WO2019124931A1 - 노황 관리 장치 및 방법 - Google Patents

노황 관리 장치 및 방법 Download PDF

Info

Publication number
WO2019124931A1
WO2019124931A1 PCT/KR2018/016113 KR2018016113W WO2019124931A1 WO 2019124931 A1 WO2019124931 A1 WO 2019124931A1 KR 2018016113 W KR2018016113 W KR 2018016113W WO 2019124931 A1 WO2019124931 A1 WO 2019124931A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
blast furnace
action guidance
sensor unit
algorithm
Prior art date
Application number
PCT/KR2018/016113
Other languages
English (en)
French (fr)
Inventor
한경룡
이진휘
손상한
손기완
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2020534232A priority Critical patent/JP7050934B2/ja
Priority to EP18891914.6A priority patent/EP3730630B1/en
Priority to CN201880082559.XA priority patent/CN111492070A/zh
Publication of WO2019124931A1 publication Critical patent/WO2019124931A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/26Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/28Arrangements of monitoring devices, of indicators, of alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/04Modeling of the process, e.g. for control purposes; CII
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0009Monitoring the pressure in an enclosure or kiln zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0034Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0087Automatisation of the whole plant or activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D2021/0007Monitoring the pressure

Definitions

  • the present invention relates to an apparatus and method for managing an agar apparatus for managing an agar apparatus for blast furnace.
  • the blast furnace process is a representative process that mainly conducts the manual operation depending on the experience and intuition of the operator so far during the steel making process.
  • the blast furnace is a facility that charges iron ore and coke to the upper part of the blast furnace, blows hot air through the blast furnace tuyere, and produces liquid iron by the oxidation and reduction reaction inside through outlet. Because the inside of the blast furnace can not be measured through the sensor due to high temperature and high pressure, the condition of the blast furnace is predicted indirectly through the thermometer and pressure gauge installed on the outer wall of the blast furnace.
  • the ventilation, breathability, and circumferential balance There are various indicators of the present condition of blast furnace, ie, aging.
  • Three representative examples are the ventilation, breathability, and circumferential balance.
  • furnace heat it refers to an index for predicting the temperature inside the blast furnace through manual measurement of the temperature of the boiler coming out through the outlet.
  • air permeability the state of the hot air moving from the lower part to the upper part inside the blast furnace is indirectly ,
  • the circumference balance is an index for a situation in which a circular blast furnace does not have a large difference in pressure and temperature in the circumferential direction, that is, the balance is maintained.
  • Typical examples include control of pulverized coal (PCI) injection amount, control of air volume of hot wind, control of oxygen amount in air volume, ratio control of iron oxide and coke to be charged, and distribution control of large particle size coke in the center part.
  • PCI pulverized coal
  • the blast furnace operation basically judges the condition of the blast furnace according to the experience of the operator and intuition and the operating standards based on the form data such as the thermometer or the pressure gauge measured value and the information obtained through the atypical data such as CCTV, Based on this, we are taking action.
  • an apparatus and method for controlling a sulfur content management system for guiding pre-existing actions for stably maintaining the sulfur content using various operational and sensor data generated in the blast furnace.
  • an apparatus for managing an anther of a certain type comprising a first sensor unit for imaging at least one of temperature and pressure data of a blast furnace according to a measured position, An action guidance having an artificial intelligence algorithm for outputting an action guidance on blast furnace operation based on the imaged temperature or pressure data from the first sensor unit and the atypical data from the second sensor unit; Section.
  • a method for managing a glaucophore which comprises collecting at least one irregular data of a charge condition, a trough condition and an exit condition of a blast furnace to a blast furnace, A step of inputting the preprocessed data of the artificial intelligence algorithm and outputting an action guidance related to the blast furnace operation, a step of judging re-learning of the artificial intelligence algorithm according to whether the action guidance of the operator is applied or not, And determining the replacement of the artificial intelligence algorithm according to re-learning.
  • FIG. 2 is a view for explaining the concept of artificial intelligence applied to an apparatus for managing aged people according to an embodiment of the present invention.
  • FIG. 3 is a schematic operation flow diagram of a method for managing an aged population according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a GUI of a management apparatus for an aged person according to an embodiment of the present invention.
  • FIG. 5 is an image of a thermometer and pressure gauge data applied to a glaze management apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic block diagram of an apparatus for managing the effect of the present invention according to an embodiment of the present invention.
  • an apparatus 100 for managing an aged person may include a first sensor unit 110, a second sensor unit 120, and an action guidance unit 130.
  • the first sensor unit 110 may image at least one of the temperature and pressure data of the blast furnace according to the measured position.
  • the first sensor unit 110 may include a temperature sensor unit 111, a pressure sensor unit 112, and a data processing unit 113.
  • the temperature sensor unit 111 may include a plurality of temperature sensors respectively installed in the blast furnace, and the plurality of temperature sensors can detect the temperature of the blast furnace at the installed position.
  • the pressure sensor unit 112 may include a plurality of pressure sensors respectively installed in the blast furnace, and the plurality of pressure sensors can detect the pressure in the blast furnace at the installed position.
  • the data processing unit 113 can map the detected temperature data of each of the plurality of temperature sensors of the temperature sensor unit 111 to the detected position and image them. Similarly, the detected pressure data of each of the plurality of pressure sensors of the pressure sensor unit 112 can be mapped and imaged to the detected position. In addition, the detected temperature data of each of the plurality of temperature sensors and the detected pressure data of each of the plurality of pressure sensors can be mapped and imaged to the detected position.
  • the data processing unit 113 may map the detected temperature or pressure data to the detected position to form a two-dimensional image.
  • FIG. 5 is an image of a thermometer and pressure gauge data applied to a glaze management apparatus according to an embodiment of the present invention.
  • sensor data of blast furnace that is, detection data of the temperature sensor unit 111 and the pressure sensor unit 112 are imaged.
  • each black dot represents a temperature sensor.
  • the temperature values of the blast furnace vary instantaneously with an organic correlation.
  • Directional pressure gauges can be divided into four color lines.
  • the horizontal axis represents the pressure value, and the vertical axis represents the height position of the pressure sensor.
  • the imaging technology as shown in this drawing is used to efficiently input the necessary positional information relation to the artificial intelligence.
  • the second sensor unit 120 can detect atypical data of the blast furnace by measuring at least one of the state of the blast furnace, the tuyere state, and the outlet state.
  • the present invention it is possible to determine an aging based on current blast state data through an algorithm based on a deep learning and to suggest an optimal action guidance for maintaining a normal aging state. Since deep-run-based algorithms are data-driven algorithms, a large amount of data is necessary to represent the situation well.
  • the operators have used the data as the basis of the judgment of the blind operation by the naked eye, but the data that can not be used for the control using the computer because of the unstructured data is formulated and applied to the present invention.
  • the first data is data on the particle size of the iron ore and coke charged. This is data related to breathability.
  • the second is to use the data of the combustion zone of the tungsten as a numerical data.
  • tuyu burning zone it is the only part that can observe inside the blast furnace, and it is a facility to blow hot air.
  • the pulverized coal is blown in together, and it functions to monitor the combustion state of the pulverized coal and the combustion / raw material that does not melt at the inner wall of the blast furnace.
  • the third is an instrument for the exit condition, and in particular, the measurement of the char temperature is an important factor.
  • the measurement position is also a place at a distance from the exit, and the degree of measurement of the person is not constant. This value is important data related to the row.
  • the second sensor unit 120 may include a charge state meter 121, a tougue state meter 122, and an exit state meter 123.
  • the charge state meter 121 can measure at least one of the particle size, particle size distribution, and humidity state of the charge placed in the conveyor belt passing through the soft material to be charged into the blast furnace of the blast furnace, and measures the measured unstructured data as the format data And transmits it to the action guidance unit 130.
  • the exit meter status measuring device 123 measures the temperature of the molten iron leaving the blast furnace in real time and measures the amount of emission or the like based on the angle and thickness of the molten steel stem and converts the measured irregular data into the formatted data, 130).
  • FIG. 2 is a view for explaining the concept of artificial intelligence applied to an apparatus for managing aged people according to an embodiment of the present invention.
  • the action guidance unit 130 may include a learning unit 131, a control unit 132, and a reinforcement learning unit 133.
  • FIG. 3 is a schematic operation flow diagram of a method for managing an aged population according to an embodiment of the present invention.
  • the learning unit 131 may include an action guidance on-line algorithm, and the action guidance on-line algorithm may include a temperature and pressure from the first sensor unit 110, Based on the data S10 and S11 and the state of the charge of the blast furnace formulated from the second sensor unit 120, the toughening state and the exit state state measurement data S10 and S12, and the action guidance (S20, S30).
  • the action guidance on-line algorithm may include a temperature and pressure from the first sensor unit 110, Based on the data S10 and S11 and the state of the charge of the blast furnace formulated from the second sensor unit 120, the toughening state and the exit state state measurement data S10 and S12, and the action guidance (S20, S30).
  • the control unit 132 receives the action guidance of the learning unit ( , And whether or not the operator's action guidance is accepted can be fed back to the reinforcement learning unit 133 (S40).
  • the reinforcement learning unit 133 may include an action guidance offline algorithm configured by a deep learning based algorithm, and the action guidance offline algorithm may enhance the algorithm learning by receiving an action guidance not accepted by the worker.
  • the control unit 132 may determine whether to re-learn the action guidance online algorithm and replace the action guidance online algorithm with the action guidance offline algorithm of the reinforcement learning unit 133.
  • the deep learning algorithm is operated based on the learned model Provide guidance on the action to be performed by the user.
  • the operator judges acceptance of such action guidance, and the deep learning algorithm uses it as feedback to utilize the algorithm to enhance the performance.
  • re-learning is performed to maintain the artificial intelligence algorithm for the current blast condition to optimize the performance.
  • the on-line learning or reinforcement learning is performed by receiving as a feedback value a result of whether the operator accepts the AI action guidance when there is an offline offline control algorithm (S60). That is, in the case of the deep learning-based action guidance offline (off-line) algorithm, the action guidance value inputted as the feedback according to the acceptance of the former operator is compensated (S50) and used for the algorithm reinforcement.
  • the deep learning-based action guidance offline algorithm has a reinforcement learning part, which is used to improve the algorithm performance in case of misidentification of the deep learning-based action guidance on-line algorithm.
  • the compensation value falls below a predetermined level or the characteristics of the data are learned, the re-learning is judged and the re-learning is performed if necessary (S70).
  • the deep learning-based action guidance on-line algorithm is replaced with the newly learned action guidance offline algorithm on the system. Therefore, it is possible to maintain the algorithm that responds to the blast situation, and the more the operation is performed, the better the action guidance performance can be realized.
  • FIG. 4 is a diagram showing an example of a GUI (Graphic User Interface) of an apparatus for managing the aged population according to an embodiment of the present invention.
  • GUI Graphic User Interface
  • the action guidance unit 130 can present actions related to blast furnace operation such as air volume, oxygen, pulverized coal, loading / raw material cost, and distribution of center coke. For example, through the illustrated GUI, an action guidance value necessary for air volume control can be confirmed and the trend of related data can be confirmed. If necessary, manual operation can also be carried out.
  • the present invention it is possible to produce stable blast furnace by guiding the action of the operator who needs to maintain a stable sulfur content, thereby improving the efficiency of the blast furnace.
  • since the operation is automated and standardized it is possible not only to reduce the load of the operator, but also to formulate the tactile know-how and experiential experience such that the tactic can be shared with the propagation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Blast Furnaces (AREA)

Abstract

본 발명은, 고로에서 발생하는 각종 조업, 센서 데이터들을 이용하여 노황을 안정적으로 유지하기 위한 선재적 액션을 가이드하는 노황 관리 장치 및 방법에 관한 것으로, 본 발명의 일 실시예에 따른 노황 관리 장치는 고로의 온도 및 압력 데이터 중 적어도 하나를 측정된 위치에 따라 이미지화하는 제1 센서부, 상기 고로의 비정형 데이터를 검출하는 제2 센서부, 상기 제1 센서부로부터의 이미지화된 온도 또는 압력 데이터와 상기 제2 센서부로부터의 비정형 데이터에 기초하여 고로 조업에 관한 액션 가이던스를 출력하는 인공지능 알고리즘을 갖는 액션 가이던스부를 포함할 수 있고, 본 발명의 일 실시예에 따른 노황 관리 방법은 데이터 전처리부가 고로의 장입물 상태, 풍구 상태 및 출선구 상태 중 적어도 하나의 비정형 데이터를 수집하고, 상기 고로의 온도 및 압력 데이터를 측정된 위치에 따라 이미지화하는 하는 단계, 인공지능 알고리즘이 전처리된 데이터를 입력받아 고로 조업에 관한 액션 가이던스를 출력하는 단계, 조업자의 상기 액션 가이던스 적용 여부에 따라 상기 인공지능 알고리즘의 재학습을 판단하는 단계, 인공지능 알고리즘 재학습 여부에 따라 해당 인공지능 알고리즘의 교체를 판단하는 단계를 포함할 수 있다.

Description

노황 관리 장치 및 방법
본 발명은 고로의 노황을 관리하는 노황 관리 장치 및 방법에 관한 것이다.
고로 공정은 제철 공정 중 현재까지 조업자의 경험 및 직관에 의존하여 수동조업을 주로 실시하는 대표적인 공정이다.
고로는 철광석과 코크스를 고로 상부로 장입을 하고, 고로 풍구를 통해 열풍을 불어 넣어 내부의 산화 및 환원 반응에 의해 액체 용선을 출선구를 통해 생산하는 설비이다. 고로 내부는 고열, 고압으로 인해 센서를 통한 측정이 불가하여 고로 외벽에 설치된 온도계, 압력계 등을 통해 간접적으로 고로의 상황을 예측하고, 이를 통해 조업자는 조업을 실시하고 있다.
고로의 현재 상태, 즉 노황을 나타내는 지표는 여러 가지가 있다. 그 중 대표적인 세 가지가 노열, 통기성, 원주밸런스이다. 노열의 경우 출선구를 통해 나오는 용선의 온도를 수동 측정하여 이를 통해 고로 내부의 온도를 예측하는 지표를 말하며, 통기성의 경우 고로 내부의 하부에서 상부로 이동하는 열풍의 상태를 외벽 압력계 측정을 통해 간접적으로 유추하는 통기성 지수 등으로 예측하는 지수를 말하며, 원주밸런스는 원형의 고로가 원주 방향으로 압력 및 온도가 차이가 많이 나지 않는, 즉 밸런스가 유지되는 상황에 대한 지표이다.
이러한 세 가지 지표를 원하는 값으로 유지하기 위해 조업자는 조업 액션(Action)을 취하게 된다. 그 대표적인 것이 미분탄(PCI) 주입량 제어, 열풍의 풍량 제어, 풍량 중 산소량 제어, 장입되는 철광적과 코크스의 비율 제어, 중심부에 들어가는 입도가 큰 코크스의 분포 제어 등이다.
현재 고로의 조업은 기본적으로 온도계나 압력계 측정값 등의 정형 데이터와 CCTV와 같은 비정형 데이터를 통해 얻을 수 있는 정보를 통해 조업자가 고로의 상태를 본인의 경험과 직관 및 조업 기준 등에 의해 판단을 하고, 이를 근거로 조업 액션을 취하고 있다.
하지만, 보다 안정적인 노황 관리를 위해서는 현재 상황과 현재의 액션을 통해 노황이 어떻게 될 것인지 미리 예측을 하고 조업을 수행하는 것이 중요하다.
이러한 종래 기술에 대해서는, 대한민국 공개특허공보 제10-1995-0014631호 등을 참조하여 쉽게 이해할 수 있다.
본 발명의 일 실시예에 따르면, 고로에서 발생하는 각종 조업, 센서 데이터들을 이용하여 노황을 안정적으로 유지하기 위한 선재적 액션을 가이드하는 노황 관리 장치 및 방법이 제공된다.
상술한 본 발명의 과제를 해결하기 위해, 본 발명의 일 실시예에 따른 노황 관리 장치는 고로의 온도 및 압력 데이터 중 적어도 하나를 측정된 위치에 따라 이미지화하는 제1 센서부, 상기 고로의 비정형 데이터를 검출하는 제2 센서부, 상기 제1 센서부로부터의 이미지화된 온도 또는 압력 데이터와 상기 제2 센서부로부터의 비정형 데이터에 기초하여 고로 조업에 관한 액션 가이던스를 출력하는 인공지능 알고리즘을 갖는 액션 가이던스부를 포함할 수 있다.
본 발명의 일 실시예에 따른 노황 관리 방법은 데이터 전처리부가 고로의 장입물 상태, 풍구 상태 및 출선구 상태 중 적어도 하나의 비정형 데이터를 수집하고, 상기 고로의 온도 및 압력 데이터를 측정된 위치에 따라 이미지화하는 하는 단계, 인공지능 알고리즘이 전처리된 데이터를 입력받아 고로 조업에 관한 액션 가이던스를 출력하는 단계, 조업자의 상기 액션 가이던스 적용 여부에 따라 상기 인공지능 알고리즘의 재학습을 판단하는 단계, 인공지능 알고리즘 재학습 여부에 따라 해당 인공지능 알고리즘의 교체를 판단하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 고로의 안정적인 생산을 가능하게 하고, 고로의 효율을 향상하며, 일정한 성능을 유지하는 노황 관리가 가능하고, 조업을 자동화 및 표준화할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 노황 관리 장치의 개략적인 구성도이다.
도 2는 본 발명의 일 실시예에 따른 노황 관리 장치에 적용되는 인공 지능의 개념을 설명하는 도면이다.
도 3은 본 발명의 일 실시예에 따른 노황 관리 방법의 개략적인 동작 흐름도이다.
도 4는 본 발명의 일 실시예에 따른 노황 관리 장치의 GUI의 예시를 나타내는 도면이다.
도 5는 본 발명의 일 실시예에 따른 노황 관리 장치에 적용되는 온도계와 압력계 데이터를 이미지화한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 노황 관리 장치의 개략적인 구성도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 노황 관리 장치(100)는 제1 센서부(110), 제2 센서부(120) 및 액션 가이던스부(130)를 포함할 수 있다.
제1 센서부(110)는 고로의 온도 및 압력 데이터 중 적어도 하나를 측정된 위치에 따라 이미지화할 수 있다.
제1 센서부(110)는 온도 센서부(111), 압력 센서부(112) 및 데이터 처리부(113)를 포함할 수 있다.
온도 센서부(111)는 고로에 각각 설치된 복수의 온도 센서를 포함할 수 있고, 상기 복수의 온도 센서는 설치된 위치의 고로의 온도를 검출할 수 있다.
압력 센서부(112)는 고로에 각각 설치된 복수의 압력 센서를 포함할 수 있고, 상기 복수의 압력 센서는 설치된 위치의 고로의 압력을 검출할 수 있다.
데이터 처리부(113)는 온도 센서부(111)의 복수의 온도 센서 각각의 검출된 온도 데이터를 검출된 위치에 매핑하여 이미지화시킬 수 있다. 마찬가지로, 압력 센서부(112)의 복수의 압력 센서 각각의 검출된 압력 데이터를 검출된 위치에 매핑하여 이미지화시킬 수 있다. 더하여, 복수의 온도 센서 각각의 검출된 온도 데이터와 복수의 압력 센서 각각의 검출된 압력 데이터를 검출된 위치에 매핑하여 이미지화시킬 수 있다.
고로의 특성상 위치별 온도나 압력의 경우 상호 상관 관계가 있을 수 있다. 따라서 이를 이미지화하여 상호 연관성까지 정보화하여 딥러닝 알고리즘의 입력 데이터로 사용하면 고로 상태의 분석에 유리하기에 액션 가이던스(Action Guidance)를 위한 성능 향상에 주요한 요인이 될 수 있다.
데이터 처리부(113)는 검출된 온도 또는 압력 데이터를 검출된 위치와 매핑하여 2차원 이미지화할 수 있다.
도 5는 본 발명의 일 실시예에 따른 노황 관리 장치에 적용되는 온도계와 압력계 데이터를 이미지화한 도면이다.
도 1과 함께 도 5를 참조하면, 고로의 센서 데이터, 즉 온도 센서부(111)와 압력 센서부(112)의 검출 데이터를 이미지화한 예를 볼 수 있다.
도 5의 왼쪽의 도면의 경우 원기둥 형태의 고로 표면에 복수의 온도 센서가 분포되어 있다고 가정하고 이에 대한 히트맵(Heatmap)을 작성한 후 0도에서 잘라서 펼친 모양이다. 즉, 도면의 가로 방향은 온도 센서가 분포한 각도이다. 그리고 높이별로 분포되어 있는 것은 도면의 높이로 대응하였다. 결과적으로 각 검은 점은 온도 센서를 표현하고 있는 것이다. 왼쪽과 가운데 도면에서 알 수 있듯이 고로의 온도값은 유기적인 상관 관계를 가지면서 시시각각 변한다.
오른쪽 도면에 도시된 압력 센서의 경우 대표적인 4방향 값을 표현하고 있다. 방향별 압력계는 4개의 색깔선으로 구분될 수 있다. 그리고 가로축은 압력값을 나타내며, 세로축은 압력 센서의 높이 위치를 나타낸다. 본 발명에서는 이러한 필요 위치 정보 관계를 효율적으로 인공지능에 입력하기 위하여 본 도면과 같은 이미지화 기술을 사용한다.
제2 센서부(120)는 고로의 장입물의 상태, 풍구 상태 및 출선구 상태 중 적어도 하나를 계측하여 고로의 비정형 데이터를 검출할 수 있다.
본 발명에서는 딥러닝 기반의 알고리즘을 통해 현재 고로 상태 데이터를 기반으로 노황을 판단하고 정상적인 노황을 유지하기 위한 최적의 액션 가이던스(Action Guidance)를 제시할 수 있다. 딥러닝 기반의 알고리즘은 데이터 드리븐 알고리즘(Data-driven Algorithm)이기 때문에 상황을 잘 대표할 수 있는 많은 데이터가 필수적이다.
따라서 기존에 조업자들은 육안으로 고로 조업 판단의 근거로 사용하던 내용이지만 정형화되지 못해 컴퓨터를 이용한 제어에 활용하지 못한 데이터를 정형화하여 본 발명에 적용한다.
첫 번째 데이터는 장입되는 철광적과 코크스의 입도를 측정한 데이터이다. 이는 통기성과 연관이 있는 데이터이다.
두 번째는 풍구의 연소대의 상황을 수치화하여 데이터로 사용한다. 풍구 연소대의 경우 고로 내부를 관찰할 수 있는 유일한 부분으로 열풍을 불어 넣는 설비이다. 여기에 미분탄을 같이 불어 넣어 주는데 이 미분탄의 연소 상태나 고로 내벽에서 녹지 않고 떨어지는 연/원료를 모니터링하는 기능을 한다.
세 번째는 출선구 상태에 대한 계측기로 특히, 용선온도 측정이 중요한 요소이다. 기본 고로 조업의 경우 출선되는 용선을 1~2시간에 한 번 수동으로 온도를 측정한다. 측정 위치 또한 출선구에서 일정 거리가 떨어진 장소이고, 사람의 측정 정도 또한 일정하지 않아 측정값에 외란이 많이 포함된다. 이 값은 노열과 관련된 중요한 데이터이다.
이를 위해, 제2 센서부(120)는 장입물 상태 계측기(121), 풍구 상태 계측기(122) 및 출선구 상태 계측기(123)를 포함할 수 있다.
장입물 상태 계측기(121)는 상기 고로의 고로에 장입되는 연/원료가 지나가는 컨베이어 밸트에 위치하여 장입물의 입도, 입도 분포, 습도 상태 중 적어도 하나를 계측할 수 있고, 계측된 비정형 데이터를 정형화 데이터로 변환하여 액션 가이던스부(130)에 전달할 수 있다.
풍구 상태 계측기(122)는 다수의 풍구 카메라를 통하여 상기 고로의 미분탄 취입 상태, 생광 낙하 상태 중 적어도 하나를 계측할 수 있고, 계측된 비정형 데이터를 정형화 데이터로 변환하여 액션 가이던스부(130)에 전달할 수 있다.
출선구 상태 계측기(123)는 상기 고로에서 출선되는 용선온도를 실시간으로 측정하고, 용선 줄기의 각도나 굵기 등으로 출선량 등을 계측하여, 계측된 비정형 데이터를 정형화 데이터로 변환하여 액션 가이던스부(130)에 전달할 수 있다.
액션 가이던스부(130)는 제1 센서부(110)로부터의 이미지화된 온도 또는 압력 데이터와 제2 센서부(120)로부터의 비정형 데이터에 기초하여 고로 조업에 관한 액션 가이던스를 출력할 수 있다.
도 2는 본 발명의 일 실시예에 따른 노황 관리 장치에 적용되는 인공 지능의 개념을 설명하는 도면이다.
도 1과 함께, 도 2를 참조하면, 액션 가이던스부(130)는 학습부(131), 제어부(132) 및 강화 학습부(133)를 포함할 수 있다.
도 3은 본 발명의 일 실시예에 따른 노황 관리 방법의 개략적인 동작 흐름도이다.
도 1 및 도 2와 함께 도 3을 참조하면, 학습부(131)는 액션 가이던스 온라인 알고리즘을 포함할 수 있고, 상기 액션 가이던스 온라인 알고리즘은 이차원 이미지화된 제1 센서부(110)로부터의 온도 및 압력 데이터(S10,S11)와, 제2 센서부(120)로부터의 정형화된 고로의 장입물의 상태, 풍구 상태 및 출선구 상태 계측 데이터(S10,S12)에 기초하여 학습하고, 고로 조업에 관한 액션 가이던스를 생성할 수 있다(S20,S30).
상기 액션 가이던스 온라인 알고리즘은 딥러닝 기반 알고리즘으로 구성되어 입력된 데이터(
Figure PCTKR2018016113-appb-I000001
)를 학습하여 액션 가이던스(
Figure PCTKR2018016113-appb-I000002
)를 생성할 수 있다.
제어부(132)는 학습부의 액션 가이던스(
Figure PCTKR2018016113-appb-I000003
)를 출력할 수 있고, 작업자의 액션 가이던스 수용 여부가 강화 학습부(133)에 피드백될 수 있다(S40).
강화 학습부(133)는 딥러닝 기반 알고리즘으로 구성된 액션 가이던스 오프라인 알고리즘을 포함할 수 있고, 상기 액션 가이던스 오프라인 알고리즘은 작업자가 수용하지 않은 액션 가이던스를 피드백 받아 알고리즘 학습을 강화할 수 있다.
제어부(132)는 상기 액션 가이던스 온라인 알고리즘의 재학습과, 상기 액션 가이던스 온라인 알고리즘을 강화 학습부(133)의 액션 가이던스 오프라인 알고리즘으로의 교체를 판단할 수 있다.
즉, 고로에서 발생하고, 조업에 중요하여 정형화한 비정형 데이터 및 기존의 정형 데이터를 수집하여 딥러닝을 활용하는 인공지능 시스템에 입력하면 딥러닝 알고리즘은 학습한 모델을 기준으로 안정적인 노황 관리를 위하여 조업자가 수행해야 하는 액션에 대한 가이던스를 제시한다. 조업자는 이런 액션 가이던스에 대하여 수용 여부를 판단하고, 딥러닝 알고리즘은 이것을 피드백으로 사용하여 성능을 강화하는 알고리즘에 활용한다. 또한 일정 기간 후 혹은 입력되는 데이터의 특성이 일정 기준 이상 달라졌을 때는 재학습을 통해 현재의 고로 상황에 맞는 인공지능 알고리즘을 유지하여 성능을 최적화하게 된다.
보다 상세하게는, 비정형 데이터가 정형화되어서 입력되는 것과 정형 데이터가 바로 입력되는 것을 합하여 수집한 데이터를 전처리하여 딥러닝 기반 액션 가이던스 온라인 알고리즘에 입력되게 된다. 여기서 알고리즘은 자신의 모델에 따라 액션 가이던스를 제시하게 된다. 제시된 액션 가이던스 값을 조업자는 고로 조업에 적합한지 판단하여 수용하거나 거부를 하게 된다. 이런 반복 루프를 통해 첫 번째 알고리즘을 이용한 조업은 수행된다.
더하여, 오프라인으로 병렬 노황 관리 알고리즘이 존재하여 조업자가 인공지능 액션 가이던스를 수용하는지에 대한 결과를 피드백값으로 받아서(S60) 온라인 러닝(On-Line Learning) 혹은 강화학습을 실시하는 것이다. 즉, 딥러닝 기반 액션 가이던스 오프라인(Off-line) 알고리즘의 경우 앞의 조업자 수용 여부에 따라 피드백이 되어 입력되는 액션 가이던스값을 보상하여(S50) 알고리즘 강화에 사용하게 된다. 근본적으로 딥러닝 기반 액션 가이던스 오프라인 알고리즘에는 강화학습 부분이 존재하여 딥러닝 기반 액션 가이던스 온 라인 알고리즘이 잘못 판단한 경우가 생기면 이를 반영하여 알고리즘 성능 향상에 사용한다. 또한 보상값이 일정 수준 이하로 떨어진다든지 데이터의 특성이 학습하였던 것과 일정 차이 이상 특성이 벌어지면 재학습을 판단하여 필요 시 재학습을 수행하게 된다(S70).
그리고, 재학습 결과 알고리즘 교체가 필요한 경우(S80) 시스템 상에서 딥러닝 기반 액션 가이던스 온 라인 알고리즘을 새로이 학습된 액션 가이던스 오프 라인 알고리즘으로 교체하게 되는 것이다. 이를 통해 고로 상황에 대응하는 알고리즘을 유지할 수 있으며, 조업을 할수록 액션 가이던스 성능이 향상되는 고로 노황 관리 장치가 구현될 수 있다.
도 4는 본 발명의 일 실시예에 따른 노황 관리 장치의 GUI(Graphic User Interface)의 예시를 나타내는 도면이다.
도 1과 함께 도 4를 참조하면, 액션 가이던스부(130)에서는 풍량, 산소, 미분탄, 장입 연/원료비, 센터 코크스 분포 등의 고로 조업에 관한 액션을 제시할 수 있다. 예를 들어, 도시된 GUI를 통해서 풍량 제어에 필요한 액션 가이던스(Action Guidance) 값을 확인하고 관련된 데이터의 추이를 확인할 수 있다. 또한 필요한 경우 수동으로 조업을 진행할 수도 있다.
상술한 바와 같이, 본 발명에 따르면, 안정적인 노황을 유지하기 위해 필요한 조업자의 액션을 가이드하여 고로의 안정적인 생산을 가능하게 하며, 이를 통해 고로의 효율도 향상하게 한다. 또한 시간에 따라 변하는 조업 여건 및 고로 상황에 대응이 가능한 알고리즘을 유지하는 방법을 통하여 일정한 성능을 유지하는 노황 관리 시스템이 가능하다. 이와 더불어 조업이 자동화 및 표준화됨으로 인해 조업자의 부하를 경감할 뿐만 아니라 조업자의 노하우, 체험적 경험 등의 암묵지를 전파와 공유가 가능한 형식지화하는 것이 가능하다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고 후술하는 특허청구범위에 의해 한정되며, 본 발명의 구성은 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 그 구성을 다양하게 변경 및 개조할 수 있다는 것을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 쉽게 알 수 있다.

