WO2019127960A1 - 太赫兹检测方法 - Google Patents

太赫兹检测方法 Download PDF

Info

Publication number
WO2019127960A1
WO2019127960A1 PCT/CN2018/081194 CN2018081194W WO2019127960A1 WO 2019127960 A1 WO2019127960 A1 WO 2019127960A1 CN 2018081194 W CN2018081194 W CN 2018081194W WO 2019127960 A1 WO2019127960 A1 WO 2019127960A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
sample
tested
absorption
absorption spectrum
Prior art date
Application number
PCT/CN2018/081194
Other languages
English (en)
French (fr)
Inventor
彭世昌
李辰
丁庆
Original Assignee
雄安华讯方舟科技有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雄安华讯方舟科技有限公司, 深圳市太赫兹科技创新研究院 filed Critical 雄安华讯方舟科技有限公司
Publication of WO2019127960A1 publication Critical patent/WO2019127960A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]

Definitions

  • the invention relates to the technical field of terahertz material identification, in particular to a terahertz detection method.
  • Terahertz wave refers to electromagnetic radiation with a frequency between 0.1 and 10 THz and a wavelength range of 0.03 to 30 mm.
  • the wavelength band is between microwave and infrared. It is a transitional region between macroscopic electronics and micro-visualism. Due to the lack of effective generation and detection. Means have not been better utilized.
  • the location of the terahertz in the electromagnetic spectrum is particularly unique, resulting in many unique properties: the energy of the photon in the THz band is about 1 to 10 meV, which does not produce harmful ionizing radiation to biological tissues, and its penetrating ability compared to visible and infrared spectroscopy.
  • terahertz radiation is coherent, and can directly obtain the amplitude and phase information of the measured substance to calculate the refractive index and absorption coefficient of the measured substance.
  • Many biological macromolecules have vibration and rotational frequencies in the terahertz band, so terahertz radiation can be used to fingerprint biomolecules to detect differences in the composition of the substance.
  • a terahertz detection method for substance identification including:
  • the terahertz wave is repeated at least twice to test the sample to be tested, and a corresponding absorption spectrum is obtained;
  • the determined terahertz intrinsic absorption peak position is compared with pre-stored data in the database to determine whether the sample to be tested is true or false.
  • the determining a terahertz absorption peak position of the sample to be tested comprises:
  • the step of determining whether the positions of the absorption peaks in the plurality of lines of the repeated test are coincident comprises:
  • the calibrated absorption peak position is taken as the terahertz intrinsic absorption peak position.
  • the step of determining whether the sample to be tested is true or false comprises: determining whether the sample to be tested is true or false by comparing whether the position of the terahertz intrinsic absorption peak coincides with the data in the database.
  • the corresponding absorption spectrum is measured by a terahertz spectrometer device.
  • the terahertz spectrometer device comprises:
  • a splitter for splitting pulsed light into pump light and probe light
  • a terahertz radiation end disposed at an optical path of the pump light, the pump light radiating to a terahertz radiation end to generate a terahertz wave;
  • a parabolic mirror for receiving the terahertz wave and collimating the sample to a sample carrying position of the stage, and collimating the terahertz wave passing through the sample;
  • a terahertz receiving end disposed on a propagation path of the terahertz wave of the collimated focused sample and the optical path of the probe light, receiving the terahertz wave and the detecting light to generate a detection signal; and processing module Receiving the detection signal and finally displaying a terahertz absorption spectrum through corresponding processing.
  • the terahertz spectrometer device further includes a sample compartment for providing a predetermined gaseous environment for sample detection.
  • the step of measuring the corresponding absorption spectrum by the terahertz spectrometer device comprises:
  • the sample chamber is filled with nitrogen, and when the stage is unloaded, the signal measured by the terahertz spectrometer device is used as a reference signal, and the reference signal absorption spectrum is measured;
  • the sample to be tested is placed in the sample compartment, and the absorption spectrum of the sample to be tested is obtained through corresponding treatment.
  • the sample to be tested is formed into a tablet.
  • the sample to be tested is prepared by uniformly mixing a fructose with a high density polyethylene at a mass ratio of 1:4.
  • the terahertz wave is repeatedly tested at least twice to obtain a corresponding absorption spectrum, and the absorption spectrum is smoothed, the peak position of the absorption spectrum is calibrated, and the peak position of the absorption spectrum is compared to determine the sample to be tested.
  • the terahertz intrinsic absorption peak position, and then the determined terahertz intrinsic absorption peak position is compared with the pre-stored data in the database to determine whether the sample to be tested is true or false.
  • the above method is simple in operation, accurately obtains the terahertz intrinsic absorption peak, and does not cause any damage to the sample to be tested.
  • FIG. 1 is a flow chart of a terahertz detection method according to an embodiment of the present invention
