WO2019123555A1 - Predicted travel behavior data correction device, predicted travel behavior data correction method, and computer program - Google Patents

Predicted travel behavior data correction device, predicted travel behavior data correction method, and computer program Download PDF

Info

Publication number
WO2019123555A1
WO2019123555A1 PCT/JP2017/045636 JP2017045636W WO2019123555A1 WO 2019123555 A1 WO2019123555 A1 WO 2019123555A1 JP 2017045636 W JP2017045636 W JP 2017045636W WO 2019123555 A1 WO2019123555 A1 WO 2019123555A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
behavior data
predicted
time
traveling behavior
Prior art date
Application number
PCT/JP2017/045636
Other languages
French (fr)
Japanese (ja)
Inventor
光司 荒井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2017/045636 priority Critical patent/WO2019123555A1/en
Publication of WO2019123555A1 publication Critical patent/WO2019123555A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a correction device for predicted traveling behavior data, a correction method for predicted traveling behavior data, and a computer program.
  • a driving support device shown in Patent Document 1 has already been proposed.
  • the driving support device predicts future movement ranges of the host vehicle and the other vehicle, and determines future collision possibility based on the predicted movement ranges. Then, when it is determined that there is a possibility of a collision in the future, the driving support device performs driving support for avoiding a collision.
  • the correction device of predicted traveling behavior data is a device for correcting predicted traveling behavior data, and a generation unit that generates first predicted traveling behavior data defined below; 2 Synchronize the start time of the first prediction period and the start time of the second prediction period based on the communication unit that receives the predicted travel behavior data by inter-vehicle communication, and the predetermined safety margin, and synchronize the first time interval and the first time interval And a correction unit configured to correct at least one of the first and second predicted traveling behavior data so as to make the two-hour intervals coincide with each other.
  • First predicted traveling behavior data predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period
  • Second predicted traveling behavior data within a second predicted period in the future
  • Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
  • a method of correcting predicted traveling behavior data is a method of correcting predicted traveling behavior data, and the generation step of generating first predicted traveling behavior data defined below; (2) Synchronize the start time of the first prediction period and the start time of the second prediction period based on the communication step of receiving the predicted traveling behavior data by inter-vehicle communication and the predetermined safety margin, and the first time interval and the And correcting the data of at least one of the first and second predicted traveling behavior data so as to make the two time intervals coincide with each other.
  • First predicted traveling behavior data predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period
  • Second predicted traveling behavior data within a second predicted period in the future
  • Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
  • a computer program is a computer program for causing a computer to execute a process of correcting predicted traveling behavior data, and a generation unit that generates first predicted traveling behavior data that defines the computer below. And synchronizing the start time of the first prediction period and the start time of the second prediction period based on a predetermined safety margin and a communication unit that receives the second prediction travel behavior data defined below by inter-vehicle communication, And the correction is performed to correct at least one of the first predicted traveling behavior data and the predicted traveling behavior data received by the communication unit through the inter-vehicle communication such that the first time interval and the second time interval coincide with each other. It is a computer program for functioning as a part.
  • First predicted traveling behavior data predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period
  • Second predicted traveling behavior data within a second predicted period in the future
  • Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
  • FIG. 1 is an overall configuration diagram of a communication system according to an embodiment of the present invention. It is a block diagram showing composition of an in-vehicle system. It is a block diagram which shows the internal structure of a relay apparatus. It is a block diagram which shows the internal structure of a vehicle-mounted communication apparatus. It is explanatory drawing which shows the content and production method of prediction driving
  • the driving support device predicts future movement ranges of the own vehicle and the other vehicle based on the current situation. For this reason, the uncertainty of prediction becomes high, and it can not respond to the future unexpected situation, and there is a possibility that judgment of collision possibility may be mistaken. Therefore, the predicted travel behavior data indicating the predicted travel behavior for each predetermined time interval in the future of the other vehicle is acquired by inter-vehicle communication, and based on the predicted travel behavior data of the own vehicle and the predicted travel behavior data of the other vehicle It is conceivable to determine the possibility of collision between the own vehicle and another vehicle.
  • a correction device of predicted traveling behavior data and the like capable of suppressing an increase in the amount of data used for the determination processing while securing the determination accuracy of the collision possibility between the own vehicle and the other vehicle Intended to provide.
  • a correction device for predicted traveling behavior data is a device for correcting predicted traveling behavior data, and a generation unit for generating first predicted traveling behavior data defined below, and The start time of the first prediction period and the start time of the second prediction period are synchronized based on a predetermined safety margin and the communication unit that receives the second predicted traveling behavior data to be defined by inter-vehicle communication, and the first time And a correction unit configured to correct at least one of the first and second predicted traveling behavior data such that the interval and the second time interval coincide with each other.
  • First predicted traveling behavior data predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period
  • Second predicted traveling behavior data within a second predicted period in the future
  • Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
  • the correction device for predicted driving behavior data is based on the safety margin, a first time interval of first predicted driving behavior data indicating the predicted driving behavior of the own vehicle, and a second predicted driving behavior indicating the predicted driving behavior of the other vehicle.
  • the at least one data is corrected to match the second time interval of the data.
  • the first and second time intervals may be matched so as not to be significantly coarser than the time interval corresponding to the safety margin. In this way, when determining the possibility of collision between the host vehicle and another vehicle based on the corrected first and second predicted traveling behavior data, it is possible to guarantee the accuracy of the determination on the safety side.
  • the first and second time intervals may be matched so as not to be much smaller than the time interval corresponding to the safety margin. In this way, since the collision possibility can be determined without excessively estimating the safety, it is possible to reduce the amount of extra data used for the determination process. Therefore, by correcting the at least one data to match the first and second time intervals based on the safety margin, the determination processing of the collision possibility between the own vehicle and the other vehicle is ensured while the determination processing is performed. It is possible to suppress the increase in the amount of data used for
  • the safety margin is a margin distance necessary for safe traveling, and the correction unit matches the first and second time intervals based on the margin distance and the speed of the host vehicle or the other vehicle. It is preferable to In this case, the correction unit can match the first and second time intervals at appropriate time intervals based on the margin distance, which is a safety margin, and the speed of the own vehicle or another vehicle.
  • the safety margin may be a margin time required for safe traveling, and the correction unit may make the first and second time intervals coincide with each other at the margin time.
  • the correction unit matches the first and second time intervals with a margin time which is a safety margin, the correction time interval can be easily determined.
  • the communication unit further receives the safety margin of the other vehicle by inter-vehicle communication, and the correction unit determines the first and second safety margins of the own vehicle and the received safety margin of the other vehicle. It is preferred to match the second time interval. In this case, even if the safety margin of the own vehicle and the safety margin of the other vehicle are different, the first and second time intervals can be made to coincide with each other at appropriate time intervals. It is possible to effectively suppress an increase in the amount of data used for the determination process while securing the determination accuracy of the collision possibility.
  • the communication unit preferably receives the second predicted traveling behavior data of the other vehicle when there is a possibility of a collision between the own vehicle and the other vehicle. In this case, the communication data amount of the inter-vehicle communication can be reduced.
  • the method of correcting predicted traveling behavior data according to the embodiment of the present invention is a method of correcting predicted traveling behavior data to be executed in the above-described predicted traveling behavior data correction device. Therefore, the correction method of the predicted traveling behavior data of the present embodiment has the same effect as the correction device of the predicted traveling behavior data described above.
  • a computer program according to an embodiment of the present invention is a computer program for causing a computer to function as the above-described predicted traveling behavior data correction device. Therefore, the computer program of the present embodiment has the same effects as the correction device for predicted traveling behavior data described above.
  • FIG. 1 is an overall configuration diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 1, the communication system of the present embodiment includes an on-vehicle communication device 19 mounted on each of a plurality of vehicles 1.
  • the in-vehicle communication device 19 is a wireless communication device that performs wireless communication (inter-vehicle communication) with another vehicle traveling on the road. Therefore, in the present embodiment, the in-vehicle communication device 19 of the vehicle 1 is also referred to as "inter-vehicle communication device 19", and the communication system is also referred to as "inter-vehicle communication system”. In the present embodiment, the in-vehicle communication device 19 adopts a multi-access method based on a carrier sense multiple access / collision avoidance (CSMA / CA) method.
  • CSMA / CA carrier sense multiple access / collision avoidance
  • the in-vehicle communication device 19 adopts, for example, a multi-access method that conforms to the "700 MHz band intelligent traffic system standard (ARIB STD-T109)". According to this method, the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
  • a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
  • the communication system for inter-vehicle communication is not limited to the above standard, and may be a communication technology for mobile phones, such as cellular V2V of 3GPP, applied to wireless communication of the vehicle 1.
  • FIG. 2 is a block diagram showing the configuration of the in-vehicle system. As shown in FIG. 2, each vehicle 1 includes an in-vehicle system 10.
  • the in-vehicle system 10 includes a relay device 20, a communication network 12, and various on-vehicle devices electronically controlled by an ECU belonging to the communication network 12.
  • the communication network 12 includes a plurality of in-vehicle communication lines 13 terminating in the relay device 20, and a plurality of in-vehicle control devices (hereinafter referred to as "ECUs") 16 connected to the in-vehicle communication lines 13.
  • the communication network 12 can communicate among the ECUs 16, and is formed of a master / slave communication network (for example, LIN (Local Interconnect Network)) in which the relay device 20 is a terminal node (master device).
  • Relay device 20 that controls a plurality of communication networks 12.
  • the communication network 12 includes communication standards such as CAN (Controller Area Network), CANFD (CAN with Flexible Data Rate), Ethernet (registered trademark), or MOST (Media Oriented Systems Transport: MOST is a registered trademark) as well as LIN. It may be a network to be adopted. Further, the network configuration of the communication network 12 may include the relay device 20 and at least one ECU 16.
  • the common code of the communication network is “12”, and the individual codes of the communication network are “12A to 12C”. Further, the common code of the ECU is “16”, and the individual codes of the ECU are “16A1 to 16A4”, “16B1 to 16B3” and “16C1 to 16C2”.
  • the communication networks 12A, 12B, 12C share the different control fields of the vehicle 1, respectively.
  • a power system ECU whose control target is the drive device of the vehicle 1 is connected.
  • a multimedia ECU that controls information equipment of the vehicle 1.
  • Connected to the communication network 12C is an ADAS-based ECU whose control target is an advanced driver assistance system (ADAS: Advanced Driver-Assistance Systems) that supports the driving operation of the vehicle 1.
  • ADAS Advanced Driver-Assistance Systems
  • the communication network 12 is not limited to the above three types, but may be four or more types. Further, the control field corresponding to the communication network 12 varies depending on the design concept of the vehicle manufacturer, and is not limited to the sharing of the control field described above.
  • the power ECUs connected to the communication network 12A include, for example, an engine ECU 16A1, an EPS-ECU 16A2, a brake ECU 16A3, and an ABS-ECU 16A4.
  • the engine ECU 16A1 is connected to a fuel injection device 31 of the engine, and the fuel injection device 31 is controlled by the engine ECU 16A1.
  • An EPS (Electric Power Steering: Electric Power Steering) 32 is connected to the EPS-ECU 16A2, and the EPS 32 is controlled by the EPS-ECU 16A2.
  • a brake actuator 33 is connected to the brake ECU 16A3, and the brake actuator 33 is controlled by the brake ECU 16A3.
  • An ABS (Antilock Brake System) actuator 34 is connected to the ABS-ECU 16A4, and the ABS actuator 34 is controlled by the ABS-ECU 16A4.
  • the multimedia ECU connected to the communication network 12B includes, for example, a navigation ECU 16B1, a meter ECU 16B2, and a HUD-ECU 16B3.
  • An HDD (Hard Disk Drive) 41, a display 42, a GPS (Global Positioning System) receiver 43, a vehicle speed sensor 44, a gyro sensor 45, a speaker 46, and an input device 47 are connected to the navigation ECU 16B1.
  • the display 42 and the speaker 46 are output devices for presenting various information to the passenger of the vehicle. Specifically, the display 42 displays a map image around the host vehicle, route information to the destination, and the like, and the speaker 46 outputs a voice announcement for guiding the host vehicle to the destination.
  • the input device 47 is for the passenger to perform various inputs such as a destination, and is constituted by various input means such as an operation switch, a joystick, or a touch panel provided on the display 42.
  • the navigation ECU 16B1 has a time synchronization function of acquiring the current time from the GPS signal periodically acquired by the GPS receiver 43, and a position detection function of calculating an absolute position (latitude, longitude and altitude) of the vehicle from the GPS signal;
  • the vehicle speed sensor 44 and the gyro sensor 45 correct the position and orientation of the vehicle to obtain an accurate current position and orientation of the vehicle.
  • the navigation ECU 16B1 reads the map information stored in the HDD 41 according to the obtained current position, and generates a map image in which the current position of the vehicle is superimposed on the map information. Then, the navigation ECU 16B1 displays a map image on the display 42, and displays route information and the like from the current position to the destination on the map image.
  • a meter actuator 48 is connected to the meter ECU 16B2, and the meter actuator 48 is controlled by the meter ECU 16B2.
  • a HUD (Head-Up Display) 49 is connected to the HUD-ECU 16B3, and the HUD 49 is controlled by the HUD-ECU 16B3.
  • the ADAS ECU connected to the communication network 12C includes, for example, an ADAS-ECU 16C1 and an environment recognition ECU 16C2.
  • a first sensor 51 and a second sensor 52 are connected to the environment recognition ECU 16C2, and the first and second sensors 51 and 52 are controlled by the environment recognition ECU 16C2.
  • the first sensor 51 is, for example, an ultrasonic sensor, a video camera or the like arranged at four corners in the front, rear, left, and right of the vehicle 1 (see FIG. 1).
  • the first sensor 51 provided on the front side is a sensor mainly for detecting an object present on the front of the vehicle
  • the first sensor 51 provided on the rear side is an object mainly present on the rear of the vehicle Is a sensor for detecting
  • the second sensor 52 is, for example, an ultrasonic sensor, a video camera, or the like disposed in a ceiling portion of the vehicle 1 (see FIG. 1).
  • the second sensor 52 is rotatable at a relatively high speed around the vertical axis, and is a sensor for detecting an object present around the host vehicle.
  • the sensing results of the first and second sensors 51 and 52 are stored in a communication packet by the environment recognition ECU 16C2 and transmitted to the ADAS-ECU 16C1.
  • the ADAS-ECU 16C1 can execute any one of, for example, levels 1 to 4 based on the sensing results of the first and second sensors 51 and 52.
  • the level of automatic driving is defined in SAE (Society of Automotive Engineers) International, J3016 (September 2016).
  • the “public-private ITS concept road map 2017” also adopts this definition. In this roadmap, level 3 or higher automatic driving is called “high-level automatic driving", and level 4 and 5 automatic driving is called “fully automatic driving”.
  • the "automatic operation” in the present embodiment means an automatic operation at level 2 or higher.
  • the ADAS-ECU 16C1 may be capable of performing level 5 automatic driving, but at the time of the present application, the vehicle 1 performing level 5 automatic driving has not been realized yet.
  • assisted driving As an example of automatic driving up to levels 1 to 3 (hereinafter, also referred to as “assisted driving”), the possibility of collision is predicted from the distance between the object detected by the first sensor 51 and the host vehicle, The control command is transmitted to the power system ECU or the multimedia system ECU so as to intervene in the deceleration or alert the passenger when it is determined that the vehicle speed is high.
  • level 4 and 5 automatic operation As an example of level 4 and 5 automatic operation (hereinafter, also referred to as “autonomous operation"), behavior expected to an object detected by the first and second sensors 51 and 52, deep learning of past behavior, etc. There are some which transmit a control command to a power system ECU or a multimedia system ECU so that the host vehicle is pointed to the target position based on the predicted behavior predicted by the above.
  • the ADAS-ECU 16C1 can also switch to a manual operation of the passenger without using the sensing results by the first and second sensors 51 and 52.
  • the vehicle 1 of the present embodiment is capable of executing the level 4 autonomous operation mode, and as the downgraded operation mode, the vehicle 1 of the level 1 to 3 assisted operation mode or the manual operation mode (level 0) You can do either.
  • the switching of the operation mode is performed by a manual operation input by the passenger or the like.
  • RELAY device 20 includes a control packet for controlling the ECU 16 (hereinafter, also referred. To as "control command") to.
  • the ECU 16 executes predetermined control on the target device in charge according to the content of the command included in the received control packet.
  • the relay device 20 When controlling the autonomous operation mode, the relay device 20 sends control commands to the ECUs 16A1 to 16A4 of the communication network 12A based on the sensing results of the first and second sensors 51 and 52 received from the environment recognition ECU 16C2. Send control packet including.
  • each of the ECUs 16A1 to 16A4 having received the control packet from the relay device 20 controls the fuel injection device 31, the EPS 32, the brake actuator 33, and the ABS actuator 34 according to the content of the command included in the control packet, thereby autonomous operation. Mode is executed.
  • the in-vehicle system 10 further includes an on-vehicle communication device 19 that performs wireless communication with other vehicles.
  • the in-vehicle communication device 19 is connected to the relay device 20 via a communication line of a predetermined standard.
  • the relay device 20 relays the information received by the in-vehicle communication device 19 from the other vehicle to the ECU 16.
  • the relay device 20 relays the information received from the ECU 16 to the in-vehicle communication device 19.
  • the in-vehicle communication device 19 wirelessly transmits the relayed information to another vehicle.
  • the in-vehicle communication device 19 mounted on the vehicle 1 may be a device owned by a user, such as a mobile phone, a smartphone, a tablet terminal, or a notebook PC (Personal Computer).
  • FIG. 3 is a block diagram showing an internal configuration of the relay device 20.
  • the relay device 20 of the vehicle 1 includes a control unit 21, a storage unit 22, an in-vehicle communication unit 23, and the like.
  • the control unit 21 of the relay device 20 includes a CPU (Central Processing Unit).
  • the CPU of the control unit 21 has a function of reading one or a plurality of programs stored in the storage unit 22 or the like to execute various processes.
  • the CPU of the control unit 21 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
  • the CPU of the control unit 21 includes one or more large scale integrated circuits (LSI).
  • LSI large scale integrated circuits
  • the plurality of LSIs cooperate to realize the function of the CPU.
  • the computer program executed by the CPU of the control unit 21 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
  • the storage unit 22 is formed of a non-volatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • the storage unit 22 has a storage area for storing a program executed by the CPU of the control unit 21 and data required for the execution.
  • a plurality of in-vehicle communication lines 13 disposed in the vehicle 1 are connected to the in-vehicle communication unit 23.
  • the in-vehicle communication unit 23 includes a communication device that communicates with the ECU 16 in accordance with a predetermined communication standard such as LIN.
  • the in-vehicle communication unit 23 transmits information given from the CPU of the control unit 21 to a predetermined ECU 16, and the ECU 16 gives information on the transmission source to the CPU of the control unit 21.
  • the on-vehicle communication device 19 transmits the information given from the control unit 21 to the other vehicle, and gives the information received from the other vehicle to the control unit 21.
  • FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device 19.
  • the on-vehicle communication device 19 includes a control unit 191, a storage unit 192, a wireless communication unit 193, and the like.
  • the control unit 191 of the in-vehicle communication device 19 includes a CPU.
  • the CPU of the control unit 191 has a function of reading out one or more programs stored in the storage unit 192 or the like to execute various processes.
  • the CPU of the control unit 191 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
  • the CPU of the control unit 191 includes one or more large scale integrated circuits (LSI).
  • LSI large scale integrated circuits
  • the plurality of LSIs cooperate to realize the function of the CPU.
  • the computer program executed by the CPU of the control unit 191 can also be transferred by downloading from a computer device such as a server computer.
  • the storage unit 192 is formed of a non-volatile memory element such as a flash memory or an EEPROM.
  • the storage unit 192 has a storage area for storing a program executed by the CPU of the control unit 191 and data required for the execution.
  • An antenna 194 for wireless communication is connected to the wireless communication unit 193.
  • the wireless communication unit 193 transmits the information given from the control unit 191 to the other vehicle from the antenna 194 and gives the information received from the other vehicle by the antenna 194 to the control unit 191.
  • the CPU of the control unit 191 transmits the information provided from the wireless communication unit 193 to the relay device 20, and provides the wireless communication unit 193 with the information received from the relay device 20.
  • FIG. 5 is an explanatory view showing the contents and generation method of “predicted travel behavior data D” transmitted by the on-vehicle communication device 19 to another vehicle through inter-vehicle communication.
  • the predicted traveling behavior data D is data indicating the predicted traveling behavior of the vehicle 1 within a future prediction period Tc for a relatively short predetermined time (for example, 10 seconds) from the current time.
  • the predicted traveling behavior data D of the present embodiment includes a plurality of predicted traveling behavior information S indicating the predicted traveling behavior of the vehicle 1 at predetermined time intervals (for example, 300 ms interval) within the prediction period Tc.
  • the predicted traveling behavior information S includes information such as the time of each fixed time interval within the prediction period Tc, and the absolute position and orientation of the vehicle 1 at that time.
  • the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 are calculated as follows. For example, in the road plan view shown in the lower part of FIG. 5, when the vehicle 1 travels in the lane R1 by automatic driving, the ADAS-ECU 16C1 of the vehicle 1 responds to the contents of automatic driving being executed at the present time t0. A travel planned route during the prediction period Tc is calculated, and the calculated travel planned route is transmitted to the in-vehicle communication device 19.
  • the in-vehicle communication device 19 performs map matching processing between the received planned traveling route and the map information, and the like, and detects the plurality of discrete positions (absolute positions) of the vehicle 1 during the prediction period Tc and the direction of the vehicle 1 at each discrete position. Calculate Specifically, when the vehicle 1 continues to travel straight in the lane R1 during the prediction period Tc, the on-vehicle communication device 19 is operated on the straight travel planned route (arrow shown by the broken line in FIG. 5) along the lane R1. A plurality of discrete positions (positions indicated by ⁇ in FIG. 5) and directions of the vehicle 1 are calculated at fixed or indeterminate time intervals (or distance intervals).
  • the on-vehicle communication device 19 is a curved traveling planned route extending from the lane R1 to the lane R2 (an arrow shown by an alternate long and short dash line in FIG. A plurality of discrete positions (positions indicated by ⁇ marks in FIG. 5) and a direction of the vehicle 1 are calculated at fixed or indefinite time intervals (or distance intervals).
  • the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at time intervals, it calculates the time corresponding to each discrete position based on the time interval and the time of the current time t0. In addition, when the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at a distance interval, the distance from the current position of the vehicle 1 to each discrete position is calculated based on the distance interval, and the calculated distance and the vehicle The time corresponding to each discrete position is calculated based on the planned traveling speed of 1.
  • the planned traveling speed of the vehicle 1 can be acquired from the ADAS-ECU 16C1. Note that the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 may be calculated by the ADAS-ECU 16C1 and the calculated time, discrete position and orientation may be transmitted to the in-vehicle communication device 19.
  • each predicted traveling behavior information S of the predicted traveling behavior data D in the present embodiment “vehicle ID”, “time”, “absolute position”, “vehicle attribute”, “azimuth” , “Safety margin”, etc. are included.
  • the “time” of each of the predicted traveling behavior information S stores the value of the current time and the value of each time within the prediction period Tc calculated by the above method.
  • the value of the current time can be acquired from the navigation ECU 16B1 (see FIG. 2) having the above-described time synchronization function via the relay device 20.
  • the "vehicle ID” stores the value of the vehicle ID of the own vehicle. Since the value of the vehicle ID is a fixed value, the same value is stored in the "vehicle ID" of each piece of predicted traveling behavior information S.
  • the “absolute position” of each piece of predicted traveling behavior information S stores each value of latitude, longitude and altitude indicating the absolute position of the vehicle corresponding to each time within the prediction period Tc calculated by the above method. In “absolute position" of FIG. 5, only the values of latitude and longitude are shown.
  • the vehicle attribute for example, values such as the vehicle width and the vehicle length of the own vehicle, and the identification value of the vehicle application type of the own vehicle (such as a private vehicle or an emergency vehicle) are stored. Since each value of the vehicle width, the vehicle length, and the vehicle application type is a fixed value, the same value is stored in the “vehicle attribute” of each predicted traveling behavior information S. In “vehicle attribute” of FIG. 5, the description of specific numerical values is omitted. In the “azimuth” of each piece of predicted traveling behavior information S, the value of the heading of the vehicle corresponding to each time within the prediction period Tc calculated by the above method is stored. In the “azimuth” of FIG. 5, the description of specific numerical values is omitted.
  • the "safety margin” is an area in which the value of the safety margin of the host vehicle is stored.
  • the value of the safety margin is described as a unique value set for each vehicle 1. However, the value may be a value unified for all vehicles according to the law or the like.
  • the safety margin includes a margin distance required for safe traveling of the vehicle and a margin time required for safe traveling of the vehicle. In the “safety margin” of this embodiment, the value of the margin distance or the value of the margin time is stored.
  • the same distance as the vehicle length of the host vehicle is set as the margin distance.
  • the margin time is set to, for example, the time required for the host vehicle to travel a distance corresponding to the vehicle length at a predetermined vehicle speed. Since each value of the margin distance and the margin time is a fixed value set for each vehicle, the same value is stored in the “safety margin” of each predicted traveling behavior information S. In the "safety margin" of FIG. 5, the description of specific numerical values is omitted.
  • the own vehicle and the other vehicles passing around the vehicle transmit and receive predicted traveling behavior data D to each other when the on-vehicle communication devices 19 communicate with each other.
  • the host vehicle and other vehicles passing around the vehicle can share the predicted travel behavior data D with each other.
  • the predicted driving behavior data D may include other information such as the speed and acceleration of the host vehicle.
  • the velocity of the vehicle can be obtained by differentiating the absolute position of the vehicle
  • the acceleration of the vehicle can be determined by differentiating the velocity obtained from the absolute position of the vehicle. Therefore, the predicted traveling behavior data D need not necessarily include the speed and acceleration of the host vehicle.
  • the in-vehicle communication device 19 functions as a collision possibility determination device that determines the possibility of collision between the host vehicle and another vehicle.
  • the control unit 191 of the in-vehicle communication device 19 includes a generation unit 195, a determination unit 196, and a correction unit 197.
  • the generation unit 195 generates predicted traveling behavior data D of the own vehicle (hereinafter, referred to as first predicted traveling behavior data D1).
  • the specific generation method of the first predicted traveling behavior data D1 is as described above.
  • the generated first predicted traveling behavior data D1 is a plurality of predictions indicating the predicted traveling behavior of the vehicle at predetermined time intervals within a future prediction period Tc (hereinafter referred to as a first prediction period Tc1) determined by the vehicle. It has traveling behavior information S.
  • the generation unit 195 of the present embodiment generates two types of first predicted traveling behavior data D1.
  • the first type of first predicted traveling behavior data D1 (hereinafter, also referred to as first predicted traveling behavior data D11) is, as shown in FIG. 6, the predicted traveling behavior information S for each rough time interval (for example, every 600 msec). It contains.
  • Each predicted traveling behavior information S of the first predicted traveling behavior data D11 may not have a storage area of “safety margin”.
  • the second type of first predicted traveling behavior data D1 (hereinafter referred to as first predicted traveling behavior data D12) is, as shown in FIG. 5, a time interval (for example, an interval of 300 msec) finer than the first predicted traveling behavior data D11
  • a time interval for example, an interval of 300 msec
  • Each predicted traveling behavior information S is included.
  • the fine time interval is referred to as a first time interval Ts1.
  • the generation unit 195 sequentially generates the first predicted traveling behavior data D11 and D12.
  • the generation unit 195 passes the generated first predicted traveling behavior data D11 to the determination unit 196.
  • the generation unit 195 also passes the generated first predicted traveling behavior data D12 to the correction unit 197.
  • the wireless communication unit (communication unit) 193 of the in-vehicle communication device 19 drives the first predicted traveling behavior data D11 and D12 generated by the generation unit 195 into other vehicles traveling around the host vehicle by inter-vehicle communication.
  • the second type of first predicted traveling behavior data D12 is transmitted only when the wireless communication unit 193 receives information requesting transmission of the first predicted traveling behavior data D12 from another vehicle.
  • the wireless communication unit 193 receives the predicted traveling behavior data D of another vehicle (hereinafter referred to as second predicted traveling behavior data D2) by inter-vehicle communication.
  • the second predicted travel behavior data D2 is a plurality of predicted travel behavior information indicating predicted travel behavior of another vehicle at predetermined time intervals within a future prediction period Tc (hereinafter referred to as second prediction period Tc2) determined by the other vehicle. It has S.
  • the wireless communication unit 193 of the present embodiment receives two types of second predicted traveling behavior data D2.
  • the first type of second predicted travel behavior data D2 (hereinafter referred to as second predicted travel behavior data D21) is predicted travel at rough time intervals (for example, every 600 ms interval). Behavior information S is included.
  • the predicted traveling behavior information S of the second predicted traveling behavior data D21 may not have a storage area of the "safety margin".
  • the second type of second predicted traveling behavior data D2 (hereinafter referred to as second predicted traveling behavior data D22) is, as shown in FIG. 5, a time interval finer than the second predicted traveling behavior data D21 (for example, an interval of 300 ms)
  • Each predicted traveling behavior information S is included.
  • the fine time interval is referred to as a second time interval Ts2.
  • the wireless communication unit 193 transmits, to another vehicle, information requesting transmission of the second predicted traveling behavior data D22 before receiving the second type of second predicted traveling behavior data D22. Therefore, the other vehicle does not transmit the second type second predicted traveling behavior data D22 unless the wireless communication unit 193 transmits the information requesting the transmission.
  • the wireless communication unit 193 passes the received second predicted traveling behavior data D21 to the determination unit 196 of the control unit 191.
  • the wireless communication unit 193 also passes the received second predicted traveling behavior data D22 to the correction unit 197 of the control unit 191.
  • the correction unit 197 sets at least one of the second type of first predicted traveling behavior data D12 generated by the generation unit 195 and the second type of second predicted traveling behavior data D22 received by the wireless communication unit 193. Correct the data. At that time, the correction unit 197 synchronizes the start time of the first prediction period Tc1 and the start time of the second prediction period Tc2 based on the safety margin of the own vehicle and the other vehicle, and the first time interval Ts1 and the second time period Ts1. The at least one data is corrected so that the time interval Ts2 matches. With the correction unit 197 performing such correction processing, the in-vehicle communication device 19 of the present embodiment corrects at least one of the first predicted traveling behavior data D12 and the second predicted traveling behavior data D22. It functions as a correction device for predicted driving behavior data.
  • FIG. 7 is an explanatory diagram of an example of the correction process performed by the correction unit 197.
  • the start time ta0 of the first prediction period Tc1 of the own vehicle and the second prediction period Tc2 of the other vehicle The start time tb0 deviates back and forth and is not synchronized. Further, the first time interval Ts1 and the second time interval Ts2 also do not match.
  • the correction unit 197 first adjusts, for example, the start time tb0 to the disclosure time ta0 in order to synchronize the start time tb0 and the start time ta0. Specifically, the correction unit 197 replaces the value of “time” of the first (the first row in FIG. 5) predicted traveling behavior information S in the second predicted traveling behavior data D22 with the value of the start time ta0. Then, the correction unit 197 sets each value of the “absolute position” and the “azimuth” of the first predicted traveling behavior information S in the second predicted traveling behavior data D22 to the “absolute position” and the “azimuth” at the start time ta0. Replace with each value.
  • the value of "absolute position" at the start time ta0 is, for example, the speed of the other vehicle calculated based on the value of the "absolute position” at the start time tb0 and the next time tb1, and the calculated speed and the time between the start times It can be calculated based on the difference (tb0-ta0). Further, the “azimuth” at the start time ta0 may be determined based on, for example, the value of the “absolute position” at the calculated start time ta0, and the respective values of the “absolute position” and the “azimuth” of the disclosure time tb0 it can.
  • the correction unit 197 synchronizes the start time tb0 with the disclosure time ta0 in order to synchronize the start time tb0 with the start time ta0
  • the disclosure time ta0 may be synchronized with the disclosure time tb0.
  • the correction unit 197 sets each value of “absolute position” and “azimuth” of the first predicted traveling behavior information S in the first predicted traveling behavior data D12 to the “absolute position” and “azimuth” at the start time tb0. It should be replaced with each value.
  • the start time of the first and second prediction periods Tc1 and Tc2 after synchronization is assumed to be t0.
  • the correction unit 197 matches the first time interval Ts1 with the second time interval Ts2 based on the safety margin of the own vehicle and the other vehicle. Specifically, the correction unit 197 determines an appropriate time interval Ts based on the value of “safety margin” of the predicted traveling behavior information S included in each of the first and second predicted traveling behavior data D12 and D22. . Then, the correction unit 197 causes the first time interval Ts1 and the second time interval Ts2 to coincide with each other at the determined time interval Ts.
  • the correction unit 197 determines the shorter one of the margin time of the host vehicle and the margin time of another vehicle as the time interval Ts.
  • the correction unit 197 calculates the margin time of the host vehicle based on the margin distance of the host vehicle and the speed of the host vehicle.
  • the speed of the host vehicle can be calculated, for example, based on the value of the "absolute position" of each of the times ta0, ta1, ta2, ta3, ta4, ... within the first prediction period Tc1.
  • the correction unit 197 also calculates the margin time of the other vehicle based on the margin distance of the other vehicle and the speed of the other vehicle.
  • the speed of the other vehicle can be calculated, for example, based on the value of the "absolute position" of each of the times tb0, tb1, tb2, tb3, tb4, ... within the second prediction period Tc2.
  • the correction unit 197 determines the shorter one of the calculated margin times of the host vehicle and the other vehicle as the time interval Ts.
  • the correction unit 197 determines the margin time of the safety margin as the time interval Ts, but may determine the time other than the margin time as the time interval Ts if it is based on the safety margin. Further, when the safety margin is a value unified for all the vehicles according to the law etc., the correction unit 197 does not use the safety margin for the other vehicles, but based on the value of the unified safety margin of the own vehicle.
  • the time interval Ts may be set.
  • the correction unit 197 determines, from the start time t0, the times t1, t2, t3, and t4 for each determined time interval Ts, as shown in the lower part of FIG. ,... Then, the correction unit 197 sets the times ta1, ta2, ... for each first time interval Ts1 shown in the upper part of FIG. 7 to the times t1, t2, ... for each time interval Ts shown in the lower part of FIG. Thus, the first predicted traveling behavior data D12 is corrected.
  • the correction unit 197 sets the value of “time” of each of the predicted traveling behavior information S (excluding the predicted traveling behavior information S at the start time t0) in the first predicted traveling behavior data D12 to the time t1 and t2 Replace with ... Then, the correction unit 197 sets each value of “absolute position” and “azimuth” of each predicted traveling behavior information S in the first predicted traveling behavior data D12 to “absolute position” at time t1, t2,. And replace with each value of "direction”.
  • Each value of "absolute position” and “azimuth” at time t1, t2, ... is calculated by the same method as the method of calculating each value of "absolute position” and "azimuth” at the start time ta0 described above. be able to.
  • the times tb1, tb2, ... for each second time interval Ts2 shown in the upper part of FIG. 7 become the times t1, t2, ... for each time interval Ts shown in the lower part of FIG.
  • the second predicted traveling behavior data D22 is also corrected.
  • the correction unit 197 sets the value of “time” of each of the predicted traveling behavior information S (excluding the predicted traveling behavior information S at the start time t0) in the second predicted traveling behavior data D22 to time t1 and t2 Replace with ... Then, the correction unit 197 sets each value of “absolute position” and “azimuth” of each predicted traveling behavior information S in the second predicted traveling behavior data D22 to “absolute position” at time t1, t2,. And replace with each value of "direction”.
  • Each value of "absolute position” and “azimuth” at time t1, t2, ... is calculated by the same method as the method of calculating each value of "absolute position” and "azimuth” at the start time ta0 described above. be able to.
  • the first and second predicted traveling behavior data D12 and D22 after correction are the first and second prediction periods as shown in the lower part of FIG. 7.
  • the start times ta0 and tb0 of Tc1 and Tc2 are synchronized at the start time t0, and the first and second time intervals Ts1 and Ts2 coincide with each other at the time interval Ts.
  • the correction unit 197 passes the corrected first and second predicted traveling behavior data D12 and D22 to the determination unit 196.
  • Determination unit 196 determines the possibility of a collision between the host vehicle and another vehicle (hereinafter, also simply referred to as a collision possibility) based on first predicted traveling behavior data D1 and second predicted traveling behavior data D2. First, the determination unit 196 of the present embodiment executes a first determination that determines a rough collision possibility based on the first type of first and second predicted traveling behavior data D11 and D21. Then, when it is determined that there is a collision possibility by the first determination, the determination unit 196 determines the detailed collision possibility based on the second type of first and second predicted traveling behavior data D12 and D22. 2 Execute the judgment.
  • FIG. 8 is a road plan view illustrating a situation in which the host vehicle may collide with another vehicle.
  • the host vehicle 1A when the host vehicle 1A is traveling in the lane R2 at a speed of 100 km / h, another vehicle 1B traveling in the lane R1 at a speed of 80 km / h in the diagonally forward of the host vehicle 1A.
  • the case of changing lanes to lane R2 is shown.
  • the processing contents of the first and second determinations performed by the determination unit 196 will be described with respect to the collision possibility due to the lane change shown in FIG.
  • the determination unit 196 generates a future first traveling locus L1 of the vehicle 1A in the first prediction period Tc1 from the first predicted traveling behavior data D11, as shown in the upper part of FIG. Specifically, the determination unit 196 performs map matching processing from the “time” and the “absolute position” of each piece of predicted traveling behavior information S included in the first type of first predicted traveling behavior data D11 and the map information. A plurality of coordinate points C1 (longitude and latitude) indicating the absolute position of the vehicle 1A at each time within the first prediction period Tc1 are plotted on the road map.
  • the determination unit 196 finds an approximation line (an approximation straight line in the upper example of FIG. 9) passing through the plurality of coordinate points C1 using, for example, polynomial approximation. .
  • the calculated approximate line is a future first travel locus L1 of the vehicle 1A in the first prediction period Tc1.
  • the first travel locus L1 shown in the upper part of FIG. 9 passes the absolute position (coordinate point C1) of the vehicle 1A at each time ta0, ta2, ta4 from the current time ta0 to the time ta2 every 600 ms and the time ta4. Do.
  • the determination unit 196 generates a future second traveling locus L2 of the other vehicle 1B in the second prediction period Tc2 from the first type of second predicted traveling behavior data D21, as shown in the lower part of FIG. 9. Specifically, the determination unit 196 performs map matching processing from each value of “time” and “absolute position” of each predicted traveling behavior information S included in the second predicted traveling behavior data D 21 and map information, A plurality of coordinate points C2 (longitude and latitude) indicating the absolute position of the other vehicle 1B at each time within the second prediction period Tc2 are plotted on the road map.
  • the determination unit 196 finds an approximation line (an approximation curve in the lower example of FIG. 9) passing through the plurality of coordinate points C2 using, for example, polynomial approximation. .
  • the calculated approximate line is a future second travel locus L2 of the other vehicle 1B in the second prediction period Tc2.
  • the second travel locus L2 shown in the lower part of FIG. 9 passes the absolute position (coordinate point C2) of the other vehicle 1B at each time tb0, tb2, tb4 from time tb0 to time tb2 every 600 ms and time tb4 Do.
  • determination unit 196 arranges a first traveling locus L1 of vehicle 1A and a second traveling locus L2 of other vehicle 1B on one road map, and the traveling loci L1 and L2 are one another. It is determined whether or not to intersect. The determination unit 196 determines that there is a collision possibility if the traveling loci L1 and L2 intersect with each other, and determines that there is no collision possibility if the traveling loci L1 and L2 do not intersect. In the example of FIG. 10, since the traveling trajectories L1 and L2 cross each other, the determination unit 196 determines that there is a collision possibility in the first determination.
  • the determination unit 196 of the present embodiment determines the collision possibility based on the first and second predicted traveling behavior data D11 and D12 as a first determination to determine the rough collision possibility
  • the collision possibility may be determined using the first and second sensors 51, 52 or the like.
  • the determination unit 196 determines a plurality of first regions indicating the position of the vehicle 1A at each time interval Ts. 1. Determine a vehicle area Av1. Specifically, the determination unit 196 determines the “time”, “absolute position”, vehicle width and length of “vehicle attribute”, and map information of each predicted traveling behavior information S included in the first predicted traveling behavior data D12. Then, map matching processing is performed to plot the first vehicle area Av1 in which the vehicle 1A is located at each time on the road map.
  • the first vehicle area Av1 at each time is a rectangular area centered on the absolute position (coordinate point C1) corresponding to each time.
  • the length in the short direction of the rectangular area is set to the width of the vehicle 1A, and the length in the longitudinal direction of the rectangular area is set to the length of the vehicle 1A.
  • the shape of the first vehicle area Av1 may be a shape other than a rectangle, such as a circle.
  • the first vehicle area Av1 of the host vehicle 1A at each time t0, t1, t2, t3 and t4 is shown in the upper part of FIG.
  • the determination unit 196 determines a plurality of second vehicle areas Av2 indicating areas where the other vehicle 1B is located at every time interval Ts. Specifically, the determination unit 196 determines the “time”, “absolute position”, vehicle width and length of “vehicle attribute”, and map information of each piece of predicted traveling behavior information S included in the second predicted traveling behavior data D22. Then, map matching processing is performed to plot the second vehicle area Av2 in which the other vehicle 1B is located at each time on the road map.
  • the second vehicle area Av2 at each time is a rectangular area centered on the absolute position (coordinate point C2) corresponding to each time.
  • the length in the short direction of the rectangular area is set to the width of the other vehicle 1B, and the length in the longitudinal direction of the rectangular area is set to the length of the other vehicle 1B.
  • region Av2 may be other shapes, such as circular other than a rectangle.
  • the lower part of FIG. 11 shows the second vehicle area Av2 of the other vehicle 1B at each of the times t0, t1, t2, t3 and t4.
  • determination unit 196 determines, on one road map, a first vehicle area Av1 at each time t0 to t4 of own vehicle 1A and a second vehicle area at each time t0 to t4 of other vehicle 1B. Arrange with Av2. Then, the determination unit 196 determines whether or not the first movement locus La of the first vehicle area Av1 and the second movement locus Lb of the second vehicle area Av2 intersect at the same time.
  • FIG. 13 is an explanatory diagram of a first movement locus La of the first vehicle area Av1 and a second movement locus Lb of the second vehicle area Av2.
  • the first movement locus La of the first vehicle area Av1 starts from the four corners of the first vehicle area Av1 at the start time t0 and the four corners of the first vehicle area Av1 at the times t1, t2,. It passes in order and it consists of four straight lines which connect to four corners of 1st vehicle area Av1 of last time tn (n is an integer greater than or equal to 1).
  • the second movement locus Lb of the second vehicle area Av2 sequentially passes from the four corners of the second vehicle area Av2 at time t1, t2,... From the four corners of the second vehicle area Av2 at the start time t0.
  • the determination unit 196 determines that there is a collision possibility. judge. In addition, if any of the four straight lines of the first movement locus La does not intersect any of the four straight lines of the second movement locus Lb during the same time, the determination unit 196 may determine the collision possibility. Determine that there is no In the example of FIG. 12, since the first movement locus La of the first vehicle area Av1 and the second movement locus Lb of the second vehicle area Av2 intersect between time t2 and time t3, the determination unit 196 It is determined in the second determination that there is a possibility of collision.
  • the first and second determinations performed by the determination unit 196 can be applied to the determination of the collision possibility other than the lane change.
  • the first and second determinations also apply to the determination of the possibility of collision in other traffic situations, such as the possibility of collision of right-turn vehicles at intersections, the possibility of collision of merging vehicles in merging sections of expressways or general roads, etc. can do.
  • the first vehicle range Av1 of the own vehicle 1A and the second vehicle range Av2 of the other vehicle 1B at the same time there is a way to determine that there is a possibility of collision if
  • this determination method there are cases where the determination result of the determination unit 196 is erroneously determined as follows.
  • the determination unit 196 determines the possibility of collision between the own vehicle 1A going straight at an intersection and the other vehicle 1B turning right at the intersection.
  • the first vehicle region at the same time t11 Av1 and the second vehicle area Av2 do not overlap.
  • the first vehicle area Av1 and the second vehicle areas Av1 and Av2 at the same time t12 do not overlap.
  • the determination unit 196 determines that there is no collision possibility.
  • the probability that the own vehicle 1A and the other vehicle 1B collide with each other is high between time t11 and time t12 which are between the same times.
  • the determination result of the part 196 is an incorrect determination.
  • the collision possibility is determined using the first and second movement trajectories La and Lb as in the present embodiment
  • the first vehicle area Av1 is obtained during the same time.
  • the determination unit 196 correctly determines that there is a possibility of collision because the first movement locus La of and the second movement locus Lb of the second vehicle area Av2 cross each other.
  • the determination result of the determination unit 196 is an incorrect determination in the following cases.
  • the distance between the first vehicle areas Av1 that move forward and backward in time and the distance between the second vehicle areas Av2 that move forward and backward in time become longer.
  • the first movement locus La of the first vehicle area Av1 and the second movement locus Lb of the second vehicle area Av2 intersect between the time t21 and the time t22 which are between the same times.
  • the determination unit 196 determines that there is a possibility of collision.
  • the time interval Ts is roughened about the margin time Also, it is possible to guarantee the accuracy of determination on the safety side. For example, as shown in FIG. 16, even when the probability that the own vehicle 1A and the other vehicle 1B do not collide is high in fact, as shown in FIG. 16, the first vehicle is in the time interval Ts (margin time) between time t31 and time t32. The first movement locus La of the area Av1 and the second movement locus Lb of the second vehicle area Av2 intersect. For this reason, the determination unit 196 determines on the safety side that there is a possibility of collision even if there is no collision in practice.
  • the margin time to the time interval Ts, it is possible to prevent the time interval Ts from being too fine. As a result, since the possibility of collision can be determined without excessively estimating the safety, it is possible to reduce the amount of extra data used for the determination process. Therefore, by setting the margin time to the time interval Ts, it is possible to suppress an increase in the amount of data used for the determination process while securing the determination accuracy of the collision possibility between the own vehicle and the other vehicle.
  • FIG. 17 is a flowchart showing the procedure of the collision possibility determination process performed by the in-vehicle communication device 19.
  • the in-vehicle communication device 19 first performs two types of first predictions having a plurality of predicted travel behavior information S indicating the predicted travel behavior of the host vehicle at predetermined time intervals within the first prediction period Tc1.
  • the traveling behavior data D1 is generated.
  • the in-vehicle communication device 19 calculates the first predicted traveling behavior data D11 of the first type of the vehicle including the predicted traveling behavior information S at rough time intervals, and the predicted traveling behavior information S at every fine time interval.
  • a second type of first predicted traveling behavior data D12 of the vehicle including the vehicle is generated (step ST1, generation step).
  • the in-vehicle communication device 19 transmits the first type of first predicted traveling behavior data D11 to another vehicle traveling in the vicinity of the own vehicle by inter-vehicle communication (step ST2). Then, the in-vehicle communication device 19 receives the first type of second predicted traveling behavior data D21 transmitted by the inter-vehicle communication by another vehicle traveling around the host vehicle (step ST3).
  • the second predicted traveling behavior data D21 is data including predicted traveling behavior information S of another vehicle at rough time intervals in the second prediction period Tc2, as described above.
  • the on-vehicle communication device 19 roughly collides with the other vehicle based on the generated first predicted traveling behavior data D11 of the own vehicle and the received second predicted traveling behavior data D21 of the other vehicle.
  • a first determination to determine the possibility is performed (step ST4). In the first determination, as described above, the on-vehicle communication device 19 determines that there is a possibility of collision when the first traveling locus L1 of the own vehicle and the second traveling locus L2 of the other vehicle intersect, as described above If the trajectories L1 and L2 do not cross each other, it is determined that there is no collision possibility.
  • step ST5 If it is determined that there is no collision possibility in the first determination (in the case of “No” in step ST5), the in-vehicle communication device 19 ends the process. On the other hand, when it is determined that the in-vehicle communication device 19 has the possibility of collision in the first determination (in the case of “Yes” in step ST5), the second type of the own vehicle and the other vehicles having the possibility of collision 2. A correction process of predicted traveling behavior data D12 and D22 is executed (step ST6).
  • the first predicted traveling behavior data D12 of the own vehicle is data generated in the first step ST1 and includes the estimated traveling behavior information S of the own vehicle for every fine time interval in the first estimation period Tc1 as described above. It is.
  • the second predicted traveling behavior data D22 of the other vehicle is data generated by the other vehicle, and as described above, is data including the predicted traveling behavior information S of the other vehicle at fine time intervals within the second prediction period Tc2. It is.
  • FIG. 18 is a flowchart showing the processing procedure of the correction processing performed by the on-vehicle communication device 19.
  • the in-vehicle communication device 19 performs, by inter-vehicle communication, information requesting transmission of the second predicted traveling behavior data D22 generated by the other vehicle determined to have the possibility of collision in the first determination. It transmits (step ST31).
  • the in-vehicle communication device 19 receives the second predicted traveling behavior data D22 from the other vehicle determined to have the possibility of collision in the first determination by inter-vehicle communication (step ST32, communication step).
  • the in-vehicle communication device 19 starts the start time of the first prediction period Tc1 in the first prediction travel behavior data D12 of the host vehicle and the start of the second prediction period Tc2 in the received second prediction travel behavior data D22 of the other vehicle
  • Each value of at least one of the first and second predicted traveling behavior data D12 and D22 "time”, “absolute position” and “direction” is corrected so as to synchronize time (step ST33, correction step).
  • the correction method of each value of "time”, “absolute position”, and “azimuth” here is as described above.
  • the on-vehicle communication device 19 determines the time interval Ts based on the safety margin of the own vehicle and the other vehicle (step ST34). The method of determining the time interval Ts is as described above. Then, the on-vehicle communication device 19 determines the first time interval Ts1 in the first predicted traveling behavior data D12 of the own vehicle and the second time interval Ts2 in the received second predicted traveling behavior data D22 of the other vehicle. Each value of at least one of "time”, “absolute position”, and “azimuth” of the first and second predicted traveling behavior data D12 and D22 is corrected so as to coincide with Ts (step ST35, correction step). The correction method of each value of "time”, “absolute position”, and “azimuth” here is as described above.
  • the in-vehicle communication device 19 determines a detailed collision possibility between the own vehicle and the other vehicle based on the corrected first and second predicted traveling behavior data D12 and D22. The determination is performed (step ST7). In the second determination, as described above, the in-vehicle communication device 19 intersects the first movement locus La of the first vehicle area Av1 of the host vehicle 1A and the second movement locus Lb of the second vehicle area Av2 of the other vehicle. In the case, it is determined that there is a collision possibility, and when the first and second movement trajectories La and Lb do not cross each other, it is determined that there is no collision possibility.
  • the first time interval Ts1 of the first predicted traveling behavior data D12 of the own vehicle and the second time interval Ts2 of the second predicted traveling behavior data D22 of the other vehicle are corrected so that they coincide with each other at a margin time (time interval Ts) which is a safety margin. Therefore, when determining the possibility of collision between the own vehicle and the other vehicle, it is possible to guarantee the accuracy of the determination on the safety side. In addition, since the possibility of collision can be determined without excessively estimating the safety, the amount of extra data used for the determination process can be reduced. As a result, it is possible to suppress an increase in the amount of data used for the determination process while securing the determination accuracy of the collision possibility between the own vehicle and the other vehicle.
  • the correction unit 197 of the in-vehicle communication device 19 sets the first and second time intervals Ts1 at a time interval Ts determined based on the margin distance and the speed of the own vehicle or another vehicle. , Ts2 are matched, so that the first and second time intervals Ts1, Ts2 can be matched at an appropriate time interval Ts.
  • the correction unit 197 makes the first and second time intervals Ts1 and Ts2 coincide with each other at the time interval Ts which is the margin time, so that the time interval Ts can be easily determined. it can.
  • the correction unit 197 makes the first and second time intervals Ts1 and Ts2 coincide with each other at a time interval Ts determined based on the safety margins of the own vehicle and the other vehicle. For this reason, even when the safety margin of the own vehicle and the safety margin of the other vehicle are different, the first and second time intervals Ts1 and Ts2 can be made to coincide with each other at an appropriate time interval Ts. It is possible to effectively suppress an increase in the amount of data used in the determination process while securing the determination accuracy of the possibility of collision with another vehicle.
  • the wireless communication unit 193 of the in-vehicle communication device 19 performs second predicted traveling behavior data D22 of the other vehicle. Can be reduced to reduce the amount of communication data for inter-vehicle communication.
  • the in-vehicle communication device 19 is used as a correction device for predicted traveling behavior data, but the relay device 20 may be used as the correction device. Further, although the correction device corrects predicted traveling behavior data of the own vehicle and one other vehicle, the correcting device may correct predicted traveling behavior data of the own vehicle and a plurality of other vehicles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

