of using a hydroxyl group-containing monomer is preferably 0.01% by weight or more of all monomer components forming the (meth) acrylic polymer, from the viewpoint of enhancing the cohesion, and 0.03% by weight or more It is more preferable that The amount of the hydroxyl group-containing monomer used is suitably 20% by weight or less, preferably 15% by weight or less, from the viewpoint of suppressing excessive increase in viscosity and gelation, preferably 10% by weight or less. % Or less is more preferable, 5% by weight or less is further preferable, 3% by weight or less is further more preferable, and 2% by weight or less is particularly preferable.
 カルボキシル基含有モノマーを用いる場合における使用量は、凝集力を高める観点、および被着体表面との分子レベルでの相互作用を付与する観点から、(メタ)アクリル系ポリマーを形成する全モノマー成分の0.1重量%以上であることが好ましく、0.2重量%以上であることがより好ましい。カルボキシル基含有モノマーの使用量は、粗面への追従性を高める観点や低温での粘着力を高く維持する観点から、上記モノマー成分の5重量%以下であることが好ましく、3重量%以下であることがより好ましく、2.6重量%以下であることがさらに好ましく、2.2重量%以下であることが特に好ましい。 In the case of using a carboxyl group-containing monomer, the amount used is that of all the monomer components forming the (meth) acrylic polymer from the viewpoint of enhancing the cohesion and from the viewpoint of imparting molecular level interaction with the adherend surface. It is preferable that it is 0.1 weight% or more, and it is more preferable that it is 0.2 weight% or more. The amount of the carboxyl group-containing monomer used is preferably 5% by weight or less, and 3% by weight or less, from the viewpoint of enhancing followability to a rough surface and maintaining high adhesive strength at low temperature. Some are more preferable, 2.6% by weight or less is further preferable, and 2.2% by weight or less is particularly preferable.
 エポキシ基含有モノマーを用いる場合における使用量は、凝集力を高める観点から、(メタ)アクリル系ポリマーを形成する全モノマー成分の0.1重量%以上であることが好ましく、0.2重量%以上であることがより好ましい。エポキシ基含有モノマーの使用量は、ゲル化や高粘度化を抑制する観点から、上記モノマー成分の1重量%以下であることが好ましく、0.5重量%以下であることがより好ましい。なお、(メタ)アクリル系ポリマーがグラフト重合体の場合はこの限りではない。 The amount used in the case of using an epoxy group-containing monomer is preferably 0.1% by weight or more of all monomer components forming the (meth) acrylic polymer, from the viewpoint of enhancing the cohesion, 0.2% by weight or more It is more preferable that The amount of the epoxy group-containing monomer used is preferably 1% by weight or less of the above-mentioned monomer component, and more preferably 0.5% by weight or less, from the viewpoint of suppressing gelation and viscosity increase. In addition, when a (meth) acrylic-type polymer is a graft polymer, it is not this limitation.
 上記官能基含有モノマーとして、ヒドロキシル基含有モノマーとカルボキシル基含有モノマーとを併用する場合、ヒドロキシル基含有モノマーとカルボキシル基含有モノマーの重量比(ヒドロキシル基含有モノマー/カルボキシル基含有モノマー)は、粗面を有する被着体に対する接着力を高める観点から、0.01以上が好ましく、0.02以上がより好ましく、また、1.0以下が好ましく、0.50以下がより好ましい。 When the hydroxyl group-containing monomer and the carboxyl group-containing monomer are used in combination as the functional group-containing monomer, the weight ratio of the hydroxyl group-containing monomer to the carboxyl group-containing monomer (hydroxyl group-containing monomer / carboxyl group-containing monomer) From the viewpoint of enhancing the adhesive strength to the adherend, it is preferably 0.01 or more, more preferably 0.02 or more, and preferably 1.0 or less, more preferably 0.50 or less.
<共重合モノマー>
 上記(メタ)アクリル系ポリマーを形成するモノマー成分は、上述したモノマーA1およびモノマーA2に加えて、必要に応じて、上記官能基含有モノマー以外の共重合モノマー(モノマーA1またはモノマーA2に該当するものを除く。)を含んでもよい。共重合モノマーは、一種を単独でまたは二種以上を組み合わせて使用できる。
<Copolymerization monomer>
The monomer component forming the (meth) acrylic polymer is, in addition to the above-mentioned monomer A1 and monomer A2, if necessary, a copolymerizable monomer other than the above functional group-containing monomer (corresponding to monomer A1 or monomer A2 May be included). The copolymerizable monomers can be used singly or in combination of two or more.
 上記共重合モノマーとしては、例えば、一般式(2):CH=CR-COO-R;で表されるモノマーが挙げられる。ここで、上記一般式(2)中のRは、水素原子またはメチル基である。Rは、炭素数1~24の無置換のアルキル基または置換されたアルキル基である。 As the above-mentioned copolymerization monomer, for example, a monomer represented by the general formula (2): CH 2 CRCR 3 -COO-R 4 ; Here, R 3 in the above general formula (2) is a hydrogen atom or a methyl group. R 4 is a C 1-24 unsubstituted alkyl group or a substituted alkyl group.
 上記一般式(2)中のRとしての、炭素数1~24(より好ましくは炭素数1~18)の無置換のアルキル基または置換されたアルキル基は、直鎖、分岐鎖のアルキル基、あるいは環状のシクロアルキル基を示す。Rは、具体的には、炭素数1~18の直鎖状アルキル基、炭素数3~7の分岐したアルキル基、環状のアルキル基、等であり得る。Rが置換されたアルキル基である場合、その置換基の好適例としては、炭素数3~7のアリール基や、炭素数3~7のアリールオキシ基等が挙げられる。上記アリール基としては、特に限定されないが、例えばフェニル基が好ましい。 The unsubstituted alkyl group having 1 to 24 carbon atoms (more preferably 1 to 18 carbon atoms) or a substituted alkyl group as R 4 in the general formula (2) is a linear or branched alkyl group. Or a cyclic cycloalkyl group. Specifically, R 4 may be a linear alkyl group having 1 to 18 carbon atoms, a branched alkyl group having 3 to 7 carbon atoms, a cyclic alkyl group, or the like. When R 4 is a substituted alkyl group, preferable examples of the substituent include an aryl group having 3 to 7 carbon atoms and an aryloxy group having 3 to 7 carbon atoms. The aryl group is not particularly limited, but is preferably, for example, a phenyl group.
 上記一般式(2)で表されるモノマーの例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、へキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、イソアミル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テルペン(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられる。 Examples of the monomer represented by the above general formula (2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate and t-butyl (meth) Acrylate, isobutyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, isoamyl (meth) acrylate, n-octyl (meth) acrylate, n Nonyl (meth) acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, 3,3,5-trimethylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, terpene ( Data) acrylate, dicyclopentanyl (meth) acrylate.
 また、上記共重合モノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニル、スチレン、α-メチルスチレン、N-ビニルカプロラクタム、N-ビニルピロリドン等のビニル系モノマー;(メタ)アクリル酸テトラヒドロフルフリル、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレートや2-メトキシエチルアクリレート等の(メタ)アクリル酸エステル系モノマー;(メタ)アクリロニトリル等のシアノ基含有モノマー;その他、アミド基含有モノマー、アミノ基含有モノマー、イミド基含有モノマー、N-アクリロイルモルホリン、ビニルエーテルモノマー等も使用することができる。 Further, as the above-mentioned copolymerizable monomers, for example, vinyl monomers such as vinyl acetate, vinyl propionate, styrene, α-methylstyrene, N-vinylcaprolactam, N-vinylpyrrolidone and the like; tetrahydrofurfuryl (meth) acrylate, fluorine (Meth) acrylate monomers such as (meth) acrylates, silicone (meth) acrylates and 2-methoxyethyl acrylate; cyano group-containing monomers such as (meth) acrylonitrile; other, amide group-containing monomers, amino group-containing monomers, Imide group-containing monomers, N-acryloyl morpholine, vinyl ether monomers and the like can also be used.
 上記共重合モノマーの他の例として、ケイ素原子を含有するシラン系モノマー等が挙げられる。シラン系モノマーとしては、例えば、3-アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、4-ビニルブチルトリメトキシシラン、4-ビニルブチルトリエトキシシラン、8-ビニルオクチルトリメトキシシラン、8-ビニルオクチルトリエトキシシラン、10-メタクリロイルオキシデシルトリメトキシシラン、10-アクリロイルオキシデシルトリメトキシシラン、10-メタクリロイルオキシデシルトリエトキシシラン、10-アクリロイルオキシデシルトリエトキシシラン等が挙げられる。 As another example of the above-mentioned copolymerization monomer, a silane type monomer containing a silicon atom and the like can be mentioned. Examples of silane monomers include 3-acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 4-vinylbutyltrimethoxysilane, 4-vinylbutyltriethoxysilane, 8-vinyloctyltrimethoxysilane 8-vinyloctyl triethoxysilane, 10-methacryloyloxydecyl trimethoxysilane, 10-acryloyloxydecyl trimethoxysilane, 10-methacryloyloxydecyl triethoxysilane, 10-acryloyloxydecyl triethoxysilane, and the like.
 上記共重合モノマーの使用量は、(メタ)アクリル系ポリマーを形成する全モノマー成分の20重量%以下であることが好ましく、15重量%以下であることがより好ましい。共重合モノマーの含有量が20重量%を超えると、例えば、粗面への接着性が低下する場合がある。 The amount of the copolymerizable monomer used is preferably 20% by weight or less, and more preferably 15% by weight or less, of all the monomer components forming the (meth) acrylic polymer. When the content of the copolymerizable monomer exceeds 20% by weight, for example, the adhesion to a rough surface may be reduced.
<多官能性モノマー>
 上記(メタ)アクリル系ポリマーを形成するモノマー成分は、凝集力の調製等の目的で、必要に応じて多官能性モノマーを含有することができる。多官能性モノマーは、一種を単独でまたは二種以上を組み合わせて使用できる。
<Multifunctional monomer>
The monomer component which forms the said (meth) acrylic-type polymer can contain a polyfunctional monomer as needed for the purpose of preparation of cohesion force etc. A polyfunctional monomer can be used individually by 1 type or in combination of 2 or more types.
 上記多官能性モノマーは、不飽和二重結合を有する重合性官能基((メタ)アクリロイル基、ビニル基等)を少なくとも2つ有するモノマーであり、例えば、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2-エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート等の多価アルコールと(メタ)アクリル酸とのエステル化合物;アリル(メタ)アクリレート、ビニル(メタ)アクリレート、ジビニルベンゼン、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート、ブチルジ(メタ)アクリレート、ヘキシルジ(メタ)アクリレート等が挙げられる。これらのなかでも、トリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが好適である。 The above-mentioned polyfunctional monomer is a monomer having at least two polymerizable functional groups ((meth) acryloyl group, vinyl group etc.) having unsaturated double bond, and, for example, (poly) ethylene glycol di (meth) acrylate , (Poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,2- Ethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate Compounds of (meth) acrylic acid with polyhydric alcohols such as acrylate; allyl (meth) acrylate, vinyl (meth) acrylate, divinyl benzene, epoxy acrylate, polyester acrylate, urethane acrylate, butyl di (meth) acrylate, hexyl di (meth) And the like. Among these, trimethylolpropane tri (meth) acrylate, hexanediol di (meth) acrylate, and dipentaerythritol hexa (meth) acrylate are preferable.
 上記多官能性モノマーは、(メタ)アクリル系ポリマーを形成する全モノマー成分に対して、5重量%以下で用いることができる。上記多官能性モノマーは、その分子量や官能基数等により異なるが、(メタ)アクリル系ポリマーを形成する全モノマー成分に対して、3重量%以下が好ましく、さらには2重量%以下が好ましい。多官能性モノマーの含有量が多すぎると、例えば、樹脂組成物の弾性率が高くなり過ぎて、粗面に対する接着性(特に、低温域における接着性)が低下する場合がある。 The said polyfunctional monomer can be used by 5 weight% or less with respect to all the monomer components which form a (meth) acrylic-type polymer. Although the above-mentioned polyfunctional monomer varies depending on the molecular weight, the number of functional groups, etc., it is preferably 3% by weight or less, more preferably 2% by weight or less, based on all the monomer components forming the (meth) acrylic polymer. If the content of the polyfunctional monomer is too large, for example, the modulus of elasticity of the resin composition may be too high, and the adhesion to a rough surface (particularly, the adhesion in a low temperature range) may be reduced.
<(メタ)アクリル系ポリマーおよびその製造方法>
 上記(メタ)アクリル系ポリマーのTgは、-40℃以下である。上記(メタ)アクリル系ポリマーのTgは、粗面を有する被着体に対する接着力を高める観点から、-45℃以下であることが好ましく、-50℃以下であることがより好ましい。低温における接着性を高める観点から、いくつかの態様において、上記(メタ)アクリル系ポリマーのTgは、例えば-55℃以下が好ましく、-57℃以下がより好ましく、-60℃以下がさらに好ましい。また、上記(メタ)アクリル系ポリマーのTgは、粗面を有する被着体に対する接着力および保持力を高める観点から、-85℃以上であることが好ましく、-80℃以上であることがより好ましい。
<(Meth) acrylic polymer and method for producing the same>
The Tg of the (meth) acrylic polymer is −40 ° C. or less. The Tg of the (meth) acrylic polymer is preferably −45 ° C. or less, more preferably −50 ° C. or less, from the viewpoint of enhancing the adhesion to an adherend having a rough surface. In some embodiments, the Tg of the (meth) acrylic polymer is, for example, preferably −55 ° C. or less, more preferably −57 ° C. or less, and still more preferably −60 ° C. or less, from the viewpoint of enhancing adhesion at low temperatures. Further, the Tg of the (meth) acrylic polymer is preferably −85 ° C. or higher, and more preferably −80 ° C. or higher, from the viewpoint of enhancing the adhesion and retention to an adherend having a rough surface. preferable.
 ここで、上記(メタ)アクリル系ポリマーのTgは、(メタ)アクリル系ポリマーを構成するモノマー成分の組成に基づいて、以下のFoxの式より算出される理論値である。
 Foxの式:1/Tg=W/Tg+W/Tg+・・・+W/Tg
[式中、Tgは(メタ)アクリル系ポリマーのガラス転移温度(単位:K)であり、Tg(i=1、2、・・・n)は、モノマーiがホモポリマーを形成した際のガラス転移温度(単位:K)であり、W(i=1、2、・・・n)は、モノマーiの全モノマー成分中の質量分率を表す。]
Here, the Tg of the (meth) acrylic polymer is a theoretical value calculated from the following Fox equation based on the composition of the monomer component constituting the (meth) acrylic polymer.
Fox's formula: 1 / Tg = W 1 / Tg 1 + W 2 / Tg 2 +... + W n / Tg n
[Wherein, Tg is the glass transition temperature (unit: K) of the (meth) acrylic polymer, and Tg i (i = 1, 2,..., N) is when monomer i forms a homopolymer It is a glass transition temperature (unit: K), and W i (i = 1, 2,... N) represents a mass fraction of all monomer components of the monomer i. ]
 上記(メタ)アクリル系ポリマーの製造方法は特に限定されず、公知の製造方法を適宜選択することができる。例えば、溶液重合、電子線や紫外線(UV)等の照射による放射線重合、塊状重合、エマルション重合等の各種のラジカル重合法を利用し得る。また、得られる(メタ)アクリル系ポリマーは、ランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれでもよい。 The manufacturing method of the said (meth) acrylic-type polymer is not specifically limited, A well-known manufacturing method can be selected suitably. For example, various radical polymerization methods such as solution polymerization, radiation polymerization by irradiation with electron beam and ultraviolet light (UV), bulk polymerization, emulsion polymerization and the like can be used. Further, the (meth) acrylic polymer to be obtained may be any of a random copolymer, a block copolymer, a graft copolymer and the like.
 上記ラジカル重合には、重合の態様に応じて、必要に応じて公知の重合開始剤、連鎖移動剤、乳化剤、重合溶媒等を用いることができる。なお、上記(メタ)アクリル系ポリマーのMwは、重合開始剤、連鎖移動剤、反応条件等により制御可能であり、これらの種類に応じて適宜のその使用量が調整される。 For the radical polymerization, depending on the mode of polymerization, known polymerization initiators, chain transfer agents, emulsifiers, polymerization solvents and the like can be used as necessary. In addition, Mw of the said (meth) acrylic-type polymer is controllable by a polymerization initiator, a chain transfer agent, reaction conditions, etc., and the use amount is suitably adjusted according to these kind.
 溶液重合においては、重合溶媒として、例えば、酢酸エチル、トルエン、これらの混合溶媒、等が用いられ得る。上記溶液重合は、例えば、窒素等の不活性ガス気流下で、重合開始剤を加え、通常、50~70℃程度で、5~30時間程度の反応条件で行われる。 In solution polymerization, for example, ethyl acetate, toluene, a mixed solvent of these, and the like may be used as a polymerization solvent. The above-mentioned solution polymerization is carried out, for example, under a stream of an inert gas such as nitrogen, usually with a polymerization initiator at about 50 to 70 ° C., for about 5 to 30 hours.
 上記重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2’-アゾビス(2-メチルプロピオンアミジン)二硫酸塩、2,2’-アゾビス(N,N’-ジメチレンイソブチルアミジン)、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]ハイドレート(和光純薬社製、VA-057)等のアゾ系開始剤;過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジラウロイルパーオキシド、ジ-n-オクタノイルパーオキシド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジ(4-メチルベンゾイル)パーオキシド、ジベンゾイルパーオキシド、t-ブチルパーオキシイソブチレート、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、t-ブチルハイドロパーオキシド、過酸化水素等の過酸化物系開始剤;過硫酸塩と亜硫酸水素ナトリウムの組み合わせ、過酸化物とアスコルビン酸ナトリウムの組み合わせ等の過酸化物と還元剤とを組み合わせたレドックス系開始剤;等を挙げることができるが、これらに限定されるものではない。いくつかの態様において、重合開始剤としてAIBNを好ましく使用し得る。 Examples of the polymerization initiator include, for example, 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [2- (5) -Methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2'-azobis (2-methylpropionamidine) disulfate, 2,2'-azobis (N, N'-dimethyleneisobutylamidine) Azo initiators such as 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] hydrate (manufactured by Wako Pure Chemical Industries, Ltd., VA-057); potassium persulfate, ammonium persulfate, etc. Persulfate of di (2-ethylhexyl) peroxydicarbonate, di (4-t-butylcyclohexyl) peroxydicarbonate, di- ec-butyl peroxy dicarbonate, t-butyl peroxy neodecanoate, t-hexyl peroxy pivalate, t-butyl peroxy pivalate, dilauroyl peroxide, di-n-octanoyl peroxide, 1, 1,3,3-Tetramethylbutylperoxy-2-ethylhexanoate, di (4-methylbenzoyl) peroxide, dibenzoylperoxide, t-butylperoxyisobutyrate, 1,1-di (t- Peroxide initiators such as hexylperoxy) cyclohexane, t-butyl hydroperoxide, hydrogen peroxide; peroxides such as a combination of persulfate and sodium bisulfite, a combination of peroxide and sodium ascorbate Examples include redox initiators in combination with a reducing agent; The present invention is not limited to these. In some embodiments, AIBN can be preferably used as a polymerization initiator.
 重合開始剤は、一種を単独でまたは二種以上を組み合わせて使用できる。重合開始剤の使用量は、通常、モノマー成分100重量部に対して、凡そ0.005~1重量部程度であることが好ましく、凡そ0.01~0.5重量部程度であることがより好ましい。 The polymerization initiators can be used singly or in combination of two or more. The use amount of the polymerization initiator is usually preferably about 0.005 to 1 part by weight, and more preferably about 0.01 to 0.5 part by weight, with respect to 100 parts by weight of the monomer component. preferable.