  • FIG. 2 is a diagram of a terahertz spectrometer device according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of an implementation method of step 200 in FIG. 1;
  • FIG. 4 is a flow chart of an implementation method of step 300 in FIG. 1;
  • Figure 5 is a graph showing smoothing of the obtained absorption spectrum according to an embodiment of the present invention.
  • FIG. 6 is a flow chart of an implementation method of step 400 in FIG. 1;
  • Figure 7 is a graph comparing peak positions calibrated by two absorption spectra in accordance with an embodiment of the present invention.
  • Figure 7a is a partial enlarged view of point A in Figure 7;
  • Figure 7b is a partial enlarged view of point B in Figure 7.
  • a terahertz detection method for substance identification includes steps 100-500:
  • Step 100 Prepare a sample to be tested.
  • the prepared sample to be tested is a standard product and the concentration is moderate.
  • the sample to be tested is prepared by uniformly mixing fructose and high-density polyethylene at a mass ratio of 1:4.
  • Step 200 Repeat the test of the sample to be tested at least twice with the terahertz wave to obtain a corresponding terahertz absorption spectrum.
  • the absorption spectrum is measured by the terahertz spectrometer device 210.
  • the terahertz spectrometer device 210 includes: a femtosecond laser 211, a beam splitting chip 212, a terahertz radiating end 213, a parabolic mirror 214, a terahertz receiving end 215, a processing module 216, a sample chamber 217, and a stage 218,
  • the terahertz radiating end 213, the parabolic mirror 214, the terahertz receiving end 215, and the stage 218 are placed in the sample compartment 217.
  • the sample to be tested is placed on the stage 218.
  • the femtosecond laser 211 radiates a femtosecond laser
  • the beam splitting chip 212 receives the femtosecond laser and divides it into two, one beam is pumping light, the other beam is detecting light, the pumping light and the pumping light
  • the probe light propagates along different optical paths.
  • the terahertz radiating end 213 is disposed at an optical path of the pump light, and the pumping light is radiated to a terahertz radiating end 213 to generate a terahertz wave, and the parabolic mirror 214 is located in a propagation direction of the terahertz wave.
  • the parabolic mirror 214 receives the terahertz wave and collimates the focus, and then hits the position of the sample carried by the sample 218, and collimates the terahertz wave after the sample to be tested, and then transmits the terahertz wave to the terahertz receiving. End 215.
  • the terahertz receiving end 215 is disposed on the optical path where the probe light is located, the probe light is radiated to the terahertz receiving end 215, and the terahertz receiving end 215 receives the parabolic mirror 214 generated from the terahertz radiating end 213 to collimate the focus.
  • the latter terahertz wave generates a detection signal, that is, a weak current signal, driven by a terahertz pulse.
  • the processing module 216 receives the detection signal and performs corresponding processing on the detection signal to obtain a terahertz absorption spectrum.
  • the type of the laser is not limited as long as a light pulse can be generated.
  • the corresponding terahertz absorption spectrum is measured by the terahertz spectrometer device 210, as shown in FIG. 3, and includes the following steps:
  • Step 201 Fill the sample chamber 217 with nitrogen gas, and when the load on the stage is idling, use the signal measured by the terahertz spectrometer device 210 as a reference signal, and then measure the reference signal absorption spectrum;
  • Step 202 Put the sample to be tested into the sample chamber 217, obtain a terahertz absorption spectrum of the sample, repeat the test multiple times without changing the measurement process, and obtain the terahertz absorption spectrum of the plurality of samples after the test. And save the results.
  • the number of tests is selected twice, so the second terahertz absorption spectrum of the sample is repeatedly measured and the result is saved.
  • Step 300 Smoothing the absorption spectrum and calibrating the peak position of the absorption spectrum.
  • the same operation is performed on the plurality of terahertz absorption spectra of the obtained sample, including the following steps:
  • Step 301 Perform a smoothing operation on the obtained absorption spectrum
  • Step 302 Calibrate the peak position of the smoothed absorption spectrum.
  • the smoothing software used is MATLAB, as shown in FIG. 5, and the solid line A is the actual absorption spectrum of the sample to be tested, that is, the Smoothing, the B solid line is the smoothed absorption spectrum.
  • the smoothing operation here removes some ripple noise between the 0.1THZ-0.8THZ positions in the absorption spectrum and makes the noise between the 2.5THZ-4.0THZ positions in the high frequency band of the absorption spectrum. The peak is reduced, which reduces many unnecessary disturbances when extracting the intrinsic absorption peak of the sample to be tested.
  • the smoothing software may be other software, such as origin software, as long as the smoothing of the curve can be realized.
  • the absorption peak indicated at this time contains not only the intrinsic absorption peak of the substance but also the noise peak of the high frequency band.
  • Step 400 Determine the terahertz intrinsic absorption peak position of the sample to be tested according to the peak position of the calibration absorption spectrum. As shown in Figure 6, the following steps are included:
