WO2019124877A1 - 배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템 - Google Patents

배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템 Download PDF

Info

Publication number
WO2019124877A1
WO2019124877A1 PCT/KR2018/015880 KR2018015880W WO2019124877A1 WO 2019124877 A1 WO2019124877 A1 WO 2019124877A1 KR 2018015880 W KR2018015880 W KR 2018015880W WO 2019124877 A1 WO2019124877 A1 WO 2019124877A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
measured
memory
estimated
Prior art date
Application number
PCT/KR2018/015880
Other languages
English (en)
French (fr)
Inventor
강태규
박명희
최정환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/611,665 priority Critical patent/US11480620B2/en
Priority to JP2019561941A priority patent/JP6930688B2/ja
Priority to CN201880031328.6A priority patent/CN110622018B/zh
Priority to EP18892018.5A priority patent/EP3627173B1/en
Priority to PL18892018.5T priority patent/PL3627173T3/pl
Publication of WO2019124877A1 publication Critical patent/WO2019124877A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/04Testing or calibrating of apparatus covered by the other groups of this subclass of instruments for measuring time integral of power or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for calibrating the state of charge of a battery and a battery management system.
  • a process of periodically estimating the state of charge (SOC) of the battery is indispensable for the stable use of various devices or systems supplied with energy from the battery.
  • SOC of the battery is a measure of how long the battery can be used stably for the future.
  • the SOC of the battery is generally expressed as a percentage of the current remaining capacity for a given full charge capacity. Since the remaining capacity is difficult to measure directly, it can not be estimated based on the voltage and / or current of the battery.
  • the current integration method is also referred to as coulomb counting and calculates the remaining capacity from the result of accumulating the current of the battery periodically measured by the current sensor with respect to time.
  • the current integration method is disadvantageous in that the accuracy of the estimated SOC decreases with time due to the measurement error of the current sensor. Therefore, it is not desirable to estimate the SOC of the battery using only the current integration method. Therefore, it is necessary to appropriately calibrate the SOC of the battery estimated by the current integration method.
  • the SOC of the battery there is a method using an OCV-SOC curve.
  • the OCV (Open Circuit Voltage) of the battery can be measured, and the SOC corresponding to the measured OCV can be estimated from the given OCV-SOC curve data.
  • the current sensor since the current sensor is not used, there is no problem that the accuracy of the estimated SOC decreases with time.
  • the OCV of the battery must be measured, and the OCV of the battery can be measured only when the battery is maintained in a no-load state for a certain period of time. Therefore, it is impossible to measure the OCV of the battery while the battery is continuously kept charged or discharged without being held in the no-load state for a predetermined time or longer.
  • a method for calibrating a state of charge of a battery includes: measuring terminal voltage and current of the battery; Storing a measured voltage value representing the measured terminal voltage and a measured current value representing the measured current in a memory; Updating a state of charge of the battery based on the measured current value using a current integration method; When the first and the second number of measured voltage values and the first or more measured current values are stored in the memory in sequence, the first number of measured voltage values and the first number of measured current values, Estimating an open-circuit voltage of the battery; Storing an estimated voltage value representing the estimated open-circuit voltage in the memory; When the second or more estimated voltage values are sequentially stored in the memory, generating a data set in which the second number of estimated voltage values are arranged in order from the second estimated voltage value stored recently in the memory step; And calibrating the updated state of charge to a reference state when the calibration condition is satisfied by the data set.
  • the step of estimating the open-circuit voltage of the battery may use a least squares method associated with the equivalent circuit model of the battery.
  • the equivalent circuit model includes a voltage source, an ohmic resistor, and at least one parallel RC circuit connected in series with each other.
  • the step of estimating the open-circuit voltage of the battery may be performed when the estimation condition is satisfied by the first number of current values.
  • the estimating of the open-circuit voltage of the battery may include estimating that the open-circuit voltage is equal to the previously-estimated open-circuit voltage when the estimation condition is not satisfied by the first number of current values.
  • the estimation condition may be satisfied when the difference between the maximum current value and the minimum current value of the first number of current values is equal to or greater than the reference current value.
  • the calibration condition includes: (i) a difference between a reference voltage value corresponding to the reference charging state and the estimated voltage value is less than a first voltage difference value, (ii) two estimated voltages And the difference between the values is less than the second voltage difference value.
  • the first voltage difference value may be smaller than the second voltage difference value.
  • the method may further comprise updating the reference charge state based on the updated charge state.
  • a battery management system for calibrating a state of charge of a battery includes: a memory; A sensing unit configured to measure terminal voltage and current of the battery; And a control unit operatively coupled to the memory and the sensing unit.
  • the control unit stores a measured voltage value representing the measured terminal voltage and a measured current value representing the measured current in the memory.
  • the control unit updates the state of charge of the battery based on the measured current value using a current integration method.
  • the controller is configured to control the first number of measured voltage values and the first number of measured values stored recently in the memory when the first or more measured voltage values and the first or more measured current values are sequentially stored in the memory Based on the current value, the open-circuit voltage of the battery is estimated.
  • the control unit stores an estimated voltage value indicating the estimated open-circuit voltage in the memory.
  • the control unit is operable to calculate the second number of estimated voltage values from the second number of estimated voltage values recently stored in the memory if the two or more estimated voltage values are sequentially stored in the memory, .
  • the control unit calibrates the updated charging state to the reference charging state when the calibration condition is satisfied by the data set.
  • the calibration condition includes: (i) a difference between a reference voltage value corresponding to the reference charging state and the estimated voltage value is less than a first voltage difference value, (ii) two estimated voltages And the difference between the values is less than the second voltage difference value.
  • the control unit may update the reference charging state based on the updated charging state.
  • the battery pack according to another embodiment of the present invention includes the battery management system.
  • the SOC of the battery estimated by the current integration method can be calibrated.
  • FIG. 1 is a functional block diagram of a battery pack according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an exemplary equivalent circuit model of the battery shown in Fig.
  • 3 and 4 are flowcharts illustrating a method for calibrating a state of charge of a battery according to another embodiment of the present invention.
  • 5 is a graph showing the correlation between the open-circuit voltage of the battery and the state of charge.
  • " control unit " as described in the specification means a unit for processing at least one function or operation, and may be implemented by hardware or software, or a combination of hardware and software.
  • FIG. 1 is a functional block diagram of a battery pack 10 according to an embodiment of the present invention.
  • a battery pack 10 includes a battery 20, a contactor 30, and a battery management system 100.
  • the battery 20 includes a positive terminal B + and a negative terminal B-.
  • the battery 20 may include at least one unit cell. When a plurality of unit cells are included in the battery 20, a plurality of unit cells may be electrically connected in series or in parallel.
  • Each unit cell may be, for example, a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, or a nickel zinc battery.
  • the type of the unit cell is not limited to the above-mentioned kind, and it is not particularly limited as long as it is capable of repeated charge and discharge.
  • the contactor 30 is installed in a large current path of the battery pack 10 in order to adjust the charging and discharging current of the battery pack 10.
  • the high current path of the battery pack 10 is a path between the positive terminal B + of the battery 20 and the positive terminal P + of the battery pack 10 and the negative terminal B- of the battery 20, And a path between the negative terminal (P < - > 1 shows the contactor 30 installed between the positive terminal P + of the battery pack 10 and the positive terminal B + of the battery 20, But is not limited thereto.
  • the contactor 30 may be installed between the negative terminal P- of the battery pack 10 and the negative terminal B- of the battery 20.
  • the contactor 30 can be turned on or turned off according to the switching signal from the battery management system 100 to adjust the current of the battery 20.
  • the battery management system 100 includes a memory 110, a sensing unit 120 and a control unit 130, and may further include a communication unit 140.
  • the memory 110 is not particularly limited as long as it is a storage medium capable of recording and erasing information.
  • the memory 110 may be a flash memory type, a hard disk type, a solid state disk type, an SDD type (Silicon Disk Drive type), a multimedia card type card micro type, random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM) ), ≪ / RTI >
  • the memory 110 may also store a program including various control logic executable by the control unit 130.
  • the memory 110 may also store data indicative of the result of the control logic executed by the control unit 130.
  • the sensing unit 120 may include a voltage sensor and a current sensor, and may further include a temperature sensor. Voltage sensor 121, current sensor 122 and temperature sensor, respectively, may be operatively connected to controller 130.
  • the voltage sensor 121 measures a terminal voltage of the battery 20 and transmits a voltage signal representing the measured terminal voltage to the controller 130. [ The terminal voltage corresponds to the potential difference between the positive terminal B + and the negative terminal B-. Based on the voltage signal transmitted from the voltage sensor 121, the control unit 130 stores the measured voltage value indicating the measured terminal voltage in the memory 110.
  • the current sensor 122 measures the current of the battery 20 and transmits a current signal indicating the measured current to the control unit 130. [ Based on the current signal transmitted from the current sensor 122, the control unit 130 stores the current value indicating the measured current in the memory 110. [
  • the temperature sensor 123 measures the temperature of the battery 20 and transmits a temperature signal indicative of the measured temperature to the control unit 130.
  • the control unit 130 stores the temperature value indicating the measured temperature in the memory 110 based on the temperature signal transmitted from the temperature sensor 123.
  • the control unit 130 is operatively connected to the memory 110, the sensing unit 120, the communication unit 140, and the contactor 30, and can individually control each operation thereof.
