WO2019124553A1 - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
WO2019124553A1
WO2019124553A1 PCT/JP2018/047354 JP2018047354W WO2019124553A1 WO 2019124553 A1 WO2019124553 A1 WO 2019124553A1 JP 2018047354 W JP2018047354 W JP 2018047354W WO 2019124553 A1 WO2019124553 A1 WO 2019124553A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl alcohol
layer
copolymer
mass
polymer
Prior art date
Application number
PCT/JP2018/047354
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 天野
栄一 石田
一彦 前川
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2019560600A priority Critical patent/JPWO2019124553A1/en
Publication of WO2019124553A1 publication Critical patent/WO2019124553A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre

Definitions

  • the present invention relates to a laminate having a layer excellent in flexibility and adhesion to different polymers, less likely to cause peeling between the layer and another layer, and excellent in barrier properties.
  • Vinyl alcohol polymers utilize emulsifiers, suspending agents, surfactants, fiber processing agents, and the like, utilizing the excellent film properties (strength, oil resistance, film forming ability, gas barrier property, etc.) attributed to high crystallinity. It is widely used in various binders, paper processing agents, adhesives, various packages, sheets, containers and the like. In particular, in applications that make use of the gas barrier properties, they are used for food packaging materials, gasoline tanks, pneumatic tires, and the like. Vinyl alcohol polymers have disadvantages such as high moisture permeability, so they are difficult to use alone in these applications, and laminates with thermoplastic resins such as polyolefin, polystyrene, polyester, polyamide, rubber, etc. It is used as. On the other hand, since the vinyl alcohol polymer has low flexibility, when it is repeatedly bent, the vinyl alcohol polymer layer is likely to be cracked and the gas barrier property is significantly reduced.
  • Patent Document 1 exemplifies a laminate to which flexibility is imparted by alternately laminating a layer containing a gas barrier resin and a layer containing an elastomer.
  • Patent Document 2 the laminated body which provided softness
  • the laminate described in Patent Document 1 has a layer containing the gas barrier resin and a layer containing an elastomer in order to suppress the occurrence of the cracks.
  • the layer structure of seven or more layers There is a problem that it is necessary to make the layer structure of seven or more layers, and it is very difficult to form.
  • the crystallinity of the modified polyvinyl alcohol is significantly lower than that of the polyvinyl alcohol, and the barrier property under high humidity of the film containing the modified polyvinyl alcohol is insufficient, Improvement was necessary.
  • the end portion of the synthetic rubber is chemically modified with respect to the main chain of the barrier resin, and the end is grafted onto the barrier resin to introduce a graft chain.
  • Manufactures polymers That is, since all barrier resins become graft copolymers by graft reaction, the resin composition of Patent Document 2 contains only graft copolymers, and in such resin compositions, resins other than graft copolymers are used. The inclusion was not considered.
  • the present invention has been made to solve the above problems, and has a layer having excellent adhesion to different polymers, which is less likely to cause peeling between the layer and other layers, and has barrier properties and flexibility under high humidity.
  • An object of the present invention is to provide a laminate which is excellent in gender and can maintain its barrier property even when exposed to bending.
  • the present inventors are composed of a unit composed of a vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1) and a unit composed of a diene polymer (B-2). Containing at least one layer (L1) containing a resin composition containing a copolymer (B), and the content of the copolymer (B) contained in the layer (L1) is a vinyl alcohol polymer (A). It has been found that the above-mentioned problems can be solved by using a laminate having a predetermined amount relative to the total mass of the copolymer (B) and the copolymer (B), and the present invention has been completed based on this finding.
  • a copolymer (B) composed of a unit composed of a vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1) and a unit composed of a diene polymer (B-2) Containing at least one layer (L1) containing a resin composition containing a vinyl alcohol polymer (A) and a copolymer (B) in the content of the copolymer (B) contained in the layer (L1) 10 to 85% by mass relative to the total mass of [2]
  • the laminate of the above [1] further having a layer (L2) containing a thermoplastic resin (C).
  • thermoplastic resin (C) is at least one selected from the group consisting of polyolefin, polystyrene, polyester, polyamide, and rubber.
  • thermoplastic resin (C) is at least one selected from the group consisting of polyolefin, polystyrene, polyester, polyamide, and rubber.
  • the layer (L1) is disposed between the layer (L2) and the layer (L3).
  • the vinyl alcohol polymer (A) of the layer (L1) is an ethylene-vinyl alcohol copolymer.
  • the content of the copolymer (B) contained in the layer (L1) is 30 to 80% by mass based on the total mass of the vinyl alcohol polymer (A) and the copolymer (B), The laminate according to any one of the above [1] to [9]. [11] The laminate according to any one of the above [1] to [10], wherein the copolymer (B) is a graft copolymer (B1).
  • a copolymer (B) composed of a unit composed of a vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1) and a unit composed of a diene polymer (B-2)
  • the vinyl alcohol polymer (B-1) is contained in a monomer which is a raw material of the diene polymer (B-2) or in a solution containing the monomer
  • the laminate of the present invention has a layer excellent in adhesion to different polymers, is less likely to peel between the layer and other layers, is excellent in barrier property and flexibility under high humidity, and is exposed to bending. Even in cases where barrier properties can be maintained.
  • the laminate of the present invention is a copolymer comprising a unit comprising the vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1), and a unit comprising the diene polymer (B-2) It has at least one layer (L1) containing a resin composition containing (B), and the content of the copolymer (B) contained in the layer (L1) is the vinyl alcohol polymer (A) and the copolymer weight It is characterized in that it is 10 to 85% by mass with respect to the total mass of the combined (B).
  • the upper limit value and the lower limit value of the numerical range can be combined appropriately.
  • the layer (L1) is a copolymer comprising a unit comprising the vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1), and a unit comprising the diene polymer (B-2) B) and a resin composition containing
  • the content of the copolymer (B) is 10 to 85% by mass with respect to the total mass (100% by mass) of the vinyl alcohol polymer (A) and the copolymer (B). If the content is less than 10% by mass, the flexibility of the layer (L1) is significantly reduced. Moreover, when the said content rate is more than 85 mass%, a mechanical strength or barrier property will fall remarkably.
  • the decrease in these physical properties is due to the fact that in the copolymer (B), the unit consisting of the diene polymer (B-2) inhibits the crystallization of the unit consisting of the vinyl alcohol polymer (B-1). to cause.
  • the vinyl alcohol polymer (A) becomes a matrix in the layer (L1), so the vinyl alcohol polymer (A) It is compatible with the excellent physical properties attributed to the crystallinity of the above and the excellent flexibility attributed to the copolymer (B).
  • 15 mass% or more is preferable, as for the content rate of the said copolymer (B), 20 mass% or more is more preferable, 25 mass% or more is further more preferable, and 30 mass% or more is the most preferable.
  • 83 mass% or less is preferable, as for the content rate of the said copolymer (B), 81 mass% or less is more preferable, and 80 mass% or less is more preferable.
  • the copolymer (B) is composed of a unit comprising the vinyl alcohol polymer (B-1) and a unit comprising the diene polymer (B-2).
  • the copolymer (B) is particularly a copolymer having at least one unit composed of a vinyl alcohol polymer (B-1) and at least one unit composed of a diene polymer (B-2). There is no limit.
  • the copolymer (B) is, for example, a graft copolymer (B1) or a block copolymer (B2).
  • the copolymer (B) is a graft copolymer (B1).
  • the structure of the graft copolymer (B1) is not particularly limited, but is preferably composed of a unit consisting of a vinyl alcohol polymer (B-1) and a unit consisting of a diene polymer (B-2).
  • a side chain consisting of the diene polymer (B-2) is introduced to the main chain consisting of the vinyl alcohol polymer (B-1).
  • a unit composed of a plurality of diene polymers (B-2) is bonded to a unit composed of one vinyl alcohol polymer (B-1).
  • the type of the vinyl alcohol polymer (B-1) is not particularly limited, but for example, polyvinyl alcohol or ethylene-vinyl alcohol copolymer shown below is preferable.
  • the vinyl alcohol polymer (B-1) preferably has a vinyl alcohol unit content of at least 40 mol%, and at least 50 mol%, based on all structural units constituting the vinyl alcohol polymer (B-1). Even if, 55 mol% or more may be sufficient.
  • polyvinyl alcohol or ethylene-vinyl alcohol copolymer may be used alone or in combination of plural polyvinyl alcohols and / or ethylene-vinyl alcohol copolymers. May be
  • the copolymer (B) is a block copolymer (B2).
  • the copolymer (B) has a unit consisting of a vinyl alcohol polymer (B-1) as a polymer block (b1), and a diene polymer (B-) It has a unit consisting of 2) as a polymer block (b2).
  • the block copolymer (B2) may have one polymer block (b1) and one polymer block (b2), or one polymer block (b1) and / or one polymer block (b2). It may have two or more.
  • the bonding mode of the block copolymer is b1-b2 type diblock copolymer, b1-b2-b1 type triblock copolymer, b2-b1-b2 type triblock copolymer, b1-b2-b1 Linear multi-block copolymers represented by -b2-type tetrablock copolymers and b2-b1-b2-b1-type tetrablock copolymers, (b2-b1-) n, (b1-b2-) n, etc. And a star (radial star) block copolymer represented by and the like. n is a value greater than 2.
  • the types of the vinyl alcohol polymer (A) and the vinyl alcohol polymer (B-1) are not particularly limited, but for example, polyvinyl alcohol or ethylene-vinyl alcohol copolymer shown below is suitably used.
  • the vinyl alcohol polymer (A) and the vinyl alcohol polymer (B-1) may have the same structural units constituting each polymer, and the same viscosity average degree of polymerization, degree of saponification, etc. of each polymer. , May be different.
  • the vinyl alcohol polymer (A) and the vinyl alcohol polymer (B-1) preferably have a vinyl alcohol unit content of 40 mol% or more, and even if it is 50 mol% or more, 55 mol% or more.
  • each of the vinyl alcohol polymer (A) and the vinyl alcohol polymer (B-1) a single polyvinyl alcohol or ethylene-vinyl alcohol copolymer may be used, or plural polyvinyl alcohols and / or Alternatively, ethylene-vinyl alcohol copolymers may be used in combination.
  • the structural unit in the polymer means a repeating unit constituting the polymer.
  • ethylene units or vinyl alcohol units are also structural units.
  • the viscosity average polymerization degree (measured according to JIS K 6726 (1994)) of the polyvinyl alcohol is not particularly limited, and is preferably 100 to 10,000, more preferably 200 to 7,000, still more preferably 300 to 5 , 000.
  • the mechanical strength of the resin composition obtained as the said viscosity average polymerization degree is in the said range is excellent.
  • the viscosity average degree of polymerization may be adjusted according to the desired number average molecular weight of the copolymer (B).
  • the degree of saponification of the polyvinyl alcohol is not particularly limited, but is preferably 50 mol% or more, more preferably 80 mol%, still more preferably 95 mol% or more from the viewpoint of excellent barrier properties. And 100 mol%.
  • the content of the ethylene unit in the ethylene-vinyl alcohol copolymer is not particularly limited, but it is preferably 10 to 60 mol%, more preferably 20 to 50 mol% from the viewpoint of excellent barrier properties and ease of production.
  • the ethylene unit content of the ethylene-vinyl alcohol copolymer can be determined from 1 H-NMR measurement.
  • the saponification degree of the ethylene-vinyl alcohol copolymer is not particularly limited, but is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 99 mol% or more, and 100 mol% from the viewpoint of excellent moldability and barrier properties. It may be.
  • the degree of saponification of the ethylene-vinyl alcohol copolymer can be measured in accordance with JIS K 6726 (1994).
  • the melt flow rate (MFR) (210 ° C., load 2160 g) of the ethylene-vinyl alcohol copolymer is not particularly limited, but 0.1 g / 10 min or more is preferable, and 0.5 g / 10 min or more is more preferable. It is excellent in water resistance and mechanical strength as the said melt flow rate is 0.1 g / 10 minutes or more.
  • the upper limit of the melt flow rate may be any value that is usually used, and may be, for example, 25 g / 10 min or less.
  • the melt flow rate is a value determined by measuring at 210 ° C. under a load of 2160 g using a melt indexer in accordance with ASTM D1238.
  • the ethylene-vinyl alcohol copolymer described above may contain structural units derived from unsaturated monomers other than ethylene units and vinyl alcohol units, as long as the effects of the present invention are not impaired.
  • the content of structural units derived from the unsaturated monomer in the ethylene-vinyl alcohol copolymer is preferably 10 mol% or less based on all structural units constituting the ethylene-vinyl alcohol copolymer. And 5 mol% or less is more preferable.
  • the polyvinyl alcohol and ethylene-vinyl alcohol copolymer may contain a vinyl alcohol unit, a vinyl ester monomer unit and a structural unit (c) other than an ethylene unit, as long as the effects of the present invention are not impaired. .
  • Examples of the structural unit (c) include ⁇ -olefins such as propylene, n-butene, isobutylene and 1-hexene (including ethylene in the case of polyvinyl alcohol); acrylic acid; methyl acrylate, ethyl acrylate, Acrylic acid ester groups such as n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, etc.
  • ⁇ -olefins such as propylene, n-butene, isobutylene and 1-hexene (including ethylene in the case of polyvinyl alcohol); acrylic acid; methyl acrylate, ethyl acrylate, Acrylic acid ester groups such as n-propyl acrylate, i-prop
  • Unsaturated monomers having a methacrylate group such as octadecyl methacrylate; acrylamide, N-methyl acrylamide, N-ethyl acrylamide, N, N-dimethyl acrylamide, diacetone acrylamide, acrylamidopropane sulfonic acid, acrylamidopropyl dimethylamine, etc.
  • methacrylamides such as methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, methacrylamido propane sulfonic acid, methacrylamido propyl dimethyl amine, etc.
  • vinyl ethers such as tearyl vinyl ether and 2,3-diacetoxy-1-vinyloxypropane; unsaturated nitriles such as acrylonitrile and methacrylonitrile; vinyl halides such as vinyl chloride and vinyl fluoride; vinylidene chloride and fluoride Vinylidene halides such as vinylidene; allyl compounds such as allyl acetate, 2,3-diacetoxy-1-allyloxypropane and allyl chloride; unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid, and salts or esters thereof; And vinyl silyl compounds such as vinyl trimethoxysilane; structural units
  • An ethylene-vinyl alcohol copolymer is particularly preferably used as the vinyl alcohol polymer (A) and the vinyl alcohol polymer (B-1).
  • the thermoformability of the resin composition of the present invention can be easily improved.
  • the copolymer (B) contains a unit consisting of a diene polymer (B-2).
  • the structure of the diene polymer (B-2) is not particularly limited, but it is preferred that the diene polymer (B-2) have an olefin structure.
  • the resin composition of the present invention can be crosslinked or vulcanized by high energy rays.
  • the diene polymer (B-2) include synthetic rubbers such as polybutadiene, polyisoprene, polyisobutylene, polychloroprene, polyfarnesene and the like. These may be used alone or in combination of two or more.
  • the diene polymer (B-2) may be a copolymer of two or more monomers selected from the group consisting of butadiene, isoprene, isobutylene, chloroprene and farnesene. Among them, polybutadiene, polyisoprene and polyisobutylene are preferable, and polyisoprene is more preferable, from the viewpoint of reactivity and flexibility.
  • the unit of the copolymer (B) may contain structural units other than the vinyl alcohol polymer (A) and the diene polymer (B-2) as long as the effects of the present invention are not impaired. .
  • the laminate including the layer (L1) of the present invention is also excellent in chemical durability (particularly, alkali resistance).
  • the unit composed of the diene polymer (B-2) in the copolymer (B) is a carbon atom of which a part or all thereof constitutes a unit composed of the vinyl alcohol polymer (B-1), Preferably, it is preferably directly bonded to a secondary carbon atom or a tertiary carbon atom constituting a unit consisting of a vinyl alcohol polymer (B-1).
  • the laminate including the layer (L1) of the present invention is more excellent in chemical durability (especially alkali resistance).
  • the content rate of is not specifically limited, 30 mass% or more is preferable, 40 mass% or more is more preferable, and 45 mass% or more is more preferable.
  • the content of units comprising the diene polymer (B-2) is preferably 80% by mass or less, more preferably 76% by mass or less, and still more preferably 70% by mass or less.
  • the content When the content is 30% by mass or more, desired flexibility and reactivity can be easily obtained, and when the content is 80% by mass or less, the compatibility between the vinyl alcohol polymer (A) and the copolymer (B) is excellent. It is easy to suppress deterioration of transparency and physical properties due to formation of coarse phase separation.
  • the content of vinyl alcohol units in the copolymer (B) is 15 to 60 mass% of the total mass of the unit consisting of the vinyl alcohol polymer (B-1) and the unit consisting of the diene polymer (B-2) It is preferably in the range of%.
  • the content of the vinyl alcohol unit is 15% by mass or more, the compatibility with the vinyl alcohol polymer (A) is high, and the transparency is excellent.
  • the content of the vinyl alcohol unit is 60% by mass or less, the vinyl alcohol polymer (A) and the copolymer (B) are appropriately compatibilized, so the crystallinity of the matrix due to excessive compatibility of both It is easy to control the deterioration of
  • the content of the vinyl alcohol unit is more preferably 17 to 50% by mass, further preferably 18 to 45% by mass, and particularly preferably 20 to 40% by mass.
  • the measuring method of the content rate of the said vinyl alcohol unit is as being described in the Example mentioned later.
  • the unit composed of the diene polymer (B-2) has a molecular weight distribution, the compatibility between the vinyl alcohol polymer (A) and the copolymer (B) can be easily improved, and the transparency after molding is high. Prone.
  • the resin composition of the layer (L1) may further contain a synthetic rubber (D) as long as the effects of the present invention are not impaired.
  • the synthetic rubber (D) may or may not contain the same structural unit as the structural unit contained in the diene polymer (B-2).
  • the synthetic rubber (D) may be a synthetic rubber produced in the production of the copolymer (B), or a synthetic rubber separately added in the production of the resin composition of the present invention.
  • the content of the synthetic rubber (D) in the resin composition of the layer (L1) is preferably 10% by mass or less. If it exceeds 10% by mass, the resins tend to stick together even in the resin composition having the above-mentioned average particle diameter. 7 mass% or less is more preferable, 3 mass% or less is further more preferable, and, as for the content rate of the said synthetic rubber (D), 0.1 mass% or less is especially preferable from the point which is excellent by molding processability.
  • the total modification amount of the resin composition of the layer (L1) is preferably 1.0 to 45 mol%, more preferably 5.0 to 40 mol%, and still more preferably 8.0 to 35 mol% from the viewpoint of excellent flexibility.
  • the total modification amount of the resin composition of the layer (L1) in the present specification means the content of grafted monomer units with respect to all the monomer units of the resin composition. Specifically, it is calculated by the method described in the examples.
  • the said resin composition means the resin composition which consists of a vinyl alcohol polymer (A) and a copolymer (B), and the component other than the above (synthetic rubber)
  • the resin composition (D) contains a coloring agent, an antioxidant and the like, the total modification amount of the resin composition excluding the component is calculated.
  • the crystal melting temperature of the resin composition of the present invention is preferably 140 ° C. or more. When the crystal melting temperature is 140 ° C. or more, excellent mechanical strength and high barrier properties tend to be exhibited. On the other hand, the crystal melting temperature of the resin composition is preferably 200 ° C. or less. It is not necessary to make it high temperature at the time of shaping
  • the resin composition of the layer (L1) may contain other components other than the above as long as the effects of the present invention are not impaired.
  • the other components include colorants, antioxidants, light stabilizers, vulcanizing agents, vulcanization accelerators, and inorganic additives (silica and the like).
  • the manufacturing method of the resin composition of a layer (L1) is not specifically limited, A well-known method is employable.
  • the case where the copolymer (B) is a graft copolymer (B1) will be described below.
  • grafting is carried out by generating radicals on units of the vinyl alcohol polymer (B-1) and introducing graft chains of the diene polymer (B-2) using various generally known graft polymerization methods.
  • the method of manufacturing a copolymer (B1), and mixing the obtained graft copolymer (B1) and a vinyl alcohol-type polymer (A) by a desired composition is mentioned.
  • Examples of the graft polymerization method include a method of graft polymerization using radical polymerization using a polymerization initiator; graft polymerization method using an active energy ray (hereinafter referred to as active energy ray graft polymerization method).
  • An energy ray graft polymerization method is suitably used.
  • a manufacturing method including a step of dispersing the base polymer (B-1) in a monomer which is a raw material of the diene polymer (B-2) or in a solution containing the monomer and graft polymerizing Is preferred.
  • the product obtained by using this method is a mixture of an unreacted vinyl alcohol polymer (B-1) and a graft copolymer (B1), and the above-mentioned unreacted vinyl alcohol polymer (B-) is obtained.
  • the resin composition of the present invention can be produced in only one step.
  • the molecular weight of the unit consisting of the diene polymer (B-2) of the graft copolymer (B1) obtained by the method is not homogenized but has a molecular weight distribution.
  • the resin composition of the present invention may further contain a synthetic rubber (D) as long as the effects of the present invention are not impaired.
  • the synthetic rubber (D) is produced from a monomer which is a raw material of the diene polymer (B-2).
  • synthetic rubber (D) contained in a resin composition can be removed to 0.1 mass% or less by a washing process.
  • the solvent used in the washing step include tetrahydrofuran and the like.
  • ionizing radiation such as alpha ray, beta ray, gamma ray, electron beam, ultraviolet ray; X ray, g ray, i ray, excimer laser, etc.
  • ionizing radiation is preferable, and in practical terms electron beam and ⁇ ray are more preferable, and electron beam which can be processed at high processing speed and with simple equipment is more preferable.
  • the dose for irradiating the vinyl alcohol polymer (B-1) with active energy rays is preferably 5 to 200 kGy, more preferably 10 to 150 kGy, still more preferably 20 to 100 kGy, and particularly preferably 30 to 90 kGy.
  • the dose to be irradiated is 5 kGy or more, it becomes easy to introduce a unit comprising a sufficient amount of diene polymer (B-2).
  • the dose to be irradiated is 200 kGy or less, the cost is likely to be advantageous, and the deterioration of the vinyl alcohol polymer (B-1) due to the irradiation of the active energy ray can be easily suppressed.
  • the shape of the vinyl alcohol polymer (B-1) is not particularly limited, but is preferably in the form of powder or pellets.
  • the dispersion solvent to be used must be one that dissolves the monomer that is the raw material of the diene polymer (B-2) but does not dissolve the vinyl alcohol polymer (B-1) irradiated with active energy rays. There is.
  • a solvent for dissolving the vinyl alcohol polymer (B-1) irradiated with active energy rays is used, the progress of the graft polymerization and the deactivation of the radical generated in the vinyl alcohol polymer (B-1) are simultaneously performed.
  • the dispersion solvent used for the graft polymerization examples include water; lower alcohols such as methanol, ethanol and isopropanol; ethers such as tetrahydrofuran, dioxane and diethyl ether; ketones such as acetone and methyl ethyl ketone; and amides such as dimethylformamide and dimethylacetamide Toluene, hexane and the like can be mentioned.
  • water in order to disperse
  • these solvents may be used in combination of two or more.
  • the vinyl alcohol polymer (B-1) irradiated with active energy rays swells, whereby the monomer which is a raw material of the diene polymer (B-2) is the vinyl alcohol. It penetrates to the inside of the base polymer (B-1), and a large amount of units consisting of the diene polymer (B-2) can be introduced. Therefore, the dispersion solvent to be used is preferably selected in consideration of the affinity to the vinyl alcohol polymer irradiated with the active energy ray.
  • lower alcohols such as methanol, ethanol and isopropanol are preferably used in the production method of the present invention because they have high affinity with the vinyl alcohol polymer (B-1) irradiated with active energy rays. Used. It is also effective to use a mixture of the above-mentioned dispersion solvents as a liquid medium within the range in which the vinyl alcohol polymer (B-1) irradiated with active energy rays is not dissolved, for the same reason as described above.
  • the affinity between the liquid medium and the vinyl alcohol polymer is excessively high, the resin after the reaction swells significantly, and isolation by filtration becomes difficult, and the raw material of the diene polymer (B-2) Certain monomers are likely to be homopolymerized. Therefore, it is preferable to appropriately select the dispersion solvent in consideration of the affinity to the vinyl alcohol polymer to be used and the swelling property at the reaction temperature described later.
  • the amount of the monomer used as the raw material of the diene polymer (B-2) in graft polymerization is appropriately adjusted in accordance with the reactivity of the monomer. As described above, the reactivity changes depending on the penetrability of the monomer to the vinyl alcohol polymer and the like. Therefore, the appropriate amount of the above-mentioned monomer varies depending on the type or amount of the dispersion solvent, the degree of polymerization or the degree of saponification of the vinyl alcohol polymer (B-1), etc. The amount is preferably 1 to 1000 parts by mass with respect to 100 parts by mass of the irradiated vinyl alcohol polymer (B-1).
  • the unit and diene system which consist of a vinyl alcohol polymer (B-1) of a graft copolymer (B1) as the quantity of the monomer which is a raw material of a diene polymer (B-2) is in the said range It is easy to control the ratio of units composed of the polymer (B-2) within the above range.
  • the amount of the monomer used is more preferably 2 to 900 parts by mass, and further preferably 5 to 800 parts by mass.
  • the amount of liquid medium used in graft polymerization is preferably 100 to 4000 parts by mass, and more preferably 200 to 2000 parts by mass with respect to 100 parts by mass of the vinyl alcohol polymer (B-1) irradiated with active energy rays. 300 to 1500 parts by mass is more preferable.
  • the reaction temperature in the graft polymerization is preferably 20 ° C. to 150 ° C., more preferably 30 ° C. to 120 ° C., still more preferably 40 ° C. to 100 ° C.
  • the reaction temperature is 20 ° C. or more, the graft polymerization reaction easily proceeds.
  • the reaction temperature is 150 ° C. or less, thermal melting of the vinyl alcohol polymer (B-1) hardly occurs.
  • the reaction can be performed under pressure in a pressure container such as an autoclave.
  • the reaction time in the graft polymerization is preferably within 10 hours, more preferably within 8 hours, still more preferably within 6 hours, particularly preferably within 5 hours. It is easy to suppress the homopolymerization of the monomer which is a raw material of a diene polymer (B-2) as the said reaction time is 10 hours or less.
  • At least one layer (L1) may be provided, and two or more layers may be provided.
  • the thickness of the layer (L1) in the laminate of the present invention is not particularly limited, and is, for example, 0.1 to 500 ⁇ m, and may be 1 to 250 ⁇ m or 2 to 100 ⁇ m.
  • the laminate of the present invention further comprises a layer (L2) containing a thermoplastic resin (C).
  • the thermoplastic resin (C) include polyolefin, polystyrene, polyester, polyamide, and rubber. These may be used singly or in combination of two or more.
  • polyolefin high density polyethylene (HDPE), medium density polyethylene, low density polyethylene (LDPE), linear short chain branched polyethylene (LLDPE), ultra high molecular weight polyethylene, isotactic polypropylene, syndiotactic polypropylene, polybutene, etc.
  • polystyrene examples include atactic polystyrene, syndiotactic polystyrene, isotactic polystyrene and the like.
  • polyester examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN) and the like.
  • polyamide examples include nylon-6, nylon-66, nylon-12, nylon 4-6, copolymer nylon and the like.
  • rubbers rubbers such as natural rubber, styrene butadiene rubber (SBR), polybutadiene rubber, etc .; polyolefin thermoplastic elastomer, polyurethane thermoplastic elastomer, polyester thermoplastic elastomer, polyamide thermoplastic elastomer, polystyrene thermoplastic elastomer Thermoplastic elastomers and the like.
  • SBR styrene butadiene rubber
  • polybutadiene rubber etc .
  • polyolefin thermoplastic elastomer polyurethane thermoplastic elastomer
  • polyester thermoplastic elastomer polyester thermoplastic elastomer
  • polyamide thermoplastic elastomer polystyrene thermoplastic elastomer Thermoplastic elastomers and the like.
  • a commercial item can be used for these.
  • the thickness of the layer (L2) in the laminate of the present invention is not particularly limited, but may be, for example, 0.1 to 500 ⁇ m, 1 to 250 ⁇ m, or 2 to 150 ⁇ m.
  • the laminate of the present invention has a layer (L3) containing a vinyl alcohol polymer (A).
  • the vinyl alcohol polymer (A) contained in the layer (L3) is as described for the layer (L1).
  • the layer (L3) may or may not contain the copolymer (B) as long as it contains the vinyl alcohol polymer (A).
  • the layer (L3) does not contain the copolymer (B) but contains the vinyl alcohol polymer (A).
  • the thickness of the layer (L3) in the laminate of the present invention is not particularly limited, but may be, for example, 0.1 to 1000 ⁇ m, 1 to 800 ⁇ m, or 2 to 700 ⁇ m.
  • the laminate of the present invention may have a layer configuration of layer (L1) / layer (L3).
  • Another preferred embodiment may have a layer configuration of layer (L2) / layer (L1) / layer (L3).
  • another preferred embodiment may have a layer configuration of layer (L2) / layer (L1) / layer (L3) / layer (L1) / layer (L2).
  • the layer (L1) has excellent compatibility with both the layer (L2) and the layer (L3), has excellent adhesion to different polymers, and has barrier properties and flexibility under high humidity.
  • the layer (L1) be disposed between the layer (L2) and the layer (L3) as described in any of the preferred embodiments described above.
  • a polypropylene film, a PET film or the like is used as the thermoplastic resin (C) of the layer (L2), and an ethylene-vinyl alcohol copolymer or the like is used in the layer (L3)
  • a laminate having a dimensional change of 0.5% or less can be obtained.
  • the number of layers in the laminate of the present invention is not particularly limited, but may be 6 or less, preferably 5 or less.
  • it has excellent adhesion to different polymers, excellent barrier properties and flexibility under high humidity, and can maintain barrier properties even when exposed to bending. .
  • the number of layers is 6 or less, the manufacturing process is easy, and as described in WO 2012/042679, the problem of extremely high molding difficulty does not occur.
  • the number of layers is excellent in adhesion to different polymers, excellent in barrier property and flexibility under high humidity, and capable of maintaining the barrier property even when exposed to bending.
  • the number of layers may be seven or more, or ten, thirty-five, sixty-five, or about 130 layers. Another preferred embodiment laminate is seven layers.
  • each layer of the layer (L1), the layer (L2) and the layer (L3) may contain a metal salt. Adhesion between layers can be further enhanced by the inclusion of metal salts.
  • the metal salt is not particularly limited, but is preferably an alkali metal salt, an alkaline earth metal salt or a transition metal salt described in the fourth period of the periodic table in that it further improves the interlayer adhesion. Among them, alkali metal salts, alkaline earth metal salts, magnesium salts and the like are more preferable, and alkali metal salts are particularly preferable.
  • the alkaline earth metal salt is not particularly limited, and examples thereof include acetates or phosphates such as calcium and barium.
  • magnesium salt acetate or phosphate of magnesium is mentioned.
  • magnesium or calcium acetate or phosphate is particularly preferable in view of easy availability.
  • the metal salt of the transition metal described in the fourth period of the periodic table is not particularly limited, and, for example, carboxylates such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, etc., phosphoric acid Salts, acetylacetonate salts and the like.
  • the content of the metal salt is preferably 10,000 mass ppm or less, more preferably 5,000 mass ppm or less, and still more preferably 1,000 mass ppm or less. If the content of the metal salt is smaller than the above lower limit, the interlayer adhesion may be low, and the durability of the laminate may be low. On the other hand, when the content of the metal salt exceeds the above upper limit, the coloration of the layer becomes intense, and the appearance of the laminate may be deteriorated.
  • the content of the metal salt in each layer is preferably 5 mass ppm or more, more preferably 10 mass ppm or more, and still more preferably 20 mass ppm or more from the viewpoint of adhesion to other adjacent layers.
  • the content of the metal salt is preferably 5,000 mass ppm or less, more preferably 1,000 mass ppm or less, and still more preferably 500 mass ppm or less from the viewpoint of preventing appearance defects due to coloring of the laminate.
  • the layer (L2) and / or the layer (L3) may contain a radical crosslinking agent.
  • a radical crosslinking agent By irradiating the active energy ray to the laminate having the layer (L2) and / or the layer (L3) containing the radical crosslinking agent, the crosslinking effect at the time of this active energy ray irradiation is promoted, and the interlayer adhesion of the laminate Is further improved, and the barrier property under high humidity is further enhanced.
  • the radical crosslinking agent is not particularly limited, and examples thereof include poly (meth) acrylates of polyhydric alcohols such as trimethylolpropane trimethacrylate, diethylene glycol diacrylate and neophenylene glycol diacrylate, triallyl isocyanurate, triallyl cyanurate and the like. Can be mentioned. One of these may be used alone, or two or more of these may be used in combination.
  • the content of the radical crosslinking agent in the layer (L2) and / or the layer (L3) containing the radical crosslinking agent before irradiation with active energy rays is preferably 0.01% by mass or more and 10% by mass or less, 0.05 From the viewpoint of the balance between the crosslinking effect and the economy, 0.1% by mass to 8% by mass is more preferable.
  • a co-polymer comprising a unit composed of a vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1) and a unit composed of a diene polymer (B-2)
  • A vinyl alcohol polymer
  • B-1 vinyl alcohol polymer
  • B-2 a unit composed of a diene polymer
  • the resin composition obtained by the manufacturing method of above-described resin composition is formed in layered form.
  • the method for forming the resin composition into a layer is not particularly limited, and a known molding method can be used, and it may be press molding or the like.
  • heat treatment may be added.
  • the temperature of the heat treatment is not particularly limited, and may be 60 to 250 ° C., or 80 to 220 ° C.
  • a layer (L2) containing a thermoplastic resin (C) and / or a layer (L3) containing a vinyl alcohol polymer (A) when a laminated body has a layer (L2) containing a thermoplastic resin (C) and / or a layer (L3) containing a vinyl alcohol polymer (A), a layer Each of the thermoplastic resin (C) used for (L2) and / or the vinyl alcohol polymer (A) used for the layer (L3) is formed in a layer, and each layer is laminated and further molded (for example, press molding ) To produce a laminate having a multilayer structure. A heat treatment may be added when forming each layer in layers. The temperature of the heat treatment is the same as the step of forming the layer (L1).
  • Another preferred embodiment of the present invention further includes a method for producing a laminate, which comprises the step of irradiating the laminate with active energy rays after the step of forming the layer (L1).
  • a method for producing a laminate which comprises the step of irradiating the laminate with active energy rays after the step of forming the layer (L1).
  • the adhesion between the layers can be further enhanced, the barrier property under high humidity can be excellent, and the barrier property can be maintained even when exposed to bending.
  • the active energy ray those described as the active energy ray for irradiating the vinyl alcohol polymer (B-1) can be used.
  • Another preferred embodiment of the present invention is a method for producing a laminate, wherein the active energy ray is an electron beam.
  • the laminate of the present invention can be produced by any of the production methods described above.
  • the laminate of the present invention has a layer excellent in adhesion to different polymers, is less likely to peel between the layer and other layers, is excellent in barrier property and flexibility under high humidity, and is exposed to bending.
  • medical applications such as vertical form-fill-seal bags, vacuum packaging bags, pouches, laminated tube containers, infusion bags, paper containers, strip tapes, container lids or in-mold label containers etc.
  • the present invention includes embodiments in which the above-described configurations are variously combined within the scope of the technical idea of the present invention as long as the effects of the present invention are exhibited.
  • the weight of the extract concerned is the weight (Wa) of the vinyl alcohol polymer (A) contained in the above resin composition, and the weight of the residue not extracted is the graft copolymer contained in the above resin composition It is mass (it is set as Wb) of (B1).
  • the content ratio (% by mass) of the graft copolymer (B1) to the mass ratio of (A) / (B1) to the total of 100 parts by mass of the vinyl alcohol polymer (A) and the graft copolymer (B1) from these masses ) was calculated.
  • it was confirmed from 1 H-NMR analysis of the extract that the extract in the treatment does not contain the graft copolymer (B1) and is only the vinyl alcohol polymer (A).
  • Wb-Wq is the mass of the unit consisting of the vinyl alcohol polymer (B-1), and Wq is the mass of the unit consisting of the diene polymer (B-2), the vinyl alcohol polymer (B-1)
  • the content of units comprising the diene polymer (B-2) relative to the total value of units comprising the unit) and units comprising the diene polymer (B-2) was calculated.
  • the total amount of modification (the content of monomers to be grafted relative to all monomer units of the resin composition) was calculated according to the following formula.
  • Modification amount [mol%] Z 2 / (X 2 + Y 2 + Z 2 ) ⁇ 100
  • X 2 , Y 2 and Z 2 are values calculated by the following equation.
  • X 2 ⁇ (a raw material for an ethylene - vinyl alcohol copolymer (parts by weight)) ⁇ (a 2/100 ) ⁇ / 28
  • Y 2 ⁇ (a raw material for an ethylene - vinyl alcohol copolymer (parts by weight)) ⁇ (b 2/100 ) ⁇ / 44
  • Z 2 ⁇ (Resin composition after reaction (mass part))-(Ethylene-vinyl alcohol copolymer (mass part) of raw material) ⁇ / (Molecular weight of grafting monomer)
  • the laminate is cut into strips 15 mm wide and 100 mm long, and an autograph (AG-5000B manufactured by Shimadzu Corporation) is used to form a layer (L2) on one chuck of the autograph and a layer on the other chuck (L1) (If a layer (L3) is included, a laminate of layer (L1) / layer (L3) / layer (L1) instead of layer (L1) is sandwiched, and T-shaped tensile adhesive force ( The stress until breakage) was measured (load cell 1 kN, tensile speed 250 mm / min, distance between chucks 70 mm). The numerical value described in the table adopts the average value of 5 measurements.
  • Synthesis Example 1 A commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray, F101, ethylene unit content 32 mol%, ethylene unit mass fraction 23.0 mass%, vinyl alcohol unit mass fraction 77.0 mass%) was ground After that, particles (particles having a particle size distribution of 425 to 710 ⁇ m) classified by using a sieve having 425 ⁇ m mesh and a sieve of 710 ⁇ m mesh were obtained. An electron beam (30 kGy) was irradiated to 100 parts by mass of the obtained particles.
  • Synthesis Example 2 A commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., E105, ethylene unit content 44 mol%, ethylene unit mass fraction 33.3 mass%, vinyl alcohol unit mass fraction 66.7 mass%) was pulverized. Thereafter, classified particles (particles having a particle size distribution of 75 to 212 ⁇ m) were obtained by using a sieve having an aperture of 75 ⁇ m and a sieve having an aperture of 212 ⁇ m. An electron beam (30 kGy) was irradiated to 100 parts by mass of the obtained particles.
  • the particles after reaction are washed with tetrahydrofuran to remove by-produced polybutadiene, and then vacuum dried overnight at 40 ° C. to obtain a resin composition containing an ethylene-vinyl alcohol copolymer and a graft copolymer.
  • the Details are shown in Table 1.
  • Synthesis Example 3 A commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., E105, ethylene unit content 44 mol%, ethylene unit mass fraction 33.3 mass%, vinyl alcohol unit mass fraction 66.7 mass%) was pulverized. Thereafter, classified particles (particles having a particle size distribution of 75 to 212 ⁇ m) were obtained by using a sieve having an aperture of 75 ⁇ m and a sieve having an aperture of 212 ⁇ m. An electron beam (30 kGy) was irradiated to 100 parts by mass of the obtained particles.
  • Synthesis Example 4 After grinding commercially available polyvinyl alcohol (Poval 5-82, Kuraray Co., Ltd., degree of saponification 82 mol%, vinyl acetate unit mass fraction 30.0 mass%, vinyl alcohol unit mass fraction 70.0 mass%), The classified particles (particles having a particle size distribution of 425 to 710 ⁇ m) were obtained by using a sieve of 425 ⁇ m and a sieve of 710 ⁇ m. An electron beam (30 kGy) was irradiated to 100 parts by mass of the obtained particles.
  • Synthesis Example 5 A commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray, F101, ethylene unit content 32 mol%, ethylene unit mass fraction 23.0 mass%, vinyl alcohol unit mass fraction 77.0 mass%) was ground After that, particles (particles having a particle size distribution of 425 to 710 ⁇ m) classified by using a sieve having 425 ⁇ m mesh and a sieve of 710 ⁇ m mesh were obtained. An electron beam (30 kGy) was irradiated to 100 parts by mass of the obtained particles.
  • layer (L3) a commercially available polypropylene resin
  • each film is laminated in the order of L2 / L1 / L3 / L1 / L2, and the laminated film is held by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain the desired lamination. I got a body.
  • the composition and the evaluation results are shown in Table 2.
  • each film was laminated in the order of L2 / L1 / L2, and the laminated film was sandwiched by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain a laminate.
  • the laminate was irradiated with an electron beam (30 kGy) at room temperature to obtain a desired laminate.
  • Table 2 The composition and the evaluation results are shown in Table 2.
  • Example 3 A target laminate was obtained in the same manner as in Example 1 except that the resin composition obtained in Synthesis Example 2 was used. The composition and the evaluation results are shown in Table 2.
  • Example 4 A laminate is obtained in the same manner as in Example 1 except that the resin composition obtained in Synthesis Example 2 is used, and then the laminate is irradiated with an electron beam (30 kGy) at room temperature to obtain a desired laminate.
  • the composition and the evaluation results are shown in Table 2.
  • layer (L2) a carcass compounded unvulcanized rubber
  • each film is laminated in the order of L2 / L1 / L3 / L1 / L2, and the laminated film is held by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain a laminate. Obtained.
  • the laminate was irradiated with an electron beam (150 kGy) at room temperature to obtain a desired laminate.
  • the composition and the evaluation results are shown in Table 2.
  • layer (L2) a carcass compounded unvulcanized rubber
  • each film is laminated in the order of L2 / L1 / L3 / L1 / L2, and the laminated film is held by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain the desired lamination. I got a body.
  • the composition and the evaluation results are shown in Table 2.
  • Example 7 70 parts by mass of the resin composition obtained in Synthesis Example 4 and 30 parts by mass of glycerin were blended and melt-kneaded for 3 minutes at a temperature of 200 ° C. in a laboplast mill, and then the melt was cooled and solidified to obtain a compound. The resulting compound was press molded at 200 ° C. for 120 seconds to produce a 60 ⁇ m thick press film. The pressed film is immersed in a mixed solvent of 80 parts by mass of ethanol and 20 parts by mass of water to extract glycerin, and then dried overnight in a vacuum dryer at 40 ° C.
  • each film is laminated in the order of L2 / L1 / L3 / L1 / L2, and the laminated film is held by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain the desired lamination. I got a body.
  • the composition and the evaluation results are shown in Table 2.
  • the composition and the evaluation results are shown in Table 2.
  • Comparative Example 3 A target laminate was obtained in the same manner as in Example 4 except that the resin composition obtained in Synthesis Example 5 was used. The composition and the evaluation results are shown in Table 2.
  • the laminate of the present invention has high barrier properties under high humidity and high flexibility and can maintain excellent barrier properties even when exposed to bending. Moreover, since the adhesiveness of each layer is excellent, it is hard to produce delamination and can express the stable barrier performance over a long period of time. Therefore, the laminate of the present invention can be used for food packaging materials, tire applications, and a wide range of applications that require barrier properties.
  • the vinyl alcohol polymer alone does not have flexibility and is prone to cracking, so that the barrier property can not be maintained when exposed to bending. Further, as in Comparative Example 2, the vinyl alcohol polymer alone can not be self-adhered to a different polymer.
  • Comparative Example 3 when the content of the graft copolymer composed of a unit composed of a vinyl alcohol polymer and a unit composed of a diene polymer is small, the flexibility is low and cracks easily occur. In addition, the barrier property can not be maintained when exposed to bending.
  • the resin composition of the layer (L1) has only a graft copolymer composed of a unit composed of a vinyl alcohol polymer and a unit composed of a diene polymer, and a vinyl alcohol polymer It has no coalescence and corresponds to the resin composition of WO2015 / 190029.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

The present invention provides a laminate that has a layer exhibiting excellent adhesion to a different type of polymer, that is unlikely to cause separation between said layer and another layer, and that exhibits excellent barrier properties and flexibility under highly humid conditions while being able to retain the barrier properties even when subjected to bending. The present invention pertains to a laminate having at least one layer (L1) that comprises a resin composition containing a vinyl alcohol-based polymer (A) and a copolymer (B) formed of a unit comprising a vinyl alcohol-based polymer (B-1) and a unit comprising a diene-based polymer (B-2), wherein the content rate of the copolymer (B) in the layer (L1) is 10-85 mass% with respect to the total mass of the vinyl alcohol-based polymer (A) and the copolymer (B).