  • Step 401 Align the peak positions of the calibrated absorption spectra in the plurality of lines of the repeated test
  • Step 402 Determine whether the positions of the absorption peaks calibrated in the plurality of spectral lines of the repeated test are coincident.
  • the step of determining whether the positions of the absorption peaks calibrated in the plurality of lines of the repeated test are coincident comprises: if the positions of the calibrated absorption peaks coincide, the calibrated absorption peak position is taken as the terahertz intrinsic absorption peak position.
  • the peak positions of the two absorption lines are compared. It can be seen from Fig. 7 that both absorption lines are smoothed absorption spectra, and since the two samples are tested by the same sample to be tested, the absorption lines are substantially coincident.
  • the peak positions of the absorption peaks calibrated in the two absorption spectra are compared to determine whether the positions of the absorption peaks calibrated in the two lines coincide. If the calibrated peak positions coincide, the calibrated absorption peak position is the terahertz intrinsic absorption peak position of the sample to be tested. As shown in Fig.
  • the cross represents the peak calibration of the smoothing effect sugar 1
  • the circle represents the peak calibration of the smoothing effect sugar 2
  • the frequency shown in Fig. 7a is 1.6958 THZ position, and the nominal peak position coincides, the frequency is 1.6958 THZ position.
  • the positions of the absorption peaks of the two spectra are not coincident, indicating that the position, that is, the position of the calibrated absorption peak, belongs to noise. Since the position of the noise is random, it is precisely based on the noise characteristic that the intrinsic absorption peak position of the sample to be tested is further accurately extracted.
  • Step 500 Compare the determined terahertz intrinsic absorption peak position with pre-stored data in the database to determine whether the sample to be tested is true or false.
  • the database pre-stored data is the terahertz intrinsic absorption peak of the collected standard, and the relevant data of the corresponding terahertz intrinsic absorption peak is saved.
  • the step of determining whether the sample to be tested is true or false includes determining whether the sample to be tested is true or false by comparing whether the position of the terahertz intrinsic absorption peak is coincident with the data in the database.
  • the sample to be tested is a fructose having a concentration of 20%
  • the intrinsic absorption peaks are 1.6958 THZ, 2.1141 THZ, and 2.3980 THZ. Comparing the intrinsic absorption peak with the database, it was found that the absorption peaks of 1.6958THZ, 2.1141THZ, 2.3980THZ and fructose in the absorption peak were the highest, so the sample to be tested was judged to be fructose according to the three intrinsic absorption peaks.
  • the terahertz wave is repeatedly tested at least twice to obtain a corresponding absorption spectrum, the absorption spectrum is smoothed, and the corresponding peak position is calibrated, thereby realizing the extraction of the terahertz intrinsic absorption peak.
  • the method is simple to operate, and the sample to be tested is non-destructive and more effective to avoid the influence of noise within the absorption spectrum.
  • the determined terahertz intrinsic absorption peak position is compared with pre-stored data in the database to determine whether the sample to be tested is true or false.
  • the concentration of the sample to be tested is high, that is, the measured terahertz absorption spectrum of the sample to be tested is saturated, the intrinsic absorption peak of the sample to be tested can still be effectively extracted by the method, and only the extracted intrinsic absorption peak position is obtained. An offset occurs, so it needs to be modified and added in the database, and then it can be effectively identified.
  • the concentration of fructose is different, the number of intrinsic absorption peaks is different.
  • the position of the intrinsic peak in the terahertz absorption spectrum shifts correspondingly.
  • the position of the absorption peak whose frequency value is 1.69 THZ may drift to 1.8 THZ or other positions. Therefore, according to the design requirements, the database is modified and added correspondingly, that is, the database adds the intrinsic absorption peaks of different concentrations of fructose, and at the same time ensures the real-time update of the intrinsic absorption peaks in the database.
  • the sample to be tested is not a single substance, that is, it contains a plurality of components, at this time, the obtained intrinsic absorption peak can still be judged.
  • the sample to be tested comprises two components, glucose and fructose
  • the corresponding database stores the intrinsic absorption peak of glucose while containing the intrinsic absorption peak of fructose, and is determined according to the intrinsic absorption peak characteristic of glucose. Measure whether the sample contains glucose.
  • the database may contain intrinsic absorption peaks of various substances, such as glucose, lactose and the like.
  • the substances contained in the sample to be tested can be measured according to the specific intrinsic absorption peak of the substance.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种太赫兹检测方法,用于物质识别,包括:以太赫兹波重复至少两次测试待测样品,获得相应吸收谱。将吸收谱平滑处理,标定吸收谱的峰值位置。根据标定吸收谱的峰值位置,确定待测样品的太赫兹本征吸收峰位置。将确定的太赫兹本征吸收峰与数据库内预存的数据比较,则判定待测样品真假。上述方法操作简单,准确获得太赫兹本征吸收峰,且对待测样品无任何损害。