  • the controller 130 may be implemented in hardware as application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs) microprocessors, and other electronic units for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the control unit 130 can update the state of charge of the battery 20 based on the current value stored in the memory 110 using the current integration method. Assuming that the current value indicating the measured current at the time of charging has a positive sign and the current value indicating the measured current at the time of discharging has a negative load, the current integration method can be expressed by the following Equation 1 .
  • the initial time point may be a time point at which a predetermined initialization event occurs.
  • the initialization event may be, for example, an event in which the battery 20 starts charging or discharging in a no-load state, or an event in which the charging state of the battery 20 is calibrated.
  • FIG. 2 is a diagram illustrating an exemplary equivalent circuit model 200 of the battery 20 shown in FIG.
  • the equivalent circuit model 200 includes a voltage source 205, an ohmic resistance (R 0 ), and a parallel RC circuit 210, which are electrically connected in series with each other.
  • the voltage source 205 is for indicating the open-circuit voltage of the battery 20.
  • the ohmic resistance R 0 is for indicating the internal resistance of the battery 20.
  • the parallel RC circuit 210 is for indicating the polarization voltage of the battery 20 and includes a resistor R 1 and a capacitance C 1 electrically connected in parallel.
  • the equivalent circuit model 200 may further include one or more additional parallel RC circuits (not shown).
  • Equation (2) when there is one parallel RC circuit 210 included in the equivalent circuit model 200, the model voltage value representing the terminal voltage of the equivalent circuit model 200 at t n is expressed by the following mathematical expression Can be expressed as Equation (2).
  • V oc (t n) is the open-circuit voltage
  • R 0 is the polarization voltage
  • V 1 (t n) of the battery 20 at t n Is the model voltage value at t n .
  • FIG. 3 and 4 are flowcharts showing a method for calibrating the state of charge of the battery 20 according to another embodiment of the present invention and FIG. 5 is a graph showing a correlation between the open- to be.
  • the method shown in Figs. 3 and 4 can be executed periodically every predetermined time (e.g.,? T).
  • step S300 the controller 130 measures the terminal voltage and current of the battery 20 at t n using the sensing unit 120.
  • the temperature of the battery 20 at t n can be further measured.
  • step S310 the control unit 130 stores the measured current represents the measured current value in representing the measured terminal voltage and the measured voltage value t n in a, t n to the memory 110.
  • (n-1) measured voltage values and (n-1) measured current values measured during the period from t 1 to t n-1 are stored in the memory 110.
  • the control unit 130 may store in the memory 110 a measured temperature value representing the measured temperature at t n .
  • step S320 the control unit 130 updates the state of charge of the battery 20 based on the measured current value measured at t n , using the current integration method. That is, the control unit 130 may estimate the SOC (t n) of the state of charge of the battery 20 in a, t n (see Equation 1). At this time, the control unit 130 can use Equation (1). Data indicating the state of charge SOC (t n-1 ) in the previous charging state may be stored in the memory 110 in advance.
  • step S330 the control unit 130 determines whether the first number or more of the measured voltage values and the first or more measured current values are stored in the memory 110 in sequence.
  • the first number is a, which is 2 or more. Since the memory 110 stores n measured voltage values and measured current values through step S310, it is determined in step S330 whether n? A.
  • the first number a may be a predetermined number experimentally determined as the minimum number (e.g., 2000) required to estimate the open-circuit voltage of the battery 20 to an accuracy of a predetermined level or higher.
  • step S340 the control unit 130 determines whether a predetermined estimation condition is satisfied by the first number of measured current values.
  • the estimation condition includes, for example, (i) a case where the difference between the maximum current value and the minimum current value among the first number of measured current values is equal to or greater than a reference current value (e.g., 90A) and / or (ii) The number of the negative values and the number of the positive values may be satisfied.
  • Each of the estimation conditions (i) and (ii) indicates that the change of the current during the period from t n-a + 1 to t n changes the voltage across the ohmic resistor (R 0 ) and the parallel RC circuit 210 To check whether it has caused enough. If the value of step S340 is "YES ", the process proceeds to step S350. If the value of step S340 is "NO ", the process proceeds to step S360.
  • step S350 the controller 130 estimates the open-circuit voltage of the battery 20 based on the first number of measured voltage values and the first number of measured current values stored in the memory 110 recently.
  • Equation (3) V 1 (t n ) in Equation (2) can be expressed as Equation (3) below.
  • Equation 3 is the time constant given for the parallel RC circuit 210.
  • V oc (t n ), R 0 , R 1 and V 1 (t n ), respectively, can be an estimated unknown value as will be described later.
  • the voltage V 1 (t n ) of the parallel RC circuit 210 may be expressed differently from the equation (3).
  • Equation (4) the measured voltage value representing the terminal voltage measured at t i as 'V bat (t i )'. Then, the first number of measured voltage values is represented by an a x 1 matrix as shown in the following Equation (4).
  • the measured current value indicating the current measured at t i let's begin to describe a 'I bat (t i)' .
  • the first number of measured current values are represented by an a ⁇ 1 matrix as shown in the following equation (5).
  • Equation (6) the model voltage values at t i, let's begin to describe a 'V mod (t i)' . Then, the first number of model voltage values is expressed by an a 1 matrix as shown in Equation (6) from Equation (2).
  • r is a constant, and each of K v , J v , and 1 v is an a ⁇ 1 matrix.
  • Equation (6) can be expressed by the following assumptions Can be expressed.
  • Equation (7) it is assumed that [1 v I bat_v K v J v ], which is an a ⁇ 4 matrix made up of known values, is represented by 'H', and a 4 ⁇ 1 matrix consisting of unknown values of [V oc_n R 0 V 1 ( t na) R 1] is expressed by the T 'x', equation (7) can be simplified as shown in equation 8.
  • Equation (9) the least squares method related to the equivalent circuit model 200, which the controller 130 can use to estimate the open-circuit voltage of the battery 20.
  • Equation 9 SSE is the sum of squared errors between V bat_v and V mod_v .
  • the control unit 130 can estimate x that minimizes the SSE of Equation (9) using the following Equation (10).
  • V oc_n which is an element included in x estimated using Equation (10), is an estimated voltage value representing an open-circuit voltage of the battery 20 estimated at t n .
  • step S360 the controller 130 estimates that the open-circuit voltage of the battery 20 is equal to the previously-estimated open-circuit voltage. In other words, when the estimated voltage value representing the previously estimated open-circuit voltage is V oc_n-1 , the control unit 130 sets V oc_n to the same value as V oc_n-1 .
  • step S365 the control unit 130 stores the estimated voltage value V oc_n indicating the estimated open-circuit voltage of the battery 20 in the memory 110.
  • step S370 the control unit 130 determines whether or not the second or more estimated voltage values are stored in the memory 110 in order.
  • the second number may be two or more. For example, if the second number is 5, only if Voc_n-4 , Voc_n-3 , Voc_n-2 , Voc_n-1 and Voc_n are sequentially stored in the memory 110, The value becomes "YES”. If the value of the step S370 is "YES ", the process proceeds to a step S380. If the value of step S370 is "NO ", step S394 may be performed.
  • the second number is 5.
  • step S380 the control unit 130 determines whether or not the estimated voltage values V oc_n-4 , V oc_n-3 , V oc_n-2 , V oc_n-1 and V oc_n , which are stored in the memory 110, 2, the estimated voltage values Voc_n-4 , Voc_n-3 , Voc_n-2 , Voc_n-1, and Voc_n are arranged in this order.
  • step S385 the control unit 130 determines whether the calibration condition is satisfied by the data set.
  • Calibration conditions a predetermined (i) based on state of charge based on voltage values corresponding to the (e. G., 50%) of the difference between (for example, 3.3V) and the estimated voltage value V oc_n (e.g., V ⁇ 3.3V- oc_n ⁇ ) ( E.g.
  • V 2 and V-oc_n oc_n-1, V-1 and V oc_n oc_n) for example, ⁇ V oc_n-2 - V oc_n -1 ⁇
  • a predetermined second voltage difference for example, 0.01V
  • a plurality of OCV-SOC curve data corresponding to one-to-one correspondence to each of a plurality of temperature ranges may be stored in advance.
  • the control unit 130 can select any OCV-SOC curve data corresponding to a temperature range to which the measured temperature value representing the measured temperature at t n belongs, and determines the OCV-SOC curve data corresponding to the OCV-
  • the correlation between the charging states can be the same as the graph shown in Fig.
  • a reference voltage value corresponding to the reference charging state ('reference opening voltage' in FIG. 5) can be determined.
  • the first voltage difference value may be smaller than the second voltage difference value. If the value of step S385 is "YES ", the process proceeds to step S390. If the value of the step S385 is "NO ", the step S394 may proceed.
  • step S390 the control unit 130 calibrates the updated charging state to the reference charging state. Accordingly, the SOC (t n ) indicating the updated state of charge in step S320 may be changed to be the same value as the reference state of charge.
  • step S392 the control unit 130 uses the communication unit 140 to transmit a notification signal to the external device 1 indicating that the state of charge of the battery 20 has been calibrated.
  • the external device 1 may be, for example, an ECU of an electric vehicle on which the battery pack 10 is mounted.
  • step S394 the control unit 130 can update the reference charge state.
  • the control unit 130 can update the reference charge state based on the updated charge state SOC (t n ) using the following equation (11).
  • t r is the measurement time (e.g., t 1 ) of the past (i.e., the r-th cycle preceding the n-th cycle) and SOC ref (t n-1 ) is the previous reference charging state.
  • the updated reference charging state SOC ref (t n ) may correspond to the average charging state for a period from t r to t n .
  • the reference charging state SOC ref (t n ) updated by step S394 may be stored in the memory 110.
  • [ SOC ref (t n ) can be utilized as the previous reference charging state in the next cycle (i.e., the (n + 1) th cycle).
  • the reference state of charge is periodically updated depending on the change history of the state of charge of the battery (20).
  • the reference charging state may be a predetermined one, not updated in step S394.
  • the control unit 130 can control the contactor 30 based on the control signal transmitted from the external device 1 or the state of charge SOC (t n ) obtained in step S320.
  • the control signal may be the response of the external device 1 to the notification signal transmitted in step S392. If the SOC (t n ) deviates from a predetermined normal operating range (for example, 20 to 80%), the control unit 130 turns off the contactor 30 to thereby overcharge and overcharge the battery 20 I can protect it from before.
  • the controller 130 may turn off the contactor 30 when the difference between SOC ref (t n ) and SOC ref (t n-1 ) exceeds a certain value (eg, 0.3%).
  • An excessively large difference between SOC ref (t n ) and SOC ref (t n-1 ) means that there is a high probability that at least one of the steps executed to determine SOC ref (t n ) .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템이 개시된다. 상기 방법은, 상기 배터리의 단자 전압 및 전류를 측정하는 단계; 상기 측정된 단자 전압을 나타내는 측정 전압값 및 상기 측정된 전류를 나타내는 측정 전류값을 메모리에 저장하는 단계; 상기 측정 전류값을 기초로, 상기 배터리의 충전 상태를 업데이트하는 단계; 상기 메모리에 최근에 저장된 제1 개수의 측정 전압값 및 상기 제1 개수의 측정 전류값을 기초로, 상기 배터리의 개방 전압을 추정하는 단계; 상기 추정된 개방 전압을 나타내는 추정 전압값을 상기 메모리에 저장하는 단계; 상기 메모리에 순차적으로 저장된 제2 개수의 추정 전압값이 순서대로 정렬된 데이터 세트에 의해 캘리브레이션 조건이 만족된 경우, 상기 업데이트된 충전 상태를 기준 충전 상태로 캘리브레이션하는 단계를 포함한다.

Description

배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템
본 발명은 배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템에 관한 것이다.
본 출원은 2017년 12월 21일자로 출원된 한국 특허출원 번호 제10-2017-0177360호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
배터리로부터 에너지를 공급받는 각종 장치나 시스템의 안정적인 사용을 위해서는, 배터리의 충전 상태(SOC: State Of Charge)를 주기적으로 추정하는 프로세스가 필수적이다. 특히, 배터리의 SOC는, 배터리를 앞으로 어느 정도의 시간동안 안정적으로 사용 가능한지 가늠하는 척도가 된다.
배터리의 SOC는, 일반적으로, 주어진 만충전 용량에 대한 현재의 잔존 용량을 백분율로 표현된다. 잔존 용량은, 직접적으로 측정하기 어렵기 때문에, 배터리의 전압 및/또는 전류 등에 기초하여 추정할 수 밖에 없다.
배터리의 SOC를 추정하는 데에 대표적으로 이용되는 방식으로서, 전류 적산 방식(ampere counting)이 있다. 전류 적산 방식은, 쿨롬 카운팅(coulomb counting)이라고 불리기도 하는 것으로서, 전류 센서에 의해 주기적으로 측정되는 배터리의 전류를 시간에 대해 적산한 결과로부터 잔존 용량을 산출한다.
그런데, 전류 적산 방식은, 전류 센서의 측정 오차로 인하여 시간이 지날수록 추정된 SOC의 정확도가 저하된다는 단점이 있다. 따라서, 전류 적산 방식만을 이용하여 배터리의 SOC를 추정하는 것은 바람직하지 않으므로, 전류 적산 방식에 의해 추정된 배터리의 SOC를 적절히 캘리브레이션할 필요가 있다.
한편, 배터리의 SOC를 추정하는 다른 방식으로서, OCV-SOC 커브를 이용하는 방식이 있다. 구체적으로, OCV-SOC 커브를 이용하는 방식에 따르면, 배터리의 개방전압(OCV: Open Circuit voltage)을 측정하고, 측정된 OCV에 대응하는 SOC를 주어진 OCV-SOC 커브 데이터로부터 추정할 수 있다. OCV-SOC 커브를 이용하는 방식은, 전류 센서를 이용하지 않으므로, 시간이 지날수록 추정된 SOC의 정확도가 저하되는 문제는 발생하지 않는다.
그런데, OCV-SOC 커브를 이용하는 방식은, 배터리의 OCV를 측정해야만 하는데, 배터리의 OCV는 배터리가 일정 시간 이상 무부하 상태로 유지되어야만 측정될 수 있다. 따라서, 배터리가 일정 시간 이상 무부하 상태로 유지되지 않고 계속하여 충전 또는 방전되는 동안에는, 배터리의 OCV의 측정이 불가능하다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 일 목적은, 배터리가 충방전 중인지와는 무관하게, 전류 적산 방식에 의해 추정된 배터리의 SOC를 캘리브레이션할 수 있는 방법 및 배터리 관리 시스템을 제공하는 것이다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명의 다양한 실시예는 다음과 같다.
본 발명의 일 실시예에 따른, 배터리의 충전 상태를 캘리브레이션하기 위한 방법은, 상기 배터리의 단자 전압 및 전류를 측정하는 단계; 상기 측정된 단자 전압을 나타내는 측정 전압값 및 상기 측정된 전류를 나타내는 측정 전류값을 메모리에 저장하는 단계; 전류 적산법을 이용하여, 상기 측정 전류값을 기초로, 상기 배터리의 충전 상태를 업데이트하는 단계; 제1 개수 이상의 측정 전압값 및 상기 제1 개수 이상의 측정 전류값이 상기 메모리에 순차적으로 저장된 경우, 상기 메모리에 최근에 저장된 상기 제1 개수의 측정 전압값 및 상기 제1 개수의 측정 전류값을 기초로, 상기 배터리의 개방 전압을 추정하는 단계; 상기 추정된 개방 전압을 나타내는 추정 전압값을 상기 메모리에 저장하는 단계; 제2 개수 이상의 추정 전압값이 상기 메모리에 순차적으로 저장된 경우, 상기 메모리에 최근에 저장된 상기 제2 개수의 추정 전압값으로부터, 상기 제2 개수의 추정 전압값이 순서대로 정렬된 데이터 세트를 생성하는 단계; 및 상기 데이터 세트에 의해 캘리브레이션 조건이 만족된 경우, 상기 업데이트된 충전 상태를 기준 충전 상태로 캘리브레이션하는 단계를 포함한다.
상기 배터리의 개방 전압을 추정하는 단계는, 상기 배터리의 등가 회로 모델에 연관된 최소 제곱법을 이용할 수 있다. 이 경우, 상기 등가 회로 모델은, 서로 직렬로 연결된, 전압원, 옴 저항, 및 적어도 하나의 병렬 RC 회로를 포함한다.
상기 배터리의 개방 전압을 추정하는 단계는, 상기 제1 개수의 전류값에 의해 추정 조건이 만족되는 경우에 수행될 수 있다.
상기 배터리의 개방 전압을 추정하는 단계는, 상기 제1 개수의 전류값에 의해 상기 추정 조건이 만족되지 않는 경우, 상기 개방 전압이 이전에 추정된 개방 전압과 동일한 것으로 추정할 수 있다.
상기 추정 조건은, 상기 제1 개수의 전류값 중 최대 전류값과 최소 전류값 간의 차이가 기준 전류값 이상인 경우에 만족될 수 있다.
상기 캘리브레이션 조건은, (i)상기 기준 충전 상태에 대응하는 기준 전압값과 상기 추정 전압값 간의 차이가 제1 전압 차이값 미만이고, (ii)상기 데이터 세트 내에서 서로 인접하게 정렬된 두 추정 전압값 간의 차이가 제2 전압 차이값 미만인 경우에 만족될 수 있다.
상기 제1 전압 차이값은, 상기 제2 전압 차이값보다 작을 수 있다.
상기 방법은, 상기 업데이트된 충전 상태를 기초로, 상기 기준 충전 상태를 업데이트하는 단계를 더 포함할 수 있다.
본 발명의 다른 실시예에 따른, 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 시스템은, 메모리; 상기 배터리의 단자 전압 및 전류를 측정하도록 구성된 센싱부; 및 상기 메모리 및 상기 센싱부에 동작 가능하게 결합된 제어부를 포함한다. 상기 제어부는, 상기 측정된 단자 전압을 나타내는 측정 전압값 및 상기 측정된 전류를 나타내는 측정 전류값을 상기 메모리에 저장한다. 상기 제어부는, 전류 적산법을 이용하여, 상기 측정 전류값을 기초로, 상기 배터리의 충전 상태를 업데이트한다. 상기 제어부는, 제1 개수 이상의 측정 전압값 및 상기 제1 개수 이상의 측정 전류값이 상기 메모리에 순차적으로 저장된 경우, 상기 메모리에 최근에 저장된 상기 제1 개수의 측정 전압값 및 상기 제1 개수의 측정 전류값을 기초로, 상기 배터리의 개방 전압을 추정한다. 상기 제어부는, 상기 추정된 개방 전압을 나타내는 추정 전압값을 상기 메모리에 저장한다. 상기 제어부는, 2 개수 이상의 추정 전압값이 상기 메모리에 순차적으로 저장된 경우, 상기 메모리에 최근에 저장된 상기 제2 개수의 추정 전압값으로부터, 상기 제2 개수의 추정 전압값이 순서대로 정렬된 데이터 세트를 생성한다. 상기 제어부는, 상기 데이터 세트에 의해 캘리브레이션 조건이 만족된 경우, 상기 업데이트된 충전 상태를 기준 충전 상태로 캘리브레이션한다.
상기 캘리브레이션 조건은, (i)상기 기준 충전 상태에 대응하는 기준 전압값과 상기 추정 전압값 간의 차이가 제1 전압 차이값 미만이고, (ii)상기 데이터 세트 내에서 서로 인접하게 정렬된 두 추정 전압값 간의 차이가 제2 전압 차이값 미만인 경우에 만족될 수 있다.
상기 제어부는, 상기 업데이트된 충전 상태를 기초로, 상기 기준 충전 상태를 업데이트할 수 있다.
본 발명의 또 다른 실시예에 따른 배터리팩은, 상기 배터리 관리 시스템을 포함한다.
본 발명의 실시예들 중 적어도 하나에 의하면, 배터리가 충방전 중인지와는 무관하게, 배터리의 단자 전압 및 전류에 기초하여 배터리의 개방 전압을 주기적으로 추정한 다음, 추정된 개방 전압에 기초하여, 전류 적산 방식에 의해 추정된 배터리의 SOC를 캘리브레이션할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 출원의 한 실시예를 예시하는 것이며, 후술하는 상세한 설명과 함께 본 출원의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 출원은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리팩의 기능적 구성을 나타낸 도면이다.
도 2는 도 1에 도시된 배터리의 예시적인 등가 회로 모델을 보여주는 도면이다.
도 3 및 도 4는 본 발명의 다른 실시예에 따른 배터리의 충전 상태를 캘리브레이션하기 위한 방법을 보여주는 순서도이다.
도 5는 배터리의 개방 전압과 충전 상태 간의 상관 관계를 보여주는 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 명세서에 기재된 <제어 유닛>과 같은 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
도 1은 본 발명의 일 실시예에 따른 배터리팩(10)의 기능적 구성을 나타낸 도면이다.
도 1을 참조하면, 배터리팩(10)은, 배터리(20), 컨택터(30) 및 배터리 관리 시스템(100)을 포함한다.
배터리(20)는, 양극 단자(B+) 및 음극 단자(B-)를 포함한다. 배터리(20)는, 적어도 하나의 단위 셀을 포함할 수 있다. 배터리(20)에 복수의 단위 셀이 포함되는 경우, 복수의 단위 셀은 전기적으로 상호 직렬 또는 병렬로 연결될 수 있다. 각 단위 셀은, 예컨대, 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지일 수 있다. 물론, 단위 셀의 종류가 위에서 열거된 종류로 한정되는 것은 아니며, 반복적인 충방전이 가능한 것이라면 특별히 제한되지 않는다.
컨택터(30)는, 배터리팩(10)의 충방전 전류를 조절하기 위해, 배터리팩(10)의 대전류 경로에 설치된다. 배터리팩(10)의 대전류 경로는, 배터리(20)의 양극 단자(B+)와 배터리팩(10)의 양극 단자(P+) 사이의 경로 및 배터리(20)의 음극 단자(B-)와 배터리팩(10)의 음극 단자(P-) 사이의 경로를 포함할 수 있다. 도 1에는, 배터리팩(10)의 양극 단자(P+)와 배터리(20)의 양극 단자(B+) 사이에 컨택터(30)가 설치된 것으로 도시되어 있으나, 컨택터(30)의 설치 위치가 이에 한정되는 것은 아니다. 예컨대, 컨택터(30)는, 배터리팩(10)의 음극 단자(P-)와 배터리(20)의 음극 단자(B-) 사이에 설치될 수도 있다.
컨택터(30)는, 배터리 관리 시스템(100)으로부터의 스위칭 신호에 따라 턴 온 상태 또는 턴 오프 상태로 됨으로써, 배터리(20)의 전류를 조절할 수 있다.
배터리 관리 시스템(100)은, 메모리(110), 센싱부(120) 및 제어부(130)를 포함하고, 선택적으로 통신부(140)를 더 포함할 수 있다.
메모리(110)는, 정보를 기록하고 소거할 수 있는 저장 매체라면 그 종류에 특별한 제한이 없다. 일 예로, 메모리(110)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory), PROM(programmable read-only memory) 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 메모리(110)는 또한 제어부(130)에 의해 수행 가능한 각종 제어 로직을 포함하는 프로그램을 저장할 수 있다. 메모리(110)는 또한 제어부(130)에 의해 실행된 제어 로직의 결과를 나타내는 데이터를 저장할 수 있다.
센싱부(120)는, 전압 센서 및 전류 센서를 포함하고, 선택적으로 온도 센서를 더 포함할 수 있다. 전압 센서(121), 전류 센서(122) 및 온도 센서 각각은 제어부(130)에 동작 가능하게 연결될 수 있다.
전압 센서(121)는, 배터리(20)의 단자 전압을 측정하고 측정된 단자 전압을 나타내는 전압 신호를 제어부(130)에게 전송한다. 단자 전압은, 양극 단자(B+)와 음극 단자(B-) 간의 전위차에 대응한다. 제어부(130)는, 전압 센서(121)로부터 전송된 전압 신호를 기초로, 측정된 단자 전압을 나타내는 측정 전압값을 메모리(110)에 저장한다.
전류 센서(122)는, 배터리(20)의 전류를 측정하고 측정된 전류를 나타내는 전류 신호를 제어부(130)에게 전송한다. 제어부(130)는, 전류 센서(122)로부터 전송된 전류 신호를 기초로, 측정된 전류를 나타내는 전류값을 메모리(110)에 저장한다.
온도 센서(123)는, 배터리(20)의 온도를 측정하고 측정된 온도를 나타내는 온도 신호를 제어부(130)에게 전송한다. 제어부(130)는, 온도 센서(123)로부터 전송된 온도 신호를 기초로, 측정된 온도를 나타내는 온도값을 메모리(110)에 저장한다.
제어부(130)는, 메모리(110), 센싱부(120), 통신부(140) 및 컨택터(30)에 동작 가능하게 연결되어, 이를 각각의 동작을 개별적으로 제어할 수 있다. 제어부(130)는, 하드웨어적으로, ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
제어부(130)는, 전류 적산법을 이용하여, 메모리(110)에 저장된 전류값을 기초로, 배터리(20)의 충전 상태를 업데이트할 수 있다. 충전 시에 측정된 전류를 나타내는 전류값은 양의 부호를 가지고 방전 시에 측정된 전류를 나타내는 전류값은 음의 부하를 가지는 것으로 가정하면, 전류 적산법은 다음의 수학식 1과 같이 표현될 수 있다.
<수학식 1>
Figure PCTKR2018015880-appb-I000001
수학식 1에 있어서, Δt는 주어진 측정 주기(예, 0.001초), tn은 초기 시점으로부터 nΔt만큼 경과된 시점(즉, n번째 주기의 측정 시점), tn-1은 (n-1)Δt만큼 경과된 시점, Ibat(tn)은 tn에서 측정된 전류를 나타내는 측정 전류값, Qfull는 배터리(20)의 만충전 용량, SOC(tn-1)은 tn-1에서의 충전 상태, SOC(tn)은 tn에서의 충전 상태이다. ti = 초기 시점 + iΔt이고, Δt = ti - ti-1 임을 당업자라면 쉽게 알 수 있을 것이다. 초기 시점은, 소정의 초기화 이벤트가 일어난 시점일 수 있다. 초기화 이벤트는, 예를 들어 배터리(20)가 무부하 상태에서 충전이나 방전이 개시되는 이벤트이거나, 배터리(20)의 충전 상태가 캘리브레이션되는 이벤트일 수 있다.