This predicted travel behavior data correction device, which is a device for correcting predicted travel behavior data, is provided with: a generation unit which generates first predicted travel behavior data (defined below); a communication unit which receives second predicted travel behavior data (defined below) via vehicle-to-vehicle communication; and a correction unit which corrects the first predicted travel behavior data and/or the second predicted travel behavior data on the basis of a predetermined safety margin so that the start time of a first prediction period and the start time of a second prediction period synchronize with each other, and a first time interval and a second time interval coincide with each other. The first predicted travel behavior data: predicted travel behavior data indicating predicted travel behavior of a host vehicle as obtained at the first time interval, which is predetermined, within the first prediction period, which is a future period. The second predicted travel behavior data: predicted travel behavior data indicating predicted travel behavior of another vehicle as obtained at the second time interval, which is predetermined, within the second prediction period, which is a future period.

Description

予測走行挙動データの補正装置、予測走行挙動データの補正方法、及びコンピュータプログラムCorrection device for predicted traveling behavior data, correction method for predicted traveling behavior data, and computer program
 本発明は、予測走行挙動データの補正装置、予測走行挙動データの補正方法、及びコンピュータプログラムに関する。 The present invention relates to a correction device for predicted traveling behavior data, a correction method for predicted traveling behavior data, and a computer program.
 近年、自動車の自動運転技術の開発が盛んに行われている。自動車の自動運転を実現するためには、自車両の周囲に存在する他車両との衝突を回避することが重要となる。自車両と他車両との衝突を回避する技術として、例えば特許文献1に示す運転支援装置が既に提案されている。
 この運転支援装置は、自車両および他車両の将来の移動範囲を予測し、予測した移動範囲に基づいて将来の衝突可能性を判定する。そして、運転支援装置は、将来の衝突可能性があると判定した場合、衝突を回避するための運転支援を実行する。
In recent years, development of automatic driving technology of a car has been actively conducted. In order to realize automatic driving of a car, it is important to avoid collisions with other vehicles present around the vehicle. As a technique for avoiding a collision between the own vehicle and another vehicle, for example, a driving support device shown in Patent Document 1 has already been proposed.
The driving support device predicts future movement ranges of the host vehicle and the other vehicle, and determines future collision possibility based on the predicted movement ranges. Then, when it is determined that there is a possibility of a collision in the future, the driving support device performs driving support for avoiding a collision.
国際公開第2012/172632号International Publication No. 2012/172632 特開2016-99713号公報JP, 2016-99713, A
 本発明の一態様に係る予測走行挙動データの補正装置は、予測走行挙動データを補正する装置であって、下記に定義する第1予測走行挙動データを生成する生成部と、下記に定義する第2予測走行挙動データを車車間通信により受信する通信部と、所定の安全マージンに基づいて、第1予測期間の開始時刻及び第2予測期間の開始時刻を同期させ、且つ第1時間間隔及び第2時間間隔を一致させるように、前記第1及び第2予測走行挙動データのうちの少なくとも一方のデータを補正する補正部と、を備える予測走行挙動データの補正装置である。
 第1予測走行挙動データ:将来の第1予測期間内における所定の第1時間間隔毎の自車両の予測走行挙動を示す予測走行挙動データ
 第2予測走行挙動データ:将来の第2予測期間内における所定の第2時間間隔毎の他車両の予測走行挙動を示す予測走行挙動データ
The correction device of predicted traveling behavior data according to one aspect of the present invention is a device for correcting predicted traveling behavior data, and a generation unit that generates first predicted traveling behavior data defined below; 2 Synchronize the start time of the first prediction period and the start time of the second prediction period based on the communication unit that receives the predicted travel behavior data by inter-vehicle communication, and the predetermined safety margin, and synchronize the first time interval and the first time interval And a correction unit configured to correct at least one of the first and second predicted traveling behavior data so as to make the two-hour intervals coincide with each other.
First predicted traveling behavior data: predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period Second predicted traveling behavior data: within a second predicted period in the future Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
 本発明の一態様に係る予測走行挙動データの補正方法は、予測走行挙動データを補正する方法であって、下記に定義する第1予測走行挙動データを生成する生成ステップと、下記に定義する第2予測走行挙動データを車車間通信により受信する通信ステップと、所定の安全マージンに基づいて、第1予測期間の開始時刻及び第2予測期間の開始時刻を同期させ、且つ第1時間間隔及び第2時間間隔を一致させるように、前記第1及び第2予測走行挙動データのうちの少なくとも一方のデータを補正する補正ステップと、を含む予測走行挙動データの補正方法である。
 第1予測走行挙動データ:将来の第1予測期間内における所定の第1時間間隔毎の自車両の予測走行挙動を示す予測走行挙動データ
 第2予測走行挙動データ:将来の第2予測期間内における所定の第2時間間隔毎の他車両の予測走行挙動を示す予測走行挙動データ
A method of correcting predicted traveling behavior data according to an aspect of the present invention is a method of correcting predicted traveling behavior data, and the generation step of generating first predicted traveling behavior data defined below; (2) Synchronize the start time of the first prediction period and the start time of the second prediction period based on the communication step of receiving the predicted traveling behavior data by inter-vehicle communication and the predetermined safety margin, and the first time interval and the And correcting the data of at least one of the first and second predicted traveling behavior data so as to make the two time intervals coincide with each other.
First predicted traveling behavior data: predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period Second predicted traveling behavior data: within a second predicted period in the future Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
 本発明の一態様に係るコンピュータプログラムは、予測走行挙動データを補正する処理をコンピュータに実行させるためのコンピュータプログラムであって、コンピュータを、下記に定義する第1予測走行挙動データを生成する生成部と、下記に定義する第2予測走行挙動データを車車間通信により受信する通信部と、所定の安全マージンに基づいて、第1予測期間の開始時刻及び第2予測期間の開始時刻を同期させ、且つ第1時間間隔及び第2時間間隔を一致させるように、前記第1予測走行挙動データ、及び車車間通信により通信部で受信された予測走行挙動データのうちの少なくとも一方のデータを補正する補正部として機能させるためのコンピュータプログラムである。
 第1予測走行挙動データ:将来の第1予測期間内における所定の第1時間間隔毎の自車両の予測走行挙動を示す予測走行挙動データ
 第2予測走行挙動データ:将来の第2予測期間内における所定の第2時間間隔毎の他車両の予測走行挙動を示す予測走行挙動データ
A computer program according to an aspect of the present invention is a computer program for causing a computer to execute a process of correcting predicted traveling behavior data, and a generation unit that generates first predicted traveling behavior data that defines the computer below. And synchronizing the start time of the first prediction period and the start time of the second prediction period based on a predetermined safety margin and a communication unit that receives the second prediction travel behavior data defined below by inter-vehicle communication, And the correction is performed to correct at least one of the first predicted traveling behavior data and the predicted traveling behavior data received by the communication unit through the inter-vehicle communication such that the first time interval and the second time interval coincide with each other. It is a computer program for functioning as a part.
First predicted traveling behavior data: predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period Second predicted traveling behavior data: within a second predicted period in the future Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
本発明の実施形態に係る通信システムの全体構成図である。FIG. 1 is an overall configuration diagram of a communication system according to an embodiment of the present invention. 車内システムの構成を示すブロック図である。It is a block diagram showing composition of an in-vehicle system. 中継装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a relay apparatus. 車載通信機の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a vehicle-mounted communication apparatus. 予測走行挙動データの内容及び生成方法を示す説明図である。It is explanatory drawing which shows the content and production method of prediction driving | running | working behavior data. 粗い時間間隔の予測走行挙動情報を有する測走行挙動データの内容を示す説明図である。It is explanatory drawing which shows the content of the sound-measurement running behavior data which have the prediction driving behavior information of a rough time interval. 補正処理の一例を示す説明図である。It is an explanatory view showing an example of amendment processing. 自車両と他車両とが衝突する可能性がある状況を例示した道路平面図である。It is the road top view which illustrated the condition where the own vehicle and the other vehicle may collide. 予測期間における自車両及び他車両の走行軌跡を示す道路平面図である。It is a road top view showing a run track of self-vehicles and other vehicles in a prediction period. 1つの道路地図上に自車両及び他車両の走行軌跡を配置した状態を示す道路平面図である。It is a road top view showing the state where the run locus of self-vehicles and other vehicles is arranged on one road map. 予測期間における所定時刻間隔毎の自車両及び他車両の車両領域を示す道路平面図である。It is a road top view showing the vehicles field of self-vehicles and other vehicles for every predetermined time interval in a prediction period. 1つの道路地図上に自車両及び他車両の車両領域を配置した状態を示す道路平面図である。It is a road top view which shows the state which has arrange | positioned the vehicle area | region of the own vehicle and another vehicle on one road map. 第1移動軌跡と第2移動軌跡の説明図である。It is explanatory drawing of a 1st movement trace and a 2nd movement trace. 交差点で直進する自車両と、交差点で右折する他車両との衝突可能性を判定する場合の説明図である。It is an explanatory view in a case where a collision possibility with self-vehicles which go straight at an intersection and other vehicles which turn right at an intersection are judged. 交差点で直進する自車両と、交差点で右折する他車両との衝突可能性を、粗い時間間隔で判定する場合の説明図である。It is an explanatory view in a case where a collision possibility with self-vehicles which go straight at an intersection, and other vehicles which turn right at an intersection are judged at rough time intervals. 交差点で直進する自車両と、交差点で右折する他車両との衝突可能性を、安全マージンの時間間隔で判定する場合の説明図である。It is explanatory drawing in the case of determining the collision possibility with the self-vehicles which go straight at an intersection, and the other vehicles which turn right at an intersection by the time interval of a safety margin. 衝突可能性判定の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of collision possibility determination. 補正処理の処理手順を示すフローチャートである。It is a flow chart which shows the processing procedure of amendment processing.
<本開示が解決しようとする課題>
 前記運転支援装置では、自車両及び他車両の将来の移動範囲を、現時点の状況に基づいて予測している。このため、予測の不確実性が高くなり、将来の想定外の状況に対応できず、衝突可能性の判定を誤るおそれがある。
 そこで、他車両の将来における所定の時間間隔毎の予測走行挙動を示す予測走行挙動データを車車間通信により取得し、自車両の予測走行挙動データと他車両の予測走行挙動データとに基づいて、自車両と他車両との衝突可能性を判定することが考えられる。
<Issues the present disclosure is trying to solve>
The driving support device predicts future movement ranges of the own vehicle and the other vehicle based on the current situation. For this reason, the uncertainty of prediction becomes high, and it can not respond to the future unexpected situation, and there is a possibility that judgment of collision possibility may be mistaken.
Therefore, the predicted travel behavior data indicating the predicted travel behavior for each predetermined time interval in the future of the other vehicle is acquired by inter-vehicle communication, and based on the predicted travel behavior data of the own vehicle and the predicted travel behavior data of the other vehicle It is conceivable to determine the possibility of collision between the own vehicle and another vehicle.
 この場合、自車両及び他車両の予測走行挙動データは、互いに異なる開始時刻や時間間隔で生成される。このため、両車両の予測走行挙動データ同士の開始時刻を同期させたり、時間間隔を一致させたりする補正処理を自車両で行う必要がある。その際、時間間隔を限りなく細かくすれば、衝突可能性の判定精度を高くすることはできるが、その反面、データ量が膨大となり、判定処理が間に合わなくなるおそれがある。 In this case, predicted traveling behavior data of the own vehicle and the other vehicle are generated at different start times and time intervals. For this reason, it is necessary to perform the correction process which synchronizes the start time of prediction driving | running | working behavior data of both vehicles, or makes a time interval correspond by own vehicle. At that time, if the time interval is made as fine as possible, the determination accuracy of the collision possibility can be enhanced, but on the other hand, the amount of data becomes enormous and the determination processing may not be in time.
 そこで、かかる事情に鑑み、自車両と他車両との衝突可能性の判定精度を確保しつつ、判定処理に用いるデータ量が膨大になるのを抑制することができる予測走行挙動データの補正装置等を提供することを目的とする。 Therefore, in view of such circumstances, a correction device of predicted traveling behavior data and the like capable of suppressing an increase in the amount of data used for the determination processing while securing the determination accuracy of the collision possibility between the own vehicle and the other vehicle Intended to provide.
<本開示の効果>
 本発明によれば、自車両と他車両との衝突可能性の判定精度を確保しつつ、判定処理に用いるデータ量が膨大になるのを抑制することができる。
<Effect of the present disclosure>
According to the present invention, it is possible to suppress an increase in the amount of data used for the determination process while securing the determination accuracy of the collision possibility between the own vehicle and the other vehicle.
<本発明の実施形態の説明>
 最初に本発明の実施形態の内容を列記して説明する。
 (1)本発明の実施形態に係る予測走行挙動データの補正装置は、予測走行挙動データを補正する装置であって、下記に定義する第1予測走行挙動データを生成する生成部と、下記に定義する第2予測走行挙動データを車車間通信により受信する通信部と、所定の安全マージンに基づいて、第1予測期間の開始時刻及び第2予測期間の開始時刻を同期させ、且つ第1時間間隔及び第2時間間隔を一致させるように、前記第1及び第2予測走行挙動データのうちの少なくとも一方のデータを補正する補正部と、を備える。
 第1予測走行挙動データ:将来の第1予測期間内における所定の第1時間間隔毎の自車両の予測走行挙動を示す予測走行挙動データ
 第2予測走行挙動データ:将来の第2予測期間内における所定の第2時間間隔毎の他車両の予測走行挙動を示す予測走行挙動データ
 