Description

太赫兹检测方法 技术领域
本发明涉及太赫兹物质识别技术领域,特别是涉及太赫兹检测方法。
背景技术
太赫兹波是指频率在0.1~10THz,波长范围0.03~30mm之间的电磁辐射,其波段位于微波与红外之间,是宏观电子学向微观光子学的过渡区域,由于缺乏有效的产生和探测手段一直未能得到较好的利用。太赫兹在电磁波谱的位置比较特殊导致其有许多独特性质:THz波段光子的能量约为1~10mev,不会对生物组织产生有害的电离辐射,相较于可见光与红外光谱,其穿透能力更强,且不易受瑞利散射的影响可用于生物成像、医疗诊断等;太赫兹辐射具有相干性,能够直接得到所测物质的振幅和相位信息从而计算所测物质的折射率与吸收系数等;许多生物大分子的振动和转动频率都处在太赫兹频段,所以利用太赫兹辐射可以对生物分子进行指纹识别,从而检测物质所含成分的差异。
发明内容
基于此,提供一种太赫兹检测方法。
一种太赫兹检测方法,用于物质识别,包括:
以太赫兹波重复至少两次测试待测样品,获得相应吸收谱;
对吸收谱进行平滑处理,标定吸收谱的峰值位置;
根据标定吸收谱的峰值位置,确定待测样品的太赫兹本征吸收峰位置;
将确定的太赫兹本征吸收峰位置与数据库内预存的数据比较,以判定待测样品真假。
在其中一个实施例中,所述确定待测样品的太赫兹吸收峰位置,包括:
将重复测试的多条谱线中所标定吸收谱的峰值位置进行比对;
判断重复测试的多条谱线中所标定的吸收峰位置是否重合。
在其中一个实施例中,所述判断重复测试的多条谱线中所标定的吸收峰位置是否重合的步骤包括:
如果标定的吸收峰位置重合,则将标定的吸收峰位置作为太赫兹本征吸收峰位置。
在其中一个实施例中,所述判定待测样品真假的步骤包括:通过比较太赫兹本征吸收峰位置与数据库内数据是否重合,判定待测样品的真假。
在其中一个实施例中,所述相应吸收谱由太赫兹光谱仪装置测量得到。
在其中一个实施例中,所述太赫兹光谱仪装置包括:
载物台,用于承载待测样品;
激光器,用于产生脉冲光;
分束片,用于将脉冲光分为泵浦光和探测光;
太赫兹辐射端,设置在所述泵浦光所在光路,所述泵浦光辐射到太赫兹辐射端产生太赫兹波;
抛物面镜,用于接收所述太赫兹波并准直聚焦至所述载物台的样品承载位置,并将透过样品的太赫兹波准直聚焦;
太赫兹接收端,设置在经准直聚焦的透过样品的太赫兹波的传播路径上以及所述探测光所在光路上,接收所述太赫兹波以及所述探测光,产生检测信号;处理模块,接收所述检测信号,并经相应处理最终显示出太赫兹吸收谱。
在其中一个实施例中,所述太赫兹光谱仪装置还包括样品仓,用于为样品检测提供预定的气体环境。
在其中一个实施例中,所述太赫兹光谱仪装置测得相应吸收谱的步骤包括:
将样品仓充满氮气,在载物台上为空载时,使用太赫兹光谱仪装置测得的信号作为参考信号,进而测得参考信号吸收谱;
将待测样品放入样品仓,经过相应的处理得到待测样品吸收谱。
在其中一个实施例中,所述待测样品制成压片。
在其中一个实施例中,所述待测样品为果糖与高密度聚乙烯按质量比1:4均匀混合压片制成。
上述太赫兹检测方法,以太赫兹波重复测试至少两次待测样品,获得相应 吸收谱,对吸收谱平滑处理,标定吸收谱的峰值位置,通过标定吸收谱的峰值位置对比,确定待测样品的太赫兹本征吸收峰位置,进而将确定的太赫兹本征吸收峰位置与数据库内预存数据比较,判定待测样品真假。上述方法操作简单,准确获得太赫兹本征吸收峰,且对待测样品无任何损害。
附图说明
图1为本发明的实施例的太赫兹检测方法的流程图;
图2为本发明的实施例的太赫兹光谱仪装置图;