도 2는 도 1에 도시된 배터리(20)의 예시적인 등가 회로 모델(200)을 보여주는 도면이다.
도 2를 참조하면, 등가 회로 모델(200)은, 서로 전기적으로 직렬로 연결된, 전압원(205), 옴 저항(ohmic resistance)(R0) 및 병렬 RC 회로(210)를 포함한다. 전압원(205)은, 배터리(20)의 개방 전압을 나타내기 위한 것이다. 옴 저항(R0)은, 배터리(20)의 내부 저항을 나타내기 위한 것이다. 병렬 RC 회로(210)는, 배터리(20)의 분극 전압을 나타내기 위한 것으로서, 전기적으로 병렬 연결된 저항(R1) 및 커패시턴스(C1)를 포함한다. 물론, 등가 회로 모델(200)은, 하나 이상의 추가적인 병렬 RC 회로(미도시)를 더 포함할 수 있다.
도 2에 도시된 바와 같이, 등가 회로 모델(200)에 포함된 병렬 RC 회로(210)가 하나인 경우, tn에서의 등가 회로 모델(200)의 단자 전압을 나타내는 모델 전압값은 다음의 수학식 2와 같이 표현될 수 있다.
<수학식 2>
Figure PCTKR2018015880-appb-I000002
Voc(tn)는 tn에서의 배터리(20)의 개방 전압, R0는 배터리(20)의 내부 저항, V1(tn)는 tn에서의 분극 전압, Vmod(tn)는 tn에서의 모델 전압값이다.
도 3 및 도 4는 본 발명의 다른 실시예에 따른 배터리(20)의 충전 상태를 캘리브레이션하기 위한 방법을 보여주는 순서도이고, 도 5는 배터리(20)의 개방 전압과 충전 상태 간의 상관 관계를 보여주는 그래프이다. 도 3 및 도 4에 도시된 방법은, 소정 시간(예, Δt)마다 주기적으로 실행될 수 있다.
도 1 내지 도 4를 참조하면, 단계 S300에서, 제어부(130)는, 센싱부(120)를 이용하여, tn에서의 배터리(20)의 단자 전압 및 전류를 측정한다. 선택적으로, tn에서의 배터리(20)의 온도를 더 측정할 수 있다.
단계 S310에서, 제어부(130)는, tn에서의 측정된 단자 전압을 나타내는 측정 전압값 및 tn에서의 측정된 전류 나타내는 측정 전류값을 메모리(110)에 저장한다. 이때, 메모리(110)에는, t1부터 tn-1까지의 기간 동안에 측정된 (n-1)개의 측정 전압값과 (n-1)개의 측정 전류값이 기 저장되어 있다. 선택적으로, 제어부(130)는, tn에서의 측정된 온도를 나타내는 측정 온도값을 메모리(110)에 저장할 수 있다.
단계 S320에서, 제어부(130)는, 전류 적산법을 이용하여, tn에서 측정된 측정 전류값을 기초로, 배터리(20)의 충전 상태를 업데이트한다. 즉, 제어부(130)는, tn에서의 배터리(20)의 충전 상태인 SOC(tn)를 추정할 수 있다(수학식 1 참조). 이때, 제어부(130)는, 전술한 수학식 1을 이용할 수 있다. 이전의 충전 상태인 SOC(tn-1)를 나타내는 데이터가 메모리(110)에 기 저장되어 있을 수 있다.
단계 S330에서, 제어부(130)는, 메모리(110)에 제1 개수 이상의 측정 전압값 및 제1 개수 이상의 측정 전류값이 순차적으로 저장되어 있는지 판정한다. 이하에서는, 제1 개수가 2 이상인 a라고 가정한다. 단계 S310을 통해 메모리(110)에는 측정 전압값과 측정 전류값이 각각 n개씩 저장되어 있으므로, 단계 S330에서 n≥a인지 판정된다. 제1 개수 a는, 배터리(20)의 개방 전압을 일정 수준 이상의 정확도로 추정하기 위해 요구되는 최소 개수(예, 2000개)로서, 실험적으로 미리 정해진 값일 수 있다. 예컨대, 제1 개수 a=2000이라면, tn ≥ t2000인 경우에는 단계 S330의 값이 "YES"가 되는 반면, tn < t2000인 경우에는 단계 S330의 값이 "NO"가 된다. 단계 S330의 값이 "YES"인 경우, 단계 S340이 진행된다. 단계 S330의 값이 "NO"인 경우, 단계 S360이 진행된다.
단계 S340에서, 제어부(130)는, 제1 개수의 측정 전류값에 의해 미리 정해진 추정 조건이 만족되는지 판정한다. 추정 조건은, 예컨대 (i)제1 개수의 측정 전류값 중 최대 전류값과 최소 전류값 간의 차이가 기준 전류값(예, 90A) 이상인 경우 및/또는 (ii)제1 개수의 측정 전류값 중 음의 값인 것의 개수와 양의 값인 것의 개수 각각이 소정 개수 이상인 경우에 만족되는 것일 수 있다. 추정 조건 (i)와 (ii) 각각은, tn-a+1부터 tn까지의 기간 동안의 전류의 변화가 옴 저항(R0)과 병렬 RC 회로(210) 각각의 양단의 전압 변화를 충분히 유발하였는지를 체크하기 위한 것이다. 단계 S340의 값이 "YES"인 경우, 단계 S350이 진행된다. 단계 S340의 값이 "NO"인 경우, 단계 S360이 진행된다.
단계 S350에서, 제어부(130)는, 메모리(110)에 최근에 저장된 제1 개수의 측정 전압값 및 제1 개수의 측정 전류값을 기초로, 배터리(20)의 개방 전압을 추정한다.
수학식 2의 V1(tn)은 아래의 수학식 3과 같이 표현될 수 있다.
<수학식 3>
Figure PCTKR2018015880-appb-I000003
수학식 3에서, τ1는 병렬 RC 회로(210)를 위해 주어진 시상수이다. 수학식 2 및 수학식 3에 있어서, Voc(tn), R0, R1와 V1(tn) 각각은 후술될 바와 같이 추정 가능한 미지값일 수 있다. 물론, 병렬 RC 회로(210)의 전압 V1(tn)은 수학식 3과는 다르게 표현될 수도 있다.
ti에서 측정된 단자 전압을 나타내는 측정 전압값을 'Vbat(ti)'라고 표현하기로 해보자. 그러면, 제1 개수의 측정 전압값은 아래의 수학식 4와 같은 a×1 행렬로 표현된다.
<수학식 4>
Figure PCTKR2018015880-appb-I000004
또한, ti에서 측정된 전류를 나타내는 측정 전류값을 'Ibat(ti)'라고 표현하기로 해보자. 그러면, 제1 개수의 측정 전류값은 아래의 수학식 5와 같은 a×1 행렬로 표현된다.
<수학식 5>
Figure PCTKR2018015880-appb-I000005
또한, ti에서의 모델 전압값을 'Vmod(ti)'라고 표현하기로 해보자. 그러면, 제1 개수의 모델 전압값은 수학식 2로부터 아래의 수학식 6과 같은 a×1 행렬로 표현된다.
<수학식 6>
Figure PCTKR2018015880-appb-I000006
한편, r, Kv, Jv, 1v를 각각 아래와 같이 정의해보자.
Figure PCTKR2018015880-appb-I000007
r은 상수이며, Kv, Jv, 1v 각각은 a×1 행렬이다.
그리고, tn-a부터 tn까지의 기간 동안에 전압원(205)에 의한 개방 전압 Voc(ti)이 Voc_n로 일정하다고 가정하면, 수학식 6은 위 가정들에 의해 다음의 수학식 7과 같이 표현될 수 있다.
<수학식 7>
Figure PCTKR2018015880-appb-I000008
수학식 7에서, 아는 값들(known values)로 이루어진 a×4 행렬인 [1v Ibat_v Kv Jv]을 'H'로 표현하기로 하고, 모르는 값들(unknown values)로 이루어진 4×1 행렬인 [Voc_n R0 V1(tn-a) R1]T을 'x'로 표현하면, 수학식 7은 다음의 수학식 8과 같이 단순화될 수 있다.
<수학식 8>
Figure PCTKR2018015880-appb-I000009
한편, 제어부(130)가 배터리(20)의 개방 전압을 추정하는 데에 이용할 수 있는, 등가 회로 모델(200)에 연관된 최소 제곱법은 다음의 수학식 9와 같이 표현될 수 있다.
<수학식 9>
Figure PCTKR2018015880-appb-I000010
수학식 9에서, SSE는, Vbat_v와 Vmod_v 간의 잔차 제곱 합(sum of squared errors)이다. 제어부(130)는, 다음의 수학식 10을 이용하여, 수학식 9의 SSE를 최소화하는 x를 추정할 수 있다.
<수학식 10>
Figure PCTKR2018015880-appb-I000011
수학식 10을 이용하여 추정된 x에 포함된 성분인 Voc_n가 바로 tn에서의 추정된 배터리(20)의 개방 전압을 나타내는 추정 전압값이다.
단계 S360에서, 제어부(130)는, 배터리(20)의 개방 전압이 이전에 추정된 개방 전압과 동일한 것으로 추정한다. 다시 말해, 이전에 추정된 개방 전압을 나타내는 추정 전압값이 Voc_n-1인 경우, 제어부(130)는 Voc_n를 Voc_n-1 와 동일한 값으로 설정한다.
단계 S365에서, 제어부(130)는, 추정된 배터리(20)의 개방 전압을 나타내는 추정 전압값 Voc_n을 메모리(110)에 저장한다.
단계 S370에서, 제어부(130)는, 제2 개수 이상의 추정 전압값이 메모리(110)에 순차적으로 저장되어 있는지 판정한다. 제2 개수는, 2 이상일 수 있다. 예를 들어, 제2 개수가 5인 경우, 적어도 Voc_n-4, Voc_n-3, Voc_n-2, Voc_n-1 및 Voc_n가 메모리(110)에 순차적으로 저장된 경우에 한하여 단계 S370의 값이 "YES"가 된다. 단계 S370의 값이 "YES"인 경우, 단계 S380이 진행된다. 단계 S370의 값이 "NO"인 경우, 단계 S394가 진행될 수 있다. 이하에서는, 설명의 편의를 위해, 제2 개수가 5인 것으로 가정한다.
단계 S380에서, 제어부(130)는, 메모리(110)에 최근에 저장된 제2 개수의 추정 전압값 Voc_n-4, Voc_n-3, Voc_n-2, Voc_n-1 및 Voc_n으로부터, 제2 개수의 추정 전압값 Voc_n-4, Voc_n-3, Voc_n-2, Voc_n-1 및 Voc_n이 순서대로 정렬된 데이터 세트를 생성한다.
단계 S385에서, 제어부(130)는, 데이터 세트에 의해 캘리브레이션 조건이 만족되는지 판정한다. 캘리브레이션 조건은, (i)기준 충전 상태(예, 50%)에 대응하는 기준 전압값(예, 3.3V)과 추정 전압값 Voc_n 간의 차이(예, │3.3V- Voc_n│)가 미리 정해진 제1 전압 차이값(예, 0.005V) 미만이고, (ii)데이터 세트 내에서 서로 인접한 두 추정 전압값(예, Voc_n-4와 Voc_n-3, Voc_n-3와 Voc_n-2, Voc_n-2와 Voc_n-1, Voc_n-1와 Voc_n) 간의 차이(예, │Voc_n-2- Voc_n-1│) 각각이 미리 정해진 제2 전압 차이값(예, 0.01V) 미만인 경우에 만족될 수 있다.
메모리(110)에는, 다수의 온도 범위 각각에 일대일로 대응하는 다수의 OCV-SOC 커브 데이터가 미리 저장되어 있을 수 있다. 제어부(130)는, tn에서의 측정된 온도를 나타내는 측정 온도값이 속하는 어느 한 온도 범위에 대응하는 어느 한 OCV-SOC 커브 데이터를 선택할 수 있으며, 선택된 OCV-SOC 커브 데이터가 나타내는 개방 전압과 충전 상태 간의 상관 관계는 도 5에 도시된 그래프와 같을 수 있다. 선택된 OCV-SOC 커브 데이터로부터 기준 충전 상태에 대응하는 기준 전압값(도 5의 '기준 개방 전압')을 결정할 수 있다. 제1 전압 차이값은, 제2 전압 차이값보다 작을 수 있다. 단계 S385의 값이 "YES"인 경우, 단계 S390이 진행된다. 단계 S385의 값이 "NO"인 경우, 단계 S394가 진행될 수 있다.
단계 S390에서, 제어부(130)는, 업데이트된 충전 상태를 기준 충전 상태로 캘리브레이션한다. 이에 따라, 단계 S320에서 업데이트된 충전 상태를 나타내는 SOC(tn)가 기준 충전 상태와 동일한 값이 되도록 변경될 수 있다.
단계 S392에서, 제어부(130)는, 통신부(140)를 이용하여, 배터리(20)의 충전 상태가 캘리브레이션되었음을 나타내는 통지 신호를 외부 디바이스(1)에게 전송한다. 외부 디바이스(1)는, 예컨대, 배터리팩(10)이 탑재되는 전기 자동차의 ECU일 수 있다.
단계 S394에서, 제어부(130)는, 기준 충전 상태를 업데이트할 수 있다. 제어부(130)는, 다음의 수학식 11을 이용하여, 업데이트된 충전 상태 SOC(tn)를 기초로, 기준 충전 상태를 업데이트할 수 있다.
<수학식 11>
Figure PCTKR2018015880-appb-I000012
수학식 11에서, tr은 과거(즉, n번째 주기에 선행하는 r번째 주기)의 측정 시점(예, t1)이고, SOCref(tn-1)은 이전의 기준 충전 상태이다. 업데이트된 기준 충전 상태 SOCref(tn)는, tr부터 tn까지의 기간 동안의 평균 충전 상태에 대응할 수 있다. 단계 S394에 의해 업데이트된 기준 충전 상태 SOCref(tn)는 메모리(110)에 저장될 수 있다. SOCref(tn)은, 다음 주기(즉, n+1번째 주기)에서의 이전의 기준 충전 상태로서 활용될 수 있다. 수학식 11에 따르면, 배터리(20)의 충전 상태의 변화 이력에 의존하여 기준 충전 상태가 주기적으로 업데이트된다는 장점이 있다. 물론, 기준 충전 상태는, 단계 S394에서 업데이트되는 것이 아닌, 미리 정해진 것일 수도 있다.
단계 S396에서, 제어부(130)는, 외부 디바이스(1)로부터 전송된 제어 신호 또는 단계 S320에서 획득된 충전 상태 SOC(tn)를 기초로, 컨택터(30)를 제어할 수 있다. 상기 제어 신호는, 단계 S392에서 전송된 통지 신호에 대한 외부 디바이스(1)의 응답일 수 있다. 만약, SOC(tn)가 미리 정해진 정상 동작 범위(예, 20 ~ 80 [%])를 벗어나는 경우, 제어부(130)는 컨택터(30)를 턴 오프시킴으로써, 배터리(20)를 과충전 및 과방전으로부터 보호할 수 있다. 제어부(130)는, SOCref(tn)와 SOCref(tn-1) 간의 차이가 일정값(예, 0.3%)을 초과할 경우, 컨택터(30)를 턴 오프시킬 수 있다. SOCref(tn)와 SOCref(tn-1) 간의 차이가 과도하게 큰 것은, SOCref(tn)을 결정하기 위해 실행된 단계들 중에서 적어도 하나에 오류가 발생되었을 가능성이 높음을 의미하기 때문이다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
<부호의 설명>
1: 외부 디바이스
10: 배터리팩
20: 배터리
30: 컨택터
100: 배터리 관리 시스템
110: 메모리
120: 센싱부
130: 제어부
140: 통신부
200: 등가 회로 모델
R0: 옴 저항
210: 병렬 RC 회로

Claims (12)

  1. 배터리의 충전 상태를 캘리브레이션하기 위한 방법에 있어서,
    상기 배터리의 단자 전압 및 전류를 측정하는 단계;
    상기 측정된 단자 전압을 나타내는 측정 전압값 및 상기 측정된 전류를 나타내는 측정 전류값을 메모리에 저장하는 단계;
    전류 적산법을 이용하여, 상기 측정 전류값을 기초로, 상기 배터리의 충전 상태를 업데이트하는 단계;
    제1 개수 이상의 측정 전압값 및 상기 제1 개수 이상의 측정 전류값이 상기 메모리에 순차적으로 저장된 경우, 상기 메모리에 최근에 저장된 상기 제1 개수의 측정 전압값 및 상기 제1 개수의 측정 전류값을 기초로, 상기 배터리의 개방 전압을 추정하는 단계;
    상기 추정된 개방 전압을 나타내는 추정 전압값을 상기 메모리에 저장하는 단계;
    제2 개수 이상의 추정 전압값이 상기 메모리에 순차적으로 저장된 경우, 상기 메모리에 최근에 저장된 상기 제2 개수의 추정 전압값으로부터, 상기 제2 개수의 추정 전압값이 순서대로 정렬된 데이터 세트를 생성하는 단계; 및
    상기 데이터 세트에 의해 캘리브레이션 조건이 만족된 경우, 상기 업데이트된 충전 상태를 기준 충전 상태로 캘리브레이션하는 단계를 포함하는, 방법.
  2. 제1항에 있어서,
    상기 배터리의 개방 전압을 추정하는 단계는,
    상기 배터리의 등가 회로 모델에 연관된 최소 제곱법을 이용하되,
    상기 등가 회로 모델은, 서로 직렬로 연결된, 전압원, 옴 저항, 및 적어도 하나의 병렬 RC 회로를 포함하는, 방법.
  3. 제1항에 있어서,
    상기 배터리의 개방 전압을 추정하는 단계는,
    상기 제1 개수의 전류값에 의해 추정 조건이 만족되는 경우에 수행되는, 방법.
  4. 제3항에 있어서,
    상기 배터리의 개방 전압을 추정하는 단계는,
    상기 제1 개수의 전류값에 의해 상기 추정 조건이 만족되지 않는 경우, 상기 개방 전압이 이전에 추정된 개방 전압과 동일한 것으로 추정하는, 방법.
  5. 제3항에 있어서,
    상기 추정 조건은,
    상기 제1 개수의 전류값 중 최대 전류값과 최소 전류값 간의 차이가 기준 전류값 이상인 경우에 만족되는, 방법.
  6. 제1항에 있어서,
    상기 캘리브레이션 조건은,
    (i)상기 기준 충전 상태에 대응하는 기준 전압값과 상기 추정 전압값 간의 차이가 제1 전압 차이값 미만이고, (ii)상기 데이터 세트 내에서 서로 인접하게 정렬된 두 추정 전압값 간의 차이가 제2 전압 차이값 미만인 경우에 만족되는, 방법.
  7. 제6항에 있어서,
    상기 제1 전압 차이값은, 상기 제2 전압 차이값보다 작은, 방법.
  8. 제1항에 있어서,
    상기 업데이트된 충전 상태를 기초로, 상기 기준 충전 상태를 업데이트하는 단계;
    를 더 포함하는, 방법.
  9. 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 시스템에 있어서,
    메모리;
    상기 배터리의 단자 전압 및 전류를 측정하도록 구성된 센싱부; 및
    상기 메모리 및 상기 센싱부에 동작 가능하게 결합된 제어부를 포함하되,
    상기 제어부는,
    상기 측정된 단자 전압을 나타내는 측정 전압값 및 상기 측정된 전류를 나타내는 측정 전류값을 상기 메모리에 저장하고,
    전류 적산법을 이용하여, 상기 측정 전류값을 기초로, 상기 배터리의 충전 상태를 업데이트하고,
    제1 개수 이상의 측정 전압값 및 상기 제1 개수 이상의 측정 전류값이 상기 메모리에 순차적으로 저장된 경우, 상기 메모리에 최근에 저장된 상기 제1 개수의 측정 전압값 및 상기 제1 개수의 측정 전류값을 기초로, 상기 배터리의 개방 전압을 추정하고,
    상기 추정된 개방 전압을 나타내는 추정 전압값을 상기 메모리에 저장하고,
    제2 개수 이상의 추정 전압값이 상기 메모리에 순차적으로 저장된 경우, 상기 메모리에 최근에 저장된 상기 제2 개수의 추정 전압값으로부터, 상기 제2 개수의 추정 전압값이 순서대로 정렬된 데이터 세트를 생성하고,
    상기 데이터 세트에 의해 캘리브레이션 조건이 만족된 경우, 상기 업데이트된 충전 상태를 기준 충전 상태로 캘리브레이션하고,
    상기 배터리의 충전 상태가 상기 기준 충전 상태로 캘리브레이션되었음을 나타내는 통지 신호를 외부 디바이스에게 전송하도록 구성되는, 배터리 관리 시스템.
  10. 제9항에 있어서,
    상기 캘리브레이션 조건은,
    (i)상기 기준 충전 상태에 대응하는 기준 전압값과 상기 추정 전압값 간의 차이가 제1 전압 차이값 미만이고, (ii)상기 데이터 세트 내에서 서로 인접하게 정렬된 두 추정 전압값 간의 차이가 제2 전압 차이값 미만인 경우에 만족되는, 배터리 관리 시스템.
  11. 제9항에 있어서,
    상기 제어부는,
    상기 업데이트된 충전 상태를 기초로, 상기 기준 충전 상태를 업데이트하도록 구성되는, 배터리 관리 시스템.
  12. 제9항 내지 제11항 중 어느 한 항에 따른 상기 배터리 관리 시스템을 포함하는, 배터리팩.
PCT/KR2018/015880 2017-12-21 2018-12-13 배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템 WO2019124877A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/611,665 US11480620B2 (en) 2017-12-21 2018-12-13 Method for calibrating state of charge of battery and battery management system
JP2019561941A JP6930688B2 (ja) 2017-12-21 2018-12-13 バッテリーの充電状態をキャリブレーションするための方法及びバッテリー管理システム
CN201880031328.6A CN110622018B (zh) 2017-12-21 2018-12-13 用于校准电池的充电状态的方法以及电池管理***
EP18892018.5A EP3627173B1 (en) 2017-12-21 2018-12-13 Method for calibrating state of charge of battery and battery management system
PL18892018.5T PL3627173T3 (pl) 2017-12-21 2018-12-13 Sposób kalibracji stanu naładowania akumulatora i układ zarządzania akumulatorem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170177360A KR102244140B1 (ko) 2017-12-21 2017-12-21 배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템
KR10-2017-0177360 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019124877A1 true WO2019124877A1 (ko) 2019-06-27

Family

ID=66993631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015880 WO2019124877A1 (ko) 2017-12-21 2018-12-13 배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템

Country Status (7)

Country Link
US (1) US11480620B2 (ko)
EP (1) EP3627173B1 (ko)
JP (1) JP6930688B2 (ko)
KR (1) KR102244140B1 (ko)
CN (1) CN110622018B (ko)
PL (1) PL3627173T3 (ko)
WO (1) WO2019124877A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458526B1 (ko) * 2018-02-07 2022-10-25 주식회사 엘지에너지솔루션 배터리의 동작 상태에 따라 soc를 추정하는 장치 및 방법
TWI728830B (zh) * 2020-06-09 2021-05-21 聚眾聯合科技股份有限公司 電量判斷模組及其電量校正之方法
KR102481221B1 (ko) * 2020-09-17 2022-12-26 한화솔루션 주식회사 에너지 저장 시스템의 충전 상태 추정장치 및 방법
FR3121643A1 (fr) * 2021-04-08 2022-10-14 Psa Automobiles Sa Systeme d’estimation de tension en circuit ouvert de batterie de traction de vehicule automobile, procede et vehicule comprenant un tel systeme
CN113447871B (zh) * 2021-06-24 2023-07-04 北京海博思创科技股份有限公司 校准方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0177360B1 (ko) 1996-04-30 1999-03-20 성명제 엠브렘 도포장치의 구동장치
KR20100019249A (ko) * 2008-08-08 2010-02-18 주식회사 엘지화학 배터리 전압 거동을 이용한 배터리 용량 퇴화 추정 장치 및방법
JP4997358B2 (ja) * 2010-04-30 2012-08-08 パナソニック株式会社 満充電容量補正回路、充電システム、電池パック、及び満充電容量補正方法
KR20140070790A (ko) * 2012-11-27 2014-06-11 에스케이이노베이션 주식회사 배터리 충전 상태 추정 장치 및 그 방법
JP5897701B2 (ja) * 2012-03-21 2016-03-30 三洋電機株式会社 電池状態推定装置
JP6119554B2 (ja) * 2013-10-23 2017-04-26 スズキ株式会社 充電状態算出装置

