WO2019126882A1 - Bimetal method for constructing nanoparticles (nps) of metallic copper for coating with smaller nanoparticles of secondary metal - Google Patents

Bimetal method for constructing nanoparticles (nps) of metallic copper for coating with smaller nanoparticles of secondary metal Download PDF

Info

Publication number
WO2019126882A1
WO2019126882A1 PCT/CL2018/000040 CL2018000040W WO2019126882A1 WO 2019126882 A1 WO2019126882 A1 WO 2019126882A1 CL 2018000040 W CL2018000040 W CL 2018000040W WO 2019126882 A1 WO2019126882 A1 WO 2019126882A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
acid
nanoparticles
nps
rpm
Prior art date
Application number
PCT/CL2018/000040
Other languages
Spanish (es)
French (fr)
Inventor
Harold Iván LOZANO ZARTO
Guillermo Antonio GONZALEZ MORAGA
Eglantina Javiera Benavente Espinosa
Fernando MENDIZABAL
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Publication of WO2019126882A1 publication Critical patent/WO2019126882A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • the present invention relates to a process for obtaining copper nanoparticles (NPs), specifically with a size between 10 nm and 50 nm.
  • the state of the art does not propose a method of reducing the diffusion of copper in silicon through the use of a secondary metal that produces chemically stable bimetallic nanoparticles capable of blocking the copper path avoiding or delaying its diffusion, by means of a bimetallic method.
  • An object of the invention is a bimetallic method for the construction of metallic copper nanoparticles (NPs), for coating with smaller nanoparticles of the secondary metal, comprising the following steps: Dissolving in a container at least one ion source of copper such as a copper salt, oxide or hydroxide in a reaction solvent until a molar concentration of 0.1 M to 3.0 M is obtained, and maintaining agitation in the range of 5 to 10,000 rpm for a time between 1 min and 24 hours; adding at least one pre-dissolved complexing agent in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of the previous step; Add a pH regulator to the reaction mixture of the previous stage, until the mixture is adjusted to a pH that increases the solvation of the metal and it is in solution; Mix the solution prepared in the previous step with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours, to prepare a solution 1; Dissolve in another vessel at least one ion source
  • Figure 1 describes a synthesis of the method of the invention.
  • Figure 2 describes sizes of nanoparticles obtained by the method of the invention.
  • Figures 3 to 5 describe composition of the nanoparticles by maps of atomic distribution of the elements present in some areas of the nanoparticles.
  • Figures 6 to 8 describe suspensions stable to premature oxidation, as well as agglomeration, suitable for printing processes, according to the method of the invention.
  • Figures 9 and 10 describe the surface resistivity of the nanoparticles obtained with the method of the invention.
  • Figure 11 describes the degree of diffusion of copper from the composite nanoparticles obtained with the method of the invention.
  • Figure 12 describes the best behavior of one of the selected secondary metals, by the method of the invention.
  • a method of reducing copper diffusion in silicon is proposed through the use of a secondary metal that produces chemically stable bimetallic nanoparticles capable of blocking the copper path avoiding or delaying its diffusion.
  • the method is based on the manufacture of nanoparticles composed of copper alloys with a metal of a specific group of metals that when applied on silicon and thanks to the dimerization of the CuNps, a diffusional barrier is created in situ.
  • a diffusional barrier 10nm
  • This can be sacrificial barrier or filling barrier, deposited or autoformed.
  • the materials used so far include nitrides (TiNX, SiCN, SiNX, TaNX, WNX, HfNX), carbides (SiCO, SiC), pure elements (Ta, Ru, Co, W, Ni) and alloys (RuW, TaSiN / Ti , CuMn, CuTi, CuZr, CuAL).
  • physical deposit techniques are used to create the diffusional barrier (PVD, CVD, PECVD, LPCVD, HFCVD, ALD, PEALD and sputtering).
  • the bimetallic method consists of the manufacture of composite nanoparticles of the alloy formed by the metallic copper with the secondary metal.
  • Step A Dissolve in a container at least one source of copper ions such as a copper salt, oxide or hydroxide in a reaction solvent until a molar concentration of 0.1 M to 3.0 M is reached, and maintain stirring in the range of 5 to 10,000 rpm for a time between 1 min and 24 hours; where the copper salt is selected from copper (I) chloride (CuCI), copper (II) chloride (CuCI 2 ), copper (I) cyanide (CuCN), copper sulfate (CuS0 4 ), nitrate copper (Cu (N0 3 ) 2 ), copper acetate (CH 3 COO) 2 Cu, copper carbonate (CuC0 3 ), copper acetylacetonate C 5 H 7 Cu0 2 , copper (II) perchlorate Cu (CIC0 4 ) 2 , copper (II) stearate, copper (II) ethylenediamine, copper (II) trifluoroacetylacetonate, copper hexafluoroace
  • Step B Add at least one pre-dissolved complexing agent in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of stage A, where the complexing agent is selected from mono-chelating molecules. , bi- and / or tridentados; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro, sulfonic, and / or halide groups such as carboxylic acids and their derivatives, dicarboxylic acids, unsaturated carboxylic acids, ammonia (NH3), ammonium hydroxide, primary and secondary amines.
  • the complexing agent is selected from mono-chelating molecules. , bi- and / or tridentados; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro,
  • the carboxylic acids and their derivatives are selected from the group ascorbic acid, citric acid, aliphatic and aromatic carboxylic acids, such as benzoic acid, phenylacetic acid, but not limited thereto.
  • dicarboxylic acids ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonadioic acid, decadioic acid, butenedioic acid, italic acid, 2,4-diphenylcyclobutan-1,3 acid - dicarboxylic acid, 3,4- diphenylcyclobutan-1,2-dicarboxylic, but not limited to these.
  • the complexing agent can also be selected from unsaturated carboxylic acids: acrylic, crotonic, isocrotonic, sorbic, palmitoleic, sapienic, oleic, elaidic, vaccenic, linoleic, linoelaidic, citric acid, tartaric acid, cinnamic acid, without limiting them.
  • the primary and secondary amines are selected from, but not limited to: isopropylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine.
  • Step C Add a pH regulator to the reaction mixture of step B, until the mixture is adjusted to a pH that increases the solvation of the metal and it is in solution; where the regulator can be alkalis, acids or buffer solutions or pH buffer, weak or strong, or mixtures of them.
  • the regulator can be alkalis, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (L ⁇ OH), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ) are selected.
  • acids can be monoprotic or diprotic, organic or inorganic, but not limited to these.
  • Step D Mix the solution prepared in step C with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours.
  • Step E Dissolve in another vessel at least one ion source of the reductible secondary metal in a reaction solvent to achieve a 0.1 M to 3 M molar concentration with stirring in the range of 5 to 10,000 rpm and maintain for a time between 1 min and 24 hours; where the secondary metal is selected from at least one metallic element of the groups from III A to V A and from I B to VIII B of the periodic table of elements.
  • the secondary metal can be selected from the group: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge , Ga, Se, Te, Cd, Si, Bi, In, Al, Re and / or Mo and mixtures, alloys and co-crystals of at least one of these elements, but is not limited to these.
  • the ion source of the secondary metal is selected from the salts of metals, metal oxides, hydraxides, hydroxides, or binary salts and organometallic species, ionic or covalent compounds, coordination compounds, hybrid composites and / or metal electrodes; but it is not limited to these. It is possible to use all metal ion sources that are compatible in the context of this process and particularly that they are soluble or dispersible in the liquid reaction medium.
  • Step F Addition of at least one pre-dissolved complexer in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of step E, where the complexing agent is selected from mono-chelating molecules. bi- and / or tridentados; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro, sulfonic, and / or halide groups such as carboxylic acids and their derivatives, dicarboxylic acids, unsaturated carboxylic acids, ammonia (NH3), ammonium hydroxide, primary and secondary amines.
  • the complexing agent is selected from mono-chelating molecules. bi- and / or tridentados; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro, sul
  • the carboxylic acids and their derivatives are selected from the group ascorbic acid, citric acid, aliphatic and aromatic carboxylic acids, such as benzoic acid, phenylacetic acid, but not limited thereto.
  • dicarboxylic acids ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonadioic acid, decadioic acid, butenedioic acid, italic acid, 2,4-diphenylcyclobutan-1,3 acid - dicarboxylic acid, 3,4-diphenylcyclobutan-1,2-dicarboxylic acid, but not limited thereto.
  • the complexing agent can also be selected from unsaturated carboxylic acids: acrylic, crotonic, isocrotonic, sorbic, palmitoleic, sapienic, oleic, elaidic, vaccenic, linoleic, linoelaidic, citric acid, tartaric acid, cinnamic acid, without limiting them.
  • the primary and secondary amines are selected from, but not limited to: isopropylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine.
  • Stage G Add a pH regulator to the reaction mixture from step F, until the mixture is adjusted to a pH that increases the solvation of the metal and it is in solution; where the regulator can be alkalis, acids or buffer solutions or pH buffer, weak or strong, or mixtures of them.
  • the regulator can be alkalis, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ) are selected, calcium hydroxide (Ca (OH) 2 ) including Arrhenius bases.
  • acids can be monoprotic or diprotic, organic or inorganic, but not limited to these.
  • Step H Mix the solution prepared in step G with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours.
  • Stage I Mix solution 1 prepared in stage D with solution 2 prepared in stage H in a hermetically sealed reactor free of oxygen, with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min. and 24 hours.
  • Step J Add at least one agent to the reaction mixture of stage I stabilizer until achieving a molar concentration of 0.5 to 20 M, where the stabilizer which must be soluble and / or dispersible in the working liquid medium, can be selected from amphiphilic molecules, surfactants or polymers.
  • Amphiphilic molecules containing carboxyl, carbonyl, amino, amido, ammonium, thiol, hydroxyl, ketone, ester, ether, nitro, sulfonyl, phosphate, borate, halide or mixture thereof, with apolar groups such as aliphatic, aromatic or mixtures thereof .
  • Polymers such as poly (vinylpyrrolidone) (PVP), polyvinyl alcohol, polycarbonates, polyphenols, polyethylene glycol and polyols such as ethylene glycol, diethylene glycol, tri-ethylene glycol, propylene glycols, alkyldiols such as butanediols, dipropylene glycol and polyethylene glycols, chitosan and its derivatives, polyacids and derivatives thereof, mercaptoalkanoates, and oxybenzoic acids; herein, the polyacids including any one or more of those selected from a group of poly (acrylic acid), poly (maleic acid), poly (methyl methacrylate), poly (acrylic acid-co-methacrylic acid), poly (maleic acid- co-acrylic acid), and poly (acrylamide-co-coacrylic acid); cellulose acetates, polyvinylacetates, polysulfone, polyphenylsulphones, polyethersulfones, polyket
  • Step K Mix the solution prepared in step J with stirring in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours.
  • Stage L Add a pH regulator to the reaction mixture of step K, until the mixture is adjusted to a pH that increases the solvation of the metal ions and these are in solution; where the regulator can be alkalis, acids or buffer solutions or pH buffer, weak or strong, or mixtures of them.
  • the regulator can be alkalis, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ) are selected, calcium hydroxide (Ca (OH) 2 ) including Arrhenius bases.
  • acids can be monoprotic or diprotic, organic or inorganic, but not limited to these.
  • Step M Add to the reaction mixture of step L a complexing agent in a molar concentration of 0.1 M to .12 M with stirring in the range of 5 to 10,000 rpm for a time between 1 min and 24 hours, wherein the Primary complexing and secondary complexing are selected among mono-, bi- and / or tridentate chelating molecules; with givers, acceptors or both; inorganic such as ammonia (NH 3 ) and ammonium hydroxide, organic, or amphoteric; as those with carboxylic groups, thiols, hydroxyl, ketones, nitro, sulfonics, and / or halides such as carboxylic acids; primary and secondary amines: isopropylamine, butylamine, pentylamine, hexylamine heptilamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine,
  • Step N Add an antifoam to the reaction mixture of stage M in a concentration not greater than 5% of the total mixture and heat the reaction mixture between 10 and 120 ° C with agitation in the range of 5 to 10,000 rpm for a time of homogenization between 1 min and 24 hours; wherein the antifoam is selected from high molecular weight alcohols such as hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1- pentadecanol, 1- hexadecanol, 1-heptadecanol, 1-octadecanol and any of these with branches in its main chain.
  • aromatics alcohols, and any defoamers for water-based systems are selected as antisugars based on polysiloxanes, based on mineral oil, based on vegetable oil, and based
  • Stage O Mix the solution prepared in step N with agitation in the range of 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours.
  • Step P Set the temperature of the reaction mixture prepared in step O between -10 ° C to 120 ° C, depending on the metal, the additives and the liquid reaction medium.
  • Step Q Add in agitation in the range of 5 to 10,000 rpm at least one reducer to the reaction mixture of stage P which is in a molar concentration between 0.1 M and 3 M and keep stirring in the range of 5. at 10,000 rpm of the reaction mixture for a time between 1 min and 24 hours; wherein the reductant is selected from hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehyde as formaldehyde, ammonium formate, acetaldehyde and propanoaldehyde or salts thereof, hypophosphites, sulphites, tetrahydroborates, lithium tetraaluminohydride (LiAIH 4 ), sodium borohydride, polyhydroxybenzene such as hydroquinone and its derivatives, phenylenediamines and their derivatives, aminophenols and their derivatives, acids carboxylic acids and their derivatives such as ascorbic acid, citric
  • Step R Add at least one pre-dissolved complexer in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of step Q, where the complexing agent is selected from mono-chelating molecules. , bi- and / or tridentados; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro, sulfonic, and / or halide groups such as carboxylic acids and their derivatives, dicarboxylic acids, unsaturated carboxylic acids, ammonia (NH3), ammonium hydroxide, primary and secondary amines.
  • the complexing agent is selected from mono-chelating molecules. , bi- and / or tridentados; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro,
  • the carboxylic acids and their derivatives are selected from the group ascorbic acid, citric acid, aliphatic and aromatic carboxylic acids, such as benzoic acid, phenylacetic acid, but not limited thereto.
  • dicarboxylic acids ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonadioic acid, decadioic acid, butenediic acid, phthalic acid, 2,4-diphenylcyclobutan-1,3 acid - dicarboxylic acid, 3,4-diphenylcyclobutan-1,2-dicarboxylic acid, but not limited thereto.
  • the secondary complexer can be selected from unsaturated carboxylic acids: acrylic, crotonic, isocrotonic, sorbic, palmitoleic, sapienic, oleic, elaidic, vaccenic, linoleic, linoelaidic, citric acid, tartaric acid, cinnamic acid, without limiting them.
  • the primary and secondary amines are selected from, but not limited to: isopropylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine.
  • Step S Add at least one antioxidant pre-dissolved in liquid reaction medium with a molar concentration between 0.5 and 3 M in the reaction mixture of step R; wherein the antioxidant is selected from carboxylic acids and their derivatives such as ascorbic acid, citric acid, hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehydes such as formaldehyde, ammonium formate, acetaldehyde and propanoaldehyde or salts of these, hypophosphites and similar antioxidant agents.
  • carboxylic acids and their derivatives such as ascorbic acid, citric acid, hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehydes such as formaldehyde, ammonium formate, acetaldehyde and propanoaldehyde or salts of these, hypophosphites and similar antioxidant agents.
  • Step T Stop the reaction of step S by cooling to a temperature between 0 ° C-25 ° C keeping the agitation in the range of 5 to 10,000 rpm.
  • Step U Ripen the mixture of step T for a time of 1 min to 15 days, at a temperature of 5 ° C to 70 ° C with and / or without agitation in the range of 5 to 10,000 rpm.
  • Step V Wash the composite nanoparticles obtained from step U by centrifugation and / or dialysis with at least one solvent selected from water, preferably deionized, monoprotic solvents such as methanol, ethanol, isopropanol, acetone, low-boiling apolar solvents or a mixture of these, but not limited to these.
  • monoprotic solvents such as methanol, ethanol, isopropanol, acetone, low-boiling apolar solvents or a mixture of these, but not limited to these.
  • nanoparticles are obtained between 1 nm and 200 nm, as shown in Figure 2.
  • the size of the nanoparticles can be regulated by varying the molar ratio between the source of copper ions, the ion source of the secondary metal, the amount and type of stabilizer, the complexing agents, the reaction temperature, and the pH of the solution.
  • All copper (I) and copper (II) salts can be used as copper ion source.
  • amphiphilic molecules surfactants
  • polymers such as PVP or chitosan
  • At least one metal element is selected from the groups of III A to V A and from I B to VIII B of the periodic table of elements.
  • the secondary metal can be selected from the group: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge, Ga, Se, Te, Cd, Si, Bi, In, Al, Re and / or Mo and mixtures, alloys and co-crystals of at least one of these elements.
  • the ion source of the secondary metal is selected from the salts of metals, metal oxides, hydraxides, hydroxides, or binary salts and Organometallic species, ionic or covalent compounds, coordination compounds, hybrid composites and / or metal electrodes, among others.
  • reducing agents can be used hydrides of alkaline metals, hydrazine, ascorbic acid, among others.
  • antioxidants ascorbic acid, sodium citrate and small donor molecules are used.
  • the solution acquires a blackish color that turns slowly to reddish until it reaches a burgundy red color with controlled formation of foam on the surface.
  • the reaction is allowed to advance for 60 minutes.
  • 0.8806 g of ascorbic acid pre-dissolved in 5 mL of distilled water and 1.4705 g of sodium citrate pre-dissolved in 5 mL of distilled water are added.
  • Magnetic stirring is maintained for 1 hour at room temperature.
  • the composite nanoparticles can be washed by centrifugation.
  • the metal distribution of the composite nanoparticles depends mainly on the synthesis method, but also on the nature of the metal. In general, the bimetallic method results in more intimate mixtures between the two metals or "nanoalloys", as shown in Figures 3 to 5.
  • the regulation of the synthesis conditions of the composite nanoparticles allows to obtain stable suspensions to the premature oxidation, as well as to the agglomeration, with metal concentrations (between 5 and 50%) suitable for printing processes.
  • the products of the described preparations separated by centrifugation and re-dispersed in water or suitable solvents have sizes in the range 10-70 nm and optimum surface charge for printing by injection or other type of deposition, as shown in figures 6 to 8 .
  • composite nanoparticle inks (30-40% m / m) are prepared.
  • the substrate, silicon is cleaned by the RCA method, also removing the Si02 layer.
  • the application of the ink on the clean substrate is done by forming a thin layer of the suspension using the spin coating technique, ie dispersion by rotation at high speed (2000 rpm). The process Repeat several times until you achieve homogenous and reproducible layers.
  • the conductivity measurements glass is used instead of silicon.
  • the determination of the degree of diffusion of copper from the composite nanoparticles is made by direct determination of the profile of the copper concentration in silicon. Analytical techniques of the highest degree of available sensitivity are used; This is, Spectroscopy of photoelectrons emitted by X-rays (XPS) and X-ray microanalysis (EDS).
  • XPS X-ray photoelelectrons emitted by X-rays
  • EDS X-ray microanalysis
  • the XPS analyzes shown in Figure 11, show that under conditions of thermal stress (800 ° C) copper diffuses into silicon, regardless of the secondary metal (M1-M3) used, diffuses to silicon, although in different proportions. However, that temperature far exceeds those usually used in applications, for example, those used in the field of solar cells (maximum 300 ° C). In fact, experiments performed with a lower heating ramp show the best behavior of one of the selected secondary metals, as shown in figure 12. This method also shows that there is a process of prior segregation of the secondary metal that leads to the formation of a barrier that decreases the diffusion of copper in silicon.