<Description of the embodiment of the present invention>
First, the contents of the embodiment of the present invention will be listed and described.
(1) A correction device for predicted traveling behavior data according to an embodiment of the present invention is a device for correcting predicted traveling behavior data, and a generation unit for generating first predicted traveling behavior data defined below, and The start time of the first prediction period and the start time of the second prediction period are synchronized based on a predetermined safety margin and the communication unit that receives the second predicted traveling behavior data to be defined by inter-vehicle communication, and the first time And a correction unit configured to correct at least one of the first and second predicted traveling behavior data such that the interval and the second time interval coincide with each other.
First predicted traveling behavior data: predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period Second predicted traveling behavior data: within a second predicted period in the future Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
 前記予測走行挙動データの補正装置は、安全マージンに基づいて、自車両の予測走行挙動を示す第1予測走行挙動データの第1時間間隔と、他車両の予測走行挙動を示す第2予測走行挙動データの第2時間間隔とを一致させるように、前記少なくとも一方のデータを補正する。
 その際、第1及び第2時間間隔を、安全マージンに対応する時間間隔よりも大幅に粗い時間間隔とならないように一致させればよい。このようにすれば、補正後の第1及び第2予測走行挙動データに基づいて自車両と他車両との衝突可能性を判定するときに、安全側に判定する精度を保証することができる。
The correction device for predicted driving behavior data is based on the safety margin, a first time interval of first predicted driving behavior data indicating the predicted driving behavior of the own vehicle, and a second predicted driving behavior indicating the predicted driving behavior of the other vehicle. The at least one data is corrected to match the second time interval of the data.
In this case, the first and second time intervals may be matched so as not to be significantly coarser than the time interval corresponding to the safety margin. In this way, when determining the possibility of collision between the host vehicle and another vehicle based on the corrected first and second predicted traveling behavior data, it is possible to guarantee the accuracy of the determination on the safety side.
 また、第1及び第2時間間隔を、安全マージンに対応する時間間隔よりも大幅に細かい時間間隔とならないように一致させればよい。このようにすれば、安全を過剰に見積もることなく前記衝突可能性を判定することができるので、判定処理に用いる余分なデータ量を減らすことができる。
 従って、安全マージンに基づいて第1及び第2時間間隔を一致させるように前記少なくとも一方のデータを補正することで、自車両と他車両との衝突可能性の判定精度を確保しつつ、判定処理に用いるデータ量の膨大化を抑制することができる。
Also, the first and second time intervals may be matched so as not to be much smaller than the time interval corresponding to the safety margin. In this way, since the collision possibility can be determined without excessively estimating the safety, it is possible to reduce the amount of extra data used for the determination process.
Therefore, by correcting the at least one data to match the first and second time intervals based on the safety margin, the determination processing of the collision possibility between the own vehicle and the other vehicle is ensured while the determination processing is performed. It is possible to suppress the increase in the amount of data used for
 (2)前記安全マージンは、安全走行に必要なマージン距離であり、前記補正部は、前記マージン距離と、自車両又は他車両の速度とに基づいて、前記第1及び第2時間間隔を一致させるのが好ましい。
 この場合、補正部は、安全マージンであるマージン距離と、自車両又は他車両の速度とに基づいて、第1及び第2時間間隔を適切な時間間隔で一致させることができる。
(2) The safety margin is a margin distance necessary for safe traveling, and the correction unit matches the first and second time intervals based on the margin distance and the speed of the host vehicle or the other vehicle. It is preferable to
In this case, the correction unit can match the first and second time intervals at appropriate time intervals based on the margin distance, which is a safety margin, and the speed of the own vehicle or another vehicle.
 (3)前記安全マージンは、安全走行に必要なマージン時間であり、前記補正部は、前記第1及び第2時間間隔を前記マージン時間で一致させてもよい。
 この場合、補正部は、第1及び第2時間間隔を、安全マージンであるマージン時間で一致させるため、一致させる時間間隔を容易に決定することができる。
(3) The safety margin may be a margin time required for safe traveling, and the correction unit may make the first and second time intervals coincide with each other at the margin time.
In this case, since the correction unit matches the first and second time intervals with a margin time which is a safety margin, the correction time interval can be easily determined.
 (4)前記通信部は、車車間通信により他車両の安全マージンをさらに受信し、前記補正部は、自車両の安全マージン、及び受信した前記他車両の安全マージンに基づいて、前記第1及び第2時間間隔を一致させるのが好ましい。
 この場合、自車両の安全マージンと他車両の安全マージンとが異なる場合であっても、第1及び第2時間間隔を適切な時間間隔で一致させることができるので、自車両と他車両との衝突可能性の判定精度を確保しつつ、判定処理に用いるデータ量の膨大化を効果的に抑制することができる。
(4) The communication unit further receives the safety margin of the other vehicle by inter-vehicle communication, and the correction unit determines the first and second safety margins of the own vehicle and the received safety margin of the other vehicle. It is preferred to match the second time interval.
In this case, even if the safety margin of the own vehicle and the safety margin of the other vehicle are different, the first and second time intervals can be made to coincide with each other at appropriate time intervals. It is possible to effectively suppress an increase in the amount of data used for the determination process while securing the determination accuracy of the collision possibility.
 (5)前記通信部は、自車両と他車両との衝突可能性がある場合に、当該他車両の前記第2予測走行挙動データを受信するのが好ましい。
 この場合、車車間通信の通信データ量を削減することができる。
(5) The communication unit preferably receives the second predicted traveling behavior data of the other vehicle when there is a possibility of a collision between the own vehicle and the other vehicle.
In this case, the communication data amount of the inter-vehicle communication can be reduced.
 (6)本発明の実施形態に係る予測走行挙動データの補正方法は、上述の予測走行挙動データの補正装置において実行される予測走行挙動データの補正方法である。従って、本実施形態の予測走行挙動データの補正方法は、上述の予測走行挙動データの補正装置と同様の作用効果を奏する。 (6) The method of correcting predicted traveling behavior data according to the embodiment of the present invention is a method of correcting predicted traveling behavior data to be executed in the above-described predicted traveling behavior data correction device. Therefore, the correction method of the predicted traveling behavior data of the present embodiment has the same effect as the correction device of the predicted traveling behavior data described above.
 (7)本発明の実施形態に係るコンピュータプログラムは、コンピュータを、上述の予測走行挙動データの補正装置として機能させるためのコンピュータプログラムである。従って、本実施形態のコンピュータプログラムは、上述の予測走行挙動データの補正装置と同様の作用効果を奏する。 (7) A computer program according to an embodiment of the present invention is a computer program for causing a computer to function as the above-described predicted traveling behavior data correction device. Therefore, the computer program of the present embodiment has the same effects as the correction device for predicted traveling behavior data described above.
<本発明の実施形態の詳細>
 以下、図面を参照して、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
 [通信システムの全体構成]
 図1は、本発明の実施形態に係る通信システムの全体構成図である。
 図1に示すように、本実施形態の通信システムは、複数の車両1にそれぞれ搭載された車載通信機19を備える。
<Details of the Embodiment of the Present Invention>
The details of the embodiments of the present invention will be described below with reference to the drawings. Note that at least a part of the embodiments described below may be arbitrarily combined.
[Overall configuration of communication system]
FIG. 1 is an overall configuration diagram of a communication system according to an embodiment of the present invention.
As shown in FIG. 1, the communication system of the present embodiment includes an on-vehicle communication device 19 mounted on each of a plurality of vehicles 1.
 車載通信機19は、道路を走行中の他車両との間で無線通信(車車間通信)を行う無線通信機である。従って、本実施形態では、車両1の車載通信機19を「車車間通信装置19」ともいい、通信システムを「車車間通信システム」ともいう。
 本実施形態では、車載通信機19は、CSMA/CA(Carrier Sense Multiple Access/ Collision Avoidance)方式によるマルチアクセス方式を採用している。
The in-vehicle communication device 19 is a wireless communication device that performs wireless communication (inter-vehicle communication) with another vehicle traveling on the road. Therefore, in the present embodiment, the in-vehicle communication device 19 of the vehicle 1 is also referred to as "inter-vehicle communication device 19", and the communication system is also referred to as "inter-vehicle communication system".
In the present embodiment, the in-vehicle communication device 19 adopts a multi-access method based on a carrier sense multiple access / collision avoidance (CSMA / CA) method.
 より具体的には、車載通信機19は、例えば「700MHz帯高度道路交通システム標準規格(ARIB STD-T109)」に倣ったマルチアクセス方式を採用している。
 この方式によれば、車載通信機19は、車車間通信の通信フレームを所定時間(例えば0.1秒)ごとにブロードキャスト送信する。従って、車車間通信を実行中の車両1は、無線信号の送受信範囲に含まれる他車両から受信した通信フレームにより、自車両の周囲の他車両の車両情報をほぼリアルタイムで察知することができる。
More specifically, the in-vehicle communication device 19 adopts, for example, a multi-access method that conforms to the "700 MHz band intelligent traffic system standard (ARIB STD-T109)".
According to this method, the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication at predetermined time intervals (for example, 0.1 seconds). Therefore, the vehicle 1 executing inter-vehicle communication can detect the vehicle information of the other vehicle around the own vehicle in substantially real time by the communication frame received from the other vehicle included in the transmission / reception range of the wireless signal.
 車車間通信の通信方式は、上記の標準規格に限定されるものではなく、例えば3GPPのセルラーV2Vなど、携帯電話向けの通信技術を車両1の無線通信に応用したものであってもよい。 The communication system for inter-vehicle communication is not limited to the above standard, and may be a communication technology for mobile phones, such as cellular V2V of 3GPP, applied to wireless communication of the vehicle 1.
 [車内システムの構成]
 図2は、車内システムの構成を示すブロック図である。
 図2に示すように、各車両1は、車内システム10を備える。車内システム10は、中継装置20と、通信ネットワーク12と、通信ネットワーク12に属するECUにより電子制御される各種の車載機器とを含む。
[In-vehicle system configuration]
FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
As shown in FIG. 2, each vehicle 1 includes an in-vehicle system 10. The in-vehicle system 10 includes a relay device 20, a communication network 12, and various on-vehicle devices electronically controlled by an ECU belonging to the communication network 12.
 通信ネットワーク12は、中継装置20において終端する複数の車内通信線13と、各車内通信線13に接続された複数の車載制御装置(以下、「ECU」という。)16と、を備える。
 通信ネットワーク12は、ECU16相互間の通信が可能であり、中継装置20を終端ノード(親機)とするマスター/スレーブ型の通信ネットワーク(例えば、LIN(Local Interconnect Network))よりなる。中継装置20は、複数の通信ネットワーク12を制御する。
The communication network 12 includes a plurality of in-vehicle communication lines 13 terminating in the relay device 20, and a plurality of in-vehicle control devices (hereinafter referred to as "ECUs") 16 connected to the in-vehicle communication lines 13.
The communication network 12 can communicate among the ECUs 16, and is formed of a master / slave communication network (for example, LIN (Local Interconnect Network)) in which the relay device 20 is a terminal node (master device). Relay device 20 that controls a plurality of communication networks 12.
 通信ネットワーク12は、LINだけでなく、CAN(Controller Area Network)、CANFD(CAN with Flexible Data Rate)、Ethernet(登録商標)、又はMOST(Media Oriented Systems Transport:MOSTは登録商標)などの通信規格を採用するネットワークであってもよい。
 また、通信ネットワーク12のネットワーク構成としては、中継装置20と少なくとも1つのECU16が含まれておればよい。
The communication network 12 includes communication standards such as CAN (Controller Area Network), CANFD (CAN with Flexible Data Rate), Ethernet (registered trademark), or MOST (Media Oriented Systems Transport: MOST is a registered trademark) as well as LIN. It may be a network to be adopted.
Further, the network configuration of the communication network 12 may include the relay device 20 and at least one ECU 16.
 以下において、通信ネットワークの共通符号を「12」とし、通信ネットワークの個別符号を「12A~12C」とする。また、ECUの共通符号を「16」とし、ECUの個別符号を「16A1~16A4」、「16B1~16B3」及び「16C1~16C2」とする。 In the following, the common code of the communication network is “12”, and the individual codes of the communication network are “12A to 12C”. Further, the common code of the ECU is “16”, and the individual codes of the ECU are “16A1 to 16A4”, “16B1 to 16B3” and “16C1 to 16C2”.
 各通信ネットワーク12A,12B,12Cは、車両1の異なる制御分野をそれぞれ分担している。
 例えば、通信ネットワーク12Aには、車両1の駆動機器を制御対象とするパワー系ECUが接続されている。通信ネットワーク12Bには、車両1の情報機器を制御対象とするマルチメディア系ECUが接続されている。通信ネットワーク12Cには、車両1の運転操作を支援する先進運転支援システム(ADAS:Advanced Driver-Assistance Systems)を制御対象とするADAS系ECUが接続されている。
The communication networks 12A, 12B, 12C share the different control fields of the vehicle 1, respectively.
For example, to the communication network 12A, a power system ECU whose control target is the drive device of the vehicle 1 is connected. Connected to the communication network 12B is a multimedia ECU that controls information equipment of the vehicle 1. Connected to the communication network 12C is an ADAS-based ECU whose control target is an advanced driver assistance system (ADAS: Advanced Driver-Assistance Systems) that supports the driving operation of the vehicle 1.
 通信ネットワーク12は、上記の3種類に限らず4種類以上であってもよい。また、通信ネットワーク12に対応付ける制御分野は、車両メーカーの設計思想に応じて様々であり、上記の制御分野の分担に限定されるものではない。 The communication network 12 is not limited to the above three types, but may be four or more types. Further, the control field corresponding to the communication network 12 varies depending on the design concept of the vehicle manufacturer, and is not limited to the sharing of the control field described above.
 具体的には、通信ネットワーク12Aに接続されているパワー系ECUには、例えば、エンジンECU16A1、EPS-ECU16A2、ブレーキECU16A3、及びABS-ECU16A4などが含まれる。
 エンジンECU16A1には、エンジンの燃料噴射装置31が接続されており、燃料噴射装置31は、エンジンECU16A1によって制御される。
Specifically, the power ECUs connected to the communication network 12A include, for example, an engine ECU 16A1, an EPS-ECU 16A2, a brake ECU 16A3, and an ABS-ECU 16A4.
The engine ECU 16A1 is connected to a fuel injection device 31 of the engine, and the fuel injection device 31 is controlled by the engine ECU 16A1.
 EPS-ECU16A2には、EPS(Electric Power Steering:電動パワーステアリング)32が接続されており、EPS32は、EPS-ECU16A2によって制御される。ブレーキECU16A3には、ブレーキアクチュエータ33が接続されており、ブレーキアクチュエータ33は、ブレーキECU16A3によって制御される。
 ABS-ECU16A4には、ABS(Antilock Brake System)アクチュエータ34が接続されており、ABSアクチュエータ34は、ABS-ECU16A4によって制御される。
An EPS (Electric Power Steering: Electric Power Steering) 32 is connected to the EPS-ECU 16A2, and the EPS 32 is controlled by the EPS-ECU 16A2. A brake actuator 33 is connected to the brake ECU 16A3, and the brake actuator 33 is controlled by the brake ECU 16A3.
An ABS (Antilock Brake System) actuator 34 is connected to the ABS-ECU 16A4, and the ABS actuator 34 is controlled by the ABS-ECU 16A4.
 通信ネットワーク12Bに接続されているマルチメディア系ECUには、例えば、ナビゲーションECU16B1、メータECU16B2、及びHUD-ECU16B3などが含まれる。
 ナビゲーションECU16B1には、HDD(Hard Disk Drive)41、ディスプレイ42、GPS(Global Positioning System)受信機43、車速センサ44、ジャイロセンサ45、スピーカ46、及び入力デバイス47が接続されている。
The multimedia ECU connected to the communication network 12B includes, for example, a navigation ECU 16B1, a meter ECU 16B2, and a HUD-ECU 16B3.
An HDD (Hard Disk Drive) 41, a display 42, a GPS (Global Positioning System) receiver 43, a vehicle speed sensor 44, a gyro sensor 45, a speaker 46, and an input device 47 are connected to the navigation ECU 16B1.
 ディスプレイ42とスピーカ46は、各種情報を自車両の搭乗者に提示するための出力装置である。具体的には、ディスプレイ42は、自車両周辺の地図画像及び目的地までの経路情報などを表示し、スピーカ46は、自車両を目的地に誘導するためのアナウンスを音声出力する。
 入力デバイス47は、搭乗者が目的地等の各種入力を行うためのものであり、操作スイッチ、ジョイスティック、或いはディスプレイ42に設けたタッチパネル等の各種入力手段により構成される。
The display 42 and the speaker 46 are output devices for presenting various information to the passenger of the vehicle. Specifically, the display 42 displays a map image around the host vehicle, route information to the destination, and the like, and the speaker 46 outputs a voice announcement for guiding the host vehicle to the destination.
The input device 47 is for the passenger to perform various inputs such as a destination, and is constituted by various input means such as an operation switch, a joystick, or a touch panel provided on the display 42.
 ナビゲーションECU16B1は、GPS受信機43が定期的に取得したGPS信号から現時点の時刻を取得する時刻同期機能と、GPS信号から自車両の絶対位置(緯度、経度及び高度)を求める位置検出機能と、車速センサ44及びジャイロセンサ45によって自車両の位置及び方位を補正して自車両の正確な現在位置及び方位を求める補正機能などを有する。
 ナビゲーションECU16B1は、求めた現在位置に応じてHDD41に格納された地図情報を読み出し、地図情報に自車両の現在位置を重ねた地図画像を生成する。そして、ナビゲーションECU16B1は、ディスプレイ42に地図画像を表示させ、その地図画像に現在位置から目的地までの経路情報などを表示する。
The navigation ECU 16B1 has a time synchronization function of acquiring the current time from the GPS signal periodically acquired by the GPS receiver 43, and a position detection function of calculating an absolute position (latitude, longitude and altitude) of the vehicle from the GPS signal; The vehicle speed sensor 44 and the gyro sensor 45 correct the position and orientation of the vehicle to obtain an accurate current position and orientation of the vehicle.
The navigation ECU 16B1 reads the map information stored in the HDD 41 according to the obtained current position, and generates a map image in which the current position of the vehicle is superimposed on the map information. Then, the navigation ECU 16B1 displays a map image on the display 42, and displays route information and the like from the current position to the destination on the map image.
 メータECU16B2には、メータアクチュエータ48が接続されており、メータアクチュエータ48は、メータECU16B2によって制御される。HUD-ECU16B3には、HUD(Head-Up Display)49が接続されており、HUD49は、HUD-ECU16B3によって制御される。 A meter actuator 48 is connected to the meter ECU 16B2, and the meter actuator 48 is controlled by the meter ECU 16B2. A HUD (Head-Up Display) 49 is connected to the HUD-ECU 16B3, and the HUD 49 is controlled by the HUD-ECU 16B3.
 通信ネットワーク12Cに接続されているADAS系ECUには、例えば、ADAS-ECU16C1、及び環境認識ECU16C2などが含まれる。
 環境認識ECU16C2には、第1センサ51及び第2センサ52が接続されており、第1及び第2センサ51,52は、環境認識ECU16C2によって制御される。
The ADAS ECU connected to the communication network 12C includes, for example, an ADAS-ECU 16C1 and an environment recognition ECU 16C2.
A first sensor 51 and a second sensor 52 are connected to the environment recognition ECU 16C2, and the first and second sensors 51 and 52 are controlled by the environment recognition ECU 16C2.
 第1センサ51は、例えば、車両1の前後左右の四隅に配置された超音波センサやビデオカメラなどよりなる(図1参照)。
 前側に設けられた第1センサ51は、主として自車両の前方に存在する物体を検出するためのセンサであり、後側に設けられた第1センサ51は、主として自車両の後方に存在する物体を検出するためのセンサである。
The first sensor 51 is, for example, an ultrasonic sensor, a video camera or the like arranged at four corners in the front, rear, left, and right of the vehicle 1 (see FIG. 1).
The first sensor 51 provided on the front side is a sensor mainly for detecting an object present on the front of the vehicle, and the first sensor 51 provided on the rear side is an object mainly present on the rear of the vehicle Is a sensor for detecting
 第2センサ52は、例えば、車両1の天井部分に配置された超音波センサやビデオカメラなどよりなる(図1参照)。第2センサ52は、鉛直軸心回りに比較的高速で回転自在となっており、自車両の周囲に存在する物体を検出するためのセンサである。
 第1及び第2センサ51,52のセンシング結果は、環境認識ECU16C2によって通信パケットに格納されてADAS-ECU16C1に送信される。
The second sensor 52 is, for example, an ultrasonic sensor, a video camera, or the like disposed in a ceiling portion of the vehicle 1 (see FIG. 1). The second sensor 52 is rotatable at a relatively high speed around the vertical axis, and is a sensor for detecting an object present around the host vehicle.
The sensing results of the first and second sensors 51 and 52 are stored in a communication packet by the environment recognition ECU 16C2 and transmitted to the ADAS-ECU 16C1.
 ADAS-ECU16C1は、第1及び第2センサ51,52のセンシング結果に基づいて、例えばレベル1~4までのいずれかの自動運転を実行可能である。自動運転のレベルはSAE(Society of Automotive Engineers)インターナショナルのJ3016(2016年9月)に定義が記載されている。
 「官民ITS構想・ロードマップ2017」も当該定義を採用している。このロードマップでは、レベル3以上の自動運転を「高度自動運転」と呼び、レベル4及び5の自動運転を「完全自動運転」と呼ぶ。本実施形態における「自動運転」は、レベル2以上の自動運転を意味する。
The ADAS-ECU 16C1 can execute any one of, for example, levels 1 to 4 based on the sensing results of the first and second sensors 51 and 52. The level of automatic driving is defined in SAE (Society of Automotive Engineers) International, J3016 (September 2016).
The “public-private ITS concept road map 2017” also adopts this definition. In this roadmap, level 3 or higher automatic driving is called "high-level automatic driving", and level 4 and 5 automatic driving is called "fully automatic driving". The "automatic operation" in the present embodiment means an automatic operation at level 2 or higher.
 ADAS-ECU16C1は、レベル5の自動運転を実行可能であってもよいが、本出願時点では、レベル5の自動運転を行う車両1は未だ実現されていない。 The ADAS-ECU 16C1 may be capable of performing level 5 automatic driving, but at the time of the present application, the vehicle 1 performing level 5 automatic driving has not been realized yet.
 レベル1~3までの自動運転(以下、「支援運転」ともいう。)の例としては、第1センサ51によって検出した物体と自車両の間の距離から衝突可能性を予測し、衝突可能性が高いと判断した場合に減速介入したり、搭乗者に注意喚起したりするように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。 As an example of automatic driving up to levels 1 to 3 (hereinafter, also referred to as “assisted driving”), the possibility of collision is predicted from the distance between the object detected by the first sensor 51 and the host vehicle, The control command is transmitted to the power system ECU or the multimedia system ECU so as to intervene in the deceleration or alert the passenger when it is determined that the vehicle speed is high.
 レベル4及び5の自動運転(以下、「自律運転」ともいう。)の例としては、第1及び第2センサ51,52によって検出した物体に予期される挙動を、過去の挙動の深層学習などにより予測し、予測した挙動に基づいて自車両が目的位置に指向するように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。 As an example of level 4 and 5 automatic operation (hereinafter, also referred to as "autonomous operation"), behavior expected to an object detected by the first and second sensors 51 and 52, deep learning of past behavior, etc. There are some which transmit a control command to a power system ECU or a multimedia system ECU so that the host vehicle is pointed to the target position based on the predicted behavior predicted by the above.
 ADAS-ECU16C1は、第1及び第2センサ51,52によるセンシング結果を利用せず、搭乗者の手動運転に切り替えることもできる。
 このように、本実施形態の車両1は、レベル4の自律運転モードの実行が可能であるとともに、ダウングレードした動作モードとして、レベル1~3の支援運転モード又は手動運転モード(レベル0)のいずれかを実行することができる。動作モードの切り替えは、搭乗者による手動の操作入力などによって行われる。
The ADAS-ECU 16C1 can also switch to a manual operation of the passenger without using the sensing results by the first and second sensors 51 and 52.
Thus, the vehicle 1 of the present embodiment is capable of executing the level 4 autonomous operation mode, and as the downgraded operation mode, the vehicle 1 of the level 1 to 3 assisted operation mode or the manual operation mode (level 0) You can do either. The switching of the operation mode is performed by a manual operation input by the passenger or the like.
 継装置20は、ECU16を制御するために制御パケット(以下、「制御指令」ともいう。)を送信する。ECU16は、受信した制御パケットに含まれる指令内容に従って、担当する対象機器に対して所定の制御を実行する。 RELAY device 20 includes a control packet for controlling the ECU 16 (hereinafter, also referred. To as "control command") to. The ECU 16 executes predetermined control on the target device in charge according to the content of the command included in the received control packet.
 自律運転モードを制御する場合、中継装置20は、環境認識ECU16C2から受信した第1及び第2センサ51,52のセンシング結果に基づいて、通信ネットワーク12Aの各ECU16A1~16A4に対して、制御指令を含む制御パケットを送信する。 When controlling the autonomous operation mode, the relay device 20 sends control commands to the ECUs 16A1 to 16A4 of the communication network 12A based on the sensing results of the first and second sensors 51 and 52 received from the environment recognition ECU 16C2. Send control packet including.
 そして、中継装置20から制御パケットを受信した各ECU16A1~16A4が、制御パケットに含まれる指令内容に従って、燃料噴射装置31、EPS32、ブレーキアクチュエータ33、及びABSアクチュエータ34をそれぞれ制御することにより、自律運転モードが実行される。 Then, each of the ECUs 16A1 to 16A4 having received the control packet from the relay device 20 controls the fuel injection device 31, the EPS 32, the brake actuator 33, and the ABS actuator 34 according to the content of the command included in the control packet, thereby autonomous operation. Mode is executed.
 車内システム10は、更に、他車両と無線通信を行う車載通信機19を備える。車載通信機19は、所定規格の通信線を介して中継装置20に接続されている。中継装置20は、他車両から車載通信機19が受信した情報をECU16に中継する。 The in-vehicle system 10 further includes an on-vehicle communication device 19 that performs wireless communication with other vehicles. The in-vehicle communication device 19 is connected to the relay device 20 via a communication line of a predetermined standard. The relay device 20 relays the information received by the in-vehicle communication device 19 from the other vehicle to the ECU 16.