Claims (8)

  1. 고로의 온도 및 압력 데이터 중 적어도 하나를 측정된 위치에 따라 이미지화하는 제1 센서부;
    상기 고로의 비정형 데이터를 검출하는 제2 센서부; 및
    상기 제1 센서부로부터의 이미지화된 온도 또는 압력 데이터와 상기 제2 센서부로부터의 비정형 데이터에 기초하여 고로 조업에 관한 액션 가이던스를 출력하는 인공지능 알고리즘을 갖는 액션 가이던스부
    를 포함하는 노황 관리 장치.
  2. 제1항에 있어서,
    상기 제1 센서부는
    상기 고로의 각 위치의 온도를 측정하는 복수의 온도 센서를 갖는 온도 센서부;
    상기 고로의 각 위치의 압력을 측정하는 복수의 압력 센서를 갖는 압력 센서부; 및
    상기 온도 센서부와 상기 압력 센서부 각각의 측정된 온도 및 압력과 측정된 위치를 매칭하여 이미지화하는 데이터 전처리부
    를 포함하는 노황 관리 장치.
  3. 제2항에 있어서,
    상기 데이터 전처리부는 측정된 온도 및 압력과 측정된 위치를 매칭하여 이차원으로 이미지화하는 노황 관리 장치.
  4. 제1항에 있어서,
    제2 센서부는 상기 고로의 장입물의 상태, 풍구 상태 및 출선구 상태 중 적어도 하나를 계측하는 노황 관리 장치.
  5. 제4항에 있어서,
    상기 제2 센서부는
    상기 고로의 장입물의 입도, 입도 분포, 습도 상태 중 적어도 하나를 계측하는 장입물 상태 계측기;
    상기 고로의 미분탄 취입 상태, 생광 낙하 상태 중 적어도 하나를 계측하는 풍구 상태 계측기; 및
    상기 고로의 용선 온도, 출선량 중 적어도 하나를 계측하는 출선구 상태 계측기
    를 포함하는 노황 관리 장치.
  6. 제1항에 있어서,
    상기 제2 센서부는 수집된 비정형 데이터를 정형 데이터로 변환하여 상기 액션 가이던스부에 전달하는 노황 관리 장치.
  7. 제1항에 있어서,
    상기 액션 가이던스부는
    상기 제1 센서부 및 상기 제2 센서부로부터 수집한 데이터에 기반하여 학습하고, 고로 조업에 관한 액션 가이던스를 생성하는 액션 가이던스 온라인 알고리즘을 갖는 학습부;
    조업자의 상기 액션 가이던스 수용 여부에 따라 알고리즘 학습을 강화하는 액션 가이던스 오프 라인 알고리즘을 갖는 강화 학습부; 및
    상기 학습부의 액션 가이던스를 출력하고, 상기 액션 가이던스 온 라인 알고리즘의 재학습과, 상기 액션 가이던스 온라인 알고리즘을 상기 강화 학습부의 액션 가이던스 오프라인 알고리즘으로의 교체를 판단하는 제어부
    를 포함하는 노황 관리 장치.
  8. 데이터 전처리부가 고로의 장입물 상태, 풍구 상태 및 출선구 상태 중 적어도 하나의 비정형 데이터를 수집하고, 상기 고로의 온도 및 압력 데이터를 측정된 위치에 따라 이미지화하는 하는 단계;
    인공지능 알고리즘이 전처리된 데이터를 입력받아 고로 조업에 관한 액션 가이던스를 출력하는 단계;
    조업자의 상기 액션 가이던스 적용 여부에 따라 상기 인공지능 알고리즘의 재학습을 판단하는 단계; 및
    인공지능 알고리즘 재학습 여부에 따라 해당 인공지능 알고리즘의 교체를 판단하는 단계
    를 포함하는 노황 관리 방법.
PCT/KR2018/016113 2017-12-19 2018-12-18 노황 관리 장치 및 방법 WO2019124931A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020534232A JP7050934B2 (ja) 2017-12-19 2018-12-18 炉況管理装置及び方法
EP18891914.6A EP3730630B1 (en) 2017-12-19 2018-12-18 Furnace condition control apparatus and method
CN201880082559.XA CN111492070A (zh) 2017-12-19 2018-12-18 炉况控制设备和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170175537A KR102075210B1 (ko) 2017-12-19 2017-12-19 노황 관리 장치 및 방법
KR10-2017-0175537 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124931A1 true WO2019124931A1 (ko) 2019-06-27

Family

ID=66994076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016113 WO2019124931A1 (ko) 2017-12-19 2018-12-18 노황 관리 장치 및 방법

Country Status (5)

Country Link
EP (1) EP3730630B1 (ko)
JP (1) JP7050934B2 (ko)
KR (1) KR102075210B1 (ko)
CN (1) CN111492070A (ko)
WO (1) WO2019124931A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114185976A (zh) * 2021-11-01 2022-03-15 中冶南方工程技术有限公司 一种高炉可视化智能感知平台

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112257590B (zh) * 2020-10-22 2023-08-01 中冶南方工程技术有限公司 一种高炉铁口工作状态的自动检测方法、***及存储介质
EP4001440A1 (de) * 2020-11-18 2022-05-25 Primetals Technologies Austria GmbH Charakterisierung eines verhüttungsprozesses
JP7380604B2 (ja) * 2021-01-12 2023-11-15 Jfeスチール株式会社 学習モデル生成方法、学習モデル生成装置、高炉の制御ガイダンス方法、及び溶銑の製造方法
WO2023171501A1 (ja) * 2022-03-07 2023-09-14 Jfeスチール株式会社 高炉の溶銑温度予測方法、高炉の溶銑温度予測モデルの学習方法、高炉の操業方法、高炉の溶銑温度予測装置、溶銑温度予測システムおよび端末装置
WO2023187501A1 (en) * 2022-03-29 2023-10-05 Tata Steel Limited System and method for measuring burden profile in a metallurgical furnace
EP4276550A1 (en) * 2022-05-12 2023-11-15 Primetals Technologies Austria GmbH Method and computer system for controlling a process of a metallurgical plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156327A (ja) * 1991-12-06 1993-06-22 Nkk Corp 高炉炉熱制御装置
JPH0726127B2 (ja) * 1987-11-20 1995-03-22 日本鋼管株式会社 高炉炉熱自動制御システム
KR950014631A (ko) 1993-11-27 1995-06-16 전성원 자동차의 타이밍 벨트 장력조절장치
KR0146785B1 (ko) * 1995-11-27 1998-11-02 김종진 전문가 시스템을 이용한 고로 노황 이상 예측장치 및 방법
KR20030063487A (ko) * 2000-12-28 2003-07-28 신닛뽄세이테쯔 카부시키카이샤 고로의 조업 상태 감시 방법, 장치 및 프로그램
KR20120087559A (ko) * 2011-01-28 2012-08-07 현대제철 주식회사 연화융착대 근부위치 추정방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730368B2 (ja) * 1988-02-12 1995-04-05 日本鋼管株式会社 高炉炉熱制御装置
EP0542717B1 (en) * 1988-12-20 1997-02-12 Nippon Steel Corporation Blast furnace operation management method and apparatus
JPH0733531B2 (ja) * 1990-04-25 1995-04-12 日本鋼管株式会社 高炉々熱制御装置の支援システム
JPH0598325A (ja) * 1991-10-07 1993-04-20 Nkk Corp 高炉装入物分布制御装置
CN1038146C (zh) * 1993-07-21 1998-04-22 首钢总公司 利用人工智能专家***控制高炉冶炼的方法
JP3814143B2 (ja) * 2000-12-28 2006-08-23 新日本製鐵株式会社 高炉操業における操業監視方法、装置、及びコンピュータ読み取り可能な記録媒体
JP4586129B2 (ja) * 2008-03-25 2010-11-24 独立行政法人沖縄科学技術研究基盤整備機構 制御器、制御方法および制御プログラム
CN105886680B (zh) * 2016-05-11 2017-12-29 东北大学 一种高炉炼铁过程铁水硅含量动态软测量***及方法
KR101858860B1 (ko) * 2016-12-22 2018-05-17 주식회사 포스코 고로 노열 제어 장치
CN106844636A (zh) * 2017-01-21 2017-06-13 亚信蓝涛(江苏)数据科技有限公司 一种基于深度学习的非结构化数据处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726127B2 (ja) * 1987-11-20 1995-03-22 日本鋼管株式会社 高炉炉熱自動制御システム
JPH05156327A (ja) * 1991-12-06 1993-06-22 Nkk Corp 高炉炉熱制御装置
KR950014631A (ko) 1993-11-27 1995-06-16 전성원 자동차의 타이밍 벨트 장력조절장치
KR0146785B1 (ko) * 1995-11-27 1998-11-02 김종진 전문가 시스템을 이용한 고로 노황 이상 예측장치 및 방법
KR20030063487A (ko) * 2000-12-28 2003-07-28 신닛뽄세이테쯔 카부시키카이샤 고로의 조업 상태 감시 방법, 장치 및 프로그램
KR20120087559A (ko) * 2011-01-28 2012-08-07 현대제철 주식회사 연화융착대 근부위치 추정방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3730630A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114185976A (zh) * 2021-11-01 2022-03-15 中冶南方工程技术有限公司 一种高炉可视化智能感知平台
CN114185976B (zh) * 2021-11-01 2024-03-26 中冶南方工程技术有限公司 一种高炉可视化智能感知平台

Also Published As

Publication number Publication date
JP7050934B2 (ja) 2022-04-08
KR20190074132A (ko) 2019-06-27
EP3730630B1 (en) 2022-05-18
EP3730630A1 (en) 2020-10-28
EP3730630A4 (en) 2021-01-13
KR102075210B1 (ko) 2020-02-07
CN111492070A (zh) 2020-08-04
JP2021507115A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
WO2019124931A1 (ko) 노황 관리 장치 및 방법
CN105925750A (zh) 一种基于神经网络的炼钢终点预测方法
CN205845067U (zh) 基于图像动静态特征的转炉炼钢吹炼状态识别***
CN112183193A (zh) 一种高炉风口工作状态监控的方法
CN103571994A (zh) 转炉红外钢渣探测方法
CN112633049A (zh) 一种高炉风口工作状态监控的***
KR20220070519A (ko) 생산 설비의 감시 방법, 생산 설비의 감시 장치, 및 생산 설비의 조업 방법
WO2019117493A1 (ko) 고로의 송풍 제어 장치 및 그 방법
WO2019098484A1 (ko) 고로의 송풍 제어 장치 및 그 방법
CN210765379U (zh) 一种用于转炉智能出钢的装置
CN109029830B (zh) 一种漏钢检测***及方法
CN112458231A (zh) 一种转炉下渣检测方法及***
CN104090557B (zh) 一种基于现场总线元件的脱碳炉信息***及其控制方法
CN109062166A (zh) 一种电石炉巡检平台***
JP6927461B1 (ja) 生産設備の操業方法及び操業システム
CN113110322A (zh) 一种虚拟工长决策控制方法、装置、***及存储介质
WO2019132495A1 (ko) 용선 출선량 모니터링 장치
WO2019112207A1 (ko) 미분탄 취입량 제어 장치 및 그 방법
KR100376525B1 (ko) 고로 연소대 감시장치 및 그 방법
CN110907039A (zh) 一种管系温度检测***及检测方法
CN114134288B (zh) 一种用于rh浸渍管的热状态及破损监测***及方法
CN209513087U (zh) 一种焦炉直行测温装置
CN114235164B (zh) 一种用于钢包空包及出钢过程的热状态监测***及方法
CN118134224B (zh) 基于智慧矿产的三维可视化预警***及方法
CN114140379A (zh) 用于高炉中心气流大小的在线计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018891914

Country of ref document: EP

Effective date: 20200720