Description

積層体Laminate
 本発明は、柔軟性及び異種ポリマーとの接着性に優れる層を有し、当該層と他の層間の剥離が生じにくく、且つバリア性に優れた積層体に関する。 The present invention relates to a laminate having a layer excellent in flexibility and adhesion to different polymers, less likely to cause peeling between the layer and another layer, and excellent in barrier properties.
 ビニルアルコール系重合体は、高い結晶性に起因する優れた皮膜特性(強度、耐油性、造膜性、ガスバリア性等)を利用して、乳化剤、懸濁剤、界面活性剤、繊維加工剤、各種バインダー、紙加工剤、接着剤、種々の包装体、シート、容器等に広く利用されている。特にガスバリア性の特性を生かした用途では、食品包装材やガソリンタンク、空気入りタイヤ等に利用されている。ビニルアルコール系重合体は、透湿性が高い等の欠点を有することから、これらの用途において単独で使用することが難しく、通常ポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、ゴム等の熱可塑性樹脂との積層体として使用されている。一方で、ビニルアルコール系重合体は柔軟性が低いために、繰り返し屈曲された場合、ビニルアルコール系重合体層にはクラックが生じやすく、ガスバリア性が著しく低下する等の問題があった。 Vinyl alcohol polymers utilize emulsifiers, suspending agents, surfactants, fiber processing agents, and the like, utilizing the excellent film properties (strength, oil resistance, film forming ability, gas barrier property, etc.) attributed to high crystallinity. It is widely used in various binders, paper processing agents, adhesives, various packages, sheets, containers and the like. In particular, in applications that make use of the gas barrier properties, they are used for food packaging materials, gasoline tanks, pneumatic tires, and the like. Vinyl alcohol polymers have disadvantages such as high moisture permeability, so they are difficult to use alone in these applications, and laminates with thermoplastic resins such as polyolefin, polystyrene, polyester, polyamide, rubber, etc. It is used as. On the other hand, since the vinyl alcohol polymer has low flexibility, when it is repeatedly bent, the vinyl alcohol polymer layer is likely to be cracked and the gas barrier property is significantly reduced.
 こうした問題に対し、積層体に柔軟性を付与する試みがいくつか提案されている。例えば特許文献1では、ガスバリア樹脂を含む層とエラストマーを含む層を交互に積層することで柔軟性を付与した積層体が例示されている。また、特許文献2では、特定の官能基がグラフトされた変性ポリビニルアルコールを用いることで柔軟性を付与した積層体が例示されている。 In response to these problems, several attempts have been made to impart flexibility to the laminate. For example, Patent Document 1 exemplifies a laminate to which flexibility is imparted by alternately laminating a layer containing a gas barrier resin and a layer containing an elastomer. Moreover, in patent document 2, the laminated body which provided softness | flexibility by using the modified polyvinyl alcohol by which the specific functional group was grafted is illustrated.
国際公開第2012/042679号International Publication No. 2012/042679 国際公開第2015/190029号International Publication No. 2015/190029
 しかしながら、ガスバリア樹脂を含む層は柔軟性が低く、クラックが生じやすいため、特許文献1に記載されている積層体は、クラックの発生を抑制するために、ガスバリア樹脂を含む層とエラストマーを含む層を7層以上の層構成にする必要があり、非常に成形難易度が高いという課題を抱えていた。また、特許文献2に記載されている積層体は、変性ポリビニルアルコールの結晶性がポリビニルアルコールに比べて著しく低く、変性ポリビニルアルコールを含む被膜の高湿下でのバリア性等が不十分であり、改善が必要であった。さらに、特許文献2の樹脂組成物では、バリア性樹脂の主鎖に対して、合成ゴムの末端部分を化学修飾して、当該末端をバリア性樹脂にグラフト反応させてグラフト鎖を導入したグラフト共重合体を製造している。すなわち、バリア性樹脂はすべてグラフト反応によりグラフト共重合体となるため、特許文献2の樹脂組成物はグラフト共重合体のみを含有しており、かかる樹脂組成物においてグラフト共重合体以外の樹脂を含むことは検討されていなかった。 However, since the layer containing the gas barrier resin has low flexibility and cracks easily occur, the laminate described in Patent Document 1 has a layer containing the gas barrier resin and a layer containing an elastomer in order to suppress the occurrence of the cracks. There is a problem that it is necessary to make the layer structure of seven or more layers, and it is very difficult to form. In addition, in the laminate described in Patent Document 2, the crystallinity of the modified polyvinyl alcohol is significantly lower than that of the polyvinyl alcohol, and the barrier property under high humidity of the film containing the modified polyvinyl alcohol is insufficient, Improvement was necessary. Furthermore, in the resin composition of Patent Document 2, the end portion of the synthetic rubber is chemically modified with respect to the main chain of the barrier resin, and the end is grafted onto the barrier resin to introduce a graft chain. Manufactures polymers. That is, since all barrier resins become graft copolymers by graft reaction, the resin composition of Patent Document 2 contains only graft copolymers, and in such resin compositions, resins other than graft copolymers are used. The inclusion was not considered.
 本発明は上記課題を解決するためになされたものであり、異種ポリマーとの接着性に優れる層を有し、当該層と他の層間の剥離が生じにくく、高湿下でのバリア性及び柔軟性に優れ、屈曲にさらされた場合にもバリア性を維持できる、積層体を提供することを目的とする。 The present invention has been made to solve the above problems, and has a layer having excellent adhesion to different polymers, which is less likely to cause peeling between the layer and other layers, and has barrier properties and flexibility under high humidity. An object of the present invention is to provide a laminate which is excellent in gender and can maintain its barrier property even when exposed to bending.
 本発明者らは、鋭意検討した結果、ビニルアルコール系重合体(A)と、ビニルアルコール系重合体(B-1)からなるユニット及びジエン系重合体(B-2)からなるユニットから構成される共重合体(B)とを含む樹脂組成物を含む層(L1)を少なくとも1層有し、層(L1)に含まれる共重合体(B)の含有率がビニルアルコール系重合体(A)及び共重合体(B)の合計質量に対して所定量である、積層体とすることによって、上述の課題が解決できることを見出し、この知見に基づいて、本発明を完成するに至った。 As a result of intensive studies, the present inventors are composed of a unit composed of a vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1) and a unit composed of a diene polymer (B-2). Containing at least one layer (L1) containing a resin composition containing a copolymer (B), and the content of the copolymer (B) contained in the layer (L1) is a vinyl alcohol polymer (A It has been found that the above-mentioned problems can be solved by using a laminate having a predetermined amount relative to the total mass of the copolymer (B) and the copolymer (B), and the present invention has been completed based on this finding.
 すなわち、本発明は以下の発明を包含する。
[1]ビニルアルコール系重合体(A)と、ビニルアルコール系重合体(B-1)からなるユニット及びジエン系重合体(B-2)からなるユニットから構成される共重合体(B)とを含む樹脂組成物を含む層(L1)を少なくとも1層有し、層(L1)に含まれる共重合体(B)の含有率がビニルアルコール系重合体(A)及び共重合体(B)の合計質量に対して10~85質量%である、積層体。
[2]さらに、熱可塑性樹脂(C)を含む層(L2)を有する、前記[1]の積層体。
[3]熱可塑性樹脂(C)が、ポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、及びゴムからなる群より選択される少なくとも1つである、前記[2]の積層体。
[4]さらに、ビニルアルコール系重合体(A)を含む層(L3)を有する、前記[1]~[3]のいずれかの積層体。
[5]層(L1)が、層(L2)と層(L3)の間に配置される、前記[4]の積層体。
[6]層(L1)のビニルアルコール系重合体(A)がエチレン-ビニルアルコール共重合体である、前記[1]~[5]のいずれかの積層体。
[7]層(L3)のビニルアルコール系重合体(A)がエチレン-ビニルアルコール共重合体である、前記[4]~[6]のいずれかの積層体。
[8]層の数が、6層以下である、前記[1]~[7]のいずれかの積層体。
[9]ジエン系重合体(B-2)が、ポリブタジエン、ポリイソプレン、及びポリイソブチレンからなる群より選ばれる少なくとも1種以上である、前記[1]~[8]のいずれかの積層体。
[10]層(L1)に含まれる共重合体(B)の含有率が、ビニルアルコール系重合体(A)及び共重合体(B)の合計質量に対して30~80質量%である、前記[1]~[9]のいずれかの積層体。
[11]共重合体(B)がグラフト共重合体(B1)である、前記[1]~[10]のいずれかの積層体。
[12]ビニルアルコール系重合体(A)と、ビニルアルコール系重合体(B-1)からなるユニット及びジエン系重合体(B-2)からなるユニットから構成される共重合体(B)とを含む樹脂組成物を含む層(L1)を形成する工程を含む、前記[1]~[11]のいずれかの積層体の製造方法。
[13]層(L1)を形成する工程の後に、積層体に活性エネルギー線を照射する工程を含む、前記[12]の製造方法。
[14]活性エネルギー線が電子線である、前記[13]の製造方法。
[15]前記樹脂組成物の製造において、ビニルアルコール系重合体(B-1)をジエン系重合体(B-2)の原料である単量体中に、又は当該単量体を含む溶液中に分散させてグラフト重合する工程を含む、前記[12]~[14]のいずれかの製造方法。
That is, the present invention includes the following inventions.
[1] A copolymer (B) composed of a unit composed of a vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1) and a unit composed of a diene polymer (B-2) Containing at least one layer (L1) containing a resin composition containing a vinyl alcohol polymer (A) and a copolymer (B) in the content of the copolymer (B) contained in the layer (L1) 10 to 85% by mass relative to the total mass of
[2] The laminate of the above [1], further having a layer (L2) containing a thermoplastic resin (C).
[3] The laminate of the above [2], wherein the thermoplastic resin (C) is at least one selected from the group consisting of polyolefin, polystyrene, polyester, polyamide, and rubber.
[4] The laminate according to any one of the above [1] to [3], further having a layer (L3) containing a vinyl alcohol polymer (A).
[5] The laminate of the above [4], wherein the layer (L1) is disposed between the layer (L2) and the layer (L3).
[6] The laminate according to any one of the above [1] to [5], wherein the vinyl alcohol polymer (A) of the layer (L1) is an ethylene-vinyl alcohol copolymer.
[7] The laminate according to any one of the above [4] to [6], wherein the vinyl alcohol polymer (A) of the layer (L3) is an ethylene-vinyl alcohol copolymer.
[8] The laminate according to any one of the above [1] to [7], wherein the number of layers is 6 or less.
[9] The laminate according to any one of the above [1] to [8], wherein the diene polymer (B-2) is at least one selected from the group consisting of polybutadiene, polyisoprene and polyisobutylene.
[10] The content of the copolymer (B) contained in the layer (L1) is 30 to 80% by mass based on the total mass of the vinyl alcohol polymer (A) and the copolymer (B), The laminate according to any one of the above [1] to [9].
[11] The laminate according to any one of the above [1] to [10], wherein the copolymer (B) is a graft copolymer (B1).
[12] A copolymer (B) composed of a unit composed of a vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1) and a unit composed of a diene polymer (B-2) A method for producing a laminate according to any one of the above [1] to [11], which comprises the step of forming a layer (L1) containing a resin composition containing
[13] The production method of the above-mentioned [12], comprising the step of irradiating the laminate with active energy rays after the step of forming the layer (L1).
[14] The method of the above-mentioned [13], wherein the active energy ray is an electron beam.
[15] In the production of the resin composition, the vinyl alcohol polymer (B-1) is contained in a monomer which is a raw material of the diene polymer (B-2) or in a solution containing the monomer The method according to any one of the above [12] to [14], which comprises the steps of dispersing and graft polymerizing.
 本発明の積層体は、異種ポリマーとの接着性に優れる層を有し、当該層と他の層間の剥離が生じにくく、高湿下でのバリア性及び柔軟性に優れ、屈曲にさらされた場合にもバリア性を維持できる。 The laminate of the present invention has a layer excellent in adhesion to different polymers, is less likely to peel between the layer and other layers, is excellent in barrier property and flexibility under high humidity, and is exposed to bending. Even in cases where barrier properties can be maintained.
 本発明の積層体は、ビニルアルコール系重合体(A)と、ビニルアルコール系重合体(B-1)からなるユニット及びジエン系重合体(B-2)からなるユニットから構成される共重合体(B)とを含む樹脂組成物を含む層(L1)を少なくとも1層有し、層(L1)に含まれる共重合体(B)の含有率がビニルアルコール系重合体(A)及び共重合体(B)の合計質量に対して10~85質量%であることを特徴とする。なお、本明細書において、数値範囲(各成分の含有率、各成分から算出される値及び各物性等)の上限値及び下限値は適宜組み合わせ可能である。 The laminate of the present invention is a copolymer comprising a unit comprising the vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1), and a unit comprising the diene polymer (B-2) It has at least one layer (L1) containing a resin composition containing (B), and the content of the copolymer (B) contained in the layer (L1) is the vinyl alcohol polymer (A) and the copolymer weight It is characterized in that it is 10 to 85% by mass with respect to the total mass of the combined (B). In the present specification, the upper limit value and the lower limit value of the numerical range (the content of each component, the value calculated from each component, each physical property, etc.) can be combined appropriately.
(層(L1))
 層(L1)は、ビニルアルコール系重合体(A)と、ビニルアルコール系重合体(B-1)からなるユニット及びジエン系重合体(B-2)からなるユニットから構成される共重合体(B)とを含む樹脂組成物を含む。本発明の樹脂組成物において、ビニルアルコール系重合体(A)と共重合体(B)の合計質量(100質量%)に対する共重合体(B)の含有率は10~85質量%である。上記含有率が10質量%未満の場合、層(L1)の柔軟性が著しく低下する。また、上記含有率が85質量%超の場合、層(L1)は機械的強度又はバリア性が著しく低下する。これらの物性の低下は、共重合体(B)において、ビニルアルコール系重合体(B-1)からなるユニットの結晶化を、ジエン系重合体(B-2)からなるユニットが阻害することに起因する。一方で、本発明の積層体は、上記含有率が上記範囲内であることにより、ビニルアルコール系重合体(A)が、層(L1)においてマトリックスとなるため、ビニルアルコール系重合体(A)の結晶性に起因する優れた物性と、共重合体(B)に起因する優れた柔軟性を両立できる。上記共重合体(B)の含有率は15質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましく、30質量%以上が最も好ましい。また、上記共重合体(B)の含有率は、83質量%以下が好ましく、81質量%以下がより好ましく、80質量%以下がさらに好ましい。
(Layer (L1))
The layer (L1) is a copolymer comprising a unit comprising the vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1), and a unit comprising the diene polymer (B-2) B) and a resin composition containing In the resin composition of the present invention, the content of the copolymer (B) is 10 to 85% by mass with respect to the total mass (100% by mass) of the vinyl alcohol polymer (A) and the copolymer (B). If the content is less than 10% by mass, the flexibility of the layer (L1) is significantly reduced. Moreover, when the said content rate is more than 85 mass%, a mechanical strength or barrier property will fall remarkably. The decrease in these physical properties is due to the fact that in the copolymer (B), the unit consisting of the diene polymer (B-2) inhibits the crystallization of the unit consisting of the vinyl alcohol polymer (B-1). to cause. On the other hand, in the laminate of the present invention, when the content is within the above range, the vinyl alcohol polymer (A) becomes a matrix in the layer (L1), so the vinyl alcohol polymer (A) It is compatible with the excellent physical properties attributed to the crystallinity of the above and the excellent flexibility attributed to the copolymer (B). 15 mass% or more is preferable, as for the content rate of the said copolymer (B), 20 mass% or more is more preferable, 25 mass% or more is further more preferable, and 30 mass% or more is the most preferable. Moreover, 83 mass% or less is preferable, as for the content rate of the said copolymer (B), 81 mass% or less is more preferable, and 80 mass% or less is more preferable.
〔共重合体(B)〕
 共重合体(B)は、ビニルアルコール系重合体(B-1)からなるユニットとジエン系重合体(B-2)からなるユニットから構成される。共重合体(B)は、少なくとも1つのビニルアルコール系重合体(B-1)からなるユニットと少なくとも1つのジエン系重合体(B-2)からなるユニットとを有する共重合体であれば特に制限はない。共重合体(B)は、例えばグラフト共重合体(B1)やブロック共重合体(B2)である。
[Copolymer (B)]
The copolymer (B) is composed of a unit comprising the vinyl alcohol polymer (B-1) and a unit comprising the diene polymer (B-2). The copolymer (B) is particularly a copolymer having at least one unit composed of a vinyl alcohol polymer (B-1) and at least one unit composed of a diene polymer (B-2). There is no limit. The copolymer (B) is, for example, a graft copolymer (B1) or a block copolymer (B2).
 〔グラフト共重合体(B1)〕
 ある好適な実施形態では、共重合体(B)は、グラフト共重合体(B1)である。グラフト共重合体(B1)の構造は特に限定されないが、ビニルアルコール系重合体(B-1)からなるユニット及びジエン系重合体(B-2)からなるユニットから構成されることが好ましい。具体的には、ビニルアルコール系重合体(B-1)からなる主鎖に対して、ジエン系重合体(B-2)からなる側鎖が導入されたものであることが好ましい。特に、1つのビニルアルコール系重合体(B-1)からなるユニットに複数のジエン系重合体(B-2)からなるユニットが結合したものが特に好ましい。ビニルアルコール系重合体(B-1)の種類は特に限定されないが、例えば、以下に示すポリビニルアルコール又はエチレン-ビニルアルコール共重合体が好ましい。ビニルアルコール系重合体(B-1)は、ビニルアルコール系重合体(B-1)を構成する全構造単位に対してビニルアルコール単位の含有率が40mol%以上であることが好ましく、50mol%以上であっても、55mol%以上であってもよい。ビニルアルコール系重合体(B-1)において、ポリビニルアルコール又はエチレン-ビニルアルコール共重合体を1種単独で用いてもよく、複数のポリビニルアルコール及び/又はエチレン-ビニルアルコール共重合体を組み合せて用いてもよい。
[Graft copolymer (B1)]
In one preferred embodiment, the copolymer (B) is a graft copolymer (B1). The structure of the graft copolymer (B1) is not particularly limited, but is preferably composed of a unit consisting of a vinyl alcohol polymer (B-1) and a unit consisting of a diene polymer (B-2). Specifically, it is preferable that a side chain consisting of the diene polymer (B-2) is introduced to the main chain consisting of the vinyl alcohol polymer (B-1). In particular, it is particularly preferable that a unit composed of a plurality of diene polymers (B-2) is bonded to a unit composed of one vinyl alcohol polymer (B-1). The type of the vinyl alcohol polymer (B-1) is not particularly limited, but for example, polyvinyl alcohol or ethylene-vinyl alcohol copolymer shown below is preferable. The vinyl alcohol polymer (B-1) preferably has a vinyl alcohol unit content of at least 40 mol%, and at least 50 mol%, based on all structural units constituting the vinyl alcohol polymer (B-1). Even if, 55 mol% or more may be sufficient. In the vinyl alcohol polymer (B-1), polyvinyl alcohol or ethylene-vinyl alcohol copolymer may be used alone or in combination of plural polyvinyl alcohols and / or ethylene-vinyl alcohol copolymers. May be
〔ブロック共重合体(B2)〕
 ある他の好適な実施形態では、共重合体(B)は、ブロック共重合体(B2)である。共重合体(B)が、ブロック共重合体(B2)である場合、ビニルアルコール系重合体(B-1)からなるユニットを重合体ブロック(b1)として有し、ジエン系重合体(B-2)からなるユニットを重合体ブロック(b2)として有する。ブロック共重合体(B2)は、重合体ブロック(b1)及び重合体ブロック(b2)をそれぞれ1つずつ有するものであってもよいし、重合体ブロック(b1)及び/又は重合体ブロック(b2)を2つ以上有するものであってもよい。該ブロック共重合体の結合様式としては、b1-b2型ジブロック共重合体、b1-b2-b1型トリブロック共重合体、b2-b1-b2型トリブロック共重合体、b1-b2-b1-b2型テトラブロック共重合体やb2-b1-b2-b1型テトラブロック共重合体に代表される線状マルチブロック共重合体、(b2-b1-)n、(b1-b2-)n等で表される星型(ラジアルスター型)ブロック共重合体などが挙げられる。nは2より大きい値である。
[Block copolymer (B2)]
In certain other preferred embodiments, the copolymer (B) is a block copolymer (B2). When the copolymer (B) is a block copolymer (B2), it has a unit consisting of a vinyl alcohol polymer (B-1) as a polymer block (b1), and a diene polymer (B-) It has a unit consisting of 2) as a polymer block (b2). The block copolymer (B2) may have one polymer block (b1) and one polymer block (b2), or one polymer block (b1) and / or one polymer block (b2). It may have two or more. The bonding mode of the block copolymer is b1-b2 type diblock copolymer, b1-b2-b1 type triblock copolymer, b2-b1-b2 type triblock copolymer, b1-b2-b1 Linear multi-block copolymers represented by -b2-type tetrablock copolymers and b2-b1-b2-b1-type tetrablock copolymers, (b2-b1-) n, (b1-b2-) n, etc. And a star (radial star) block copolymer represented by and the like. n is a value greater than 2.
(ビニルアルコール系重合体(A)及び(B-1))
 ビニルアルコール系重合体(A)及びビニルアルコール系重合体(B-1)の種類は特に限定されないが、例えば、以下に示すポリビニルアルコール又はエチレン-ビニルアルコール共重合体が好適に用いられる。ビニルアルコール系重合体(A)及びビニルアルコール系重合体(B-1)は、各重合体を構成する構造単位、各重合体の粘度平均重合度、けん化度等が同じであってもよいし、異なっていてもよい。ビニルアルコール系重合体(A)及びビニルアルコール系重合体(B-1)は、ビニルアルコール単位の含有率が40mol%以上であることが好ましく、50mol%以上であっても、55mol%以上であってもよい。また、ビニルアルコール系重合体(A)及びビニルアルコール系重合体(B-1)の各々において、単独のポリビニルアルコール又はエチレン-ビニルアルコール共重合体を用いてもよいし、複数のポリビニルアルコール及び/又はエチレン-ビニルアルコール共重合体を組み合せて用いてもよい。なお、本発明において重合体中の構造単位とは、重合体を構成する繰り返し単位のことを意味する。例えば、エチレン単位又はビニルアルコール単位も構造単位である。
(Vinyl alcohol polymers (A) and (B-1))
The types of the vinyl alcohol polymer (A) and the vinyl alcohol polymer (B-1) are not particularly limited, but for example, polyvinyl alcohol or ethylene-vinyl alcohol copolymer shown below is suitably used. The vinyl alcohol polymer (A) and the vinyl alcohol polymer (B-1) may have the same structural units constituting each polymer, and the same viscosity average degree of polymerization, degree of saponification, etc. of each polymer. , May be different. The vinyl alcohol polymer (A) and the vinyl alcohol polymer (B-1) preferably have a vinyl alcohol unit content of 40 mol% or more, and even if it is 50 mol% or more, 55 mol% or more. May be In each of the vinyl alcohol polymer (A) and the vinyl alcohol polymer (B-1), a single polyvinyl alcohol or ethylene-vinyl alcohol copolymer may be used, or plural polyvinyl alcohols and / or Alternatively, ethylene-vinyl alcohol copolymers may be used in combination. In the present invention, the structural unit in the polymer means a repeating unit constituting the polymer. For example, ethylene units or vinyl alcohol units are also structural units.
 上記ポリビニルアルコールの粘度平均重合度(JIS K 6726(1994)に準拠して測定)は特に限定されず、好ましくは100~10,000、より好ましくは200~7,000、さらに好ましくは300~5,000である。上記粘度平均重合度が上記範囲内であると、得られる樹脂組成物の機械的強度が優れる。ビニルアルコール系重合体(B-1)においては、共重合体(B)の所望の数平均分子量に応じて粘度平均重合度を調整すればよい。 The viscosity average polymerization degree (measured according to JIS K 6726 (1994)) of the polyvinyl alcohol is not particularly limited, and is preferably 100 to 10,000, more preferably 200 to 7,000, still more preferably 300 to 5 , 000. The mechanical strength of the resin composition obtained as the said viscosity average polymerization degree is in the said range is excellent. In the vinyl alcohol polymer (B-1), the viscosity average degree of polymerization may be adjusted according to the desired number average molecular weight of the copolymer (B).