 中継装置20は、ECU16から受信した情報を、車載通信機19に中継する。車載通信機19は、中継された情報を他車両に無線送信する。
 車両1に搭載される車載通信機19は、ユーザが所有する携帯電話機、スマートフォン、タブレット型端末、ノートPC(Personal Computer)等の装置であってもよい。
The relay device 20 relays the information received from the ECU 16 to the in-vehicle communication device 19. The in-vehicle communication device 19 wirelessly transmits the relayed information to another vehicle.
The in-vehicle communication device 19 mounted on the vehicle 1 may be a device owned by a user, such as a mobile phone, a smartphone, a tablet terminal, or a notebook PC (Personal Computer).
 [中継装置の構成]
 図3は、中継装置20の内部構成を示すブロック図である。
 図3に示すように、車両1の中継装置20は、制御部21、記憶部22、及び車内通信部23などを備える。
[Configuration of relay device]
FIG. 3 is a block diagram showing an internal configuration of the relay device 20. As shown in FIG.
As shown in FIG. 3, the relay device 20 of the vehicle 1 includes a control unit 21, a storage unit 22, an in-vehicle communication unit 23, and the like.
 中継装置20の制御部21は、CPU(Central Processing Unit)を含む。制御部21のCPUは、記憶部22等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
 制御部21のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
The control unit 21 of the relay device 20 includes a CPU (Central Processing Unit). The CPU of the control unit 21 has a function of reading one or a plurality of programs stored in the storage unit 22 or the like to execute various processes.
The CPU of the control unit 21 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
 制御部21のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。 The CPU of the control unit 21 includes one or more large scale integrated circuits (LSI). In a CPU including a plurality of LSIs, the plurality of LSIs cooperate to realize the function of the CPU.
 制御部21のCPUが実行するコンピュータプログラムは、予め工場で書き込まれていてもよいし、特定のツールを介して提供されてもよいし、または、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。 The computer program executed by the CPU of the control unit 21 may be written in advance at the factory, may be provided via a specific tool, or is transferred by downloading from a computer device such as a server computer. It can also be done.
 記憶部22は、フラッシュメモリ若しくはEEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性のメモリ素子よりなる。
 記憶部22は、制御部21のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
The storage unit 22 is formed of a non-volatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory).
The storage unit 22 has a storage area for storing a program executed by the CPU of the control unit 21 and data required for the execution.
 車内通信部23には、車両1に配設された複数の車内通信線13が接続されている。車内通信部23は、LINなどの所定の通信規格に則ってECU16と通信する通信装置よりなる。
 車内通信部23は、制御部21のCPUから与えられた情報を所定のECU16宛てに送信し、ECU16が送信元の情報を制御部21のCPUに与える。
 車載通信機19は、制御部21から与えられた情報を他車両に送信するとともに、他車両から受信した情報を制御部21に与える。
A plurality of in-vehicle communication lines 13 disposed in the vehicle 1 are connected to the in-vehicle communication unit 23. The in-vehicle communication unit 23 includes a communication device that communicates with the ECU 16 in accordance with a predetermined communication standard such as LIN.
The in-vehicle communication unit 23 transmits information given from the CPU of the control unit 21 to a predetermined ECU 16, and the ECU 16 gives information on the transmission source to the CPU of the control unit 21.
The on-vehicle communication device 19 transmits the information given from the control unit 21 to the other vehicle, and gives the information received from the other vehicle to the control unit 21.
 [車載通信機の構成]
 図4は、車載通信機19の内部構成を示すブロック図である。
 図4に示すように、車載通信機19は、制御部191、記憶部192、及び無線通信部193などを備える。
[Configuration of in-vehicle communication device]
FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device 19.
As shown in FIG. 4, the on-vehicle communication device 19 includes a control unit 191, a storage unit 192, a wireless communication unit 193, and the like.
 車載通信機19の制御部191は、CPUを含む。制御部191のCPUは、記憶部192等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
 制御部191のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
The control unit 191 of the in-vehicle communication device 19 includes a CPU. The CPU of the control unit 191 has a function of reading out one or more programs stored in the storage unit 192 or the like to execute various processes.
The CPU of the control unit 191 can execute a plurality of programs in parallel by switching and executing a plurality of programs in time division, for example.
 制御部191のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。 The CPU of the control unit 191 includes one or more large scale integrated circuits (LSI). In a CPU including a plurality of LSIs, the plurality of LSIs cooperate to realize the function of the CPU.
 制御部191のCPUが実行するコンピュータプログラムは、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。 The computer program executed by the CPU of the control unit 191 can also be transferred by downloading from a computer device such as a server computer.
 記憶部192は、フラッシュメモリ若しくはEEPROMなどの不揮発性のメモリ素子よりなる。
 記憶部192は、制御部191のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
The storage unit 192 is formed of a non-volatile memory element such as a flash memory or an EEPROM.
The storage unit 192 has a storage area for storing a program executed by the CPU of the control unit 191 and data required for the execution.
 無線通信部193には、無線通信のためのアンテナ194が接続されている。無線通信部193は、制御部191から与えられた情報をアンテナ194から他車両に送信するとともに、他車両からアンテナ194により受信した情報を制御部191に与える。
 制御部191のCPUは、無線通信部193から与えられた情報を中継装置20に送信し、中継装置20から受信した情報を無線通信部193に与える。
An antenna 194 for wireless communication is connected to the wireless communication unit 193. The wireless communication unit 193 transmits the information given from the control unit 191 to the other vehicle from the antenna 194 and gives the information received from the other vehicle by the antenna 194 to the control unit 191.
The CPU of the control unit 191 transmits the information provided from the wireless communication unit 193 to the relay device 20, and provides the wireless communication unit 193 with the information received from the relay device 20.
 [予測走行挙動データの内容及び生成方法]
 図5は、車載通信機19が車車間通信により他車両に送信する「予測走行挙動データD」の内容及び生成方法を示す説明図である。予測走行挙動データDは、現時点から比較的短い所定時間(例えば10秒)だけ将来の予測期間Tc内における車両1の予測走行挙動を示すデータである。
[Contents and Method of Generating Predicted Driving Behavior Data]
FIG. 5 is an explanatory view showing the contents and generation method of “predicted travel behavior data D” transmitted by the on-vehicle communication device 19 to another vehicle through inter-vehicle communication. The predicted traveling behavior data D is data indicating the predicted traveling behavior of the vehicle 1 within a future prediction period Tc for a relatively short predetermined time (for example, 10 seconds) from the current time.
 本実施形態の予測走行挙動データDは、予測期間Tc内における一定時間間隔(例えば300m秒間隔)毎の車両1の予測走行挙動を示す複数の予測走行挙動情報Sを有する。予測走行挙動情報Sには、予測期間Tc内における一定時間間隔毎の時刻と、その時刻における車両1の絶対位置及び方位などの情報が含まれる。 The predicted traveling behavior data D of the present embodiment includes a plurality of predicted traveling behavior information S indicating the predicted traveling behavior of the vehicle 1 at predetermined time intervals (for example, 300 ms interval) within the prediction period Tc. The predicted traveling behavior information S includes information such as the time of each fixed time interval within the prediction period Tc, and the absolute position and orientation of the vehicle 1 at that time.
 予測期間Tc内の時刻と、車両1の絶対位置及び方位は、以下のように算出される。例えば、図5の下段に示す道路平面図において、車両1が車線R1を自動運転で走行している場合、車両1のADAS-ECU16C1は、現時点t0で実行中の自動運転の内容に応じて、予測期間Tc中における走行予定ルートを算出し、算出した走行予定ルートを車載通信機19に送信する。 The time within the prediction period Tc and the absolute position and orientation of the vehicle 1 are calculated as follows. For example, in the road plan view shown in the lower part of FIG. 5, when the vehicle 1 travels in the lane R1 by automatic driving, the ADAS-ECU 16C1 of the vehicle 1 responds to the contents of automatic driving being executed at the present time t0. A travel planned route during the prediction period Tc is calculated, and the calculated travel planned route is transmitted to the in-vehicle communication device 19.
 車載通信機19は、受信した走行予定ルートと地図情報とのマップマッチング処理等を行って、予測期間Tc中における車両1の複数の離散位置(絶対位置)と、各離散位置における車両1の方位を算出する。具体的には、予測期間Tc中において車両1が車線R1を直進し続ける場合、車載通信機19は、車線R1に沿って直線状の走行予定ルート(図5の破線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の○印で示す位置)及び方位を算出する。 The in-vehicle communication device 19 performs map matching processing between the received planned traveling route and the map information, and the like, and detects the plurality of discrete positions (absolute positions) of the vehicle 1 during the prediction period Tc and the direction of the vehicle 1 at each discrete position. Calculate Specifically, when the vehicle 1 continues to travel straight in the lane R1 during the prediction period Tc, the on-vehicle communication device 19 is operated on the straight travel planned route (arrow shown by the broken line in FIG. 5) along the lane R1. A plurality of discrete positions (positions indicated by ○ in FIG. 5) and directions of the vehicle 1 are calculated at fixed or indeterminate time intervals (or distance intervals).
 また、予測期間Tc中において車両1が車線R1から車線R2に車線変更する場合、車載通信機19は、車線R1から車線R2へ延びる曲線状の走行予定ルート(図5の1点鎖線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の△印で示す位置)及び方位を算出する。 Further, when the vehicle 1 changes lanes from the lane R1 to the lane R2 during the prediction period Tc, the on-vehicle communication device 19 is a curved traveling planned route extending from the lane R1 to the lane R2 (an arrow shown by an alternate long and short dash line in FIG. A plurality of discrete positions (positions indicated by Δ marks in FIG. 5) and a direction of the vehicle 1 are calculated at fixed or indefinite time intervals (or distance intervals).
 車載通信機19は、車両1の複数の離散位置を時間間隔で算出する場合、この時間間隔と現時点t0の時刻に基づいて、各離散位置に対応する時刻を算出する。また、車載通信機19は、車両1の複数の離散位置を距離間隔で算出する場合、この距離間隔に基づいて車両1の現在位置から各離散位置までの距離を算出し、算出した距離と車両1の走行予定速度に基づいて各離散位置に対応する時刻を算出する。車両1の走行予定速度は、ADAS-ECU16C1から取得することができる。
 なお、予測期間Tc内の時刻と車両1の絶対位置及び方位は、ADAS-ECU16C1で算出し、算出した時刻、離散位置及び方位を車載通信機19に送信してもよい。
When the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at time intervals, it calculates the time corresponding to each discrete position based on the time interval and the time of the current time t0. In addition, when the vehicle-mounted communication device 19 calculates a plurality of discrete positions of the vehicle 1 at a distance interval, the distance from the current position of the vehicle 1 to each discrete position is calculated based on the distance interval, and the calculated distance and the vehicle The time corresponding to each discrete position is calculated based on the planned traveling speed of 1. The planned traveling speed of the vehicle 1 can be acquired from the ADAS-ECU 16C1.
Note that the time within the prediction period Tc and the absolute position and orientation of the vehicle 1 may be calculated by the ADAS-ECU 16C1 and the calculated time, discrete position and orientation may be transmitted to the in-vehicle communication device 19.
 図5の上段に示すように、本実施形態における予測走行挙動データDの各予測走行挙動情報Sには、「車両ID」、「時刻」、「絶対位置」、「車両属性」、「方位」、「安全マージン」などの格納領域が含まれる。
 各予測走行挙動情報Sの「時刻」には、現時点の時刻の値や上記方法で算出された予測期間Tc内の各時刻の値が格納される。現時点の時刻の値は、上記の時刻同期機能を有するナビゲーションECU16B1(図2参照)から中継装置20を介して取得することができる。
As shown in the upper part of FIG. 5, in each predicted traveling behavior information S of the predicted traveling behavior data D in the present embodiment, “vehicle ID”, “time”, “absolute position”, “vehicle attribute”, “azimuth” , "Safety margin", etc. are included.
The “time” of each of the predicted traveling behavior information S stores the value of the current time and the value of each time within the prediction period Tc calculated by the above method. The value of the current time can be acquired from the navigation ECU 16B1 (see FIG. 2) having the above-described time synchronization function via the relay device 20.
 「車両ID」には、自車両の車両IDの値が格納される。車両IDの値は固定値であるため、各予測走行挙動情報Sの「車両ID」には、全て同じ値が格納される。
 各予測走行挙動情報Sの「絶対位置」は、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の絶対位置を示す緯度、経度及び高度の各値が格納される。図5の「絶対位置」では、緯度及び経度の値のみを示している。
The "vehicle ID" stores the value of the vehicle ID of the own vehicle. Since the value of the vehicle ID is a fixed value, the same value is stored in the "vehicle ID" of each piece of predicted traveling behavior information S.
The “absolute position” of each piece of predicted traveling behavior information S stores each value of latitude, longitude and altitude indicating the absolute position of the vehicle corresponding to each time within the prediction period Tc calculated by the above method. In "absolute position" of FIG. 5, only the values of latitude and longitude are shown.
 「車両属性」には、例えば、自車両の車幅および車長などの値、および自車両の車両用途種別(自家用車両又は緊急車両など)の識別値が格納される。車幅、車長、及び車両用途種別の各値は固定値であるため、各予測走行挙動情報Sの「車両属性」には、全て同じ値が格納される。図5の「車両属性」では、具体的な数値の記載を省略している。
 各予測走行挙動情報Sの「方位」には、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の方位の値が格納される。図5の「方位」では、具体的な数値の記載を省略している。
In the “vehicle attribute”, for example, values such as the vehicle width and the vehicle length of the own vehicle, and the identification value of the vehicle application type of the own vehicle (such as a private vehicle or an emergency vehicle) are stored. Since each value of the vehicle width, the vehicle length, and the vehicle application type is a fixed value, the same value is stored in the “vehicle attribute” of each predicted traveling behavior information S. In "vehicle attribute" of FIG. 5, the description of specific numerical values is omitted.
In the “azimuth” of each piece of predicted traveling behavior information S, the value of the heading of the vehicle corresponding to each time within the prediction period Tc calculated by the above method is stored. In the "azimuth" of FIG. 5, the description of specific numerical values is omitted.
 「安全マージン」は、自車両の安全マージンの値が格納される領域である。本実施形態では、安全マージンの値は、車両1毎に設定される固有の値として説明するが、法律等により全車両で統一された値であってもよい。
 安全マージンには、自車両の安全走行に必要なマージン距離や、自車両の安全走行に必要なマージン時間などがある。本実施形態の「安全マージン」には、マージン距離の値が又はマージン時間の値が格納される。
The "safety margin" is an area in which the value of the safety margin of the host vehicle is stored. In the present embodiment, the value of the safety margin is described as a unique value set for each vehicle 1. However, the value may be a value unified for all vehicles according to the law or the like.
The safety margin includes a margin distance required for safe traveling of the vehicle and a margin time required for safe traveling of the vehicle. In the “safety margin” of this embodiment, the value of the margin distance or the value of the margin time is stored.
 マージン距離は、例えば、自車両の車長と同じ距離が設定される。マージン時間は、例えば、自車両がその車長分の距離を所定の車速で走行するのに要する時間が設定される。マージン距離及びマージン時間の各値は、車両毎に設定される固定の値であるため、各予測走行挙動情報Sの「安全マージン」には、全て同じ値が格納される。図5の「安全マージン」では、具体的な数値の記載を省略している。 For example, the same distance as the vehicle length of the host vehicle is set as the margin distance. The margin time is set to, for example, the time required for the host vehicle to travel a distance corresponding to the vehicle length at a predetermined vehicle speed. Since each value of the margin distance and the margin time is a fixed value set for each vehicle, the same value is stored in the “safety margin” of each predicted traveling behavior information S. In the "safety margin" of FIG. 5, the description of specific numerical values is omitted.
 自車両及びその周辺を通行する他車両は、車載通信機19同士が車車間通信を行うことで、予測走行挙動データDを互いに送受信する。これにより、自車両、及びその周辺を通行する他車両が、互いに予測走行挙動データDを共有することができる。 The own vehicle and the other vehicles passing around the vehicle transmit and receive predicted traveling behavior data D to each other when the on-vehicle communication devices 19 communicate with each other. As a result, the host vehicle and other vehicles passing around the vehicle can share the predicted travel behavior data D with each other.
 予測走行挙動データDには、自車両の速度や加速度などの他の情報を含めてもよい。但し、自車両の速度は、自車両の絶対位置を微分することで求めることができ、自車両の加速度は、自車両の絶対位置から求めた速度を微分することで求めることができる。このため、予測走行挙動データDには、自車両の速度及び加速度は必ずしも含める必要はない。 The predicted driving behavior data D may include other information such as the speed and acceleration of the host vehicle. However, the velocity of the vehicle can be obtained by differentiating the absolute position of the vehicle, and the acceleration of the vehicle can be determined by differentiating the velocity obtained from the absolute position of the vehicle. Therefore, the predicted traveling behavior data D need not necessarily include the speed and acceleration of the host vehicle.
 [衝突可能性判定装置]
 本実施形態の車載通信機19は、自車両と他車両との衝突可能性を判定する衝突可能性判定装置として機能する。図4において、車載通信機19の制御部191は、生成部195と、判定部196と、補正部197とを備える。
 生成部195は、自車両の予測走行挙動データD(以下、第1予測走行挙動データD1という)を生成する。第1予測走行挙動データD1の具体的な生成方法は、上述の通りである。生成された第1予測走行挙動データD1は、自車両で定めた将来の予測期間Tc(以下、第1予測期間Tc1という)内における一定時間間隔毎の自車両の予測走行挙動を示す複数の予測走行挙動情報Sを有している。
[Collision possibility determination device]
The in-vehicle communication device 19 according to the present embodiment functions as a collision possibility determination device that determines the possibility of collision between the host vehicle and another vehicle. In FIG. 4, the control unit 191 of the in-vehicle communication device 19 includes a generation unit 195, a determination unit 196, and a correction unit 197.
The generation unit 195 generates predicted traveling behavior data D of the own vehicle (hereinafter, referred to as first predicted traveling behavior data D1). The specific generation method of the first predicted traveling behavior data D1 is as described above. The generated first predicted traveling behavior data D1 is a plurality of predictions indicating the predicted traveling behavior of the vehicle at predetermined time intervals within a future prediction period Tc (hereinafter referred to as a first prediction period Tc1) determined by the vehicle. It has traveling behavior information S.
 本実施形態の生成部195は、2種類の第1予測走行挙動データD1を生成する。
 1種類目の第1予測走行挙動データD1(以下、第1予測走行挙動データD11ともいう)は、図6に示すように、粗い時間間隔(例えば600m秒間隔)毎の予測走行挙動情報Sを含んでいる。なお、第1予測走行挙動データD11の各予測走行挙動情報Sは、「安全マージン」の格納領域を有していなくてもよい。
The generation unit 195 of the present embodiment generates two types of first predicted traveling behavior data D1.
The first type of first predicted traveling behavior data D1 (hereinafter, also referred to as first predicted traveling behavior data D11) is, as shown in FIG. 6, the predicted traveling behavior information S for each rough time interval (for example, every 600 msec). It contains. Each predicted traveling behavior information S of the first predicted traveling behavior data D11 may not have a storage area of “safety margin”.
 2種類目の第1予測走行挙動データD1(以下、第1予測走行挙動データD12という)は、図5に示すように、第1予測走行挙動データD11よりも細かい時間間隔(例えば300m秒間隔)毎の予測走行挙動情報Sを含んでいる。以下、その細かい時間間隔を第1時間間隔Ts1という。 The second type of first predicted traveling behavior data D1 (hereinafter referred to as first predicted traveling behavior data D12) is, as shown in FIG. 5, a time interval (for example, an interval of 300 msec) finer than the first predicted traveling behavior data D11 Each predicted traveling behavior information S is included. Hereinafter, the fine time interval is referred to as a first time interval Ts1.
 生成部195は、第1予測走行挙動データD11,D12を逐次生成する。生成部195は、生成した第1予測走行挙動データD11を判定部196に渡す。また、生成部195は、生成した第1予測走行挙動データD12を補正部197に渡す。 The generation unit 195 sequentially generates the first predicted traveling behavior data D11 and D12. The generation unit 195 passes the generated first predicted traveling behavior data D11 to the determination unit 196. The generation unit 195 also passes the generated first predicted traveling behavior data D12 to the correction unit 197.
 図4において、車載通信機19の無線通信部(通信部)193は、生成部195で生成された第1予測走行挙動データD11,D12を、車車間通信により自車両の周辺を走行する他車両に送信する。但し、2種類目の第1予測走行挙動データD12については、他車両から第1予測走行挙動データD12の送信を要求する情報を無線通信部193が受信した場合に限り送信する。 In FIG. 4, the wireless communication unit (communication unit) 193 of the in-vehicle communication device 19 drives the first predicted traveling behavior data D11 and D12 generated by the generation unit 195 into other vehicles traveling around the host vehicle by inter-vehicle communication. Send to However, the second type of first predicted traveling behavior data D12 is transmitted only when the wireless communication unit 193 receives information requesting transmission of the first predicted traveling behavior data D12 from another vehicle.
 無線通信部193は、他車両の予測走行挙動データD(以下、第2予測走行挙動データD2という)を車車間通信により受信する。第2予測走行挙動データD2は、他車両で定めた将来の予測期間Tc(以下、第2予測期間Tc2という)内における一定時間間隔毎の他車両の予測走行挙動を示す複数の予測走行挙動情報Sを有している。本実施形態の無線通信部193は、2種類の第2予測走行挙動データD2を受信する。 The wireless communication unit 193 receives the predicted traveling behavior data D of another vehicle (hereinafter referred to as second predicted traveling behavior data D2) by inter-vehicle communication. The second predicted travel behavior data D2 is a plurality of predicted travel behavior information indicating predicted travel behavior of another vehicle at predetermined time intervals within a future prediction period Tc (hereinafter referred to as second prediction period Tc2) determined by the other vehicle. It has S. The wireless communication unit 193 of the present embodiment receives two types of second predicted traveling behavior data D2.
 具体的には、1種類目の第2予測走行挙動データD2(以下、第2予測走行挙動データD21という)は、図6に示すように、粗い時間間隔(例えば600m秒間隔)毎の予測走行挙動情報Sを含んでいる。なお、第2予測走行挙動データD21の予測走行挙動情報Sは、「安全マージン」の格納領域を有していなくもよい。
 2種類目の第2予測走行挙動データD2(以下、第2予測走行挙動データD22という)は、図5に示すように、第2予測走行挙動データD21よりも細かい時間間隔(例えば300m秒間隔)毎の予測走行挙動情報Sを含んでいる。以下、その細かい時間間隔を第2時間間隔Ts2という。
Specifically, as shown in FIG. 6, the first type of second predicted travel behavior data D2 (hereinafter referred to as second predicted travel behavior data D21) is predicted travel at rough time intervals (for example, every 600 ms interval). Behavior information S is included. The predicted traveling behavior information S of the second predicted traveling behavior data D21 may not have a storage area of the "safety margin".
The second type of second predicted traveling behavior data D2 (hereinafter referred to as second predicted traveling behavior data D22) is, as shown in FIG. 5, a time interval finer than the second predicted traveling behavior data D21 (for example, an interval of 300 ms) Each predicted traveling behavior information S is included. Hereinafter, the fine time interval is referred to as a second time interval Ts2.
 無線通信部193は、2種類目の第2予測走行挙動データD22を受信する前に、当該第2予測走行挙動データD22の送信を要求する情報を他車両に送信する。従って、他車両は、無線通信部193が前記送信を要求する情報を送信しない限り、2種類目の第2予測走行挙動データD22を送信することはない。
 無線通信部193は、受信した第2予測走行挙動データD21を制御部191の判定部196に渡す。また、無線通信部193は、受信した第2予測走行挙動データD22を制御部191の補正部197に渡す。
The wireless communication unit 193 transmits, to another vehicle, information requesting transmission of the second predicted traveling behavior data D22 before receiving the second type of second predicted traveling behavior data D22. Therefore, the other vehicle does not transmit the second type second predicted traveling behavior data D22 unless the wireless communication unit 193 transmits the information requesting the transmission.
The wireless communication unit 193 passes the received second predicted traveling behavior data D21 to the determination unit 196 of the control unit 191. The wireless communication unit 193 also passes the received second predicted traveling behavior data D22 to the correction unit 197 of the control unit 191.