 上記連鎖移動剤としては、例えば、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、2-メルカプトエタノール、チオグリコール酸、チオグルコール酸2-エチルヘキシル、2,3-ジメルカプト-1-プロパノール等が挙げられる。連鎖移動剤は、一種単独でまたは二種以上を組み合わせて用いることができる。連鎖移動剤の使用量は、通常、モノマー成分の全量100重量部に対して0.1重量部程度以下とすることが適当である。あるいは、連鎖移動剤を使用しなくてもよい。 Examples of the chain transfer agent include lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, thioglycolic acid, 2-ethylhexyl thioglycolate, 2,3-dimercapto-1-propanol and the like. The chain transfer agent can be used alone or in combination of two or more. The amount of the chain transfer agent used is usually about 0.1 parts by weight or less based on 100 parts by weight of the total amount of monomer components. Alternatively, chain transfer agents may not be used.
 エマルション重合は、典型的には公知の乳化剤を用いて行われる。乳化剤としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ドデシルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸アンモニウム、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム等のアニオン系乳化剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン-ポリオキシプロピレンブロックポリマー等のノニオン系乳化剤;等が挙げられる。 Emulsion polymerization is typically carried out using known emulsifiers. Examples of the emulsifier include anionic emulsifiers such as sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecyl benzene sulfonate, ammonium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl phenyl ether sulfate, etc .; polyoxyethylene alkyl ether, polyoxyethylene alkyl And nonionic emulsifiers such as phenyl ether, polyoxyethylene fatty acid ester, polyoxyethylene-polyoxypropylene block polymer and the like.
 上記乳化剤として、プロペニル基、アリルエーテル基等のラジカル重合性官能基が導入された乳化剤を用いてもよい。このような重合性官能基が導入された乳化剤は、一般に、反応性乳化剤と称されることもある。反応性乳化剤の具体例としては、アクアロンHS-10、HS-20、KH-10、BC-05、BC-10、BC-20(以上、いずれも第一工業製薬社製)、アデカリアソープSE10N(ADEKA社製)等が挙げられる。反応性乳化剤は、重合後にポリマー鎖に取り込まれるため、耐水性がよくなり好ましい。 As said emulsifier, you may use the emulsifier in which radically polymerizable functional groups, such as a propenyl group and allyl ether group, were introduce | transduced. An emulsifier into which such a polymerizable functional group is introduced is generally referred to as a reactive emulsifier. Specific examples of the reactive emulsifier include Aqualon HS-10, HS-20, KH-10, BC-05, BC-10, BC-20 (all of which are manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.), Adekaria Soap SE10 N. (Made by ADEKA company) etc. are mentioned. Reactive emulsifiers are preferred because they are incorporated into the polymer chain after polymerization, which improves the water resistance.
 乳化剤は、一種を単独でまたは二種以上を組み合わせて使用できる。乳化剤の使用量は、モノマー成分100重量部に対して、通常は0.3~5重量部程度とすることが適当であり、重合安定性や機械的安定性から0.5~1重量部程度とすることが好ましい。 An emulsifier can be used individually by 1 type or in combination of 2 or more types. The amount of the emulsifier used is usually about 0.3 to 5 parts by weight with respect to 100 parts by weight of the monomer component, and is about 0.5 to 1 part by weight in view of polymerization stability and mechanical stability. It is preferable to
 上記(メタ)アクリル系ポリマーは、放射線重合により製造する場合には、上記モノマー成分を、電子線、UV等の放射線を照射することにより重合して製造することができる。上記放射線重合を電子線で行う場合には、上記モノマー成分には光重合開始剤を含有させることは特に必要ではない。上記放射線重合をUV重合で行う場合には、重合時間短縮等の観点から、モノマー成分に光重合開始剤を含有させることが好ましい。光重合開始剤は、一種を単独でまたは二種以上を組み合わせて使用できる。 When the (meth) acrylic polymer is produced by radiation polymerization, it can be produced by polymerizing the above-mentioned monomer component by irradiation with radiation such as electron beam and UV. When the radiation polymerization is performed by an electron beam, it is not particularly necessary to include a photopolymerization initiator in the monomer component. When the radiation polymerization is performed by UV polymerization, it is preferable that the monomer component contains a photopolymerization initiator from the viewpoint of shortening the polymerization time and the like. A photoinitiator can be used individually by 1 type or in combination of 2 or more types.
 上記光重合開示剤としては、光重合を開始し得るものであれば特に制限されず、公知の各種光重合開始剤から適宜選択して用いることができる。例えば、ベンゾインエーテル系、アセトフェノン系、α-ケトール系、光活性オキシム系、ベンゾイン系、ベンジル系、ベンゾフェノン系、ケタール系、チオキサントン系等の光重合開始剤を用いることができる。光重合開始剤の使用量は、モノマー成分100重量部に対して、0.05~1.5重量部であり、好ましくは0.1~1重量部である。 The photopolymerization initiator is not particularly limited as long as it can initiate photopolymerization, and can be appropriately selected and used from various known photopolymerization initiators. For example, photopolymerization initiators such as benzoin ether type, acetophenone type, α-ketol type, photoactive oxime type, benzoin type, benzyl type, benzophenone type, ketal type and thioxanthone type can be used. The amount of the photopolymerization initiator used is 0.05 to 1.5 parts by weight, preferably 0.1 to 1 parts by weight, per 100 parts by weight of the monomer component.
 いくつかの態様において、上記(メタ)アクリル系ポリマーの重量平均分子量(Mw)は、35万以上であることが好ましい。上記(メタ)アクリル系ポリマーのMwは、樹脂層の耐久性および凝集力を高める観点から、40万以上であることがより好ましく、50万以上であることがさらに好ましい。上記(メタ)アクリル系ポリマーのMwは、低温における接着性を高める観点や、樹脂組成物の粘度上昇を抑制する観点から、300万以下であることが好ましく、250万以下であることがより好ましく、200万以下であることがさらに好ましく、150万以下であることがよりさらに好ましく、120万以下であることがよりさらに好ましい。 In some embodiments, the weight average molecular weight (Mw) of the (meth) acrylic polymer is preferably 350,000 or more. The Mw of the (meth) acrylic polymer is more preferably 400,000 or more, and still more preferably 500,000 or more, from the viewpoint of enhancing the durability and cohesion of the resin layer. The Mw of the (meth) acrylic polymer is preferably 3,000,000 or less, more preferably 2,500,000 or less, from the viewpoint of enhancing the adhesiveness at low temperatures and from the viewpoint of suppressing the increase in viscosity of the resin composition. Is more preferably 2,000,000 or less, still more preferably 1.5,000,000 or less, and even more preferably 1.2,000,000 or less.
 上記(メタ)アクリル系ポリマーのMwは、以下の条件でGPC(ゲルパーミエーションクロマトグラフィー)により測定し、ポリスチレン換算により算出することができる。GPC用のサンプルは、試料をテトラヒドロフラン(THF)に溶解して0.1重量%の溶液とし、これを一晩静置した後、0.45μmのメンブレンフィルターで濾過した濾液を使用する。後述の実施例においても同様の方法が用いられる。
・分析装置:東ソー社製、HLC-8120GPC
・カラム:東ソー社製、GM7000HXL+GMHXL+GMHXL
・カラムサイズ:各7.8mmφ×30cm(合計90cm)
・サンプル濃度:0.1重量%(THF溶液)
・溶離液:THF
・流量:0.8ml/min
・入口圧:1.6MPa
・検出器:示差屈折計(RI)
・カラム温度:40℃
・注入量:100μl
・標準試料:ポリスチレン
The Mw of the (meth) acrylic polymer can be measured by GPC (gel permeation chromatography) under the following conditions, and calculated in terms of polystyrene. For the sample for GPC, the sample is dissolved in tetrahydrofuran (THF) to make a 0.1% by weight solution, which is allowed to stand overnight, and then the filtrate filtered through a 0.45 μm membrane filter is used. The same method is used in the following embodiments.
・ Analyzer: HLC-8120 GPC made by Tosoh Corporation
・ Column: Tosoh company make, GM7000HXL + GMHXL + GMHXL
・ Column size: Each 7.8 mmφ × 30 cm (total 90 cm)
Sample concentration: 0.1% by weight (THF solution)
Eluent: THF
・ Flow rate: 0.8 ml / min
・ Inlet pressure: 1.6MPa
・ Detector: Differential refractometer (RI)
・ Column temperature: 40 ° C
Injection volume: 100 μl
Standard sample: polystyrene
<架橋剤>
 ここに開示される樹脂組成物には、所望により架橋剤を含有させることができる。架橋剤の例には、イソシアネート系架橋剤、エポキシ系架橋剤、シリコーン系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、シラン系架橋剤、アルキルエーテル化メラミン系架橋剤、金属キレート系架橋剤、過酸化物等の架橋剤が含まれるが、これらに限定されない。上記架橋剤の好適例として、イソシアネート系架橋剤およびエポキシ系架橋剤が挙げられる。イソシアネート系架橋剤とエポキシ系架橋剤とを組み合わせて用いてもよい。
<Crosslinking agent>
The resin composition disclosed herein can optionally contain a crosslinking agent. Examples of crosslinking agents include isocyanate crosslinking agents, epoxy crosslinking agents, silicone crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, silane crosslinking agents, alkyl etherified melamine crosslinking agents, metal chelate crosslinking agents Cross-linking agents such as, but not limited to, peroxides. As a suitable example of the said crosslinking agent, an isocyanate type crosslinking agent and an epoxy-type crosslinking agent are mentioned. An isocyanate crosslinking agent and an epoxy crosslinking agent may be used in combination.
 上記架橋剤は、一種を単独でまたは二種以上を組み合わせて使用することができる。架橋剤の使用量は、(メタ)アクリル系ポリマー100重量部に対して0.005重量部以上10重量部以下の範囲とすることが好ましい。(メタ)アクリル系ポリマー100重量部に対する架橋剤の含有量は、0.01重量部以上4重量部以下であることが好ましく、0.02重量部以上3重量部以下であることがより好ましく、0.05重量部以上2重量部以下であることがさらに好ましい。また、架橋剤として、上記多官能性モノマーを用いてもよい。この場合、上記多官能性モノマーの使用量は、上記(メタ)アクリル系ポリマー100重量部に対して0.001重量部以上2重量部以下の範囲とすることが好ましく、0.003重量部以上1重量部以下の範囲とすることがより好ましい。 The crosslinking agents may be used alone or in combination of two or more. The amount of the crosslinking agent used is preferably in the range of 0.005 parts by weight to 10 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer. The content of the crosslinking agent relative to 100 parts by weight of the (meth) acrylic polymer is preferably 0.01 parts by weight or more and 4 parts by weight or less, more preferably 0.02 parts by weight or more and 3 parts by weight or less, More preferably, it is 0.05 parts by weight or more and 2 parts by weight or less. Moreover, you may use the said polyfunctional monomer as a crosslinking agent. In this case, the amount of the polyfunctional monomer used is preferably in the range of 0.001 parts by weight to 2 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer, and is preferably 0.003 parts by weight or more More preferably, it is in the range of 1 part by weight or less.
 上記イソシアネート系架橋剤としては、イソシアネート基(イソシアネート基をブロック剤または数量体化等により一時的に保護したイソシアネート再生型官能基であり得る。)を一分子中に2つ以上有する化合物を用いることができる。イソシアネート系架橋剤の例としては、トリレンジイソシアネート、キシレンジイソシアネート等の芳香族イソシアネート、イソホロンジイソシアネート等の脂環族イソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、等が挙げられる。 As the above-mentioned isocyanate type crosslinking agent, use is made of a compound having two or more isocyanate groups (which may be isocyanate regenerated functional groups in which an isocyanate group is temporarily protected by a blocking agent or quantification or the like). Can. Examples of the isocyanate-based crosslinking agent include tolylene diisocyanate, aromatic isocyanates such as xylene diisocyanate, alicyclic isocyanates such as isophorone diisocyanate, aliphatic isocyanates such as hexamethylene diisocyanate, and the like.
 上記イソシアネート系架橋剤としては、より具体的には、例えば、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート等の低級脂肪族ポリイソシアネート類、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート等の脂環族イソシアネート類、2,4-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ポリメチレンポリフェニルイソシアネート等の芳香族ジイソシアネート類、トリメチロールプロパン/トリレンジイソシアネート3量体付加物(東ソー社製,商品名:コロネートL)、トリメチロールプロパン/ヘキサメチレンジイソシアネート3量体付加物(東ソー社製,商品名:コロネートHL)、ヘキサメチレンジイソシアネートのイソシアヌレート体(東ソー社製,商品名:コロネートHX)等のイソシアネート付加物、キシリレンジイソシアネートのトリメチロールプロパン付加物(三井化学社製,商品名:タケネートD110N)、キシリレンジイソシアネートのトリメチロールプロパン付加物(三井化学社製,商品名:タケネートD120N)、イソホロンジイソシアネートのトリメチロールプロパン付加物(三井化学社製,商品名:タケネートD140N)、ヘキサメチレンジイソシアネートのトリメチロールプロパン付加物(三井化学社製,商品名:タケネートD160N)、ポリエーテルポリイソシアネート、ポリエステルポリイソシアネート、ならびにこれらと各種のポリオールとの付加物、イソシアヌレート結合、ビューレット結合、アロファネート結合等で多官能化したポリイソシアネート、等を挙げることができる。これらのなかでも芳香族イソシアネートや脂環式イソシアネートを用いることが、粘着力と保持力に関する特性をバランスよく発現させるために好ましい。 More specifically, examples of the isocyanate-based crosslinking agent include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate, cycloaliphatic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate, and the like. Aromatic diisocyanates such as 2,4-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, polymethylene polyphenylisocyanate, trimethylolpropane / tolylene diisocyanate trimer adduct (Tosoh Corp., product Name: Coronate L), trimethylolpropane / hexamethylene diisocyanate trimer adduct (made by Tosoh Corp., trade name: Coronate HL), hexamethylole Isocyanate adducts of isocyanurate of diisocyanate (Tosoh Corp., trade name: Coronate HX) etc., trimethylolpropane adduct of xylylene diisocyanate (Mitsui Chemical Co., Ltd., trade name: Takenate D110N), trimethylolose of xylylene diisocyanate Propane adduct (made by Mitsui Chemicals, Inc., trade name: Takenate D120N), trimethylolpropane adduct of isophorone diisocyanate (made by Mitsui Chemicals, trade name: Takenate D140N), trimethylolpropane adduct of hexamethylene diisocyanate (Mitsui Chemicals, Inc. , Brand name: Takenate D 160 N), polyether polyisocyanate, polyester polyisocyanate, and adducts of these with various polyols, isocyanurate bond, burette bond In allophanate bond such multi functionalized polyisocyanate, and the like. Among these, it is preferable to use aromatic isocyanate or alicyclic isocyanate in order to achieve well-balanced characteristics regarding adhesive strength and holding power.
 イソシアネート系架橋剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。イソシアネート架橋剤の使用量は、(メタ)アクリル系ポリマー100重量部に対して、例えば0.01重量部以上10重量部以下とすることができ、通常は0.03重量部以上8重量部以下とすることが好ましく、0.05重量部以上6重量部以下または0.08重量部以上5重量部以下とすることがさらに好ましい。イソシアネート架橋剤の使用量は、凝集力、耐久性試験での剥離の阻止等を考慮して適宜設定することができる。 An isocyanate type crosslinking agent can be used individually by 1 type or in combination of 2 or more types. The amount of the isocyanate crosslinking agent used can be, for example, 0.01 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer, and usually 0.03 parts by weight or more and 8 parts by weight or less It is preferable to set it as 0.05 to 6 parts by weight, or more preferably to 0.08 to 5 parts by weight. The amount of the isocyanate crosslinking agent used can be appropriately set in consideration of cohesion, prevention of peeling in the durability test, and the like.
 粘着付与樹脂を含む組成において低温でも良好な接着性を発揮しやすくする観点から、いくつかの態様において、(メタ)アクリル系ポリマー100重量部に対するイソシアネート架橋剤の使用量は、5.0重量部未満であってよく、4.0重量部未満であることが好ましく、3.0重量部未満であることがより好ましく、2.0重量部未満であることがさらに好ましく、1.5重量部未満であることがよりさらに好ましく、1.0重量部未満であることが特に好ましい。また、粘着付与樹脂を含む組成において良好な保持力を発揮しやすくする観点から、いくつかの態様において、上記イソシアネート架橋剤の使用量は、例えば0.10重量部以上であることが好ましく、0.20重量部以上であることがより好ましい。 In some embodiments, the amount of the isocyanate crosslinking agent used relative to 100 parts by weight of the (meth) acrylic polymer is 5.0 parts by weight from the viewpoint of facilitating exerting good adhesion even at low temperatures in the composition containing the tackifying resin. It may be less than 4.0 parts by weight, preferably less than 3.0 parts by weight, more preferably less than 2.0 parts by weight, and less than 1.5 parts by weight More preferably, it is particularly preferably less than 1.0 part by weight. In addition, in some embodiments, the amount of the isocyanate crosslinking agent used is preferably, for example, 0.10 parts by weight or more, from the viewpoint of facilitating exerting good holding power in the composition containing the tackifying resin, and is preferably 0 More preferably, it is at least 20 parts by weight.
 なお、水性の樹脂組成物(例えば、エマルション重合にて作製した(メタ)アクリル系ポリマーの水分散液を含む樹脂組成物)にイソシアネート系架橋剤を含有させる場合には、イソシアネート系架橋剤と水との反応を抑えて樹脂組成物の保存安定性を高める観点から、イソシアネート基がブロック剤または数量体化等により一時的に保護されたイソシアネート架橋剤を用いることができる。あるいは、イソシアネート系架橋剤を使用しなくてもよい。 When an isocyanate-based crosslinking agent is contained in an aqueous resin composition (for example, a resin composition containing an aqueous dispersion of (meth) acrylic polymer prepared by emulsion polymerization), the isocyanate-based crosslinking agent and water are used. From the viewpoint of suppressing the reaction with the resin and enhancing the storage stability of the resin composition, it is possible to use an isocyanate crosslinking agent in which an isocyanate group is temporarily protected by a blocking agent or quantification. Alternatively, an isocyanate crosslinking agent may not be used.
 上記エポキシ系架橋剤としては、一分子中にエポキシ基を2つ以上有する多官能エポキシ化合物を用いることができる。エポキシ系架橋剤としては、例えば、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、ジグリシジルアニリン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル、トリグリシジル-トリス(2-ヒドロキシエチル)イソシアヌレート、レゾルシンジグリシジルエーテル、ビスフェノール-S-ジグリシジルエーテルの他、分子内にエポキシ基を2つ以上有するエポキシ系樹脂等が挙げられる。上記エポキシ系架橋剤の市販品としては、例えば、三菱ガス化学社製の商品名「テトラッドC」、「テトラッドX」等が挙げられる。 As said epoxy type crosslinking agent, the polyfunctional epoxy compound which has 2 or more of epoxy groups in 1 molecule can be used. Examples of epoxy crosslinking agents include N, N, N ', N'-tetraglycidyl-m-xylenediamine, diglycidyl aniline, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, 1, 6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether, glycerol polyglycidyl ether, penta Erythritol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl In addition to ether, adipic acid diglycidyl ester, o-phthalic acid diglycidyl ester, triglycidyl-tris (2-hydroxyethyl) isocyanurate, resorcinol diglycidyl ether, bisphenol-S-diglycidyl ether, and an epoxy group in the molecule The epoxy resin etc. which have 2 or more are mentioned. As a commercial item of the said epoxy-type crosslinking agent, the brand names "Tetraded C" by "Mitsubishi Gas Chemical Company", "Tetrad X", etc. are mentioned, for example.