Abstract

The invention relates to a process for obtaining nanoparticles (NPs) of copper, specifically with a size between 10 nm and 50 nm. Specifically, a method is described for constructing NPs of metallic copper and subsequently decorating or coating with smaller NPs of secondary metal. Existing technologies for silicon-based solar cells use silver but never copper because the penetration of same into the substrate severely reduces the efficiency of the device. For electrical interconnections in microprocessors, other metals, mainly aluminium, are used, despite being less electrically conductive. Given the relatively high cost of silver, replacing silver with copper is economically interesting, especially if this also allows inkjet print technologies to be used.

Description

MÉTODO BIMETÁLICO PARA LA CONSTRUCCIÓN DE NANOPARTÍCULAS ( NPs) DE COBRE METÁLICO, PARA EL REVESTIMIENTO CON NANOPARTÍCULAS  BIMETALLIC METHOD FOR THE CONSTRUCTION OF NANOPARTICLES (NPs) OF METALLIC COPPER, FOR THE COATING WITH NANOPARTICLES
MAS PEQUEÑAS DEL METAL SECUNDARIO.  SMALLEST OF THE SECONDARY METAL.
CAMPO DE APLICACIÓN  SCOPE
La presente invención se relaciona con un proceso de obtención de nanopartículas (NPs) de cobre, específicamente con un tamaño entre los 10 nm a los 50 nm.  The present invention relates to a process for obtaining copper nanoparticles (NPs), specifically with a size between 10 nm and 50 nm.
Específicamente, se describe un método bimetálico para la construcción de NPs de cobre metálico y su posterior decoración o revestimiento con nanopartículas más pequeñas del metal secundario. Specifically, a bimetallic method is described for the construction of metallic copper NPs and their subsequent decoration or coating with smaller nanoparticles of the secondary metal.
ESTADO DEL ARTE PREVIO STATE OF PREVIOUS ART
La solicitud CL201503794, de fecha 30.12.2015, de Lozano y otros, titulada “Método de obtención de nanopartículas de cobre y uso de dichas partículas”, describe nanopartículas de cobre y método de obtención de ellas que comprende las siguientes etapas: disolver en un recipiente al menos una sal, Oxido a hidróxido de cobre en agua destilada; disolver en un recipiente al menos un estabilizante en agua destilada; mezclar las dos soluciones y en un reactor; adicionar un acomplejante primario; adicionar un álcali; adicionar un antiespumante; adicionar al menos un reductor, detener la reacción enfriando a una temperatura de reacción de entre 0°C a 25°C manteniendo la agitación; adicionar al menos un antioxidante; adicionar al menos un acomplejante secundario; madurar y lavar la mezcla.  Application CL201503794, dated 30.12.2015, Lozano et al., Entitled "Method of obtaining copper nanoparticles and use of said particles", describes copper nanoparticles and method of obtaining them comprising the following steps: dissolve in a vessel at least one salt, Oxide to copper hydroxide in distilled water; dissolving in a container at least one stabilizer in distilled water; mix the two solutions and in a reactor; add a primary complexing agent; add an alkali; add an antifoam; add at least one reducer, stop the reaction by cooling to a reaction temperature between 0 ° C to 25 ° C while maintaining agitation; add at least one antioxidant; add at least one secondary complexer; ripen and wash the mixture.
La solicitud US2012037041 , de fecha 16.02.2012, de Nolte Ulrich y otros, titulada“Método para producir nanopartículas metálicas”; describe un método para producir nanopartículas metálicas, en el que los iones metálicos se reducen por medio de al menos un agente reductor en presencia de al menos un estabilizador polimérico y se convierten en nanopartículas metálicas. La invención se refiere además a nanopartículas metálicas obtenidas de esta manera y al uso de las mismas. The application US2012037041, dated 16.02.2012, by Nolte Ulrich et al., Entitled "Method for producing metallic nanoparticles"; discloses a method for producing metal nanoparticles, wherein the metal ions are reduced by means of at least one reducing agent in the presence of at least one polymeric stabilizer and converted into metal nanoparticles. The invention also relates to metal nanoparticles obtained in this way and to the use thereof.
El uso de nanopartículas de cobre en la impresión de colectores y circuitos eléctricos en dispositivos fotovoltaicos y electrónicos sobre silicio mono- o policristalino es inconveniente debido a su difusión en el silicio. Las tecnologías existentes para celdas solares base silicio utilizan plata, pero nunca cobre debido a que su penetración en sustrato reduce severamente la eficiencia del dispositivo. Para las interconexiones eléctricas en microprocesadores se usan otros metales, principalmente aluminio, a pesar de su menor conductividad eléctrica. Dado el The use of copper nanoparticles in the printing of collectors and electrical circuits in photovoltaic and electronic devices over mono- or polycrystalline silicon is inconvenient due to its diffusion in silicon. Existing technologies for silicon-based solar cells use silver, but never copper because their penetration into the substrate severely reduces the efficiency of the device. For the electrical interconnections in microprocessors, other metals are used, mainly aluminum, despite their lower electrical conductivity. Given the
HOJA DE REEMPLAZO (Regla 26) relativamente alto costo de la plata, el reemplazo de plata por cobre es económicamente interesante, especialmente si ello, permite, además, utilizar tecnologías de impresión por inyección de tinta. SUBMISSION SHEET (Rule 26) With the relatively high cost of silver, the replacement of silver with copper is economically interesting, especially if this also allows the use of inkjet printing technologies.
El estado de la técnica no propone un método de reducir la difusión de cobre en silicio mediante el uso de un metal secundario que origine nanopartículas bimetálicas químicamente estables capaces de bloquear el camino del cobre evitando o retardando su difusión, mediante un método bimetálico. The state of the art does not propose a method of reducing the diffusion of copper in silicon through the use of a secondary metal that produces chemically stable bimetallic nanoparticles capable of blocking the copper path avoiding or delaying its diffusion, by means of a bimetallic method.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
Un objetivo de la invención es un método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, para el revestimiento con nanopartículas más pequeñas del metal secundario, que comprende las siguientes etapas: de Disolver en un recipiente al menos una fuente de iones de cobre como por ejemplo una sal, oxido o hidróxido de cobre en un solvente de reacción hasta lograr una concentración molar de 0,1 M a 3,0 M, y mantener agitación en el rango de 5 a 10.000 rpm por un tiempo entre 1 min y 24 horas; adicionar al menos un acomplejante pre-disuelto en el medio liquido de reacción en una concentración molar entre 0,1 y 1,5 M a la mezcla de reacción de la etapa anterior; Adicionar un regulador de pH a la mezcla de reacción de la etapa anterior, hasta ajustar la mezcla a un pH que aumente la solvatación del metal y éste se encuentre en solución; Mezclar la solución preparada en la etapa anterior con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas, para preparar una disolución 1 ; Disolver en otro recipiente al menos una fuente de iones del metal secundario reductible en un solvente de reacción hasta lograr una concentración molar 0,1 M a 3 M con agitación en el rango de 5 a 10.000 rpm y mantener por un tiempo entre 1 min y 24 horas; adicionar al menos un acomplejante pre-disuelto en el medio liquido de reacción en una concentración molar entre 0,1 y 1 ,5 M a la mezcla de reacción de la etapa anterior; adicionar un regulador de pH a la mezcla de reacción de la etapa anterior, hasta ajustar la mezcla a un pH que aumente la solvatación del metal y éste se encuentre en solución; mezclar la solución preparada en la etapa anterior con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; para preparar una dilución 2; Mezclar la disolución 1 con la disolución 2 en un reactor herméticamente cerrado y libre de oxígeno, con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; Adicionar a la mezcla de reacción de la etapa anterior al menos un agente estabilizante hasta lograr una concentración molar de 0,5 a 20 M; mezclar la solución preparada en la etapa anterior con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; adicionar un regulador de pH a la mezcla de reacción de la etapa K, hasta ajustar la mezcla a un pH que aumente la solvatación de los iones metálicos y éstos se encuentre en solución; adicionar a la mezcla de reacción de la etapa L un acomplejante en una concentración molar 0,1 M a 12 M con agitación en el rango de 5 a 10.000 rpm por un tiempo entre 1 min y 24 horas; adicionar un antiespumante a la mezcla de reacción de la etapa M en una concentración no mayor de 5% del total de la mezcla y calentar la mezcla de reacción entre 10 y 120°C con agitación en el rango de 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; mezclar la solución preparada en la etapa anterior con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; establecer la temperatura de la mezcla de reacción preparada en la etapa anterior entre -10°C a 120°C, dependiendo del metal, de los aditivos y del medio líquido de reacción; Adicionar en agitación en el rango de 5 a 10.000 rpm al menos un reductor a la mezcla de reacción de la etapa anterior que se encuentra en una concentración molar entre 0,1 M y 3 M y mantener agitación en el rango de 5 a 10.000 rpm de la mezcla de reacción por un tiempo entre 1 min y 24 horas; Adicionar al menos un acomplejante pre-disuelto en el medio liquido de reacción en una concentración molar entre 0,1 y 1 ,5 M a la mezcla de reacción de la etapa anterior; adicionar al menos un antioxidante pre- disuelto en medio liquido de reacción con una concentración molar entre 0,5 y 3 M en la mezcla de reacción de la etapa anterior; detener la reacción de la etapa anterior enfriando a una temperatura entre 0°C-25°C manteniendo la agitación en el rango de 5 a 10.000 rpm; Madurar la mezcla de la etapa anterior por un tiempo de 1 min a 15 días, a una temperatura de 5°C a 70°C con y/o sin agitación en el rango de 5 a 10.000 rpm; y Lavar las nanopartículas compuestas obtenidas de la etapa anterior por centrifugación y/o diálisis con al menos un solvente seleccionado de entre agua, preferiblemente desionizada, solventes monopróticos como metanol, etanol, isopropanol, acetona, solventes apolares de bajo punto de ebullición o una mezcla de estos. An object of the invention is a bimetallic method for the construction of metallic copper nanoparticles (NPs), for coating with smaller nanoparticles of the secondary metal, comprising the following steps: Dissolving in a container at least one ion source of copper such as a copper salt, oxide or hydroxide in a reaction solvent until a molar concentration of 0.1 M to 3.0 M is obtained, and maintaining agitation in the range of 5 to 10,000 rpm for a time between 1 min and 24 hours; adding at least one pre-dissolved complexing agent in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of the previous step; Add a pH regulator to the reaction mixture of the previous stage, until the mixture is adjusted to a pH that increases the solvation of the metal and it is in solution; Mix the solution prepared in the previous step with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours, to prepare a solution 1; Dissolve in another vessel at least one ion source of the secondary metal reducible in a reaction solvent until achieving a molar concentration of 0.1 M to 3 M with stirring in the range of 5 to 10,000 rpm and maintain for a time between 1 min and 24 hours; adding at least one pre-dissolved complexing agent in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of the previous step; add a pH regulator to the reaction mixture of the previous stage, until the mixture is adjusted to a pH that increases the solvation of the metal and it is in solution; mix the solution prepared in the previous stage with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours; to prepare a dilution 2; Mix solution 1 with solution 2 in a hermetically sealed and oxygen-free reactor, with agitation in the range of 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours; Add to the reaction mixture of the previous stage at least one stabilizing agent until a molar concentration of 0.5 to 20 M is obtained; Mix the solution prepared in the previous stage with stirring in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours; add a pH regulator to the reaction mixture of stage K, until the mixture is adjusted to a pH that increases the solvation of the metal ions and these are in solution; adding to the reaction mixture of step L a complexing agent in a molar concentration of 0.1 M to 12 M with stirring in the range of 5 to 10,000 rpm for a time between 1 min and 24 hours; add an antifoam to the reaction mixture of stage M in a concentration not greater than 5% of the total mixture and heat the reaction mixture between 10 and 120 ° C with agitation in the range of 5 to 10,000 rpm for a time of homogenization between 1 min and 24 hours; mix the solution prepared in the previous stage with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours; establish the temperature of the reaction mixture prepared in the previous step between -10 ° C to 120 ° C, depending on the metal, the additives and the liquid reaction medium; Add in agitation in the range of 5 to 10,000 rpm at least one reducer to the reaction mixture of the previous stage that is in a molar concentration between 0.1 M and 3 M and maintain agitation in the range of 5 to 10,000 rpm of the reaction mixture for a time between 1 min and 24 hours; Addition of at least one pre-dissolved complexing agent in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of the previous step; adding at least one antioxidant pre-dissolved in liquid reaction medium with a molar concentration between 0.5 and 3 M in the reaction mixture of the previous step; stop the reaction of the previous stage by cooling to a temperature between 0 ° C-25 ° C keeping the agitation in the range of 5 to 10,000 rpm; Ripen the mixture from the previous stage for a time of 1 min to 15 days, at a temperature of 5 ° C to 70 ° C with and / or without agitation in the range of 5 to 10,000 rpm; and Washing the composite nanoparticles obtained from the previous step by centrifugation and / or dialysis with at least one solvent selected from water, preferably deionized, monoprotic solvents such as methanol, ethanol, isopropanol, acetone, low-boiling apolar solvents or a mixture of these.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
La figura 1 describe una síntesis del método de la invención. Figure 1 describes a synthesis of the method of the invention.
La figura 2 describe tamaños de nanopartículas obtenidas por el método de la invención. Figure 2 describes sizes of nanoparticles obtained by the method of the invention.
Las figuras 3 a 5 describen composición de las nanopartículas mediante mapas de distribución atómica de los elementos presentes en algunas zonas de las nanopartículas. Figures 3 to 5 describe composition of the nanoparticles by maps of atomic distribution of the elements present in some areas of the nanoparticles.