 上記ポリビニルアルコールのけん化度(JIS K 6726(1994)に準拠して測定)は特に限定されないが、バリア性に優れる点から、50mol%以上が好ましく、80mol%がより好ましく、95mol%以上がさらに好ましく、100mol%であってもよい。 The degree of saponification of the polyvinyl alcohol (measured according to JIS K 6726 (1994)) is not particularly limited, but is preferably 50 mol% or more, more preferably 80 mol%, still more preferably 95 mol% or more from the viewpoint of excellent barrier properties. And 100 mol%.
 上記エチレン-ビニルアルコール共重合体におけるエチレン単位の含有率は特に限定されないが、バリア性に優れる点及び製造が容易となる点から、10~60mol%が好ましく、20~50mol%がより好ましい。エチレン-ビニルアルコール共重合体のエチレン単位の含有率はH-NMR測定から求めることができる。 The content of the ethylene unit in the ethylene-vinyl alcohol copolymer is not particularly limited, but it is preferably 10 to 60 mol%, more preferably 20 to 50 mol% from the viewpoint of excellent barrier properties and ease of production. The ethylene unit content of the ethylene-vinyl alcohol copolymer can be determined from 1 H-NMR measurement.
 上記エチレン-ビニルアルコール共重合体のけん化度は特に限定されないが、成形性及びバリア性に優れる点から、90mol%以上が好ましく、95mol%以上がより好ましく、99mol%以上がさらに好ましく、100mol%であってもよい。エチレン-ビニルアルコール共重合体のけん化度はJIS K 6726(1994)に準拠して測定できる。 The saponification degree of the ethylene-vinyl alcohol copolymer is not particularly limited, but is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 99 mol% or more, and 100 mol% from the viewpoint of excellent moldability and barrier properties. It may be. The degree of saponification of the ethylene-vinyl alcohol copolymer can be measured in accordance with JIS K 6726 (1994).
 上記エチレン-ビニルアルコール共重合体のメルトフローレート(MFR)(210℃、荷重2160g)は特に限定されないが、0.1g/10分以上が好ましく、0.5g/10分以上がより好ましい。上記メルトフローレートが0.1g/10分以上であると、耐水性及び機械的強度に優れる。なお、上記メルトフローレートの上限は通常用いられる値であればよく、例えば25g/10分以下であってもよい。メルトフローレートは、ASTM D1238に準拠して、メルトインデクサーを用いて210℃、荷重2160gの条件で測定して求めた値を示す。 The melt flow rate (MFR) (210 ° C., load 2160 g) of the ethylene-vinyl alcohol copolymer is not particularly limited, but 0.1 g / 10 min or more is preferable, and 0.5 g / 10 min or more is more preferable. It is excellent in water resistance and mechanical strength as the said melt flow rate is 0.1 g / 10 minutes or more. The upper limit of the melt flow rate may be any value that is usually used, and may be, for example, 25 g / 10 min or less. The melt flow rate is a value determined by measuring at 210 ° C. under a load of 2160 g using a melt indexer in accordance with ASTM D1238.
 上記のエチレン-ビニルアルコール共重合体は、本発明の効果を損なわない範囲で、エチレン単位及びビニルアルコール単位以外の不飽和単量体に由来する構造単位を含んでいてもよい。上記エチレン-ビニルアルコール共重合体における該不飽和単量体に由来する構造単位の含有率は、上記エチレン-ビニルアルコール共重合体を構成する全構造単位に対して10mol%以下であることが好ましく、5mol%以下であることがより好ましい。 The ethylene-vinyl alcohol copolymer described above may contain structural units derived from unsaturated monomers other than ethylene units and vinyl alcohol units, as long as the effects of the present invention are not impaired. The content of structural units derived from the unsaturated monomer in the ethylene-vinyl alcohol copolymer is preferably 10 mol% or less based on all structural units constituting the ethylene-vinyl alcohol copolymer. And 5 mol% or less is more preferable.
 上記ポリビニルアルコール及びエチレン-ビニルアルコール共重合体は、本発明の効果を損なわない範囲で、ビニルアルコール単位、ビニルエステル系単量体単位及びエチレン単位以外の構造単位(c)を含んでいてもよい。 The polyvinyl alcohol and ethylene-vinyl alcohol copolymer may contain a vinyl alcohol unit, a vinyl ester monomer unit and a structural unit (c) other than an ethylene unit, as long as the effects of the present invention are not impaired. .
 当該構造単位(c)としては、例えば、プロピレン、n-ブテン、イソブチレン、1-ヘキセン等のα-オレフィン類(ポリビニルアルコールの場合はエチレンを含む);アクリル酸;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル基を有する不飽和単量体;メタクリル酸;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル基を有する不飽和単量体;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸、アクリルアミドプロピルジメチルアミン等のアクリルアミド類;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸、メタクリルアミドプロピルジメチルアミン等のメタクリルアミド類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル、2,3-ジアセトキシ-1-ビニルオキシプロパン等のビニルエーテル類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;塩化ビニル、フッ化ビニル等のハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン類;酢酸アリル、2,3-ジアセトキシ-1-アリルオキシプロパン、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸及びその塩又はエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等に由来する構造単位が挙げられる。当該構造単位(c)の含有率は、上記ポリビニルアルコール又は上記エチレン-ビニルアルコール共重合体を構成する全構造単位に対して10mol%未満であることが好ましい。 Examples of the structural unit (c) include α-olefins such as propylene, n-butene, isobutylene and 1-hexene (including ethylene in the case of polyvinyl alcohol); acrylic acid; methyl acrylate, ethyl acrylate, Acrylic acid ester groups such as n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, etc. Unsaturated monomer having; methacrylic acid; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, methacrylic acid 2-ethylhexyl, dodecyl methacrylate Unsaturated monomers having a methacrylate group such as octadecyl methacrylate; acrylamide, N-methyl acrylamide, N-ethyl acrylamide, N, N-dimethyl acrylamide, diacetone acrylamide, acrylamidopropane sulfonic acid, acrylamidopropyl dimethylamine, etc. Acrylamides; methacrylamides such as methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, methacrylamido propane sulfonic acid, methacrylamido propyl dimethyl amine, etc. methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl Vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, Vinyl ethers such as tearyl vinyl ether and 2,3-diacetoxy-1-vinyloxypropane; unsaturated nitriles such as acrylonitrile and methacrylonitrile; vinyl halides such as vinyl chloride and vinyl fluoride; vinylidene chloride and fluoride Vinylidene halides such as vinylidene; allyl compounds such as allyl acetate, 2,3-diacetoxy-1-allyloxypropane and allyl chloride; unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid, and salts or esters thereof; And vinyl silyl compounds such as vinyl trimethoxysilane; structural units derived from isopropenyl acetate and the like. The content of the structural unit (c) is preferably less than 10 mol% with respect to all structural units constituting the polyvinyl alcohol or the ethylene-vinyl alcohol copolymer.
 ビニルアルコール系重合体(A)及びビニルアルコール系重合体(B-1)としては、特にエチレン-ビニルアルコール共重合体が好適に用いられる。エチレン-ビニルアルコール共重合体を用いることで、本発明の樹脂組成物の熱成形性が向上しやすい。 An ethylene-vinyl alcohol copolymer is particularly preferably used as the vinyl alcohol polymer (A) and the vinyl alcohol polymer (B-1). By using the ethylene-vinyl alcohol copolymer, the thermoformability of the resin composition of the present invention can be easily improved.
 (ジエン系重合体(B-2))
 共重合体(B)は、ジエン系重合体(B-2)からなるユニットを含む。ジエン系重合体(B-2)の構造は特に限定されないが、ジエン系重合体(B-2)がオレフィン構造を有することが好ましい。ジエン系重合体(B-2)がオレフィン構造を有することで、本発明の樹脂組成物は高エネルギー線による架橋又は加硫が可能となる。ジエン系重合体(B-2)としては、例えばポリブタジエン、ポリイソプレン、ポリイソブチレン、ポリクロロプレン、ポリファルネセン等の合成ゴムが挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。また、ジエン系重合体(B-2)は、ブタジエン、イソプレン、イソブチレン、クロロプレン及びファルネセンからなる群より選択される2種以上の単量体の共重合体であってもよい。中でも、反応性及び柔軟性の観点から、ポリブタジエン、ポリイソプレン、ポリイソブチレンが好ましく、ポリイソプレンがより好ましい。なお、共重合体(B)のユニットは、本発明の効果を阻害しない範囲で、ビニルアルコール系重合体(A)及びジエン系重合体(B-2)以外の構造単位を含んでいてもよい。
(Diene polymer (B-2))
The copolymer (B) contains a unit consisting of a diene polymer (B-2). The structure of the diene polymer (B-2) is not particularly limited, but it is preferred that the diene polymer (B-2) have an olefin structure. When the diene polymer (B-2) has an olefin structure, the resin composition of the present invention can be crosslinked or vulcanized by high energy rays. Examples of the diene polymer (B-2) include synthetic rubbers such as polybutadiene, polyisoprene, polyisobutylene, polychloroprene, polyfarnesene and the like. These may be used alone or in combination of two or more. The diene polymer (B-2) may be a copolymer of two or more monomers selected from the group consisting of butadiene, isoprene, isobutylene, chloroprene and farnesene. Among them, polybutadiene, polyisoprene and polyisobutylene are preferable, and polyisoprene is more preferable, from the viewpoint of reactivity and flexibility. In addition, the unit of the copolymer (B) may contain structural units other than the vinyl alcohol polymer (A) and the diene polymer (B-2) as long as the effects of the present invention are not impaired. .
 本発明の層(L1)を含む積層体は、化学的耐久性(特に耐アルカリ性)にも優れる。共重合体(B)における、ジエン系重合体(B-2)から構成されるユニットは、その一部又は全部が、ビニルアルコール系重合体(B-1)からなるユニットを構成する炭素原子、好適にはビニルアルコール系重合体(B-1)からなるユニットを構成する2級炭素原子又は3級炭素原子に直接結合していることが好ましい。上記ユニットの一部又は全部が上記2級炭素原子又は3級炭素原子に直接結合している場合、本発明の層(L1)を含む積層体は化学的耐久性(特に耐アルカリ性)により優れる。 The laminate including the layer (L1) of the present invention is also excellent in chemical durability (particularly, alkali resistance). The unit composed of the diene polymer (B-2) in the copolymer (B) is a carbon atom of which a part or all thereof constitutes a unit composed of the vinyl alcohol polymer (B-1), Preferably, it is preferably directly bonded to a secondary carbon atom or a tertiary carbon atom constituting a unit consisting of a vinyl alcohol polymer (B-1). When part or all of the unit is directly bonded to the secondary carbon atom or tertiary carbon atom, the laminate including the layer (L1) of the present invention is more excellent in chemical durability (especially alkali resistance).
 共重合体(B)における、ビニルアルコール系重合体(B-1)からなるユニットとジエン系重合体(B-2)からなるユニットの合計質量に対するジエン系重合体(B-2)からなるユニットの含有率は特に限定されないが、30質量%以上が好ましく、40質量%以上がより好ましく、45質量%以上がさらに好ましい。上記ジエン系重合体(B-2)からなるユニットの含有率は80質量%以下が好ましく、76質量%以下がより好ましく、70質量%以下がさらに好ましい。上記含有率が30質量%以上の場合、所望の柔軟性及び反応性が得やすく、80質量%以下の場合、ビニルアルコール系重合体(A)と共重合体(B)の相溶性に優れ、粗大な相分離の形成による透明性及び諸物性の悪化を抑制しやすい。 A unit comprising a diene polymer (B-2) relative to the total mass of a unit comprising the vinyl alcohol polymer (B-1) and a unit comprising the diene polymer (B-2) in the copolymer (B) Although the content rate of is not specifically limited, 30 mass% or more is preferable, 40 mass% or more is more preferable, and 45 mass% or more is more preferable. The content of units comprising the diene polymer (B-2) is preferably 80% by mass or less, more preferably 76% by mass or less, and still more preferably 70% by mass or less. When the content is 30% by mass or more, desired flexibility and reactivity can be easily obtained, and when the content is 80% by mass or less, the compatibility between the vinyl alcohol polymer (A) and the copolymer (B) is excellent. It is easy to suppress deterioration of transparency and physical properties due to formation of coarse phase separation.
 共重合体(B)における、ビニルアルコール系重合体(B-1)からなるユニットとジエン系重合体(B-2)からなるユニットの合計質量に対するビニルアルコール単位の含有率は、15~60質量%の範囲であることが好ましい。上記ビニルアルコール単位の含有率が15質量%以上の場合、ビニルアルコール系重合体(A)との相溶性が高く、透明性に優れる。上記ビニルアルコール単位の含有率が60質量%以下の場合、ビニルアルコール系重合体(A)と共重合体(B)とが適度に相溶するため、両者の過度な相溶によるマトリックスの結晶性の低下及びそれに伴う物性の悪化を抑制しやすい。上記ビニルアルコール単位の含有率は、17~50質量%がより好ましく、18~45質量%がさらに好ましく、20~40質量%が特に好ましい。前記ビニルアルコール単位の含有率の測定方法は、後述する実施例に記載のとおりである。 The content of vinyl alcohol units in the copolymer (B) is 15 to 60 mass% of the total mass of the unit consisting of the vinyl alcohol polymer (B-1) and the unit consisting of the diene polymer (B-2) It is preferably in the range of%. When the content of the vinyl alcohol unit is 15% by mass or more, the compatibility with the vinyl alcohol polymer (A) is high, and the transparency is excellent. When the content of the vinyl alcohol unit is 60% by mass or less, the vinyl alcohol polymer (A) and the copolymer (B) are appropriately compatibilized, so the crystallinity of the matrix due to excessive compatibility of both It is easy to control the deterioration of The content of the vinyl alcohol unit is more preferably 17 to 50% by mass, further preferably 18 to 45% by mass, and particularly preferably 20 to 40% by mass. The measuring method of the content rate of the said vinyl alcohol unit is as being described in the Example mentioned later.
 共重合体(B)が有する、ジエン系重合体(B-2)からなるユニットは、分子量分布を有していることが好ましい。ジエン系重合体(B-2)からなるユニットが分子量分布を有することにより、ビニルアルコール系重合体(A)と共重合体(B)の相溶性が向上しやすく、成形後の透明性が高くなりやすい。 The unit comprising the diene polymer (B-2), which the copolymer (B) has, preferably has a molecular weight distribution. When the unit composed of the diene polymer (B-2) has a molecular weight distribution, the compatibility between the vinyl alcohol polymer (A) and the copolymer (B) can be easily improved, and the transparency after molding is high. Prone.
 層(L1)の樹脂組成物は、本発明の効果を阻害しない範囲で、さらに合成ゴム(D)を含んでいてもよい。合成ゴム(D)は、ジエン系重合体(B-2)に含まれる構成単位と同じ構成単位を含んでいてもよく、含まなくてもよい。また、合成ゴム(D)は、共重合体(B)の製造において生成する合成ゴムであってもよいし、本発明の樹脂組成物の製造において別途添加された合成ゴムであってもよい。層(L1)の樹脂組成物中の合成ゴム(D)の含有率は10質量%以下が好ましい。10質量%を超えると上記平均粒子径を有する樹脂組成物であっても樹脂同士が膠着しやすくなる傾向にある。上記合成ゴム(D)の含有率は、7質量%以下がより好ましく、3質量%以下がさらに好ましく、成形加工性により優れる点から、0.1質量%以下が特に好ましい。 The resin composition of the layer (L1) may further contain a synthetic rubber (D) as long as the effects of the present invention are not impaired. The synthetic rubber (D) may or may not contain the same structural unit as the structural unit contained in the diene polymer (B-2). The synthetic rubber (D) may be a synthetic rubber produced in the production of the copolymer (B), or a synthetic rubber separately added in the production of the resin composition of the present invention. The content of the synthetic rubber (D) in the resin composition of the layer (L1) is preferably 10% by mass or less. If it exceeds 10% by mass, the resins tend to stick together even in the resin composition having the above-mentioned average particle diameter. 7 mass% or less is more preferable, 3 mass% or less is further more preferable, and, as for the content rate of the said synthetic rubber (D), 0.1 mass% or less is especially preferable from the point which is excellent by molding processability.
 層(L1)の樹脂組成物の総変性量は、より柔軟性に優れる点から、1.0~45mol%が好ましく、5.0~40mol%がより好ましく、8.0~35mol%がさらに好ましい。本明細書における層(L1)の樹脂組成物の総変性量とは、樹脂組成物の全単量体単位に対するグラフトされた単量体単位の含有率を意味する。具体的には、実施例に記載の方法で算出される。なお、樹脂組成物の総変性量を算出する際、係る樹脂組成物はビニルアルコール系重合体(A)および共重合体(B)からなる樹脂組成物を意味し、上記以外の成分(合成ゴム(D)、着色剤、酸化防止剤等)を含有する場合には、係る成分を除いた樹脂組成物について総変性量を算出する。 The total modification amount of the resin composition of the layer (L1) is preferably 1.0 to 45 mol%, more preferably 5.0 to 40 mol%, and still more preferably 8.0 to 35 mol% from the viewpoint of excellent flexibility. . The total modification amount of the resin composition of the layer (L1) in the present specification means the content of grafted monomer units with respect to all the monomer units of the resin composition. Specifically, it is calculated by the method described in the examples. In addition, when calculating the total modification | denaturation amount of a resin composition, the said resin composition means the resin composition which consists of a vinyl alcohol polymer (A) and a copolymer (B), and the component other than the above (synthetic rubber) When the resin composition (D) contains a coloring agent, an antioxidant and the like, the total modification amount of the resin composition excluding the component is calculated.
 本発明の樹脂組成物の結晶融解温度は、140℃以上であることが好ましい。上記結晶融解温度が上記140℃以上であることで、優れた機械的強度および高いバリア性が発現されやすい。一方、前記樹脂組成物の結晶融解温度は、200℃以下であることが好ましい。上記結晶融解温度が上記200℃以下であると成形時に高温とする必要がなく、樹脂の熱劣化を抑制しやすい。 The crystal melting temperature of the resin composition of the present invention is preferably 140 ° C. or more. When the crystal melting temperature is 140 ° C. or more, excellent mechanical strength and high barrier properties tend to be exhibited. On the other hand, the crystal melting temperature of the resin composition is preferably 200 ° C. or less. It is not necessary to make it high temperature at the time of shaping | molding that the said crystal melting temperature is 200 degrees C or less, and it is easy to suppress the thermal deterioration of resin.
 層(L1)の樹脂組成物は、本発明の効果を阻害しない範囲で、上記以外の他成分を含んでいてもよい。上記他成分としては、例えば着色剤、酸化防止剤、光安定剤、加硫剤及び加硫促進剤、無機添加剤(シリカ等)が挙げられる。 The resin composition of the layer (L1) may contain other components other than the above as long as the effects of the present invention are not impaired. Examples of the other components include colorants, antioxidants, light stabilizers, vulcanizing agents, vulcanization accelerators, and inorganic additives (silica and the like).
(層(L1)の樹脂組成物の製造方法)
 層(L1)の樹脂組成物の製造方法は特に限定されず、公知の方法を採用できる。共重合体(B)がグラフト共重合体(B1)である場合について、以下に説明する。例えば、一般に公知である種々のグラフト重合法を用いてビニルアルコール系重合体(B-1)のユニット上にラジカルを発生させジエン系重合体(B-2)のグラフト鎖を導入することでグラフト共重合体(B1)を製造し、得られたグラフト共重合体(B1)とビニルアルコール系重合体(A)を所望の組成で混合する方法が挙げられる。上記グラフト重合法としては、例えば、重合開始剤を用いたラジカル重合を用いてグラフト重合する方法;活性エネルギー線を用いるグラフト重合法(以下、活性エネルギー線グラフト重合法と称する)が挙げられ、活性エネルギー線グラフト重合法が好適に用いられる。特に、活性エネルギー線グラフト重合法を用いる樹脂組成物の製造方法としては、ラジカルを発生させるために、ビニルアルコール系重合体(B-1)に予め活性エネルギー線を照射する工程、および、ビニルアルコール系重合体(B-1)をジエン系重合体(B-2)の原料である単量体中に、又は当該単量体を含む溶液中に分散させてグラフト重合する工程を含む、製造方法が好適である。係る方法を用いて得られる生成物は、未反応のビニルアルコール系重合体(B-1)と、グラフト共重合体(B1)の混合物になり、上記未反応のビニルアルコール系重合体(B-1)がビニルアルコール系重合体(A)に相当する。そのため、本法を用いれば本発明の樹脂組成物をわずか一工程で製造できる。また、係る方法により得られるグラフト共重合体(B1)のジエン系重合体(B-2)からなるユニットの分子量は、均一化されず分子量分布を有する。さらに、上記活性エネルギー線グラフト重合法を用いる樹脂組成物の製造方法によって得られた樹脂組成物に、必要に応じて、ビニルアルコール系重合体(A)を添加してもよい。本発明の樹脂組成物は、本発明の効果を阻害しない範囲で、さら合成ゴム(D)を含んでいてもよい。合成ゴム(D)はジエン系重合体(B-2)の原料である単量体から生成される。一方で、樹脂組成物の製造方法が洗浄工程を含む場合、洗浄工程により、樹脂組成物に含まれる合成ゴム(D)を0.1質量%以下まで除去できる。洗浄工程に用いる溶媒は、例えば、テトラヒドロフラン等が挙げられる。
(Method of producing resin composition of layer (L1))
The manufacturing method of the resin composition of a layer (L1) is not specifically limited, A well-known method is employable. The case where the copolymer (B) is a graft copolymer (B1) will be described below. For example, grafting is carried out by generating radicals on units of the vinyl alcohol polymer (B-1) and introducing graft chains of the diene polymer (B-2) using various generally known graft polymerization methods. The method of manufacturing a copolymer (B1), and mixing the obtained graft copolymer (B1) and a vinyl alcohol-type polymer (A) by a desired composition is mentioned. Examples of the graft polymerization method include a method of graft polymerization using radical polymerization using a polymerization initiator; graft polymerization method using an active energy ray (hereinafter referred to as active energy ray graft polymerization method). An energy ray graft polymerization method is suitably used. In particular, as a method of producing a resin composition using an active energy ray graft polymerization method, a step of irradiating the vinyl alcohol polymer (B-1) with an active energy ray in advance to generate a radical, and a vinyl alcohol A manufacturing method including a step of dispersing the base polymer (B-1) in a monomer which is a raw material of the diene polymer (B-2) or in a solution containing the monomer and graft polymerizing Is preferred. The product obtained by using this method is a mixture of an unreacted vinyl alcohol polymer (B-1) and a graft copolymer (B1), and the above-mentioned unreacted vinyl alcohol polymer (B-) is obtained. 1) corresponds to the vinyl alcohol polymer (A). Therefore, if this method is used, the resin composition of the present invention can be produced in only one step. In addition, the molecular weight of the unit consisting of the diene polymer (B-2) of the graft copolymer (B1) obtained by the method is not homogenized but has a molecular weight distribution. Furthermore, you may add a vinyl alcohol polymer (A) to the resin composition obtained by the manufacturing method of the resin composition using the said active energy ray graft polymerization method as needed. The resin composition of the present invention may further contain a synthetic rubber (D) as long as the effects of the present invention are not impaired. The synthetic rubber (D) is produced from a monomer which is a raw material of the diene polymer (B-2). On the other hand, when the manufacturing method of a resin composition includes a washing process, synthetic rubber (D) contained in a resin composition can be removed to 0.1 mass% or less by a washing process. Examples of the solvent used in the washing step include tetrahydrofuran and the like.
 ビニルアルコール系重合体(B-1)に活性エネルギー線を照射すると、少なくともビニルアルコール単位のメチン基の炭素原子にラジカルが発生することが確認されている。したがって、ジエン系重合体(B-2)の原料である単量体が上記メチン基の炭素原子を開始末端としてラジカル重合することにより、ジエン系重合体(B-2)からなるユニットがビニルアルコール系重合体(B-1)からなるユニットの3級炭素原子に直接結合しているグラフト共重合体(B1)が生成する。また、エチレン-ビニルアルコール共重合体に活性エネルギー線を照射すると、エチレン単位のメチレン基の炭素原子にもラジカルが発生すると考えられる。このため、ジエン系重合体(B-2)の原料である単量体が上記メチレン基の炭素原子を開始末端としてラジカル重合することにより、ジエン系重合体(B-2)からなるユニットがビニルアルコール系重合体(B-1)からなるユニットの2級炭素原子に直接結合しているグラフト共重合体(B1)が生成すると推定される。 It has been confirmed that when the vinyl alcohol polymer (B-1) is irradiated with active energy rays, radicals are generated at least at carbon atoms of methine groups of vinyl alcohol units. Therefore, the monomer which is a raw material of a diene polymer (B-2) radically polymerizes the carbon atom of the said methine group as the start terminal, The unit which consists of a diene polymer (B-2) is vinyl alcohol A graft copolymer (B1) which is directly bonded to the tertiary carbon atom of a unit consisting of the base polymer (B-1) is formed. In addition, when the ethylene-vinyl alcohol copolymer is irradiated with active energy rays, radicals are considered to be generated also at the carbon atom of the methylene group of the ethylene unit. For this reason, the monomer which is a raw material of a diene polymer (B-2) radically polymerizes the carbon atom of the said methylene group as the starting terminal, and the unit which consists of a diene polymer (B-2) is vinyl It is presumed that a graft copolymer (B1) directly bonded to the secondary carbon atom of a unit comprising the alcohol polymer (B-1) is formed.
 ビニルアルコール系重合体(B-1)に照射する活性エネルギー線としては、α線、β線、γ線、電子線、紫外線等の電離放射線;X線、g線、i線、エキシマレーザー等が挙げられ、中でも電離放射線が好ましく、実用的には電子線及びγ線がより好ましく、処理速度が早く、かつ設備も簡便にできる電子線がさらに好ましい。 As the active energy ray for irradiating the vinyl alcohol polymer (B-1), ionizing radiation such as alpha ray, beta ray, gamma ray, electron beam, ultraviolet ray; X ray, g ray, i ray, excimer laser, etc. Among them, ionizing radiation is preferable, and in practical terms electron beam and γ ray are more preferable, and electron beam which can be processed at high processing speed and with simple equipment is more preferable.
 ビニルアルコール系重合体(B-1)に活性エネルギー線を照射する線量としては、5~200kGyが好ましく、10~150kGyがより好ましく、20~100kGyがさらに好ましく、30~90kGyが特に好ましい。照射する線量が5kGy以上の場合、十分な量のジエン系重合体(B-2)からなるユニットを導入しやすくなる。一方、照射する線量が200kGy以下の場合、コスト面で有利になりやすい上、活性エネルギー線の照射によるビニルアルコール系重合体(B-1)の劣化を抑制しやすくなる。 The dose for irradiating the vinyl alcohol polymer (B-1) with active energy rays is preferably 5 to 200 kGy, more preferably 10 to 150 kGy, still more preferably 20 to 100 kGy, and particularly preferably 30 to 90 kGy. When the dose to be irradiated is 5 kGy or more, it becomes easy to introduce a unit comprising a sufficient amount of diene polymer (B-2). On the other hand, when the dose to be irradiated is 200 kGy or less, the cost is likely to be advantageous, and the deterioration of the vinyl alcohol polymer (B-1) due to the irradiation of the active energy ray can be easily suppressed.
 ビニルアルコール系重合体(B-1)の形状は特に限定されないが、粉末状又はペレット形状であることが好ましい。 The shape of the vinyl alcohol polymer (B-1) is not particularly limited, but is preferably in the form of powder or pellets.
 活性エネルギー線が照射されたビニルアルコール系重合体(B-1)を、ジエン系重合体(B-2)の原料である単量体を含む溶液中に分散させてグラフト重合を行う場合、用いられる分散溶媒は、ジエン系重合体(B-2)の原料である単量体を溶解させるが、活性エネルギー線が照射されたビニルアルコール系重合体(B-1)を溶解させないものである必要がある。活性エネルギー線が照射されたビニルアルコール系重合体(B-1)を溶解させる溶媒を使用した場合、グラフト重合の進行とビニルアルコール系重合体(B-1)に発生したラジカルの失活が同時に進行するため、付加する単量体の量を制御することが困難である。前記グラフト重合に用いられる分散溶媒としては、例えば、水;メタノール、エタノール、イソプロパノール等の低級アルコール;テトラヒドロフラン、ジオキサン、ジエチルエーテル等のエーテル;アセトン、メチルエチルケトン等のケトン;ジメチルホルムアミド、ジメチルアセトアミド等のアミド;トルエン、ヘキサン等が挙げられる。なお、水を使用する場合は、必要に応じて単量体を分散させるために界面活性剤等を併用してもよい。また、これらの溶媒は2種以上を組み合わせて使用してもよい。 Used when dispersing and polymerizing the vinyl alcohol polymer (B-1) irradiated with active energy rays in a solution containing a monomer as a raw material of the diene polymer (B-2) The dispersion solvent to be used must be one that dissolves the monomer that is the raw material of the diene polymer (B-2) but does not dissolve the vinyl alcohol polymer (B-1) irradiated with active energy rays. There is. When a solvent for dissolving the vinyl alcohol polymer (B-1) irradiated with active energy rays is used, the progress of the graft polymerization and the deactivation of the radical generated in the vinyl alcohol polymer (B-1) are simultaneously performed. As it progresses, it is difficult to control the amount of added monomer. Examples of the dispersion solvent used for the graft polymerization include water; lower alcohols such as methanol, ethanol and isopropanol; ethers such as tetrahydrofuran, dioxane and diethyl ether; ketones such as acetone and methyl ethyl ketone; and amides such as dimethylformamide and dimethylacetamide Toluene, hexane and the like can be mentioned. In addition, when using water, in order to disperse | distribute a monomer as needed, you may use surfactant etc. together. In addition, these solvents may be used in combination of two or more.
 グラフト重合を行う工程において、活性エネルギー線が照射されたビニルアルコール系重合体(B-1)が膨潤することで、ジエン系重合体(B-2)の原料である単量体が前記ビニルアルコール系重合体(B-1)の内部まで浸透し、ジエン系重合体(B-2)からなるユニットを多量に導入できる。したがって、使用する分散溶媒は活性エネルギー線が照射された前記ビニルアルコール系重合体との親和性を考慮して選択することが好ましい。上述の分散溶媒の中でも、メタノール、エタノール、イソプロパノール等の低級アルコールは活性エネルギー線が照射されたビニルアルコール系重合体(B-1)との親和性が高いため、本発明の製造方法において好適に用いられる。また、活性エネルギー線が照射されたビニルアルコール系重合体(B-1)が溶解しない範囲で、上記分散溶媒の混合物を液体媒体として使用することも、上記と同様の理由で効果的である。一方、液体媒体とビニルアルコール系重合体の親和性が過度に高い場合、反応後の樹脂が著しく膨潤し、ろ過による単離が困難になる上、ジエン系重合体(B-2)の原料である単量体が単独重合しやすくなる。したがって、分散溶媒は、使用するビニルアルコール系重合体との親和性、後述する反応温度における膨潤性を踏まえた上で適切に選択することが好ましい。 In the step of carrying out the graft polymerization, the vinyl alcohol polymer (B-1) irradiated with active energy rays swells, whereby the monomer which is a raw material of the diene polymer (B-2) is the vinyl alcohol. It penetrates to the inside of the base polymer (B-1), and a large amount of units consisting of the diene polymer (B-2) can be introduced. Therefore, the dispersion solvent to be used is preferably selected in consideration of the affinity to the vinyl alcohol polymer irradiated with the active energy ray. Among the above-mentioned dispersion solvents, lower alcohols such as methanol, ethanol and isopropanol are preferably used in the production method of the present invention because they have high affinity with the vinyl alcohol polymer (B-1) irradiated with active energy rays. Used. It is also effective to use a mixture of the above-mentioned dispersion solvents as a liquid medium within the range in which the vinyl alcohol polymer (B-1) irradiated with active energy rays is not dissolved, for the same reason as described above. On the other hand, if the affinity between the liquid medium and the vinyl alcohol polymer is excessively high, the resin after the reaction swells significantly, and isolation by filtration becomes difficult, and the raw material of the diene polymer (B-2) Certain monomers are likely to be homopolymerized. Therefore, it is preferable to appropriately select the dispersion solvent in consideration of the affinity to the vinyl alcohol polymer to be used and the swelling property at the reaction temperature described later.
 グラフト重合におけるジエン系重合体(B-2)の原料である単量体の使用量は、単量体の反応性に合わせて適宜調整される。上記反応性は前述の通り、ビニルアルコール系重合体への単量体の浸透しやすさ等に依存して変化する。したがって、上記単量体の適切な使用量は、分散溶媒の種類もしくは量、又はビニルアルコール系重合体(B-1)の重合度もしくはけん化度等に依存して変化するが、活性エネルギー線が照射されたビニルアルコール系重合体(B-1)100質量部に対して1~1000質量部が好ましい。ジエン系重合体(B-2)の原料である単量体の量が上記範囲内であると、グラフト共重合体(B1)のビニルアルコール系重合体(B-1)からなるユニット及びジエン系重合体(B-2)からなるユニットの比率を前記範囲に制御しやすい。上記単量体の使用量は2~900質量部がより好ましく、5~800質量部がさらに好ましい。 The amount of the monomer used as the raw material of the diene polymer (B-2) in graft polymerization is appropriately adjusted in accordance with the reactivity of the monomer. As described above, the reactivity changes depending on the penetrability of the monomer to the vinyl alcohol polymer and the like. Therefore, the appropriate amount of the above-mentioned monomer varies depending on the type or amount of the dispersion solvent, the degree of polymerization or the degree of saponification of the vinyl alcohol polymer (B-1), etc. The amount is preferably 1 to 1000 parts by mass with respect to 100 parts by mass of the irradiated vinyl alcohol polymer (B-1). The unit and diene system which consist of a vinyl alcohol polymer (B-1) of a graft copolymer (B1) as the quantity of the monomer which is a raw material of a diene polymer (B-2) is in the said range It is easy to control the ratio of units composed of the polymer (B-2) within the above range. The amount of the monomer used is more preferably 2 to 900 parts by mass, and further preferably 5 to 800 parts by mass.
 グラフト重合における液体媒体の使用量は、活性エネルギー線が照射されたビニルアルコール系重合体(B-1)100質量部に対して100~4000質量部が好ましく、200~2000質量部がより好ましく、300~1500質量部がさらに好ましい。 The amount of liquid medium used in graft polymerization is preferably 100 to 4000 parts by mass, and more preferably 200 to 2000 parts by mass with respect to 100 parts by mass of the vinyl alcohol polymer (B-1) irradiated with active energy rays. 300 to 1500 parts by mass is more preferable.
 グラフト重合における反応温度は、好ましくは20℃~150℃であり、より好ましくは30℃~120℃であり、さらに好ましくは40℃~100℃である。反応温度が20℃以上であるとグラフト重合反応が進行しやすい。反応温度が150℃以下であるとビニルアルコール系重合体(B-1)の熱溶融が起こりにくい。なお、ジエン系重合体(B-2)の原料である単量体の沸点あるいは液体媒体の沸点が上記反応温度よりも低い場合は、オートクレーブ等の耐圧容器内で加圧下反応させることができる。 The reaction temperature in the graft polymerization is preferably 20 ° C. to 150 ° C., more preferably 30 ° C. to 120 ° C., still more preferably 40 ° C. to 100 ° C. When the reaction temperature is 20 ° C. or more, the graft polymerization reaction easily proceeds. When the reaction temperature is 150 ° C. or less, thermal melting of the vinyl alcohol polymer (B-1) hardly occurs. When the boiling point of the monomer that is the raw material of the diene polymer (B-2) or the boiling point of the liquid medium is lower than the above reaction temperature, the reaction can be performed under pressure in a pressure container such as an autoclave.
 グラフト重合における反応時間は、好ましくは10時間以内であり、より好ましくは8時間以内であり、さらに好ましくは6時間以内であり、特に好ましくは5時間以内である。上記反応時間が10時間以下であると、ジエン系重合体(B-2)の原料である単量体の単独重合を抑制しやすい。 The reaction time in the graft polymerization is preferably within 10 hours, more preferably within 8 hours, still more preferably within 6 hours, particularly preferably within 5 hours. It is easy to suppress the homopolymerization of the monomer which is a raw material of a diene polymer (B-2) as the said reaction time is 10 hours or less.
 本発明の積層体において、層(L1)は少なくとも1層有ればよく、2層以上有ってもよい。 In the laminate of the present invention, at least one layer (L1) may be provided, and two or more layers may be provided.
 本発明の積層体における層(L1)の厚さは特に限定されないが、例えば0.1~500μmであり、1~250μmであってもよく、2~100μmであってもよい。 The thickness of the layer (L1) in the laminate of the present invention is not particularly limited, and is, for example, 0.1 to 500 μm, and may be 1 to 250 μm or 2 to 100 μm.
 (層(L2))
 ある好適な実施形態では、本発明の積層体は、さらに熱可塑性樹脂(C)を含む層(L2)を有する。熱可塑性樹脂(C)としては、ポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、及びゴム等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。ポリオレフィンとしては、高密度ポリエチレン(HDPE)、中密度ポリエチレン、低密度ポリエチレン(LDPE)、直鎖状短鎖分岐ポリエチレン(LLDPE)、超高分子量ポリエチレン、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ポリブテン等の単独重合体、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の共重合体等が挙げられる。ポリスチレンとしては、アタクチックポリスチレン、シンジオタクチックポリスチレン、アイソタクチックポリスチレン等が挙げられる。ポリエステルとしては、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)等が挙げられる。ポリアミドとしては、ナイロン-6、ナイロン-66、ナイロン-12、ナイロン4-6、共重合ナイロン等が挙げられる。ゴムとしては、天然ゴム、スチレン・ブタジエンゴム(SBR)、ポリブタジエンゴム等のゴム;ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー等の熱可塑性エラストマー等が挙げられる。これらは、市販品を使用できる。熱可塑性樹脂(C)は、延伸処理を施したものであってもよい。例えば、熱可塑性樹脂(C)としては、未延伸ポリプロピレンを使用できる。
(Layer (L2))
In a preferred embodiment, the laminate of the present invention further comprises a layer (L2) containing a thermoplastic resin (C). Examples of the thermoplastic resin (C) include polyolefin, polystyrene, polyester, polyamide, and rubber. These may be used singly or in combination of two or more. As polyolefin, high density polyethylene (HDPE), medium density polyethylene, low density polyethylene (LDPE), linear short chain branched polyethylene (LLDPE), ultra high molecular weight polyethylene, isotactic polypropylene, syndiotactic polypropylene, polybutene, etc. And homopolymers of polypropylene, block copolymers of polypropylene (for example, block copolymers of propylene and ethylene), copolymers of random copolymers of polypropylene (for example, random copolymers of propylene and ethylene), and the like. Examples of polystyrene include atactic polystyrene, syndiotactic polystyrene, isotactic polystyrene and the like. Examples of polyester include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN) and the like. Examples of the polyamide include nylon-6, nylon-66, nylon-12, nylon 4-6, copolymer nylon and the like. As rubbers, rubbers such as natural rubber, styrene butadiene rubber (SBR), polybutadiene rubber, etc .; polyolefin thermoplastic elastomer, polyurethane thermoplastic elastomer, polyester thermoplastic elastomer, polyamide thermoplastic elastomer, polystyrene thermoplastic elastomer Thermoplastic elastomers and the like. A commercial item can be used for these. The thermoplastic resin (C) may be subjected to a stretching treatment. For example, unstretched polypropylene can be used as the thermoplastic resin (C).
 本発明の積層体における層(L2)の厚さは特に限定されないが、例えば0.1~500μmであってよく、1~250μmであってもよく、2~150μmであってもよい。 The thickness of the layer (L2) in the laminate of the present invention is not particularly limited, but may be, for example, 0.1 to 500 μm, 1 to 250 μm, or 2 to 150 μm.
 (層(L3))
 ある好適な実施形態では、本発明の積層体は、ビニルアルコール系重合体(A)を含む層(L3)を有する。層(L3)に含まれるビニルアルコール系重合体(A)は、層(L1)で述べたとおりである。また、層(L3)は、ビニルアルコール系重合体(A)を含んでいればよく、共重合体(B)を含んでいてもよく、含まなくてもよい。他の好適な実施形態では、層(L3)は、共重合体(B)を含まず、ビニルアルコール系重合体(A)を含む。本発明の積層体における層(L3)の厚さは特に限定されないが、例えば0.1~1000μmであってよく、1~800μmであってもよく、2~700μmであってもよい。
(Layer (L3))
In a preferred embodiment, the laminate of the present invention has a layer (L3) containing a vinyl alcohol polymer (A). The vinyl alcohol polymer (A) contained in the layer (L3) is as described for the layer (L1). The layer (L3) may or may not contain the copolymer (B) as long as it contains the vinyl alcohol polymer (A). In another preferred embodiment, the layer (L3) does not contain the copolymer (B) but contains the vinyl alcohol polymer (A). The thickness of the layer (L3) in the laminate of the present invention is not particularly limited, but may be, for example, 0.1 to 1000 μm, 1 to 800 μm, or 2 to 700 μm.
 例えば、本発明の積層体は、層(L1)/層(L3)の層構成を有していてもよい。他の好適な実施形態では、層(L2)/層(L1)/層(L3)の層構成を有していてもよい。さらに、他の好適な実施形態では、層(L2)/層(L1)/層(L3)/層(L1)/層(L2)の層構成を有していてもよい。層(L2)は、層(L1)が層(L2)と層(L3)との両方に対して相溶性に優れ、異種ポリマーとの接着性に優れ、高湿下でのバリア性及び柔軟性に優れることから、上記したいずれかの好適な実施形態で示されるように、層(L1)が、層(L2)と層(L3)の間に配置されることが好ましい。他の実施形態としては、層(L2)/層(L3)/層(L1)/層(L3)/層(L1)/層(L3)/層(L2)等が挙げられる。本発明の積層体のいずれの実施形態においても、例えば、層(L2)の熱可塑性樹脂(C)として、ポリプロピレンフィルム、PETフィルム等を用い、層(L3)にエチレン-ビニルアルコール共重合体等を用いることによって、積層体の寸法変化率を低減できる。例えば、寸法変化率が0.5%以下の積層体を得ることができる。 For example, the laminate of the present invention may have a layer configuration of layer (L1) / layer (L3). Another preferred embodiment may have a layer configuration of layer (L2) / layer (L1) / layer (L3). Furthermore, another preferred embodiment may have a layer configuration of layer (L2) / layer (L1) / layer (L3) / layer (L1) / layer (L2). In the layer (L2), the layer (L1) has excellent compatibility with both the layer (L2) and the layer (L3), has excellent adhesion to different polymers, and has barrier properties and flexibility under high humidity. It is preferable that the layer (L1) be disposed between the layer (L2) and the layer (L3) as described in any of the preferred embodiments described above. Other embodiments include layer (L2) / layer (L3) / layer (L1) / layer (L3) / layer (L1) / layer (L3) / layer (L2) and the like. In any embodiment of the laminate of the present invention, for example, a polypropylene film, a PET film or the like is used as the thermoplastic resin (C) of the layer (L2), and an ethylene-vinyl alcohol copolymer or the like is used in the layer (L3) Can reduce the dimensional change rate of the laminate. For example, a laminate having a dimensional change of 0.5% or less can be obtained.
 本発明の積層体の層の数は、特に限定されないが、6層以下であってもよく、5層以下が好ましい。層(L1)を少なくとも1層有することによって、異種ポリマーとの接着性に優れ、高湿下でのバリア性及び柔軟性に優れ、屈曲にさらされた場合にもバリア性を維持できるためである。6層以下の場合、製造工程が容易であり、WO2012/042679号に記載されるように、非常に成形難易度が高いという問題が生じない。一方で、ある実施形態としては、異種ポリマーとの接着性に優れ、高湿下でのバリア性及び柔軟性に優れ、屈曲にさらされた場合にもバリア性を維持できる点から、層の数は、7層以上であってもよく、10層、35層、65層、130層程度であってもよい。他の好適な実施形態の積層体は、7層である。 The number of layers in the laminate of the present invention is not particularly limited, but may be 6 or less, preferably 5 or less. By having at least one layer (L1), it has excellent adhesion to different polymers, excellent barrier properties and flexibility under high humidity, and can maintain barrier properties even when exposed to bending. . When the number of layers is 6 or less, the manufacturing process is easy, and as described in WO 2012/042679, the problem of extremely high molding difficulty does not occur. On the other hand, in one embodiment, the number of layers is excellent in adhesion to different polymers, excellent in barrier property and flexibility under high humidity, and capable of maintaining the barrier property even when exposed to bending. The number of layers may be seven or more, or ten, thirty-five, sixty-five, or about 130 layers. Another preferred embodiment laminate is seven layers.
 本発明の積層体において、層(L1)、層(L2)、層(L3)の各層は、金属塩を含有していてもよい。金属塩を含めることでさらに層間の接着性を高めることもできる。金属塩としては、特に限定されないが、アルカリ金属塩、アルカリ土類金属塩又は周期律表の第4周期に記載される遷移金属塩が層間接着性をより高める点で好ましい。中でも、アルカリ金属塩又はアルカリ土類金属塩、マグネシウム塩等がより好ましく、特にアルカリ金属塩が好ましい。アルカリ土類金属塩としては特に限定されないが、例えばカルシウム、バリウム等の酢酸塩又はリン酸塩が挙げられる。また、マグネシウム塩としては、マグネシウムの酢酸塩又はリン酸塩が挙げられる。中でも、マグネシウム又はカルシウムの酢酸塩又はリン酸塩が、入手容易である点から特に好ましい。かかるアルカリ土類金属塩を含有させると、溶融成形時における熱劣化した樹脂の成形機のダイ付着量を低減できるという利点もある。周期律表の第4周期に記載される遷移金属の金属塩としては、特に限定されないが、例えばチタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等のカルボン酸塩、リン酸塩、アセチルアセトナート塩等が挙げられる。 In the laminate of the present invention, each layer of the layer (L1), the layer (L2) and the layer (L3) may contain a metal salt. Adhesion between layers can be further enhanced by the inclusion of metal salts. The metal salt is not particularly limited, but is preferably an alkali metal salt, an alkaline earth metal salt or a transition metal salt described in the fourth period of the periodic table in that it further improves the interlayer adhesion. Among them, alkali metal salts, alkaline earth metal salts, magnesium salts and the like are more preferable, and alkali metal salts are particularly preferable. The alkaline earth metal salt is not particularly limited, and examples thereof include acetates or phosphates such as calcium and barium. Moreover, as magnesium salt, acetate or phosphate of magnesium is mentioned. Among them, magnesium or calcium acetate or phosphate is particularly preferable in view of easy availability. When such an alkaline earth metal salt is contained, there is also an advantage that the die attachment amount of a heat-deteriorated resin at the time of melt molding can be reduced. The metal salt of the transition metal described in the fourth period of the periodic table is not particularly limited, and, for example, carboxylates such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, etc., phosphoric acid Salts, acetylacetonate salts and the like.