 エポキシ系架橋剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。エポキシ系架橋剤の使用量は、(メタ)アクリル系ポリマー100重量部に対して、例えば0.005重量部以上1重量部以下程度とすることができ、0.01重量部以上0.5重量部以下程度または0.015重量部以上0.3重量部以下程度としてもよい。エポキシ系架橋剤の使用量は、凝集力、耐久性等を考慮して適宜設定することができる。 The epoxy crosslinking agents can be used singly or in combination of two or more. The use amount of the epoxy-based crosslinking agent can be, for example, about 0.005 part by weight or more and about 1 part by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer, and 0.01 part by weight or more and 0.5 parts by weight Or less or about 0.015 parts by weight or more and 0.3 parts by weight or less. The use amount of the epoxy-based crosslinking agent can be appropriately set in consideration of cohesion, durability and the like.
 上記過酸化物としては、加熱によりラジカル活性種を発生して樹脂組成物の上記(メタ)アクリル系ポリマーの架橋を進行させ得るものであれば適宜使用可能であるが、作業性や安定性を勘案して、1分間半減期温度が80℃~160℃である過酸化物を使用することが好ましく、90℃~140℃である過酸化物を使用することがより好ましい。 As the above-mentioned peroxide, any radically active species can be generated by heating to promote crosslinking of the above (meth) acrylic polymer of the resin composition, but it is possible to use appropriately, but it is possible to improve workability and stability. In consideration of the above, it is preferable to use a peroxide having a half-life temperature of 80 ° C. to 160 ° C., and more preferably 90 ° C. to 140 ° C.
 上記過酸化物としては、例えば、ジ(2-エチルヘキシル)パーオキシジカーボネート(1分間半減期温度:90.6℃)、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(1分間半減期温度:92.1℃)、ジ-sec-ブチルパーオキシジカーボネート(1分間半減期温度:92.4℃)、t-ブチルパーオキシネオデカノエート(1分間半減期温度:103.5℃)、t-ヘキシルパーオキシピバレート(1分間半減期温度:109.1℃)、t-ブチルパーオキシピバレート(1分間半減期温度:110.3℃)、ジラウロイルパーオキシド(1分間半減期温度:116.4℃)、ジ-n-オクタノイルパーオキシド(1分間半減期温度:117.4℃)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(1分間半減期温度:124.3℃)、ジ(4-メチルベンゾイル)パーオキシド(1分間半減期温度:128.2℃)、ジベンゾイルパーオキシド(1分間半減期温度:130.0℃)、t-ブチルパーオキシイソブチレート(1分間半減期温度:136.1℃)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン(1分間半減期温度:149.2℃)等が挙げられる。なかでも特に架橋反応効率が優れることから、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(1分間半減期温度:92.1℃)、ジラウロイルパーオキシド(1分間半減期温度:116.4℃)、ジベンゾイルパーオキシド(1分間半減期温度:130.0℃)等が好ましく用いられる。 Examples of the peroxide include di (2-ethylhexyl) peroxydicarbonate (one-minute half-life temperature: 90.6 ° C.), di (4-t-butylcyclohexyl) peroxydicarbonate (one-minute half-life) Temperature: 92.1 ° C), di-sec-butylperoxydicarbonate (one-minute half-life temperature: 92.4 ° C), t-butyl peroxy neodecanoate (one-minute half-life temperature: 103.5 ° C) ), T-Hexyl peroxypivalate (one-minute half-life temperature: 109.1 ° C), t-butylperoxypivalate (one-minute half-life temperature: 110.3 ° C), dilauroyl peroxide (one-minute half-life) Temperature: 116.4 ° C.), di-n-octanoyl peroxide (one-minute half-life temperature: 117.4 ° C.), 1,1,3,3-tetramethylbutylperoxy-2- Thiyl hexanoate (one-minute half-life temperature: 124.3 ° C), di (4-methylbenzoyl) peroxide (one-minute half-life temperature: 128.2 ° C), dibenzoyl peroxide (one-minute half-life temperature: 130 .0 ° C.), t-butyl peroxyisobutyrate (one-minute half-life temperature: 136.1 ° C.), 1,1-di (t-hexylperoxy) cyclohexane (one-minute half-life temperature: 149.2 ° C.) Etc.). Among them, since the crosslinking reaction efficiency is particularly excellent, di (4-t-butylcyclohexyl) peroxydicarbonate (one-minute half-life temperature: 92.1 ° C.), dilauroyl peroxide (one-minute half-life temperature: 116. 4 ° C.), dibenzoyl peroxide (one-minute half-life temperature: 130.0 ° C.), etc. are preferably used.
 なお、上記過酸化物の半減期とは、過酸化物の分解速度を表す指標であり、過酸化物の残存量が半分になるまでの時間をいう。任意の時間で半減期を得るための分解温度や、任意の温度での半減期時間に関しては、メーカーカタログ等に記載されており、例えば、日本油脂株式会社の「有機過酸化物カタログ第9版(2003年5月)」等に記載されている。 In addition, the half life of the said peroxide is an index showing the decomposition rate of a peroxide, and means the time until the remaining amount of a peroxide becomes half. The decomposition temperature for obtaining the half life at any time and the half life time at any temperature are described in the manufacturer catalog etc. For example, “Organic peroxide catalog 9th edition of NOF Corporation (May 2003) and the like.
 上記過酸化物は、一種を単独でまたは二種以上を組み合わせて使用することができる。上記過酸化物の使用量は、通常、上記(メタ)アクリル系ポリマー100重量部に対して、0.02~2重量部程度とすることが適当であり、0.05~1重量部程度とすることが好ましい。過酸化物の使用量は、加工性、リワーク性、架橋安定性、剥離性等の調整のために、この範囲内で適宜選択される。 The peroxides may be used alone or in combination of two or more. The amount of the peroxide used is usually about 0.02 to 2 parts by weight, preferably about 0.05 to 1 parts by weight, per 100 parts by weight of the (meth) acrylic polymer. It is preferable to do. The amount of the peroxide used is appropriately selected within this range in order to adjust the processability, reworkability, crosslinking stability, peelability and the like.
 なお、反応処理後に残存した過酸化物量は、例えば、過酸化物分解量をHPLC(高速液体クロマトグラフィー)で測定することにより把握することができる。具体的には、例えば、反応処理後の樹脂層から約0.2gのサンプルを採取し、酢酸エチル10mlに浸漬し、振とう機で25℃下、120rpmで3時間振とう抽出した後、室温で3日間静置する。次いで、アセトニトリル10mlを加えて、25℃下、120rpmで30分振とうし、メンブランフィルター(0.45μm)により濾過して得られた抽出液約10μlをHPLCに注入して分析し、反応処理後の過酸化物量とすることができる。 The amount of peroxide remaining after the reaction treatment can be determined, for example, by measuring the amount of peroxide decomposition by HPLC (high performance liquid chromatography). Specifically, for example, a sample of about 0.2 g is collected from the resin layer after reaction treatment, immersed in 10 ml of ethyl acetate, shaken and extracted at 120 rpm for 3 hours at 25 ° C. with a shaker, and then room temperature Let stand for 3 days. Then, add 10 ml of acetonitrile, shake at 120 rpm for 30 minutes at 25 ° C., filter through a membrane filter (0.45 μm), inject about 10 μl of the extract into HPLC and analyze, and after reaction treatment The amount of peroxide can be
 また、上記金属キレート系架橋剤としては、多価金属が有機化合物中の原子と共有結合または配位結合している多官能性金属キレートを用いることができる。多価金属としては、例えば、Al、Cr、Zr、Co、Cu、Fe、Ni、V、Zn、In、Ca、Mg、Mn、Y、Ce、Sr、Ba、Mo、La、Sn、Ti等が挙げられる。このような多価金属と共有結合または配位結合する有機化合物中の原子としては、酸素原子等が挙げられる。上記有機化合物としては、アルキルエステル、アルコール化合物、カルボン酸化合物、エーテル化合物、ケトン化合物等が挙げられる。 Moreover, as said metal chelate type crosslinking agent, the polyfunctional metal chelate which the polyvalent metal couple | bonds with the atom in an organic compound or coordination bond can be used. Examples of polyvalent metals include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, Ti, etc. Can be mentioned. As an atom in an organic compound which is covalently or coordinately bonded to such a polyvalent metal, an oxygen atom and the like can be mentioned. Examples of the organic compound include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds and ketone compounds.
<粘着付与樹脂>
 ここに開示される樹脂組成物に用いられる粘着付与樹脂は、特に限定されず、公知の粘着付与樹脂のなかから適宜選択することができる。例えば、ロジン系粘着付与樹脂、テルペン系粘着付与樹脂、フェノール系粘着付与樹脂、炭化水素系粘着付与樹脂、ケトン系粘着付与樹脂、ポリアミド系粘着付与樹脂、エポキシ系粘着付与樹脂、エラストマー系粘着付与樹脂等が挙げられる。粘着付与樹脂は、一種を単独でまたは二種以上を組み合わせて用いることができる。
<Tackifying resin>
The tackifying resin used for the resin composition disclosed herein is not particularly limited, and can be appropriately selected from known tackifying resins. For example, rosin-based tackifying resin, terpene-based tackifying resin, phenol-based tackifying resin, hydrocarbon-based tackifying resin, ketone-based tackifying resin, polyamide-based tackifying resin, epoxy-based tackifying resin, elastomer-based tackifying resin Etc. The tackifying resin can be used singly or in combination of two or more.
 ロジン系粘着付与樹脂としては、例えば、ガムロジン、ウッドロジン、トール油ロジンなどの未変性ロジン(生ロジン)や、これらの未変性ロジンを重合、不均化、水添化などにより変性した変性ロジン(重合ロジン、安定化ロジン、不均化ロジン、完全水添ロジン、部分水添ロジンや、その他の化学的に修飾されたロジンなど)の他、各種のロジン誘導体などが挙げられる。
 上記ロジン誘導体としては、例えば、ロジン類(未変性ロジン、変性ロジンや、各種ロジン誘導体など)にフェノールを酸触媒で付加させ熱重合することにより得られるロジンフェノール系樹脂;
 未変性ロジンをアルコール類によりエステル化したロジンのエステル化合物(未変性ロジンエステル)や、重合ロジン、安定化ロジン、不均化ロジン、完全水添ロジン、部分水添ロジンなどの変性ロジンをアルコール類によりエステル化した変性ロジンのエステル化合物(重合ロジンエステル、安定化ロジンエステル、不均化ロジンエステル、完全水添ロジンエステル、部分水添ロジンエステルなど)などのロジンエステル系樹脂;
 未変性ロジンや変性ロジン(重合ロジン、安定化ロジン、不均化ロジン、完全水添ロジン、部分水添ロジンなど)を不飽和脂肪酸で変性した不飽和脂肪酸変性ロジン系樹脂;
 ロジンエステル系樹脂を不飽和脂肪酸で変性した不飽和脂肪酸変性ロジンエステル系樹脂;
 未変性ロジン、変性ロジン(重合ロジン、安定化ロジン、不均化ロジン、完全水添ロジン、部分水添ロジンなど)、不飽和脂肪酸変性ロジン系樹脂や不飽和脂肪酸変性ロジンエステル系樹脂におけるカルボキシル基を還元処理したロジンアルコール系樹脂;
 未変性ロジン、変性ロジンや、各種ロジン誘導体等のロジン系樹脂(特に、ロジンエステル系樹脂)の金属塩;などが挙げられる。
Examples of rosin-based tackifying resins include unmodified rosin (raw rosin) such as gum rosin, wood rosin, tall oil rosin, and modified rosin obtained by modifying these unmodified rosins by polymerization, disproportionation, hydrogenation, etc. In addition to polymerized rosins, stabilized rosins, disproportionated rosins, fully hydrogenated rosins, partially hydrogenated rosins, and other chemically modified rosins, various rosin derivatives may be mentioned.
Examples of the above-mentioned rosin derivative include rosin phenol resins obtained by adding phenol to an rosin (unmodified rosin, modified rosin, various rosin derivatives and the like) with an acid catalyst and thermally polymerizing it;
Ester compounds of rosin obtained by esterifying unmodified rosin with alcohol (unmodified rosin ester), modified rosin such as polymerized rosin, stabilized rosin, disproportionated rosin, fully hydrogenated rosin, partially hydrogenated rosin, etc. Rosin ester-based resins such as ester compounds of modified rosin esterified by esterification (polymerized rosin ester, stabilized rosin ester, disproportionated rosin ester, fully hydrogenated rosin ester, partially hydrogenated rosin ester, etc.);
Unsaturated fatty acid modified rosin based resins modified with unsaturated fatty acids such as unmodified rosins and modified rosins (polymerized rosins, stabilized rosins, disproportionated rosins, fully hydrogenated rosins, partially hydrogenated rosins, etc.);
Unsaturated fatty acid modified rosin ester resin modified from rosin ester resin with unsaturated fatty acid;
Carboxyl group in unmodified rosin, modified rosin (polymerized rosin, stabilized rosin, disproportionated rosin, completely hydrogenated rosin, partially hydrogenated rosin, etc.), unsaturated fatty acid modified rosin resin and unsaturated fatty acid modified rosin ester resin Rosin alcohol resin with reduction treatment;
And metal salts of rosin-based resins (in particular, rosin ester-based resins) such as unmodified rosin, modified rosin, and various rosin derivatives.
 テルペン系粘着付与樹脂としては、例えば、α-ピネン重合体、β-ピネン重合体、ジペンテン重合体などのテルペン系樹脂や、これらのテルペン系樹脂を変性(フェノール変性、芳香族変性、水素添加変性、炭化水素変性など)した変性テルペン系樹脂(例えば、テルペンフェノール系樹脂、スチレン変性テルペン系樹脂、芳香族変性テルペン系樹脂、水素添加テルペン系樹脂など)などが挙げられる。 Examples of terpene-based tackifying resins include terpene-based resins such as α-pinene polymers, β-pinene polymers and dipentene polymers, and those terpene-based resins modified (phenol modification, aromatic modification, hydrogenation modification And modified terpene resins (eg, terpene phenol resins, styrene modified terpene resins, aromatic modified terpene resins, hydrogenated terpene resins, etc.) and the like.
 フェノール系粘着付与樹脂としては、例えば、各種フェノール類(例えば、フェノール、m-クレゾール、3,5-キシレノール、p-アルキルフェノール、レゾルシンなど)とホルムアルデヒドとの縮合物(例えば、アルキルフェノール系樹脂、キシレンホルムアルデヒド系樹脂など)、上記フェノール類とホルムアルデヒドとをアルカリ触媒で付加反応させたレゾールや、上記フェノール類とホルムアルデヒドとを酸触媒で縮合反応させて得られるノボラックなどが挙げられる。 Examples of phenol-based tackifying resins include condensates of various phenols (eg, phenol, m-cresol, 3,5-xylenol, p-alkylphenol, resorcin etc.) with formaldehyde (eg, alkylphenol-based resin, xylene formaldehyde) And resins such as resoles obtained by subjecting the above-mentioned phenols and formaldehyde to an addition reaction with an alkali catalyst, and novolaks obtained by subjecting the above-mentioned phenols and formaldehyde to a condensation reaction with an acid catalyst.
 炭化水素系粘着付与樹脂の例としては、石油系粘着付与樹脂やスチレン系粘着付与樹脂等が挙げられる。より具体的には、脂肪族系炭化水素樹脂、芳香族系炭化水素樹脂、脂肪族系環状炭化水素樹脂、脂肪族・芳香族系石油樹脂(スチレン-オレフィン系共重合体等)、脂肪族・脂環族系石油樹脂、水素添加炭化水素樹脂、クマロン系樹脂、クマロンインデン系樹脂等が挙げられる。 Examples of hydrocarbon-based tackifying resins include petroleum-based tackifying resins and styrene-based tackifying resins. More specifically, aliphatic hydrocarbon resins, aromatic hydrocarbon resins, aliphatic cyclic hydrocarbon resins, aliphatic / aromatic petroleum resins (such as styrene-olefin copolymers), aliphatic Aliphatic petroleum resins, hydrogenated hydrocarbon resins, coumarone resins, coumarone indene resins and the like can be mentioned.
 好ましく使用され得るロジン系粘着付与樹脂の市販品としては、荒川化学工業社製のロジンエステル系粘着付与樹脂であるペンセルシリーズ、例えば「ペンセルAZ」、「ペンセルD-125」、「ペンセルD-135」、「ペンセルD-160」、「ペンセルKK」、「ペンセルC」等が例示されるが、これらに限定されない。 Commercially available rosin-based tackifying resins that can be preferably used include Pencel series, which are rosin ester-based tackifying resins manufactured by Arakawa Chemical Industries, Ltd., such as “Pencel AZ”, “Pencel D-125”, and “Pencel D- 135 "," Pencel D-160 "," Pencel KK "," Pencel C "and the like, but not limited thereto.
 好ましく使用され得るテルペン系粘着付与樹脂の市販品としては、ヤスハラケミカル社製の商品名「YSポリスターT130」、「YSポリスターT115」、「YSポリスターS145」、「YSポリスターG125」、「YSポリスターN125」、「YSポリスターU115」、荒川化学工業社製の商品名「タマノル803L」、「タマノル901」、住友ベークライト社製の商品名「スミライトレジンPR-12603」、ハリマ化成社製のハリタックシリーズ、等が例示されるが、これらに限定されない。 As commercial products of terpene-based tackifying resins that can be preferably used, trade names "YS Polystar T130", "YS Polystar T115", "YS Polystar S145", "YS Polystar G125", "YS Polystar N125" manufactured by Yashara Chemical Co., Ltd. , "YS Polystar U115", trade name "Tamanor 803L" manufactured by Arakawa Chemical Industries, "Tamanor 901", trade name "Sumilight resin PR-12603" manufactured by Sumitomo Bakelite, Haritak series manufactured by Harima Chemicals, Etc. are exemplified, but not limited thereto.
 粘着付与樹脂は、上記(メタ)アクリル系ポリマー100重量部に対して5重量部以上40重量部以下の範囲で用いることが適当である。粘着付与樹脂の使用量を5重量部以上とすることにより、粘着付与樹脂の使用による有利な効果を好適に発揮することができる。いくつかの態様において、(メタ)アクリル系ポリマー100重量部に対する粘着付与樹脂の使用量は、例えば7重量部以上であることが好ましく、10重量部以上であることがより好ましい。また、粘着付与樹脂の使用量を40重量部以下とすることにより、粘着付与樹脂の使用による有利な効果を享受しつつ、低温における接着性の低下を抑制することができる。いくつかの態様において、(メタ)アクリル系ポリマー100重量部に対する粘着付与樹脂の使用量は、例えば38重量部以下であることが好ましく、35重量部以下であることがより好ましい。 The tackifying resin is suitably used in a range of 5 parts by weight to 40 parts by weight with respect to 100 parts by weight of the (meth) acrylic polymer. By setting the use amount of the tackifying resin to 5 parts by weight or more, the advantageous effect of using the tackifying resin can be suitably exhibited. In some embodiments, the amount of tackifier resin used is preferably, for example, 7 parts by weight or more, and more preferably 10 parts by weight or more with respect to 100 parts by weight of the (meth) acrylic polymer. In addition, by setting the use amount of the tackifying resin to 40 parts by weight or less, it is possible to suppress the decrease in the adhesiveness at a low temperature while enjoying the advantageous effect by the use of the tackifying resin. In some embodiments, the amount of tackifier resin used is preferably, for example, 38 parts by weight or less, and more preferably 35 parts by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer.