图3为图1中步骤200的一种实现方法的流程图;
图4为图1中步骤300的一种实现方法的流程图;
图5为本发明的实施例的对得到的吸收谱进行平滑后的曲线图;
图6为图1中步骤400的一种实现方法的流程图;
图7为本发明的实施例的两个吸收谱所标定的峰值位置进行比较的曲线图;
图7a为图7中A点的局部放大图;
图7b为图7中B点的局部放大图。
具体实施方式
请参见图1所示,一种太赫兹检测方法,用于物质识别,具体流程包括步骤100~500:
步骤100:制备待测样品。
在本实施例中,所制备的待测样品为标准品且浓度含量适中。所述待测样品为果糖与高密度聚乙烯按质量比1:4均匀混合制成压片。
步骤200:以太赫兹波重复至少两次测试待测样品,获得相应太赫兹吸收谱。
在其中一个实施例中,如图2所示,所述吸收谱通过太赫兹光谱仪装置210测得。所述太赫兹光谱仪装置210包括:飞秒激光器211、分束片212、太赫兹辐射端213、抛物面镜214、太赫兹接收端215、处理模块216、样品仓217、载物台218,所述太赫兹辐射端213、抛物面镜214、太赫兹接收端215以及载物台218放置于样品仓217内。待测样品放置在载物台218上。所述飞秒激光器 211辐射出飞秒激光,分束片212接收飞秒激光并将其一分为二,一束为泵浦光,另一束为探测光,所述泵浦光和所述探测光沿不同的光路传播。所述太赫兹辐射端213设置在所述泵浦光所在光路,所述泵浦光辐射到太赫兹辐射端213产生太赫兹波,所述抛物面镜214位于所述太赫兹波的传播方向上,所述抛物面镜214接收所述太赫兹波并准直聚焦后打在载物台218的样品所承载位置,并将待测样品透射后的太赫兹波准直聚焦后传输至所述太赫兹接收端215。所述太赫兹接收端215设置在所述探测光所在光路,所述探测光辐射到太赫兹接收端215,同时太赫兹接收端215接收来自太赫兹辐射端213产生的经抛物面镜214准直聚焦后的太赫兹波,在太赫兹脉冲的驱动下产生检测信号即微弱的电流信号。所述处理模块216接收检测信号并对检测信号进行相应处理后得到太赫兹吸收谱。在本发明所述实施例中,所述激光器的类型不限,只要能够产生光脉冲即可。
采用所述太赫兹光谱仪装置210测得相应太赫兹吸收谱,如图3所示,包括如下步骤:
步骤201:将样品仓217充满氮气,在载物台上为空载时,使用太赫兹光谱仪装置210测得的信号作为参考信号,进而测得参考信号吸收谱;
步骤202:将待测样品放入样品仓217,得到该样品的一条太赫兹吸收谱,在不改变测量过程的条件下,重复测试多次,得到样品的多条测试后的太赫兹吸收谱,并保存结果。在本实施例中,测试次数选用两次,故重复测量得到该样品的第二条太赫兹吸收谱,并保存结果。
步骤300:对吸收谱进行平滑处理,标定吸收谱的峰值位置。
在其中一个实施例中,如图4所示,对得到的样品的多条太赫兹吸收谱做如下相同的操作,包括以下步骤:
步骤301:对得到的吸收谱进行平滑操作;
步骤302:把平滑后的吸收谱的峰值位置标定出来。
在本实施例中,以重复测量两次获得两条太赫兹吸收谱为例,使用的平滑软件为MATLAB,如图5所示,A实线为实际得到的待测样品的吸收谱即未做平滑处理,B实线为经过平滑后的吸收谱,此处的平滑操作可以去除吸收谱频段 0.1THZ-0.8THZ位置间的一些波纹噪声并使得吸收谱高频段2.5THZ-4.0THZ位置间的噪声峰有所减少,这样在提取待测样品的本征吸收峰时就减少了许多不必要的干扰。当然,根据设计需要,所述平滑软件可以为其他软件,例如origin软件,只要能够实现对曲线的平滑处理即可。