Las figuras 6 a 8 describen suspensiones estables a la oxidación prematura, así como a la aglomeración, adecuadas para procesos de impresión, de acuerdo con el método de la invención. Figures 6 to 8 describe suspensions stable to premature oxidation, as well as agglomeration, suitable for printing processes, according to the method of the invention.
Las figuras 9 y 10 describen la resistividad superficial de las nanopartículas obtenidas con el método de la invención. Figures 9 and 10 describe the surface resistivity of the nanoparticles obtained with the method of the invention.
La figura 11 describe el grado de difusión del cobre desde las nanopartículas compuestas obtenidas con el método de la invención. Figure 11 describes the degree of diffusion of copper from the composite nanoparticles obtained with the method of the invention.
La figura 12 describe el mejor comportamiento de uno de los metales secundarios seleccionados, mediante el método de la invención. Figure 12 describes the best behavior of one of the selected secondary metals, by the method of the invention.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA DESCRIPTION OF A PREFERRED EMBODIMENT
Se propone un método de reducir la difusión de cobre en silicio mediante el uso de un metal secundario que origine nanopartículas bimetálicas químicamente estables capaces de bloquear el camino del cobre evitando o retardando su difusión. El método se basa en la fabricación de nanopartículas compuestas de aleaciones de cobre con un metal de un grupo de metales específico que al ser aplicados sobre silicio y gracias a la dimerización de las CuNps, se crea in- situ una barrera difusional. A method of reducing copper diffusion in silicon is proposed through the use of a secondary metal that produces chemically stable bimetallic nanoparticles capable of blocking the copper path avoiding or delaying its diffusion. The method is based on the manufacture of nanoparticles composed of copper alloys with a metal of a specific group of metals that when applied on silicon and thanks to the dimerization of the CuNps, a diffusional barrier is created in situ.
En las celdas solares se usa plata para los colectores y, en el caso de microprocesadores, se prefiere usar aluminio para los interconectores. Para lo cual se requiere crear una barrera difusional (=10nm) de otro material. Esta puede ser barrera de sacrificio o barrera de relleno, depositada o autoformada. Los materiales utilizados hasta el momento incluyen nitruros (TiNX, SiCN, SiNX, TaNX, WNX, HfNX), carburos (SiCO, SiC), elementos puros (Ta, Ru, Co, W, Ni) y aleaciones (RuW, TaSiN/Ti, CuMn, CuTi, CuZr, CuAl). Por lo general se usan técnicas físicas de depósito para crear la barrera difusional (PVD, CVD, PECVD, LPCVD, HFCVD, ALD, PEALD y pulverización catódica). In the solar cells silver is used for the collectors and, in the case of microprocessors, it is preferred to use aluminum for the interconnectors. For which it is necessary to create a diffusional barrier (= 10nm) of another material. This can be sacrificial barrier or filling barrier, deposited or autoformed. The materials used so far include nitrides (TiNX, SiCN, SiNX, TaNX, WNX, HfNX), carbides (SiCO, SiC), pure elements (Ta, Ru, Co, W, Ni) and alloys (RuW, TaSiN / Ti , CuMn, CuTi, CuZr, CuAL). In general, physical deposit techniques are used to create the diffusional barrier (PVD, CVD, PECVD, LPCVD, HFCVD, ALD, PEALD and sputtering).
El método bimetálico consiste en la fabricación de nanopartículas compuestas de la aleación formada por el cobre metálico con el metal secundario. The bimetallic method consists of the manufacture of composite nanoparticles of the alloy formed by the metallic copper with the secondary metal.
En general, en el método se involucran varias etapas: (0) Disolución y mezcla de las fuentes de iones de los metales involucrados en condiciones óptimas para su total disolución y homogenización (solución A y B); (1) Disolución y mezcla del estabilizante; (2) La adición de acomplejantes de los iones metálicos; (3) el ajuste de las condiciones de síntesis (e.g. concentración de los reactivos, pH y temperatura de trabajo); (4) La reducción simultanea; (5) Crecimiento y maduración en ambiente altamente coordinante; (6) la protección ante la oxidación prematura y Limpieza del producto mediante métodos convencionales (centrifugación, diálisis, etc.). El esquema general del método se ilustra en la figura 1. In general, several stages are involved in the method: (0) Dissolution and mixing of the ion sources of the metals involved in optimal conditions for their total dissolution and homogenization (solution A and B); (1) Dissolution and mixing of stabilizer; (2) The addition of complexes of metal ions; (3) the adjustment of the synthesis conditions (eg concentration of reactants, pH and working temperature); (4) Simultaneous reduction; (5) Growth and maturation in highly coordinating environment; (6) Protection against premature oxidation and Cleaning of the product by conventional methods (centrifugation, dialysis, etc.). The general scheme of the method is illustrated in Figure 1.
Método Bimetálico Bimetallic method
Disolución 1 Dissolution 1
Etapa A: Disolver en un recipiente al menos una fuente de iones de cobre como por ejemplo una sal, oxido o hidróxido de cobre en un solvente de reacción hasta lograr una concentración molar de 0, 1 M a 3,0 M, y mantener agitación en el rango de 5 a 10.000 rpm por un tiempo entre 1 min y 24 horas; donde la sal de cobre es seleccionada a partir de Cloruro de cobre (I) (CuCI), Cloruro de cobre (II) (CuCI2), Cianuro de cobre (I) (CuCN), Sulfato de cobre (CuS04), nitrato de cobre (Cu(N03)2), acetato de cobre (CH3COO)2Cu, Carbonato de cobre (CuC03), acetilacetonato de cobre C5H7Cu02, perclorato de cobre (II) Cu(CIC04)2, estearato de cobre (II) , etilendiamina de cobre (II), trifluoroacetilacetonato de cobre (II), hexafluoroacetilacetonato de cobre (ll),formiato de cobre (ll),metacrilato de cobre (II), neodecanoato de cobre (ll),etilhexanoato de cobre (I I ) ,trif I uroacetato de cobre (II), y otras fuentes de cobre tales como, oxido de cobre (I) (Cu20), oxido de Cobre (II) (CuO), hidróxido de cobre (I I)(CUOH)2; pero no se limita a estos. Step A: Dissolve in a container at least one source of copper ions such as a copper salt, oxide or hydroxide in a reaction solvent until a molar concentration of 0.1 M to 3.0 M is reached, and maintain stirring in the range of 5 to 10,000 rpm for a time between 1 min and 24 hours; where the copper salt is selected from copper (I) chloride (CuCI), copper (II) chloride (CuCI 2 ), copper (I) cyanide (CuCN), copper sulfate (CuS0 4 ), nitrate copper (Cu (N0 3 ) 2 ), copper acetate (CH 3 COO) 2 Cu, copper carbonate (CuC0 3 ), copper acetylacetonate C 5 H 7 Cu0 2 , copper (II) perchlorate Cu (CIC0 4 ) 2 , copper (II) stearate, copper (II) ethylenediamine, copper (II) trifluoroacetylacetonate, copper hexafluoroacetylacetonate (ll), copper formate (ll), copper (II) methacrylate, copper neodecanoate (II) ), copper (II) ethylhexanoate, copper (II) trifluoroacetate, and other copper sources such as, copper (I) oxide (Cu 2 0), copper oxide (II) (CuO), hydroxide copper (II) (CUOH) 2 ; but it is not limited to these.
Etapa B: Adicionar al menos un acomplejante pre-disuelto en el medio liquido de reacción en una concentración molar entre 0,1 y 1 ,5 M a la mezcla de reacción de la etapa A, donde el acomplejante es seleccionado entre moléculas quelantes mono-, bi- y/o tridentados; con dadores, aceptores o ambos; inorgánicos, orgánicos, o anfóteros; como aquellos con grupos carboxílicos, aminos, tioles, hidroxilo, cetónicos, nitro, sulfonicos, y/o haluros como ácidos carboxílicos y sus derivados, ácidos dicarboxílicos, ácidos carboxílicos insaturados, amoniaco (NH3), hidróxido de amonio, aminas primarias y secundarias. De los ácidos carboxílico y sus derivados se selecciona del grupo ácido ascórbico, ácido cítrico, ácidos carboxílicos alifáticos y aromáticos, como ácido benzoico, ácido fenilacético, pero no limitándose a estos. Además de los siguientes ácidos dicarboxílicos: ácido etanodioico, ácido propanodioico, ácido butanodioico, ácido pentanodioico, ácido hexanodioico, ácido heptanodioico, ácido octanodioico, ácido nonadioico, ácido decadioico, ácido butenodioico, ácido itálico, ácido 2,4-difenilciclobutan-1 ,3- dicarboxílico, ácido 3,4- difenilciclobutan-1 ,2-dicarboxílico, pero no limitándose a estos. Así también el complejante se puede seleccionar de ácidos carboxílicos insaturados: acrílico, crotónico, isocrotónico, sórbico, palmitoleico, sapiénico, oleico, eláidico, vaccénico, linoleico, linoeláidico, ácido cítrico, ácido tartárico, ácido cinámico, sin limitar a estos. Asimismo, las aminas primarias y secundarias se seleccionan de: isopropilamina, butilamina, pentilamina, hexilamina, heptilamina, octilamina, pero no limitándose a estos. Step B: Add at least one pre-dissolved complexing agent in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of stage A, where the complexing agent is selected from mono-chelating molecules. , bi- and / or tridentados; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro, sulfonic, and / or halide groups such as carboxylic acids and their derivatives, dicarboxylic acids, unsaturated carboxylic acids, ammonia (NH3), ammonium hydroxide, primary and secondary amines. The carboxylic acids and their derivatives are selected from the group ascorbic acid, citric acid, aliphatic and aromatic carboxylic acids, such as benzoic acid, phenylacetic acid, but not limited thereto. In addition to the following dicarboxylic acids: ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonadioic acid, decadioic acid, butenedioic acid, italic acid, 2,4-diphenylcyclobutan-1,3 acid - dicarboxylic acid, 3,4- diphenylcyclobutan-1,2-dicarboxylic, but not limited to these. Thus the complexing agent can also be selected from unsaturated carboxylic acids: acrylic, crotonic, isocrotonic, sorbic, palmitoleic, sapienic, oleic, elaidic, vaccenic, linoleic, linoelaidic, citric acid, tartaric acid, cinnamic acid, without limiting them. Also, the primary and secondary amines are selected from, but not limited to: isopropylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine.
Etapa C: Adicionar un regulador de pH a la mezcla de reacción de la etapa B, hasta ajustar la mezcla a un pH que aumente la solvatación del metal y éste se encuentre en solución; donde el regulador puede ser álcalis, ácidos o soluciones tampón o buffer de pH, débiles o fuertes, o mezclas de ellos. En caso de álcalis se selecciona entre hidróxido de sodio (NaOH), hidróxido de potasio (KOH), hidróxido de litio (LÍOH), hidróxido de magnesio (Mg(OH)2), hidróxido de bario (Ba(OH)2), hidróxido de calcio (Ca(OH)2) incluyendo bases de Arrhenius. En caso de ácidos pueden ser monoproticos o diproticos, orgánicos o inorgánicos, pero no limitándose a estos. Step C: Add a pH regulator to the reaction mixture of step B, until the mixture is adjusted to a pH that increases the solvation of the metal and it is in solution; where the regulator can be alkalis, acids or buffer solutions or pH buffer, weak or strong, or mixtures of them. In the case of alkalis, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LÍOH), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ) are selected. calcium hydroxide (Ca (OH) 2 ) including Arrhenius bases. In case of acids they can be monoprotic or diprotic, organic or inorganic, but not limited to these.
Etapa D: Mezclar la solución preparada en la etapa C con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas. Step D: Mix the solution prepared in step C with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours.
Disolución 2 Dissolution 2
Etapa E: Disolver en otro recipiente al menos una fuente de iones del metal secundario reductible en un solvente de reacción hasta lograr una concentración molar 0, 1 M a 3 M con agitación en el rango de 5 a 10.000 rpm y mantener por un tiempo entre 1 min y 24 horas; donde el metal secundario se selecciona de al menos un elemento metálico de los grupos del III A al V A y del I B al VIII B de la tabla periódica de elementos. El metal secundario puede ser seleccionado del grupo: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge, Ga, Se, Te, Cd, Si, Bi, In, Al, Re y/o Mo y mezclas, aleaciones y cocristales de al menos uno de estos elementos, pero no se limita a estos. La fuente de iones del metal secundario se selecciona de las sales de metales, óxidos de metales, hidraxidos, hidróxidos, o sales binarias y especies Organometálicos, compuestos iónicos o covalentes, compuestos de coordinación, compósitos híbridos y/o electrodos metálicos; pero no se limita a estos. Es posible el uso de todas las fuentes de iones metálicos que son compatibles en el contexto de este proceso y particularmente que sean solubles o dispersable en el medio liquido de reacción.  Step E: Dissolve in another vessel at least one ion source of the reductible secondary metal in a reaction solvent to achieve a 0.1 M to 3 M molar concentration with stirring in the range of 5 to 10,000 rpm and maintain for a time between 1 min and 24 hours; where the secondary metal is selected from at least one metallic element of the groups from III A to V A and from I B to VIII B of the periodic table of elements. The secondary metal can be selected from the group: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge , Ga, Se, Te, Cd, Si, Bi, In, Al, Re and / or Mo and mixtures, alloys and co-crystals of at least one of these elements, but is not limited to these. The ion source of the secondary metal is selected from the salts of metals, metal oxides, hydraxides, hydroxides, or binary salts and organometallic species, ionic or covalent compounds, coordination compounds, hybrid composites and / or metal electrodes; but it is not limited to these. It is possible to use all metal ion sources that are compatible in the context of this process and particularly that they are soluble or dispersible in the liquid reaction medium.
Etapa F: Adicionar al menos un acomplejante pre-disuelto en el medio liquido de reacción en una concentración molar entre 0,1 y 1 ,5 M a la mezcla de reacción de la etapa E, donde el acomplejante es seleccionado entre moléculas quelantes mono- bi- y/o tridentados; con dadores, aceptores o ambos; inorgánicos, orgánicos, o anfóteros; como aquellos con grupos carboxílicos, aminos, tioles, hidroxilo, cetónicos, nitro, sulfonicos, y/o haluros como ácidos carboxílicos y sus derivados, ácidos dicarboxílicos, ácidos carboxílicos insaturados, amoniaco (NH3), hidróxido de amonio, aminas primarias y secundarias. De los ácidos carboxílico y sus derivados se selecciona del grupo ácido ascórbico, ácido cítrico, ácidos carboxílicos alifáticos y aromáticos, como ácido benzoico, ácido fenilacético, pero no limitándose a estos. Además de los siguientes ácidos dicarboxílicos: ácido etanodioico, ácido propanodioico, ácido butanodioico, ácido pentanodioico, ácido hexanodioico, ácido heptanodioico, ácido octanodioico, ácido nonadioico, ácido decadioico, ácido butenodioico, ácido itálico, ácido 2,4-difenilciclobutan-1 ,3- dicarboxílico, ácido 3,4- difenilciclobutan-1 ,2-dicarboxílico, pero no limitándose a estos. Así también el complejante se puede seleccionar de ácidos carboxílicos insaturados: acrílico, crotónico, isocrotónico, sórbico, palmitoleico, sapiénico, oleico, eláidico, vaccénico, linoleico, linoeláidico, ácido cítrico, ácido tartárico, ácido cinámico, sin limitar a estos. Asimismo, las aminas primarias y secundarias se seleccionan de: isopropilamina, butilamina, pentilamina, hexilamina, heptilamina, octilamina, pero no limitándose a estos. Step F: Addition of at least one pre-dissolved complexer in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of step E, where the complexing agent is selected from mono-chelating molecules. bi- and / or tridentados; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro, sulfonic, and / or halide groups such as carboxylic acids and their derivatives, dicarboxylic acids, unsaturated carboxylic acids, ammonia (NH3), ammonium hydroxide, primary and secondary amines. The carboxylic acids and their derivatives are selected from the group ascorbic acid, citric acid, aliphatic and aromatic carboxylic acids, such as benzoic acid, phenylacetic acid, but not limited thereto. In addition to the following dicarboxylic acids: ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonadioic acid, decadioic acid, butenedioic acid, italic acid, 2,4-diphenylcyclobutan-1,3 acid - dicarboxylic acid, 3,4-diphenylcyclobutan-1,2-dicarboxylic acid, but not limited thereto. Thus the complexing agent can also be selected from unsaturated carboxylic acids: acrylic, crotonic, isocrotonic, sorbic, palmitoleic, sapienic, oleic, elaidic, vaccenic, linoleic, linoelaidic, citric acid, tartaric acid, cinnamic acid, without limiting them. Also, the primary and secondary amines are selected from, but not limited to: isopropylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine.
Etapa G: Adicionar un regulador de pH a la mezcla de reacción de la etapa F, hasta ajustar la mezcla a un pH que aumente la solvatación del metal y éste se encuentre en solución; donde el regulador puede ser álcalis, ácidos o soluciones tampón o buffer de pH, débiles o fuertes, o mezclas de ellos. En caso de álcalis se selecciona entre hidróxido de sodio (NaOH), hidróxido de potasio (KOH), hidróxido de litio (LiOH), hidróxido de magnesio (Mg(OH)2), hidróxido de bario (Ba(OH)2), hidróxido de calcio (Ca(OH)2) incluyendo bases de Arrhenius. En caso de ácidos pueden ser monoproticos o diproticos, orgánicos o inorgánicos, pero no limitándose a estos. Stage G: Add a pH regulator to the reaction mixture from step F, until the mixture is adjusted to a pH that increases the solvation of the metal and it is in solution; where the regulator can be alkalis, acids or buffer solutions or pH buffer, weak or strong, or mixtures of them. In the case of alkalis, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ) are selected, calcium hydroxide (Ca (OH) 2 ) including Arrhenius bases. In case of acids they can be monoprotic or diprotic, organic or inorganic, but not limited to these.
Etapa H: Mezclar la solución preparada en la etapa G con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas.  Step H: Mix the solution prepared in step G with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours.
Mezcla de Reacción  Reaction mixture
Etapa I: Mezclar la disolución 1 preparada en la etapa D con la disolución 2 preparada en la etapa H en un reactor herméticamente cerrado y libre de oxígeno, con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas.  Stage I: Mix solution 1 prepared in stage D with solution 2 prepared in stage H in a hermetically sealed reactor free of oxygen, with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min. and 24 hours.
Etapa J: Adicionar a la mezcla de reacción de la etapa I al menos un agente estabilizante hasta lograr una concentración molar de 0,5 a 20 M, donde el estabilizante que debe ser soluble y/o dispersable en el medio liquido de trabajo, puede ser seleccionado entre moléculas anfifilicas, surfactantes o polímeros. Moléculas anfifilicas que contengan grupos carboxíl, carbonil, amino, amido, amonium, tiol, hidroxil, cetónico, ester, éter, nitro, sulfonil, fosfatos, boratos, haluros o mezcla de ellos, con grupos apolares como alifáticos, aromáticos o mezcla de ellos. Polímeros como poli(vinilpirrolidona) (PVP), polivinil alcohol, policarbonatos, polifenoles, polietilenglicol y polioles como etilenglicol, dietilenglicol, tri-etilenglicol, propilenglicoles, alquildioles como butanodioles, dipropilenglicol y polietilenglicoles, quitosano y sus derivados, poliácidos y derivados de estos, mercaptoalcanoatos, y ácidos oxibenzoicos; aquí, los poliácidos incluyendo uno cualquiera o más de los seleccionados de un grupo de ácido poli(acrílico), acido poli(maleico), poli(metil metacrilato), poli(ácido acrílico-co-ácido metacrílico), poli(ácido maleico-co-ácido acrílico), y poli(acrilamida-co-ácido coacrílico); acetatos de celulosa, polivinilacetatos, polisulfona, polifenilsulfonas, polietersulfonas, policetonas, polietercetonas, poliésteres, poliacetatos, polímeros y copolímeros de dos o más de estos; y los derivados incluyendo entre otros uno cualquiera o más de los seleccionados de un grupo de sales de amonio, sodio o potasio de los poliácidos, polímeros inorgánicos tipo fosfacenos y donde una molécula modificante es seleccionada del grupo de moléculas alifáticas y/o aromáticas, con 2 o más átomos de carbono, que puede incluir átomos de oxígeno, nitrógeno, azufre, fosforo o varios de ellos, con uno o más grupos funcionales, que además pueden ser complejos organometálicos, clústers o mezcla de átomos, grupos funcionales homo- y heteronucleares, y moléculas con propiedades químicas y física definidas, sin limitarse a estos. Step J: Add at least one agent to the reaction mixture of stage I stabilizer until achieving a molar concentration of 0.5 to 20 M, where the stabilizer which must be soluble and / or dispersible in the working liquid medium, can be selected from amphiphilic molecules, surfactants or polymers. Amphiphilic molecules containing carboxyl, carbonyl, amino, amido, ammonium, thiol, hydroxyl, ketone, ester, ether, nitro, sulfonyl, phosphate, borate, halide or mixture thereof, with apolar groups such as aliphatic, aromatic or mixtures thereof . Polymers such as poly (vinylpyrrolidone) (PVP), polyvinyl alcohol, polycarbonates, polyphenols, polyethylene glycol and polyols such as ethylene glycol, diethylene glycol, tri-ethylene glycol, propylene glycols, alkyldiols such as butanediols, dipropylene glycol and polyethylene glycols, chitosan and its derivatives, polyacids and derivatives thereof, mercaptoalkanoates, and oxybenzoic acids; herein, the polyacids including any one or more of those selected from a group of poly (acrylic acid), poly (maleic acid), poly (methyl methacrylate), poly (acrylic acid-co-methacrylic acid), poly (maleic acid- co-acrylic acid), and poly (acrylamide-co-coacrylic acid); cellulose acetates, polyvinylacetates, polysulfone, polyphenylsulphones, polyethersulfones, polyketones, polyetherketones, polyesters, polyacetates, polymers and copolymers of two or more of these; and the derivatives including among others any one or more of those selected from a group of ammonium, sodium or potassium salts of the polyacids, inorganic polymers of the phosphazene type and wherein a modifying molecule is selected from the group of aliphatic and / or aromatic molecules, with 2 or more carbon atoms, which may include atoms of oxygen, nitrogen, sulfur, phosphorus or several of them, with one or more functional groups, which may also be organometallic complexes, clusters or mixture of atoms, homo- and heteronuclear functional groups , and molecules with defined chemical and physical properties, without limiting themselves to them.
Etapa K: Mezclar la solución preparada en la etapa J con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas.  Step K: Mix the solution prepared in step J with stirring in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours.
Etapa L: Adicionar un regulador de pH a la mezcla de reacción de la etapa K, hasta ajustar la mezcla a un pH que aumente la solvatación de los iones metálicos y éstos se encuentre en solución; donde el regulador puede ser álcalis, ácidos o soluciones tampón o buffer de pH, débiles o fuertes, o mezclas de ellos. En caso de álcalis se selecciona entre hidróxido de sodio (NaOH), hidróxido de potasio (KOH), hidróxido de litio (LiOH), hidróxido de magnesio (Mg(OH)2), hidróxido de bario (Ba(OH)2), hidróxido de calcio (Ca(OH)2) incluyendo bases de Arrhenius. En caso de ácidos pueden ser monoproticos o diproticos, orgánicos o inorgánicos, pero no limitándose a estos. Etapa M: Adicionar a la mezcla de reacción de la etapa L un acomplejante en una concentración molar 0,1 M a .12 M con agitación en el rango de 5 a 10.000 rpm por un tiempo entre 1 min y 24 horas, en donde el acomplejante primario y el acomplejante secundario son seleccionados entre moléculas quelantes mono-, bi- y/o tridentados; con dadores, aceptores o ambos; inorgánicos como amoniaco (NH3) e hidróxido de amonio, orgánicos, o anfóteros; como aquellos con grupos carboxílicos, tioles, hidroxilo, cetónicos, nitro, sulfonicos, y/o haluros como ácidos carboxílicos; aminas primarias y secundarias: isopropilamina, butilamina, pentilamina, hexilamina heptilamina, octilamina, nonilamina, decilamina, undecilamina, dodecilamina, tridecilamina, tetradecilamina, pentadecilamina, hexadecilamina, heptadecilamina, octadecilamina, dietilamina, dipropilamina, dibutilamina, dipentilamina, dihexilamina, diheptilamina, dioctilamina, además, terbutilamina, anilina, o cualquier bases de Schiff, pero no limitándose a estos. Stage L: Add a pH regulator to the reaction mixture of step K, until the mixture is adjusted to a pH that increases the solvation of the metal ions and these are in solution; where the regulator can be alkalis, acids or buffer solutions or pH buffer, weak or strong, or mixtures of them. In the case of alkalis, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ) are selected, calcium hydroxide (Ca (OH) 2 ) including Arrhenius bases. In case of acids they can be monoprotic or diprotic, organic or inorganic, but not limited to these. Step M: Add to the reaction mixture of step L a complexing agent in a molar concentration of 0.1 M to .12 M with stirring in the range of 5 to 10,000 rpm for a time between 1 min and 24 hours, wherein the Primary complexing and secondary complexing are selected among mono-, bi- and / or tridentate chelating molecules; with givers, acceptors or both; inorganic such as ammonia (NH 3 ) and ammonium hydroxide, organic, or amphoteric; as those with carboxylic groups, thiols, hydroxyl, ketones, nitro, sulfonics, and / or halides such as carboxylic acids; primary and secondary amines: isopropylamine, butylamine, pentylamine, hexylamine heptilamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, in addition, terbutylamine, aniline, or any Schiff bases, but not limited to these.
Etapa N: Adicionar un antiespumante a la mezcla de reacción de la etapa M en una concentración no mayor de 5% del total de la mezcla y calentar la mezcla de reacción entre 10 y 120°C con agitación en el rango de 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; donde el antiespumante se selecciona de alcoholes de alto peso molar como hexanol, 1-heptanol, 1 -octanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1- pentadecanol, 1- hexadecanol, 1-heptadecanol, 1-octadecanol y cualquiera de estos con ramificaciones en su cadena principal. Además, se seleccionan de alcoholes aromáticos, y cualquier antiespumante para sistemas de base acuosa como antiespumantes a base de polisiloxanos, a base de aceite mineral, a base de aceite vegetal, y a base de polímeros, pero no limitándose a estos.  Step N: Add an antifoam to the reaction mixture of stage M in a concentration not greater than 5% of the total mixture and heat the reaction mixture between 10 and 120 ° C with agitation in the range of 5 to 10,000 rpm for a time of homogenization between 1 min and 24 hours; wherein the antifoam is selected from high molecular weight alcohols such as hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1- pentadecanol, 1- hexadecanol, 1-heptadecanol, 1-octadecanol and any of these with branches in its main chain. In addition, aromatics alcohols, and any defoamers for water-based systems are selected as antisugars based on polysiloxanes, based on mineral oil, based on vegetable oil, and based on polymers, but not limited thereto.
Etapa O: Mezclar la solución preparada en la etapa N con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas.  Stage O: Mix the solution prepared in step N with agitation in the range of 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours.
Etapa P: Establecer la temperatura de la mezcla de reacción preparada en la etapa O entre -10°C a 120°C, dependiendo del metal, de los aditivos y del medio líquido de reacción.  Step P: Set the temperature of the reaction mixture prepared in step O between -10 ° C to 120 ° C, depending on the metal, the additives and the liquid reaction medium.
Etapa Q: Adicionar en agitación en el rango de 5 a 10.000 rpm al menos un reductor a la mezcla de reacción de la etapa P que se encuentra en una concentración molar entre 0,1 M y 3 M y mantener agitación en el rango de 5 a 10.000 rpm de la mezcla de reacción por un tiempo entre 1 min y 24 horas; donde el reductor se selecciona de entre monohidrato de hidracina y derivados, hidroxilamína y sus derivados, alcoholes monohídricos como metanol, etanol, aldehido como formaldehido, formiato de amonio, acetaldehído y propanoaldehido o sales de estos, hipofosfitos, sulfitos, tetrahídroboratos, tetraalumínohídruro de litio (LiAIH4), borohidruro de sodio, polihidroxibenceno como hidroquinona y sus derivados, fenilendiaminas y sus derivados, aminofenoles y sus derivados, ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico, pero no limitándose a estos. Step Q: Add in agitation in the range of 5 to 10,000 rpm at least one reducer to the reaction mixture of stage P which is in a molar concentration between 0.1 M and 3 M and keep stirring in the range of 5. at 10,000 rpm of the reaction mixture for a time between 1 min and 24 hours; wherein the reductant is selected from hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehyde as formaldehyde, ammonium formate, acetaldehyde and propanoaldehyde or salts thereof, hypophosphites, sulphites, tetrahydroborates, lithium tetraaluminohydride (LiAIH 4 ), sodium borohydride, polyhydroxybenzene such as hydroquinone and its derivatives, phenylenediamines and their derivatives, aminophenols and their derivatives, acids carboxylic acids and their derivatives such as ascorbic acid, citric acid, but not limited thereto.
Etapa R: Adicionar al menos un acomplejante pre-disuelto en el medio liquido de reacción en una concentración molar entre 0, 1 y 1 ,5 M a la mezcla de reacción de la etapa Q, donde el acomplejante es seleccionado entre moléculas quelantes mono-, bi- y/o tridentados; con dadores, aceptores o ambos; inorgánicos, orgánicos, o anfóteros; como aquellos con grupos carboxílicos, aminos, tioles, hidroxilo, cetónicos, nitro, sulfonicos, y/o haluros como ácidos carboxílicos y sus derivados, ácidos dicarboxílicos, ácidos carboxílicos insaturados, amoniaco (NH3), hidróxido de amonio, aminas primarias y secundarias. De los ácidos carboxílico y sus derivados se selecciona del grupo ácido ascórbico, ácido cítrico, ácidos carboxílicos alifáticos y aromáticos, como ácido benzoico, ácido fenilacético, pero no limitándose a estos. Además de los siguientes ácidos dicarboxílicos: ácido etanodioico, ácido propanodioico, ácido butanodioico, ácido pentanodioico, ácido hexanodioico, ácido heptanodioico, ácido octanodioico, ácido nonadioico, ácido decadioico, ácido butenodioico, ácido ftálico, ácido 2,4-difenilciclobutan-1 ,3- dicarboxílico, ácido 3,4- difenilciclobutan-1 ,2-dicarboxílico, pero no limitándose a estos. Así también el complejante secundario se puede seleccionar de ácidos carboxílicos insaturados: acrílico, crotónico, isocrotónico, sórbico, palmitoleico, sapiénico, oleico, eláidico, vaccénico, linoleico, linoeláidico, ácido cítrico, ácido tartárico, ácido cinámico, sin limitar a estos. Asimismo, las aminas primarias y secundarias se seleccionan de: isopropilamina, butilamina, pentilamina, hexilamina, heptilamina, octilamina, pero no limitándose a estos.  Step R: Add at least one pre-dissolved complexer in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of step Q, where the complexing agent is selected from mono-chelating molecules. , bi- and / or tridentados; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro, sulfonic, and / or halide groups such as carboxylic acids and their derivatives, dicarboxylic acids, unsaturated carboxylic acids, ammonia (NH3), ammonium hydroxide, primary and secondary amines. The carboxylic acids and their derivatives are selected from the group ascorbic acid, citric acid, aliphatic and aromatic carboxylic acids, such as benzoic acid, phenylacetic acid, but not limited thereto. In addition to the following dicarboxylic acids: ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonadioic acid, decadioic acid, butenediic acid, phthalic acid, 2,4-diphenylcyclobutan-1,3 acid - dicarboxylic acid, 3,4-diphenylcyclobutan-1,2-dicarboxylic acid, but not limited thereto. Also the secondary complexer can be selected from unsaturated carboxylic acids: acrylic, crotonic, isocrotonic, sorbic, palmitoleic, sapienic, oleic, elaidic, vaccenic, linoleic, linoelaidic, citric acid, tartaric acid, cinnamic acid, without limiting them. Also, the primary and secondary amines are selected from, but not limited to: isopropylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine.
Etapa S: Adicionar al menos un antioxidante pre-disuelto en medio liquido de reacción con una concentración molar entre 0,5 y 3 M en la mezcla de reacción de la etapa R; donde el antioxidante sea seleccionado entre ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico, monohidrato de hidracina y derivados, hidroxilamina y sus derivados, alcoholes monohídricos como metanol, etanol, aldehidos como formaldehido, formato de amonio, acetaldehído y propanoaldehido o sales de estos, hipofosfitos y agentes antioxidantes similares.  Step S: Add at least one antioxidant pre-dissolved in liquid reaction medium with a molar concentration between 0.5 and 3 M in the reaction mixture of step R; wherein the antioxidant is selected from carboxylic acids and their derivatives such as ascorbic acid, citric acid, hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehydes such as formaldehyde, ammonium formate, acetaldehyde and propanoaldehyde or salts of these, hypophosphites and similar antioxidant agents.
Etapa T: Detener la reacción de la etapa S enfriando a una temperatura entre 0°C-25°C manteniendo la agitación en el rango de 5 a 10.000 rpm. Etapa U: Madurar la mezcla de la etapa T por un tiempo de 1 min a 15 días, a una temperatura de 5°C a 70°C con y/o sin agitación en el rango de 5 a 10.000 rpm. Step T: Stop the reaction of step S by cooling to a temperature between 0 ° C-25 ° C keeping the agitation in the range of 5 to 10,000 rpm. Step U: Ripen the mixture of step T for a time of 1 min to 15 days, at a temperature of 5 ° C to 70 ° C with and / or without agitation in the range of 5 to 10,000 rpm.
Etapa V: Lavar las nanopartículas compuestas obtenidas de la etapa U por centrifugación y/o diálisis con al menos un solvente seleccionado de entre agua, preferiblemente desionizada, solventes monopróticos como metanol, etanol, isopropanol, acetona, solventes apolares de bajo punto de ebullición o una mezcla de estos, pero no limitándose a estos.  Step V: Wash the composite nanoparticles obtained from step U by centrifugation and / or dialysis with at least one solvent selected from water, preferably deionized, monoprotic solvents such as methanol, ethanol, isopropanol, acetone, low-boiling apolar solvents or a mixture of these, but not limited to these.
Con este método se obtienen nanopartículas de cobre entre los 1 nm a los 200 nm, como se muestra en la figura 2. El tamaño de las nanopartículas puede ser regulado variando la relación molar entre la fuente de iones de cobre, la fuente de iones del metal secundario, la cantidad y el tipo de estabilizante, los agentes acomplejantes, la temperatura de reacción, y el pH de la solución.  With this method, copper nanoparticles are obtained between 1 nm and 200 nm, as shown in Figure 2. The size of the nanoparticles can be regulated by varying the molar ratio between the source of copper ions, the ion source of the secondary metal, the amount and type of stabilizer, the complexing agents, the reaction temperature, and the pH of the solution.
Como fuente de iones de cobre se pueden usar todas las sales de cobre (I) y cobre (II).  All copper (I) and copper (II) salts can be used as copper ion source.
Como estabilizantes se pueden usar moléculas anfifilicas (surfactantes) o polímeros como el PVP o el quitosano.  As stabilizers, amphiphilic molecules (surfactants) or polymers such as PVP or chitosan can be used.
Como fuente del metal secundario se selecciona de al menos un elemento metálico de los grupos del III A al V A y del I B al VIII B de la tabla periódica de elementos. El metal secundario puede ser seleccionado del grupo: de Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge, Ga, Se, Te, Cd, Si, Bi, In, Al, Re y/o Mo y mezclas, aleaciones y cocristales de al menos uno de estos elementos. La fuente de iones del metal secundario se selecciona de las sales de metales, óxidos de metales, hidraxidos, hldróxldos, o sales binarias y especies Organometálicos, compuestos iónicos o covalentes, compuestos de coordinación, compósitos híbridos y/o electrodos metálicos, entre otros.  As a source of the secondary metal, at least one metal element is selected from the groups of III A to V A and from I B to VIII B of the periodic table of elements. The secondary metal can be selected from the group: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge, Ga, Se, Te, Cd, Si, Bi, In, Al, Re and / or Mo and mixtures, alloys and co-crystals of at least one of these elements. The ion source of the secondary metal is selected from the salts of metals, metal oxides, hydraxides, hydroxides, or binary salts and Organometallic species, ionic or covalent compounds, coordination compounds, hybrid composites and / or metal electrodes, among others.
Como reductores se pueden utilizar hidruros de metales alcalinos, hidracina, ácido ascórbico, entre otros.  As reducing agents can be used hydrides of alkaline metals, hydrazine, ascorbic acid, among others.
Como agentes antioxidantes, se utiliza el ácido ascórbico, el citrato de sodio y moléculas pequeñas dadoras.  As antioxidants, ascorbic acid, sodium citrate and small donor molecules are used.
Como ejemplo específico de este método, a continuación, se describe una síntesis para NPs de 10-30nm.  As a specific example of this method, a synthesis for NPs of 10-30nm is described below.
Ejemplo Example
En un recipiente cerrado herméticamente y bajo atmosfera de argón, se disuelve 0,9983 g de Cu(CH3COO)2 con 20 mL de agua destilada, que se mezclan con 25 mL de una solución de Bi(N03)3 0, 1 M; separadamente se disuelven 2,7750 g de PVP (140 kD) con 20 mL de agua destilada. Se mezclan ambas soluciones, manteniendo la mezcla bajo agitación magnética durante 30 min. Se adicionan 2,989 mL de NH3 (25%). La solución se torna azul profundo por la formación del tetraamincobre (II). Para evitar formación de espuma, se adicionan 0,01 mL de 1- octanol. Se adicionan 0,5675 g de NaBH4 disueltos en 10 mL de agua. La solución adquiere un color negruzco que vira lentamente a rojizo hasta alcanzar un color rojo burdeos con formación controlada de espuma en la superficie. La reacción se deja avanzar por 60 minutos. Tras ello se adicionan 0,8806 g de ácido ascórbico predisuelto en 5 mL de agua destilada y 1 ,4705 g de citrato de sodio predisuelto en 5 mL de agua destilada. Se mantiene la agitación magnética por 1 hora a temperatura ambiente. Las nanopartículas compuestas se pueden lavar por centrifugación. In a sealed container and under an argon atmosphere, 0.9983 g of Cu (CH3COO) 2 is dissolved with 20 mL of distilled water, which is mixed with 25 mL of a 0.1 M Bi (N03) 3 solution; separately dissolve 2.7750 g of PVP (140 kD) with 20 mL of distilled water. Mix both solutions, keeping the mixture under magnetic stirring for 30 min. 2.989 mL of NH3 (25%) are added. The solution becomes deep blue due to the formation of tetraamincobre (II). To avoid foaming, 0.01 mL of 1- octanol is added. 0.5675 g of NaBH4 dissolved in 10 mL of water are added. The solution acquires a blackish color that turns slowly to reddish until it reaches a burgundy red color with controlled formation of foam on the surface. The reaction is allowed to advance for 60 minutes. After that, 0.8806 g of ascorbic acid pre-dissolved in 5 mL of distilled water and 1.4705 g of sodium citrate pre-dissolved in 5 mL of distilled water are added. Magnetic stirring is maintained for 1 hour at room temperature. The composite nanoparticles can be washed by centrifugation.
Distribución de componentes en las nanopartículas compuestas. Distribution of components in the composite nanoparticles.
La distribución metálica de las nanopartículas compuestas depende principalmente del método de síntesis, pero también de la naturaleza del metal. En general el método bimetálico origina mezclas más íntimas entre los dos metales o “nanoaleaciones”, como se muestran en las figuras 3 a 5.  The metal distribution of the composite nanoparticles depends mainly on the synthesis method, but also on the nature of the metal. In general, the bimetallic method results in more intimate mixtures between the two metals or "nanoalloys", as shown in Figures 3 to 5.
Tintas de nanopartículas compuestas o bimetálicas.  Composite or bimetallic nanoparticle inks.
La regulación de las condiciones de síntesis de las nanopartículas compuestas, particularmente del tiempo de maduración, permite obtener suspensiones estables a la oxidación prematura, así como a la aglomeración, con concentraciones de metal (entre 5 y 50%) adecuadas para procesos de impresión. Los productos de las preparaciones descritas separados por centrifugación y re-dispersos en agua o solventes adecuados tienen tamaños en el rango 10-70 nm y carga superficial óptimos para impresión por inyección u otro tipo de deposición, como se muestran en las figuras 6 a 8.  The regulation of the synthesis conditions of the composite nanoparticles, particularly the ripening time, allows to obtain stable suspensions to the premature oxidation, as well as to the agglomeration, with metal concentrations (between 5 and 50%) suitable for printing processes. The products of the described preparations separated by centrifugation and re-dispersed in water or suitable solvents have sizes in the range 10-70 nm and optimum surface charge for printing by injection or other type of deposition, as shown in figures 6 to 8 .
Conductividad eléctrica de nanopartículas bimetálicas Electrical conductivity of bimetallic nanoparticles
Para los estudios de conductividad eléctrica se utilizan depósitos dip coating sobre vidrio de las tintas a base de las nanopartículas compuestas y, también de NPs de cobre puro como referencia. Las muestras son sinterizadas durante una hora a diferentes temperaturas, en el rango 100°C- 800 °C en horno horizontal con flujo de argón. La conductividad eléctrica se mide por el método de 4 puntas, evaluando la resistividad superficial (W/sq), como se muestra en las figuras 9 y 10.  For electrical conductivity studies, dip coating on glass of the inks based on the composite nanoparticles and also of pure copper NPs are used as reference. The samples are sintered for one hour at different temperatures, in the range 100 ° C-800 ° C in horizontal furnace with argon flow. The electrical conductivity is measured by the 4-point method, evaluating the surface resistivity (W / sq), as shown in figures 9 and 10.
Penetración de cobre en silicio  Silicon copper penetration
Para evaluar el grado de difusión del cobre en silicio se preparan tintas de nanopartículas compuestas (30-40% m/m). El sustrato, silicio, se limpia por el método RCA, eliminado además la capa de Si02. La aplicación de la tinta sobre el sustrato limpio se realiza formando una capa delgada de la suspensión mediante la técnica spin coating, i.e. dispersión por rotación a alta velocidad (2000 rpm). El proceso se repite sucesivas veces hasta lograr capas homogéneas y reproducibles. Para las medidas de conductividad se utiliza vidrio en lugar de silicio. To evaluate the diffusion degree of copper in silicon, composite nanoparticle inks (30-40% m / m) are prepared. The substrate, silicon, is cleaned by the RCA method, also removing the Si02 layer. The application of the ink on the clean substrate is done by forming a thin layer of the suspension using the spin coating technique, ie dispersion by rotation at high speed (2000 rpm). The process Repeat several times until you achieve homogenous and reproducible layers. For the conductivity measurements glass is used instead of silicon.
La determinación del grado de difusión del cobre desde las nanopartículas compuestas, se realiza mediante la determinación directa del perfil de la concentración de cobre en el silicio. Se utilizan técnicas analíticas del más alto grado de sensibilidad disponible; esto es, Espectroscopia de fotoelectrones emitidos por rayos X (XPS) y microanálisis por Rayos X (EDS).  The determination of the degree of diffusion of copper from the composite nanoparticles is made by direct determination of the profile of the copper concentration in silicon. Analytical techniques of the highest degree of available sensitivity are used; This is, Spectroscopy of photoelectrons emitted by X-rays (XPS) and X-ray microanalysis (EDS).
Los análisis XPS, que se enseñan en la figura 11 , muestran que bajo condiciones de estrés térmico (800 °C) el cobre difunde en el silicio, independientemente del metal secundarios (M1-M3) utilizado, difunde hacia el silicio, aunque si en diferentes proporciones. Sin embargo, esa temperatura sobrepasa con creces aquellas usualmente utilizadas en aplicaciones, por ejemplo, las empleadas en el campo de las celdas solares (máximo 300°C). De hecho, experimentos realizados con una rampa de calentamiento más baja evidencian el mejor comportamiento de uno de los metales secundarios seleccionados, como se enseña en la figura 12. Este método muestra además que existe un proceso de segregación previo del metal secundario que lleva a la formación de una barrera que disminuye la difusión de cobre en silicio.  The XPS analyzes, shown in Figure 11, show that under conditions of thermal stress (800 ° C) copper diffuses into silicon, regardless of the secondary metal (M1-M3) used, diffuses to silicon, although in different proportions. However, that temperature far exceeds those usually used in applications, for example, those used in the field of solar cells (maximum 300 ° C). In fact, experiments performed with a lower heating ramp show the best behavior of one of the selected secondary metals, as shown in figure 12. This method also shows that there is a process of prior segregation of the secondary metal that leads to the formation of a barrier that decreases the diffusion of copper in silicon.

Claims

REIVINDICACIONES
1.- Un método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, para el revestimiento con nanopartículas más pequeñas del metal secundario, CARACTERIZADO porque comprende las siguientes etapas: 1.- A bimetallic method for the construction of metallic copper nanoparticles (NPs), for the coating with smaller nanoparticles of the secondary metal, CHARACTERIZED because it comprises the following stages:
A) Disolver en un recipiente al menos una fuente de iones de cobre como por ejemplo una sal, oxido o hidróxido de cobre en un solvente de reacción hasta lograr una concentración molar de 0,1 M a 3,0 M, y mantener agitación en el rango de 5 a 10.000 rpm por un tiempo entre 1 min y 24 horas;  A) Dissolve in a container at least one source of copper ions such as a copper salt, oxide or hydroxide in a reaction solvent until a molar concentration of 0.1 M to 3.0 M is reached, and stir in the range from 5 to 10,000 rpm for a time between 1 min and 24 hours;
B) Adicionar al menos un acomplejante pre-disuelto en el medio liquido de reacción en una concentración molar entre 0,1 y 1 ,5 M a la mezcla de reacción de la etapa A;  B) Addition of at least one pre-dissolved complexing agent in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of stage A;
C) Adicionar un regulador de pH a la mezcla de reacción de la etapa B, hasta ajustar la mezcla a un pH que aumente la solvatación del metal y éste se encuentre en solución;  C) Add a pH regulator to the reaction mixture of stage B, until the mixture is adjusted to a pH that increases the solvation of the metal and it is in solution;
D) Mezclar la solución preparada en la etapa C .con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas, para preparar una disolución 1 ;  D) Mix the solution prepared in step C with stirring in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours, to prepare a solution 1;
E) Disolver en otro recipiente al menos una fuente de iones del metal secundario reductible en un solvente de reacción hasta lograr una concentración molar 0,1 M a 3 M con agitación en el rango de 5 a 10.000 rpm y mantener por un tiempo entre 1 min y 24 horas;  E) Dissolve in another vessel at least one ion source of the secondary metal reducible in a reaction solvent until achieving a molar concentration of 0.1 M to 3 M with stirring in the range of 5 to 10,000 rpm and maintain for a time between 1 min and 24 hours;
F) Adicionar al menos un acomplejante pre-disuelto en el medio liquido de reacción en una concentración molar entre 0,1 y 1 ,5 M a la mezcla de reacción de la etapa E;  F) Addition of at least one pre-dissolved complexing agent in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of step E;
G) Adicionar un regulador de pH a la mezcla de reacción de la etapa F, hasta ajustar la mezcla a un pH que aumente la solvatación del metal y éste se encuentre en solución;  G) Add a pH regulator to the reaction mixture from step F, until the mixture is adjusted to a pH that increases the solvation of the metal and it is in solution;
H) Mezclar la solución preparada en la etapa G con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; para preparar una dilución 2; I) Mezclar la disolución 1 preparada en la etapa D con la disolución 2 preparada en la etapa H en un reactor herméticamente cerrado y libre de oxígeno, con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; H) Mix the solution prepared in step G with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours; to prepare a dilution 2; I) Mix solution 1 prepared in step D with solution 2 prepared in step H in a hermetically sealed reactor free of oxygen, with stirring in the range of 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours;
J) Adicionar a la mezcla de reacción de la etapa I al menos un agente estabilizante hasta lograr una concentración molar de 0,5 a 20 M;  J) Add at least one stabilizing agent to the reaction mixture of step I until a molar concentration of 0.5 to 20 M is obtained;
K) Mezclar la solución preparada en la etapa J con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas;  K) Mix the solution prepared in step J with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours;
L) Adicionar un regulador de pH a la mezcla de reacción de la etapa K, hasta ajustar la mezcla a un pH que aumente la solvatación de los iones metálicos y éstos se encuentre en solución;  L) Add a pH regulator to the reaction mixture of stage K, until the mixture is adjusted to a pH that increases the solvation of the metal ions and these are in solution;
M) Adicionar a la mezcla de reacción de la etapa L un acomplejante en una concentración molar 0, 1 M a 12 M con agitación en el rango de 5 a 10.000 rpm por un tiempo entre 1 min y 24 horas;  M) Add to the reaction mixture of step L a complexing agent in a 0.1 M to 12 M molar concentration with agitation in the range of 5 to 10,000 rpm for a time between 1 min and 24 hours;
N) Adicionar un antiespumante a la mezcla de reacción de la etapa M en una concentración no mayor de 5% del total de la mezcla y calentar la mezcla de reacción entre 10 y 120°C con agitación en el rango de 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; N) Add an antifoam to the reaction mixture of stage M in a concentration not greater than 5% of the total mixture and heat the reaction mixture between 10 and 120 ° C with agitation in the range of 5 to 10,000 rpm per a homogenization time between 1 min and 24 hours;
O) Mezclar la solución preparada en la etapa N con agitación en el rango de entre 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; O) Mix the solution prepared in step N with agitation in the range of between 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours;
P) Establecer la temperatura de la mezcla de reacción preparada en la etapa O entre -10°C a 120°C, dependiendo del metal, de los aditivos y del medio líquido de reacción;  P) Set the temperature of the reaction mixture prepared in step O between -10 ° C to 120 ° C, depending on the metal, the additives and the liquid reaction medium;
Q) Adicionar en agitación en el rango de 5 a 10.000 rpm al menos un reductor a la mezcla de reacción de la etapa P que se encuentra en una concentración molar entre 0, 1 M y 3 M y mantener agitación en el rango de 5 a 10.000 rpm de la mezcla de reacción por un tiempo entre 1 min y 24 horas;  Q) Add in agitation in the range of 5 to 10,000 rpm at least one reducer to the reaction mixture of stage P which is in a molar concentration between 0.1 M and 3 M and maintain agitation in the range of 5 to 10,000 rpm of the reaction mixture for a time between 1 min and 24 hours;
R) Adicionar al menos un acomplejante pre-disuelto en el medio liquido de reacción en una concentración molar entre 0, 1 y 1 ,5 M a la mezcla de reacción de la etapa Q;  R) Addition of at least one pre-dissolved complexer in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of step Q;
S) Adicionar al menos un antioxidante pre-disuelto en medio liquido de reacción con una concentración molar entre 0,5 y 3 M en la mezcla de reacción de la etapa R; S) Add at least one antioxidant pre-dissolved in liquid medium of reaction with a molar concentration between 0.5 and 3 M in the reaction mixture of step R;
T) Detener la reacción de la etapa S enfriando a una temperatura entre 0°C-25°C manteniendo la agitación en el rango de 5 a 10.000 rpm;  T) Stop the reaction of step S by cooling to a temperature between 0 ° C-25 ° C keeping the agitation in the range of 5 to 10,000 rpm;
U) Madurar la mezcla de la etapa T por un tiempo de 1 min a 15 días, a una temperatura de 5°C a 70°C con y/o sin agitación en el rango de 5 a 10.000 rpm; y  U) Ripen the mixture of step T for a time of 1 min to 15 days, at a temperature of 5 ° C to 70 ° C with and / or without agitation in the range of 5 to 10,000 rpm; Y
V) Lavar las nanopartículas compuestas obtenidas de la etapa U por centrifugación y/o diálisis con al menos un solvente seleccionado de entre agua, preferiblemente desionizada, solventes monopróticos como metanol, etanol, isopropanol, acetona, solventes apolares de bajo punto de ebullición o una mezcla de estos.  V) Wash the composite nanoparticles obtained from step U by centrifugation and / or dialysis with at least one solvent selected from water, preferably deionized, monoprotic solvents such as methanol, ethanol, isopropanol, acetone, low-boiling apolar solvents or a mix of these.
2.- El método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, según la reivindicación 1 , CARACTERIZADO porque en la etapa A) la sal de cobre es seleccionada a partir de Cloruro de cobre (I) (CuCI), Cloruro de cobre (II) (CuCI2), Cianuro de cobre (I) (CuCN), Sulfato de cobre (CuS04), nitrato de cobre (Cu(N03)2), acetato de cobre (CH3COO)2Cu, Carbonato de cobre (CUCO3), acetilacetonato de cobre C5H7Cu02, perclorato de cobre (II) Cu(CIC04)2, estearato de cobre (II) , etilendiamina de cobre (II), trifluoroacetilacetonato de cobre (II), hexafluoroacetilacetonato de cobre (ll),formiato de cobre (ll),metacrilato de cobre (II), neodecanoato de cobre (ll),etilhexanoato de cobre ( 11 ) , trif I u roacetato de cobre (II), y otras fuentes de cobre tales como, oxido de cobre (I) (Cu20), oxido de Cobre (II) (CuO), hidróxido de cobre (ll)(CuOH)2. 2.- The bimetallic method for the construction of metallic copper nanoparticles (NPs), according to claim 1, CHARACTERIZED because in stage A) the copper salt is selected from copper chloride (I) (CuCl), Chloride copper (II) (CuCI 2 ), copper (I) cyanide (CuCN), copper sulfate (CuS0 4 ), copper nitrate (Cu (N0 3 ) 2 ), copper acetate (CH 3 COO) 2 Cu , Copper carbonate (CUCO 3 ), copper acetylacetonate C 5 H 7 Cu0 2 , copper (II) perchlorate Cu (CIC0 4 ) 2 , copper stearate (II), copper (II) ethylenediamine, copper trifluoroacetylacetonate ( II), copper hexafluoroacetylacetonate (ll), copper formate (ll), copper methacrylate (II), copper neodecanoate (ll), copper ethylhexanoate (11), copper triflute (II), and others copper sources such as, copper (I) oxide (Cu 2 0), copper oxide (II) (CuO), copper hydroxide (ll) (CuOH) 2 .
3.- El método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en las etapas B), F) y R), el acomplejante es seleccionado entre moléculas quelantes mono-, b¡- y/o tridentados; con dadores, aceptores o ambos; inorgánicos, orgánicos, o anfóteros; como aquellos con grupos carboxílicos, aminos, tioles, hidroxilo, cetónicos, nitro, sulfonicos, y/o haluros como ácidos carboxílicos y sus derivados, ácidos dicarboxílicos, ácidos carboxílicos insaturados, amoniaco (NH3), hidróxido de amonio, aminas primarias y secundarias; y de los ácidos carboxílico y sus derivados se selecciona del grupo ácido ascórbico, ácido cítrico, ácidos carboxílicos alifáticos y aromáticos, como ácido benzoico, ácido fenilacético; además de los siguientes ácidos dicarboxílicos: ácido etanodioico, ácido propanodioico, ácido butanodioico, ácido pentanodioico, ácido hexanodioico, ácido heptanodioico, ácido octanodioico, ácido nonadioico, ácido decadioico, ácido butenodioico, ácido ftálico, ácido 2,4-difenilciclobutan-1 ,3- dicarboxílico, ácido 3,4-difenilciclobutan- 1 ,2-dicarboxílico; Así también el acomplejante se puede seleccionar de ácidos carboxílicos insaturados: acrílico, crotónico, isocrotónico, sórbico, palmitoleico, sapiénico, oleico, eláidico, vaccénico, linoleico, linoeláidico, ácido cítrico, ácido tartárico, ácido cinámico, y asimismo, las aminas primarias y secundarias se seleccionan de: isopropilamina, butilamina, pentilamina, hexilamina, heptilamina, octilamina. 3. The bimetallic method for the construction of metallic copper nanoparticles (NPs), according to the previous claims, CHARACTERIZED because in stages B), F) and R), the complexing agent is selected from mono-, b-- and / or tridentados; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro, sulfonic, and / or halide groups such as carboxylic acids and their derivatives, dicarboxylic acids, unsaturated carboxylic acids, ammonia (NH3), ammonium hydroxide, primary amines and high schools; and the carboxylic acids and their derivatives are selected from the group ascorbic acid, citric acid, aliphatic and aromatic carboxylic acids, such as benzoic acid, phenylacetic acid; in addition to the following dicarboxylic acids: ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonadioic acid, decadioic acid, butenedioic acid, phthalic acid, 2,4-diphenylcyclobutan-1,3 acid - dicarboxylic acid, 3,4-diphenylcyclobutane-1,2-dicarboxylic acid; Also, the complexing agent can be selected from unsaturated carboxylic acids: acrylic, crotonic, isocrotonic, sorbic, palmitoleic, sapienic, oleic, elaidic, vaccenic, linoleic, linoelaidic, citric acid, tartaric acid, cinnamic acid, and likewise, the primary amines and Secondary are selected from: isopropylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine.
4.- El método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa C) el regulador puede ser álcalis, ácidos o soluciones tampón o buffer de pH, débiles o fuertes, o mezclas de ellos; y en caso de álcalis se selecciona entre hidróxido de sodio (NaOH), hidróxido de potasio (KOH), hidróxido de litio (LiOH), hidróxido de magnesio (Mg(OH)2), hidróxido de bario (Ba(OH)2), hidróxido de calcio (Ca(OH)2) incluyendo bases de Arrhenius; y en caso de ácidos pueden ser monoproticos o diproticos, orgánicos o inorgánicos. 4. The bimetallic method for the construction of metallic copper nanoparticles (NPs), according to the previous claims, CHARACTERIZED because in step C) the regulator can be alkalis, acids or buffer solutions or pH buffer, weak or strong, or mixtures of them; and in the case of alkalis, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2) are selected. , calcium hydroxide (Ca (OH) 2) including Arrhenius bases; and in case of acids they can be monoprotic or diprotic, organic or inorganic.
5.- El método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa E) el metal secundario se selecciona de al menos un elemento metálico de los grupos del III A al V A y del I B al VIII B de la tabla periódica de elementos, y el metal secundario puede ser seleccionado del grupo: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge, Ga, Se, Te, Cd, Si, Bi, In, Al, Re y/o Mo y mezclas, aleaciones y cocristales de al menos uno de estos elementos, y la fuente de iones del metal secundario se selecciona de las sales de metales, óxidos de metales, hidraxidos, hidróxidos, o sales binarias y especies Organometálicos, compuestos iónicos o covalentes, compuestos de coordinación, compósitos híbridos y/o electrodos metálicos. 5. The bimetallic method for the construction of metallic copper nanoparticles (NPs), according to the previous claims, CHARACTERIZED because in the step E) the secondary metal is selected from at least one metallic element of the groups of III A to VA and from IB to VIII B of the periodic table of elements, and the secondary metal can be selected from the group: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Go, Ru, Ta, Os, Sn, Sb, Ge, Ga, Se, Te, Cd, Si, Bi, In, Al, Re and / or Mo and mixtures, alloys and co-crystals of at least one of these elements, and the ion source of the secondary metal is selected from the salts of metals, metal oxides, hydraxides, hydroxides, or binary salts and organometallic species, ionic or covalent compounds, coordination compounds, hybrid composites and / or metal electrodes.
6.- El método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en las etapas G) y L) el regulador puede ser álcalis, ácidos o soluciones tampón o buffer de pH, débiles o fuertes, o mezclas de ellos; y en caso de álcalis se selecciona entre hidróxido de sodio (NaOH), hidróxido de potasio (KOH), hidróxido de litio (LiOH), hidróxido de magnesio (Mg(OH)2), hidróxido de bario (Ba(OH)2), hidróxido de calcio (Ca(OH)2) incluyendo bases de Arrhenius; y en caso de ácidos pueden ser monoproticos o diproticos, orgánicos o inorgánicos.6.- The bimetallic method for the construction of metallic copper nanoparticles (NPs), according to the previous claims, CHARACTERIZED because in stages G) and L) the regulator can be alkalis, acids or buffer solutions or pH buffer, weak or strong, or mixtures of them; and in the case of alkalis, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ) are selected. , calcium hydroxide (Ca (OH) 2 ) including Arrhenius bases; and in case of acids they can be monoprotic or diprotic, organic or inorganic.
7.- El método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa J) el estabilizante que debe ser soluble y/o dispersable en el medio liquido de trabajo, puede ser seleccionado entre moléculas anfifilicas, surfactantes o polímeros; las Moléculas anfifilicas que contengan grupos carboxíl, carbonil, amino, amido, amonium, tiol, hidroxil, cetónico, ester, éter, nitro, sulfonil, fosfatos, boratos, haluros o mezcla de ellos, con grupos apolares como alifáticos, aromáticos o mezcla de ellos Polímeros como poli(vinilpirrolidona) (PVP), polivinil alcohol, policarbonatos, polifenoles, polietilenglicol y polioles como etilenglicol, dietilenglicol, tri-etilenglicol, propilenglicoles, alquildioles como butanodioles, dipropilenglicol y polietilenglicoles, quitosano y sus derivados, poliácidos y derivados de estos, mercaptoalcanoatos, y ácidos oxibenzoicos; aquí, los poliácidos incluyendo uno cualquiera o más de los seleccionados de un grupo de ácido poli(acrílico), acido poli(maleico), poli(metil metacrilato), poli(ácido acrílico-co-ácido metacrílico), poli(ácido maleico-co-ácido acrílico), y poli(acrilamida-co-ácido coacrílico); acetatos de celulosa, polivinilacetatos, polisulfona, polifenilsulfonas, polietersulfonas, policetonas, polietercetonas, poliésteres, poliacetatos, polímeros y copolímeros de dos o más de estos; y los derivados incluyendo entre otros uno cualquiera o más de los seleccionados de un grupo de sales de amonio, sodio o potasio de los poliácidos, polímeros inorgánicos tipo fosfacenos y donde una molécula modificante es seleccionada del grupo de moléculas alifáticas y/o aromáticas, con 2 o más átomos de carbono, que puede incluir átomos de oxígeno, nitrógeno, azufre, fosforo o varios de ellos, con uno o más grupos funcionales, que además pueden ser complejos organometálicos, clústers o mezcla de átomos, grupos funcionales homo- y heteronucleares, y moléculas con propiedades químicas y física definidas. 7.- The bimetallic method for the construction of metallic copper nanoparticles (NPs), according to the previous claims, CHARACTERIZED because in stage J) the stabilizer that must be soluble and / or dispersible in the liquid working medium, can be selected between amphiphilic molecules, surfactants or polymers; Amphiphilic molecules containing carboxyl, carbonyl, amino, amido, ammonium, thiol, hydroxyl, ketonic, ester, ether, nitro, sulfonyl, phosphate, borate, halide or mixture thereof, with apolar groups such as aliphatic, aromatic or mixed them Polymers such as poly (vinylpyrrolidone) (PVP), polyvinyl alcohol, polycarbonates, polyphenols, polyethylene glycol and polyols such as ethylene glycol, diethylene glycol, tri-ethylene glycol, propylene glycols, alkyldiols such as butanediols, dipropylene glycol and polyethylene glycols, chitosan and its derivatives, polyacids and derivatives thereof , mercaptoalkanoates, and oxybenzoic acids; herein, the polyacids including any one or more of those selected from a group of poly (acrylic acid), poly (maleic acid), poly (methyl methacrylate), poly (acrylic acid-co-methacrylic acid), poly (maleic acid- co-acrylic acid), and poly (acrylamide-co-coacrylic acid); cellulose acetates, polyvinylacetates, polysulfone, polyphenylsulphones, polyethersulfones, polyketones, polyetherketones, polyesters, polyacetates, polymers and copolymers of two or more of these; and the derivatives including among others any one or more of those selected from a group of ammonium, sodium or potassium salts of the polyacids, inorganic polymers of the phosphazene type and wherein a modifying molecule is selected from the group of aliphatic and / or aromatic molecules, with 2 or more carbon atoms, which may include atoms of oxygen, nitrogen, sulfur, phosphorus or several of them, with one or more functional groups, which may also be organometallic complexes, clusters or mixture of atoms, homo- and functional groups heteronuclear, and molecules with defined chemical and physical properties.
8.- El método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa M) el acomplejante primario y el acomplejante secundario son seleccionados entre moléculas quelantes mono-, bi- y/o tridentados; con dadores, aceptares o ambos; inorgánicos como amoniaco (NH3) e hidróxido de amonio, orgánicos, o anfóteros; como aquellos con grupos carboxílicos, tioles, hidroxilo, cetónicos, nitro, sulfonicos, y/o haluros como ácidos carboxílicos; aminas primarias y secundarias: isopropilamina, butilamina, pentilamina, hexNamina heptilamina, octilamina, nonilamina, decilamina, undecilamina, dodecilamina, tridecilamina, tetradecilamina, pentadecilamina, hexadecilamina, heptadecilamina, octadecilamina, dietilamina, dipropilamina, dibutilamina, dipentilamina, dihexilamina, diheptilamina, dioctilamina, además, terbutilamina, anilina, o cualquier bases de Schiff. 8. The bimetallic method for the construction of metallic copper nanoparticles (NPs), according to the previous claims, CHARACTERIZED because in stage M) the primary complexing agent and the secondary complexing agent are selected from mono-, bi- and / or chelating molecules. tridentates; with givers, acceptors or both; inorganic such as ammonia (NH 3 ) and ammonium hydroxide, organic, or amphoteric; as those with carboxylic groups, thiols, hydroxyl, ketones, nitro, sulfonics, and / or halides such as carboxylic acids; primary and secondary amines: isopropylamine, butylamine, pentylamine, hexNamine heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, in addition, terbutylamine, aniline, or any Schiff bases.
9.- El método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa N) el antiespumante se selecciona de alcoholes de alto peso molar como hexanol, 1 -heptanol, 1 -octanol, 1 -nonanol, 1 -decanol, 1-undecanol, 1 - dodecanol, 1 -tridecanol, 1-tetradecanol, 1 - pentadecanol, 1 -hexadecanol, 1 - heptadecanol, 1 -octadecanol y cualquiera de estos con ramificaciones en su cadena principal; además, se seleccionan de alcoholes aromáticos, y cualquier antiespumante para sistemas de base acuosa como antiespumantes a base de polisiloxanos, a base de aceite mineral, a base de aceite vegetal, y a base de polímeros.  9.- The bimetallic method for the construction of metallic copper nanoparticles (NPs), according to the previous claims, CHARACTERIZED because in stage N) the antifoam is selected from high molar alcohols such as hexanol, 1-heptanol, 1-octanol , 1 -nonanol, 1 -decanol, 1-undecanol, 1-dodecanol, 1 -tridecanol, 1-tetradecanol, 1-pentadecanol, 1-hexadecanol, 1-heptadecanol, 1 -octadecanol and any of these with branches in its main chain ; in addition, they are selected from aromatic alcohols, and any defoamer for water-based systems such as defoamers based on polysiloxanes, based on mineral oil, based on vegetable oil, and based on polymers.
10.- El método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa Q) el reductor se selecciona de entre monohidrato de hidracina y derivados, hidroxilamina y sus derivados,, alcoholes monohídricos como metanol, etanol, aldehido como formaldehido, formiato de amonio, acetaldehído y propanoaldehido o sales de estos, hipofosfitos, sulfitos, tetrahídroboratos, tetraalumínohídruro de litio (LiAIH4), borohidruro de sodio, polihidroxibenceno como hidroquinona y sus derivados, fenilendiaminas y sus derivados, aminofenoles y sus derivados, ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico. 10. The bimetallic monohydric method for the construction of nanoparticles (NPs) of metallic copper, according to previous claims, wherein in step Q) the reductant is selected from hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, alcohols such as methanol, ethanol, aldehyde such as formaldehyde, ammonium formate, acetaldehyde and propanoaldehyde or salts thereof, hypophosphites, sulfites, tetrahydroborates, lithium tetraaluminohydride (LiAIH 4 ), sodium borohydride, polyhydroxybenzene such as hydroquinone and its derivatives, phenylenediamines and their derivatives , aminophenols and their derivatives, carboxylic acids and their derivatives as ascorbic acid, citric acid.
11.- El método bimetálico para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa S) el antioxidante sea seleccionado entre ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico, monohidrato de hidracina y derivados, hidroxilamina y sus derivados, alcoholes monohídricos como metanol, etanol, aldehidos como formaldehido, formato de amonio, acetaldehído y propanoaldehido o sales de estos, hipofosfitos y agentes antioxidantes similares. 11. The bimetallic method for the construction of metallic copper nanoparticles (NPs), according to the previous claims, CHARACTERIZED because in step S) the antioxidant is selected from carboxylic acids and their derivatives as ascorbic acid, citric acid, hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehydes such as formaldehyde, ammonium formate, acetaldehyde and propanoaldehyde or salts thereof, hypophosphites and similar antioxidant agents.
12.- Nanopartículas (NPs) de cobre metálico, para el revestimiento con nanopartículas más pequeñas del metal secundario, CARACTERIZADO porque se obtienen con el método bimetálico de las reivindicaciones 1 a 1 1 .  12.- Nanoparticles (NPs) of metallic copper, for the coating with smaller nanoparticles of the secondary metal, CHARACTERIZED because they are obtained with the bimetallic method of claims 1 to 11.
13.- Uso de nanopartículas (NPs) de cobre metálico, para el revestimiento con nanopartículas más pequeñas del metal secundario, CARACTERIZADO porque se obtienen con el método bimetálico de las reivindicaciones 1 a 1 1 . 13.- Use of metallic copper nanoparticles (NPs), for the coating with smaller nanoparticles of the secondary metal, CHARACTERIZED because they are obtained with the bimetallic method of claims 1 to 11.
PCT/CL2018/000040 2017-12-29 2018-12-20 Bimetal method for constructing nanoparticles (nps) of metallic copper for coating with smaller nanoparticles of secondary metal WO2019126882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2017003488A CL2017003488A1 (en) 2017-12-29 2017-12-29 Bimetallic method for the construction of nanoparticle (nps) of metallic copper, for coating with smaller nanoparticles of the secondary metal.
CL3488-2017 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019126882A1 true WO2019126882A1 (en) 2019-07-04