 補正部197は、生成部195で生成された2種類目の第1予測走行挙動データD12、及び無線通信部193で受信された2種類目の第2予測走行挙動データD22のうちの少なくとも一方のデータを補正する。その際、補正部197は、自車両及び他車両の安全マージンに基づいて、第1予測期間Tc1の開始時刻及び第2予測期間Tc2の開始時刻を同期させ、且つ第1時間間隔Ts1及び第2時間間隔Ts2を一致させるように、前記少なくとも一方のデータを補正する。補正部197がこのような補正処理を行うことで、本実施形態の車載通信機19は、第1予測走行挙動データD12及び第2予測走行挙動データD22のうちの少なくとも一方のデータを補正する、予測走行挙動データの補正装置として機能する。 The correction unit 197 sets at least one of the second type of first predicted traveling behavior data D12 generated by the generation unit 195 and the second type of second predicted traveling behavior data D22 received by the wireless communication unit 193. Correct the data. At that time, the correction unit 197 synchronizes the start time of the first prediction period Tc1 and the start time of the second prediction period Tc2 based on the safety margin of the own vehicle and the other vehicle, and the first time interval Ts1 and the second time period Ts1. The at least one data is corrected so that the time interval Ts2 matches. With the correction unit 197 performing such correction processing, the in-vehicle communication device 19 of the present embodiment corrects at least one of the first predicted traveling behavior data D12 and the second predicted traveling behavior data D22. It functions as a correction device for predicted driving behavior data.
  [補正処理の処理内容]
 図7は、補正部197が実行する補正処理の一例を示す説明図である。図7の上段に示すように、補正処理前の第1及び第2予測走行挙動データD12,D22では、自車両の第1予測期間Tc1の開始時刻ta0と、他車両の第2予測期間Tc2の開始時刻tb0とは、前後にずれており、同期していない。また、第1時間間隔Ts1及び第2時間間隔Ts2も一致していない。
[Processing content of correction processing]
FIG. 7 is an explanatory diagram of an example of the correction process performed by the correction unit 197. As illustrated in FIG. As shown in the upper part of FIG. 7, in the first and second predicted travel behavior data D12 and D22 before the correction processing, the start time ta0 of the first prediction period Tc1 of the own vehicle and the second prediction period Tc2 of the other vehicle The start time tb0 deviates back and forth and is not synchronized. Further, the first time interval Ts1 and the second time interval Ts2 also do not match.
 この状態から、補正部197は、まず、開始時刻tb0及び開始時刻ta0を同期させるために、例えば、開始時刻tb0を開示時刻ta0に合わせる。具体的には、補正部197は、第2予測走行挙動データD22における最初(図5の1行目)の予測走行挙動情報Sの「時刻」の値を、開始時刻ta0の値に置き換える。
 そして、補正部197は、第2予測走行挙動データD22における前記最初の予測走行挙動情報Sの「絶対位置」及び「方位」の各値を、開始時刻ta0における「絶対位置」及び「方位」の各値に置き換える。
From this state, the correction unit 197 first adjusts, for example, the start time tb0 to the disclosure time ta0 in order to synchronize the start time tb0 and the start time ta0. Specifically, the correction unit 197 replaces the value of “time” of the first (the first row in FIG. 5) predicted traveling behavior information S in the second predicted traveling behavior data D22 with the value of the start time ta0.
Then, the correction unit 197 sets each value of the “absolute position” and the “azimuth” of the first predicted traveling behavior information S in the second predicted traveling behavior data D22 to the “absolute position” and the “azimuth” at the start time ta0. Replace with each value.
 開始時刻ta0における「絶対位置」の値は、例えば、開始時刻tb0及び次の時刻tb1の「絶対位置」の値に基づいて他車両の速度を算出し、算出した速度と、開始時刻同士の時刻差(tb0-ta0)とに基づいて算出することができる。
 また、開始時刻ta0における「方位」は、例えば、前記算出した開始時刻ta0における「絶対位置」の値と、開示時刻tb0の「絶対位置」及び「方位」の各値などに基づいて求めることができる。
The value of "absolute position" at the start time ta0 is, for example, the speed of the other vehicle calculated based on the value of the "absolute position" at the start time tb0 and the next time tb1, and the calculated speed and the time between the start times It can be calculated based on the difference (tb0-ta0).
Further, the “azimuth” at the start time ta0 may be determined based on, for example, the value of the “absolute position” at the calculated start time ta0, and the respective values of the “absolute position” and the “azimuth” of the disclosure time tb0 it can.
 本実施形態の補正部197は、開始時刻tb0及び開始時刻ta0を同期させるために、開始時刻tb0を開示時刻ta0に合わせているが、開示時刻ta0を開示時刻tb0に合わせてもよい。この場合、補正部197は、第1予測走行挙動データD12における最初の予測走行挙動情報Sの「絶対位置」及び「方位」の各値を、開始時刻tb0における「絶対位置」及び「方位」の各値に置き換えればよい。
 なお、以下の説明において、同期後の第1及び第2予測期間Tc1,Tc2の開始時刻をt0とする。
Although the correction unit 197 according to the present embodiment synchronizes the start time tb0 with the disclosure time ta0 in order to synchronize the start time tb0 with the start time ta0, the disclosure time ta0 may be synchronized with the disclosure time tb0. In this case, the correction unit 197 sets each value of “absolute position” and “azimuth” of the first predicted traveling behavior information S in the first predicted traveling behavior data D12 to the “absolute position” and “azimuth” at the start time tb0. It should be replaced with each value.
In the following description, the start time of the first and second prediction periods Tc1 and Tc2 after synchronization is assumed to be t0.
 次に、補正部197は、自車両及び他車両の安全マージンに基づいて、第1時間間隔Ts1及び第2時間間隔Ts2を一致させる。具体的には、補正部197は、第1及び第2予測走行挙動データD12,D22にそれぞれ含まれる予測走行挙動情報Sの「安全マージン」の値に基づいて、適切な時間間隔Tsを決定する。そして、補正部197は、第1時間間隔Ts1及び第2時間間隔Ts2を、決定した時間間隔Tsで一致させる。 Next, the correction unit 197 matches the first time interval Ts1 with the second time interval Ts2 based on the safety margin of the own vehicle and the other vehicle. Specifically, the correction unit 197 determines an appropriate time interval Ts based on the value of “safety margin” of the predicted traveling behavior information S included in each of the first and second predicted traveling behavior data D12 and D22. . Then, the correction unit 197 causes the first time interval Ts1 and the second time interval Ts2 to coincide with each other at the determined time interval Ts.
 「安全マージン」の値がマージン時間の場合、補正部197は、自車両のマージン時間及び他車両のマージン時間のうち、時間の短い方を時間間隔Tsとして決定する。 When the value of “safety margin” is a margin time, the correction unit 197 determines the shorter one of the margin time of the host vehicle and the margin time of another vehicle as the time interval Ts.
 「安全マージン」の値がマージン距離の場合、補正部197は、自車両のマージン距離と、自車両の速度とに基づいて、自車両のマージン時間を算出する。自車両の速度は、例えば、第1予測期間Tc1内における各時刻ta0,ta1,ta2,ta3,ta4,・・・の「絶対位置」の値に基づいて算出することができる。また、補正部197は、他車両のマージン距離と、他車両の速度とに基づいて、他車両のマージン時間を算出する。他車両の速度は、例えば、第2予測期間Tc2内における各時刻tb0,tb1,tb2,tb3,tb4,・・・の「絶対位置」の値に基づいて算出することができる。
 補正部197は、算出した自車両及び他車両のマージン時間のうち、時間の短い方を時間間隔Tsとして決定する。
If the value of “safety margin” is the margin distance, the correction unit 197 calculates the margin time of the host vehicle based on the margin distance of the host vehicle and the speed of the host vehicle. The speed of the host vehicle can be calculated, for example, based on the value of the "absolute position" of each of the times ta0, ta1, ta2, ta3, ta4, ... within the first prediction period Tc1. The correction unit 197 also calculates the margin time of the other vehicle based on the margin distance of the other vehicle and the speed of the other vehicle. The speed of the other vehicle can be calculated, for example, based on the value of the "absolute position" of each of the times tb0, tb1, tb2, tb3, tb4, ... within the second prediction period Tc2.
The correction unit 197 determines the shorter one of the calculated margin times of the host vehicle and the other vehicle as the time interval Ts.
 本実施形態の補正部197は、安全マージンのマージン時間を時間間隔Tsとして決定しているが、安全マージンに基づいていれば、マージン時間以外の時間を時間間隔Tsとして決定してもよい。また、安全マージンが、法律等により全車両で統一された値である場合、補正部197は、他車両の安全マージンを用いずに、自車両が有する前記統一された安全マージンの値に基づいて時間間隔Tsを設定すればよい。 The correction unit 197 according to the present embodiment determines the margin time of the safety margin as the time interval Ts, but may determine the time other than the margin time as the time interval Ts if it is based on the safety margin. Further, when the safety margin is a value unified for all the vehicles according to the law etc., the correction unit 197 does not use the safety margin for the other vehicles, but based on the value of the unified safety margin of the own vehicle. The time interval Ts may be set.
 次に、補正部197は、決定した時間間隔Tsと開示時刻t0に基づいて、図7の下段に示すように、開始時刻t0から、決定した時間間隔Ts毎の時刻t1,t2,t3,t4,・・・を算出する。
 そして、補正部197は、図7の上段に示す第1時間間隔Ts1毎の時刻ta1,ta2,・・・が、図7の下段に示す時間間隔Ts毎の時刻t1,t2,・・・となるように、第1予測走行挙動データD12を補正する。
Next, based on the determined time interval Ts and the disclosure time t0, the correction unit 197 determines, from the start time t0, the times t1, t2, t3, and t4 for each determined time interval Ts, as shown in the lower part of FIG. ,...
Then, the correction unit 197 sets the times ta1, ta2, ... for each first time interval Ts1 shown in the upper part of FIG. 7 to the times t1, t2, ... for each time interval Ts shown in the lower part of FIG. Thus, the first predicted traveling behavior data D12 is corrected.
 具体的には、補正部197は、第1予測走行挙動データD12における、各予測走行挙動情報S(開始時刻t0の予測走行挙動情報Sを除く)の「時刻」の値を、時刻t1,t2,・・・に置き換える。そして、補正部197は、第1予測走行挙動データD12における、前記各予測走行挙動情報Sの「絶対位置」及び「方位」の各値を、時刻t1,t2,・・・における「絶対位置」及び「方位」の各値に置き換える。この時刻t1,t2,・・・における「絶対位置」及び「方位」の各値は、上述の開始時刻ta0における「絶対位置」及び「方位」の各値の算出方法と同様の方法により算出することができる。 Specifically, the correction unit 197 sets the value of “time” of each of the predicted traveling behavior information S (excluding the predicted traveling behavior information S at the start time t0) in the first predicted traveling behavior data D12 to the time t1 and t2 Replace with ... Then, the correction unit 197 sets each value of “absolute position” and “azimuth” of each predicted traveling behavior information S in the first predicted traveling behavior data D12 to “absolute position” at time t1, t2,. And replace with each value of "direction". Each value of "absolute position" and "azimuth" at time t1, t2, ... is calculated by the same method as the method of calculating each value of "absolute position" and "azimuth" at the start time ta0 described above. be able to.
 補正部197は、図7の上段に示す第2時間間隔Ts2毎の時刻tb1,tb2,・・・が、図7の下段に示す時間間隔Ts毎の時刻t1,t2,・・・となるように、第2予測走行挙動データD22も補正する。 In the correction unit 197, the times tb1, tb2, ... for each second time interval Ts2 shown in the upper part of FIG. 7 become the times t1, t2, ... for each time interval Ts shown in the lower part of FIG. In addition, the second predicted traveling behavior data D22 is also corrected.
 具体的には、補正部197は、第2予測走行挙動データD22における、各予測走行挙動情報S(開始時刻t0の予測走行挙動情報Sを除く)の「時刻」の値を、時刻t1,t2,・・・に置き換える。そして、補正部197は、第2予測走行挙動データD22における、前記各予測走行挙動情報Sの「絶対位置」及び「方位」の各値を、時刻t1,t2,・・・における「絶対位置」及び「方位」の各値に置き換える。この時刻t1,t2,・・・における「絶対位置」及び「方位」の各値は、上述の開始時刻ta0における「絶対位置」及び「方位」の各値の算出方法と同様の方法により算出することができる。 Specifically, the correction unit 197 sets the value of “time” of each of the predicted traveling behavior information S (excluding the predicted traveling behavior information S at the start time t0) in the second predicted traveling behavior data D22 to time t1 and t2 Replace with ... Then, the correction unit 197 sets each value of “absolute position” and “azimuth” of each predicted traveling behavior information S in the second predicted traveling behavior data D22 to “absolute position” at time t1, t2,. And replace with each value of "direction". Each value of "absolute position" and "azimuth" at time t1, t2, ... is calculated by the same method as the method of calculating each value of "absolute position" and "azimuth" at the start time ta0 described above. be able to.
 以上のように、補正部197が補正処理を実行することで、補正後の第1及び第2予測走行挙動データD12,D22は、図7の下段に示すように、第1及び第2予測期間Tc1,Tc2の開始時刻ta0,tb0が開始時刻t0で同期し、第1及び第2時間間隔Ts1,Ts2が時間間隔Tsで一致したものとなる。
 補正部197は、補正後の第1及び第2予測走行挙動データD12,D22を判定部196に渡す。
As described above, when the correction unit 197 performs the correction process, the first and second predicted traveling behavior data D12 and D22 after correction are the first and second prediction periods as shown in the lower part of FIG. 7. The start times ta0 and tb0 of Tc1 and Tc2 are synchronized at the start time t0, and the first and second time intervals Ts1 and Ts2 coincide with each other at the time interval Ts.
The correction unit 197 passes the corrected first and second predicted traveling behavior data D12 and D22 to the determination unit 196.
 判定部196は、第1予測走行挙動データD1及び第2予測走行挙動データD2に基づいて、自車両と他車両との衝突可能性(以下、単に衝突可能性ともいう)を判定する。
 本実施形態の判定部196は、まず、1種類目の第1及び第2予測走行挙動データD11,D21に基づいて、大まかな衝突可能性を判定する第1判定を実行する。そして、判定部196は、第1判定により衝突可能性があると判定した場合、2種類目の第1及び第2予測走行挙動データD12,D22に基づいて、詳細な衝突可能性を判定する第2判定を実行する。
Determination unit 196 determines the possibility of a collision between the host vehicle and another vehicle (hereinafter, also simply referred to as a collision possibility) based on first predicted traveling behavior data D1 and second predicted traveling behavior data D2.
First, the determination unit 196 of the present embodiment executes a first determination that determines a rough collision possibility based on the first type of first and second predicted traveling behavior data D11 and D21. Then, when it is determined that there is a collision possibility by the first determination, the determination unit 196 determines the detailed collision possibility based on the second type of first and second predicted traveling behavior data D12 and D22. 2 Execute the judgment.
 図8は、自車両と他車両とが衝突する可能性がある状況を例示した道路平面図である。図8の例では、自車両1Aが車線R2を100km/hの速度で走行しているときに、自車両1Aの斜め前方において車線R1を80km/hの速度で走行している他車両1Bが車線R2に車線変更する場合を示している。以下、図8に示す車線変更による衝突可能性について、判定部196が実行する第1及び第2判定の処理内容について説明する。 FIG. 8 is a road plan view illustrating a situation in which the host vehicle may collide with another vehicle. In the example of FIG. 8, when the host vehicle 1A is traveling in the lane R2 at a speed of 100 km / h, another vehicle 1B traveling in the lane R1 at a speed of 80 km / h in the diagonally forward of the host vehicle 1A. The case of changing lanes to lane R2 is shown. Hereinafter, the processing contents of the first and second determinations performed by the determination unit 196 will be described with respect to the collision possibility due to the lane change shown in FIG.
  [第1判定の処理内容]
 第1判定において、判定部196は、第1予測走行挙動データD11から、図9の上段に示すように、第1予測期間Tc1における自車両1Aの将来の第1走行軌跡L1を生成する。
 具体的には、判定部196は、1種類目の第1予測走行挙動データD11に含まれる各予測走行挙動情報Sの「時刻」及び「絶対位置」と地図情報から、マップマッチング処理を行って、第1予測期間Tc1内の各時刻における自車両1Aの絶対位置を示す複数の座標点C1(経度及び緯度)を道路地図上にプロットする。
[Process content of the first determination]
In the first determination, the determination unit 196 generates a future first traveling locus L1 of the vehicle 1A in the first prediction period Tc1 from the first predicted traveling behavior data D11, as shown in the upper part of FIG.
Specifically, the determination unit 196 performs map matching processing from the “time” and the “absolute position” of each piece of predicted traveling behavior information S included in the first type of first predicted traveling behavior data D11 and the map information. A plurality of coordinate points C1 (longitude and latitude) indicating the absolute position of the vehicle 1A at each time within the first prediction period Tc1 are plotted on the road map.
 判定部196は、複数の座標点C1を道路地図上にプロットした後、例えば多項式近似などを用いて、複数の座標点C1を通過する近似線(図9の上段の例では近似直線)を求める。この求めた近似線が、第1予測期間Tc1における自車両1Aの将来の第1走行軌跡L1となる。
 図9の上段に示す第1走行軌跡L1は、現時点の時刻ta0から600m秒毎の時刻ta2及び時刻ta4までの各時刻ta0,ta2,ta4における自車両1Aの絶対位置(座標点C1)を通過する。
After plotting the plurality of coordinate points C1 on the road map, the determination unit 196 finds an approximation line (an approximation straight line in the upper example of FIG. 9) passing through the plurality of coordinate points C1 using, for example, polynomial approximation. . The calculated approximate line is a future first travel locus L1 of the vehicle 1A in the first prediction period Tc1.
The first travel locus L1 shown in the upper part of FIG. 9 passes the absolute position (coordinate point C1) of the vehicle 1A at each time ta0, ta2, ta4 from the current time ta0 to the time ta2 every 600 ms and the time ta4. Do.
 判定部196は、1種類目の第2予測走行挙動データD21から、図9の下段に示すように、第2予測期間Tc2における他車両1Bの将来の第2走行軌跡L2を生成する。
 具体的には、判定部196は、第2予測走行挙動データD21に含まれる各予測走行挙動情報Sの「時刻」及び「絶対位置」の各値と地図情報から、マップマッチング処理を行って、第2予測期間Tc2内の各時刻における他車両1Bの絶対位置を示す複数の座標点C2(経度及び緯度)を道路地図上にプロットする。
The determination unit 196 generates a future second traveling locus L2 of the other vehicle 1B in the second prediction period Tc2 from the first type of second predicted traveling behavior data D21, as shown in the lower part of FIG. 9.
Specifically, the determination unit 196 performs map matching processing from each value of “time” and “absolute position” of each predicted traveling behavior information S included in the second predicted traveling behavior data D 21 and map information, A plurality of coordinate points C2 (longitude and latitude) indicating the absolute position of the other vehicle 1B at each time within the second prediction period Tc2 are plotted on the road map.
 判定部196は、複数の座標点C2を道路地図上にプロットした後、例えば多項式近似などを用いて、複数の座標点C2を通過する近似線(図9の下段の例では近似曲線)を求める。この求めた近似線が、第2予測期間Tc2における他車両1Bの将来の第2走行軌跡L2となる。
 図9の下段に示す第2走行軌跡L2は、現時点の時刻tb0から600m秒毎の時刻tb2及び時刻tb4までの各時刻tb0,tb2,tb4における他車両1Bの絶対位置(座標点C2)を通過する。
After plotting the plurality of coordinate points C2 on the road map, the determination unit 196 finds an approximation line (an approximation curve in the lower example of FIG. 9) passing through the plurality of coordinate points C2 using, for example, polynomial approximation. . The calculated approximate line is a future second travel locus L2 of the other vehicle 1B in the second prediction period Tc2.
The second travel locus L2 shown in the lower part of FIG. 9 passes the absolute position (coordinate point C2) of the other vehicle 1B at each time tb0, tb2, tb4 from time tb0 to time tb2 every 600 ms and time tb4 Do.
 判定部196は、図10に示すように、1つの道路地図上において、自車両1Aの第1走行軌跡L1と他車両1Bの第2走行軌跡L2とを配置し、走行軌跡L1,L2同士が交わるか否かを判定する。判定部196は、走行軌跡L1,L2同士が交わる場合には、衝突可能性があると判定し、走行軌跡L1,L2同士が交わらない場合には、衝突可能性がないと判定する。図10の例では、走行軌跡L1,L2同士が交わるため、判定部196は、第1判定において衝突可能性があると判定する。 As shown in FIG. 10, determination unit 196 arranges a first traveling locus L1 of vehicle 1A and a second traveling locus L2 of other vehicle 1B on one road map, and the traveling loci L1 and L2 are one another. It is determined whether or not to intersect. The determination unit 196 determines that there is a collision possibility if the traveling loci L1 and L2 intersect with each other, and determines that there is no collision possibility if the traveling loci L1 and L2 do not intersect. In the example of FIG. 10, since the traveling trajectories L1 and L2 cross each other, the determination unit 196 determines that there is a collision possibility in the first determination.
 本実施形態の判定部196は、大まかな衝突可能性を判定する第1判定として、第1及び第2予測走行挙動データD11,D12に基づいて衝突可能性を判定しているが、上述の第1及び第2センサ51,52等を用いて衝突可能性を判定してもよい。 Although the determination unit 196 of the present embodiment determines the collision possibility based on the first and second predicted traveling behavior data D11 and D12 as a first determination to determine the rough collision possibility, The collision possibility may be determined using the first and second sensors 51, 52 or the like.
  [第2判定の処理内容]
 第2判定において、判定部196は、補正後の第1予測走行挙動データD12に基づいて、図11の上段に示すように、時間間隔Ts毎の自車両1Aが位置する領域を示す複数の第1車両領域Av1を求める。具体的には、判定部196は、第1予測走行挙動データD12に含まれる各予測走行挙動情報Sの「時刻」、「絶対位置」、「車両属性」の車幅と車長、及び地図情報から、マップマッチング処理を行って、各時刻において自車両1Aが位置する第1車両領域Av1を道路地図上にプロットする。
[Process content of the second judgment]
In the second determination, based on the first predicted traveling behavior data D12 after correction, the determination unit 196, as shown in the upper part of FIG. 11, a plurality of first regions indicating the position of the vehicle 1A at each time interval Ts. 1. Determine a vehicle area Av1. Specifically, the determination unit 196 determines the “time”, “absolute position”, vehicle width and length of “vehicle attribute”, and map information of each predicted traveling behavior information S included in the first predicted traveling behavior data D12. Then, map matching processing is performed to plot the first vehicle area Av1 in which the vehicle 1A is located at each time on the road map.
 本実施形態では、各時刻における第1車両領域Av1は、各時刻に対応する絶対位置(座標点C1)を中心とした矩形領域とされている。矩形領域の短手方向の長さは自車両1Aの車幅に設定され、矩形領域の長手方向の長さは自車両1Aの車長に設定される。なお、第1車両領域Av1の形状は、矩形以外に円形などの他の形状であってもよい。
 図11の上段では、各時刻t0、t1、t2、t3、t4における自車両1Aの第1車両領域Av1を示している。
In the present embodiment, the first vehicle area Av1 at each time is a rectangular area centered on the absolute position (coordinate point C1) corresponding to each time. The length in the short direction of the rectangular area is set to the width of the vehicle 1A, and the length in the longitudinal direction of the rectangular area is set to the length of the vehicle 1A. The shape of the first vehicle area Av1 may be a shape other than a rectangle, such as a circle.
The first vehicle area Av1 of the host vehicle 1A at each time t0, t1, t2, t3 and t4 is shown in the upper part of FIG.
 判定部196は、補正された第2予測走行挙動データD22から、図11の下段に示すように、時間間隔Ts毎の他車両1Bが位置する領域を示す複数の第2車両領域Av2を求める。具体的には、判定部196は、第2予測走行挙動データD22に含まれる各予測走行挙動情報Sの「時刻」、「絶対位置」、「車両属性」の車幅と車長、及び地図情報から、マップマッチング処理を行って、各時刻において他車両1Bが位置する第2車両領域Av2を道路地図上にプロットする。 From the corrected second predicted traveling behavior data D22, as shown in the lower part of FIG. 11, the determination unit 196 determines a plurality of second vehicle areas Av2 indicating areas where the other vehicle 1B is located at every time interval Ts. Specifically, the determination unit 196 determines the “time”, “absolute position”, vehicle width and length of “vehicle attribute”, and map information of each piece of predicted traveling behavior information S included in the second predicted traveling behavior data D22. Then, map matching processing is performed to plot the second vehicle area Av2 in which the other vehicle 1B is located at each time on the road map.
 本実施形態では、各時刻における第2車両領域Av2は、各時刻に対応する絶対位置(座標点C2)を中心とした矩形領域とされている。矩形領域の短手方向の長さは他車両1Bの車幅に設定され、矩形領域の長手方向の長さは他車両1Bの車長に設定される。なお、第2車両領域Av2の形状は、矩形以外に円形などの他の形状であってもよい。
 図11の下段では、各時刻t0、t1、t2、t3、t4における他車両1Bの第2車両領域Av2を示している。
In the present embodiment, the second vehicle area Av2 at each time is a rectangular area centered on the absolute position (coordinate point C2) corresponding to each time. The length in the short direction of the rectangular area is set to the width of the other vehicle 1B, and the length in the longitudinal direction of the rectangular area is set to the length of the other vehicle 1B. In addition, the shape of 2nd vehicle area | region Av2 may be other shapes, such as circular other than a rectangle.
The lower part of FIG. 11 shows the second vehicle area Av2 of the other vehicle 1B at each of the times t0, t1, t2, t3 and t4.
 判定部196は、図12に示すように、1つの道路地図上において、自車両1Aの各時刻t0~t4の第1車両領域Av1と、他車両1Bの各時刻t0~t4の第2車両領域Av2とを配置する。そして、判定部196は、同一の時刻間において、第1車両領域Av1の第1移動軌跡Laと、第2車両領域Av2の第2移動軌跡Lbとが交わるか否かを判定する。 As shown in FIG. 12, determination unit 196 determines, on one road map, a first vehicle area Av1 at each time t0 to t4 of own vehicle 1A and a second vehicle area at each time t0 to t4 of other vehicle 1B. Arrange with Av2. Then, the determination unit 196 determines whether or not the first movement locus La of the first vehicle area Av1 and the second movement locus Lb of the second vehicle area Av2 intersect at the same time.
 図13は、第1車両領域Av1の第1移動軌跡La、及び第2車両領域Av2の第2移動軌跡Lbの説明図である。図13に示すように、第1車両領域Av1の第1移動軌跡Laは、開始時刻t0の第1車両領域Av1の四隅から、時刻t1,t2,・・・の第1車両領域Av1の四隅を順に通過して、最後時刻tn(nは1以上の整数)の第1車両領域Av1の四隅までを結ぶ4本の直線からなる。
 同様に、第2車両領域Av2の第2移動軌跡Lbは、開始時刻t0の第2車両領域Av2の四隅から、時刻t1,t2,・・・の第2車両領域Av2の四隅を順に通過して、最後時刻tnの第2車両領域Av2の四隅までを結ぶ4本の直線からなる。
FIG. 13 is an explanatory diagram of a first movement locus La of the first vehicle area Av1 and a second movement locus Lb of the second vehicle area Av2. As shown in FIG. 13, the first movement locus La of the first vehicle area Av1 starts from the four corners of the first vehicle area Av1 at the start time t0 and the four corners of the first vehicle area Av1 at the times t1, t2,. It passes in order and it consists of four straight lines which connect to four corners of 1st vehicle area Av1 of last time tn (n is an integer greater than or equal to 1).
Similarly, the second movement locus Lb of the second vehicle area Av2 sequentially passes from the four corners of the second vehicle area Av2 at time t1, t2,... From the four corners of the second vehicle area Av2 at the start time t0. , And four straight lines connecting the four corners of the second vehicle area Av2 at the final time tn.