如图5中的十字标志,可以看出此时标出的吸收峰不仅含有物质的本征吸收峰还有高频段的噪声峰。
步骤400:根据标定吸收谱的峰值位置,确定待测样品的太赫兹本征吸收峰位置。如图6所示,包括以下步骤:
步骤401:将重复测试的多条谱线中所标定吸收谱的峰值位置进行比对;
步骤402:判断重复测试的多条谱线中所标定的吸收峰位置是否重合。
判断重复测试的多条谱线中所标定的吸收峰位置是否重合的步骤包括:如果标定的吸收峰位置重合,则将标定的吸收峰位置作为太赫兹本征吸收峰位置。
在其中一个实施例中,如图7所示,以两次重复测量样品为例,在得到两条标定峰值位置的吸收谱后,对两条吸收谱线中所标定的峰值位置进行比对。由图7可知,两条吸收谱线均为平滑后的吸收谱,由于是同一待测样品进行的两次测试,故吸收谱线基本重合。将两个吸收谱中所标定的吸收峰的峰值位置进行比较,判断两条谱线中所标定的吸收峰位置是否重合。若标定的峰值位置重合,则标定的吸收峰位置为该待测样品的太赫兹本征吸收峰位置。如图6所示,十字代表平滑后果糖1的的峰值标定,圆代表平滑后果糖2的峰值标定,图7a中所示频率为1.6958THZ位置,标定的峰值位置重合,则频率为1.6958THZ位置为该待测样品的一个本征吸收峰。图7b所示,两条谱标定的吸收峰位置不重合,说明该位置即标定的吸收峰位置属于噪声。由于噪声的出现位置随机,也正是根据噪声特性进一步准确提取出待测样品的本征吸收峰位置。
步骤500:将确定的太赫兹本征吸收峰位置与数据库内预存数据比较,以判定待测样品真假。
所述数据库预存数据为所收集的标准品的太赫兹本征吸收峰,保存其相应太赫兹本征吸收峰的相关数据。
所述判定待测样品真假的步骤包括:通过比较太赫兹本征吸收峰位置与数 据库内数据是否重合,判定待测样品的真假。
在本实施例中,测得待测样品为浓度20%的果糖,其本征吸收峰为1.6958THZ、2.1141THZ、2.3980THZ。将本征吸收峰与数据库作比对发现,该吸收峰中1.6958THZ、2.1141THZ、2.3980THZ与果糖的数据库吸收峰重合度最高,故根据这三个本征吸收峰判断待测样品为果糖。
上述太赫兹检测方法,以太赫兹波重复至少两次测试待测样品,获得相应吸收谱,对吸收谱进行平滑处理,并标定出相应峰值位置,进而实现太赫兹本征吸收峰的提取。方法操作简单,对待测样品无损且更加有效的避免吸收谱内噪声影响。将确定的太赫兹本征吸收峰位置与数据库内预存的数据比较,以判定待测样品真假。
当待测样品浓度含量较高,即所测得待测样品的太赫兹吸收谱出现饱和,此时利用该方法依旧可以有效提取待测样品的本征吸收峰,只是提取的本征吸收峰位置出现偏移,因此需要在数据库中进行相应的修改与添加,之后便可以进行有效识别。
在本实施例中,以待测样品所含成分为果糖为例,若果糖浓度不同,其本征吸收峰的数量不同,当浓度过高,太赫兹吸收谱中本征峰的位置相应发生漂移,例如,其频率值为1.69THZ的吸收峰的位置可能漂移至1.8THZ或其他位置。因此根据设计需要,所述数据库进行相应的修改与添加,即所述数据库添加不同浓度的果糖的本征吸收峰,同时保证数据库里的本征吸收峰的实时更新。
当待测样品并非单一物质即含有多种成分,此时根据得到的本征吸收峰依旧可以进行判断。
在其中一个实施例中,待测样品包含葡萄糖和果糖两种成分,相应数据库在包含果糖的本征吸收峰的同时还存储葡萄糖的本征吸收峰,根据葡萄糖所特有的本征吸收峰判断待测样品内是否含有葡萄糖成分。