 粘着付与樹脂の軟化点(軟化温度)は、特に限定されない。低温でも良好な接着性を発揮しやすくする観点から、いくつかの態様において、粘着付与樹脂の軟化点は、好ましくは180℃以下、より好ましくは160℃以下であり、150℃以下、140℃以下、または135℃以下でもよい。また、室温以上の温度域において凝集力が低下することを抑制する観点から、いくつかの態様において、粘着付与樹脂の軟化点は、60℃以上であることが適当であり、80℃以上であることが好ましく、90℃以上であることがより好ましい。ここに開示される技術は、軟化点が90℃以上160℃以下、90℃以上150℃以下の範囲、または90℃以上140℃以下の範囲にある粘着付与樹脂を用いて好適に実施され得る。軟化点が異なる複数種類の粘着付与樹脂を用いる場合には、少なくとも一種類の粘着付与樹脂が上記軟化点を有することが好ましい。例えば、粘着付与樹脂の合計量のうち50重量%以上、70重量%以上、90重量%以上または100重量%が上記軟化点を有することが好ましい。なお、粘着付与樹脂の軟化点は、メーカーカタログに記載の値を採用することができ、あるいはJIS K2207に規定する軟化点試験方法(環球法)に基づいて測定することができる。 The softening point (softening temperature) of the tackifying resin is not particularly limited. In some embodiments, the softening point of the tackifying resin is preferably 180 ° C. or less, more preferably 160 ° C. or less, and 150 ° C. or less, 140 ° C. or less from the viewpoint of facilitating exerting good adhesion even at low temperature. Or 135 ° C. or less. In addition, from the viewpoint of suppressing a decrease in cohesion in a temperature range of room temperature or more, in some embodiments, the softening point of the tackifying resin is suitably 60 ° C. or more, and is 80 ° C. or more It is preferable that it is 90 degreeC or more. The art disclosed herein may be suitably practiced using a tackifying resin having a softening point in the range of 90 ° C. to 160 ° C., 90 ° C. to 150 ° C., or 90 ° C. to 140 ° C. When using two or more types of tackifying resins having different softening points, it is preferable that at least one type of tackifying resin has the above-mentioned softening point. For example, it is preferable that 50% by weight or more, 70% by weight or more, 90% by weight or more or 100% by weight of the total amount of the tackifying resin has the above-mentioned softening point. In addition, the softening point of tackifying resin can employ | adopt the value as described in a maker catalog, or can be measured based on the softening point test method (ring and ball method) prescribed | regulated to JISK2207.
<(メタ)アクリル系オリゴマー>
 ここに開示される樹脂組成物には、(メタ)アクリル系オリゴマーを含有させてもよい。ここで、(メタ)アクリル系オリゴマーとは、(メタ)アクリロイル基を有するモノマー(すなわち、(メタ)アクリル系モノマー)に由来するモノマー単位をポリマー構造中に含む重合物をいい、典型的には該モノマー単位を50重量%超の割合で含む重合物をいう。上記(メタ)アクリル系オリゴマーとしては、上記(メタ)アクリル系ポリマーよりもTgが高く、かつMwが小さい重合体を好ましく使用し得る。上記(メタ)アクリル系オリゴマーは、粗面やプラスチック等の被着体に対する接着力の向上に役立ち得る。
<(Meth) acrylic oligomer
The resin composition disclosed herein may contain (meth) acrylic oligomers. Here, a (meth) acrylic oligomer refers to a polymer containing a monomer unit derived from a monomer having a (meth) acryloyl group (that is, a (meth) acrylic monomer) in a polymer structure, and typically It refers to a polymer containing the monomer unit in a proportion of more than 50% by weight. As said (meth) acrylic-type oligomer, Tg is higher than said (meth) acrylic-type polymer, and a polymer with small Mw can be used preferably. The (meth) acrylic oligomer may help to improve the adhesion to adherends such as rough surfaces and plastics.
 上記(メタ)アクリル系オリゴマーは、Tgが約0℃以上300℃以下、好ましくは約20℃以上300℃以下、さらに好ましくは約40℃以上300℃以下であることが望ましい。Tgが約0℃未満であると、室温以上の温度域において樹脂層の凝集力が低下し、保持特性や高温での接着性が低下する場合がある。なお、(メタ)アクリル系オリゴマーのTgは、(メタ)アクリル系ポリマーのTgと同様、Foxの式に基づいて計算される理論値である。 The (meth) acrylic oligomer preferably has a Tg of about 0 ° C. to 300 ° C., preferably about 20 ° C. to 300 ° C., and more preferably about 40 ° C. to 300 ° C. If the Tg is less than about 0 ° C., the cohesion of the resin layer may be reduced in a temperature range of room temperature or higher, and the retention characteristics and the adhesiveness at high temperature may be reduced. In addition, Tg of a (meth) acrylic-type oligomer is a theoretical value calculated based on the formula of Fox similarly to Tg of a (meth) acrylic-type polymer.
 上記(メタ)アクリル系オリゴマーのMwは、例えば1000以上30000未満であってよく、好ましくは1500以上20000未満、さらに好ましくは2000以上10000未満である。Mwが30000以上であると、接着力の向上効果が充分には得られない場合がある。また、Mwが1000未満であると、低分子量となるため接着力や保持特性の低下を引き起こす場合がある。
 (メタ)アクリル系オリゴマーのMwは、GPCに基づくポリスチレン換算の値として求めることができる。具体的には、東ソー社製のHPLC8020に、カラムとしてTSKgelGMH-H(20)を2本使用し、THF溶媒を用いて流速約0.5ml/分の条件で測定することができる。
The Mw of the (meth) acrylic oligomer may be, for example, 1,000 or more and less than 30,000, preferably 1,500 or more and less than 20,000, and more preferably 2,000 or more and less than 10,000. If the Mw is 30000 or more, the effect of improving the adhesion may not be obtained sufficiently. Moreover, since it becomes low molecular weight as Mw is less than 1000, it may cause the fall of adhesive force and a retention characteristic.
Mw of a (meth) acrylic-type oligomer can be calculated | required as a value of polystyrene conversion based on GPC. Specifically, two columns of TSKgel GMH-H (20) can be used as a column for HPLC 8020 manufactured by Tosoh Corporation, and measurement can be performed using a THF solvent under a flow rate of about 0.5 ml / min.
 上記(メタ)アクリル系オリゴマーを構成するモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレートのようなアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートのような(メタ)アクリル酸と脂環族アルコールとのエステル;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートのようなアリール(メタ)アクリレート;テルペン化合物誘導体アルコールから得られる(メタ)アクリレート;等の(メタ)アクリレートを挙げることができる。このような(メタ)アクリレートは、単独であるいは二種以上を組み合わせて使用することができる。 As a monomer which comprises the said (meth) acrylic-type oligomer, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth), for example is mentioned. Acrylate, s-butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isopentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, Octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, Sill (meth) acrylate, alkyl (meth) acrylate such as dodecyl (meth) acrylate; cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, (meth) acrylic acid such as dicyclopentanyl (meth) acrylate and fats (Meth) acrylates such as esters with cyclic alcohols; aryl (meth) acrylates such as phenyl (meth) acrylates and benzyl (meth) acrylates; (meth) acrylates obtained from terpene compound derivative alcohols; . Such (meth) acrylates can be used alone or in combination of two or more.
 上記(メタ)アクリル系オリゴマーは、イソブチル(メタ)アクリレートやt-ブチル(メタ)アクリレートのような、アルキル基が分岐構造を持ったアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレートやイソボルニル(メタ)アクリレートジシクロペンタニル(メタ)アクリレートのような(メタ)アクリル酸と脂環式アルコールとのエステル、フェニル(メタ)アクリレートやベンジル(メタ)アクリレートのようなアリール(メタ)アクリレート等の、環状構造を持った(メタ)アクリレート;等に代表される、比較的嵩高い構造を有するアクリル系モノマーをモノマー単位として含んでいることが好ましい。このような嵩高い構造を(メタ)アクリル系オリゴマーに持たせることで、樹脂層の接着性をさらに向上させることができる。特に嵩高さという点で環状構造を持ったものは効果が高く、環を複数含有したものはさらに効果が高い。また、(メタ)アクリル系オリゴマーの合成や樹脂層の作製にUVを利用する場合には、重合阻害を起こしにくいという点で、不飽和結合を含まないアルコールと(メタ)アクリル酸とのエステルである(メタ)アクリレートが好ましい。例えば、アルキル基が分岐構造を有するアルキル(メタ)アクリレートや、脂環式アルコールと(メタ)アクリル酸とのエステルを、(メタ)アクリル系オリゴマーを構成するモノマーとして好適に用いることができる。 The above (meth) acrylic oligomers are alkyl (meth) acrylates having a branched alkyl group such as isobutyl (meth) acrylate and t-butyl (meth) acrylate; cyclohexyl (meth) acrylate and isobornyl (meth) A cyclic structure of an ester of (meth) acrylic acid such as acrylate dicyclopentanyl (meth) acrylate with an alicyclic alcohol, or an aryl (meth) acrylate such as phenyl (meth) acrylate or benzyl (meth) acrylate It is preferable to contain as a monomer unit an acrylic monomer having a relatively bulky structure represented by (meth) acrylate having By providing such a bulky structure to the (meth) acrylic oligomer, the adhesiveness of the resin layer can be further improved. In particular, those having a cyclic structure in terms of bulkiness are highly effective, and those containing a plurality of rings are even more effective. When UV is used for synthesis of (meth) acrylic oligomers and preparation of a resin layer, it is an ester of an alcohol and (meth) acrylic acid which does not contain an unsaturated bond in that polymerization inhibition is unlikely to occur. Certain (meth) acrylates are preferred. For example, an alkyl (meth) acrylate in which the alkyl group has a branched structure, or an ester of an alicyclic alcohol and (meth) acrylic acid can be suitably used as a monomer constituting the (meth) acrylic oligomer.
 このような点から、好適な(メタ)アクリル系オリゴマーとしては、例えば、シクロヘキシルメタクリレート(CHMA)、ジシクロペンタニルアクリレート(DCPA)、ジシクロペンタニルメタクリレート(DCPMA)、イソボルニルアクリレート(IBXA)、イソボルニルメタクリレート(IBXMA)1-アダマンチルアクリレート(ADA)、1-アダマンチルメタクリレート(ADMA)、等の各単独重合体;CHMAとイソブチルメタクリレート(IBMA)との共重合体、CHMAとIBXMAとの共重合体、CHMAとアクリロイルモルホリン(ACMO)との共重合体、CHMAとジエチルアクリルアミド(DEAA)との共重合体、ADAとメチルメタクリレート(MMA)との共重合体、DCPMAとIBXMAとの共重合体、DCPMAとMMAとの共重合体;等を挙げることができる。特に、CHMAを主成分として含む(メタ)アクリル系オリゴマーが好ましい。 From such a point, suitable (meth) acrylic oligomers include, for example, cyclohexyl methacrylate (CHMA), dicyclopentanyl acrylate (DCPA), dicyclopentanyl methacrylate (DCPMA), isobornyl acrylate (IBXA) And homopolymers such as isobornyl methacrylate (IBXMA) 1-adamantyl acrylate (ADA), 1-adamantyl methacrylate (ADMA), etc .; copolymer of CHMA and isobutyl methacrylate (IBMA), co-polymerization of CHMA and IBXMA Polymer, copolymer of CHMA and acryloyl morpholine (ACMO), copolymer of CHMA and diethyl acrylamide (DEAA), copolymer of ADA and methyl methacrylate (MMA), DCPMA and IBX Copolymers of A, a copolymer of DCPMA and MMA; and the like can be given. In particular, (meth) acrylic oligomers containing CHMA as a main component are preferable.
 ここに開示される樹脂組成物において、上記(メタ)アクリル系オリゴマーを用いる場合、その使用量は特に限定されない。いくつかの態様において、(メタ)アクリル系オリゴマーの使用量は、(メタ)アクリル系ポリマー100重量部に対して、70重量部以下が好ましく、例えば1~70重量部であってよく、より好ましくは2~50重量部、さらに好ましくは3~40重量部である。(メタ)アクリル系オリゴマーの添加量が多すぎると、弾性率が高くなり過ぎて低温における粗面接着性が低下することがあり得る。また、(メタ)アクリル系ポリマー100重量部に対して(メタ)アクリル系オリゴマーを1重量部以上配合することにより、接着力の向上効果が好適に発揮され得る。ここに開示される技術は、(メタ)アクリル系オリゴマーを使用しない形態でも好ましく実施され得る。 In the resin composition disclosed herein, when the above (meth) acrylic oligomer is used, the amount thereof to be used is not particularly limited. In some embodiments, the amount of the (meth) acrylic oligomer used is preferably 70 parts by weight or less, for example 1 to 70 parts by weight, with respect to 100 parts by weight of the (meth) acrylic polymer, more preferably Is 2 to 50 parts by weight, more preferably 3 to 40 parts by weight. When the addition amount of the (meth) acrylic oligomer is too large, the elastic modulus may be too high, and the rough surface adhesion at low temperature may be lowered. Further, by blending 1 part by weight or more of the (meth) acrylic oligomer with respect to 100 parts by weight of the (meth) acrylic polymer, the effect of improving the adhesive strength can be suitably exhibited. The technology disclosed herein can be preferably practiced in a form not using (meth) acrylic oligomers.
<シランカップリング剤>
 ここに開示される樹脂組成物には、被着体との界面での接着信頼性向上等の目的で、シランカップリング剤を含有させてもよい。シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シランカップリング剤、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノ基含有シランカップリング剤、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等の(メタ)アクリル基含有シランカップリング剤、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカップリング剤等が挙げられる。
<Silane coupling agent>
The resin composition disclosed herein may contain a silane coupling agent for the purpose of improving the adhesion reliability at the interface with the adherend, and the like. As a silane coupling agent, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4 epoxycyclohexyl) ethyl Epoxy group-containing silane coupling agents such as trimethoxysilane, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N- (1,3 Amino-containing silane coupling agents such as -dimethylbutylidene) propylamine, N-phenyl-γ-aminopropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane ) Acrylic group containing silane Coupling agent, 3-isocyanate propyltriethoxysilane isocyanate group-containing silane coupling agents such as and the like.
 シランカップリング剤を用いる場合における使用量は、(メタ)アクリル系ポリマー100重量部に対して1重量部以下が好ましく、例えば0.01~1重量部、より好ましくは0.02~0.6重量部である。シランカップリング剤の使用量が多すぎると、架橋を阻害したり粘着特性を損なったりする可能性がある。ここに開示される技術は、シランカップリング剤を使用しない形態でも好ましく実施され得る。 The amount of the silane coupling agent to be used is preferably 1 part by weight or less, for example 0.01 to 1 part by weight, more preferably 0.02 to 0.6, per 100 parts by weight of the (meth) acrylic polymer. It is a weight part. When the amount of the silane coupling agent used is too large, the crosslinking may be inhibited or the adhesion properties may be impaired. The technology disclosed herein can be preferably practiced even in a form that does not use a silane coupling agent.
 その他、ここに開示される樹脂組成物には、その他の公知の添加剤を必要に応じて含有させてもよい。例えば、着色剤、顔料等の粉体、染料、界面活性剤、可塑剤、表面潤滑剤、レベリング剤、軟化剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、重合禁止剤、無機または有機の充填剤、金属粉、粒子状、箔状物等を、用途に応じて適宜添加することができる。 In addition, the resin composition disclosed herein may contain other known additives as needed. For example, powders such as colorants and pigments, dyes, surfactants, plasticizers, surface lubricants, leveling agents, softeners, antioxidants, antioxidants, light stabilizers, ultraviolet light absorbers, polymerization inhibitors, Inorganic or organic fillers, metal powders, particles, foils and the like can be added as appropriate depending on the application.
<樹脂層および積層シート>
 この明細書によると、ここに開示されるいずれかの樹脂組成物から形成される樹脂層が提供される。上記樹脂層の厚さは特に制限されない。上記樹脂層の厚さは、例えば1μm~1000μm程度、好ましくは2μm~500μm程度、より好ましくは2μm~300μmであり得る。接着力の向上や粗面の凹凸に対する密着性向上の観点から、いくつかの態様において、樹脂層の厚さは、例えば5μm以上であってよく、10μm以上でもよく、25μm以上でもよく、35μm以上でもよく、50μm以上または70μm以上でもよい。また、経済性の観点から、いくつかの態様において、樹脂層の厚さは、例えば200μm以下であってよく、150μm以下でもよく、100μm以下でもよい。また、ここに開示される樹脂層は、単層構造でもよく、二層以上の多層構造でもよい。
<Resin layer and laminated sheet>
According to this specification, a resin layer formed from any of the resin compositions disclosed herein is provided. The thickness of the resin layer is not particularly limited. The thickness of the resin layer may be, for example, about 1 μm to 1000 μm, preferably about 2 μm to 500 μm, and more preferably 2 μm to 300 μm. In some embodiments, the thickness of the resin layer may be, for example, 5 μm or more, 10 μm or more, 25 μm or more, 35 μm or more in some aspects, from the viewpoint of improving adhesion and adhesion to rough asperities. It may be 50 μm or more or 70 μm or more. Further, from the viewpoint of economy, in some embodiments, the thickness of the resin layer may be, for example, 200 μm or less, 150 μm or less, or 100 μm or less. In addition, the resin layer disclosed herein may have a single layer structure or a multilayer structure of two or more layers.
 樹脂層のポリマーゲル分率は、特に制限されない。粗面に対する接着性の観点から、通常は20~98重量%であることが適当である。いくつかの態様において、樹脂層のポリマーゲル分率は、例えば20~95重量%であり得る。樹脂層のポリマーゲル分率が上記範囲にあると、高い接着力および高い保持力が好適に発現する傾向にある。これは、樹脂層のポリマーゲル分率が上記範囲にあると、樹脂層の柔らかさを維持することができ、かつ適度な架橋ネットワークの形成によって凝集力を付与することができるためと推定される。 The polymer gel fraction of the resin layer is not particularly limited. From the viewpoint of adhesion to rough surfaces, usually 20 to 98% by weight is suitable. In some embodiments, the polymer gel fraction of the resin layer may be, for example, 20 to 95% by weight. When the polymer gel fraction of the resin layer is in the above range, high adhesion and high holding power tend to be suitably developed. It is presumed that when the polymer gel fraction of the resin layer is in the above-mentioned range, the softness of the resin layer can be maintained, and cohesion can be imparted by formation of a suitable crosslinked network. .
 樹脂層の凝集力や保持力をより高める観点から、樹脂層のポリマーゲル分率は、例えば22重量%以上であることが好ましく、25重量%以上であることがより好ましく、30重量%以上であることがさらに好ましい。また、低温における粗面接着性を高める観点から、樹脂層のポリマーゲル分率は、例えば90重量%以下であることが好ましく、85重量%以下であることがより好ましく、80重量%以下であることがさらに好ましく、75重量%以下であることがよりさらに好ましく、70重量%以下であることが特に好ましい。なお、上記樹脂組成物が架橋剤を含有する場合には、架橋剤全体の添加量を調整することとともに、架橋処理温度や架橋処理時間の影響を考慮して、ゲル分率を制御することができる。樹脂層のポリマーゲル分率は、後述する実施例に記載の方法により測定される。 The polymer gel fraction of the resin layer is, for example, preferably 22% by weight or more, more preferably 25% by weight or more, and more preferably 30% by weight or more from the viewpoint of enhancing the cohesion and retention of the resin layer. It is further preferred that Further, from the viewpoint of enhancing the rough surface adhesion at a low temperature, the polymer gel fraction of the resin layer is, for example, preferably 90% by weight or less, more preferably 85% by weight or less, and 80% by weight or less Is more preferably 75% by weight or less, still more preferably 70% by weight or less. In addition, when the said resin composition contains a crosslinking agent, while adjusting the addition amount of the whole crosslinking agent, the influence of a crosslinking process temperature and crosslinking process time is considered, and a gel fraction is controlled. it can. The polymer gel fraction of a resin layer is measured by the method as described in the Example mentioned later.
 ここに開示される樹脂層は、貯蔵弾性率G’(23℃)が1.0×10Pa以上5.0×10Pa以下であることが好ましい。樹脂層の貯蔵弾性率G’(23℃)が低くなると、粗面の凹凸に対する上記樹脂層の密着性(上記凹凸形状への追従性)が高くなる傾向にある。密着性が高くなると、該樹脂層と粗面との接触面積が大きくなり、接着力が向上しやすくなる。かかる観点から、いくつかの態様において、樹脂層の貯蔵弾性率G’(23℃)は、例えば4.8×10Pa以下であることが好ましく、4.6×10Pa以下であることがさらに好ましい。また、樹脂層に適度な凝集力を付与して接着力や保持力を高める観点から、樹脂層の貯蔵弾性率G’(23℃)は、例えば1.2×10Pa以上であってよく、1.5×10Pa以上でもよい。 The resin layer disclosed herein preferably has a storage modulus G ′ (23 ° C.) of 1.0 × 10 4 Pa or more and 5.0 × 10 4 Pa or less. When the storage elastic modulus G ′ (23 ° C.) of the resin layer is lowered, the adhesion of the resin layer to the unevenness of the rough surface (followability to the unevenness shape) tends to be high. When the adhesion becomes high, the contact area between the resin layer and the rough surface becomes large, and the adhesion becomes easy to improve. From such a viewpoint, in some embodiments, the storage elastic modulus G ′ (23 ° C.) of the resin layer is, for example, preferably 4.8 × 10 4 Pa or less, and 4.6 × 10 4 Pa or less Is more preferred. In addition, from the viewpoint of imparting appropriate cohesion to the resin layer to enhance adhesion and holding power, the storage elastic modulus G ′ (23 ° C.) of the resin layer may be, for example, 1.2 × 10 4 Pa or more. Or 1.5 × 10 4 Pa or more.
 樹脂層の貯蔵弾性率G’(23℃)は、市販の動的粘弾性測定装置を用いて測定することができ、より具体的には後述する実施例に記載の方法で測定される。樹脂層の貯蔵弾性率G’(23℃)は、アクリル系ポリマーを構成するモノマー成分の組成、架橋剤の使用、粘着付与樹脂の使用等により調節することができる。例えば、モノマー成分に占めるモノマーA2の重量分率を高くすることや、モノマーA2に対するモノマーA1の重量比をより小さくすることにより(すなわち、モノマーA1に対してより多くのモノマーA2を使用することにより)、樹脂層の貯蔵弾性率G’(23℃)を低下させ得る。貯蔵弾性率G’(23℃)を低下させる効果の高いモノマーA2の例として、上記一般式(1)で表わされる鎖状エーテル結合含有(メタ)アクリレートであって、ホモポリマーのTgが-40℃以下(より好ましくは-45℃以下、さらに好ましくは-50℃以下、例えば-55℃以下)であるものが挙げられる。 The storage elastic modulus G ′ (23 ° C.) of the resin layer can be measured using a commercially available dynamic viscoelasticity measuring device, and more specifically, it is measured by the method described in the examples described later. The storage elastic modulus G ′ (23 ° C.) of the resin layer can be adjusted by the composition of the monomer component constituting the acrylic polymer, the use of a crosslinking agent, the use of a tackifying resin, and the like. For example, by increasing the weight fraction of monomer A2 in the monomer component or by decreasing the weight ratio of monomer A1 to monomer A2 (ie, by using more monomer A2 to monomer A1) ), The storage modulus G ′ (23 ° C.) of the resin layer can be reduced. An example of the monomer A2 having a high effect of reducing the storage elastic modulus G ′ (23 ° C.) is a linear ether bond-containing (meth) acrylate represented by the above general formula (1), and the Tg of homopolymer is −40 C. or less (more preferably -45.degree. C. or less, more preferably -50.degree. C. or less, for example -55.degree. C. or less) can be mentioned.
 ここに開示される樹脂層は、貯蔵弾性率G’(-10℃)が3.0×10Pa以上7.0×10Pa以下であることが好ましい。樹脂層の貯蔵弾性率G’(-10℃)が低いことは、低温においても上記樹脂層を粗面の凹凸に対して良好に密着しやすくし、低温における粗面接着性を高める観点から有利である。かかる観点から、いくつかの態様において、樹脂層の貯蔵弾性率G’(-10℃)は、例えば6.5×10Pa以下であることが好ましく、6.0×10Pa以下であることがより好ましい。また、室温またはそれ以上の温度域において凝集力が不足する事象を避ける観点から、樹脂層の貯蔵弾性率G’(-10℃)は、例えば5.0×10Pa以上であってよく、7.0×10Pa以上でもよい。樹脂層の貯蔵弾性率G’(-10℃)は、貯蔵弾性率G’(23℃)と同様、市販の動的粘弾性測定装置を用いて測定することができ、より具体的には後述する実施例に記載の方法で測定される。樹脂層の貯蔵弾性率G’(-10℃)は、アクリル系ポリマーを構成するモノマー成分の組成、架橋剤の使用、粘着付与樹脂の使用等により調節することができる。 The resin layer disclosed herein preferably has a storage modulus G ′ (−10 ° C.) of 3.0 × 10 4 Pa or more and 7.0 × 10 5 Pa or less. The low storage elastic modulus G ′ (−10 ° C.) of the resin layer is advantageous from the viewpoint of facilitating good adhesion of the resin layer to the irregularities of the rough surface even at low temperatures and enhancing the rough surface adhesion at low temperatures. It is. From such a viewpoint, in some embodiments, the storage elastic modulus G ′ (−10 ° C.) of the resin layer is, for example, preferably 6.5 × 10 5 Pa or less, and 6.0 × 10 5 Pa or less Is more preferred. In addition, from the viewpoint of avoiding an event of insufficient cohesion in a temperature range of room temperature or higher, the storage elastic modulus G ′ (−10 ° C.) of the resin layer may be, for example, 5.0 × 10 4 Pa or more. It may be 7.0 × 10 4 Pa or more. The storage elastic modulus G ′ (−10 ° C.) of the resin layer can be measured using a commercially available dynamic viscoelasticity measuring apparatus, as with the storage elastic modulus G ′ (23 ° C.), and more specifically, it will be described later It measures by the method as described in the Example which The storage elastic modulus G ′ (−10 ° C.) of the resin layer can be adjusted by the composition of the monomer component constituting the acrylic polymer, the use of a crosslinking agent, the use of a tackifying resin, and the like.
 ここに開示される樹脂層のヘイズ値は特に制限されない。例えば、樹脂層の厚さが85μmである場合の該樹脂層のへイズ値が10%以下である態様で実施することができる。好ましい一態様では、厚さ85μmでの樹脂層のヘイズ値は1.9%以下である。このように透明性の高い樹脂層を有する積層シートは、支持体を有する構成または有しない構成において、高い光透過性が求められる用途や、該積層シートを通して被着体を良好に視認し得る性能が求められる用途に好適である。また、支持体を有する構成において、樹脂層を通して上記支持体の外観を良好に視認し得る性質が求められる用途に好適である。厚さ85μmでの樹脂層のヘイズ値は、1.5%以下であることがより好ましく、さらに好ましくは1%以下、さらに好ましくは0.7%以下である。樹脂層のヘイズ値の下限は特に制限されない。例えば、厚さ85μmでの樹脂層のヘイズ値が0%以上(例えば0.05%以上)である態様で実施することができる。 The haze value of the resin layer disclosed herein is not particularly limited. For example, the embodiment can be carried out in a mode in which the haze value of the resin layer is 10% or less when the thickness of the resin layer is 85 μm. In a preferred embodiment, the haze value of the resin layer at a thickness of 85 μm is 1.9% or less. As described above, the laminate sheet having the highly transparent resin layer has an application that requires high light transmittance in a configuration having or not having a support, and a performance that allows the adherend to be visually recognized well through the laminate sheet. Are suitable for applications where Moreover, in the structure which has a support body, it is suitable for the use by which the property which can visually recognize the external appearance of the said support body through a resin layer is calculated | required. The haze value of the resin layer at a thickness of 85 μm is more preferably 1.5% or less, still more preferably 1% or less, and still more preferably 0.7% or less. The lower limit of the haze value of the resin layer is not particularly limited. For example, it can be carried out in an embodiment in which the haze value of the resin layer with a thickness of 85 μm is 0% or more (for example, 0.05% or more).
 ここに開示される技術を基材(支持体)付き積層シートの形態で実施する場合において、該積層シートのヘイズ値は特に制限されない。例えば、基材付き積層シートのへイズ値が15%以下である態様で実施することができる。このように透明性の高い基材付き積層シートは、高い光透過性が求められる用途や、該積層シートを通して被着体を良好に視認し得る性能が求められる用途に好適である。好ましい一態様では、基材付き積層シートのへイズ値は5%以下であり、より好ましくは1.9%以下、さらに好ましくは1.5%以下(例えば1%以下)である。基材付き積層シートのヘイズ値の下限は特に制限されない。例えば、基材付き積層シートのヘイズ値が0%以上(例えば0.05%以上)である態様で実施することができる。 When the technology disclosed herein is carried out in the form of a laminated sheet with a substrate (support), the haze value of the laminated sheet is not particularly limited. For example, it can carry out in the aspect which is 15% or less in the haze value of a lamination sheet with a base material. As described above, the laminated sheet with a substrate having high transparency is suitable for applications in which high light transmittance is required, and applications in which performance capable of favorably visually recognizing an adherend through the laminate sheet is required. In a preferred embodiment, the haze value of the base material-laminated sheet is 5% or less, more preferably 1.9% or less, and still more preferably 1.5% or less (e.g. 1% or less). The lower limit of the haze value of the laminated sheet with a substrate is not particularly limited. For example, it can be implemented in the aspect whose haze value of a lamination sheet with a base material is 0% or more (for example, 0.05% or more).
 ここで「ヘイズ値」とは、測定対象に可視光を照射したときの、全透過光に対する拡散透過光の割合をいう。くもり価ともいう。ヘイズ値は、以下の式で表すことができる。
  Th(%)=Td/Tt×100
 上記式において、Thはヘイズ値(%)であり、Tdは散乱光透過率、Ttは全光透過率である。ヘイズ値の測定は、後述する実施例に記載の方法に従って行うことができる。
Here, the “haze value” refers to the ratio of diffuse transmission light to total transmission light when the measurement target is irradiated with visible light. It is also called cloudy price. The haze value can be expressed by the following equation.
Th (%) = Td / Tt × 100
In the above equation, Th is a haze value (%), Td is a scattered light transmittance, and Tt is a total light transmittance. The measurement of the haze value can be performed according to the method described in the examples described later.
 上記樹脂層は、例えば、上記樹脂組成物を支持体の片面または両面に塗布し、重合溶剤等を加熱乾燥等によって除去することにより積層シートとして形成することができる。上記積層シートを構成する支持体は、剥離性の(すなわち、上記積層シートを構成する樹脂層を剥離可能な)支持体であってもよく、非剥離性の支持体であってもよい。また、剥離性の支持体に塗布した樹脂組成物から樹脂層を形成した後、その樹脂層を非剥離性の支持体に片面または両面に貼り合わせることによって積層シートを構成してもよい。樹脂組成物の塗布にあたっては、塗工性の向上や厚さ調節等の目的で、適宜に、重合溶剤以外の一種以上の溶剤を新たに加えてもよい。 The resin layer can be formed, for example, as a laminated sheet by applying the resin composition on one side or both sides of a support and removing the polymerization solvent or the like by heat drying or the like. The support constituting the laminated sheet may be a releasable support (that is, a support capable of releasing the resin layer constituting the laminated sheet) or a non-removable support. Moreover, after forming a resin layer from the resin composition apply | coated to the peelable support body, you may comprise a lamination sheet by bonding the resin layer together to one side or both surfaces with the non-peelable support body. At the time of application of the resin composition, one or more solvents other than the polymerization solvent may be appropriately added, as appropriate, for the purpose of improving the coatability and adjusting the thickness.
 上記樹脂組成物の塗布方法としては、各種方法が用いられ得る。具体的には、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーター等による押出しコート法等の方法が挙げられる。 Various methods can be used as a method of applying the above-mentioned resin composition. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater etc. Methods such as extrusion coating may be mentioned.
 上記加熱乾燥の温度は、好ましくは40~200℃であり、さらに好ましくは、50~180℃であり、特に好ましくは70~170℃である。加熱温度を上記の範囲とすることによって、優れた粘着特性を有する樹脂層を得ることができる。上記加熱乾燥の時間は、好ましくは5秒~20分、さらに好ましくは5秒~15分、特に好ましくは10秒~10分である。 The heating and drying temperature is preferably 40 to 200 ° C., more preferably 50 to 180 ° C., and particularly preferably 70 to 170 ° C. By making heating temperature into said range, the resin layer which has the outstanding adhesion characteristic can be obtained. The heating and drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 15 minutes, and particularly preferably 10 seconds to 10 minutes.
 モノマー成分を紫外線照射することにより重合して上記(メタ)アクリル系ポリマーを製造する態様においては、上記モノマー成分から上記(メタ)アクリル系ポリマーを製造するとともに、樹脂層を形成することができる。モノマー成分には、適宜に、架橋剤等の上記樹脂組成物に配合することができる材料を配合することができる。上記モノマー成分は、紫外線照射にあたり、事前に一部を重合させてシロップ状としたものを用いることができる。紫外線照射には、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ等を用いることができる。 In the aspect which manufactures the said (meth) acrylic-type polymer by superposing | polymerizing a monomer component by irradiating an ultraviolet-ray, while manufacturing the said (meth) acrylic-type polymer from the said monomer component, a resin layer can be formed. In the monomer component, materials that can be blended into the above-mentioned resin composition such as a crosslinking agent can be appropriately blended. The above monomer components may be used in the form of syrup by polymerizing a part thereof in advance of ultraviolet irradiation. For the ultraviolet irradiation, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp or the like can be used.
 上記支持体としては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体等のポリオレフィンを主成分とするポリオレフィンフィルム、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート等のポリエステルを主成分とするポリエステルフィルム、ポリ塩化ビニルを主成分とするポリ塩化ビニルフィルム、その他、ポリエーテルスルホンフィルム、ポリスチレンフィルム、ポリアクリルフィルム、ポリウレタンフィルム、ポリイミドフィルム、ポリアミドフィルム、ポリアミドイミドフィルム、シクロオレフィン系フィルム、エチレン-ビニルアルコール共重合体フィルム等のプラスチックフィルム;紙、布、不織布等の多孔質材料;ネット;ポリエチレンフォームやアクリルフォーム等の気泡含有シート;金属箔;および、これらの複合体、等の各種の支持フィルムを挙げることができる。上記複合体の例には、金属箔とプラスチックフィルムとの積層体や、ガラス繊維や炭素繊維等の無機繊維で強化されたプラスチックフィルム等が含まれるが、これらに限定されない。なお、上記気泡含有シートにおける気泡の概念には、固体状の外殻を有しない気泡と、固体状の外殻を有する気泡(例えば、中空粒子等の含有によるもの)とが含まれる。したがって、この出願において、上記気泡含有シートのことを「気泡もしくは粒子含有シート」と表記することがある。上記気泡もしくは粒子含有シートは、固体状の外殻を有しない気泡と、固体状の外殻を有する気泡との、一方または両方を含み得る。
 支持フィルムの厚さは、通常、5μm~3000μm程度が適当であり、好ましくは10μm~2500μm、さらに好ましくは20μm~2000μm程度であり得る。いくつかの態様において、上記支持フィルムの厚さは、例えば1000μm以下であってよく、500μm以下でもよく、300μm以下でもよく、100μm以下または50μm以下でもよい。
As the support, a polyolefin film mainly composed of polyolefin such as polyethylene (PE), polypropylene (PP) and ethylene-propylene copolymer, and a polyester mainly composed of polyethylene terephthalate (PET) and polybutylene terephthalate etc. Polyester film, polyvinyl chloride film containing polyvinyl chloride as a main component, others, polyethersulfone film, polystyrene film, polyacrylic film, polyurethane film, polyimide film, polyamide film, polyamideimide film, cycloolefin film, ethylene- Plastic film such as vinyl alcohol copolymer film; Porous material such as paper, cloth, non-woven fabric, etc .; Net; Air such as polyethylene foam or acrylic foam Containing sheet; metal foil; and can include these complexes, various support film and the like. Examples of the composite include, but are not limited to, a laminate of a metal foil and a plastic film, and a plastic film reinforced with an inorganic fiber such as glass fiber and carbon fiber. The concept of air bubbles in the air bubble-containing sheet includes air bubbles not having a solid outer shell and air bubbles having a solid outer shell (for example, by containing hollow particles). Therefore, in this application, the above-mentioned bubble-containing sheet may be referred to as "bubble or particle-containing sheet". The bubble or particle-containing sheet may include one or both of a bubble having no solid shell and a bubble having a solid shell.
The thickness of the support film is usually about 5 μm to about 3000 μm, preferably about 10 μm to about 2500 μm, and more preferably about 20 μm to about 2000 μm. In some embodiments, the thickness of the support film may be, for example, 1000 μm or less, 500 μm or less, 300 μm or less, 100 μm or less, or 50 μm or less.
 上記支持フィルムには、必要に応じて、シリコーン系、フッ素系、長鎖アルキル系もしくは脂肪酸アミド系の離型剤やシリカ粉等による離型および防汚処理が施されていてもよい。また、上記支持フィルムには、帯電防止剤の塗布、練り込み、蒸着等による帯電防止処理が施されていてもよい。 The support film may be subjected to release treatment and antifouling treatment with a silicone-based, fluorine-based, long-chain alkyl-based or fatty acid amide-based release agent, silica powder, or the like, as necessary. In addition, the support film may be subjected to antistatic treatment such as application of an antistatic agent, kneading, deposition, and the like.
 一実施形態に係る積層シートの構造例を図1に模式的に示す。この積層シート1は、第一面10Aおよび第二面10Bを有する支持フィルム10と、その第一面10A側に設けられた樹脂層である粘着剤層21とを備える。第一面10Aは非剥離性であり、これにより積層シート1は基材付き片面粘着シートとして構成されている。使用前(すなわち、被着体への貼付け前)の積層シート1は、図1に示すように、粘着剤層21の表面(粘着面)21Aを保護する剥離ライナー31をさらに含んでいてもよい。剥離ライナー31は、少なくとも粘着面21Aに接する側が剥離性表面(剥離面)となっている。実用に際しては、剥離ライナー31は粘着面21Aから剥離される。 The structural example of the lamination sheet which concerns on one Embodiment is typically shown in FIG. The laminated sheet 1 includes a support film 10 having a first surface 10A and a second surface 10B, and an adhesive layer 21 which is a resin layer provided on the first surface 10A side. The first surface 10A is non-peelable, whereby the laminate sheet 1 is configured as a single-sided adhesive sheet with a substrate. The laminated sheet 1 before use (that is, before application to an adherend) may further include a release liner 31 for protecting the surface (adhesive surface) 21A of the pressure-sensitive adhesive layer 21, as shown in FIG. . At least the side of the release liner 31 in contact with the adhesive surface 21A is a release surface (release surface). In practical use, the release liner 31 is released from the adhesive surface 21A.
 他の一実施形態に係る積層シートの構造例を図2に模式的に示す。この積層シート2は、第一面10Aおよび第二面10Bを有する支持フィルム10と、その第一面10A側に設けられた樹脂層である粘着剤層21と、第二面10B側に設けられた樹脂層である粘着剤層22とを備える。第一面10Aおよび第二面10Bはいずれも非剥離性であり、これにより積層シート2は基材付き両面粘着シートとして構成されている。使用前の粘着シート2は、図2に示すように、粘着剤層21の表面(第一粘着面)21Aおよび粘着剤層22の表面(第二粘着面)22Aを保護する剥離ライナー31,32をさらに含んでいてもよい。剥離ライナー31,32は、少なくとも粘着面21A,22Aに接する側が剥離面となっており、実用に際しては粘着面21A,22Aから剥離される。 The structural example of the lamination sheet which concerns on other one Embodiment is typically shown in FIG. The laminated sheet 2 is provided on the second surface 10B side, the support film 10 having the first surface 10A and the second surface 10B, the pressure-sensitive adhesive layer 21 which is a resin layer provided on the first surface 10A side. And an adhesive layer 22 which is a resin layer. The first surface 10A and the second surface 10B are both non-peelable, whereby the laminate sheet 2 is configured as a double-sided pressure-sensitive adhesive sheet with a substrate. The pressure-sensitive adhesive sheet 2 before use is, as shown in FIG. 2, a release liner 31, 32 for protecting the surface (first adhesive surface) 21A of the adhesive layer 21 and the surface (second adhesive surface) 22A of the adhesive layer 22. May be further included. The release liners 31 and 32 have at least the side in contact with the adhesive surfaces 21A and 22A as the release surfaces, and are peeled off from the adhesive surfaces 21A and 22A in practical use.
 さらに他の一実施形態に係る積層シートの構造例を図3に模式的に示す。この積層シート3は、樹脂層である粘着剤層21と、粘着剤層21の一方の表面(第一粘着面)21Aを保護する剥離ライナー31と、粘着剤層21の他方の表面(第二粘着面)21Bを保護する剥離ライナー32とを含む。実用に際しては、剥離ライナー31,32は、粘着面21A,21Bから剥離される。この実施形態の粘着剤層21は、非剥離性の支持体を有しない粘着シート、すなわち基材レスの粘着シートとしても把握され得る。 A structural example of a laminated sheet according to still another embodiment is schematically shown in FIG. The laminated sheet 3 includes a pressure-sensitive adhesive layer 21 which is a resin layer, a release liner 31 which protects one surface (first pressure-sensitive adhesive surface) 21A of the pressure-sensitive adhesive layer 21, and the other surface of the pressure-sensitive adhesive layer 21 (second Adhesive surface) a release liner 32 for protecting 21B. In practical use, the release liners 31, 32 are peeled off from the adhesive surfaces 21A, 21B. The pressure-sensitive adhesive layer 21 of this embodiment can also be grasped as a pressure-sensitive adhesive sheet not having a non-peelable support, that is, a substrate-less pressure-sensitive adhesive sheet.
 剥離ライナーの構成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエステルフィルム等のプラスチックフィルム、紙、布、不織布等の多孔質材料、ネット、気泡含有シート、金属箔、およびこれらのラミネート体等の適宜な薄葉体等を挙げることができる。表面平滑性に優れる点から、プラスチックフィルムが好適に用いられ得る。 As a constituent material of the release liner, for example, plastic film such as polyethylene, polypropylene, polyethylene terephthalate, polyester film, porous material such as paper, cloth, non-woven fabric, net, bubble-containing sheet, metal foil, laminate of these, etc. And the like. A plastic film can be used suitably from the point which is excellent in surface smoothness.
 上記プラスチックフィルムとしては、上記樹脂層を保護し得るフィルムであれば特に限定されず、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフイルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン-酢酸ビニル共重合体フィルム等が挙げられる。 The plastic film is not particularly limited as long as it can protect the resin layer. For example, polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer Examples include coalesced films, polyethylene terephthalate films, polybutylene terephthalate films, polyurethane films, ethylene-vinyl acetate copolymer films and the like.
 上記剥離ライナーの厚さは、通常5~300μm、好ましくは5~200μm程度である。上記剥離ライナーには、必要に応じて、シリコーン系、フッ素系、長鎖アルキル系もしくは脂肪酸アミド系の離型剤、シリカ粉等による離型および防汚処理や、塗布型、練り込み型、蒸着型等の帯電防止処理もすることもできる。特に、上記剥離ライナーの表面にシリコーン処理、長鎖アルキル処理、フッ素処理等の剥離処理を適宜行うことにより、上記樹脂層からの剥離性をより高めることができる。 The thickness of the release liner is usually about 5 to 300 μm, preferably about 5 to 200 μm. The above release liner may, if necessary, be a releasing agent of silicone type, fluorine type, long chain alkyl type or fatty acid amide type, release by silica powder etc., antifouling treatment, coating type, kneading type, vapor deposition It is also possible to carry out antistatic treatment of a mold or the like. In particular, the peelability from the resin layer can be further enhanced by appropriately performing the peeling treatment such as silicone treatment, long-chain alkyl treatment, fluorine treatment and the like on the surface of the release liner.
 ここに開示される樹脂層(基材レスの粘着シート、基材付きの片面粘着シートまたは基材付きの両面粘着シートを構成する樹脂層であり得る。以下同じ。)は、ポリプロピレン(PP)板を被着体として測定される室温180°ピール接着力(以下、対PP室温接着力ともいう。)が10N/20mm以上であることが好ましく、11N/20mm以上であることがより好ましい。上記樹脂層の対PP室温接着力は、例えば12N/20mm以上であってよく、13N/20mm以上でもよい。対PP室温接着力の上限は特に制限されず、例えば30N/20mm以下程度であり得る。 The resin layer (a substrate-less pressure-sensitive adhesive sheet, a single-sided pressure-sensitive adhesive sheet with a substrate, or a resin layer constituting a double-sided pressure-sensitive adhesive sheet with a substrate) disclosed herein may be a polypropylene (PP) plate The room temperature 180 ° peel adhesion (hereinafter also referred to as PP room temperature adhesion) measured as an adherend is preferably 10 N / 20 mm or more, more preferably 11 N / 20 mm or more. The room temperature adhesion of the resin layer to PP may be, for example, 12 N / 20 mm or more, or 13 N / 20 mm or more. The upper limit of the adhesion to PP room temperature is not particularly limited, and may be, for example, about 30 N / 20 mm or less.
 ここに開示される樹脂層は、針葉樹合板を被着体として測定される室温180°ピール接着力(以下、対合板室温接着力ともいう。)が8N/20mm以上であることが好ましい。上記合板室温接着力は、より好ましくは10N/20mm以上、さらに好ましくは15N/20mm以上であり、18N/20mm以上または20N/20mm以上でもよい。対合板室温接着力の上限は特に制限されず、例えば50N/20mm以下程度であってよく、40N/20mm以下程度であってもよい。 The resin layer disclosed herein preferably has a room temperature of 180 ° peel adhesion (hereinafter also referred to as "plywood room temperature adhesion") of 8 N / 20 mm or more, which is measured using softwood plywood as an adherend. The above-mentioned plywood room temperature adhesion is more preferably 10 N / 20 mm or more, further preferably 15 N / 20 mm or more, and may be 18 N / 20 mm or more or 20 N / 20 mm or more. The upper limit of the room temperature adhesion to the plywood is not particularly limited, and may be, for example, about 50 N / 20 mm or less, or about 40 N / 20 mm or less.
 ここに開示される樹脂層は、ケイ酸カルシウム板を被着体として測定される室温180°ピール接着力(以下、対ケイカル板室温接着力ともいう。)が10N/20mm以上であることが好ましい。上記ケイカル板室温接着力は、より好ましくは15N/20mm以上であり、20N/20mm以上でもよい。対ケイカル板室温接着力の上限は特に制限されず、例えば50N/20mm以下程度であってよく、40N/20mm以下程度であってもよい。 The resin layer disclosed herein preferably has a room temperature of 180 ° peel adhesion (hereinafter also referred to as an adhesion to a silica glass plate at room temperature) measured with a calcium silicate plate as an adherend of 10 N / 20 mm or more. . The above-mentioned carbonal plate room temperature adhesive strength is more preferably 15 N / 20 mm or more, and may be 20 N / 20 mm or more. There is no particular limitation on the upper limit of the room temperature adhesive strength to the glass plate, and it may be, for example, about 50 N / 20 mm or less, or about 40 N / 20 mm or less.
 ここに開示される樹脂層において、針葉樹合板を被着体として測定される低温180°ピール接着力(以下、対合板低温接着力ともいう。)は、例えば1N/20mm以上または3N/20mm以上であってよく、5N/20mm以上であることが好ましい。いくつかの態様において、上記対合板低温接着力は、例えば7N/20mm以上であってよく、9N/20mm以上でもよい。上記(メタ)アクリル系ポリマーは、モノマーA1およびモノマーA2を特定の割合で含むモノマー成分の重合物であるので、低温域においても柔軟性に優れる。このため、上記(メタ)アクリル系ポリマーに対して特定量の粘着付与樹脂を配合しても、針葉樹合板等の粗面に対して、低温域において良好な接着性を発揮することができ、上記低温接着力を好適に達成することができる。対合板低温接着力の上限は特に制限されず、例えば50N/20mm以下程度であってよく、40N/20mm以下程度であってもよい。 In the resin layer disclosed herein, low-temperature 180 ° peel adhesion (hereinafter also referred to as low-temperature adhesion to plywood) measured with softwood plywood as an adherend is, for example, 1 N / 20 mm or more or 3 N / 20 mm or more And may preferably be 5 N / 20 mm or more. In some embodiments, the above-mentioned low-temperature adhesion to plywood may be, for example, 7 N / 20 mm or more, and 9 N / 20 mm or more. The (meth) acrylic polymer is a polymer of a monomer component containing the monomer A1 and the monomer A2 in a specific ratio, and therefore, is excellent in flexibility even in a low temperature range. For this reason, even if it mixes the tackifying resin of a specific amount with respect to the said (meth) acrylic-type polymer, it can exhibit favorable adhesiveness in low temperature area with respect to rough surfaces, such as softwood plywood, and said Low temperature adhesion can be suitably achieved. The upper limit of the low-temperature adhesion to plywood is not particularly limited, and may be, for example, about 50 N / 20 mm or less, or about 40 N / 20 mm or less.
 樹脂層の室温180°ピール接着力および低温180°ピール接着力は、後述する実施例に記載の方法で測定される。基材レスの粘着剤層を構成する樹脂層(すなわち、非剥離性の支持体を有しない樹脂層)では、180°ピール接着力の測定にあたり、上記樹脂層の片面に適切な裏打ち材(例えば、厚さ25μm程度のPETフィルム)を貼り付けて補強することができる。後述する保持力試験についても同様である。また、基材付きの片面粘着シートまたは基材付きの両面粘着シートを構成する樹脂層においても、必要に応じて同様の補強を行うことができる。 The room temperature 180 ° peel adhesion and the low temperature 180 ° peel adhesion of the resin layer are measured by the methods described in the examples below. In the resin layer constituting the substrate-less pressure-sensitive adhesive layer (that is, the resin layer not having a non-peelable support), a backing material (for example, one side of the above-mentioned resin layer) is measured And a PET film having a thickness of about 25 μm can be attached and reinforced. The same applies to a retention test to be described later. Further, the same reinforcement can be performed as needed also in the resin layer constituting the single-sided pressure-sensitive adhesive sheet with a substrate or the double-sided pressure-sensitive adhesive sheet with a substrate.
 ここに開示される樹脂層は、後述する実施例に記載の方法で測定される保持力試験におけるズレ距離が1.0mm未満であることが好ましく、0.8mm以下であることがより好ましい。このような積層シートは、樹脂層が適度に高い凝集力を有する。このような樹脂層によると、被着体を強固に接合または固定することができる。 The resin layer disclosed herein preferably has a displacement distance of less than 1.0 mm, more preferably 0.8 mm or less, in a holding power test measured by the method described in the examples described later. In such a laminated sheet, the resin layer has a moderately high cohesive force. According to such a resin layer, the adherend can be firmly bonded or fixed.
<用途>
 ここに開示される樹脂層は、粗面を有する被着体やプラスチックに貼り付けられる用途に好ましく用いられ得る。粗面を有する被着体としては、コンクリート、モルタル、石膏ボード、針葉樹合板、木質系セメント板、ケイ酸カルシウム板、タイル、および繊維強化セメント板等が例示されるが、これらに限定されない。上記粗面の算術平均粗さRaは、例えば1μm~800μm程度であり得る。上記積層シートは、特に、算術平均粗さRaが1μm~500μmである粗面を有する被着体に対して好ましく用いられ得る。上記粗面の算術平均粗さRaは、例えば3μm~300μm程度であってもよく、5μm~150μm程度であってもよい。また、ここに開示される樹脂層および積層シートは、平滑な被着体にも強固に接着し得、かかる被着体にも好ましく適用され得る。
<Use>
The resin layer disclosed herein can be preferably used for applications to be applied to adherends or plastics having rough surfaces. Examples of adherends having a rough surface include concrete, mortar, gypsum board, softwood plywood, wood-based cement board, calcium silicate board, tile, and fiber-reinforced cement board, but are not limited thereto. The arithmetic mean roughness Ra of the rough surface may be, for example, about 1 μm to 800 μm. The above-mentioned laminated sheet can be preferably used particularly for an adherend having a rough surface having an arithmetic mean roughness Ra of 1 μm to 500 μm. The arithmetic mean roughness Ra of the rough surface may be, for example, about 3 μm to 300 μm, or about 5 μm to 150 μm. In addition, the resin layer and the laminate sheet disclosed herein can also be firmly adhered to a smooth adherend, and can be preferably applied to such adherends.
 ここに開示される樹脂層は、粗面およびプラスチックのいずれにも良好に接着し得るという特徴を活かして、粗面およびプラスチックの両方に貼り付けられる用途(例えば、粗面を有する被着体とプラスチック部材とを接合する用途)に好ましく用いられ得る。上記プラスチックは、例えばPP,PE等のポリオレフィン系樹脂のような、低極性のプラスチックであり得る。 The resin layer disclosed herein takes advantage of the characteristic of being able to adhere well to any of rough surfaces and plastics, and uses which can be applied to both rough surfaces and plastics (for example, adherends having rough surfaces and the like) It can be preferably used in the application of joining with a plastic member. The plastic may be a low polarity plastic such as, for example, a polyolefin resin such as PP or PE.
 この明細書により開示される事項には、以下のものが含まれる。
 〔1〕 ガラス転移温度が-40℃以下である(メタ)アクリル系ポリマーと、
 上記(メタ)アクリル系ポリマー100重量部に対して5重量部以上40重量部以下の粘着付与樹脂と、
 を含有する樹脂組成物であって、
 上記(メタ)アクリル系ポリマーは、
 ホモポリマーのガラス転移温度が-50℃以下であり、かつ炭素数8~18の分岐したアルキル基をエステル基の末端に有するアルキル(メタ)アクリレート(A1)を50~97重量%、および、
 ホモポリマーのガラス転移温度が-40℃以下であり、かつ分子骨格内にエーテル結合を有する(メタ)アクリレート(A2)を3~50重量%、
 を含むモノマー成分の重合物である、樹脂組成物。
 〔2〕 上記アルキル(メタ)アクリレート(A1)と上記エーテル結合を有する(メタ)アクリレート(A2)との合計の割合が、上記(メタ)アクリル系ポリマーを形成する全モノマー成分に対して75重量%以上である、上記〔1〕に記載の樹脂組成物。
 〔3〕 上記エーテル結合を有する(メタ)アクリレート(A2)が、一般式(1):
   CH=CR-COO-(AO)-R
(上記一般式(1)中、Rは水素原子またはメチル基であり、AOは炭素数2~3のアルキレンオキシ基であり、nは上記アルキレンオキシ基の平均付加モル数を示す数であって1~10であり、Rは、芳香環であるか、または直鎖、分岐鎖もしくは脂環式のアルキル基である。);
 で表されるモノマーである、上記〔1〕または〔2〕に記載の樹脂組成物。
 〔4〕 上記一般式(1)中のAOがオキシエチレン基である、上記〔3〕に記載の樹脂組成物。
 〔5〕 上記一般式(1)中のnが2~8である、上記〔3〕または〔4〕に記載の樹脂組成物。
 〔6〕 上記一般式(1)中のRの炭素数が1~6である、上記〔3〕~〔5〕のいずれかに記載の樹脂組成物。
 〔7〕 上記粘着付与樹脂は、ロジン系粘着付与樹脂、テルペン系粘着付与樹脂、石油系粘着付与樹脂およびスチレン系粘着付与樹脂からなる群から選択される少なくとも一種を含む、上記〔1〕~〔6〕のいずれかに記載の樹脂組成物。
 〔8〕 上記粘着付与樹脂として、軟化点が90℃以上160℃以下である少なくとも一種の粘着付与樹脂を含む、上記〔1〕~〔7〕のいずれかに記載の樹脂組成物。
 〔9〕 上記モノマー成分は、ヒドロキシル基を有するモノマー、カルボキシル基を有するモノマーおよびエポキシ基を有するモノマーからなる群から選択される少なくとも一種の官能基含有モノマーを含む、上記〔1〕~〔8〕のいずれかに記載の樹脂組成物。
 〔10〕 上記モノマー成分が、さらに、多官能性モノマーを、(メタ)アクリル系ポリマーを形成する全モノマー成分に対して、5重量%以下または3重量%以下含む、上記〔1〕~〔9〕のいずれかに記載の樹脂組成物。
 〔11〕 上記(メタ)アクリル系ポリマーの重量平均分子量が35万以上である、上記〔1〕~〔10〕のいずれかに記載の樹脂組成物。
 〔12〕 さらに、上記(メタ)アクリル系ポリマー100重量部に対して0.01重量部以上5重量部以下の架橋剤を含有する、上記〔1〕~〔11〕のいずれかに記載の樹脂組成物。
 〔13〕 上記架橋剤は、イソシアネート系架橋剤およびエポキシ系架橋剤の一方または両方を含む、上記〔12〕に記載の樹脂組成物。
 〔14〕 上記〔1〕~〔13〕のいずれか一項に樹脂組成物から形成される、樹脂層。
 〔15〕 貯蔵弾性率G’(23℃)が1.0×10Pa以上5.0×10Pa以下である、上記〔14〕に記載の樹脂層。
 〔16〕 貯蔵弾性率G’(-10℃)が3.0×10Pa以上7.0×10Pa以下である、上記〔14〕または〔15〕に記載の樹脂層。
 〔17〕 ポリマーゲル分率が20重量%以上98重量%以下である、上記〔14〕~〔16〕のいずれかに記載の樹脂層。
 〔18〕 ポリマーゲル分率が20重量%以上95重量%以下である、上記〔14〕~〔16〕のいずれかに記載の樹脂層。
 〔19〕 上記樹脂層の厚さが85μmの場合のヘイズ値が1.9%以下である、上記〔14〕~〔18〕のいずれかに記載の樹脂層。
 〔20〕 支持体と、
 上記支持体の少なくとも片側に設けられている上記〔14〕~〔19〕のいずれかに記載の樹脂層と、
 を含む、積層シート。
 〔21〕 上記樹脂層は、23℃の環境において剥離速度300mm/分の条件で測定される180°ピール接着力が10N/20mm以上である、上記〔20〕に記載の積層シート。
 〔22〕 上記樹脂層は、-10℃の環境において剥離速度300mm/分の条件で測定される180°ピール接着力が5N/20mm以上である、上記〔20〕または〔21〕に記載の積層シート。
 〔23〕 上記支持体は、プラスチックフィルム、紙、不織布および気泡もしくは粒子含有シートの少なくともいずれかを含む、上記〔20〕~〔22〕のいずれかに記載の積層シート。
 〔24〕 粗面を有する被着体に貼り付けて用いられ、該被着体は、コンクリート、モルタル、石膏ボード、針葉樹合板、木質系セメント板、ケイ酸カルシウム板、タイルおよび繊維強化セメント板から選択される、上記〔20〕~〔23〕のいずれかに記載の積層シート。
 〔25〕 上記粗面を有する被着体とプラスチック部材とを接合するために用いられる、上記〔24〕に記載の積層シート。
 〔26〕 粗面を有する被着体と、上記〔14〕~〔19〕のいずれかに記載の樹脂層とを含み、上記樹脂層が上記粗面に接着することで上記被着体と上記樹脂層とが一体化している、積層構造体。
 〔27〕 粗面を有する被着体と、上記〔20〕~〔23〕のいずれかに記載の積層シートとを含み、上記樹脂層が上記粗面に接着することで上記被着体と上記積層シートとが一体化している、積層構造体。
 〔28〕 上記粗面を有する被着体は、コンクリート、モルタル、石膏ボード、針葉樹合板、木質系セメント板、ケイ酸カルシウム板、タイルおよび繊維強化セメント板から選択される、上記〔26〕または〔27〕に記載の積層構造体。
The matters disclosed by this specification include the following.
[1] (meth) acrylic polymers having a glass transition temperature of −40 ° C. or less,
5 parts by weight or more and 40 parts by weight or less of a tackifier resin with respect to 100 parts by weight of the (meth) acrylic polymer
A resin composition containing
The above (meth) acrylic polymer is
50 to 97% by weight of an alkyl (meth) acrylate (A1) having a branched alkyl group having a carbon number of 8 to 18 and having a glass transition temperature of -50 ° C. or less of a homopolymer and having a branched alkyl group having 8 to 18 carbon atoms;
3 to 50% by weight of (meth) acrylate (A2) having a glass transition temperature of homopolymer of −40 ° C. or less and having an ether bond in the molecular skeleton,
A resin composition which is a polymer of a monomer component containing
[2] The ratio of the total of the above alkyl (meth) acrylate (A1) and the above (meth) acrylate (A2) having an ether bond is 75 weight with respect to all the monomer components forming the above (meth) acrylic polymer The resin composition as described in said [1] which is% or more.
[3] The (meth) acrylate (A2) having an ether bond is represented by the general formula (1):
CH 2 = CR 1 -COO- (AO) n -R 2
(In the above general formula (1), R 1 is a hydrogen atom or a methyl group, AO is a C 2 to C 3 alkyleneoxy group, and n is a number indicating the average addition mole number of the above alkyleneoxy group 1 to 10, and R 2 is an aromatic ring or a linear, branched or alicyclic alkyl group));
The resin composition as described in said [1] or [2] which is a monomer represented by these.
[4] The resin composition according to the above [3], wherein AO in the above general formula (1) is an oxyethylene group.
[5] The resin composition according to the above [3] or [4], wherein n in the general formula (1) is 2 to 8.
[6] The resin composition according to any one of [3] to [5] above, wherein R 2 in the general formula (1) has 1 to 6 carbon atoms.
[7] The above-mentioned tackifying resin contains at least one selected from the group consisting of rosin-based tackifying resin, terpene-based tackifying resin, petroleum-based tackifying resin, and styrene-based tackifying resin, The resin composition in any one of 6].
[8] The resin composition according to any one of the above [1] to [7], which contains at least one tackifying resin having a softening point of 90 ° C. or more and 160 ° C. or less as the tackifying resin.
[9] The above-mentioned monomer component contains at least one functional group-containing monomer selected from the group consisting of monomers having a hydroxyl group, monomers having a carboxyl group, and monomers having an epoxy group. The resin composition as described in any of the above.
[10] The above-mentioned [1] to [9], wherein the above-mentioned monomer component further contains a polyfunctional monomer in an amount of 5% by weight or less or 3% by weight or less based on all monomer components forming the (meth) acrylic polymer ] The resin composition in any one of.
[11] The resin composition according to any one of the above [1] to [10], wherein the weight average molecular weight of the (meth) acrylic polymer is 350,000 or more.
[12] The resin according to any one of the above [1] to [11], further comprising 0.01 to 5 parts by weight of a crosslinking agent with respect to 100 parts by weight of the (meth) acrylic polymer Composition.
[13] The resin composition according to the above [12], wherein the crosslinking agent contains one or both of an isocyanate crosslinking agent and an epoxy crosslinking agent.
[14] A resin layer formed from the resin composition according to any one of the above [1] to [13].
[15] The resin layer according to the above [14], which has a storage elastic modulus G ′ (23 ° C.) of 1.0 × 10 4 Pa or more and 5.0 × 10 4 Pa or less.
[16] The resin layer according to the above [14] or [15], which has a storage elastic modulus G ′ (−10 ° C.) of 3.0 × 10 4 Pa or more and 7.0 × 10 5 Pa or less.
[17] The resin layer according to any one of the above [14] to [16], which has a polymer gel fraction of 20% by weight or more and 98% by weight or less.
[18] The resin layer according to any one of the above [14] to [16], which has a polymer gel fraction of 20% by weight to 95% by weight.
[19] The resin layer according to any one of the above [14] to [18], which has a haze value of 1.9% or less when the thickness of the resin layer is 85 μm.
[20] a support,
The resin layer according to any one of the above [14] to [19], provided on at least one side of the support;
Including, laminated sheet.
[21] The laminated sheet according to the above [20], wherein the resin layer has a 180 ° peel adhesive strength of 10 N / 20 mm or more measured at a peeling speed of 300 mm / min in an environment of 23 ° C.
[22] The laminate according to the above [20] or [21], wherein the resin layer has a 180 ° peel adhesion of 5 N / 20 mm or more measured at a peeling speed of 300 mm / min in an environment of −10 ° C. Sheet.
[23] The laminated sheet according to any one of the above [20] to [22], wherein the support comprises at least one of a plastic film, a paper, a non-woven fabric and a bubble or particle-containing sheet.
[24] It is used by sticking to an adherend having a rough surface, and the adherend is made of concrete, mortar, gypsum board, softwood plywood, wood based cement board, calcium silicate board, tile and fiber reinforced cement board The laminated sheet according to any one of the above [20] to [23], which is selected.
[25] The laminated sheet according to the above [24], which is used to bond the adherend having the rough surface and the plastic member.
[26] An adherend having a rough surface, and the resin layer according to any one of the above [14] to [19], wherein the resin layer adheres to the rough surface, and the adherend and the above-mentioned adhere Laminated structure integrated with a resin layer.
[27] The adherend comprising the adherend having a rough surface, and the laminated sheet according to any one of the above [20] to [23], wherein the resin layer adheres to the rough surface, and the adherend and the above adhere Laminated structure integrated with a laminated sheet.
[28] The adherend having the above rough surface is selected from concrete, mortar, gypsum board, softwood plywood, wood based cement board, calcium silicate board, tile and fiber reinforced cement board, the above [26] or [26] 27] laminated structure.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。なお、以下の説明中の「部」および「%」は、特に断りがない限り重量基準である。 The following examples illustrate some of the embodiments of the present invention, but are not intended to limit the present invention to those shown in the specific examples. In the following description, "parts" and "%" are on a weight basis unless otherwise noted.
 実施例1
 ((メタ)アクリル系ポリマーの調製)
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、2-エチルヘキシルアクリレート(2EHA)90部、エチルカルビトールアクリレート(CBA)10部、4-ヒドロキシブチルアクリレート(4HBA)0.25部、アクリル酸(AA)1部を、重合開始剤としての2,2’-アゾビスイソブチロニトリル(AIBN)0.1部および酢酸エチル160部とともに仕込み、緩やかに攪拌しながら窒素ガスを導入して1時間窒素置換した後、フラスコ内の液温を60~65℃付近に保って10時間重合反応を行って(メタ)アクリル系ポリマー溶液を調製した。上記(メタ)アクリル系ポリマーは、GPCにより求めたMwが85万であった。上記(メタ)アクリル系ポリマーのモノマー組成から算出されるTgは-68.7℃である。
Example 1
(Preparation of (meth) acrylic polymer)
In a four-necked flask equipped with a stirring blade, thermometer, nitrogen gas inlet tube and condenser, 90 parts of 2-ethylhexyl acrylate (2EHA), 10 parts of ethyl carbitol acrylate (CBA), 4-hydroxybutyl acrylate (4HBA) 0.25 parts and 1 part of acrylic acid (AA) are charged together with 0.1 part of 2,2'-azobisisobutyronitrile (AIBN) as a polymerization initiator and 160 parts of ethyl acetate, and while gently stirring After introducing nitrogen gas and purging with nitrogen for 1 hour, the liquid temperature in the flask was kept at around 60 to 65 ° C., and polymerization reaction was carried out for 10 hours to prepare a (meth) acrylic polymer solution. The (meth) acrylic polymer had a Mw of 850,000 as determined by GPC. The Tg calculated from the monomer composition of the (meth) acrylic polymer is −68.7 ° C.
 次いで、上記で得られた(メタ)アクリル系ポリマー溶液に、ポリマーの固形分100部に対し、粘着付与樹脂として重合ロジンエステル(荒川化学工業社製、商品名:ペンセルD125、軟化点120~130℃)20.0部、および、架橋剤として2,4-トリレンジイソシアネートのトリメチロールプロパン付加物(東ソー社製,商品名:コロネートL)0.55部を配合して、樹脂組成物溶液を調製した。 Next, a polymerizing rosin ester (trade name: Pencel D125, manufactured by Arakawa Chemical Industries, Ltd., a softening point of 120 to 130 as a tackifying resin in 100 parts of solid content of the polymer in the (meth) acrylic polymer solution obtained above. C) 20.0 parts, and 0.55 parts of trimethylolpropane adduct of 2,4-tolylene diisocyanate (manufactured by Tosoh Corporation, trade name: Coronate L) as a crosslinking agent, Prepared.
 この樹脂組成物溶液を、剥離ライナーの剥離面に、乾燥後の樹脂層の厚さが85μmになるように塗布し、130℃で3分間乾燥を行って樹脂層を形成した。これにより、上記剥離ライナー(すなわち、剥離性の支持体)の片面に樹脂層を有する積層シートを得た。上記剥離ライナーとしては、片面がシリコーン処理による剥離面となっている厚さ38μmのPETフィルム(三菱樹脂社製,ダイアホイルMRF)を使用した。上記樹脂層は、基材レスの粘着剤層としても把握され得る。 The resin composition solution was applied to the release surface of the release liner such that the thickness of the resin layer after drying was 85 μm, and drying was performed at 130 ° C. for 3 minutes to form a resin layer. Thus, a laminated sheet having a resin layer on one side of the release liner (i.e., a releasable support) was obtained. As the release liner, a 38 μm-thick PET film (Diafoil MRF, manufactured by Mitsubishi Resins Co., Ltd.), one surface of which is a release surface by silicone treatment, was used. The said resin layer may be grasped also as a substrate-less pressure-sensitive adhesive layer.
 実施例2~16および比較例1~3
 実施例1において、(メタ)アクリル系ポリマーの調製に用いたモノマーの種類とその組成比、粘着付与樹脂の種類とその配合量、架橋剤の種類とその配合量を、それぞれ表1に示すとおりとした他は、実施例1と同様の操作により、剥離ライナーの剥離面上に厚さ85μmの樹脂層を作製して積層シートを得た。各例に係る(メタ)アクリル系ポリマーのMwおよびTgを表1に示す。
Examples 2 to 16 and Comparative Examples 1 to 3
In Example 1, the type and composition ratio of the monomer used for preparation of the (meth) acrylic polymer, the type and amount of tackifier resin and the type and amount of the crosslinking agent are as shown in Table 1 respectively. A resin layer having a thickness of 85 μm was produced on the release surface of the release liner by the same procedure as in Example 1 except that a laminated sheet was obtained. Mw and Tg of the (meth) acrylic polymer according to each example are shown in Table 1.
 上記の実施例および比較例で得られた積層シートを構成する樹脂層について、以下の評価を行った。評価結果を表1および表2に示す。 The following evaluation was performed about the resin layer which comprises the lamination sheet obtained by said Example and comparative example. The evaluation results are shown in Tables 1 and 2.
<ポリマーゲル分率の測定>
 樹脂層から所定量(最初の重量W1)の試料を採取し、酢酸エチル溶液に浸漬して室温で1週間放置した後、不溶分を取り出し、乾燥させた重量(W2)を測定し、下記式により、樹脂層のゲル分率を算出した。
 樹脂層ゲル分率(%)=(W2/W1)×100
 得られた樹脂層ゲル分率から、以下の式によりポリマーゲル分率を算出した。なお、下記式中の粘着付与樹脂部数とは、上記樹脂層に含まれるポリマー100部に対する、該樹脂層に含まれる粘着付与樹脂の部数を意味する。
 ポリマーゲル分率(%)=樹脂層ゲル分率(%)×(100+粘着付与樹脂部数)/100
<Measurement of polymer gel fraction>
A sample of a predetermined amount (first weight W1) is taken from the resin layer, immersed in an ethyl acetate solution and left at room temperature for 1 week, then the insoluble matter is taken out and the dried weight (W2) is measured. The gel fraction of the resin layer was calculated by
Resin layer gel fraction (%) = (W2 / W1) × 100
The polymer gel fraction was calculated from the obtained resin layer gel fraction by the following equation. The number of tackifying resin parts in the following formula means the number of tackifying resin parts contained in the resin layer relative to 100 parts of the polymer contained in the resin layer.
Polymer gel fraction (%) = resin layer gel fraction (%) × (100 + number of tackifying resin parts) / 100
<貯蔵弾性率G’の測定>
 樹脂層を重ね合わせて厚さ約2mmの積層体を作製した。上記積層体を直径7.9mmの円盤状に打ち抜いた試料をパラレルプレートで挟み込み、粘弾性試験装置を用いて以下の条件で温度分散測定を行った。その結果から、23℃および-10℃における貯蔵弾性率G’(単位;Pa)を読み取った。
  [試験条件]
 装置:ティー・エイ・インスツルメント社製ARES
 変形モード:ねじり
 測定周波数:一定周波数1Hz(歪み:0.1%)
 昇温速度:5℃/分
 測定温度:-70℃から100℃まで測定
 形状:直径8.0mmのパラレルプレート
<Measurement of storage elastic modulus G '>
The resin layers were superposed to prepare a laminate having a thickness of about 2 mm. A sample in which the above laminate was punched into a disk shape having a diameter of 7.9 mm was sandwiched between parallel plates, and temperature dispersion measurement was performed under the following conditions using a viscoelasticity tester. From the results, storage modulus G '(unit; Pa) at 23 ° C and -10 ° C was read.
[Test conditions]
Device: AAS manufactured by TA Instruments
Deformation mode: Torsion Measurement frequency: Constant frequency 1 Hz (distortion: 0.1%)
Temperature rising rate: 5 ° C / min Measurement temperature: Measured from -70 ° C to 100 ° C Shape: Parallel plate with a diameter of 8.0 mm
<室温接着力測定>
 各例に係る樹脂層の一方の面に厚さ25μmのPETフィルム(東レ社製、ルミラーS10)を貼り付けて裏打ちしたものを評価用サンプルとした。上記評価用サンプルを、幅20mm、長さ約100mmに裁断して試験片を作製した。次いで、23℃、50%RHの標準環境下において、上記試験片の粘着面(すなわち、樹脂層の他方の面)を、被着体としての針葉樹合板(島忠ホームズから入手、厚さ12mm)、ケイ酸カルシウム板(ケイカル板、(株)エーアンドエーマテリアル社製ステンド♯400、厚さ6mm)、またはポリプロピレン板(新神戸電機(株)社製コーベポリシート、厚さ2mm)に、2kgのローラーを1往復させて貼り付けた。これを上記標準環境下に30分間静置した後、同環境下において、剥離角度180°、剥離速度300mm/分の条件でピール接着力(N/20mm)を測定した。
<Room temperature adhesion measurement>
What bonded and backed the 25-micrometer-thick PET film (Toray Co., Ltd. make, Lumirror S10) to one side of the resin layer concerning each example was made into the sample for evaluation. The sample for evaluation was cut into a width of 20 mm and a length of about 100 mm to prepare a test piece. Then, in a standard environment of 23 ° C. and 50% RH, the adhesive surface of the above test piece (that is, the other side of the resin layer) is softwood plywood (obtained from Shimada Holmes, thickness 12 mm) as an adherend, Calcium silicate board (Keikaru board, stained # 400 made by A & A Materials Co., Ltd., thickness 6 mm), or polypropylene board (Kobe Kobel sheet manufactured by Shin-Kobe Electric Co., Ltd., thickness 2 mm) I put it back and forth. After this was allowed to stand for 30 minutes in the above standard environment, the peel adhesion (N / 20 mm) was measured under the conditions of a peeling angle of 180 ° and a peeling speed of 300 mm / min in the same environment.
 また、23℃、50%RHの標準環境下において、上記試験片の粘着面(すなわち、樹脂層の他方の面)を、被着体としてのガラス板(松浪硝子工業株式会社製、厚さ1.2mm)に、2kgのローラーを1往復させて貼り付けた。これを上記標準環境下に30分間静置した後、同環境下において、剥離角度180°、剥離速度300mm/分の条件でピール接着力(N/20mm)を測定した。 Also, in a standard environment of 23 ° C. and 50% RH, the adhesive surface (that is, the other surface of the resin layer) of the above test piece is a glass plate (made by Matsunami Glass Industry Co., Ltd., thickness 1) as an adherend 1) A 2 kg roller was attached to 1 .2 mm). After this was allowed to stand for 30 minutes in the above standard environment, the peel adhesion (N / 20 mm) was measured under the conditions of a peeling angle of 180 ° and a peeling speed of 300 mm / min in the same environment.
<低温接着力測定>
 上記室温接着力測定と同様にして調製した評価用サンプルを、幅20mm、長さ約100mmに裁断して試験片を作製した。次いで、被着体および評価サンプルを-10℃の環境下に1時間以上保管した後、同環境下において、上記試験片の粘着面を被着体としての針葉樹合板(島忠ホームズから入手、厚さ12mm)に、2kgのローラーを1往復させて貼り付けた。これを-10℃の環境下に30分間静置した後、同環境下において、剥離角度180°、剥離速度300mm/分の条件でピール接着力(N/20mm)を測定した。
<Low temperature adhesion measurement>
The evaluation sample prepared in the same manner as the above room temperature adhesion measurement was cut into a width of 20 mm and a length of about 100 mm to prepare a test piece. Then, after storing the adherend and the evaluation sample under an environment of -10 ° C for 1 hour or more, under the same environment, the soft surface plywood of the above-mentioned test piece as an adherend (obtained from Shimada Holmes, thickness 1) A 2 kg roller was attached to one side of 12 mm). This was allowed to stand for 30 minutes in an environment of −10 ° C., and then the peel adhesion (N / 20 mm) was measured under the conditions of a peeling angle of 180 ° and a peeling speed of 300 mm / min.
<保持力測定>
 上記室温接着力測定と同様にして調製した評価用サンプルを、幅10mm、長さ約100mmに裁断して試験片を作製した。次いで、上記試験片の粘着面を被着体としてのベークライト板(住友ベークライト社製、厚さ2mm)に、幅10mm、長さ20mmの貼付け面積にて、2kgのローラーを1往復させて圧着した。このようにして試験片を貼り付けた被着体を、室温(23℃)で30分静置した後、上記試験片の長さ方向が鉛直方向となるようにして垂下し、上記試験片の自由端に500gの荷重を付与して40℃の環境下に1時間放置した後、上記試験片の最初の貼付け位置からのズレ距離(mm)を測定した。
<Holding force measurement>
The evaluation sample prepared in the same manner as the above room temperature adhesion measurement was cut into a width of 10 mm and a length of about 100 mm to prepare a test piece. Subsequently, the adhesive surface of the above test piece was crimped to a Bakelite plate (made by Sumitomo Bakelite Co., Ltd., thickness 2 mm) as an adherend with 1 kg of a 2 kg roller reciprocating with a bonding area of 10 mm in width and 20 mm in length. . After leaving the adherend on which the test piece is attached in this manner for 30 minutes at room temperature (23 ° C.), the test piece is suspended so that the length direction of the test piece is in the vertical direction. After a load of 500 g was applied to the free end and the sample was left in a 40 ° C. environment for 1 hour, the displacement distance (mm) from the first application position of the test piece was measured.
<ヘイズ値測定>
 各例に係る樹脂層を全光線透過率93.3%、ヘイズ値0.1%の無アルカリガラスの片面に貼り付けたものを試験片とし、該試験片のヘイズ値をヘイズメータ(MR-100、村上色彩技術研究所製)を用いて測定した。測定にあたっては、上記試験片を、樹脂層が光源側になるように配置した。無アルカリガラスのヘイズ値が0.1%であるため、測定値から0.1%を引いた値を樹脂層のヘイズ値とした。
<Haze measurement>
The resin layer according to each example is attached to one surface of alkali-free glass with a total light transmittance of 93.3% and a haze value of 0.1% as a test piece, and the haze value of the test piece is a haze meter (MR-100 And Murakami Color Research Laboratory). In the measurement, the above test piece was placed so that the resin layer was on the light source side. Since the haze value of the non-alkali glass is 0.1%, the value obtained by subtracting 0.1% from the measured value is taken as the haze value of the resin layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1で用いられている各略号の意味は、以下のとおりである。
 2EHA:2-エチルヘキシルアクリレート(東亞合成社製,ホモポリマーのTg=-70℃)。
 CBA:エチルカルビトールアクリレート(大阪有機化学工業社製,ホモポリマーのTg=-67℃)。
 MTG:メトキシトリエチレングリコールアクリレート(大阪有機化学工業社製,ホモポリマーのTg=-57℃)。
 4HBA:4-ヒドロキシブチルアクリレート(大阪有機化学工業社製,ホモポリマーのTg=-32℃)。
 AA:アクリル酸(東亞合成社製,ホモポリマーのTg=106℃)。
 BA:ブチルアクリレート(東亞合成社製,ホモポリマーのTg=-55℃)。
 C:トリメチロールプロパン/2,4-トリレンジイソシアネート3量体付加物(東ソー社製、商品名:コロネートL)。
 DN:キシリレンジイソシアネートのトリメチロールプロパン付加物(三井化学社製,商品名:タケネートD110N)
 D:軟化点120~130℃の重合ロジンエステル(荒川化学工業社製、商品名:ペンセルD125)。
 A:軟化点95~105℃のロジンエステル(荒川化学工業社製、商品名:ペンセルAZ)。
 T:軟化点125~135℃のテルペンフェノール樹脂(ヤスハラケミカル株式会社製、商品名:YSポリスターT130)
 ND:未評価。
The meanings of the abbreviations used in Table 1 are as follows.
2EHA: 2-ethylhexyl acrylate (manufactured by Toagosei Co., Ltd., Tg of homopolymer = -70 ° C).
CBA: Ethyl carbitol acrylate (Osaka Organic Chemical Industry Co., Ltd., Tg of homopolymer = -67 ° C).
MTG: methoxytriethylene glycol acrylate (Osaka Organic Chemical Industry Co., Ltd., Tg of homopolymer = −57 ° C.).
4HBA: 4-hydroxybutyl acrylate (Osaka Organic Chemical Industry Co., Ltd., Tg of homopolymer = -32 ° C).
AA: acrylic acid (manufactured by Toagosei Co., Ltd., Tg of homopolymer = 106 ° C.).
BA: butyl acrylate (manufactured by Toagosei Co., Ltd., Tg of homopolymer = −55 ° C.).
C: trimethylolpropane / 2,4-tolylene diisocyanate trimer adduct (manufactured by Tosoh Corporation, trade name: Coronate L).
DN: trimethylolpropane adduct of xylylene diisocyanate (Mitsui Chemical Co., Ltd., trade name: Takenate D110N)
D: Polymerized rosin ester having a softening point of 120 to 130 ° C. (manufactured by Arakawa Chemical Industries, Ltd., trade name: Pencel D125).
A: Rosin ester having a softening point of 95 to 105 ° C. (manufactured by Arakawa Chemical Industries, trade name: Pencel AZ).
T: Terpene phenol resin having a softening point of 125 to 135 ° C. (Yashara Chemical Co., Ltd., trade name: YS Polystar T130)
ND: Not rated.
 表2に示されるように、実施例1~16の樹脂組成物から形成された樹脂層は、粗面およびプラスチックのいずれに対しても高い室温接着力を示し、かつ、低温においても粗面に対して良好な接着性を示した。これらの樹脂層は保持力にも優れていた。 As shown in Table 2, the resin layers formed from the resin compositions of Examples 1 to 16 exhibit high room temperature adhesion to both rough surfaces and plastics, and have rough surfaces at low temperatures. It showed good adhesion. These resin layers were also excellent in holding power.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although the specific examples of the present invention have been described above in detail, these are merely examples and do not limit the scope of the claims. The art set forth in the claims includes various variations and modifications of the specific examples illustrated above.
  1,2,3  積層シート
 10  支持フィルム(支持体)
 10A 第一面
 10B 第二面
 21  粘着剤層(樹脂層)
 21A 粘着面(第一粘着面)
 21B 粘着面(第二粘着面)
 22  粘着剤層(樹脂層)
 22A 粘着面(第二粘着面)
 31,32 剥離ライナー
1, 2, 3 laminated sheet 10 Support film (support)
10A first surface 10B second surface 21 adhesive layer (resin layer)
21A adhesive side (1st adhesive side)
21B adhesive side (second adhesive side)
22 Pressure-sensitive adhesive layer (resin layer)
22A adhesive side (second adhesive side)
31, 32 Release liner

Claims (17)

  1.  ガラス転移温度が-40℃以下である(メタ)アクリル系ポリマーと、
     前記(メタ)アクリル系ポリマー100重量部に対して5重量部以上40重量部以下の粘着付与樹脂と、
     を含有する樹脂組成物であって、
     前記(メタ)アクリル系ポリマーは、
     ホモポリマーのガラス転移温度が-50℃以下であり、かつ炭素数8~18の分岐したアルキル基をエステル基の末端に有するアルキル(メタ)アクリレート(A1)を50~97重量%、および、
     ホモポリマーのガラス転移温度が-40℃以下であり、かつ分子骨格内にエーテル結合を有する(メタ)アクリレート(A2)を3~50重量%、
     を含むモノマー成分の重合物である、樹脂組成物。
    (Meth) acrylic polymers having a glass transition temperature of −40 ° C. or less,
    5 parts by weight or more and 40 parts by weight or less of a tackifier resin with respect to 100 parts by weight of the (meth) acrylic polymer
    A resin composition containing
    The (meth) acrylic polymer is
    50 to 97% by weight of an alkyl (meth) acrylate (A1) having a branched alkyl group having a carbon number of 8 to 18 and having a glass transition temperature of -50 ° C. or less of a homopolymer and having a branched alkyl group having 8 to 18 carbon atoms;
    3 to 50% by weight of (meth) acrylate (A2) having a glass transition temperature of homopolymer of −40 ° C. or less and having an ether bond in the molecular skeleton,
    A resin composition which is a polymer of a monomer component containing
  2.  前記アルキル(メタ)アクリレート(A1)と前記エーテル結合を有する(メタ)アクリレート(A2)との合計の割合が、前記(メタ)アクリル系ポリマーを形成する全モノマー成分に対して75重量%以上である、請求項1に記載の樹脂組成物。 The total proportion of the alkyl (meth) acrylate (A1) and the (meth) acrylate (A2) having an ether bond is at least 75% by weight based on all monomer components forming the (meth) acrylic polymer The resin composition according to claim 1.
  3.  前記エーテル結合を有する(メタ)アクリレート(A2)が、一般式(1):
       CH=CR-COO-(AO)-R
    (前記一般式(1)中、Rは水素原子またはメチル基であり、AOは炭素数2~3のアルキレンオキシ基であり、nは前記アルキレンオキシ基の平均付加モル数を示す数であって1~10であり、Rは、芳香環であるか、または直鎖、分岐鎖もしくは脂環式のアルキル基である。);
     で表されるモノマーである、請求項1または2に記載の樹脂組成物。
    The (meth) acrylate (A2) having an ether bond is represented by the general formula (1):
    CH 2 = CR 1 -COO- (AO) n -R 2
    (In the above general formula (1), R 1 is a hydrogen atom or a methyl group, AO is an alkyleneoxy group having a carbon number of 2 to 3, and n is a number indicating the average addition mole number of the alkyleneoxy group 1 to 10, and R 2 is an aromatic ring or a linear, branched or alicyclic alkyl group));
    The resin composition of Claim 1 or 2 which is a monomer represented by these.
  4.  前記粘着付与樹脂は、ロジン系粘着付与樹脂、テルペン系粘着付与樹脂、石油系粘着付与樹脂およびスチレン系粘着付与樹脂からなる群から選択される少なくとも一種を含む、請求項1から3のいずれか一項に記載の樹脂組成物。 The tackifying resin according to any one of claims 1 to 3, wherein the tackifying resin comprises at least one selected from the group consisting of a rosin-based tackifying resin, a terpene-based tackifying resin, a petroleum-based tackifying resin, and a styrene-based tackifying resin. The resin composition as described in a term.
  5.  前記粘着付与樹脂として、軟化点が90℃以上160℃以下である少なくとも一種の粘着付与樹脂を含む、請求項1から4のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the tackifier resin comprises at least one tackifier resin having a softening point of 90 ° C to 160 ° C.
  6.  前記モノマー成分は、ヒドロキシル基を有するモノマー、カルボキシル基を有するモノマーおよびエポキシ基を有するモノマーからなる群から選択される少なくとも一種の官能基含有モノマーを含む、請求項1から5のいずれか一項に記載の樹脂組成物。 The monomer component comprises at least one functional group-containing monomer selected from the group consisting of a monomer having a hydroxyl group, a monomer having a carboxyl group, and a monomer having an epoxy group. The resin composition as described.
  7.  前記(メタ)アクリル系ポリマーの重量平均分子量が35万以上である、請求項1から6のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the weight average molecular weight of the (meth) acrylic polymer is 350,000 or more.
  8.  さらに、前記(メタ)アクリル系ポリマー100重量部に対して0.01重量部以上5重量部以下の架橋剤を含有する、請求項1から7のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, further comprising 0.01 to 5 parts by weight of a crosslinking agent based on 100 parts by weight of the (meth) acrylic polymer.
  9.  前記架橋剤は、イソシアネート系架橋剤およびエポキシ系架橋剤の一方または両方を含む、請求項8に記載の樹脂組成物。 The resin composition according to claim 8, wherein the crosslinking agent contains one or both of an isocyanate crosslinking agent and an epoxy crosslinking agent.
  10.  請求項1から9のいずれか一項に記載の樹脂組成物から形成される、樹脂層。 The resin layer formed from the resin composition as described in any one of Claims 1-9.
  11.  23℃における貯蔵弾性率G’が1.0×10Pa以上5.0×10Pa以下であり、かつ、
     -10℃における貯蔵弾性率G’が3.0×10Pa以上7.0×10Pa以下である、請求項10に記載の樹脂層。
    The storage elastic modulus G ′ at 23 ° C. is 1.0 × 10 4 Pa or more and 5.0 × 10 4 Pa or less, and
    11. The resin layer according to claim 10, wherein the storage elastic modulus G ′ at −10 ° C. is 3.0 × 10 4 Pa or more and 7.0 × 10 5 Pa or less.
  12.  ポリマーゲル分率が20重量%以上95重量%以下である、請求項11に記載の樹脂層。 The resin layer according to claim 11, wherein the polymer gel fraction is 20% by weight or more and 95% by weight or less.
  13.  前記樹脂層の厚さが85μmの場合のヘイズ値が1.9%以下である、請求項10から12のいずれか一項に記載の樹脂層。 The resin layer according to any one of claims 10 to 12, wherein a haze value when the thickness of the resin layer is 85 μm is 1.9% or less.
  14.  支持体と、
     前記支持体の少なくとも片側に設けられている請求項10から13のいずれか一項に記載の樹脂層と、
     を含む、積層シート。
    A support,
    The resin layer according to any one of claims 10 to 13, provided on at least one side of the support.
    Including, laminated sheet.
  15.  前記樹脂層は、23℃の環境において剥離速度300mm/分の条件で測定される180°ピール接着力が10N/20mm以上である、請求項14に記載の積層シート。 The laminated sheet according to claim 14, wherein the resin layer has a 180 ° peel adhesive strength of 10 N / 20 mm or more measured at a peeling speed of 300 mm / min in an environment of 23 ° C.
  16.  前記樹脂層は、-10℃の環境において剥離速度300mm/分の条件で測定される180°ピール接着力が5N/20mm以上である、請求項14または15に記載の積層シート。 The laminated sheet according to claim 14 or 15, wherein the resin layer has a 180 ° peel adhesion of 5 N / 20 mm or more measured at a peeling speed of 300 mm / min in an environment of -10 ° C.
  17.  前記支持体は、プラスチックフィルム、紙、不織布および気泡もしくは粒子含有シートの少なくともいずれかを含む、請求項14から16のいずれか一項に記載の積層シート。 The laminated sheet according to any one of claims 14 to 16, wherein the support comprises at least one of a plastic film, a paper, a non-woven fabric and a bubble or particle-containing sheet.
PCT/JP2018/040971 2017-12-28 2018-11-05 Resin composition, resin layer, and layered sheet WO2019130822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880082614.5A CN111492007A (en) 2017-12-28 2018-11-05 Resin composition, resin layer, and laminate sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017254900 2017-12-28
JP2017-254900 2017-12-28
JP2018194150A JP7185479B2 (en) 2017-12-28 2018-10-15 Resin composition, resin layer, and laminated sheet
JP2018-194150 2018-10-15

Publications (1)

Publication Number Publication Date
WO2019130822A1 true WO2019130822A1 (en) 2019-07-04

Family

ID=67063442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040971 WO2019130822A1 (en) 2017-12-28 2018-11-05 Resin composition, resin layer, and layered sheet

Country Status (1)

Country Link
WO (1) WO2019130822A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111568A1 (en) * 2019-12-04 2021-06-10 昭和電工マテリアルズ株式会社 Shock-absorbing film, photocurable resin composition, sheet material, and image display device
WO2022054789A1 (en) * 2020-09-14 2022-03-17 日東電工株式会社 Adhesive sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277709A (en) * 2002-03-26 2003-10-02 Nippon Shokubai Co Ltd Adhesive composition and adhesive product
JP2008069261A (en) * 2006-09-14 2008-03-27 Soken Chem & Eng Co Ltd Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
JP2008280375A (en) * 2007-05-08 2008-11-20 Soken Chem & Eng Co Ltd Pressure-sensitive adhesive composition for surface-protective film
JP2013159662A (en) * 2012-02-02 2013-08-19 Nitto Denko Corp Surface protection film
JP2015187261A (en) * 2014-03-13 2015-10-29 Dic株式会社 Pressure-sensitive adhesive sheet
JP2017095598A (en) * 2015-11-25 2017-06-01 東洋インキScホールディングス株式会社 Adhesive and adhesive tape
JP2018016785A (en) * 2016-07-14 2018-02-01 日東電工株式会社 Resin composition, resin layer and laminate sheet
JP2018130934A (en) * 2017-02-17 2018-08-23 日東電工株式会社 Laminated sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277709A (en) * 2002-03-26 2003-10-02 Nippon Shokubai Co Ltd Adhesive composition and adhesive product
JP2008069261A (en) * 2006-09-14 2008-03-27 Soken Chem & Eng Co Ltd Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
JP2008280375A (en) * 2007-05-08 2008-11-20 Soken Chem & Eng Co Ltd Pressure-sensitive adhesive composition for surface-protective film
JP2013159662A (en) * 2012-02-02 2013-08-19 Nitto Denko Corp Surface protection film
JP2015187261A (en) * 2014-03-13 2015-10-29 Dic株式会社 Pressure-sensitive adhesive sheet
JP2017095598A (en) * 2015-11-25 2017-06-01 東洋インキScホールディングス株式会社 Adhesive and adhesive tape
JP2018016785A (en) * 2016-07-14 2018-02-01 日東電工株式会社 Resin composition, resin layer and laminate sheet
JP2018130934A (en) * 2017-02-17 2018-08-23 日東電工株式会社 Laminated sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111568A1 (en) * 2019-12-04 2021-06-10 昭和電工マテリアルズ株式会社 Shock-absorbing film, photocurable resin composition, sheet material, and image display device
WO2022054789A1 (en) * 2020-09-14 2022-03-17 日東電工株式会社 Adhesive sheet

Similar Documents

Publication Publication Date Title
JP5951153B2 (en) Adhesive sheet
JP6506193B2 (en) Adhesive sheet
JP5522438B2 (en) Water-dispersed acrylic pressure-sensitive adhesive composition and pressure-sensitive adhesive tape
US9109142B2 (en) Photocurable adhesive composition, photocurable adhesive layer, and photocurable adhesive sheet
JP6893124B2 (en) Resin composition, resin layer, and laminated sheet
JP6685308B2 (en) Aqueous pressure sensitive adhesive composition
JP7185479B2 (en) Resin composition, resin layer, and laminated sheet
WO2015178251A1 (en) Water-dispersed adhesive composition and adhesive sheet
WO2016021332A1 (en) Building member with pressure-sensitive adhesive sheet, and pressure-sensitive adhesive sheet for building member
JP6054832B2 (en) Adhesive sheet for portable electronic devices
JP4968764B2 (en) Adhesive composition, adhesive layer and method for producing the same, and adhesive sheets
TW202039740A (en) Pressure-sensitive adhesive sheet
JP2016079232A (en) Adhesive sheet for building component and building component with adhesive sheet
WO2019130822A1 (en) Resin composition, resin layer, and layered sheet
JP6327817B2 (en) Water-dispersed pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
WO2018012161A1 (en) Resin composition, resin layer, and laminated sheet
JP2013199631A (en) Pressure-sensitive adhesive composition, pressure-sensitive adhesive layer, and pressure-sensitive adhesive sheet
JP7166052B2 (en) Adhesive sheet
JP6914644B2 (en) Resin layer and laminated sheet
WO2014020878A1 (en) Adhesive layer, adhesive sheet, and optical film with adhesive layer
US20230103937A1 (en) Pressure-sensitive adhesive sheet
WO2020116098A1 (en) Aqueous dispersion-type adhesive composition and adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897271

Country of ref document: EP

Kind code of ref document: A1