 判定部196は、同一の時刻間において、第1移動軌跡Laの4本の直線のいずれかが、第2移動軌跡Lbの4本の直線のいずれかと交わる場合には、衝突可能性があると判定する。また、判定部196は、同一の時刻間において、第1移動軌跡Laの4本の直線のいずれもが、第2移動軌跡Lbの4本の直線のいずれとも交わらない場合には、衝突可能性がないと判定する。
 図12の例では、時刻t2と時刻t3との間において、第1車両領域Av1の第1移動軌跡Laと、第2車両領域Av2の第2移動軌跡Lbとが交わるため、判定部196は、第2判定において衝突可能性があると判定する。
If any of the four straight lines of the first movement locus La intersects with any of the four straight lines of the second movement locus Lb during the same time, the determination unit 196 determines that there is a collision possibility. judge. In addition, if any of the four straight lines of the first movement locus La does not intersect any of the four straight lines of the second movement locus Lb during the same time, the determination unit 196 may determine the collision possibility. Determine that there is no
In the example of FIG. 12, since the first movement locus La of the first vehicle area Av1 and the second movement locus Lb of the second vehicle area Av2 intersect between time t2 and time t3, the determination unit 196 It is determined in the second determination that there is a possibility of collision.
 判定部196が実行する第1及び第2判定は、車線変更以外の衝突可能性の判定にも適用することができる。例えば、第1及び第2判定は、交差点での右折車両の衝突可能性、高速道路又は一般道路の合流区間における合流車両の衝突可能性など、他の交通状況における衝突可能性の判定にも適用することができる。 The first and second determinations performed by the determination unit 196 can be applied to the determination of the collision possibility other than the lane change. For example, the first and second determinations also apply to the determination of the possibility of collision in other traffic situations, such as the possibility of collision of right-turn vehicles at intersections, the possibility of collision of merging vehicles in merging sections of expressways or general roads, etc. can do.
 ところで、判定部196が自車両1Aと他車両1Bとの衝突可能性を判定する他の方法として、同一の時刻において、自車両1Aの第1車両領域Av1と他車両1Bの第2車両領域Av2とが重なれば、衝突可能性があると判定する方法がある。しかし、この判定方法では、以下のように、判定部196の判定結果が誤判定になるケースが生じる。 By the way, as another method of determining the collision possibility between the own vehicle 1A and the other vehicle 1B, the first vehicle range Av1 of the own vehicle 1A and the second vehicle range Av2 of the other vehicle 1B at the same time. There is a way to determine that there is a possibility of collision if However, in this determination method, there are cases where the determination result of the determination unit 196 is erroneously determined as follows.
 例えば、図14に示すように、判定部196が、交差点で直進する自車両1Aと、当該交差点で右折する他車両1Bとの衝突可能性を判定する場合、同一の時刻t11における第1車両領域Av1と第2車両領域Av2は重ならない。また、他の同一の時刻t12における第1車両領域Av1と第2車両領域Av1,Av2も重ならない。このため、判定部196は、衝突可能性がないと判定する。
 しかし、実際には、同一の時刻間である、時刻t11と時刻t12との間において、自車両1Aと他車両1Bとが衝突する蓋然性が高いことは図14を見れば明らかであるため、判定部196の判定結果は誤判定となる。
For example, as shown in FIG. 14, when the determination unit 196 determines the possibility of collision between the own vehicle 1A going straight at an intersection and the other vehicle 1B turning right at the intersection, the first vehicle region at the same time t11 Av1 and the second vehicle area Av2 do not overlap. In addition, the first vehicle area Av1 and the second vehicle areas Av1 and Av2 at the same time t12 do not overlap. For this reason, the determination unit 196 determines that there is no collision possibility.
However, in fact, it is apparent from FIG. 14 that the probability that the own vehicle 1A and the other vehicle 1B collide with each other is high between time t11 and time t12 which are between the same times. The determination result of the part 196 is an incorrect determination.
 これに対して、図14の例において、本実施形態のように、第1及び第2移動軌跡La,Lbを用いて衝突可能性を判定した場合、同一の時刻間において、第1車両領域Av1の第1移動軌跡Laと、第2車両領域Av2の第2移動軌跡Lbとは交わっているため、判定部196は、衝突可能性があると正しく判定する。
 しかし、第1及び第2移動軌跡La,Lbを用いて判定しても、時間間隔Tsを粗くすると、以下のような場合に、判定部196の判定結果が誤判定になるケースが生じる。
On the other hand, in the example of FIG. 14, when the collision possibility is determined using the first and second movement trajectories La and Lb as in the present embodiment, the first vehicle area Av1 is obtained during the same time. The determination unit 196 correctly determines that there is a possibility of collision because the first movement locus La of and the second movement locus Lb of the second vehicle area Av2 cross each other.
However, even if the determination is performed using the first and second movement trajectories La and Lb, if the time interval Ts is made rough, there are cases where the determination result of the determination unit 196 is an incorrect determination in the following cases.
 例えば、時間間隔Tsを粗くすると、図15に示すように、時間的に前後する第1車両領域Av1間の距離、及び時間的に前後する第2車両領域Av2間の距離が長くなる。この場合、同一の時刻間である、時刻t21と時刻t22との間において、第1車両領域Av1の第1移動軌跡Laと、第2車両領域Av2の第2移動軌跡Lbとは交わっているため、判定部196は、衝突可能性があると判定する。 For example, when the time interval Ts is roughened, as shown in FIG. 15, the distance between the first vehicle areas Av1 that move forward and backward in time and the distance between the second vehicle areas Av2 that move forward and backward in time become longer. In this case, since the first movement locus La of the first vehicle area Av1 and the second movement locus Lb of the second vehicle area Av2 intersect between the time t21 and the time t22 which are between the same times. The determination unit 196 determines that there is a possibility of collision.
 しかし、図15に示すように、時刻t21と時刻t22との中間時刻において、第1車両領域Av1と第2車両領域Av2をプロットすると、これらの第1及び第2車両領域Av1,Av2は重ならない。このため、図15の例では、自車両1Aと他車両1Bとが衝突しない蓋然性が高いことは明らかであり、判定部196の判定結果は誤判定となる。 However, as shown in FIG. 15, when the first vehicle area Av1 and the second vehicle area Av2 are plotted at an intermediate time between the time t21 and the time t22, these first and second vehicle areas Av1 and Av2 do not overlap . For this reason, in the example of FIG. 15, it is clear that the probability that the own vehicle 1A and the other vehicle 1B will not collide is high, and the determination result of the determination unit 196 is an erroneous determination.
 従って、第1及び第2移動軌跡La,Lbを用いて判定する場合には、時間間隔Tsを細かくして衝突可能性の判定精度を高める必要がある。しかし、時間間隔Tsを細かくし過ぎると、データ量が膨大となり、判定処理が間に合わなくなるおそれがある。 Therefore, when making a determination using the first and second movement trajectories La and Lb, it is necessary to make the time interval Ts finer to increase the determination accuracy of the collision possibility. However, if the time interval Ts is made too fine, the amount of data becomes enormous, and there is a possibility that the determination process may not be in time.
 これに対して、本実施形態では、上述のように、自車両1A又は他車両1Bの安全マージンであるマージン時間を時間間隔Tsとしているため、時間間隔Tsを、マージン時間程度の粗さにしても、安全側に判定する精度を保証することができる。例えば、図16に示すように、実際には自車両1Aと他車両1Bとが衝突しない蓋然性が高い場合でも、時刻t31と時刻t32との間の時間間隔Ts(マージン時間)において、第1車両領域Av1の第1移動軌跡Laと、第2車両領域Av2の第2移動軌跡Lbとは交わっている。このため、判定部196は、実際には衝突しなくても、衝突可能性があるとして、安全側に判定する。 On the other hand, in the present embodiment, as described above, since the margin time which is the safety margin of the vehicle 1A or the other vehicle 1B is the time interval Ts, the time interval Ts is roughened about the margin time Also, it is possible to guarantee the accuracy of determination on the safety side. For example, as shown in FIG. 16, even when the probability that the own vehicle 1A and the other vehicle 1B do not collide is high in fact, as shown in FIG. 16, the first vehicle is in the time interval Ts (margin time) between time t31 and time t32. The first movement locus La of the area Av1 and the second movement locus Lb of the second vehicle area Av2 intersect. For this reason, the determination unit 196 determines on the safety side that there is a possibility of collision even if there is no collision in practice.
 また、本実施形態では、マージン時間を時間間隔Tsとすることで、時間間隔Tsを細かくし過ぎるのを防止することができる。これにより、安全を過剰に見積もることなく衝突可能性を判定することができるので、判定処理に用いる余分なデータ量を減らすことができる。
 したがって、マージン時間を時間間隔Tsとすることで、自車両と他車両との衝突可能性の判定精度を確保しつつ、判定処理に用いるデータ量の膨大化を抑制することができる。
Further, in the present embodiment, by setting the margin time to the time interval Ts, it is possible to prevent the time interval Ts from being too fine. As a result, since the possibility of collision can be determined without excessively estimating the safety, it is possible to reduce the amount of extra data used for the determination process.
Therefore, by setting the margin time to the time interval Ts, it is possible to suppress an increase in the amount of data used for the determination process while securing the determination accuracy of the collision possibility between the own vehicle and the other vehicle.
[衝突可能性判定の処理手順]
 図17は、車載通信機19が実行する衝突可能性判定の処理手順を示すフローチャートである。図17に示すように、車載通信機19は、まず、第1予測期間Tc1内における一定時間間隔毎の自車両の予測走行挙動を示す複数の予測走行挙動情報Sを有する2種類の第1予測走行挙動データD1を生成する。具体的には、車載通信機19は、粗い時間間隔毎の予測走行挙動情報Sを含む自車両の1種類目の第1予測走行挙動データD11、及び細かい時間間隔毎の予測走行挙動情報Sを含む自車両の2種類目の第1予測走行挙動データD12を生成する(ステップST1、生成ステップ)。
[Procedure of judging the possibility of collision]
FIG. 17 is a flowchart showing the procedure of the collision possibility determination process performed by the in-vehicle communication device 19. As shown in FIG. 17, the in-vehicle communication device 19 first performs two types of first predictions having a plurality of predicted travel behavior information S indicating the predicted travel behavior of the host vehicle at predetermined time intervals within the first prediction period Tc1. The traveling behavior data D1 is generated. Specifically, the in-vehicle communication device 19 calculates the first predicted traveling behavior data D11 of the first type of the vehicle including the predicted traveling behavior information S at rough time intervals, and the predicted traveling behavior information S at every fine time interval. A second type of first predicted traveling behavior data D12 of the vehicle including the vehicle is generated (step ST1, generation step).
 次に、車載通信機19は、1種類目の第1予測走行挙動データD11を、車車間通信により自車両の周辺を走行する他車両に送信する(ステップST2)。そして、車載通信機19は、自車両の周辺を走行する他車両が車車間通信により送信した1種類目の第2予測走行挙動データD21を受信する(ステップST3)。第2予測走行挙動データD21は、上述のように第2予測期間Tc2内における粗い時間間隔毎の他車両の予測走行挙動情報Sを含むデータである。 Next, the in-vehicle communication device 19 transmits the first type of first predicted traveling behavior data D11 to another vehicle traveling in the vicinity of the own vehicle by inter-vehicle communication (step ST2). Then, the in-vehicle communication device 19 receives the first type of second predicted traveling behavior data D21 transmitted by the inter-vehicle communication by another vehicle traveling around the host vehicle (step ST3). The second predicted traveling behavior data D21 is data including predicted traveling behavior information S of another vehicle at rough time intervals in the second prediction period Tc2, as described above.
 次に、車載通信機19は、生成した自車両の第1予測走行挙動データD11と、受信した他車両の第2予測走行挙動データD21とに基づいて、自車両と他車両との大まかな衝突可能性を判定する第1判定を実行する(ステップST4)。第1判定において、車載通信機19は、上述のように、自車両の第1走行軌跡L1と他車両の第2走行軌跡L2とが交わる場合には、衝突可能性があると判定し、走行軌跡L1,L2同士が交わらない場合には、衝突可能性がないと判定する。 Next, the on-vehicle communication device 19 roughly collides with the other vehicle based on the generated first predicted traveling behavior data D11 of the own vehicle and the received second predicted traveling behavior data D21 of the other vehicle. A first determination to determine the possibility is performed (step ST4). In the first determination, as described above, the on-vehicle communication device 19 determines that there is a possibility of collision when the first traveling locus L1 of the own vehicle and the second traveling locus L2 of the other vehicle intersect, as described above If the trajectories L1 and L2 do not cross each other, it is determined that there is no collision possibility.
 車載通信機19は、第1判定において衝突可能性がないと判定された場合(ステップST5で「No」の場合)、処理を終了する。
 一方、車載通信機19は、第1判定において衝突可能性があると判定された場合(ステップST5で「Yes」の場合)、自車両、及び衝突可能性がある他車両の2種類目の第2予測走行挙動データD12,D22の補正処理を実行する(ステップST6)。
If it is determined that there is no collision possibility in the first determination (in the case of “No” in step ST5), the in-vehicle communication device 19 ends the process.
On the other hand, when it is determined that the in-vehicle communication device 19 has the possibility of collision in the first determination (in the case of “Yes” in step ST5), the second type of the own vehicle and the other vehicles having the possibility of collision 2. A correction process of predicted traveling behavior data D12 and D22 is executed (step ST6).
 自車両の第1予測走行挙動データD12は、第1ステップST1で生成されたデータであり、上述のように第1予測期間Tc1内における細かい時間間隔毎の自車両の予測走行挙動情報Sを含んでいる。
 他車両の第2予測走行挙動データD22は、当該他車両で生成されたデータであり、上述のように第2予測期間Tc2内における細かい時間間隔毎の他車両の予測走行挙動情報Sを含むデータである。
The first predicted traveling behavior data D12 of the own vehicle is data generated in the first step ST1 and includes the estimated traveling behavior information S of the own vehicle for every fine time interval in the first estimation period Tc1 as described above. It is.
The second predicted traveling behavior data D22 of the other vehicle is data generated by the other vehicle, and as described above, is data including the predicted traveling behavior information S of the other vehicle at fine time intervals within the second prediction period Tc2. It is.
 図18は、車載通信機19が実行する補正処理の処理手順を示すフローチャートである。図18に示すように、車載通信機19は、第1判定で衝突可能性がある判定された他車両で生成された第2予測走行挙動データD22の送信を要求する情報を、車車間通信により送信する(ステップST31)。これにより、車載通信機19は、第1判定で衝突可能性がある判定された他車両から第2予測走行挙動データD22を、車車間通信により受信する(ステップST32、通信ステップ)。 FIG. 18 is a flowchart showing the processing procedure of the correction processing performed by the on-vehicle communication device 19. As shown in FIG. 18, the in-vehicle communication device 19 performs, by inter-vehicle communication, information requesting transmission of the second predicted traveling behavior data D22 generated by the other vehicle determined to have the possibility of collision in the first determination. It transmits (step ST31). Thus, the in-vehicle communication device 19 receives the second predicted traveling behavior data D22 from the other vehicle determined to have the possibility of collision in the first determination by inter-vehicle communication (step ST32, communication step).
 次に、車載通信機19は、自車両の第1予測走行挙動データD12における第1予測期間Tc1の開始時刻と、受信した他車両の第2予測走行挙動データD22における第2予測期間Tc2の開始時刻を同期させるように、第1及び第2予測走行挙動データD12,D22の少なくとも一方の「時刻」、「絶対位置」、及び「方位」の各値を補正する(ステップST33、補正ステップ)。ここでの「時刻」、「絶対位置」、及び「方位」の各値の補正方法は上述の通りである。 Next, the in-vehicle communication device 19 starts the start time of the first prediction period Tc1 in the first prediction travel behavior data D12 of the host vehicle and the start of the second prediction period Tc2 in the received second prediction travel behavior data D22 of the other vehicle Each value of at least one of the first and second predicted traveling behavior data D12 and D22 "time", "absolute position" and "direction" is corrected so as to synchronize time (step ST33, correction step). The correction method of each value of "time", "absolute position", and "azimuth" here is as described above.
 次に、車載通信機19は、自車両及び他車両の安全マージンに基づいて、時間間隔Tsを決定する(ステップST34)。時間間隔Tsの決定方法は上述の通りである。
 そして、車載通信機19は、自車両の第1予測走行挙動データD12における第1時間間隔Ts1、及び受信した他車両の第2予測走行挙動データD22における第2時間間隔Ts2を、決定した時間間隔Tsで一致させるように、第1及び第2予測走行挙動データD12,D22の少なくとも一方の「時刻」、「絶対位置」、及び「方位」の各値を補正する(ステップST35、補正ステップ)。ここでの「時刻」、「絶対位置」、及び「方位」の各値の補正方法は上述の通りである。
Next, the on-vehicle communication device 19 determines the time interval Ts based on the safety margin of the own vehicle and the other vehicle (step ST34). The method of determining the time interval Ts is as described above.
Then, the on-vehicle communication device 19 determines the first time interval Ts1 in the first predicted traveling behavior data D12 of the own vehicle and the second time interval Ts2 in the received second predicted traveling behavior data D22 of the other vehicle. Each value of at least one of "time", "absolute position", and "azimuth" of the first and second predicted traveling behavior data D12 and D22 is corrected so as to coincide with Ts (step ST35, correction step). The correction method of each value of "time", "absolute position", and "azimuth" here is as described above.
 図17に戻り、次に、車載通信機19は、補正された第1及び第2予測走行挙動データD12,D22に基づいて、自車両と他車両との詳細な衝突可能性を判定する第2判定を実行する(ステップST7)。
 第2判定において、車載通信機19は、上述のように、自車両1Aの第1車両領域Av1の第1移動軌跡Laと、他車両の第2車両領域Av2の第2移動軌跡Lbとが交わる場合には、衝突可能性があると判定し、第1及び第2移動軌跡La,Lb同士が交わらない場合には、衝突可能性がないと判定する。
Referring back to FIG. 17, next, the in-vehicle communication device 19 determines a detailed collision possibility between the own vehicle and the other vehicle based on the corrected first and second predicted traveling behavior data D12 and D22. The determination is performed (step ST7).
In the second determination, as described above, the in-vehicle communication device 19 intersects the first movement locus La of the first vehicle area Av1 of the host vehicle 1A and the second movement locus Lb of the second vehicle area Av2 of the other vehicle. In the case, it is determined that there is a collision possibility, and when the first and second movement trajectories La and Lb do not cross each other, it is determined that there is no collision possibility.
[効果について]
 以上、本実施形態によれば、自車両の第1予測走行挙動データD12の第1時間間隔Ts1、及び他車両の第2予測走行挙動データD22の第2時間間隔Ts2を、自車両又は他車両の安全マージンであるマージン時間(時間間隔Ts)で一致させるように、第1及び第2予測走行挙動データD12,D22を補正している。このため、自車両と他車両との衝突可能性を判定するときに、安全側に判定する精度を保証することができる。また、安全を過剰に見積もることなく衝突可能性を判定することができるので、判定処理に用いる余分なデータ量を減らすことができる。これにより、自車両と他車両との衝突可能性の判定精度を確保しつつ、判定処理に用いるデータ量の膨大化を抑制することができる。
[About the effect]
As described above, according to the present embodiment, the first time interval Ts1 of the first predicted traveling behavior data D12 of the own vehicle and the second time interval Ts2 of the second predicted traveling behavior data D22 of the other vehicle The first and second predicted traveling behavior data D12 and D22 are corrected so that they coincide with each other at a margin time (time interval Ts) which is a safety margin. Therefore, when determining the possibility of collision between the own vehicle and the other vehicle, it is possible to guarantee the accuracy of the determination on the safety side. In addition, since the possibility of collision can be determined without excessively estimating the safety, the amount of extra data used for the determination process can be reduced. As a result, it is possible to suppress an increase in the amount of data used for the determination process while securing the determination accuracy of the collision possibility between the own vehicle and the other vehicle.
 また、安全マージンがマージン距離の場合、車載通信機19の補正部197は、マージン距離と、自車両又は他車両の速度とに基づいて決定した時間間隔Tsで、第1及び第2時間間隔Ts1,Ts2を一致させるので、第1及び第2時間間隔Ts1,Ts2を適切な時間間隔Tsで一致させることができる。
 また、安全マージンがマージン時間の場合、補正部197は、第1及び第2時間間隔Ts1,Ts2を、前記マージン時間である時間間隔Tsで一致させるので、時間間隔Tsを容易に決定することができる。
When the safety margin is a margin distance, the correction unit 197 of the in-vehicle communication device 19 sets the first and second time intervals Ts1 at a time interval Ts determined based on the margin distance and the speed of the own vehicle or another vehicle. , Ts2 are matched, so that the first and second time intervals Ts1, Ts2 can be matched at an appropriate time interval Ts.
When the safety margin is a margin time, the correction unit 197 makes the first and second time intervals Ts1 and Ts2 coincide with each other at the time interval Ts which is the margin time, so that the time interval Ts can be easily determined. it can.
 また、補正部197は、第1及び第2時間間隔Ts1,Ts2を、自車両及び他車両の安全マージンに基づいて決定された時間間隔Tsで一致させている。このため、自車両の安全マージンと他車両の安全マージンとが異なる場合であっても、第1及び第2時間間隔Ts1,Ts2を適切な時間間隔Tsで一致させることができるので、自車両と他車両との衝突可能性の判定精度を確保しつつ、判定処理に用いるデータ量の膨大化を効果的に抑制することができる。 Further, the correction unit 197 makes the first and second time intervals Ts1 and Ts2 coincide with each other at a time interval Ts determined based on the safety margins of the own vehicle and the other vehicle. For this reason, even when the safety margin of the own vehicle and the safety margin of the other vehicle are different, the first and second time intervals Ts1 and Ts2 can be made to coincide with each other at an appropriate time interval Ts. It is possible to effectively suppress an increase in the amount of data used in the determination process while securing the determination accuracy of the possibility of collision with another vehicle.
 また、車載通信機19の無線通信部193は、判定部196が第1判定により自車両と他車両との衝突可能性があると判定した場合に、当該他車両の第2予測走行挙動データD22を受信するので、車車間通信の通信データ量を削減することができる。 Further, when the determination unit 196 determines that there is a possibility of a collision between the own vehicle and another vehicle according to the first determination, the wireless communication unit 193 of the in-vehicle communication device 19 performs second predicted traveling behavior data D22 of the other vehicle. Can be reduced to reduce the amount of communication data for inter-vehicle communication.
 [その他]
 本実施形態では、車載通信機19を、予測走行挙動データの補正装置としているが、中継装置20を前記補正装置としてもよい。また、前記補正装置は、自車両及び1台の他車両の予測走行挙動データを補正しているが、自車両及び複数台の他車両の予測走行挙動データを補正してもよい。
[Others]
In the present embodiment, the in-vehicle communication device 19 is used as a correction device for predicted traveling behavior data, but the relay device 20 may be used as the correction device. Further, although the correction device corrects predicted traveling behavior data of the own vehicle and one other vehicle, the correcting device may correct predicted traveling behavior data of the own vehicle and a plurality of other vehicles.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown by the scope of the claims, not the meaning described above, and is intended to include the meanings equivalent to the scope of the claims and all modifications within the scope.
  1 車両
  1A 自車両
  1B 他車両
  10 車内システム
  12 通信ネットワーク
  13 車内通信線
  16 車載制御装置(ECU)
  16A1 エンジンECU
  16A2 EPS-ECU
  16A3 ブレーキECU
  16A4 ABS-ECU
  16B1 ナビゲーションECU
  16B2 メータECU
  16B3 HUD-ECU
  16C1 ADAS-ECU
  16C2 環境認識ECU
  19 車載通信機(補正装置)
  20 中継装置
  21 制御部
  22 記憶部
  23 車内通信部
  31 燃料噴射装置
  32 EPS
  33 ブレーキアクチュエータ
  34 ABSアクチュエータ
  41 HDD
  42 ディスプレイ
  43 GPS受信機
  44 車速センサ
  45 ジャイロセンサ
  46 スピーカ
  47 入力デバイス
  48 メータアクチュエータ
  49 HUD
  51 第1センサ
  52 第2センサ
  191 制御部
  192 記憶部
  193 無線通信部(通信部)
  194 アンテナ
  195 生成部
  196 判定部
  197 補正部
  Am1 マージン領域
  Am11 第1マージン領域
  Am12 第2マージン領域
  Am2 マージン領域
  Am21 第1マージン領域
  Am22 第2マージン領域
  Av1 車両領域
  Av2 車両領域
  C1 座標点
  C2 座標点
  D 予測走行挙動データ
  D1 第1予測走行挙動データ
  D2 第2予測走行挙動データ
  L1 第1走行軌跡
  L2 第2走行軌跡
  R1 車線
  R2 車線
  S 予測走行挙動情報
  Tc 予測期間
  Tc1 第1予測期間
  Tc2 第2予測期間
  Ts1 第1時間間隔
  Ts2 第2時間間隔
  Ts  時間間隔
1 Vehicle 1A Own Vehicle 1B Other Vehicle 10 In-Vehicle System 12 Communication Network 13 In-Vehicle Communication Line 16 In-Vehicle Controller (ECU)
16A1 engine ECU
16A2 EPS-ECU
16A3 brake ECU
16A4 ABS-ECU
16B1 Navigation ECU
16B2 meter ECU
16B3 HUD-ECU
16C1 ADAS-ECU
16C2 Environment recognition ECU
19 Vehicle communication device (compensation device)
Reference Signs List 20 relay device 21 control unit 22 storage unit 23 in-vehicle communication unit 31 fuel injection device 32 EPS
33 brake actuator 34 ABS actuator 41 HDD
42 Display 43 GPS Receiver 44 Vehicle Speed Sensor 45 Gyro Sensor 46 Speaker 47 Input Device 48 Meter Actuator 49 HUD
51 first sensor 52 second sensor 191 control unit 192 storage unit 193 wireless communication unit (communication unit)
194 antenna 195 generation unit 196 determination unit 197 correction unit Am1 margin area Am11 first margin area Am12 second margin area Am2 margin area Am21 first margin area Am22 second margin area Av1 vehicle area Av2 vehicle area C1 coordinate point C1 coordinate point D Predicted traveling behavior data D1 first predicted traveling behavior data D2 second predicted traveling behavior data L1 first traveling locus L2 second traveling locus R1 lane R2 lane S lane S predicted traveling behavior information Tc prediction period Tc1 first prediction period Tc2 second prediction period Ts1 first time interval Ts2 second time interval Ts time interval