当然根据设计需要,数据库内可包含多种物质的本征吸收峰,例如葡萄糖、乳糖等。当待测样品包含多种物质时,可以根据物质的特定本征吸收峰,测得待测样品内所包含的物质。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述, 然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种太赫兹检测方法,用于物质识别,其特征在于,包括:
    以太赫兹波重复至少两次测试待测样品,获得相应吸收谱;
    对吸收谱进行平滑处理,标定吸收谱的峰值位置;
    根据标定吸收谱的峰值位置,确定待测样品的太赫兹本征吸收峰位置;
    将确定的太赫兹本征吸收峰位置与数据库内预存的数据比较,以判定待测样品真假。
  2. 根据权利要求1所述的太赫兹检测方法,其特征在于,所述确定待测样品的太赫兹吸收峰位置,包括:
    将重复测试的多条谱线中所标定吸收谱的峰值位置进行比对;
    判断重复测试的多条谱线中所标定的吸收峰位置是否重合。
  3. 根据权利要求2所述的太赫兹检测方法,其特征在于,所述判断重复测试的多条谱线中所标定的吸收峰位置是否重合的步骤包括:
    如果标定的吸收峰位置重合,则将标定的吸收峰位置作为太赫兹本征吸收峰位置。
  4. 根据权利要求1所述的太赫兹检测方法,其特征在于,所述判定待测样品真假的步骤包括:通过比较太赫兹本征吸收峰位置与数据库内数据是否重合,判定待测样品的真假。
  5. 根据权利要求1所述的太赫兹检测方法,其特征在于,所述相应吸收谱由太赫兹光谱仪装置测量得到。
  6. 根据权利要求5所述的太赫兹检测方法,其特征在于,所述太赫兹光谱仪装置包括:
    载物台,用于承载待测样品;
    激光器,用于产生脉冲光;
    分束片,用于将脉冲光分为泵浦光和探测光;
    太赫兹辐射端,设置在所述泵浦光所在光路,所述泵浦光辐射到太赫兹辐射端产生太赫兹波;
    抛物面镜,用于接收所述太赫兹波并准直聚焦至所述载物台的样品承载位 置,并将透过样品的太赫兹波准直聚焦;
    太赫兹接收端,设置在经准直聚焦的透过样品的太赫兹波的传播路径上以及所述探测光所在光路上,接收所述太赫兹波以及所述探测光,产生检测信号;处理模块,接收所述检测信号,并经相应处理最终显示出太赫兹吸收谱。
  7. 根据权利要求6所述的太赫兹检测方法,其特征在于,所述太赫兹光谱仪装置还包括样品仓,用于为样品检测提供预定的气体环境。
  8. 根据权利要求7所述的太赫兹检测方法,其特征在于,所述太赫兹光谱仪装置测得相应吸收谱的步骤包括:
    将样品仓充满氮气,在载物台上为空载时,使用太赫兹光谱仪装置测得的信号作为参考信号,进而测得参考信号吸收谱;
    将待测样品放入样品仓,经过相应的处理得到待测样品吸收谱。
  9. 根据权利要求1所述的太赫兹检测方法,其特征在于,所述待测样品制成压片。
  10. 根据权利要求9所述的太赫兹检测方法,其特征在于,所述待测样品为果糖与高密度聚乙烯按质量比1:4均匀混合压片制成。
PCT/CN2018/081194 2017-12-28 2018-03-29 太赫兹检测方法 WO2019127960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711458641.1 2017-12-28
CN201711458641.1A CN108226089A (zh) 2017-12-28 2017-12-28 太赫兹检测方法

Publications (1)

Publication Number Publication Date
WO2019127960A1 true WO2019127960A1 (zh) 2019-07-04

Family

ID=62645578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081194 WO2019127960A1 (zh) 2017-12-28 2018-03-29 太赫兹检测方法

Country Status (2)

Country Link
CN (1) CN108226089A (zh)
WO (1) WO2019127960A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580533A (zh) * 2018-11-30 2019-04-05 深圳市太赫兹科技创新研究院有限公司 香烟滤嘴监测方法和***
CN109856082A (zh) * 2018-12-17 2019-06-07 深圳市太赫兹科技创新研究院有限公司 香烟滤嘴中爆珠的检测方法与检测装置
CN110618105A (zh) * 2019-11-01 2019-12-27 云南电网有限责任公司电力科学研究院 一种基于太赫兹时域光谱技术的变压器油泄漏检测方法
CN111366556A (zh) * 2020-04-29 2020-07-03 蓝科微电子(深圳)有限公司 一种微生物和生物机体内含物的太赫兹检测方法及***
CN111998947B (zh) * 2020-08-31 2022-10-21 中国电子科技集团公司第四十一研究所 一种太赫兹光谱频率和线性度校准模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532953A (zh) * 2009-04-02 2009-09-16 中国计量学院 一种食用油光学参数的精确测定方法
CN102749297A (zh) * 2012-07-10 2012-10-24 中国计量学院 一种基于太赫兹理论模拟光谱的农药鉴别方法
CN103308473A (zh) * 2013-05-11 2013-09-18 浙江理工大学 利用太赫兹时域光谱技术鉴别竹麻纤维的方法
CN104251838A (zh) * 2014-08-27 2014-12-31 北京环境特性研究所 违禁物品检测方法和装置
CN105067557A (zh) * 2015-08-26 2015-11-18 湖州旭龙生物化学有限公司 一种基于太赫兹理论模拟光谱库的***酮鉴别方法
CN105115930A (zh) * 2015-09-17 2015-12-02 滨州学院 一种基于太赫兹光谱技术的全成分颗粒剂中草药桃仁的检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435771B (zh) * 2008-07-15 2011-06-15 中国科学院上海应用物理研究所 利用THz-TDS鉴别不同旋光性的麻黄碱
CN103134765A (zh) * 2013-01-29 2013-06-05 天津大学 一种基于太赫兹时域光谱的中药样品真伪初筛方法
CN104713845B (zh) * 2015-03-25 2017-04-19 西安应用光学研究所 基于太赫兹吸收光谱数据处理的混合物成分识别方法
CN107515202A (zh) * 2017-08-17 2017-12-26 清华大学 太赫兹光谱分析方法、***及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532953A (zh) * 2009-04-02 2009-09-16 中国计量学院 一种食用油光学参数的精确测定方法
CN102749297A (zh) * 2012-07-10 2012-10-24 中国计量学院 一种基于太赫兹理论模拟光谱的农药鉴别方法
CN103308473A (zh) * 2013-05-11 2013-09-18 浙江理工大学 利用太赫兹时域光谱技术鉴别竹麻纤维的方法
CN104251838A (zh) * 2014-08-27 2014-12-31 北京环境特性研究所 违禁物品检测方法和装置
CN105067557A (zh) * 2015-08-26 2015-11-18 湖州旭龙生物化学有限公司 一种基于太赫兹理论模拟光谱库的***酮鉴别方法
CN105115930A (zh) * 2015-09-17 2015-12-02 滨州学院 一种基于太赫兹光谱技术的全成分颗粒剂中草药桃仁的检测方法

Also Published As

Publication number Publication date
CN108226089A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2019127960A1 (zh) 太赫兹检测方法
US9234905B2 (en) Method of calibrating and calibration apparatus for a moisture concentration measurement apparatus
US7868296B2 (en) Spectroscopy having correction for broadband distortion for analyzing multi-component samples
JP5983779B2 (ja) ガス吸収分光装置及びガス吸収分光方法
CN104903704B (zh) 进行水汽测定的可调谐二极管激光吸收光谱
WO2019153460A1 (zh) 基于atr模式的物质成分鉴别方法、装置和计算机设备
CN108007901B (zh) 一种检测多组分痕量气体浓度的方法与装置
JP6288717B2 (ja) 成分濃度分析方法
RU2007148634A (ru) Способ оценки чистоты растительных масел и устройство для его осуществления
CN105372205B (zh) 基于S2f方法的免定标波长调制光谱气体检测方法
CN101532953B (zh) 一种食用油光学参数的精确测定方法
CN104237157A (zh) 应用太赫兹时域光谱技术检测粮食中氨基酸含量的方法
KR20150021578A (ko) 분광 분석
WO2019045653A1 (en) NON-DESTRUCTIVE SYSTEMS AND METHODS FOR IDENTIFICATION OF CONDITIONED MEDICAMENTS
CN108020525A (zh) 一种危险气体高灵敏度太赫兹谱检测装置及方法
WO2020130942A1 (en) A non-destructive system and method for determining the quality of chinese herb using terahertz time-domain spectroscopy
JP3896532B2 (ja) テラヘルツ帯複素誘電率測定装置
Gavenda et al. Terahertz time-domain spectroscopy for distinguishing different kinds of gunpowder
US20170052069A1 (en) Method for determining the temperature of an infrared-active gas by means of infrared spectroscopy
CN108152265B (zh) 拉曼光谱检测设备及其检测安全性的监控方法
JP5501797B2 (ja) スペクトラム分析装置及びスペクトラム分析方法
US11467085B2 (en) Solid dosage component measurement device and solid dosage component measurement method
CN108226083A (zh) 隐性孔雀石绿的检测方法和***
JP2011053195A (ja) テラヘルツ時間領域分光装置の測定法及びデータ解析法
JP2011145215A (ja) 分析装置及び分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897298

Country of ref document: EP

Kind code of ref document: A1