 本発明の積層体全体を基準とする金属元素換算の含有量は、1質量ppm以上が好ましく、5質量ppm以上がより好ましく、10質量ppm以上がさらに好ましい。一方、金属塩の含有量は10,000質量ppm以下が好ましく、5,000質量ppm以下がより好ましく、1,000質量ppm以下がさらに好ましい。金属塩の含有量が上記下限より小さいと、層間接着性が低くなり、積層体の耐久性が低くなるおそれがある。逆に、金属塩の含有量が上記上限を超えると、層の着色が激しくなり、積層体の外観が悪化するおそれがある。各層の金属塩の含有量は、隣接する他層に対する接着性の点から5質量ppm以上が好ましく、10質量ppm以上がより好ましく、20質量ppm以上がさらに好ましい。一方、金属塩の含有量は、積層体の着色による外観不良の防止の点から5,000質量ppm以下が好ましく、1,000質量ppm以下がより好ましく、500質量ppm以下がさらに好ましい。 1 mass ppm or more is preferable, as for content as metal element conversion on the basis of the whole laminated body of this invention, 5 mass ppm or more is more preferable, and 10 mass ppm or more is more preferable. On the other hand, the content of the metal salt is preferably 10,000 mass ppm or less, more preferably 5,000 mass ppm or less, and still more preferably 1,000 mass ppm or less. If the content of the metal salt is smaller than the above lower limit, the interlayer adhesion may be low, and the durability of the laminate may be low. On the other hand, when the content of the metal salt exceeds the above upper limit, the coloration of the layer becomes intense, and the appearance of the laminate may be deteriorated. The content of the metal salt in each layer is preferably 5 mass ppm or more, more preferably 10 mass ppm or more, and still more preferably 20 mass ppm or more from the viewpoint of adhesion to other adjacent layers. On the other hand, the content of the metal salt is preferably 5,000 mass ppm or less, more preferably 1,000 mass ppm or less, and still more preferably 500 mass ppm or less from the viewpoint of preventing appearance defects due to coloring of the laminate.
 本発明の積層体においては、層(L2)及び/又は層(L3)は、ラジカル架橋剤を含有していてもよい。ラジカル架橋剤を含有する層(L2)及び/又は層(L3)を有する積層体に活性エネルギー線を照射することで、この活性エネルギー線照射時における架橋効果が促進され、積層体の層間接着性がさらに向上し、高湿下でのバリア性がさらに高まる。また、活性エネルギー線の照射量を、ラジカル架橋剤が存在しない場合に比べて少なくすることが可能となる。ラジカル架橋剤としては、特に限定されず、例えば、トリメチロールプロパントリメタクリレート、ジエチレングリコールジアクリレート、ネオフェニレングリコールジアクリレート等の多価アルコールのポリ(メタ)アクリレート、トリアリルイソシアヌレート、トリアリルシアヌレート等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。活性エネルギー線照射前における、ラジカル架橋剤を含有する層(L2)及び/又は層(L3)に対するラジカル架橋剤の含有率としては、0.01質量%以上10質量%以下が好ましく、0.05質量%以上9質量%以下がさらに好ましく、0.1質量%以上8質量%以下が架橋効果と経済性のバランスの観点から好ましい。 In the laminate of the present invention, the layer (L2) and / or the layer (L3) may contain a radical crosslinking agent. By irradiating the active energy ray to the laminate having the layer (L2) and / or the layer (L3) containing the radical crosslinking agent, the crosslinking effect at the time of this active energy ray irradiation is promoted, and the interlayer adhesion of the laminate Is further improved, and the barrier property under high humidity is further enhanced. In addition, it is possible to reduce the irradiation amount of active energy rays as compared with the case where no radical crosslinking agent is present. The radical crosslinking agent is not particularly limited, and examples thereof include poly (meth) acrylates of polyhydric alcohols such as trimethylolpropane trimethacrylate, diethylene glycol diacrylate and neophenylene glycol diacrylate, triallyl isocyanurate, triallyl cyanurate and the like. Can be mentioned. One of these may be used alone, or two or more of these may be used in combination. The content of the radical crosslinking agent in the layer (L2) and / or the layer (L3) containing the radical crosslinking agent before irradiation with active energy rays is preferably 0.01% by mass or more and 10% by mass or less, 0.05 From the viewpoint of the balance between the crosslinking effect and the economy, 0.1% by mass to 8% by mass is more preferable.
 本発明のある実施形態としては、ビニルアルコール系重合体(A)と、ビニルアルコール系重合体(B-1)からなるユニット及びジエン系重合体(B-2)からなるユニットから構成される共重合体(B)とを含む樹脂組成物を含む層(L1)を形成する工程を含む、前記したいずれかの積層体の製造方法が挙げられる。 In one embodiment of the present invention, a co-polymer comprising a unit composed of a vinyl alcohol polymer (A), a vinyl alcohol polymer (B-1) and a unit composed of a diene polymer (B-2) The manufacturing method of any above-mentioned laminated body including the process of forming the layer (L1) containing the resin composition containing a polymer (B) is mentioned.
 層(L1)を形成する工程では、上記した樹脂組成物の製造方法で得られた樹脂組成物を層状に形成する。樹脂組成物を層状に形成する方法は、特に限定されず、公知の成形方法を使用でき、プレス成形等であってもよい。成形時に、熱処理を加えてもよい。熱処理の温度は特に限定されず、60~250℃であってもよく、80~220℃であってもよい。 At the process of forming a layer (L1), the resin composition obtained by the manufacturing method of above-described resin composition is formed in layered form. The method for forming the resin composition into a layer is not particularly limited, and a known molding method can be used, and it may be press molding or the like. At the time of molding, heat treatment may be added. The temperature of the heat treatment is not particularly limited, and may be 60 to 250 ° C., or 80 to 220 ° C.
 また、本発明の他の実施形態としては、積層体が、熱可塑性樹脂(C)を含む層(L2)及び/又はビニルアルコール系重合体(A)を含む層(L3)を有する場合、層(L2)に用いる熱可塑性樹脂(C)及び/又は層(L3)に用いるビニルアルコール系重合体(A)をそれぞれ、層状に形成し、各層を積層して、さらに成形する(例えば、プレス成形)ことによって、多層構造を有する積層体を製造できる。各層を層状に形成する際に、熱処理を加えてもよい。熱処理の温度は、層(L1)を形成する工程と同様である。 Moreover, as another embodiment of this invention, when a laminated body has a layer (L2) containing a thermoplastic resin (C) and / or a layer (L3) containing a vinyl alcohol polymer (A), a layer Each of the thermoplastic resin (C) used for (L2) and / or the vinyl alcohol polymer (A) used for the layer (L3) is formed in a layer, and each layer is laminated and further molded (for example, press molding ) To produce a laminate having a multilayer structure. A heat treatment may be added when forming each layer in layers. The temperature of the heat treatment is the same as the step of forming the layer (L1).
 本発明の他の好適な実施形態としては、さらに、層(L1)を形成する工程の後に、積層体に活性エネルギー線を照射する工程を含む、積層体の製造方法が挙げられる。活性エネルギー線を照射することで、層間の接着性をより高めることができ、高湿下でのバリア性に優れ、屈曲にさらされた場合にもバリア性を維持できる。活性エネルギー線は、ビニルアルコール系重合体(B-1)に照射する活性エネルギー線として述べたものを使用できる。 Another preferred embodiment of the present invention further includes a method for producing a laminate, which comprises the step of irradiating the laminate with active energy rays after the step of forming the layer (L1). By irradiating the active energy ray, the adhesion between the layers can be further enhanced, the barrier property under high humidity can be excellent, and the barrier property can be maintained even when exposed to bending. As the active energy ray, those described as the active energy ray for irradiating the vinyl alcohol polymer (B-1) can be used.
 本発明の他の好適な実施形態としては、活性エネルギー線が電子線である、積層体の製造方法が挙げられる。 Another preferred embodiment of the present invention is a method for producing a laminate, wherein the active energy ray is an electron beam.
 本発明の積層体は上記したいずれかの製造方法で製造できる。 The laminate of the present invention can be produced by any of the production methods described above.
 本発明の積層体は、異種ポリマーとの接着性に優れる層を有し、当該層と他の層間の剥離が生じにくく、高湿下でのバリア性及び柔軟性に優れ、屈曲にさらされた場合にもバリア性を維持できる特性から、縦製袋充填シール袋、真空包装袋、パウチ、ラミネートチューブ容器、輸液バッグ、紙容器、ストリップテープ、容器用蓋材又はインモールドラベル容器等の医療用、食品用又は日用品用の包装材;農業用のカバーフィルムや土壌シート等の産業用バリアフィルム;タイヤのインナーライナー等として有用である。 The laminate of the present invention has a layer excellent in adhesion to different polymers, is less likely to peel between the layer and other layers, is excellent in barrier property and flexibility under high humidity, and is exposed to bending. In the case where the barrier property can be maintained, medical applications such as vertical form-fill-seal bags, vacuum packaging bags, pouches, laminated tube containers, infusion bags, paper containers, strip tapes, container lids or in-mold label containers etc. Packaging materials for food or household use; industrial barrier films such as agricultural cover films and soil sheets; useful as tire inner liners and the like.
 本発明は、本発明の効果を奏する限り、本発明の技術的思想の範囲内において、上記の構成を種々組み合わせた実施形態を含む。 The present invention includes embodiments in which the above-described configurations are variously combined within the scope of the technical idea of the present invention as long as the effects of the present invention are exhibited.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されず、本発明の技術的思想の範囲内で多くの変形が当分野において通常の知識を有する者により可能である。なお、実施例、比較例中の「%」及び「部」は特に断りのない限り、それぞれ「質量%」及び「質量部」を表す。 EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited by these examples, and many modifications are within the scope of the technical idea of the present invention. Is possible by In addition, "%" and "part" in an Example and a comparative example respectively represent "mass%" and "mass part" unless there is particular notice.
[樹脂組成物のビニルアルコール系重合体(A)とグラフト共重合体(B1)の合計質量に対するグラフト共重合体(B1)の含有率(質量%)の算出]
 後述するグラフト重合反応で得られた樹脂組成物を抽出溶媒(ポリビニルアルコールの場合:水、エチレン-ビニルアルコール共重合体の場合:水/イソプロパノール=4/6(質量比)混合)に添加し、80℃で3時間抽出処理を行った。抽出液を濃縮し、得られた抽出物、及び抽出されなかった残渣の質量をそれぞれ測定した。係る抽出物の質量が上記樹脂組成物に含まれるビニルアルコール系重合体(A)の質量(Waとする)であり、抽出されなかった残渣の質量が上記樹脂組成物に含まれるグラフト共重合体(B1)の質量(Wbとする)である。これらの質量から(A)/(B1)の質量比、ビニルアルコール系重合体(A)とグラフト共重合体(B1)の合計100質量部に対するグラフト共重合体(B1)の含有率(質量%)を算出した。なお、当該処理における抽出物がグラフト共重合体(B1)を含まず、ビニルアルコール系重合体(A)のみであることは、抽出物のH-NMR分析から確認した。
[Calculation of content (mass%) of graft copolymer (B1) based on total mass of vinyl alcohol polymer (A) and graft copolymer (B1) of resin composition]
The resin composition obtained by the graft polymerization reaction described later is added to an extraction solvent (in the case of polyvinyl alcohol: water, in the case of ethylene-vinyl alcohol copolymer: water / isopropanol = 4/6 (mass ratio mixture), Extraction was carried out at 80 ° C. for 3 hours. The extract was concentrated, and the mass of the obtained extract and the residue not extracted were respectively measured. The weight of the extract concerned is the weight (Wa) of the vinyl alcohol polymer (A) contained in the above resin composition, and the weight of the residue not extracted is the graft copolymer contained in the above resin composition It is mass (it is set as Wb) of (B1). The content ratio (% by mass) of the graft copolymer (B1) to the mass ratio of (A) / (B1) to the total of 100 parts by mass of the vinyl alcohol polymer (A) and the graft copolymer (B1) from these masses ) Was calculated. In addition, it was confirmed from 1 H-NMR analysis of the extract that the extract in the treatment does not contain the graft copolymer (B1) and is only the vinyl alcohol polymer (A).
[ビニルアルコール系重合体(B-1)からなるユニットとジエン系重合体(B-2)からなるユニットの合計質量に対するジエン系重合体(B-2)からなるユニットの含有率の算出]
 各実施例で得られた樹脂組成物の質量を「Wab」とし、Wabと、反応に使用したビニルアルコール系重合体(B-1)の質量の差を「Wq」とする。上述の方法で算出された樹脂組成物中のビニルアルコール系重合体(A)の質量を「Wa」とし、Wab-Waをグラフト共重合体(B1)の質量「Wb」とした。そして、Wb-Wqをビニルアルコール系重合体(B-1)からなるユニットの質量とし、Wqをジエン系重合体(B-2)からなるユニットの質量として、ビニルアルコール系重合体(B-1)からなるユニットとジエン系重合体(B-2)からなるユニットの合計値に対するジエン系重合体(B-2)からなるユニットの含有率を算出した。
[Calculation of the content of units composed of a diene polymer (B-2) relative to the total mass of units composed of a vinyl alcohol polymer (B-1) and units composed of a diene polymer (B-2)]
The mass of the resin composition obtained in each example is referred to as “Wab”, and the difference between the mass of Wab and the mass of the vinyl alcohol polymer (B-1) used for the reaction is referred to as “Wq”. The mass of the vinyl alcohol-based polymer (A) in the resin composition calculated by the above-described method is “Wa”, and the mass of Wab-Wa is the mass “Wb” of the graft copolymer (B1). Then, Wb-Wq is the mass of the unit consisting of the vinyl alcohol polymer (B-1), and Wq is the mass of the unit consisting of the diene polymer (B-2), the vinyl alcohol polymer (B-1) The content of units comprising the diene polymer (B-2) relative to the total value of units comprising the unit) and units comprising the diene polymer (B-2) was calculated.
[総変性量の算出]
[ビニルアルコール系重合体(A)がポリビニルアルコールの場合]
 原料のポリビニルアルコールの酢酸ビニル単位をa質量%、ビニルアルコール単位をb質量%とする。以下の計算式に従い、総変性量(樹脂組成物の全単量体単位に対する、グラフトされた単量体の含有量)を算出した。
 変性量[mol%]=Z/(X+Y+Z)×100
上記式中、X、Y、Zは以下の数式で算出される値である。
 X={(原料のポリビニルアルコール(質量部))×(a/100)}/86
 Y={(原料のポリビニルアルコール(質量部))×(b/100)}/44
 Z={(反応後の樹脂組成物(質量部))-(原料のポリビニルアルコール(質量部))}/(グラフトする単量体の分子量)
[ビニルアルコール系重合体(A)がエチレン-ビニルアルコール共重合体の場合]
 原料のエチレン-ビニルアルコール共重合体のエチレン単位をa質量%、ビニルアルコール単位をb質量%とする。以下の計算式に従い、総変性量(樹脂組成物の全単量体単位に対する、グラフトする単量体の含有量)を算出した。
 変性量[mol%]=Z/(X+Y+Z)×100
上記式中、X、Y、Zは以下の数式で算出される値である。
 X={(原料のエチレン-ビニルアルコール共重合体(質量部))×(a/100)}/28
 Y={(原料のエチレン-ビニルアルコール共重合体(質量部))×(b/100)}/44
 Z={(反応後の樹脂組成物(質量部))-(原料のエチレン-ビニルアルコール共重合体(質量部))}/(グラフトする単量体の分子量)
[Calculation of total denaturation amount]
[When the vinyl alcohol polymer (A) is polyvinyl alcohol]
The vinyl acetate unit of the raw material polyvinyl alcohol is 1 % by mass, and the vinyl alcohol unit is 1 % by mass. The total amount of modification (the content of grafted monomers relative to all monomer units of the resin composition) was calculated according to the following formula.
Modification amount [mol%] = Z 1 / (X 1 + Y 1 + Z 1) × 100
In the above equation, X 1 , Y 1 and Z 1 are values calculated by the following equation.
X 1 = {(raw material of polyvinyl alcohol (parts by weight)) × (a 1/100 )} / 86
Y 1 = {(raw material of polyvinyl alcohol (parts by weight)) × (b 1/100 )} / 44
Z 1 = {(Resin composition after reaction (parts by mass))-(Polyvinyl alcohol as a raw material (parts by mass)) / (molecular weight of grafting monomer)
[When the vinyl alcohol polymer (A) is ethylene-vinyl alcohol copolymer]
The ethylene unit of the raw material ethylene-vinyl alcohol copolymer is 2 % by mass, and the vinyl alcohol unit is 2 % by mass. The total amount of modification (the content of monomers to be grafted relative to all monomer units of the resin composition) was calculated according to the following formula.
Modification amount [mol%] = Z 2 / (X 2 + Y 2 + Z 2 ) × 100
In the above equation, X 2 , Y 2 and Z 2 are values calculated by the following equation.
X 2 = {(a raw material for an ethylene - vinyl alcohol copolymer (parts by weight)) × (a 2/100 )} / 28
Y 2 = {(a raw material for an ethylene - vinyl alcohol copolymer (parts by weight)) × (b 2/100 )} / 44
Z 2 = {(Resin composition after reaction (mass part))-(Ethylene-vinyl alcohol copolymer (mass part) of raw material)} / (Molecular weight of grafting monomer)
[グラフト共重合体(B1)に含まれるビニルアルコール単位の含有率の算出]
 前述のWb(グラフト共重合体(B1)の質量)、Wb-Wq(グラフト共重合体(B1)におけるビニルアルコール系重合体からなるユニットの質量)、b(ポリビニルアルコールにおけるビニルアルコール単位の質量%)、d(エチレン-ビニルアルコール共重合体におけるビニルアルコール単位の質量%)を用いて、以下の式に従い算出した。
(ビニルアルコール系重合体(B-1)がポリビニルアルコールの場合)
 ビニルアルコール単位の含有率[%]={(Wb-Wq)×b/100}/Wb×100
(ビニルアルコール系重合体(B-1)がエチレン-ビニルアルコール共重合体の場合)
 ビニルアルコール単位の含有率[%]={(Wb-Wq)×d/100}/Wb×100
[Calculation of content of vinyl alcohol unit contained in graft copolymer (B1)]
Wb (mass of graft copolymer (B1)), Wb-Wq (mass of unit consisting of vinyl alcohol polymer in graft copolymer (B1)), b (mass% of vinyl alcohol unit in polyvinyl alcohol) And d (% by mass of vinyl alcohol units in ethylene-vinyl alcohol copolymer) were calculated according to the following formula.
(When the vinyl alcohol polymer (B-1) is polyvinyl alcohol)
Content rate of vinyl alcohol unit [%] = {(Wb−Wq) × b / 100} / Wb × 100
(When the vinyl alcohol polymer (B-1) is ethylene-vinyl alcohol copolymer)
Content rate of vinyl alcohol unit [%] = {(Wb−Wq) × d / 100} / Wb × 100
[耐屈曲性試験]
 各実施例及び比較例の積層体を50mm×100mmの短冊状に裁断し、短辺を指でつまんで90度に折り曲げて戻す操作を10回繰り返した。当該操作前後のバリア性を、後述する酸素透過度(OTR)の評価に従い行った。
[Flexibility test]
The laminate of each example and comparative example was cut into a 50 mm × 100 mm strip, and the operation of pinching the short side with a finger and bending it back to 90 ° was repeated 10 times. The barrier properties before and after the operation were evaluated according to the evaluation of oxygen permeability (OTR) described later.
[OTR評価]
 各実施例及び比較例の積層体を20℃、85%RHの条件下で3日間調湿後、同条件下で酸素透過速度の測定(Mocon社製「OX-TORAN MODEL 2/21」)を行った。
  温度:20℃
  酸素供給側の湿度:85%RH
  キャリアガス側の湿度:85%RH
  酸素圧:1.0atm
  キャリアガス圧力:1.0atm
[OTR evaluation]
After conditioning the laminates of each example and comparative example for 3 days under conditions of 20 ° C. and 85% RH, measurement of oxygen transmission rate under the same conditions (“OX-TORAN MODEL 2/21” manufactured by Mocon) went.
Temperature: 20 ° C
Humidity on the oxygen supply side: 85% RH
Carrier gas side humidity: 85% RH
Oxygen pressure: 1.0 atm
Carrier gas pressure: 1.0 atm
[接着性評価]
 積層体を幅15mm長さ100mmの短冊状に裁断し、オートグラフ(株式会社島津製作所製AG-5000B)を用いて、該オートグラフの一方のチャックに層(L2)、もう一方のチャックに層(L1)(層(L3)を含む場合は、層(L1)の代わりに、層(L1)/層(L3)/層(L1)の積層体)を挟み、T字状に引張り接着力(破断までの応力)を測定した(ロードセル1kN、引張速度250mm/分、チャック間距離70mm)。表に記載の数値は5回測定の平均値を採用した。
[Adhesive evaluation]
The laminate is cut into strips 15 mm wide and 100 mm long, and an autograph (AG-5000B manufactured by Shimadzu Corporation) is used to form a layer (L2) on one chuck of the autograph and a layer on the other chuck (L1) (If a layer (L3) is included, a laminate of layer (L1) / layer (L3) / layer (L1) instead of layer (L1) is sandwiched, and T-shaped tensile adhesive force ( The stress until breakage) was measured (load cell 1 kN, tensile speed 250 mm / min, distance between chucks 70 mm). The numerical value described in the table adopts the average value of 5 measurements.
[合成例1]
 市販のエチレン-ビニルアルコール共重合体(株式会社クラレ製、F101、エチレン単位含有率32mol%、エチレン単位質量分率23.0質量%、ビニルアルコール単位質量分率77.0質量%)を粉砕した後、目開き425μmの篩と目開き710μmの篩を用いて分級された粒子(粒度分布が425~710μmの粒子)を得た。得られた粒子100質量部に電子線(30kGy)を照射した。次に、撹拌機、窒素導入管及び粒子の添加口を備えたオートクレーブに、イソプレン570質量部を仕込み、氷冷した状態で窒素バブリングをしながら30分間系内を窒素置換した。ここに電子線を照射したエチレン-ビニルアルコール共重合体を100質量部添加し、オートクレーブを密閉して内温が65℃になるまで加温、粒子が液中に分散した状態で4時間加熱撹拌を継続しグラフト重合を行った。その後、ろ別して粒子を回収し、粒子をテトラヒドロフランで洗浄し、残留するイソプレン及び副生したポリイソプレンを除去した後、40℃で終夜真空乾燥することにより、エチレン-ビニルアルコール共重合体及びグラフト共重合体を含む樹脂組成物を得た。詳細を表1に示す。
Synthesis Example 1
A commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray, F101, ethylene unit content 32 mol%, ethylene unit mass fraction 23.0 mass%, vinyl alcohol unit mass fraction 77.0 mass%) was ground After that, particles (particles having a particle size distribution of 425 to 710 μm) classified by using a sieve having 425 μm mesh and a sieve of 710 μm mesh were obtained. An electron beam (30 kGy) was irradiated to 100 parts by mass of the obtained particles. Next, 570 parts by mass of isoprene was charged into an autoclave equipped with a stirrer, a nitrogen introducing pipe and an addition port for particles, and the inside of the system was purged with nitrogen for 30 minutes while bubbling nitrogen under ice cooling. 100 parts by mass of an ethylene-vinyl alcohol copolymer irradiated with an electron beam was added thereto, the autoclave was sealed, and heated until the internal temperature reached 65 ° C., and the particles were dispersed in the liquid and stirred for 4 hours The graft polymerization was carried out. Thereafter, the particles are collected by filtration, and the particles are washed with tetrahydrofuran to remove residual isoprene and by-produced polyisoprene, followed by vacuum drying at 40 ° C. overnight to obtain an ethylene-vinyl alcohol copolymer and graft co-polymer. A resin composition containing a polymer was obtained. Details are shown in Table 1.
[合成例2]
 市販のエチレン-ビニルアルコール共重合体(株式会社クラレ製、E105、エチレン単位含有率44mol%、エチレン単位質量分率33.3質量%、ビニルアルコール単位質量分率66.7質量%)を粉砕した後、目開き75μmの篩と目開き212μmの篩を用いて分級された粒子(粒度分布が75~212μmの粒子)を得た。得られた粒子100質量部に電子線(30kGy)を照射した。次に、撹拌機、窒素導入管及び粒子の添加口を備えたオートクレーブに、電子線を照射したエチレン-ビニルアルコール共重合体100質量部を添加し、系内に窒素を封入、脱圧する操作を5回繰り返して系内を窒素置換した。ここに液化ブタジエン250質量部を仕込み、オートクレーブを密閉して内温が65℃になるまで加温、そのまま4時間加熱撹拌を継続しグラフト重合を行った。その後、常温まで冷却した後、残留するブタジエンを除去した。得られた反応後の粒子をテトラヒドロフランで洗浄し副生したポリブタジエンを除去した後、40℃で終夜真空乾燥することにより、エチレン-ビニルアルコール共重合体及びグラフト共重合体を含む樹脂組成物を得た。詳細を表1に示す。
Synthesis Example 2
A commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., E105, ethylene unit content 44 mol%, ethylene unit mass fraction 33.3 mass%, vinyl alcohol unit mass fraction 66.7 mass%) was pulverized. Thereafter, classified particles (particles having a particle size distribution of 75 to 212 μm) were obtained by using a sieve having an aperture of 75 μm and a sieve having an aperture of 212 μm. An electron beam (30 kGy) was irradiated to 100 parts by mass of the obtained particles. Next, 100 parts by mass of ethylene-vinyl alcohol copolymer irradiated with electron beam is added to an autoclave equipped with a stirrer, a nitrogen introducing tube and a particle adding port, and nitrogen is enclosed in the system and depressurized. The system was purged with nitrogen five times repeatedly. Into this, 250 parts by mass of liquefied butadiene was charged, the autoclave was sealed, heating was performed until the internal temperature reached 65 ° C., and heating and stirring were continued for 4 hours to carry out graft polymerization. Then, after cooling to normal temperature, residual butadiene was removed. The particles after reaction are washed with tetrahydrofuran to remove by-produced polybutadiene, and then vacuum dried overnight at 40 ° C. to obtain a resin composition containing an ethylene-vinyl alcohol copolymer and a graft copolymer. The Details are shown in Table 1.
[合成例3]
 市販のエチレン-ビニルアルコール共重合体(株式会社クラレ製、E105、エチレン単位含有率44mol%、エチレン単位質量分率33.3質量%、ビニルアルコール単位質量分率66.7質量%)を粉砕した後、目開き75μmの篩と目開き212μmの篩を用いて分級された粒子(粒度分布が75~212μmの粒子)を得た。得られた粒子100質量部に電子線(30kGy)を照射した。次に、撹拌機、窒素導入管及び粒子の添加口を備えたオートクレーブに、電子線を照射したエチレン-ビニルアルコール共重合体100質量部、酢酸メチル183質量部を添加し、系内に窒素を封入、脱圧する操作を5回繰り返して系内を窒素置換した。ここに液化ブタジエン100質量部を仕込み、オートクレーブを密閉して内温が65℃になるまで加温、そのまま4時間加熱撹拌を継続しグラフト重合を行った。その後、常温まで冷却した後、残留するブタジエンを除去した。その後、ろ別して粒子を回収し、粒子をテトラヒドロフランで洗浄し副生したポリブタジエンを除去した後、40℃で終夜真空乾燥することにより、エチレン-ビニルアルコール共重合体及びグラフト共重合体を含む樹脂組成物を得た。詳細を表1に示す。
Synthesis Example 3
A commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., E105, ethylene unit content 44 mol%, ethylene unit mass fraction 33.3 mass%, vinyl alcohol unit mass fraction 66.7 mass%) was pulverized. Thereafter, classified particles (particles having a particle size distribution of 75 to 212 μm) were obtained by using a sieve having an aperture of 75 μm and a sieve having an aperture of 212 μm. An electron beam (30 kGy) was irradiated to 100 parts by mass of the obtained particles. Next, 100 parts by mass of ethylene-vinyl alcohol copolymer irradiated with an electron beam and 183 parts by mass of methyl acetate are added to an autoclave provided with a stirrer, a nitrogen introducing pipe and an addition port of particles, and nitrogen is added in the system. The operation of sealing and depressurizing was repeated 5 times to replace the inside of the system with nitrogen. 100 parts by mass of liquefied butadiene was charged therein, and the autoclave was sealed, heated until the internal temperature reached 65 ° C., and heating and stirring were continued for 4 hours to carry out graft polymerization. Then, after cooling to normal temperature, residual butadiene was removed. Thereafter, the particles are collected by filtration, and the particles are washed with tetrahydrofuran to remove by-produced polybutadiene, and then vacuum dried overnight at 40 ° C. to obtain a resin composition containing an ethylene-vinyl alcohol copolymer and a graft copolymer. I got a thing. Details are shown in Table 1.
[合成例4]
 市販のポリビニルアルコール(株式会社クラレ製、Poval 5-82、けん化度82mol%、酢酸ビニル単位質量分率30.0質量%、ビニルアルコール単位質量分率70.0質量%)を粉砕した後、目開き425μmの篩と目開き710μmの篩を用いて分級された粒子(粒度分布が425~710μmの粒子)を得た。得られた粒子100質量部に電子線(30kGy)を照射した。次に、撹拌機、窒素導入管及び粒子の添加口を備えたオートクレーブに、イソプレン130質量部、メタノール890質量部を仕込み、氷冷した状態で窒素バブリングをしながら30分間系内を窒素置換した。ここに電子線を照射したポリビニルアルコールを100質量部添加し、オートクレーブを密閉して内温が65℃になるまで加温、粒子が液中に分散した状態で4時間加熱撹拌を継続しグラフト重合を行った。その後、ろ別して粒子を回収し、粒子をテトラヒドロフランで洗浄し、残留するイソプレン及び副生したポリイソプレンを除去した後、40℃で終夜真空乾燥することにより、ポリビニルアルコールとグラフト共重合体を含む樹脂組成物を得た。詳細を表1に示す。
Synthesis Example 4
After grinding commercially available polyvinyl alcohol (Poval 5-82, Kuraray Co., Ltd., degree of saponification 82 mol%, vinyl acetate unit mass fraction 30.0 mass%, vinyl alcohol unit mass fraction 70.0 mass%), The classified particles (particles having a particle size distribution of 425 to 710 μm) were obtained by using a sieve of 425 μm and a sieve of 710 μm. An electron beam (30 kGy) was irradiated to 100 parts by mass of the obtained particles. Next, 130 parts by mass of isoprene and 890 parts by mass of methanol were charged into an autoclave equipped with a stirrer, a nitrogen introducing pipe and a particle addition port, and the inside of the system was purged with nitrogen for 30 minutes while bubbling nitrogen under ice cooling. . 100 parts by mass of polyvinyl alcohol irradiated with an electron beam is added thereto, the autoclave is sealed and heated until the internal temperature reaches 65 ° C., the particles are dispersed in the liquid and heating and stirring are continued for 4 hours to carry out graft polymerization Did. Thereafter, the particles are collected by filtration, and the particles are washed with tetrahydrofuran to remove residual isoprene and by-produced polyisoprene, and then vacuum-dried at 40 ° C. overnight to obtain a resin containing polyvinyl alcohol and a graft copolymer. The composition was obtained. Details are shown in Table 1.
[合成例5]
 市販のエチレン-ビニルアルコール共重合体(株式会社クラレ製、F101、エチレン単位含有率32mol%、エチレン単位質量分率23.0質量%、ビニルアルコール単位質量分率77.0質量%)を粉砕した後、目開き425μmの篩と目開き710μmの篩を用いて分級された粒子(粒度分布が425~710μmの粒子)を得た。得られた粒子100質量部に電子線(30kGy)を照射した。次に、撹拌機、窒素導入管及び粒子の添加口を備えたオートクレーブに、イソプレン20質量部、メタノール980質量部を仕込み、氷冷した状態で窒素バブリングをしながら30分間系内を窒素置換した。ここに電子線を照射したエチレン-ビニルアルコール共重合体を100質量部添加し、オートクレーブを密閉して内温が40℃になるまで加温した。共重合体粒子が液中に分散した状態で4時間加熱撹拌を継続しグラフト重合を行った。その後、ろ別して粒子を回収し、粒子をテトラヒドロフランで洗浄し、残留するイソプレン及び副生したポリイソプレンを除去した後、40℃で終夜真空乾燥することにより、エチレン-ビニルアルコール共重合体及びグラフト共重合体を含む樹脂組成物を得た。詳細を表1に示す。
Synthesis Example 5
A commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray, F101, ethylene unit content 32 mol%, ethylene unit mass fraction 23.0 mass%, vinyl alcohol unit mass fraction 77.0 mass%) was ground After that, particles (particles having a particle size distribution of 425 to 710 μm) classified by using a sieve having 425 μm mesh and a sieve of 710 μm mesh were obtained. An electron beam (30 kGy) was irradiated to 100 parts by mass of the obtained particles. Next, 20 parts by mass of isoprene and 980 parts by mass of methanol were charged into an autoclave equipped with a stirrer, a nitrogen introducing pipe and an addition port for particles, and the inside of the system was purged with nitrogen for 30 minutes while bubbling nitrogen under ice cooling. . 100 parts by mass of an ethylene-vinyl alcohol copolymer irradiated with an electron beam was added thereto, and the autoclave was sealed and heated until the internal temperature reached 40.degree. While the copolymer particles were dispersed in the liquid, heating and stirring were continued for 4 hours to carry out graft polymerization. Thereafter, the particles are collected by filtration, and the particles are washed with tetrahydrofuran to remove residual isoprene and by-produced polyisoprene, followed by vacuum drying at 40 ° C. overnight to obtain an ethylene-vinyl alcohol copolymer and graft co-polymer. A resin composition containing a polymer was obtained. Details are shown in Table 1.
[合成例6]
 合成例1で得た樹脂組成物を、水/イソプロパノール=4/6(質量比)混合液に添加し、80℃で3時間抽出処理を行った。その後ろ別して残渣を回収し、残渣を水/イソプロパノール=4/6(質量比)混合液で洗浄した後、40℃で終夜真空乾燥することにより、エチレン-ビニルアルコール共重合体が除去された、グラフト共重合体を含む樹脂組成物を得た。詳細を表1に示す。
Synthesis Example 6
The resin composition obtained in Synthesis Example 1 was added to a water / isopropanol = 4/6 (mass ratio) mixed solution, and extraction processing was performed at 80 ° C. for 3 hours. After that, the residue was recovered, and the residue was washed with a mixture of water / isopropanol = 4/6 (mass ratio) and then vacuum dried overnight at 40 ° C. to remove the ethylene-vinyl alcohol copolymer. A resin composition containing a graft copolymer was obtained. Details are shown in Table 1.
[実施例1]
 合成例1で得た樹脂組成物を200℃で120秒プレス成形して、厚さ60μmのプレスフィルム(=層(L1))を作製した。同様に、市販のポリプロピレン樹脂(日本ポリプロ株式会社製、ノバテックPP EA7AD)を170℃で120秒プレス成形して、厚さ100μmのプレスフィルム(=層(L2))を作製した。さらに、市販のエチレン-ビニルアルコール共重合体(株式会社クラレ製、E105)を200℃で120秒プレス成形して、厚さ60μmのプレスフィルム(=層(L3))を作製した。次いで、各フィルムを、L2/L1/L3/L1/L2の順に積層し、当該積層フィルムを200℃の熱プレス機で挟み(プレス圧0kgf/cm)、4分間熱処理して、目的の積層体を得た。組成及び評価結果を表2に示す。
Example 1
The resin composition obtained in Synthesis Example 1 was press-molded at 200 ° C. for 120 seconds to produce a 60 μm thick press film (= layer (L1)). Similarly, a commercially available polypropylene resin (Novatec PP EA7AD, manufactured by Japan Polypropylene Corporation) was press molded at 170 ° C. for 120 seconds to produce a press film (= layer (L2)) having a thickness of 100 μm. Furthermore, a commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., E105) was press-molded at 200 ° C. for 120 seconds to prepare a press film (= layer (L3)) having a thickness of 60 μm. Next, each film is laminated in the order of L2 / L1 / L3 / L1 / L2, and the laminated film is held by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain the desired lamination. I got a body. The composition and the evaluation results are shown in Table 2.
[実施例2]
 合成例1で得た樹脂組成物を200℃で120秒プレス成形して、厚さ180μmのプレスフィルム(=層(L1))を作製した。同様に、市販のポリプロピレン樹脂(日本ポリプロ株式会社製、ノバテックPP EA7AD)を170℃で120秒プレス成形して、厚さ100μmのプレスフィルム(=層(L2))を作製した。次いで、各フィルムを、L2/L1/L2の順に積層し、当該積層フィルムを200℃の熱プレス機で挟み(プレス圧0kgf/cm)、4分間熱処理して、積層体を得た。この積層体に、室温で電子線(30kGy)を照射し、目的の積層体を得た。組成及び評価結果を表2に示す。
Example 2
The resin composition obtained in Synthesis Example 1 was press molded at 200 ° C. for 120 seconds to prepare a press film (= layer (L1)) having a thickness of 180 μm. Similarly, a commercially available polypropylene resin (Novatec PP EA7AD, manufactured by Japan Polypropylene Corporation) was press molded at 170 ° C. for 120 seconds to produce a press film (= layer (L2)) having a thickness of 100 μm. Next, each film was laminated in the order of L2 / L1 / L2, and the laminated film was sandwiched by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain a laminate. The laminate was irradiated with an electron beam (30 kGy) at room temperature to obtain a desired laminate. The composition and the evaluation results are shown in Table 2.
[実施例3]
 合成例2で得た樹脂組成物を使用した以外は実施例1と同様にして、目的の積層体を得た。組成及び評価結果を表2に示す。
[Example 3]
A target laminate was obtained in the same manner as in Example 1 except that the resin composition obtained in Synthesis Example 2 was used. The composition and the evaluation results are shown in Table 2.
[実施例4]
 合成例2で得た樹脂組成物を使用した以外は実施例1と同様にして積層体を得た後、この積層体に、室温で電子線(30kGy)を照射し、目的の積層体を得た。組成及び評価結果を表2に示す。
Example 4
A laminate is obtained in the same manner as in Example 1 except that the resin composition obtained in Synthesis Example 2 is used, and then the laminate is irradiated with an electron beam (30 kGy) at room temperature to obtain a desired laminate. The The composition and the evaluation results are shown in Table 2.
[実施例5]
 合成例3で得た樹脂組成物を200℃で120秒プレス成形して、厚さ60μmのプレスフィルム(=層(L1))を作製した。同様に、市販のエチレン-ビニルアルコール共重合体(株式会社クラレ製、E105)を200℃で120秒プレス成形して、厚さ60μmのプレスフィルム(=層(L3))を作製した。また、ゴム層として、厚さ1000μmの自動車タイヤ用カーカス配合未加硫ゴム(=層(L2))を準備した。次いで、各フィルムを、L2/L1/L3/L1/L2の順に積層し、当該積層フィルムを200℃の熱プレス機で挟み(プレス圧0kgf/cm)、4分間熱処理して、積層体を得た。この積層体に、室温で電子線(150kGy)を照射し、目的の積層体を得た。組成及び評価結果を表2に示す。
[Example 5]
The resin composition obtained in Synthesis Example 3 was press molded at 200 ° C. for 120 seconds to prepare a 60 μm thick press film (= layer (L1)). Similarly, a commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., E105) was press molded at 200 ° C. for 120 seconds to prepare a 60 μm thick press film (= layer (L3)). Further, as the rubber layer, a carcass compounded unvulcanized rubber (= layer (L2)) for automobile tires having a thickness of 1000 μm was prepared. Next, each film is laminated in the order of L2 / L1 / L3 / L1 / L2, and the laminated film is held by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain a laminate. Obtained. The laminate was irradiated with an electron beam (150 kGy) at room temperature to obtain a desired laminate. The composition and the evaluation results are shown in Table 2.
[実施例6]
 合成例2で得た樹脂組成物を200℃で120秒プレス成形して、厚さ60μmのプレスフィルム(=層(L1))を作製した。同様に、市販のエチレン-ビニルアルコール共重合体(株式会社クラレ製、E105)を200℃で120秒プレス成形して、厚さ60μmのプレスフィルム(=層(L3))を作製した。また、ゴム層として、厚さ1000μmの自動車タイヤ用カーカス配合未加硫ゴム(=層(L2))を準備した。次いで、各フィルムを、L2/L1/L3/L1/L2の順に積層し、当該積層フィルムを200℃の熱プレス機で挟み(プレス圧0kgf/cm)、4分間熱処理して、目的の積層体を得た。組成及び評価結果を表2に示す。
[Example 6]
The resin composition obtained in Synthesis Example 2 was press molded at 200 ° C. for 120 seconds to produce a 60 μm thick press film (= layer (L1)). Similarly, a commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., E105) was press molded at 200 ° C. for 120 seconds to prepare a 60 μm thick press film (= layer (L3)). Further, as the rubber layer, a carcass compounded unvulcanized rubber (= layer (L2)) for automobile tires having a thickness of 1000 μm was prepared. Next, each film is laminated in the order of L2 / L1 / L3 / L1 / L2, and the laminated film is held by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain the desired lamination. I got a body. The composition and the evaluation results are shown in Table 2.
[実施例7]
 合成例4で得た樹脂組成物70質量部とグリセリン30質量部をブレンドし、ラボプラストミルにて、200℃の温度で3分間溶融混練した後、溶融物を冷却固化させコンパウンドを得た。得られたコンパウンドを200℃で120秒プレス成形して、厚さ60μmのプレスフィルムを作製した。当該プレスフィルムをエタノール80質量部、水20質量部の混合溶媒中に浸漬してグリセリンを抽出した後、40℃の真空乾燥機内で終夜乾燥して樹脂組成物のフィルム(=層(L1))を得た。同様に、市販のポリプロピレン樹脂(日本ポリプロ株式会社製、ノバテックPP EA7AD)を170℃で120秒プレス成形して、厚さ100μmのプレスフィルム(=層(L2))を作製した。さらに、市販のエチレン-ビニルアルコール共重合体(株式会社クラレ製、E105)を200℃で120秒プレス成形して、厚さ60μmのプレスフィルム(=層(L3))を作製した。次いで、各フィルムを、L2/L1/L3/L1/L2の順に積層し、当該積層フィルムを200℃の熱プレス機で挟み(プレス圧0kgf/cm)、4分間熱処理して、目的の積層体を得た。組成及び評価結果を表2に示す。
[Example 7]
70 parts by mass of the resin composition obtained in Synthesis Example 4 and 30 parts by mass of glycerin were blended and melt-kneaded for 3 minutes at a temperature of 200 ° C. in a laboplast mill, and then the melt was cooled and solidified to obtain a compound. The resulting compound was press molded at 200 ° C. for 120 seconds to produce a 60 μm thick press film. The pressed film is immersed in a mixed solvent of 80 parts by mass of ethanol and 20 parts by mass of water to extract glycerin, and then dried overnight in a vacuum dryer at 40 ° C. to obtain a film of a resin composition (= layer (L1)) I got Similarly, a commercially available polypropylene resin (Novatec PP EA7AD, manufactured by Japan Polypropylene Corporation) was press molded at 170 ° C. for 120 seconds to produce a press film (= layer (L2)) having a thickness of 100 μm. Furthermore, a commercially available ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., E105) was press-molded at 200 ° C. for 120 seconds to prepare a press film (= layer (L3)) having a thickness of 60 μm. Next, each film is laminated in the order of L2 / L1 / L3 / L1 / L2, and the laminated film is held by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain the desired lamination. I got a body. The composition and the evaluation results are shown in Table 2.
[比較例1]
 市販のエチレン-ビニルアルコール共重合体(株式会社クラレ製、F101)を200℃で120秒プレス成形して、厚さ180μmのプレスフィルム(=層(L1’))を作製した。組成及び評価結果を表2に示す。
Comparative Example 1
A commercially available ethylene-vinyl alcohol copolymer (F101 manufactured by Kuraray Co., Ltd.) was press-molded at 200 ° C. for 120 seconds to produce a press film (= layer (L1 ′)) having a thickness of 180 μm. The composition and the evaluation results are shown in Table 2.
[比較例2]
 市販のエチレン-ビニルアルコール共重合体(株式会社クラレ製、F101)を200℃で120秒プレス成形して、厚さ180μmのプレスフィルム(=層(L1’))を作製した。同様に、市販のポリプロピレン樹脂(日本ポリプロ株式会社製、ノバテックPP EA7AD)を170℃で120秒プレス成形して、厚さ100μmのプレスフィルム(=層(L2))を作製した。次いで、各フィルムを、L2/L1’/L2の順に積層し、当該積層フィルムを200℃の熱プレス機で挟み(プレス圧0kgf/cm)、4分間熱処理したが、当該積層体は冷却しプレス機から取り出した直後にL2層とL1層の界面で剥離してしまい、評価に供することができなかった。組成及び評価結果を表2に示す。
Comparative Example 2
A commercially available ethylene-vinyl alcohol copolymer (F101 manufactured by Kuraray Co., Ltd.) was press-molded at 200 ° C. for 120 seconds to produce a press film (= layer (L1 ′)) having a thickness of 180 μm. Similarly, a commercially available polypropylene resin (Novatec PP EA7AD, manufactured by Japan Polypropylene Corporation) was press molded at 170 ° C. for 120 seconds to produce a press film (= layer (L2)) having a thickness of 100 μm. Next, each film was laminated in the order of L2 / L1 '/ L2, and the laminated film was held by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes. Immediately after taking it out of the press, it peeled off at the interface between the L2 layer and the L1 layer and could not be used for evaluation. The composition and the evaluation results are shown in Table 2.
[比較例3]
 合成例5で得た樹脂組成物を使用した以外は実施例4と同様にして、目的の積層体を得た。組成及び評価結果を表2に示す。
Comparative Example 3
A target laminate was obtained in the same manner as in Example 4 except that the resin composition obtained in Synthesis Example 5 was used. The composition and the evaluation results are shown in Table 2.
[比較例4]
 合成例6で得た樹脂組成物を200℃で120秒プレス成形して、厚さ180μmのプレスフィルム(=層(L1’))を作製した。同様に、市販のポリプロピレン樹脂(日本ポリプロ株式会社製、ノバテックPP EA7AD)を170℃で120秒プレス成形して、厚さ100μmのプレスフィルム(=層(L2))を作製した。次いで、各フィルムを、L2/L1’/L2の順に積層し、当該積層フィルムを200℃の熱プレス機で挟み(プレス圧0kgf/cm)、4分間熱処理して、目的の積層体を得た。組成及び評価結果を表2に示す。
Comparative Example 4
The resin composition obtained in Synthesis Example 6 was press-molded at 200 ° C. for 120 seconds to produce a press film (= layer (L1 ′)) having a thickness of 180 μm. Similarly, a commercially available polypropylene resin (Novatec PP EA7AD, manufactured by Japan Polypropylene Corporation) was press molded at 170 ° C. for 120 seconds to produce a press film (= layer (L2)) having a thickness of 100 μm. Next, each film is laminated in the order of L2 / L1 '/ L2, and the laminated film is held by a heat press at 200 ° C. (press pressure 0 kgf / cm 2 ) and heat treated for 4 minutes to obtain a desired laminate. The The composition and the evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~7から明らかなように、本発明の積層体は、高湿下での高いバリア性と柔軟性を兼備しており、屈曲にさらされても優れたバリア性を維持できる。また、各層の接着性に優れるため、デラミネーションが生じにくく、長期に渡り安定したバリア性能を発現できる。従って、本発明の積層体は、食品包装材、タイヤ用途等、バリア性を必要とする幅広い用途に利用できる。 As apparent from Examples 1 to 7, the laminate of the present invention has high barrier properties under high humidity and high flexibility and can maintain excellent barrier properties even when exposed to bending. Moreover, since the adhesiveness of each layer is excellent, it is hard to produce delamination and can express the stable barrier performance over a long period of time. Therefore, the laminate of the present invention can be used for food packaging materials, tire applications, and a wide range of applications that require barrier properties.
 比較例1のように、ビニルアルコール系重合体単体では、柔軟性が無くクラックが生じやすいために、屈曲にさらされるとバリア性を維持できない。また、比較例2のように、ビニルアルコール系重合体単体では、異種ポリマーと自己接着することができない。一方、比較例3のように、ビニルアルコール系重合体からなるユニット及びジエン系重合体からなるユニットから構成されるグラフト共重合体の含有率が少ない場合、柔軟性が低く、クラックが生じやすいために、屈曲にさらされるとバリア性を維持できない。また、比較例4のように、ビニルアルコール系重合体からなるユニット及びジエン系重合体からなるユニットから構成されるグラフト共重合体を単体で用いた場合、結晶性が大きく低下するためにバリア性を維持できず、またグラフト共重合体単体の機械的強度にも劣ることから、異種ポリマーと相溶してもグラフト共重合体層が脆く、高い接着性を発現できない。比較例4は、層(L1)の樹脂組成物が、ビニルアルコール系重合体からなるユニット及びジエン系重合体からなるユニットから構成されるグラフト共重合体のみを有しており、ビニルアルコール系重合体を有しておらず、WO2015/190029号の樹脂組成物に相当する。 As in Comparative Example 1, the vinyl alcohol polymer alone does not have flexibility and is prone to cracking, so that the barrier property can not be maintained when exposed to bending. Further, as in Comparative Example 2, the vinyl alcohol polymer alone can not be self-adhered to a different polymer. On the other hand, as in Comparative Example 3, when the content of the graft copolymer composed of a unit composed of a vinyl alcohol polymer and a unit composed of a diene polymer is small, the flexibility is low and cracks easily occur. In addition, the barrier property can not be maintained when exposed to bending. In addition, when a graft copolymer composed of a unit composed of a vinyl alcohol polymer and a unit composed of a diene polymer is used alone as in Comparative Example 4, the crystallinity is greatly reduced. However, the graft copolymer layer is brittle and can not exhibit high adhesion even when it is compatible with a different polymer, because the graft copolymer alone is inferior in mechanical strength. In Comparative Example 4, the resin composition of the layer (L1) has only a graft copolymer composed of a unit composed of a vinyl alcohol polymer and a unit composed of a diene polymer, and a vinyl alcohol polymer It has no coalescence and corresponds to the resin composition of WO2015 / 190029.

Claims (15)

  1.  ビニルアルコール系重合体(A)と、ビニルアルコール系重合体(B-1)からなるユニット及びジエン系重合体(B-2)からなるユニットから構成される共重合体(B)とを含む樹脂組成物を含む層(L1)を少なくとも1層有し、層(L1)に含まれる共重合体(B)の含有率がビニルアルコール系重合体(A)及び共重合体(B)の合計質量に対して10~85質量%である、積層体。 Resin containing a vinyl alcohol polymer (A) and a copolymer (B) comprising a unit consisting of a vinyl alcohol polymer (B-1) and a unit consisting of a diene polymer (B-2) It has at least one layer (L1) containing a composition, and the content of the copolymer (B) contained in the layer (L1) is the total mass of the vinyl alcohol polymer (A) and the copolymer (B) Relative to 10 to 85% by mass.
  2.  さらに、熱可塑性樹脂(C)を含む層(L2)を有する、請求項1に記載の積層体。 The laminate according to claim 1, further comprising a layer (L2) containing a thermoplastic resin (C).
  3.  熱可塑性樹脂(C)が、ポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、及びゴムからなる群より選択される少なくとも1つである、請求項2に記載の積層体。 The laminate according to claim 2, wherein the thermoplastic resin (C) is at least one selected from the group consisting of polyolefins, polystyrenes, polyesters, polyamides, and rubbers.
  4.  さらに、ビニルアルコール系重合体(A)を含む層(L3)を有する、請求項1~3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, further comprising a layer (L3) containing a vinyl alcohol polymer (A).
  5.  層(L1)が、層(L2)と層(L3)の間に配置される、請求項4に記載の積層体。 The laminate according to claim 4, wherein the layer (L1) is disposed between the layer (L2) and the layer (L3).
  6.  層(L1)のビニルアルコール系重合体(A)がエチレン-ビニルアルコール共重合体である、請求項1~5のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the vinyl alcohol polymer (A) of the layer (L1) is an ethylene-vinyl alcohol copolymer.
  7.  層(L3)のビニルアルコール系重合体(A)がエチレン-ビニルアルコール共重合体である、請求項4~6のいずれかに記載の積層体。 The laminate according to any one of claims 4 to 6, wherein the vinyl alcohol polymer (A) of the layer (L3) is an ethylene-vinyl alcohol copolymer.
  8.  層の数が、6層以下である、請求項1~7のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the number of layers is 6 or less.
  9.  ジエン系重合体(B-2)が、ポリブタジエン、ポリイソプレン、及びポリイソブチレンからなる群より選ばれる少なくとも1種以上である、請求項1~8のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the diene polymer (B-2) is at least one selected from the group consisting of polybutadiene, polyisoprene and polyisobutylene.
  10.  層(L1)に含まれる共重合体(B)の含有率が、ビニルアルコール系重合体(A)及び共重合体(B)の合計質量に対して30~80質量%である、請求項1~9のいずれかに記載の積層体。 The content of the copolymer (B) contained in the layer (L1) is 30 to 80% by mass with respect to the total mass of the vinyl alcohol polymer (A) and the copolymer (B). The laminate according to any one of to 9.
  11.  共重合体(B)がグラフト共重合体(B1)である、請求項1~10のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 10, wherein the copolymer (B) is a graft copolymer (B1).
  12.  ビニルアルコール系重合体(A)と、ビニルアルコール系重合体(B-1)からなるユニット及びジエン系重合体(B-2)からなるユニットから構成される共重合体(B)とを含む樹脂組成物を含む層(L1)を形成する工程を含む、請求項1~11のいずれかに記載の積層体の製造方法。 Resin containing a vinyl alcohol polymer (A) and a copolymer (B) comprising a unit consisting of a vinyl alcohol polymer (B-1) and a unit consisting of a diene polymer (B-2) The method for producing a laminate according to any one of claims 1 to 11, comprising the step of forming a layer (L1) containing a composition.
  13.  層(L1)を形成する工程の後に、積層体に活性エネルギー線を照射する工程を含む、請求項12に記載の製造方法。 The manufacturing method of Claim 12 including the process of irradiating an active energy ray to a laminated body after the process of forming a layer (L1).
  14.  活性エネルギー線が電子線である、請求項13に記載の製造方法。 The method according to claim 13, wherein the active energy ray is an electron beam.
  15.  前記樹脂組成物の製造において、ビニルアルコール系重合体(B-1)をジエン系重合体(B-2)の原料である単量体中に、又は当該単量体を含む溶液中に分散させてグラフト重合する工程を含む、請求項12~14のいずれかに記載の製造方法。 In the production of the resin composition, the vinyl alcohol polymer (B-1) is dispersed in a monomer which is a raw material of the diene polymer (B-2) or in a solution containing the monomer. The method according to any one of claims 12 to 14, comprising the step of graft polymerization.
PCT/JP2018/047354 2017-12-22 2018-12-21 Laminate WO2019124553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019560600A JPWO2019124553A1 (en) 2017-12-22 2018-12-21 Laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-246083 2017-12-22
JP2017246083 2017-12-22

Publications (1)

Publication Number Publication Date
WO2019124553A1 true WO2019124553A1 (en) 2019-06-27

Family

ID=66992696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047354 WO2019124553A1 (en) 2017-12-22 2018-12-21 Laminate

Country Status (2)

Country Link
JP (1) JPWO2019124553A1 (en)
WO (1) WO2019124553A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235622A1 (en) * 2018-06-08 2019-12-12 株式会社クラレ Rubber composition and tire using same
JPWO2020262634A1 (en) * 2019-06-28 2020-12-30

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031768A (en) * 1999-07-23 2001-02-06 Showa Denko Kk Oxygen barrier polymer
WO2015190029A1 (en) * 2014-06-12 2015-12-17 株式会社ブリヂストン Graft copolymer, resin composition, coating film, laminate, and tire
WO2019004455A1 (en) * 2017-06-30 2019-01-03 株式会社クラレ Resin composition and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031768A (en) * 1999-07-23 2001-02-06 Showa Denko Kk Oxygen barrier polymer
WO2015190029A1 (en) * 2014-06-12 2015-12-17 株式会社ブリヂストン Graft copolymer, resin composition, coating film, laminate, and tire
WO2019004455A1 (en) * 2017-06-30 2019-01-03 株式会社クラレ Resin composition and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235622A1 (en) * 2018-06-08 2019-12-12 株式会社クラレ Rubber composition and tire using same
JPWO2020262634A1 (en) * 2019-06-28 2020-12-30
JP7489383B2 (en) 2019-06-28 2024-05-23 株式会社クラレ Resin composition

Also Published As

Publication number Publication date
JPWO2019124553A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP5320662B2 (en) Acid-modified polypropylene resin, method for producing the same, and resin composition using the same
JP2012067320A (en) Method of manufacturing acid modified polypropylene resin
EP0578056B1 (en) Thermoplastic resin composition
US20200123296A1 (en) Resin composition and method for producing same
WO2019124553A1 (en) Laminate
JP5227031B2 (en) Polypropylene single layer film and its use
JP2004107417A (en) Biaxially oriented moistureproof polypropylene film
JP7163599B2 (en) Easy peelable film
JP2015189885A (en) adhesive resin composition and laminate
JPH0496946A (en) Polyethylene-based resin composition
JP6927922B2 (en) Crosslinkable resin compositions and crosslinked products, their production methods, and multilayer structures.
JP5008512B2 (en) Resin composition and laminate
JP4850799B2 (en) Laminate manufacturing method and laminate obtained thereby
JP6903011B2 (en) Resin compositions, laminates and molded products containing ethylene-vinyl alcohol copolymers
EP0399439B1 (en) Process for producing a laminate
JPH02305637A (en) Laminate
JP6492911B2 (en) Laminated film
JP2021004310A (en) Resin composition
JP7006329B2 (en) Thermoplastic resin composition, easy-to-open container lid material and easy-to-open container
KR101970636B1 (en) High tensile modulus and heat resistant resin composition and multilayer film for vacuum skin packaging comprising the same
JP2021088684A (en) Resin composition excellent in recovery properties and multilayer laminate using the same
JP7073918B2 (en) Adhesive resin composition and laminate
JP2018138637A (en) Adhesive resin composition and masterbatch, laminated film using them, drawn film and multilayer molded body
JPWO2018180862A1 (en) Manufacturing method of laminate
JP7356296B2 (en) Resin composition and multilayer structure using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891715

Country of ref document: EP

Kind code of ref document: A1