Family

ID=63046460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/000040 WO2019126882A1 (en) 2017-12-29 2018-12-20 Bimetal method for constructing nanoparticles (nps) of metallic copper for coating with smaller nanoparticles of secondary metal

Country Status (2)

Country Link
CL (1) CL2017003488A1 (en)
WO (1) WO2019126882A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001418A2 (en) * 2004-11-17 2007-01-04 Headwaters Technology Innovation Llc Multicomponent nanoparticles formed using a dispersing agent
CN101007344A (en) * 2007-02-01 2007-08-01 北京化工大学 Preparation method of nanometer copper-silver bimetallic composite powder
CN101259531A (en) * 2008-03-31 2008-09-10 河南大学 Surface finish nano copper/copper alloy particles and preparation thereof
US20120091401A1 (en) * 2010-10-14 2012-04-19 Toshiba Tec Kabushiki Kaisha Metal nanoparticle dispersion
US8597397B2 (en) * 2005-01-14 2013-12-03 Cabot Corporation Production of metal nanoparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001418A2 (en) * 2004-11-17 2007-01-04 Headwaters Technology Innovation Llc Multicomponent nanoparticles formed using a dispersing agent
US8597397B2 (en) * 2005-01-14 2013-12-03 Cabot Corporation Production of metal nanoparticles
CN101007344A (en) * 2007-02-01 2007-08-01 北京化工大学 Preparation method of nanometer copper-silver bimetallic composite powder
CN101259531A (en) * 2008-03-31 2008-09-10 河南大学 Surface finish nano copper/copper alloy particles and preparation thereof
US20120091401A1 (en) * 2010-10-14 2012-04-19 Toshiba Tec Kabushiki Kaisha Metal nanoparticle dispersion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, W. ET AL.: "A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol", J. MATER. CHEM. A, vol. 3, no. 7, 2015, pages 3450 - 3455, XP055622943, Retrieved from the Internet <URL:http://dx.doi.org/10.1039/C4TA06567K> *

Also Published As

Publication number Publication date
CL2017003488A1 (en) 2018-05-25

Similar Documents

Publication Publication Date Title
TWI801423B (en) Antibacterial. Anti-mildew photocatalyst. Alloy microparticle dispersion, its manufacturing method, and photocatalyst on its surface. Components of Alloy Thin Film
TWI638769B (en) Coated copper particles and manufacturing method thereof
Habas et al. Shaping binary metal nanocrystals through epitaxial seeded growth
EP3398700A1 (en) Method for producing copper nanoparticles and use of said particles
EP2883922B1 (en) Metal nanoparticle synthesis and conductive ink formulation
WO2018017503A1 (en) Method of producing metallic nano particle colloidal dispersions
WO2015196017A1 (en) Stabilizing agent-free metal nanoparticle synthesis and uses of metal nanoparticles synthesized therefrom
KR20070031060A (en) Metal nanoparticles and method for manufacturing thereof
US20130202909A1 (en) Method of producing metal nanoparticles
JP2007224420A (en) Metal nanoparticle with core-shell structure and method for producing the same
Dai et al. Self-reducible Cu nanoparticles for conductive inks
Fu et al. Preparation of colloidal solutions of thin platinum nanowires
KR101537149B1 (en) Method of producing metal nano-particles
Shi et al. Facile synthesis of ultrathin AuCu dimetallic nanowire networks
JP2010209366A (en) Method for producing metal nanoparticle
CN109475943A (en) Superfine metal nano wire is synthesized with organic free radical
KR101368404B1 (en) Metal nanoparticles and method for preparing the same
JP2009203484A (en) Method for synthesizing wire-shaped metal particle
Zhou et al. Low‐Temperature Carbon Monoxide Oxidation with Au–Cu Meatball‐Like Cages Prepared by Galvanic Replacement
WO2019126882A1 (en) Bimetal method for constructing nanoparticles (nps) of metallic copper for coating with smaller nanoparticles of secondary metal
JP2019052298A (en) Molecular organic reactive inks for conductive metal printing using photoinitiators
Jha et al. Solution phase synthesis and intense pulsed light sintering and reduction of a copper oxide ink with an encapsulating nickel oxide barrier
WO2019126884A1 (en) Sequential method for constructing nanoparticles of metallic copper and the subsequent decoration or coating thereof with smaller nanoparticles of secondary metal
KR100768004B1 (en) Method For Manufacturing Metal Nano Particle
CN102470441A (en) Metal nanoparticles, dispersion containing same, and process for production of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895098

Country of ref document: EP

Kind code of ref document: A1