Claims (7)

  1.  予測走行挙動データを補正する装置であって、
     下記に定義する第1予測走行挙動データを生成する生成部と、
     下記に定義する第2予測走行挙動データを車車間通信により受信する通信部と、
     所定の安全マージンに基づいて、第1予測期間の開始時刻及び第2予測期間の開始時刻を同期させ、且つ第1時間間隔及び第2時間間隔を一致させるように、前記第1及び第2予測走行挙動データのうちの少なくとも一方のデータを補正する補正部と、を備える予測走行挙動データの補正装置。
     第1予測走行挙動データ:将来の第1予測期間内における所定の第1時間間隔毎の自車両の予測走行挙動を示す予測走行挙動データ
     第2予測走行挙動データ:将来の第2予測期間内における所定の第2時間間隔毎の他車両の予測走行挙動を示す予測走行挙動データ
    A device for correcting predicted traveling behavior data, comprising
    A generation unit that generates first predicted traveling behavior data defined below;
    A communication unit that receives, by inter-vehicle communication, second predicted traveling behavior data defined below;
    The first and second predictions are synchronized such that the start time of the first prediction period and the start time of the second prediction period are synchronized and the first time interval and the second time interval are matched based on a predetermined safety margin. And a correction unit configured to correct at least one of the traveling behavior data.
    First predicted traveling behavior data: predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period Second predicted traveling behavior data: within a second predicted period in the future Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
  2.  前記安全マージンは、安全走行に必要なマージン距離であり、
     前記補正部は、前記マージン距離と、自車両又は他車両の速度とに基づいて、前記第1及び第2時間間隔を一致させる、請求項1に記載の予測走行挙動データの補正装置。
    The safety margin is a margin distance necessary for safe driving,
    The correction device of predicted travel behavior data according to claim 1, wherein the correction unit matches the first and second time intervals based on the margin distance and the speed of the own vehicle or another vehicle.
  3.  前記安全マージンは、安全走行に必要なマージン時間であり、
     前記補正部は、前記第1及び第2時間間隔を前記マージン時間で一致させる、請求項1に記載の予測走行挙動データの補正装置。
    The safety margin is the margin time required for safe driving,
    The correction | amendment apparatus of the prediction driving | running | working behavior data of Claim 1 which the said correction | amendment part makes the said 1st and 2nd time interval correspond by the said margin time.
  4.  前記通信部は、車車間通信により他車両の安全マージンをさらに受信し、
     前記補正部は、自車両の安全マージン、及び受信した前記他車両の安全マージンに基づいて、前記第1及び第2時間間隔を一致させる、請求項1~請求項3のいずれか1項に記載の予測走行挙動データの補正装置。
    The communication unit further receives the safety margin of another vehicle by inter-vehicle communication,
    The said correction | amendment part makes the said 1st and 2nd time interval correspond according to the safety margin of the own vehicle, and the safety margin of the said other vehicle received. Correction device for predicted driving behavior data.
  5.  前記通信部は、自車両と他車両との衝突可能性がある場合に、当該他車両の前記第2予測走行挙動データを受信する、請求項1~請求項4のいずれか1項に記載の予測走行挙動データの補正装置。 The communication unit according to any one of claims 1 to 4, wherein the communication unit receives the second predicted traveling behavior data of the other vehicle when there is a collision possibility between the own vehicle and the other vehicle. Correction device for predicted driving behavior data.
  6.  予測走行挙動データを補正する方法であって、
     下記に定義する第1予測走行挙動データを生成する生成ステップと、
     下記に定義する第2予測走行挙動データを車車間通信により受信する通信ステップと、
     所定の安全マージンに基づいて、第1予測期間の開始時刻及び第2予測期間の開始時刻を同期させ、且つ第1時間間隔及び第2時間間隔を一致させるように、前記第1及び第2予測走行挙動データのうちの少なくとも一方のデータを補正する補正ステップと、を含む予測走行挙動データの補正方法。
     第1予測走行挙動データ:将来の第1予測期間内における所定の第1時間間隔毎の自車両の予測走行挙動を示す予測走行挙動データ
     第2予測走行挙動データ:将来の第2予測期間内における所定の第2時間間隔毎の他車両の予測走行挙動を示す予測走行挙動データ
    A method of correcting predicted driving behavior data, comprising
    A generation step of generating first predicted traveling behavior data defined below;
    A communication step of receiving, by inter-vehicle communication, second predicted traveling behavior data defined below;
    The first and second predictions are synchronized such that the start time of the first prediction period and the start time of the second prediction period are synchronized and the first time interval and the second time interval are matched based on a predetermined safety margin. And correcting the data of at least one of the driving behavior data.
    First predicted traveling behavior data: predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period Second predicted traveling behavior data: within a second predicted period in the future Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
  7.  予測走行挙動データを補正する処理をコンピュータに実行させるためのコンピュータプログラムであって、
     コンピュータを、
     下記に定義する第1予測走行挙動データを生成する生成部と、
     所定の安全マージンに基づいて、第1予測期間の開始時刻及び第2予測期間の開始時刻を同期させ、且つ第1時間間隔及び第2時間間隔を一致させるように、前記第1予測走行挙動データ、及び車車間通信により通信部で受信された第2予測走行挙動データのうちの少なくとも一方のデータを補正する補正部として機能させるためのコンピュータプログラム。
     第1予測走行挙動データ:将来の第1予測期間内における所定の第1時間間隔毎の自車両の予測走行挙動を示す予測走行挙動データ
     第2予測走行挙動データ:将来の第2予測期間内における所定の第2時間間隔毎の他車両の予測走行挙動を示す予測走行挙動データ
    A computer program for causing a computer to execute a process of correcting predicted traveling behavior data.
    Computer,
    A generation unit that generates first predicted traveling behavior data defined below;
    The first predicted traveling behavior data is synchronized so as to synchronize the start time of the first prediction period and the start time of the second prediction period based on a predetermined safety margin and to match the first time interval and the second time interval. And a computer program for functioning as a correction unit that corrects at least one of second predicted traveling behavior data received by the communication unit through inter-vehicle communication.
    First predicted traveling behavior data: predicted traveling behavior data indicating predicted traveling behavior of the vehicle at predetermined first time intervals within a future first predicted period Second predicted traveling behavior data: within a second predicted period in the future Predicted travel behavior data indicating predicted travel behavior of another vehicle at predetermined second time intervals
PCT/JP2017/045636 2017-12-20 2017-12-20 Predicted travel behavior data correction device, predicted travel behavior data correction method, and computer program WO2019123555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045636 WO2019123555A1 (en) 2017-12-20 2017-12-20 Predicted travel behavior data correction device, predicted travel behavior data correction method, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045636 WO2019123555A1 (en) 2017-12-20 2017-12-20 Predicted travel behavior data correction device, predicted travel behavior data correction method, and computer program