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152573B2 (ja) 2000-07-28 2008-09-17 本田技研工業株式会社 蓄電装置の残容量検出装置
DE10235008B4 (de) * 2001-08-03 2005-02-24 Yazaki Corp. Verfahren und Einheit zum Berechnen des Degradationsgrades für eine Batterie
US7324902B2 (en) * 2003-02-18 2008-01-29 General Motors Corporation Method and apparatus for generalized recursive least-squares process for battery state of charge and state of health
JP4583765B2 (ja) * 2004-01-14 2010-11-17 富士重工業株式会社 蓄電デバイスの残存容量演算装置
KR100669470B1 (ko) * 2005-12-22 2007-01-16 삼성에스디아이 주식회사 배터리의 soo 보정 방법 및 이를 이용한 배터리 관리시스템
JP2008295169A (ja) * 2007-05-23 2008-12-04 Canon Inc バッテリーパック、充電装置、及び電子機器
KR20090077657A (ko) 2008-01-11 2009-07-15 에스케이에너지 주식회사 배터리 관리 시스템에서 배터리의 soc 측정 방법 및 장치
JP2010066232A (ja) 2008-09-12 2010-03-25 Toyota Motor Corp リチウムイオン電池の劣化判定装置、車両およびリチウムイオン電池の劣化判定方法
JP2011106952A (ja) 2009-11-17 2011-06-02 Honda Motor Co Ltd 電池の残容量推定方法
JP5419832B2 (ja) * 2010-09-07 2014-02-19 カルソニックカンセイ株式会社 電池容量算出装置および電池容量算出方法
JP2012057998A (ja) 2010-09-07 2012-03-22 Calsonic Kansei Corp 二次電池の充電率算出装置および充電率算出方法
KR101191624B1 (ko) * 2010-10-13 2012-10-17 삼성에스디아이 주식회사 배터리 관리 시스템 및 이를 이용한 배터리 soc 추정 방법
US20120101753A1 (en) * 2010-10-20 2012-04-26 Gm Global Technology Operations, Inc. Adaptive slowly-varying current detection
KR101238478B1 (ko) * 2011-01-16 2013-03-04 김득수 배터리 잔존 용량 측정 방법
JP5318128B2 (ja) * 2011-01-18 2013-10-16 カルソニックカンセイ株式会社 バッテリの充電率推定装置
CN102162836A (zh) 2011-03-21 2011-08-24 浙江吉利汽车研究院有限公司 一种汽车电池soc的估算方法
EP2703829B1 (en) 2011-04-25 2015-10-21 LG Chem, Ltd. Device and method for estimating the degradation of battery capacity
KR101293630B1 (ko) 2011-04-25 2013-08-05 주식회사 엘지화학 배터리 용량 퇴화 추정 장치 및 방법
JP5404964B2 (ja) * 2011-10-07 2014-02-05 カルソニックカンセイ株式会社 バッテリの充電率推定装置及び充電率推定方法
CN102437629B (zh) * 2011-11-01 2013-07-24 电子科技大学 一种电池充电控制装置
KR101498764B1 (ko) 2012-05-10 2015-03-04 주식회사 엘지화학 배터리의 저항측정방법 및 장치, 이를 이용한 배터리 관리 시스템
JP6155781B2 (ja) 2012-05-10 2017-07-05 株式会社Gsユアサ 蓄電素子管理装置、及び、soc推定方法
JP6531784B2 (ja) * 2012-05-10 2019-06-19 株式会社Gsユアサ 蓄電素子管理装置、及び、蓄電素子のsoc推定方法
JP5864380B2 (ja) * 2012-08-02 2016-02-17 トヨタ自動車株式会社 二次電池の状態推定装置
US9153990B2 (en) * 2012-11-30 2015-10-06 Tesla Motors, Inc. Steady state detection of an exceptional charge event in a series connected battery element
KR20140133318A (ko) 2013-05-10 2014-11-19 현대모비스 주식회사 배터리의 soc 추정 장치 및 방법
US9539912B2 (en) * 2014-02-20 2017-01-10 Ford Global Technologies, Llc Battery capacity estimation using state of charge initialization-on-the-fly concept
FR3020142B1 (fr) * 2014-04-16 2016-05-13 Renault Sa Procede d'estimation de l'etat de sante d'une batterie
JP6201899B2 (ja) 2014-06-02 2017-09-27 マツダ株式会社 バッテリ充電状態推定方法及びバッテリ充電状態推定装置
KR101783919B1 (ko) * 2014-10-31 2017-10-10 주식회사 엘지화학 개방전압 추정 장치 및 방법
KR101738601B1 (ko) 2014-11-03 2017-05-22 주식회사 엘지화학 배터리 용량 퇴화 추정 장치
CN104360280A (zh) * 2014-11-13 2015-02-18 广东欧赛能源与自动化技术有限公司 基于agv小车的电池剩余容量测算方法
US20180024200A1 (en) 2015-02-13 2018-01-25 Panasonic Intellectual Property Management Co., Ltd. Secondary battery state-of-charge estimating device and secondary battery state-of-charge estimating method
GB2537406B (en) 2015-04-16 2017-10-18 Oxis Energy Ltd Method and apparatus for determining the state of health and state of charge of lithium sulfur batteries
CN105093127A (zh) * 2015-08-14 2015-11-25 合肥赛为智能有限公司 一种基于充电方式的锂电池荷电状态的校准与估计方法
JP2017062149A (ja) * 2015-09-24 2017-03-30 スズキ株式会社 バッテリの充電率推定装置およびバッテリの充電率推定方法
US10705147B2 (en) * 2015-12-17 2020-07-07 Rohm Co., Ltd. Remaining capacity detection circuit of rechargeable battery, electronic apparatus using the same, automobile, and detecting method for state of charge
CN105548898B (zh) * 2015-12-25 2018-09-14 华南理工大学 一种离线数据分段矫正的锂电池soc估计方法
JP6657967B2 (ja) 2016-01-06 2020-03-04 株式会社Gsユアサ 状態推定装置、状態推定方法
CN106443459A (zh) 2016-09-06 2017-02-22 中国第汽车股份有限公司 一种车用锂离子动力电池荷电状态估算方法
JP6776904B2 (ja) * 2017-01-13 2020-10-28 株式会社デンソー 電池パック及び電源システム
CN106646265A (zh) * 2017-01-22 2017-05-10 华南理工大学 一种锂电池soc估计方法
CN106872906B (zh) * 2017-03-14 2019-08-09 江西江铃集团新能源汽车有限公司 一种基于ocv曲线修正soc的方法与***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0177360B1 (ko) 1996-04-30 1999-03-20 성명제 엠브렘 도포장치의 구동장치
KR20100019249A (ko) * 2008-08-08 2010-02-18 주식회사 엘지화학 배터리 전압 거동을 이용한 배터리 용량 퇴화 추정 장치 및방법
JP4997358B2 (ja) * 2010-04-30 2012-08-08 パナソニック株式会社 満充電容量補正回路、充電システム、電池パック、及び満充電容量補正方法
JP5897701B2 (ja) * 2012-03-21 2016-03-30 三洋電機株式会社 電池状態推定装置
KR20140070790A (ko) * 2012-11-27 2014-06-11 에스케이이노베이션 주식회사 배터리 충전 상태 추정 장치 및 그 방법
JP6119554B2 (ja) * 2013-10-23 2017-04-26 スズキ株式会社 充電状態算出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627173A4

Also Published As

Publication number Publication date
KR20190075623A (ko) 2019-07-01
JP6930688B2 (ja) 2021-09-01
EP3627173B1 (en) 2022-05-04
EP3627173A4 (en) 2020-12-09
EP3627173A1 (en) 2020-03-25
CN110622018B (zh) 2022-04-01
JP2020520623A (ja) 2020-07-09
CN110622018A (zh) 2019-12-27
US20200341071A1 (en) 2020-10-29
PL3627173T3 (pl) 2022-08-22
KR102244140B1 (ko) 2021-04-22
US11480620B2 (en) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2019124877A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 방법 및 배터리 관리 시스템
WO2019151779A1 (ko) 프리차지 저항 보호 장치
WO2019088440A1 (ko) 배터리의 내부 저항을 최적화하기 위한 배터리 관리 시스템 및 방법
WO2021045387A1 (ko) 배터리 관리 장치, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2019050330A1 (ko) 배터리 충전 상태 추정 장치 및 방법
WO2019199058A1 (ko) 배터리 진단 장치 및 방법
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
WO2019098722A1 (ko) 배터리 저항 추정 장치 및 방법
WO2020162675A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2019177303A1 (ko) 과방전 방지 장치
WO2019156377A1 (ko) 배터리를 위한 등가 회로 모델의 파라미터를 추정하기 위한 방법 및 배터리 관리 시스템
WO2016068652A2 (ko) 개방전압 추정 장치 및 방법
WO2019151679A1 (ko) 배터리를 위한 등가 회로 모델의 파라미터 추정 방법 및 배터리 관리 시스템
WO2022158948A2 (ko) 배터리 관리 장치 및 방법
WO2021118311A1 (ko) 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2021080219A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2022265357A1 (ko) 배터리 soh 추정 장치 및 방법
WO2022025725A1 (ko) 배터리 관리 장치, 배터리 팩, 배터리 시스템 및 배터리 관리 방법
WO2021091086A1 (ko) 배터리 진단 장치, 배터리 진단 방법 및 에너지 저장 시스템
WO2020153625A1 (ko) 배터리 관리 장치, 배터리 관리 방법 및 배터리 팩
WO2022124773A1 (ko) 배터리 진단 장치 및 방법
WO2020046019A1 (ko) 배터리 관리 장치, 배터리 관리 방법, 배터리 팩 및 전기 차량
WO2019135487A1 (ko) 배터리의 내부 저항을 최적화하기 위한 배터리 관리 시스템 및 방법
WO2022114826A1 (ko) 배터리 관리 장치 및 방법
WO2022114873A1 (ko) 배터리 관리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561941

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018892018

Country of ref document: EP

Effective date: 20191218

NENP Non-entry into the national phase

Ref country code: DE