Publications (1)

Publication Number Publication Date
WO2019123555A1 true WO2019123555A1 (en) 2019-06-27

Family

ID=66994015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045636 WO2019123555A1 (en) 2017-12-20 2017-12-20 Predicted travel behavior data correction device, predicted travel behavior data correction method, and computer program

Country Status (1)

Country Link
WO (1) WO2019123555A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003256985A (en) * 2002-03-05 2003-09-12 Honda Motor Co Ltd Device, method and program for providing danger information for vehicle
JP2006182207A (en) * 2004-12-28 2006-07-13 Masahiro Watanabe Operation assistance system
JP2010152656A (en) * 2008-12-25 2010-07-08 Aisin Aw Co Ltd Driving support device and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003256985A (en) * 2002-03-05 2003-09-12 Honda Motor Co Ltd Device, method and program for providing danger information for vehicle
JP2006182207A (en) * 2004-12-28 2006-07-13 Masahiro Watanabe Operation assistance system
JP2010152656A (en) * 2008-12-25 2010-07-08 Aisin Aw Co Ltd Driving support device and program

Similar Documents

Publication Publication Date Title
US10766493B2 (en) Method and automatic control systems for determining a gap in traffic between two vehicles for a lane change of a vehicle
CN107077794B (en) Vehicle-mounted control device, vehicle position and posture determining device, and vehicle-mounted display device
EP2857288B1 (en) Driving assistance device
JP6512084B2 (en) Travel locus generation device, travel locus generation method
WO2019138485A1 (en) Collision possibility determination device, collision possibility determination method, and computer program
US20180154893A1 (en) Drive assist apparatus
US11661084B2 (en) Information processing apparatus, information processing method, and mobile object
CN105799700A (en) Collision avoidance control system and control method
US11397440B2 (en) Vehicle control system, external electronic control unit, vehicle control method, and application
US11377101B2 (en) Information processing apparatus, information processing method, and vehicle
JP7189691B2 (en) Vehicle cruise control system
WO2019138488A1 (en) Predicted travel behavior data adjustment device, predicted travel behavior data transmission device, predicted travel behavior data adjustment method, predicted travel behavior data transmission method, computer program, and communication frame data structure
JP2010108343A (en) Control target vehicle decision device
US11429115B2 (en) Vehicle-platoons implementation under autonomous driving system designed for single vehicle
JP6784338B2 (en) In-vehicle device, communication path information generation method, and computer program
WO2019123555A1 (en) Predicted travel behavior data correction device, predicted travel behavior data correction method, and computer program
WO2019150460A1 (en) Vehicle-mounted device, vehicle-to-vehicle communication method, and computer program
JP2010108344A (en) Driving support device
WO2019150455A1 (en) Automotive device, communication method, and computer program
JP7355930B2 (en) Time determination of inertial navigation systems in automated driving systems
WO2019138486A1 (en) Vehicle-mounted device, determination method, and computer program
KR20200009067A (en) Direction indicator control method and direction indicator control device
US20210155244A1 (en) Method, apparatus, and computer program product for automated lane merging assistance
WO2019138498A1 (en) Vehicle-mounted device, adjustment method, and computer program
US20190308622A1 (en) Vehicle travel control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP