WO2019150455A1 - Automotive device, communication method, and computer program - Google Patents

Automotive device, communication method, and computer program Download PDF

Info

Publication number
WO2019150455A1
WO2019150455A1 PCT/JP2018/003068 JP2018003068W WO2019150455A1 WO 2019150455 A1 WO2019150455 A1 WO 2019150455A1 JP 2018003068 W JP2018003068 W JP 2018003068W WO 2019150455 A1 WO2019150455 A1 WO 2019150455A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
communication
delay time
vehicles
unit
Prior art date
Application number
PCT/JP2018/003068
Other languages
French (fr)
Japanese (ja)
Inventor
光司 荒井
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2018/003068 priority Critical patent/WO2019150455A1/en
Publication of WO2019150455A1 publication Critical patent/WO2019150455A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions

Definitions

  • the present invention relates to an in-vehicle device, a communication method, and a computer program.
  • the device that controls the automatic driving of the automobile generates a travel plan of the host vehicle and controls the steering so that the host vehicle travels according to the travel plan.
  • a travel plan of the host vehicle On a road on which a large number of vehicles travel, it may be necessary to adjust the travel plan among a plurality of vehicles, such as reconsidering the travel plan of the host vehicle in accordance with the behavior of other vehicles.
  • Japanese Patent Application Laid-Open No. 10-105880 and Japanese Patent Application Laid-Open No. 2017-045385 propose to control the traveling of a plurality of vehicles as a whole.
  • the in-vehicle device includes a communication unit that transmits and receives a vehicle-to-vehicle communication frame with another vehicle, identification information of a transmission source vehicle in the received vehicle-to-vehicle communication frame, and a vehicle-to-vehicle distance from the transmission source vehicle to the host vehicle.
  • a generation unit that generates communication destination information in which communication delay times of communication frames are associated with each other, and a notification unit that transmits a vehicle-to-vehicle communication frame including the generated communication destination information to the communication unit.
  • the communication method is a communication method in an in-vehicle device of a vehicle having a vehicle-to-vehicle communication function, and the identification information of the transmission source vehicle of the vehicle-to-vehicle communication frame received from the other vehicle, and the transmission source vehicle Generating communication destination information in association with communication delay times of inter-vehicle communication frames to the host vehicle, and transmitting vehicle-to-vehicle communication frames including the generated communication destination information by inter-vehicle communication.
  • the computer program is a computer program for causing a computer to function as a vehicle-mounted device having a vehicle-to-vehicle communication function
  • the vehicle-mounted device includes a communication unit that transmits and receives a vehicle-to-vehicle communication frame with another vehicle. And generating a communication destination information that associates the identification information of the transmission source vehicle of the received inter-vehicle communication frame with the communication delay time of the inter-vehicle communication frame from the transmission source vehicle to the host vehicle.
  • a notification unit that causes the communication unit to transmit a vehicle-to-vehicle communication frame including the generated communication destination information.
  • FIG. 1 is an overall configuration diagram of a communication system according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
  • FIG. 3 is a block diagram illustrating an internal configuration of the relay apparatus.
  • FIG. 4 is a block diagram showing the internal configuration of the in-vehicle communication device.
  • FIG. 5 is an explanatory diagram showing the content and generation method of “predicted travel behavior data”.
  • FIG. 6 is an explanatory diagram outlining the selection process in the in-vehicle communication device.
  • FIG. 7 is a diagram illustrating an example of a result of specifying a communication delay time between target vehicles.
  • FIG. 8 is a diagram illustrating an example of the maximum delay time information.
  • FIG. 1 is an overall configuration diagram of a communication system according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
  • FIG. 3 is a block diagram illustrating an internal configuration of the relay apparatus.
  • FIG. 9A is a diagram illustrating an example of communication destination data generated by the vehicle A.
  • FIG. 9B is a diagram illustrating an example of communication destination data generated by the vehicle B.
  • FIG. 9C is a diagram illustrating an example of communication destination data generated by the vehicle C.
  • FIG. 9D is a diagram illustrating an example of communication destination data generated by the vehicle D.
  • FIG. 9E is a diagram illustrating an example of communication destination data generated by the vehicle E.
  • FIG. 9F is a diagram illustrating an example of communication destination data generated by the vehicle F.
  • FIG. 10 is a flowchart showing the flow of selection processing executed by the in-vehicle communication device.
  • An object in an aspect of the present disclosure is to provide an in-vehicle device, a selection method, and a computer program that can accurately transmit information in a plurality of vehicles.
  • An in-vehicle device included in the present embodiment includes a communication unit that transmits and receives an inter-vehicle communication frame with another vehicle, identification information of a transmission source vehicle of the received inter-vehicle communication frame, and from the transmission source vehicle to the host vehicle.
  • a generation unit that generates communication destination information that associates the communication delay time of the vehicle-to-vehicle communication frame with each other, and a notification unit that transmits the vehicle-to-vehicle communication frame including the generated communication destination information to the communication unit.
  • the in-vehicle device calculates the following maximum delay time when the host vehicle is a source vehicle based on the destination information of the host vehicle and the destination information received from a plurality of other vehicles.
  • a calculation unit is further provided.
  • Maximum delay time Communication delay time from the transmission source vehicle to the farthest vehicle among a plurality of other vehicles.
  • the calculation unit has a maximum delay when the vehicle is set as the transmission source vehicle for each of the plurality of other vehicles based on the communication destination information of the own vehicle and the communication destination information received from the plurality of other vehicles. Time is calculated, and maximum delay time information including the maximum delay time of the host vehicle and the maximum delay times of a plurality of other vehicles is generated. By generating the maximum delay time information, the following leader vehicle can be selected.
  • the maximum delay time includes a communication delay time from the transmission source vehicle to the farthest vehicle via one or more other vehicles. Thereby, the maximum delay time of each vehicle can be calculated with high accuracy.
  • the in-vehicle device belongs to a vehicle group and a first determination unit that determines a vehicle group composed of a plurality of target vehicles based on a determination result of target vehicles with a possibility of collision between vehicles.
  • a second determining unit configured to determine a target vehicle satisfying a predetermined condition among the plurality of target vehicles as the following leader vehicle;
  • Leader vehicle A vehicle that leads the adjustment of the planned travel route of vehicles belonging to the vehicle group.
  • the predetermined condition is satisfied by setting the maximum delay time to be the shortest, the maximum delay time being relatively short, etc.
  • the time required for transmitting information related to adjustment of the scheduled travel route for another target vehicle can be shortened, compared to a case where no target vehicle is a leader vehicle. As a result, it is possible to smoothly adjust the scheduled travel route within the vehicle group.
  • a communication method included in the present embodiment is a communication method in a vehicle-mounted device having a vehicle-to-vehicle communication function described in any one of (1) to (5). Such a communication method has the same effects as the above-described in-vehicle devices (1) to (5).
  • the computer program included in the present embodiment causes the computer to function as the on-vehicle device described in any one of (1) to (5).
  • Such a computer program has the same effects as the above-described in-vehicle devices (1) to (5).
  • FIG. 1 is an overall configuration diagram of a communication system according to an embodiment of the present invention.
  • the communication system of the present embodiment includes an in-vehicle communication device (in-vehicle device) 19 mounted on each of a plurality of vehicles 1.
  • the in-vehicle communication device 19 is a wireless communication device that performs wireless communication (vehicle-to-vehicle communication) with another vehicle 1 traveling on the road. Therefore, in the present embodiment, the in-vehicle communication device 19 of the vehicle 1 is also referred to as “vehicle-to-vehicle communication device 19”, and the communication system is also referred to as “vehicle-to-vehicle communication system”. In the present embodiment, the in-vehicle communication device 19 employs a multi-access method based on a CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) method.
  • CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
  • the in-vehicle communication device 19 adopts, for example, a multi-access method following the “700 MHz band highway traffic system standard (ARIB STD-T109)”. According to this method, the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication every predetermined time (for example, 0.1 second). Therefore, the vehicle 1 that is performing the inter-vehicle communication can detect the vehicle information of the other vehicles around the own vehicle almost in real time by using the communication frame received from the other vehicle included in the radio signal transmission / reception range.
  • a multi-access method following the “700 MHz band highway traffic system standard (ARIB STD-T109)”.
  • the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication every predetermined time (for example, 0.1 second). Therefore, the vehicle 1 that is performing the inter-vehicle communication can detect the vehicle information of the other vehicles around the own vehicle almost in real time by using the communication frame received from the other vehicle included in the radio signal transmission
  • the communication method of the inter-vehicle communication is not limited to the above-mentioned standard, and may be one in which communication technology for mobile phones such as 3GPP cellular V2V is applied to the wireless communication of the vehicle 1.
  • FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
  • each vehicle 1 includes an in-vehicle system 10.
  • the in-vehicle system 10 includes a relay device 20, a communication network 12, and various in-vehicle devices that are electronically controlled by an ECU belonging to the communication network 12.
  • the communication network 12 includes a plurality of in-vehicle communication lines 13 terminating in the relay device 20 and a plurality of in-vehicle control devices (hereinafter referred to as “ECUs”) 16 connected to the in-vehicle communication lines 13.
  • the communication network 12 is capable of communication between the ECUs 16 and includes a master / slave type communication network (for example, LIN (Local Interconnect Network)) having the relay device 20 as a terminal node (master unit).
  • the relay device 20 controls a plurality of communication networks 12.
  • the communication network 12 uses not only LIN but also communication standards such as CAN (Controller Area Network), CANFD (CAN with Flexible Data Rate), Ethernet (registered trademark), or MOST (Media Oriented Systems Transport: MOST is a registered trademark). It may be a network to be adopted.
  • the network configuration of the communication network 12 may include the relay device 20 and at least one ECU 16.
  • the common code of the communication network is “12”, and the individual codes of the communication network are “12A to 12C”. Further, the common code of the ECU is “16”, and the individual codes of the ECU are “16A1 to 16A4”, “16B1 to 16B3”, and “16C1 to 16C2”.
  • Each communication network 12A, 12B, 12C shares a different control field of the vehicle 1, respectively.
  • a power system ECU that controls a drive device of the vehicle 1 is connected to the communication network 12A.
  • the communication network 12B is connected to a multimedia ECU that controls the information device of the vehicle 1.
  • Connected to the communication network 12C is an ADAS ECU that controls an Advanced Driver-Assistance System (ADAS) that supports the driving operation of the vehicle 1.
  • ADAS Advanced Driver-Assistance System
  • the communication network 12 is not limited to the above three types, and may be four or more types. Further, the control field associated with the communication network 12 varies depending on the design philosophy of the vehicle manufacturer, and is not limited to the above-mentioned sharing of the control field.
  • the power system ECU connected to the communication network 12A includes, for example, an engine ECU 16A1, an EPS-ECU 16A2, a brake ECU 16A3, an ABS-ECU 16A4, and the like.
  • An engine fuel injection device 31 is connected to the engine ECU 16A1, and the fuel injection device 31 is controlled by the engine ECU 16A1.
  • An EPS (Electric Power Steering) 32 is connected to the EPS-ECU 16A2, and the EPS 32 is controlled by the EPS-ECU 16A2.
  • a brake actuator 33 is connected to the brake ECU 16A3, and the brake actuator 33 is controlled by the brake ECU 16A3.
  • An ABS (Antilock Brake System) actuator 34 is connected to the ABS-ECU 16A4, and the ABS actuator 34 is controlled by the ABS-ECU 16A4.
  • the multimedia ECU connected to the communication network 12B includes, for example, a navigation ECU 16B1, a meter ECU 16B2, and a HUD-ECU 16B3.
  • An HDD (Hard Disk Drive) 41, a display 42, a GPS (Global Positioning System) receiver 43, a vehicle speed sensor 44, a gyro sensor 45, a speaker 46, and an input device 47 are connected to the navigation ECU 16B1.
  • the display 42 and the speaker 46 are output devices for presenting various types of information to passengers of the host vehicle. Specifically, the display 42 displays a map image around the host vehicle and route information to the destination, and the speaker 46 outputs an announcement for guiding the host vehicle to the destination.
  • the input device 47 is for a passenger to make various inputs such as a destination, and is configured by various input means such as an operation switch, a joystick, or a touch panel provided on the display 42.
  • the navigation ECU 16B1 has a time synchronization function for acquiring the current time from the GPS signal periodically acquired by the GPS receiver 43, a position detection function for obtaining the absolute position (latitude, longitude, and altitude) of the host vehicle from the GPS signal,
  • the vehicle speed sensor 44 and the gyro sensor 45 have an interpolation function for interpolating the position and direction of the host vehicle to obtain the correct current position and direction of the host vehicle.
  • the navigation ECU 16B1 reads the map information stored in the HDD 41 in accordance with the obtained current position, and generates a map image in which the current position of the host vehicle is superimposed on the map information. Then, the navigation ECU 16B1 displays a map image on the display 42, and displays route information from the current position to the destination on the map image.
  • a meter actuator 48 is connected to the meter ECU 16B2, and the meter actuator 48 is controlled by the meter ECU 16B2.
  • a HUD (Head-Up Display) 49 is connected to the HUD-ECU 16B3, and the HUD 49 is controlled by the HUD-ECU 16B3.
  • Examples of the ADAS ECU connected to the communication network 12C include an ADAS-ECU 16C1, an environment recognition ECU 16C2, and the like.
  • a first sensor 51 and a second sensor 52 are connected to the environment recognition ECU 16C2, and the first and second sensors 51 and 52 are controlled by the environment recognition ECU 16C2.
  • the 1st sensor 51 consists of ultrasonic sensors, a video camera, etc. which are arranged at four corners of the front, back, left and right of the vehicle 1, for example (see FIG. 1).
  • the first sensor 51 provided on the front side is a sensor for mainly detecting an object existing in front of the own vehicle, and the first sensor 51 provided on the rear side is mainly an object existing behind the own vehicle. It is a sensor for detecting.
  • the 2nd sensor 52 consists of an ultrasonic sensor, a video camera, etc. which are arrange
  • the second sensor 52 is a sensor that can rotate around the vertical axis at a relatively high speed and detects an object existing around the host vehicle.
  • the sensing results of the first and second sensors 51 and 52 are stored in a communication packet by the environment recognition ECU 16C2 and transmitted to the ADAS-ECU 16C1.
  • the ADAS-ECU 16C1 can execute, for example, any one of automatic driving from level 1 to level 4.
  • the level of automatic operation is described in J3016 (September 2016) of SAE (Society of Automotive Engineers) International. “Public-private ITS concept / roadmap 2017” also adopts this definition.
  • automatic driving at level 3 or higher is called “highly automatic driving”
  • automatic driving at levels 4 and 5 is called “fully automatic driving”.
  • Automatic driving in this embodiment means automatic driving at level 2 or higher.
  • the ADAS-ECU 16C1 may be capable of performing level 5 automatic driving, but at the time of this application, the vehicle 1 that performs level 5 automatic driving has not yet been realized.
  • the possibility of collision is predicted by predicting the possibility of collision from the distance between the object detected by the first sensor 51 and the host vehicle. Some of them transmit a control command to a power system ECU or a multimedia system ECU so as to intervene in a deceleration or alert a passenger when it is determined that the power is high.
  • level 4 and 5 automatic driving As an example of level 4 and 5 automatic driving (hereinafter also referred to as “autonomous driving”), the behavior detected by the first and second sensors 51 and 52, the deep learning of past behavior, etc. There is one that transmits a control command to a power system ECU or a multimedia system ECU so that the host vehicle is directed to a target position based on the predicted behavior.
  • the ADAS-ECU 16C1 can switch to the passenger's manual operation without using the sensing results of the first and second sensors 51 and 52.
  • the vehicle 1 can execute the autonomous driving mode of level 4 and can use the level 1 to 3 support operation mode or the manual operation mode (level 0) as the downgraded operation mode. Either can be performed.
  • the operation mode is switched by manual operation input by the passenger.
  • the relay device 20 transmits a control packet (hereinafter also referred to as “control command”) to control the ECU 16.
  • control command a control packet
  • ECU16 performs predetermined control with respect to the object apparatus in charge according to the instruction
  • the relay device 20 When controlling the autonomous operation mode, the relay device 20 issues a control command to the ECUs 16A1 to 16A4 of the communication network 12A based on the sensing results of the first and second sensors 51 and 52 received from the environment recognition ECU 16C2. Send the control packet that contains it.
  • Each of the ECUs 16A1 to 16A4 that has received the control packet from the relay device 20 controls the fuel injection device 31, the EPS 32, the brake actuator 33, and the ABS actuator 34 in accordance with the contents of the command included in the control packet.
  • the mode is executed.
  • the in-vehicle system 10 further includes an in-vehicle communication device 19 that performs wireless communication with the other vehicle 1.
  • the in-vehicle communication device 19 is connected to the relay device 20 via a communication line of a predetermined standard.
  • the relay device 20 relays information received by the in-vehicle communication device 19 from the other vehicle 1 to the ECU 16.
  • the relay device 20 relays the information received from the ECU 16 to the in-vehicle communication device 19.
  • the in-vehicle communication device 19 wirelessly transmits the relayed information to the other vehicle 1.
  • the vehicle-mounted communication device 19 mounted on the vehicle 1 may be a device such as a mobile phone, a smartphone, a tablet terminal, or a notebook computer (Personal Computer) owned by the user.
  • FIG. 3 is a block diagram showing an internal configuration of the relay device 20.
  • the relay device 20 of the vehicle 1 includes a control unit 21, a storage unit 22, an in-vehicle communication unit 23, and the like.
  • the control unit 21 of the relay device 20 includes a CPU (Central Processing Unit).
  • the CPU of the control unit 21 has a function for reading out one or a plurality of programs stored in the storage unit 22 and executing various processes.
  • the CPU of the control unit 21 can execute a plurality of programs in parallel, for example, by switching and executing a plurality of programs in a time division manner.
  • the CPU of the control unit 21 includes one or a plurality of large scale integrated circuits (LSIs).
  • LSIs large scale integrated circuits
  • the plurality of LSIs cooperate to realize the function of the CPU.
  • the computer program executed by the CPU of the control unit 21 may be written in advance in a factory, may be provided through a specific tool, or transferred by downloading from a computer device such as a server computer. You can also.
  • the storage unit 22 includes a nonvolatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • the storage unit 22 has a storage area for storing a program executed by the CPU of the control unit 21 and data necessary for the execution.
  • a plurality of in-vehicle communication lines 13 provided in the vehicle 1 are connected to the in-vehicle communication unit 23.
  • the in-vehicle communication unit 23 includes a communication device that communicates with the ECU 16 in accordance with a predetermined communication standard such as LIN.
  • the in-vehicle communication unit 23 transmits information given from the CPU of the control unit 21 to a predetermined ECU 16, and the ECU 16 gives information of the transmission source to the CPU of the control unit 21.
  • the in-vehicle communication device 19 transmits the information given from the control unit 21 to the other vehicle 1 and gives the information received from the other vehicle 1 to the control unit 21.
  • the in-vehicle communication device 19 is illustrated as an in-vehicle device that performs inter-vehicle communication with the other vehicle 1, but when the relay device 20 has a wireless communication function, the relay device 20 itself is the other vehicle. It is good also as an in-vehicle device which performs communication between 1 and vehicles.
  • FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device 19.
  • the in-vehicle communication device 19 includes a control unit 191, a storage unit 192, a wireless communication unit 193, and the like.
  • the control unit 191 of the in-vehicle communication device 19 includes a CPU.
  • the CPU of the control unit 191 has a function for reading out one or a plurality of programs stored in the storage unit 192 and executing various processes.
  • the CPU of the control unit 191 can execute a plurality of programs in parallel, for example, by switching and executing a plurality of programs in a time division manner.
  • the CPU of the control unit 191 includes one or a plurality of large scale integrated circuits (LSIs).
  • LSIs large scale integrated circuits
  • the plurality of LSIs cooperate to realize the function of the CPU.
  • the computer program executed by the CPU of the control unit 191 may be written in advance at the factory, may be provided via a specific tool, or transferred by downloading from a computer device such as a server computer. You can also.
  • the storage unit 192 includes a nonvolatile memory element such as a flash memory or an EEPROM.
  • the storage unit 192 has a storage area for storing programs executed by the CPU of the control unit 191 and data necessary for execution.
  • An antenna 194 for wireless communication is connected to the wireless communication unit 193.
  • the wireless communication unit 193 transmits the information given from the control unit 191 to the other vehicle 1 from the antenna 194 and gives the information received from the other vehicle 1 by the antenna 194 to the control unit 191.
  • the CPU of the control unit 191 transmits the information given from the wireless communication unit 193 to the relay device 20 and gives the information received from the relay device 20 to the wireless communication unit 193.
  • FIG. 5 is an explanatory diagram showing the content and generation method of “predicted travel behavior data” that the in-vehicle communication device 19 transmits to the other vehicle 1 through inter-vehicle communication.
  • the predicted traveling behavior data D includes a time within a future predicted period Tc for a relatively short predetermined time (for example, 10 seconds) from the present time, and information such as the absolute position and direction of the vehicle 1 at that time.
  • the time within the prediction period Tc and the absolute position and direction of the vehicle 1 are calculated as follows. For example, in the road plan view shown in the lower part of FIG. 5, when the vehicle 1 is traveling in the lane R1 by automatic driving, the ADAS-ECU 16C1 of the vehicle 1 The planned travel route during the prediction period Tc is calculated, and the calculated planned travel route is transmitted to the in-vehicle communication device 19.
  • the in-vehicle communication device 19 performs a map matching process between the received planned travel route and map information, and the like, and a plurality of discrete positions (absolute positions) of the vehicle 1 during the prediction period Tc and the direction of the vehicle 1 at each discrete position. Is calculated. Specifically, when the vehicle 1 continues to travel straight in the lane R1 during the prediction period Tc, the in-vehicle communication device 19 moves along the lane R1 on a straight travel schedule route (an arrow indicated by a broken line in FIG. 5), A plurality of discrete positions (positions indicated by circles in FIG. 5) and directions of the vehicle 1 are calculated at fixed or indefinite time intervals (or distance intervals).
  • the in-vehicle communication device 19 has a curved traveling schedule route extending from the lane R1 to the lane R2 (indicated by the one-dot chain line in FIG. 5). ) In the above, a plurality of discrete positions (positions indicated by ⁇ in FIG. 5) and azimuths of the vehicle 1 are calculated at constant or indefinite time intervals (or distance intervals).
  • the in-vehicle communication device 19 calculates a time corresponding to each discrete position based on the time interval and the time at the current time t0. Further, when the in-vehicle communication device 19 calculates a plurality of discrete positions of the vehicle 1 at distance intervals, the vehicle-mounted communication device 19 calculates the distance from the current position of the vehicle 1 to each discrete position based on the distance intervals, and calculates the calculated distance and the vehicle. The time corresponding to each discrete position is calculated based on the estimated traveling speed of 1.
  • the estimated traveling speed of the vehicle 1 can be acquired from the ADAS-ECU 16C1.
  • the time within the prediction period Tc and the absolute position and direction of the vehicle 1 may be calculated by the ADAS-ECU 16C1, and the calculated time, discrete position, and direction may be transmitted to the in-vehicle communication device 19.
  • the predicted travel behavior data D of the present embodiment includes “vehicle ID”, “time”, “absolute position”, “vehicle attribute”, “direction”, and “transmission time ( A storage area such as “time stamp” is included.
  • “Time” the value of the current time and the value of each time within the prediction period Tc calculated by the above method are stored.
  • the “sending time” stores the value of the time when the communication frame including the predicted traveling behavior data is transmitted by inter-vehicle communication. That is, the value of the current time when the communication frame including the predicted traveling behavior data is transmitted by inter-vehicle communication is stored.
  • the value of the current time can be acquired via the relay device 20 from the navigation ECU 16B1 (see FIG. 2) having the time synchronization function.
  • Vehicle ID stores the value of the vehicle ID of the host vehicle. Since the value of the vehicle ID is a fixed value, the same value is stored in the “vehicle ID” corresponding to each time.
  • the “absolute position” stores latitude, longitude, and altitude values indicating the absolute position of the host vehicle corresponding to each time within the prediction period Tc calculated by the above method.
  • “Absolute position” in FIG. 5 shows only latitude and longitude values.
  • the “vehicle attribute” stores, for example, values such as the vehicle width and length of the own vehicle, and an identification value of the vehicle application type (such as a private vehicle or emergency vehicle) of the own vehicle. Since the values of the vehicle width, the vehicle length, and the vehicle use type are fixed values, the same value is stored in the “vehicle attribute” corresponding to each time. In “Vehicle attributes” in FIG. 5, specific numerical values are omitted. In “azimuth”, the value of the direction of the host vehicle corresponding to each time within the prediction period Tc calculated by the above method is stored. In “azimuth” in FIG. 5, description of specific numerical values is omitted.
  • the other vehicle 1 passing through the host vehicle and its surroundings transmits / receives the predicted traveling behavior data D to / from each other when the in-vehicle communication devices 19 perform inter-vehicle communication.
  • the host vehicle and the other vehicle 1 that passes around the vehicle can share the predicted traveling behavior data D with each other.
  • the time of a fixed time interval is stored in the “time” of the predicted traveling behavior data D, but the time of an indefinite time interval may be stored.
  • the indefinite time interval depends on each value such as the speed of the host vehicle, the distance between the host vehicle and the other vehicle, and the collision allowance time (TTC: Time To Collision) until the host vehicle collides with the other vehicle. It can be set appropriately.
  • the predicted traveling behavior data D may include other information such as the speed and acceleration of the host vehicle.
  • the speed of the own vehicle can be obtained by differentiating the absolute position of the own vehicle
  • the acceleration of the own vehicle can be obtained by differentiating the speed obtained from the absolute position of the own vehicle. For this reason, it is not always necessary to include the speed and acceleration of the host vehicle in the predicted traveling behavior data D.
  • FIG. 6 is an explanatory diagram outlining the selection process in the in-vehicle communication device 19.
  • FIG. 6 shows a plurality of vehicles A, B, C, D, E, F, G, H, I, J, K, and L traveling on the road.
  • the direction of the solid arrow extending from each vehicle indicates the planned traveling direction indicated in the predicted traveling behavior data D of the vehicle, and the length of the arrow indicates the vehicle speed.
  • Each vehicle exhibits the following traveling behavior.
  • Vehicle A Driving toward the intersection from the east-facing lane R5
  • Vehicle B Turning right into the north-facing lane R1 within the intersection
  • Vehicle C Driving toward the intersection from the west-facing lane R7
  • Vehicle D North-facing lane Vehicle R: Driving toward the intersection.
  • Vehicle E Driving westward lane R8 toward the intersection.
  • Vehicle F Driving northward lane R2 toward the intersection.
  • Vehicle G Northward lane R2 from the north of the intersection.
  • Vehicle H Traveling toward the intersection in the southward lane R3
  • Vehicle I Traveling from the east in the eastward lane R5
  • Vehicle J Traveling from the south in the lane R3 toward the south
  • Vehicle K Driving eastward lane R6 toward the intersection
  • Vehicle L Traveling south lane R4 toward the intersection
  • a target vehicle group (hereinafter referred to as a vehicle group) is formed from the plurality of vehicles.
  • a vehicle group for example, it is possible to execute the adjustment processing of the planned travel route of each target vehicle in consideration of the respective planned travel routes of the plurality of target vehicles belonging to the vehicle group.
  • a selection process for selecting one target vehicle that is a transmission source that transmits the information to each target vehicle by inter-vehicle communication is executed.
  • the target vehicle serving as the transmission source is referred to as a leader vehicle here.
  • 7 and 8 are diagrams for explaining a specific flow of the selection process when a plurality of vehicles are in the state of FIG. 7 and 8, a dotted line connecting the vehicles indicates a route (transmission route) through which communication frames are transmitted and received by inter-vehicle communication.
  • the control unit 191 of the in-vehicle communication device 19 of the vehicle 1 reads out and executes one or more programs stored in the storage unit 192 by the CPU, whereby the acquisition unit 195 and the generation unit 196 are performed.
  • the generation unit 196 of the control unit 191 has a function of generating communication destination information.
  • the communication destination information is information related to the other target vehicle that has received the predicted traveling behavior data (FIG. 5) by inter-vehicle communication and its communication time.
  • the communication destination information is transmitted to other vehicles as communication destination data.
  • 9A to 9F are examples of communication destination data, which are examples of communication destination data generated by the vehicles A to F, respectively.
  • the communication destination information includes the vehicle identification information (vehicle ID) of the other vehicle (communication destination vehicle) that is the transmission source of the communication frame received by the inter-vehicle communication, and the communication in the communication. This is data in which the delay time is associated with the absolute position of the communication destination vehicle.
  • each communication is made to each vehicle ID (XA, XC, XD, XE, XF) of each of the vehicles A, C, D, E, and F as communication destination vehicles.
  • Communication destination information is generated by associating the communication delay time (tAB, tBC, tBD, tBE, tBF) with the destination vehicle and the position (absolute position) of each destination vehicle.
  • the communication destination data is in a table format as shown in FIGS. 9A to 9F, and the data format is not limited to the table format.
  • the communication destination information is generated for each vehicle, and is transmitted to other vehicles as communication destination data as shown in FIGS. 9A to 9F for each vehicle.
  • the generation unit 196 identifies the communication destination vehicle from the vehicle ID included in the predicted traveling behavior data, and sets the ID as the communication partner vehicle ID. In addition, the generation unit 196 sets the current position of the communication destination vehicle included in the received predicted traveling behavior data as the absolute position of the communication destination vehicle. The generation unit 196 obtains the delay time by calculating the difference between the time at the host vehicle that has received the predicted traveling behavior data and the transmission time included in the predicted traveling behavior data.
  • the generation unit 196 specifies a vehicle ID, an absolute position, and a communication delay time for each vehicle (communication destination vehicle) that has received the predicted traveling behavior data during a predetermined period, and generates communication destination information.
  • the first notification unit 197 is a function that generates a communication frame including the generated communication destination information as communication destination data, passes the communication frame to the wireless communication unit 193, and transmits the communication frame by inter-vehicle communication.
  • the first notification unit 197 may transmit only data regarding the target vehicle in the generated communication destination information as communication destination data.
  • the acquisition unit 195 is a function of acquiring the predicted traveling behavior data D from a communication frame received from another vehicle by inter-vehicle communication.
  • the determination unit 198 has a function of determining the possibility of a collision between vehicles.
  • the determination method here is not limited to a specific method.
  • the determination unit 198 makes a determination based on the planned travel route of each vehicle included in the predicted travel behavior data D acquired from another vehicle. In this case, the determination unit 198 determines that there is a possibility of a collision between these two vehicles when the planned traveling route of each vehicle intersects or approaches a predetermined range of the other vehicle.
  • the determination unit 198 includes a first sensor 51 and a second sensor 52 that are detection results of the vehicle speed sensor 44 and the gyro sensor 45 of the host vehicle obtained from the navigation ECU 16B1, and are obtained from the environment recognition ECU 16C2. The possibility of a collision between the host vehicle and the other vehicle or the other vehicle may be determined based on the detection result.
  • the determination unit 198 determines that there is a possibility of collisions AC1, AC2, AC3, and AC4.
  • the second notification unit 199 is a function that generates a communication frame including the determination result, passes it to the wireless communication unit 193, and transmits it by inter-vehicle communication.
  • the determination result includes identification information (vehicle ID) of the target vehicle (vehicles A, B, C, D, E, and F in the example of FIG. 6).
  • the 1st determination part 200 is a function which forms the vehicle group which consists of an object vehicle group based on a determination result.
  • FIG. 7 is a diagram showing the positional relationship between the vehicle group formed in the example of FIG. 6 and each target vehicle. With reference to FIG. 7, in the example of FIG. 6, first determination unit 200 generates a vehicle group including vehicles A, B, C, D, E, and F.
  • the acquisition unit 195 also has a function of acquiring communication destination data (FIG. 9) of each vehicle from a communication frame received from another vehicle by inter-vehicle communication. Based on the communication delay time between the target vehicles obtained from the communication destination data of each target vehicle, the calculation unit 201 determines the communication delay between each target vehicle and the target vehicle farthest from the target vehicle in the vehicle group. This is a function for calculating time (hereinafter also referred to as maximum delay time). The calculation unit 201 merges the communication destination data of all the vehicles A to F for each pair of communication nodes that directly transmit and receive the inter-vehicle communication frame to obtain data corresponding to the map of FIG. In FIG. 7, the information on the result of specifying the communication delay time is in a map format, and may be in another data format such as a table format.
  • FIG. 7 shows an example of the result of specifying the communication delay time between target vehicles obtained from each communication destination data.
  • the calculation unit 201 reads the following communication delay time from the communication frame of each target vehicle.
  • FIG. 8 shows an example of maximum delay time information that is a calculation result of the maximum delay time for each target vehicle.
  • the maximum delay time information is also referred to as a communication map.
  • the maximum delay time information is a map-type communication map, and the data format of the maximum delay time information is not limited to the map format.
  • the calculation unit 201 specifies the maximum vehicle for each target vehicle based on the current position of each target vehicle, calculates a communication delay time to the maximum vehicle, and calculates the target vehicle and the maximum delay time of the target vehicle.
  • the associated maximum delay time information is generated.
  • the calculation unit 201 sets the time as the maximum delay time.
  • the communication delay time when communicating via (hopping) one or more other target vehicles is calculated.
  • the calculation unit 201 identifies the maximum vehicle as the target vehicle F. Therefore, the maximum delay time TA of the target vehicle A is the delay time of the target vehicle AF.
  • the target vehicle A and the target vehicle F do not have a transmission route for inter-vehicle communication in which a communication frame is directly exchanged. Therefore, the calculation unit 201 sets a transmission route for inter-vehicle communication via the vehicle B between the target vehicle A and the target vehicle F.
  • the calculation unit 201 calculates the maximum delay time for each target vehicle as follows.
  • the second determination unit 202 is a function that determines one target vehicle as a leader vehicle from the vehicle group that satisfies a predetermined condition (leader condition) defined in advance based on the maximum delay time of each target vehicle.
  • the leader vehicle is a vehicle that leads the adjustment of the scheduled travel route of the plurality of target vehicles belonging to the vehicle group.
  • the leader condition is, for example, that the maximum delay time is the shortest.
  • the leader condition is that the maximum delay time is relatively short. Specifically, the maximum delay time is shorter than the average value in the vehicle group, the maximum delay time is one of the target vehicles within the specified number from the shortest target vehicle, and the like.
  • the third notification unit 203 generates a communication frame including the determined identification information (vehicle ID) of the leader vehicle, passes the communication frame to the wireless communication unit 193, and transmits the communication frame by inter-vehicle communication, so that the leader vehicle is transmitted to other vehicles. This is a notification function.
  • FIG. 10 is a flowchart showing the flow of selection processing executed by the in-vehicle communication device 19.
  • the control unit 191 of the in-vehicle communication device 19 executes the processing shown in the flowchart of FIG. 10 when the CPU reads and executes one or more programs stored in the storage unit 192.
  • the selection process in FIG. 10 is started when the vehicle 1 receives a communication frame including the predicted traveling behavior data D from another vehicle through inter-vehicle communication.
  • control unit 191 of in-vehicle communication device 19 receives a communication frame including predicted traveling behavior data D from another vehicle by inter-vehicle communication (YES in step S101), communication destination data of own vehicle ( FIG. 9) is generated and transmitted to the other vehicle (step S103).
  • the control unit 191 determines whether or not there is a possibility of collision between the own vehicle, the other vehicle, and the other vehicles based on the predicted traveling behavior data D of the other vehicle. As a result, when there is a possibility of a collision (YES in Step S105), the control unit 191 transmits a determination result including the vehicle ID of the target vehicle that has a possibility of a collision (Step S107). In step S107, a communication frame including the determination result is generated and transmitted to the wireless communication unit 193 by inter-vehicle communication.
  • the control unit 191 determines that there is a possibility of a collision, the control unit 191 forms a vehicle group including the target vehicles (step S109). And the control part 191 performs the process which selects a leader vehicle from a vehicle group (step S111, S113). That is, the control unit 191 calculates the maximum delay time for each target vehicle and generates the communication map of FIG. 8 (step S111). Then, based on the maximum delay time of each target vehicle, the target vehicle that satisfies the leader condition stored in advance as the maximum delay time is determined as the leader vehicle (step S113).
  • the control unit 191 notifies the determined leader vehicle to other vehicles (step S115). That is, the control unit 191 generates a communication frame including the vehicle ID of the leader vehicle, and causes the wireless communication unit 193 to transmit the communication frame by inter-vehicle communication.
  • the communication frame is transmitted to the other target vehicle from the vehicle group including the target vehicles with the possibility of collision.
  • the target vehicle having a relatively short delay time is determined as the leader vehicle that leads the adjustment of the scheduled travel route of each target vehicle.
  • the leader condition is that the delay time to the maximum vehicle is the shortest, so that the target vehicle having the shortest delay time of transmission of the communication frame in the inter-vehicle communication to other target vehicles is the leader vehicle. Is selected. As a result, the delay in data communication time within the vehicle group can be minimized, and quick data transfer can be realized. As a result, the scheduled travel route within the vehicle group can be adjusted more smoothly.
  • each vehicle 1 calculates the maximum delay time for all target vehicles. However, each vehicle 1 may calculate only the maximum delay time of its own vehicle. Thereby, calculation processing can be simplified.
  • each vehicle transmits the calculation result of the calculated maximum delay time of its own vehicle by inter-vehicle communication.
  • Each vehicle determines the leader vehicle based on the calculation result of the maximum delay time received from the other vehicle.
  • control unit 191 of the in-vehicle communication device 19 may perform the selection process in cooperation with other in-vehicle devices.
  • the control unit 21 of the relay device 20 may perform at least a part of the processing. That is, the control unit 21 of the relay device 20 includes an acquisition unit 195, a generation unit 196, a first notification unit 197, a determination unit 198, a second notification unit 199, a first determination unit 200, a calculation unit 201, and a second determination unit 202. , And may function as at least one of the third notification unit 203.
  • the disclosed features are realized by one or more modules.
  • the feature can be realized by a circuit element or other hardware module, by a software module that defines processing for realizing the feature, or by a combination of a hardware module and a software module.
  • a program that is a combination of one or more software modules for causing a computer to execute the above-described operation.
  • a program is recorded on a computer-readable recording medium such as a flexible disk attached to a computer, a CD-ROM (Compact Disk-Read Only Memory), a ROM, a RAM, and a memory card, and provided as a program product. You can also.
  • the program can be provided by being recorded on a recording medium such as a hard disk built in the computer.
  • a program can also be provided by downloading via a network.
  • the program according to the present disclosure is a program module that is provided as a part of a computer operating system (OS) and calls necessary modules in a predetermined arrangement at a predetermined timing to execute processing. Also good. In that case, the program itself does not include the module, and the process is executed in cooperation with the OS. Such a program that does not include a module may also be included in the program according to the present disclosure.
  • OS computer operating system
  • the program according to the present disclosure may be provided by being incorporated in a part of another program. Even in this case, the program itself does not include the module included in the other program, and the process is executed in cooperation with the other program.
  • a program incorporated in such another program may also be included in the program according to the present disclosure.
  • the provided program product is installed in a program storage unit such as a hard disk and executed.
  • the program product includes the program itself and a recording medium on which the program is recorded.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

An automotive device provided with: a communication unit for transmitting/receiving an inter-vehicle communication frame to/from another vehicle; a generation unit for generating communication destination information, in which there are associated identification information for a transmission origin vehicle that is the transmission origin of a received inter-vehicle communication frame, and a communication delay time for the communication of the inter-vehicle communication frame from the transmission origin vehicle to the host vehicle; and a notification unit for causing the communication unit to transmit an inter-vehicle communication frame including the generated communication destination information.

Description

車載装置、通信方法、およびコンピュータプログラムIn-vehicle device, communication method, and computer program
 この発明は車載装置、通信方法、およびコンピュータプログラムに関する。 The present invention relates to an in-vehicle device, a communication method, and a computer program.
 自動車の自動運転を制御する装置は、自車両の走行計画を生成し、走行計画に従って自車両が走行するように操舵を制御する。多数の車両が走行する道路上においては、他車両の挙動に応じて自車両の走行計画を再考するといった、複数車両間での走行計画の調整が必要となる場合がある。たとえば、特開平10-105880号公報および特開2017-045385号公報では、複数台の車両全体の走行を制御することが提案されている。 The device that controls the automatic driving of the automobile generates a travel plan of the host vehicle and controls the steering so that the host vehicle travels according to the travel plan. On a road on which a large number of vehicles travel, it may be necessary to adjust the travel plan among a plurality of vehicles, such as reconsidering the travel plan of the host vehicle in accordance with the behavior of other vehicles. For example, Japanese Patent Application Laid-Open No. 10-105880 and Japanese Patent Application Laid-Open No. 2017-045385 propose to control the traveling of a plurality of vehicles as a whole.
特開平10-105880号公報JP-A-10-105880 特開2017-045385号公報JP 2017-045385 A
 ある実施の形態に従うと、車載装置は、他車両と車車間通信フレームを送受信する通信部と、受信した車車間通信フレームの送信元車両の識別情報と、送信元車両から自車両までの車車間通信フレームの通信遅延時間と、を対応付けた通信先情報を生成する生成部と、生成した通信先情報を含む車車間通信フレームを通信部に送信させる通知部と、を備える。 According to an embodiment, the in-vehicle device includes a communication unit that transmits and receives a vehicle-to-vehicle communication frame with another vehicle, identification information of a transmission source vehicle in the received vehicle-to-vehicle communication frame, and a vehicle-to-vehicle distance from the transmission source vehicle to the host vehicle. A generation unit that generates communication destination information in which communication delay times of communication frames are associated with each other, and a notification unit that transmits a vehicle-to-vehicle communication frame including the generated communication destination information to the communication unit.
 他の実施の形態に従うと、通信方法は車車間通信機能を有する車両の車載装置における通信方法であって、他車両から受信した車車間通信フレームの送信元車両の識別情報と、送信元車両から自車両までの車車間通信フレームの通信遅延時間と、を対応付けた通信先情報を生成するステップと、生成した通信先情報を含む車車間通信フレームを車車間通信によって送信するステップと、を備える。 According to another embodiment, the communication method is a communication method in an in-vehicle device of a vehicle having a vehicle-to-vehicle communication function, and the identification information of the transmission source vehicle of the vehicle-to-vehicle communication frame received from the other vehicle, and the transmission source vehicle Generating communication destination information in association with communication delay times of inter-vehicle communication frames to the host vehicle, and transmitting vehicle-to-vehicle communication frames including the generated communication destination information by inter-vehicle communication. .
 他の実施の形態に従うと、コンピュータプログラムは車車間通信機能を有する車両の車載装置としてコンピュータを機能させるためのコンピュータプログラムであって、車載装置は他車両と車車間通信フレームを送受信する通信部を有し、コンピュータを、受信した車車間通信フレームの送信元車両の識別情報と、送信元車両から自車両までの車車間通信フレームの通信遅延時間と、を対応付けた通信先情報を生成する生成部と、生成した通信先情報を含む車車間通信フレームを通信部に送信させる通知部、として機能させる。 According to another embodiment, the computer program is a computer program for causing a computer to function as a vehicle-mounted device having a vehicle-to-vehicle communication function, and the vehicle-mounted device includes a communication unit that transmits and receives a vehicle-to-vehicle communication frame with another vehicle. And generating a communication destination information that associates the identification information of the transmission source vehicle of the received inter-vehicle communication frame with the communication delay time of the inter-vehicle communication frame from the transmission source vehicle to the host vehicle. And a notification unit that causes the communication unit to transmit a vehicle-to-vehicle communication frame including the generated communication destination information.
図1は、実施の形態にかかる通信システムの全体構成図である。FIG. 1 is an overall configuration diagram of a communication system according to an embodiment. 図2は、車内システムの構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the in-vehicle system. 図3は、中継装置の内部構成を示すブロック図である。FIG. 3 is a block diagram illustrating an internal configuration of the relay apparatus. 図4は、車載通信機の内部構成を示すブロック図である。FIG. 4 is a block diagram showing the internal configuration of the in-vehicle communication device. 図5は、「予測走行挙動データ」の内容及び生成方法を示す説明図である。FIG. 5 is an explanatory diagram showing the content and generation method of “predicted travel behavior data”. 図6は、車載通信機における選定処理の概要の説明図である。FIG. 6 is an explanatory diagram outlining the selection process in the in-vehicle communication device. 図7は、対象車両間の通信遅延時間の特定結果の一例を表した図である。FIG. 7 is a diagram illustrating an example of a result of specifying a communication delay time between target vehicles. 図8は、最大遅延時間情報の一例を表した図である。FIG. 8 is a diagram illustrating an example of the maximum delay time information. 図9Aは、車両Aで生成される通信先データの一例を示した図である。FIG. 9A is a diagram illustrating an example of communication destination data generated by the vehicle A. 図9Bは、車両Bで生成される通信先データの一例を示した図である。FIG. 9B is a diagram illustrating an example of communication destination data generated by the vehicle B. 図9Cは、車両Cで生成される通信先データの一例を示した図である。FIG. 9C is a diagram illustrating an example of communication destination data generated by the vehicle C. 図9Dは、車両Dで生成される通信先データの一例を示した図である。FIG. 9D is a diagram illustrating an example of communication destination data generated by the vehicle D. 図9Eは、車両Eで生成される通信先データの一例を示した図である。FIG. 9E is a diagram illustrating an example of communication destination data generated by the vehicle E. 図9Fは、車両Fで生成される通信先データの一例を示した図である。FIG. 9F is a diagram illustrating an example of communication destination data generated by the vehicle F. 図10は、車載通信機で実行される選定処理の流れを表したフローチャートである。FIG. 10 is a flowchart showing the flow of selection processing executed by the in-vehicle communication device.
<本開示が解決しようとする課題>
 実際の車両交通システムでは車両が相互に影響しあっている。また、車速が早くなるほど、あるいは、道路状況が複雑になるほど、影響しあう車両の数が多くなる。そのため、より多数の車両それぞれの走行計画の調整を適切に行うことが望まれる。
<Problems to be solved by the present disclosure>
In an actual vehicle traffic system, vehicles interact with each other. Also, the faster the vehicle speed or the more complicated the road conditions, the greater the number of vehicles that will affect each other. Therefore, it is desirable to appropriately adjust the travel plans for each of a larger number of vehicles.
 複数車両間での走行計画の調整などの複数車両間での処理においては、各種情報を車車間通信で送受信される。その際に、素早く情報を送信するなど、送信品質の向上が望まれる。 In a process between a plurality of vehicles such as adjustment of a travel plan between a plurality of vehicles, various types of information are transmitted and received by inter-vehicle communication. In that case, improvement of transmission quality, such as transmitting information quickly, is desired.
 本開示のある局面における目的は、複数車両において情報を的確に送信できる車載装置、選定方法、およびコンピュータプログラムを提供することである。 An object in an aspect of the present disclosure is to provide an in-vehicle device, a selection method, and a computer program that can accurately transmit information in a plurality of vehicles.
<本開示の効果>
 この開示によると、複数台の車両内での情報伝達の品質を向上させることができる。
<Effects of the present disclosure>
According to this disclosure, the quality of information transmission within a plurality of vehicles can be improved.
<実施の形態の説明>
 本実施の形態には、少なくとも以下のものが含まれる。すなわち、
 (1)本実施の形態に含まれる車載装置は、他車両と車車間通信フレームを送受信する通信部と、受信した車車間通信フレームの送信元車両の識別情報と、送信元車両から自車両までの車車間通信フレームの通信遅延時間と、を対応付けた通信先情報を生成する生成部と、生成した通信先情報を含む車車間通信フレームを通信部に送信させる通知部と、を備える。
 かかる通信先情報を生成し、他車両に送信することによって、他車両を含む複数車両における下記のリーダー車両の選定が可能になる。
<Description of Embodiment>
This embodiment includes at least the following. That is,
(1) An in-vehicle device included in the present embodiment includes a communication unit that transmits and receives an inter-vehicle communication frame with another vehicle, identification information of a transmission source vehicle of the received inter-vehicle communication frame, and from the transmission source vehicle to the host vehicle. A generation unit that generates communication destination information that associates the communication delay time of the vehicle-to-vehicle communication frame with each other, and a notification unit that transmits the vehicle-to-vehicle communication frame including the generated communication destination information to the communication unit.
By generating such communication destination information and transmitting it to other vehicles, it becomes possible to select the following leader vehicle in a plurality of vehicles including other vehicles.
 (2)好ましくは、車載装置は、自車両の通信先情報と複数の他車両から受信した通信先情報とに基づいて、自車両を送信元車両としたときの以下の最大遅延時間を算出する算出部をさらに備える。
  最大遅延時間:送信元車両から複数の他車両のうちの最も遠い車両までの通信遅延時間
 上記の最大遅延時間を算出することによって、下記のリーダー車両の選定が可能になる。
(2) Preferably, the in-vehicle device calculates the following maximum delay time when the host vehicle is a source vehicle based on the destination information of the host vehicle and the destination information received from a plurality of other vehicles. A calculation unit is further provided.
Maximum delay time: Communication delay time from the transmission source vehicle to the farthest vehicle among a plurality of other vehicles By calculating the above maximum delay time, the following leader vehicle can be selected.
 (3)好ましくは、算出部は、自車両の通信先情報と複数の他車両から受信した通信先情報とに基づいて、複数の他車両それぞれについて当該車両を送信元車両としたときの最大遅延時間を算出し、自車両の最大遅延時間と複数の他車両の最大遅延時間とを含む最大遅延時間情報を生成する。
 上記の最大遅延時間情報が生成されることによって、下記のリーダー車両の選定が可能になる。
(3) Preferably, the calculation unit has a maximum delay when the vehicle is set as the transmission source vehicle for each of the plurality of other vehicles based on the communication destination information of the own vehicle and the communication destination information received from the plurality of other vehicles. Time is calculated, and maximum delay time information including the maximum delay time of the host vehicle and the maximum delay times of a plurality of other vehicles is generated.
By generating the maximum delay time information, the following leader vehicle can be selected.
 (4)好ましくは、最大遅延時間は、送信元車両から1または複数の他車両を経由して最も遠い車両までの通信遅延時間を含む。
 これにより、各車両の最大遅延時間を高精度で算出することができる。
(4) Preferably, the maximum delay time includes a communication delay time from the transmission source vehicle to the farthest vehicle via one or more other vehicles.
Thereby, the maximum delay time of each vehicle can be calculated with high accuracy.
 (5)好ましくは、車載装置は、車両間の衝突の可能性のある対象車両の判定結果に基づいて、複数の対象車両からなる車群を決定する第1の決定部と、車群に属する複数の対象車両のうち、最大遅延時間が所定の条件を満たす対象車両を以下のリーダー車両と決定する第2の決定部と、をさらに備える。
  リーダー車両:車群に属する車両の走行予定ルートの調整を主導する車両
 所定の条件を最大遅延時間が最も短いこと、最大遅延時間が比較的短いこと、などと設定することによって、当該条件を満たさない対象車両をリーダー車両とするよりも、他の対象車両に対する走行予定ルートの調整に関する情報の送信に要する時間を短くすることができる。その結果、車群内での走行予定ルートの調整を円滑に行うことができる。
(5) Preferably, the in-vehicle device belongs to a vehicle group and a first determination unit that determines a vehicle group composed of a plurality of target vehicles based on a determination result of target vehicles with a possibility of collision between vehicles. A second determining unit configured to determine a target vehicle satisfying a predetermined condition among the plurality of target vehicles as the following leader vehicle;
Leader vehicle: A vehicle that leads the adjustment of the planned travel route of vehicles belonging to the vehicle group. The predetermined condition is satisfied by setting the maximum delay time to be the shortest, the maximum delay time being relatively short, etc. The time required for transmitting information related to adjustment of the scheduled travel route for another target vehicle can be shortened, compared to a case where no target vehicle is a leader vehicle. As a result, it is possible to smoothly adjust the scheduled travel route within the vehicle group.
 (6)本実施の形態に含まれる通信方法は、(1)~(5)のいずれか1項に記載の車車間通信機能を有する車両の車載装置における通信方法である。
 かかる通信方法は、上記(1)~(5)の車載装置と同様の効果を奏する。
(6) A communication method included in the present embodiment is a communication method in a vehicle-mounted device having a vehicle-to-vehicle communication function described in any one of (1) to (5).
Such a communication method has the same effects as the above-described in-vehicle devices (1) to (5).
 (7)本実施の形態に含まれるコンピュータプログラムは、コンピュータを、(1)~(5)のいずれか1つに記載の車載装置として機能させる。
 かかるコンピュータプログラムは、上記(1)~(5)の車載装置と同様の効果を奏する。
(7) The computer program included in the present embodiment causes the computer to function as the on-vehicle device described in any one of (1) to (5).
Such a computer program has the same effects as the above-described in-vehicle devices (1) to (5).
<本発明の実施形態の詳細>
 以下、図面を参照して、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
〔第1の実施の形態〕
 [通信システムの全体構成]
 図1は、本発明の実施形態に係る通信システムの全体構成図である。
 図1に示すように、本実施形態の通信システムは、複数の車両1にそれぞれ搭載された車載通信機(車載装置)19を備える。
<Details of Embodiment of the Present Invention>
Hereinafter, details of embodiments of the present invention will be described with reference to the drawings. In addition, you may combine arbitrarily at least one part of embodiment described below.
[First Embodiment]
[Overall configuration of communication system]
FIG. 1 is an overall configuration diagram of a communication system according to an embodiment of the present invention.
As shown in FIG. 1, the communication system of the present embodiment includes an in-vehicle communication device (in-vehicle device) 19 mounted on each of a plurality of vehicles 1.
 車載通信機19は、道路を通行中の他車両1との間で無線通信(車車間通信)を行う無線通信機である。従って、本実施形態では、車両1の車載通信機19を「車車間通信装置19」ともいい、通信システムを「車車間通信システム」ともいう。
 本実施形態では、車載通信機19は、CSMA/CA(Carrier Sense Multiple Access/ Collision Avoidance)方式によるマルチアクセス方式を採用している。
The in-vehicle communication device 19 is a wireless communication device that performs wireless communication (vehicle-to-vehicle communication) with another vehicle 1 traveling on the road. Therefore, in the present embodiment, the in-vehicle communication device 19 of the vehicle 1 is also referred to as “vehicle-to-vehicle communication device 19”, and the communication system is also referred to as “vehicle-to-vehicle communication system”.
In the present embodiment, the in-vehicle communication device 19 employs a multi-access method based on a CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) method.
 より具体的には、車載通信機19は、例えば「700MHz帯高度道路交通システム標準規格(ARIB STD-T109)」に倣ったマルチアクセス方式を採用している。
 この方式によれば、車載通信機19は、車車間通信の通信フレームを所定時間(例えば0.1秒)ごとにブロードキャスト送信する。従って、車車間通信を実行中の車両1は、無線信号の送受信範囲に含まれる他車両から受信した通信フレームにより、自車両の周囲の他車両の車両情報をほぼリアルタイムで察知することができる。
More specifically, the in-vehicle communication device 19 adopts, for example, a multi-access method following the “700 MHz band highway traffic system standard (ARIB STD-T109)”.
According to this method, the in-vehicle communication device 19 broadcasts a communication frame for inter-vehicle communication every predetermined time (for example, 0.1 second). Therefore, the vehicle 1 that is performing the inter-vehicle communication can detect the vehicle information of the other vehicles around the own vehicle almost in real time by using the communication frame received from the other vehicle included in the radio signal transmission / reception range.
 車車間通信の通信方式は、上記の標準規格に限定されるものではなく、例えば3GPPのセルラーV2Vなど、携帯電話向けの通信技術を車両1の無線通信に応用したものであってもよい。 The communication method of the inter-vehicle communication is not limited to the above-mentioned standard, and may be one in which communication technology for mobile phones such as 3GPP cellular V2V is applied to the wireless communication of the vehicle 1.
 [車内システムの構成]
 図2は、車内システムの構成を示すブロック図である。
 図2に示すように、各車両1は、車内システム10を備える。車内システム10は、中継装置20と、通信ネットワーク12と、通信ネットワーク12に属するECUにより電子制御される各種の車載機器とを含む。
[Configuration of in-vehicle system]
FIG. 2 is a block diagram showing the configuration of the in-vehicle system.
As shown in FIG. 2, each vehicle 1 includes an in-vehicle system 10. The in-vehicle system 10 includes a relay device 20, a communication network 12, and various in-vehicle devices that are electronically controlled by an ECU belonging to the communication network 12.
 通信ネットワーク12は、中継装置20において終端する複数の車内通信線13と、各車内通信線13に接続された複数の車載制御装置(以下、「ECU」という。)16と、を備える。
 通信ネットワーク12は、ECU16相互間の通信が可能であり、中継装置20を終端ノード(親機)とするマスター/スレーブ型の通信ネットワーク(例えば、LIN(Local Interconnect Network))よりなる。中継装置20は、複数の通信ネットワーク12を制御する。
The communication network 12 includes a plurality of in-vehicle communication lines 13 terminating in the relay device 20 and a plurality of in-vehicle control devices (hereinafter referred to as “ECUs”) 16 connected to the in-vehicle communication lines 13.
The communication network 12 is capable of communication between the ECUs 16 and includes a master / slave type communication network (for example, LIN (Local Interconnect Network)) having the relay device 20 as a terminal node (master unit). The relay device 20 controls a plurality of communication networks 12.
 通信ネットワーク12は、LINだけでなく、CAN(Controller Area Network)、CANFD(CAN with Flexible Data Rate)、Ethernet(登録商標)、又はMOST(Media Oriented Systems Transport:MOSTは登録商標)などの通信規格を採用するネットワークであってもよい。
 また、通信ネットワーク12のネットワーク構成は、中継装置20と少なくとも1つのECU16が含まれておればよい。
The communication network 12 uses not only LIN but also communication standards such as CAN (Controller Area Network), CANFD (CAN with Flexible Data Rate), Ethernet (registered trademark), or MOST (Media Oriented Systems Transport: MOST is a registered trademark). It may be a network to be adopted.
The network configuration of the communication network 12 may include the relay device 20 and at least one ECU 16.
 以下において、通信ネットワークの共通符号を「12」とし、通信ネットワークの個別符号を「12A~12C」とする。また、ECUの共通符号を「16」とし、ECUの個別符号を「16A1~16A4」、「16B1~16B3」及び「16C1~16C2」とする。 In the following, the common code of the communication network is “12”, and the individual codes of the communication network are “12A to 12C”. Further, the common code of the ECU is “16”, and the individual codes of the ECU are “16A1 to 16A4”, “16B1 to 16B3”, and “16C1 to 16C2”.
 各通信ネットワーク12A,12B,12Cは、車両1の異なる制御分野をそれぞれ分担している。
 例えば、通信ネットワーク12Aには、車両1の駆動機器を制御対象とするパワー系ECUが接続されている。通信ネットワーク12Bには、車両1の情報機器を制御対象とするマルチメディア系ECUが接続されている。通信ネットワーク12Cには、車両1の運転操作を支援する先進運転支援システム(ADAS:Advanced Driver-Assistance Systems)を制御対象とするADAS系ECUが接続されている。
Each communication network 12A, 12B, 12C shares a different control field of the vehicle 1, respectively.
For example, a power system ECU that controls a drive device of the vehicle 1 is connected to the communication network 12A. The communication network 12B is connected to a multimedia ECU that controls the information device of the vehicle 1. Connected to the communication network 12C is an ADAS ECU that controls an Advanced Driver-Assistance System (ADAS) that supports the driving operation of the vehicle 1.
 通信ネットワーク12は、上記の3種類に限らず4種類以上であってもよい。また、通信ネットワーク12に対応付ける制御分野は、車両メーカーの設計思想に応じて様々であり、上記の制御分野の分担に限定されるものではない。 The communication network 12 is not limited to the above three types, and may be four or more types. Further, the control field associated with the communication network 12 varies depending on the design philosophy of the vehicle manufacturer, and is not limited to the above-mentioned sharing of the control field.
 具体的には、通信ネットワーク12Aに接続されているパワー系ECUには、例えば、エンジンECU16A1、EPS-ECU16A2、ブレーキECU16A3、及びABS-ECU16A4などが含まれる。
 エンジンECU16A1には、エンジンの燃料噴射装置31が接続されており、燃料噴射装置31は、エンジンECU16A1によって制御される。
Specifically, the power system ECU connected to the communication network 12A includes, for example, an engine ECU 16A1, an EPS-ECU 16A2, a brake ECU 16A3, an ABS-ECU 16A4, and the like.
An engine fuel injection device 31 is connected to the engine ECU 16A1, and the fuel injection device 31 is controlled by the engine ECU 16A1.
 EPS-ECU16A2には、EPS(Electric Power Steering:電動パワーステアリング)32が接続されており、EPS32は、EPS-ECU16A2によって制御される。ブレーキECU16A3には、ブレーキアクチュエータ33が接続されており、ブレーキアクチュエータ33は、ブレーキECU16A3によって制御される。
 ABS-ECU16A4には、ABS(Antilock Brake System)アクチュエータ34が接続されており、ABSアクチュエータ34は、ABS-ECU16A4によって制御される。
An EPS (Electric Power Steering) 32 is connected to the EPS-ECU 16A2, and the EPS 32 is controlled by the EPS-ECU 16A2. A brake actuator 33 is connected to the brake ECU 16A3, and the brake actuator 33 is controlled by the brake ECU 16A3.
An ABS (Antilock Brake System) actuator 34 is connected to the ABS-ECU 16A4, and the ABS actuator 34 is controlled by the ABS-ECU 16A4.
 通信ネットワーク12Bに接続されているマルチメディア系ECUには、例えば、ナビゲーションECU16B1、メータECU16B2、及びHUD-ECU16B3などが含まれる。
 ナビゲーションECU16B1には、HDD(Hard Disk Drive)41、ディスプレイ42、GPS(Global Positioning System)受信機43、車速センサ44、ジャイロセンサ45、スピーカ46、及び入力デバイス47が接続されている。
The multimedia ECU connected to the communication network 12B includes, for example, a navigation ECU 16B1, a meter ECU 16B2, and a HUD-ECU 16B3.
An HDD (Hard Disk Drive) 41, a display 42, a GPS (Global Positioning System) receiver 43, a vehicle speed sensor 44, a gyro sensor 45, a speaker 46, and an input device 47 are connected to the navigation ECU 16B1.
 ディスプレイ42とスピーカ46は、各種情報を自車両の搭乗者に提示するための出力装置である。具体的には、ディスプレイ42は、自車両周辺の地図画像及び目的地までの経路情報などを表示し、スピーカ46は、自車両を目的地に誘導するためのアナウンスを音声出力する。
 入力デバイス47は、搭乗者が目的地等の各種入力を行うためのものであり、操作スイッチ、ジョイスティック、或いはディスプレイ42に設けたタッチパネル等の各種入力手段により構成される。
The display 42 and the speaker 46 are output devices for presenting various types of information to passengers of the host vehicle. Specifically, the display 42 displays a map image around the host vehicle and route information to the destination, and the speaker 46 outputs an announcement for guiding the host vehicle to the destination.
The input device 47 is for a passenger to make various inputs such as a destination, and is configured by various input means such as an operation switch, a joystick, or a touch panel provided on the display 42.
 ナビゲーションECU16B1は、GPS受信機43が定期的に取得したGPS信号から現時点の時刻を取得する時刻同期機能と、GPS信号から自車両の絶対位置(緯度、経度及び高度)を求める位置検出機能と、車速センサ44及びジャイロセンサ45によって自車両の位置及び方位を補間して自車両の正確な現在位置及び方位を求める補間機能などを有する。
 ナビゲーションECU16B1は、求めた現在位置に応じてHDD41に格納された地図情報を読み出し、地図情報に自車両の現在位置を重ねた地図画像を生成する。そして、ナビゲーションECU16B1は、ディスプレイ42に地図画像を表示させ、その地図画像に現在位置から目的地までの経路情報などを表示する。
The navigation ECU 16B1 has a time synchronization function for acquiring the current time from the GPS signal periodically acquired by the GPS receiver 43, a position detection function for obtaining the absolute position (latitude, longitude, and altitude) of the host vehicle from the GPS signal, The vehicle speed sensor 44 and the gyro sensor 45 have an interpolation function for interpolating the position and direction of the host vehicle to obtain the correct current position and direction of the host vehicle.
The navigation ECU 16B1 reads the map information stored in the HDD 41 in accordance with the obtained current position, and generates a map image in which the current position of the host vehicle is superimposed on the map information. Then, the navigation ECU 16B1 displays a map image on the display 42, and displays route information from the current position to the destination on the map image.
 メータECU16B2には、メータアクチュエータ48が接続されてり、メータアクチュエータ48は、メータECU16B2によって制御される。HUD-ECU16B3には、HUD(Head-Up Display)49が接続されており、HUD49は、HUD-ECU16B3によって制御される。 A meter actuator 48 is connected to the meter ECU 16B2, and the meter actuator 48 is controlled by the meter ECU 16B2. A HUD (Head-Up Display) 49 is connected to the HUD-ECU 16B3, and the HUD 49 is controlled by the HUD-ECU 16B3.
 通信ネットワーク12Cに接続されているADAS系ECUには、例えば、ADAS-ECU16C1、及び環境認識ECU16C2などが含まれる。
 環境認識ECU16C2には、第1センサ51及び第2センサ52が接続されており、第1及び第2センサ51,52は、環境認識ECU16C2によって制御される。
Examples of the ADAS ECU connected to the communication network 12C include an ADAS-ECU 16C1, an environment recognition ECU 16C2, and the like.
A first sensor 51 and a second sensor 52 are connected to the environment recognition ECU 16C2, and the first and second sensors 51 and 52 are controlled by the environment recognition ECU 16C2.
 第1センサ51は、例えば、車両1の前後左右の四隅に配置された超音波センサやビデオカメラなどよりなる(図1参照)。
 前側に設けられた第1センサ51は、主として自車両の前方に存在する物体を検出するためのセンサであり、後側に設けられた第1センサ51は、主として自車両の後方に存在する物体を検出するためのセンサである。
The 1st sensor 51 consists of ultrasonic sensors, a video camera, etc. which are arranged at four corners of the front, back, left and right of the vehicle 1, for example (see FIG. 1).
The first sensor 51 provided on the front side is a sensor for mainly detecting an object existing in front of the own vehicle, and the first sensor 51 provided on the rear side is mainly an object existing behind the own vehicle. It is a sensor for detecting.
 第2センサ52は、例えば、車両1の天井部分に配置された超音波センサやビデオカメラなどよりなる(図1参照)。第2センサ52は、鉛直軸心回りに比較的高速で回転自在となっており、自車両の周囲に存在する物体を検出するためのセンサである。
 第1及び第2センサ51,52のセンシング結果は、環境認識ECU16C2によって通信パケットに格納されてADAS-ECU16C1に送信される。
The 2nd sensor 52 consists of an ultrasonic sensor, a video camera, etc. which are arrange | positioned at the ceiling part of the vehicle 1, for example (refer FIG. 1). The second sensor 52 is a sensor that can rotate around the vertical axis at a relatively high speed and detects an object existing around the host vehicle.
The sensing results of the first and second sensors 51 and 52 are stored in a communication packet by the environment recognition ECU 16C2 and transmitted to the ADAS-ECU 16C1.
 ADAS-ECU16C1は、第1及び第2センサ51,52のセンシング結果に基づいて、例えばレベル1~4までのいずれかの自動運転を実行可能である。自動運転のレベルはSAE(Society of Automotive Engineers)インターナショナルのJ3016(2016年9月)に定義が記載されている。
 「官民ITS構想・ロードマップ2017」も当該定義を採用している。このロードマップでは、レベル3以上の自動運転を「高度自動運転」と呼び、レベル4及び5の自動運転を「完全自動運転」と呼ぶ。本実施形態における「自動運転」は、レベル2以上の自動運転を意味する。
Based on the sensing results of the first and second sensors 51 and 52, the ADAS-ECU 16C1 can execute, for example, any one of automatic driving from level 1 to level 4. The level of automatic operation is described in J3016 (September 2016) of SAE (Society of Automotive Engineers) International.
“Public-private ITS concept / roadmap 2017” also adopts this definition. In this road map, automatic driving at level 3 or higher is called “highly automatic driving”, and automatic driving at levels 4 and 5 is called “fully automatic driving”. “Automatic driving” in this embodiment means automatic driving at level 2 or higher.
 ADAS-ECU16C1は、レベル5の自動運転を実行可能であってもよいが、本出願時点では、レベル5の自動運転を行う車両1は未だ実現されていない。 The ADAS-ECU 16C1 may be capable of performing level 5 automatic driving, but at the time of this application, the vehicle 1 that performs level 5 automatic driving has not yet been realized.
 レベル1~3までの自動運転(以下、「支援運転」ともいう。)の例としては、第1センサ51によって検出した物体と自車両の間の距離から衝突可能性を予測し、衝突可能性が高いと判断した場合に減速介入したり、搭乗者に注意喚起したりするように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。 As an example of automatic driving from level 1 to level 3 (hereinafter also referred to as “support driving”), the possibility of collision is predicted by predicting the possibility of collision from the distance between the object detected by the first sensor 51 and the host vehicle. Some of them transmit a control command to a power system ECU or a multimedia system ECU so as to intervene in a deceleration or alert a passenger when it is determined that the power is high.
 レベル4及び5の自動運転(以下、「自律運転」ともいう。)の例としては、第1及び第2センサ51,52によって検出した物体に予期される挙動を、過去の挙動の深層学習などにより予測し、予測した挙動に基づいて自車両が目的位置に指向するように、パワー系ECUやマルチメディア系ECUに制御指令を送信するものがある。 As an example of level 4 and 5 automatic driving (hereinafter also referred to as “autonomous driving”), the behavior detected by the first and second sensors 51 and 52, the deep learning of past behavior, etc. There is one that transmits a control command to a power system ECU or a multimedia system ECU so that the host vehicle is directed to a target position based on the predicted behavior.
 ADAS-ECU16C1は、第1及び第2センサ51,52によるセンシング結果を利用せず、搭乗者の手動運転に切り替えることもできる。
 このように、本実施形態の車両1は、レベル4の自律運転モードの実行が可能であるとともに、ダウングレードした動作モードとして、レベル1~3の支援運転モード又は手動運転モード(レベル0)のいずれかを実行することができる。動作モードの切り替えは、搭乗者による手動の操作入力などによって行われる。
The ADAS-ECU 16C1 can switch to the passenger's manual operation without using the sensing results of the first and second sensors 51 and 52.
As described above, the vehicle 1 according to the present embodiment can execute the autonomous driving mode of level 4 and can use the level 1 to 3 support operation mode or the manual operation mode (level 0) as the downgraded operation mode. Either can be performed. The operation mode is switched by manual operation input by the passenger.
 中継装置20は、ECU16を制御するために制御パケット(以下、「制御指令」ともいう。)を送信する。ECU16は、受信した制御パケットに含まれる指令内容に従って、担当する対象機器に対して所定の制御を実行する。 The relay device 20 transmits a control packet (hereinafter also referred to as “control command”) to control the ECU 16. ECU16 performs predetermined control with respect to the object apparatus in charge according to the instruction | command content contained in the received control packet.
 自律運転モードを制御する場合、中継装置20は、環境認識ECU16C2から受信した第1及び第2センサ51,52のセンシング結果に基づいて、通信ネットワーク12Aの各ECU16A1~16A4に対して、制御指令を含む制御パケットを送信する。 When controlling the autonomous operation mode, the relay device 20 issues a control command to the ECUs 16A1 to 16A4 of the communication network 12A based on the sensing results of the first and second sensors 51 and 52 received from the environment recognition ECU 16C2. Send the control packet that contains it.
 そして、中継装置20から制御パケットを受信した各ECU16A1~16A4が、制御パケットに含まれる指令内容に従って、燃料噴射装置31、EPS32、ブレーキアクチュエータ33、及びABSアクチュエータ34をそれぞれ制御することにより、自律運転モードが実行される。 Each of the ECUs 16A1 to 16A4 that has received the control packet from the relay device 20 controls the fuel injection device 31, the EPS 32, the brake actuator 33, and the ABS actuator 34 in accordance with the contents of the command included in the control packet. The mode is executed.
 車内システム10は、更に、他車両1と無線通信を行う車載通信機19を備える。車載通信機19は、所定規格の通信線を介して中継装置20に接続されている。中継装置20は、他車両1から車載通信機19が受信した情報をECU16に中継する。 The in-vehicle system 10 further includes an in-vehicle communication device 19 that performs wireless communication with the other vehicle 1. The in-vehicle communication device 19 is connected to the relay device 20 via a communication line of a predetermined standard. The relay device 20 relays information received by the in-vehicle communication device 19 from the other vehicle 1 to the ECU 16.
 中継装置20は、ECU16から受信した情報を、車載通信機19に中継する。車載通信機19は、中継された情報を他車両1に無線送信する。
 車両1に搭載される車載通信機19は、ユーザが所有する携帯電話機、スマートフォン、タブレット型端末、ノートPC(Personal Computer)等の装置であってもよい。
The relay device 20 relays the information received from the ECU 16 to the in-vehicle communication device 19. The in-vehicle communication device 19 wirelessly transmits the relayed information to the other vehicle 1.
The vehicle-mounted communication device 19 mounted on the vehicle 1 may be a device such as a mobile phone, a smartphone, a tablet terminal, or a notebook computer (Personal Computer) owned by the user.
 [中継装置の構成]
 図3は、中継装置20の内部構成を示すブロック図である。
 図3に示すように、車両1の中継装置20は、制御部21、記憶部22、及び車内通信部23などを備える。
[Configuration of relay device]
FIG. 3 is a block diagram showing an internal configuration of the relay device 20.
As illustrated in FIG. 3, the relay device 20 of the vehicle 1 includes a control unit 21, a storage unit 22, an in-vehicle communication unit 23, and the like.
 中継装置20の制御部21は、CPU(Central Processing Unit)を含む。制御部21のCPUは、記憶部22等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
 制御部21のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
The control unit 21 of the relay device 20 includes a CPU (Central Processing Unit). The CPU of the control unit 21 has a function for reading out one or a plurality of programs stored in the storage unit 22 and executing various processes.
The CPU of the control unit 21 can execute a plurality of programs in parallel, for example, by switching and executing a plurality of programs in a time division manner.
 制御部21のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。 The CPU of the control unit 21 includes one or a plurality of large scale integrated circuits (LSIs). In a CPU including a plurality of LSIs, the plurality of LSIs cooperate to realize the function of the CPU.
 制御部21のCPUが実行するコンピュータプログラムは、予め工場で書き込まれていてもよいし、特定のツールを介して提供されてもよいし、または、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。 The computer program executed by the CPU of the control unit 21 may be written in advance in a factory, may be provided through a specific tool, or transferred by downloading from a computer device such as a server computer. You can also.
 記憶部22は、フラッシュメモリ若しくはEEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性のメモリ素子よりなる。
 記憶部22は、制御部21のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
The storage unit 22 includes a nonvolatile memory element such as a flash memory or an EEPROM (Electrically Erasable Programmable Read Only Memory).
The storage unit 22 has a storage area for storing a program executed by the CPU of the control unit 21 and data necessary for the execution.
 車内通信部23には、車両1に配設された複数の車内通信線13が接続されている。車内通信部23は、LINなどの所定の通信規格に則ってECU16と通信する通信装置よりなる。
 車内通信部23は、制御部21のCPUから与えられた情報を所定のECU16宛てに送信し、ECU16が送信元の情報を制御部21のCPUに与える。
A plurality of in-vehicle communication lines 13 provided in the vehicle 1 are connected to the in-vehicle communication unit 23. The in-vehicle communication unit 23 includes a communication device that communicates with the ECU 16 in accordance with a predetermined communication standard such as LIN.
The in-vehicle communication unit 23 transmits information given from the CPU of the control unit 21 to a predetermined ECU 16, and the ECU 16 gives information of the transmission source to the CPU of the control unit 21.
 車載通信機19は、制御部21から与えられた情報を他車両1に送信するとともに、他車両1から受信した情報を制御部21に与える。
 図3の例では、車載通信機19が他車両1と車車間通信を行う車載装置として例示しているが、中継装置20が無線通信の機能を有する場合には、中継装置20自身が他車両1と車車間通信を行う車載装置としてもよい。
The in-vehicle communication device 19 transmits the information given from the control unit 21 to the other vehicle 1 and gives the information received from the other vehicle 1 to the control unit 21.
In the example of FIG. 3, the in-vehicle communication device 19 is illustrated as an in-vehicle device that performs inter-vehicle communication with the other vehicle 1, but when the relay device 20 has a wireless communication function, the relay device 20 itself is the other vehicle. It is good also as an in-vehicle device which performs communication between 1 and vehicles.
 [車載通信機の構成]
 図4は、車載通信機19の内部構成を示すブロック図である。
 図4に示すように、車載通信機19は、制御部191、記憶部192、及び無線通信部193などを備える。
[Configuration of in-vehicle communication device]
FIG. 4 is a block diagram showing an internal configuration of the in-vehicle communication device 19.
As shown in FIG. 4, the in-vehicle communication device 19 includes a control unit 191, a storage unit 192, a wireless communication unit 193, and the like.
 車載通信機19の制御部191は、CPUを含む。制御部191のCPUは、記憶部192等に記憶された1又は複数のプログラムを読み出して、各種処理を実行するための機能を有している。
 制御部191のCPUは、例えば時分割で複数のプログラムを切り替えて実行することにより、複数のプログラムを並列的に実行可能である。
The control unit 191 of the in-vehicle communication device 19 includes a CPU. The CPU of the control unit 191 has a function for reading out one or a plurality of programs stored in the storage unit 192 and executing various processes.
The CPU of the control unit 191 can execute a plurality of programs in parallel, for example, by switching and executing a plurality of programs in a time division manner.
 制御部191のCPUは、1又は複数の大規模集積回路(LSI)を含む。複数のLSIを含むCPUでは、複数のLSIが協働して当該CPUの機能を実現する。 The CPU of the control unit 191 includes one or a plurality of large scale integrated circuits (LSIs). In a CPU including a plurality of LSIs, the plurality of LSIs cooperate to realize the function of the CPU.
 制御部191のCPUが実行するコンピュータプログラムは、予め工場で書き込まれていてもよいし、特定のツールを介して提供されてもよいし、または、サーバコンピュータなどのコンピュータ装置からのダウンロードによって譲渡することもできる。 The computer program executed by the CPU of the control unit 191 may be written in advance at the factory, may be provided via a specific tool, or transferred by downloading from a computer device such as a server computer. You can also.
 記憶部192は、フラッシュメモリ若しくはEEPROMなどの不揮発性のメモリ素子よりなる。
 記憶部192は、制御部191のCPUが実行するプログラム及び実行に必要なデータなどを記憶する記憶領域を有する。
The storage unit 192 includes a nonvolatile memory element such as a flash memory or an EEPROM.
The storage unit 192 has a storage area for storing programs executed by the CPU of the control unit 191 and data necessary for execution.
 無線通信部193には、無線通信のためのアンテナ194が接続されている。無線通信部193は、制御部191から与えられた情報をアンテナ194から他車両1に送信するとともに、他車両1からアンテナ194により受信した情報を制御部191に与える。
 制御部191のCPUは、無線通信部193から与えられた情報を中継装置20に送信し、中継装置20から受信した情報を無線通信部193に与える。
An antenna 194 for wireless communication is connected to the wireless communication unit 193. The wireless communication unit 193 transmits the information given from the control unit 191 to the other vehicle 1 from the antenna 194 and gives the information received from the other vehicle 1 by the antenna 194 to the control unit 191.
The CPU of the control unit 191 transmits the information given from the wireless communication unit 193 to the relay device 20 and gives the information received from the relay device 20 to the wireless communication unit 193.
 [予測走行挙動データの内容及び生成方法]
 図5は、車載通信機19が車車間通信により他車両1に送信する「予測走行挙動データ」の内容及び生成方法を示す説明図である。予測走行挙動データDには、現時点から比較的短い所定時間(例えば10秒)だけ未来の予測期間Tc内の時刻と、その時刻における車両1の絶対位置及び方位などの情報と、が含まれる。
[Contents and generation method of predicted driving behavior data]
FIG. 5 is an explanatory diagram showing the content and generation method of “predicted travel behavior data” that the in-vehicle communication device 19 transmits to the other vehicle 1 through inter-vehicle communication. The predicted traveling behavior data D includes a time within a future predicted period Tc for a relatively short predetermined time (for example, 10 seconds) from the present time, and information such as the absolute position and direction of the vehicle 1 at that time.
 予測期間Tc内の時刻と、車両1の絶対位置及び方位は、以下のように算出される。例えば、図5の下段に示す道路平面図において、車両1が車線R1を自動運転で走行している場合、車両1のADAS-ECU16C1は、現時点t0で実行中の自動運転の内容に応じて、予測期間Tc中における走行予定ルートを算出し、算出した走行予定ルートを車載通信機19に送信する。 The time within the prediction period Tc and the absolute position and direction of the vehicle 1 are calculated as follows. For example, in the road plan view shown in the lower part of FIG. 5, when the vehicle 1 is traveling in the lane R1 by automatic driving, the ADAS-ECU 16C1 of the vehicle 1 The planned travel route during the prediction period Tc is calculated, and the calculated planned travel route is transmitted to the in-vehicle communication device 19.
 車載通信機19は、受信した走行予定ルートと地図情報とのマップマッチング処理等を行って、予測期間Tc中における車両1の複数の離散位置(絶対位置)と、各離散位置における車両1の方位を算出する。具体的には、予測期間Tc中において車両1が車線R1を直進し続ける場合、車載通信機19は、車線R1に沿って直線状の走行予定ルート(図5の破線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の○印で示す位置)及び方位を算出する。 The in-vehicle communication device 19 performs a map matching process between the received planned travel route and map information, and the like, and a plurality of discrete positions (absolute positions) of the vehicle 1 during the prediction period Tc and the direction of the vehicle 1 at each discrete position. Is calculated. Specifically, when the vehicle 1 continues to travel straight in the lane R1 during the prediction period Tc, the in-vehicle communication device 19 moves along the lane R1 on a straight travel schedule route (an arrow indicated by a broken line in FIG. 5), A plurality of discrete positions (positions indicated by circles in FIG. 5) and directions of the vehicle 1 are calculated at fixed or indefinite time intervals (or distance intervals).
 また、予測期間Tc中において車両1が車線R1から車線R2に車線変更する場合、車載通信機19は、車線R1から車線R2へ延びる曲線状の走行予定ルート(図5の1点鎖線で示す矢印)上において、一定又は不定の時間間隔(又は距離間隔)で、車両1の複数の離散位置(図5の△印で示す位置)及び方位を算出する。 Further, when the vehicle 1 changes lanes from the lane R1 to the lane R2 during the prediction period Tc, the in-vehicle communication device 19 has a curved traveling schedule route extending from the lane R1 to the lane R2 (indicated by the one-dot chain line in FIG. 5). ) In the above, a plurality of discrete positions (positions indicated by Δ in FIG. 5) and azimuths of the vehicle 1 are calculated at constant or indefinite time intervals (or distance intervals).
 車載通信機19は、車両1の複数の離散位置を時間間隔で算出する場合、この時間間隔と現時点t0の時刻に基づいて、各離散位置に対応する時刻を算出する。また、車載通信機19は、車両1の複数の離散位置を距離間隔で算出する場合、この距離間隔に基づいて車両1の現在位置から各離散位置までの距離を算出し、算出した距離と車両1の走行予定速度に基づいて各離散位置に対応する時刻を算出する。車両1の走行予定速度は、ADAS-ECU16C1から取得することができる。
 なお、予測期間Tc内の時刻と車両1の絶対位置及び方位は、ADAS-ECU16C1で算出し、算出した時刻、離散位置及び方位を車載通信機19に送信してもよい。
When the in-vehicle communication device 19 calculates a plurality of discrete positions of the vehicle 1 at time intervals, the in-vehicle communication device 19 calculates a time corresponding to each discrete position based on the time interval and the time at the current time t0. Further, when the in-vehicle communication device 19 calculates a plurality of discrete positions of the vehicle 1 at distance intervals, the vehicle-mounted communication device 19 calculates the distance from the current position of the vehicle 1 to each discrete position based on the distance intervals, and calculates the calculated distance and the vehicle. The time corresponding to each discrete position is calculated based on the estimated traveling speed of 1. The estimated traveling speed of the vehicle 1 can be acquired from the ADAS-ECU 16C1.
The time within the prediction period Tc and the absolute position and direction of the vehicle 1 may be calculated by the ADAS-ECU 16C1, and the calculated time, discrete position, and direction may be transmitted to the in-vehicle communication device 19.
 図5の上段に示すように、本実施形態の予測走行挙動データDには、「車両ID」、「時刻」、「絶対位置」、「車両属性」、「方位」、および、「発信時刻(タイムスタンプ)」などの格納領域が含まれる。
 「時刻」には、現時点の時刻の値、及び上記方法で算出された予測期間Tc内の各時刻の値が格納される。「発信時刻」には、車車間通信により当該予測走行挙動データを含む通信フレームを送信した時刻の値が格納される。つまり、車車間通信により当該予測走行挙動データを含む通信フレームを送信する際の現時点の時刻の値が格納される。現時点の時刻の値は、上記の時刻同期機能を有するナビゲーションECU16B1(図2参照)から中継装置20を介して取得することができる。
As shown in the upper part of FIG. 5, the predicted travel behavior data D of the present embodiment includes “vehicle ID”, “time”, “absolute position”, “vehicle attribute”, “direction”, and “transmission time ( A storage area such as “time stamp” is included.
In “Time”, the value of the current time and the value of each time within the prediction period Tc calculated by the above method are stored. The “sending time” stores the value of the time when the communication frame including the predicted traveling behavior data is transmitted by inter-vehicle communication. That is, the value of the current time when the communication frame including the predicted traveling behavior data is transmitted by inter-vehicle communication is stored. The value of the current time can be acquired via the relay device 20 from the navigation ECU 16B1 (see FIG. 2) having the time synchronization function.
 「車両ID」には、自車両の車両IDの値が格納される。車両IDの値は固定値であるため、各時刻に対応する「車両ID」には、全て同じ値が格納される。
 「絶対位置」は、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の絶対位置を示す緯度、経度及び高度の各値が格納される。図5の「絶対位置」では、緯度及び経度の値のみを示している。
“Vehicle ID” stores the value of the vehicle ID of the host vehicle. Since the value of the vehicle ID is a fixed value, the same value is stored in the “vehicle ID” corresponding to each time.
The “absolute position” stores latitude, longitude, and altitude values indicating the absolute position of the host vehicle corresponding to each time within the prediction period Tc calculated by the above method. “Absolute position” in FIG. 5 shows only latitude and longitude values.
 「車両属性」には、例えば、自車両の車幅および車長などの値、および自車両の車両用途種別(自家用車両又は緊急車両など)の識別値が格納される。車幅、車長、及び車両用途種別の各値は固定値であるため、各時刻に対応する「車両属性」には、全て同じ値が格納される。図5の「車両属性」では、具体的な数値の記載を省略している。
 「方位」には、上記方法で算出された予測期間Tc内の各時刻に対応する自車両の方位の値が格納される。図5の「方位」では、具体的な数値の記載を省略している。
The “vehicle attribute” stores, for example, values such as the vehicle width and length of the own vehicle, and an identification value of the vehicle application type (such as a private vehicle or emergency vehicle) of the own vehicle. Since the values of the vehicle width, the vehicle length, and the vehicle use type are fixed values, the same value is stored in the “vehicle attribute” corresponding to each time. In “Vehicle attributes” in FIG. 5, specific numerical values are omitted.
In “azimuth”, the value of the direction of the host vehicle corresponding to each time within the prediction period Tc calculated by the above method is stored. In “azimuth” in FIG. 5, description of specific numerical values is omitted.
 自車両及びその周辺を通行する他車両1は、車載通信機19同士が車車間通信を行うことで、予測走行挙動データDを互いに送受信する。これにより、自車両、及びその周辺を通行する他車両1が、互いに予測走行挙動データDを共有することができる。 The other vehicle 1 passing through the host vehicle and its surroundings transmits / receives the predicted traveling behavior data D to / from each other when the in-vehicle communication devices 19 perform inter-vehicle communication. As a result, the host vehicle and the other vehicle 1 that passes around the vehicle can share the predicted traveling behavior data D with each other.
 なお、図5の例では、予測走行挙動データDの「時刻」に、一定時間間隔の時刻が格納されているが、不定時間間隔の時刻が格納されていてもよい。この場合、不定時間間隔は、自車両の速度、自車両と他車両との車間距離、自車両が他車両に衝突するまでの衝突余裕時間(TTC:Time To Collision)などの各値に応じて適宜設定することができる。 In addition, in the example of FIG. 5, the time of a fixed time interval is stored in the “time” of the predicted traveling behavior data D, but the time of an indefinite time interval may be stored. In this case, the indefinite time interval depends on each value such as the speed of the host vehicle, the distance between the host vehicle and the other vehicle, and the collision allowance time (TTC: Time To Collision) until the host vehicle collides with the other vehicle. It can be set appropriately.
 また、予測走行挙動データDには、自車両の速度や加速度などの他の情報を含めてもよい。但し、自車両の速度は、自車両の絶対位置を微分することで求めることができ、自車両の加速度は、自車両の絶対位置から求めた速度を微分することで求めることができる。このため、予測走行挙動データDには、自車両の速度及び加速度は必ずしも含める必要はない。 Further, the predicted traveling behavior data D may include other information such as the speed and acceleration of the host vehicle. However, the speed of the own vehicle can be obtained by differentiating the absolute position of the own vehicle, and the acceleration of the own vehicle can be obtained by differentiating the speed obtained from the absolute position of the own vehicle. For this reason, it is not always necessary to include the speed and acceleration of the host vehicle in the predicted traveling behavior data D.
 [選定処理]
 図6は、車載通信機19における選定処理の概要の説明図である。図6は、道路上を走行している複数の車両A,B,C,D,E,F,G,H,I,J,K,Lを示している。各車両から伸びる実線矢印の向きは当該車両の予測走行挙動データDに示される走行予定方向、矢印の長さは車速を表している。各車両は、以下の走行挙動を呈している。
  車両A:東向きの車線R5から交差点に向けて走行中
  車両B:交差点内で北向きの車線R1に右折中
  車両C:西向きの車線R7から交差点に向けて走行中
  車両D:北向きの車線R1を交差点に向けて走行中
  車両E:西向きの車線R8を交差点に向けて走行中
  車両F:北向きの車線R2を交差点に向けて走行中
  車両G:北向きの車線R2を交差点すぐ北から走行中
  車両H:南向きの車線R3を交差点に向けて走行中
  車両I:東向きの車線R5を交差点すぐ東から走行中
  車両J:南向きの車線R3を交差点すぐ南から走行中
  車両K:東向きの車線R6を交差点に向けて走行中
  車両L:南向きの車線R4を交差点に向けて走行中
[Selection processing]
FIG. 6 is an explanatory diagram outlining the selection process in the in-vehicle communication device 19. FIG. 6 shows a plurality of vehicles A, B, C, D, E, F, G, H, I, J, K, and L traveling on the road. The direction of the solid arrow extending from each vehicle indicates the planned traveling direction indicated in the predicted traveling behavior data D of the vehicle, and the length of the arrow indicates the vehicle speed. Each vehicle exhibits the following traveling behavior.
Vehicle A: Driving toward the intersection from the east-facing lane R5 Vehicle B: Turning right into the north-facing lane R1 within the intersection Vehicle C: Driving toward the intersection from the west-facing lane R7 Vehicle D: North-facing lane Vehicle R: Driving toward the intersection. Vehicle E: Driving westward lane R8 toward the intersection. Vehicle F: Driving northward lane R2 toward the intersection. Vehicle G: Northward lane R2 from the north of the intersection. Vehicle H: Traveling toward the intersection in the southward lane R3 Vehicle I: Traveling from the east in the eastward lane R5 Vehicle J: Traveling from the south in the lane R3 toward the south Vehicle K: Driving eastward lane R6 toward the intersection Vehicle L: Traveling south lane R4 toward the intersection
 図6の各車両が走行予定ルートを維持して走行すると、車両A,B,Dの衝突(衝突AC1)、車両E,Fの衝突(衝突AC2)、車両D,Eの衝突(衝突AC3)および、車両B,C(衝突AC4)が生じる可能性がある。 When each vehicle in FIG. 6 travels while maintaining the planned travel route, a collision between vehicles A, B, and D (collision AC1), a collision between vehicles E and F (collision AC2), and a collision between vehicles D and E (collision AC3). And vehicles B and C (collision AC4) may occur.
 そこで、これら複数の車両のうちから、衝突の可能性のある車両(以下、対象車両)でなる対象車両群(以下、車群)を形成する。車群が形成されることによって、たとえば、当該車群に属する複数の対象車両のそれぞれの走行予定ルートを考慮して、各対象車両の走行予定ルートの調整処理を実行することができる。 Therefore, a target vehicle group (hereinafter referred to as a vehicle group) is formed from the plurality of vehicles. By forming the vehicle group, for example, it is possible to execute the adjustment processing of the planned travel route of each target vehicle in consideration of the respective planned travel routes of the plurality of target vehicles belonging to the vehicle group.
 車群内で調整処理などの処理を実行する際には、処理結果等の各種情報を車群内の各対象車両に車車間通信によって送信する必要がある。各対象車両は道路上を走行しているため位置関係は刻々と変化する。そのため、各対象車両への情報の伝達は素早く行う必要がある。そこで、各対象車両に当該情報を車車間通信によって送信する送信元となる対象車両を1台選定する選定処理が実行される。上記送信元となる対象車両を、ここではリーダー車両と称する。図7および図8は、複数車両が図6の状態である場合の選定処理の具体的な流れを説明するための図である。図7および図8において車両と車両とを繋ぐ点線は、車車間通信で通信フレームが送受信されるルート(伝送ルート)を示している。 When executing processing such as adjustment processing in a vehicle group, it is necessary to transmit various information such as processing results to each target vehicle in the vehicle group by inter-vehicle communication. Since each target vehicle travels on the road, the positional relationship changes every moment. Therefore, it is necessary to quickly transmit information to each target vehicle. Therefore, a selection process for selecting one target vehicle that is a transmission source that transmits the information to each target vehicle by inter-vehicle communication is executed. The target vehicle serving as the transmission source is referred to as a leader vehicle here. 7 and 8 are diagrams for explaining a specific flow of the selection process when a plurality of vehicles are in the state of FIG. 7 and 8, a dotted line connecting the vehicles indicates a route (transmission route) through which communication frames are transmitted and received by inter-vehicle communication.
 選定処理を実行するために、車両1の車載通信機19の制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムを読み出して実行することによって、取得部195、生成部196、第1通知部197、判定部198、第2通知部199、第1決定部200、算出部201、第2決定部202、および第3通知部203として機能する(図4)。 In order to execute the selection process, the control unit 191 of the in-vehicle communication device 19 of the vehicle 1 reads out and executes one or more programs stored in the storage unit 192 by the CPU, whereby the acquisition unit 195 and the generation unit 196 are performed. , Function as a first notification unit 197, a determination unit 198, a second notification unit 199, a first determination unit 200, a calculation unit 201, a second determination unit 202, and a third notification unit 203 (FIG. 4).
 制御部191の生成部196は、通信先情報を生成する機能である。通信先情報は、車車間通信によって予測走行挙動データ(図5)を受信した他対象車両と、その通信時間とに関する情報である。通信先情報は、通信先データとして他の車両に送信される。図9A~図9Fは、通信先データの一例であって、それぞれ、車両A~Fで生成される通信先データの例である。図9A~図9Fを参照して、通信先情報は、車車間通信によって受信した通信フレームの送信元である他車両(通信先車両)の車両の識別情報(車両ID)と、当該通信における通信遅延時間と、通信先車両の絶対位置と、を対応付けたデータである。 The generation unit 196 of the control unit 191 has a function of generating communication destination information. The communication destination information is information related to the other target vehicle that has received the predicted traveling behavior data (FIG. 5) by inter-vehicle communication and its communication time. The communication destination information is transmitted to other vehicles as communication destination data. 9A to 9F are examples of communication destination data, which are examples of communication destination data generated by the vehicles A to F, respectively. 9A to 9F, the communication destination information includes the vehicle identification information (vehicle ID) of the other vehicle (communication destination vehicle) that is the transmission source of the communication frame received by the inter-vehicle communication, and the communication in the communication. This is data in which the delay time is associated with the absolute position of the communication destination vehicle.
 たとえば、車両Bの場合、図9(B)を参照して、通信先車両として車両A,C,D,E,Fそれぞれの車両ID(XA,XC,XD,XE,XF)に、各通信先車両との通信遅延時間(tAB,tBC,tBD,tBE,tBF)および各通信先車両の位置(絶対位置)を対応付けて通信先情報が生成される。 For example, in the case of the vehicle B, referring to FIG. 9B, each communication is made to each vehicle ID (XA, XC, XD, XE, XF) of each of the vehicles A, C, D, E, and F as communication destination vehicles. Communication destination information is generated by associating the communication delay time (tAB, tBC, tBD, tBE, tBF) with the destination vehicle and the position (absolute position) of each destination vehicle.
 なお、通信先データが図9A~図9Fに示されたように表形式であることは一例であって、データ形式は表形式に限定されない。通信先情報は車両ごとに生成され、車両ごとに図9A~図9Fに示されたような通信先データとして他車両に送信される。 Note that the communication destination data is in a table format as shown in FIGS. 9A to 9F, and the data format is not limited to the table format. The communication destination information is generated for each vehicle, and is transmitted to other vehicles as communication destination data as shown in FIGS. 9A to 9F for each vehicle.
 生成部196は、予測走行挙動データに含まれる車両IDから通信先車両を特定し、当該IDを通信先者車両IDとする。また、生成部196は、受信した予測走行挙動データに含まれる通信先車両の現在位置を、当該通信先車両の絶対位置とする。生成部196は予測走行挙動データを受信した自車両における時刻と、当該予測走行挙動データに含まれる、発信時刻との差分を算出することによって通遅延時間を得る。 The generation unit 196 identifies the communication destination vehicle from the vehicle ID included in the predicted traveling behavior data, and sets the ID as the communication partner vehicle ID. In addition, the generation unit 196 sets the current position of the communication destination vehicle included in the received predicted traveling behavior data as the absolute position of the communication destination vehicle. The generation unit 196 obtains the delay time by calculating the difference between the time at the host vehicle that has received the predicted traveling behavior data and the transmission time included in the predicted traveling behavior data.
 生成部196は、所定期間に予測走行挙動データを受信した各車両(通信先車両)について車両ID、絶対位置、および通信遅延時間を特定し、通信先情報を生成する。第1通知部197は、生成された通信先情報を通信先データとしてを含む通信フレームを生成して無線通信部193に渡し、車車間通信によって送信させる機能である。第1通知部197は、生成された通信先情報のうちの対象車両についてのデータのみを通信先データとして送信してもよい。 The generation unit 196 specifies a vehicle ID, an absolute position, and a communication delay time for each vehicle (communication destination vehicle) that has received the predicted traveling behavior data during a predetermined period, and generates communication destination information. The first notification unit 197 is a function that generates a communication frame including the generated communication destination information as communication destination data, passes the communication frame to the wireless communication unit 193, and transmits the communication frame by inter-vehicle communication. The first notification unit 197 may transmit only data regarding the target vehicle in the generated communication destination information as communication destination data.
 取得部195は、車車間通信によって他車両から受信した通信フレームから予測走行挙動データDを取得する機能である。
 判定部198は、車両間の衝突の可能性を判定する機能である。ここでの判定方法は特定の方法に限定されない。一例として、判定部198は、他車両から取得された予測走行挙動データDに含まれる各車両の走行予定ルートに基づいて判定する。この場合、判定部198は、各車両の走行予定ルートが他車両の走行予定ルートに交差または所定範囲内まで接近する場合に、これら2車両の衝突の可能性があると判定する。
The acquisition unit 195 is a function of acquiring the predicted traveling behavior data D from a communication frame received from another vehicle by inter-vehicle communication.
The determination unit 198 has a function of determining the possibility of a collision between vehicles. The determination method here is not limited to a specific method. As an example, the determination unit 198 makes a determination based on the planned travel route of each vehicle included in the predicted travel behavior data D acquired from another vehicle. In this case, the determination unit 198 determines that there is a possibility of a collision between these two vehicles when the planned traveling route of each vehicle intersects or approaches a predetermined range of the other vehicle.
 他の例として、判定部198は、ナビゲーションECU16B1から得られる自車両の車速センサ44、ジャイロセンサ45などの検出結果、環境認識ECU16C2から得られる、カメラなどである第1センサ51及び第2センサ52の検出結果、などに基づいて自車両と他車両、または、他車両間の衝突の可能性を判定してもよい。 As another example, the determination unit 198 includes a first sensor 51 and a second sensor 52 that are detection results of the vehicle speed sensor 44 and the gyro sensor 45 of the host vehicle obtained from the navigation ECU 16B1, and are obtained from the environment recognition ECU 16C2. The possibility of a collision between the host vehicle and the other vehicle or the other vehicle may be determined based on the detection result.
 図6の例の場合、判定部198は、衝突AC1,AC2,AC3,AC4の可能性があると判定する。第2通知部199は、当該判定結果を含む通信フレームを生成して無線通信部193に渡し、車車間通信によって送信させる機能である。判定結果には、対象車両(図6の例では、車両A,B,C,D,E,F)の識別情報(車両ID)が含まれる。 6, the determination unit 198 determines that there is a possibility of collisions AC1, AC2, AC3, and AC4. The second notification unit 199 is a function that generates a communication frame including the determination result, passes it to the wireless communication unit 193, and transmits it by inter-vehicle communication. The determination result includes identification information (vehicle ID) of the target vehicle (vehicles A, B, C, D, E, and F in the example of FIG. 6).
 第1決定部200は、判定結果に基づいて、対象車両群からなる車群を形成する機能である。図7は、図6の例の場合に形成される車群と、各対象車両の位置関係を表した図である。図7を参照して、図6の例の場合、第1決定部200は、車両A,B,C,D,E,Fからなる車群を生成する。 The 1st determination part 200 is a function which forms the vehicle group which consists of an object vehicle group based on a determination result. FIG. 7 is a diagram showing the positional relationship between the vehicle group formed in the example of FIG. 6 and each target vehicle. With reference to FIG. 7, in the example of FIG. 6, first determination unit 200 generates a vehicle group including vehicles A, B, C, D, E, and F.
 取得部195は、また、車車間通信によって他車両から受信した通信フレームから各車両の通信先データ(図9)を取得する機能でもある。
 算出部201は、各対象車両の通信先データから得られる各対象車両間の通信遅延時間に基づいて、各対象車両について、車群内の当該対象車両から最も遠い対象車両との間の通信遅延時間(以下、最大遅延時間とも称する)を算出する機能である。算出部201は、すべての車両A~Fの通信先データを、車車間通信フレームを直接的に送受信する一対の通信ノードごとにマージして、図7のマップに相当するデータを得る。なお、図7において通信遅延時間の特定結果の情報がマップ形式であることは一例であって、テーブル形式などの他のデータ形式であってもよい。
The acquisition unit 195 also has a function of acquiring communication destination data (FIG. 9) of each vehicle from a communication frame received from another vehicle by inter-vehicle communication.
Based on the communication delay time between the target vehicles obtained from the communication destination data of each target vehicle, the calculation unit 201 determines the communication delay between each target vehicle and the target vehicle farthest from the target vehicle in the vehicle group. This is a function for calculating time (hereinafter also referred to as maximum delay time). The calculation unit 201 merges the communication destination data of all the vehicles A to F for each pair of communication nodes that directly transmit and receive the inter-vehicle communication frame to obtain data corresponding to the map of FIG. In FIG. 7, the information on the result of specifying the communication delay time is in a map format, and may be in another data format such as a table format.
 図7は、各通信先データから得られた対象車両間の通信遅延時間の特定結果の一例を表している。図6の例の場合、算出部201は各対象車両の通信フレームから以下の通信遅延時間を読み出す。
  遅延時間tAB:車両A-B間の遅延時間(たとえばtAB=0.15[s])
  遅延時間tBC:車両B-C間の遅延時間(たとえばtBC=0.06[s])
  遅延時間tBD:車両B-D間の遅延時間(たとえばtBD=0.05[s])
  遅延時間tBE:車両B-E間の遅延時間(たとえばtBE=0.05[s])
  遅延時間tBF:車両B-F間の遅延時間(たとえばtBF=0.12[s])
  遅延時間tCE:車両C-E間の遅延時間(たとえばtCE=0.04[s])
  遅延時間tDF:車両D-F間の遅延時間(たとえばtDF=0.08[s])
  遅延時間tEF:車両E-F間の遅延時間(たとえばtEF=0.10[s])
FIG. 7 shows an example of the result of specifying the communication delay time between target vehicles obtained from each communication destination data. In the example of FIG. 6, the calculation unit 201 reads the following communication delay time from the communication frame of each target vehicle.
Delay time tAB: Delay time between vehicles AB (eg, tAB = 0.15 [s])
Delay time tBC: Delay time between vehicles BC (for example, tBC = 0.06 [s])
Delay time tBD: Delay time between vehicles BD (for example, tBD = 0.05 [s])
Delay time tBE: Delay time between vehicles BE (for example, tBE = 0.05 [s])
Delay time tBF: Delay time between vehicles BF (for example, tBF = 0.12 [s])
Delay time tCE: Delay time between vehicles CE (for example, tCE = 0.04 [s])
Delay time tDF: Delay time between vehicles DF (for example, tDF = 0.08 [s])
Delay time tEF: Delay time between vehicles EF (for example, tEF = 0.10 [s])
 図8は、各対象車両についての最大遅延時間の算出結果である最大遅延時間情報の一例を表している。最大遅延時間情報を通信マップとも称する。なお、図8において最大遅延時間情報がマップ形式の通信マップであることは一例であって、最大遅延時間情報のデータ形式はマップ形式に限定されない。 FIG. 8 shows an example of maximum delay time information that is a calculation result of the maximum delay time for each target vehicle. The maximum delay time information is also referred to as a communication map. In FIG. 8, the maximum delay time information is a map-type communication map, and the data format of the maximum delay time information is not limited to the map format.
 算出部201は、各対象車両の現在位置に基づいて、各対象車両について最大車両を特定するとともに、当該最大車両までの通信遅延時間を算出し、対象車両と当該対象車両の最大遅延時間とを対応付けた最大遅延時間情報を生成する。 The calculation unit 201 specifies the maximum vehicle for each target vehicle based on the current position of each target vehicle, calculates a communication delay time to the maximum vehicle, and calculates the target vehicle and the maximum delay time of the target vehicle. The associated maximum delay time information is generated.
 算出部201は、通信先データに最大車両までの通信遅延時間が含まれている場合には、当該時間を最大遅延時間とする。通信先データに最大車両までの通信遅延時間が含まれていない場合には、1または複数の他の対象車両を経由(ホップ)して通信する場合の通信遅延時間を算出する。 When the communication destination data includes a communication delay time up to the maximum vehicle, the calculation unit 201 sets the time as the maximum delay time. When the communication destination data does not include the communication delay time up to the maximum vehicle, the communication delay time when communicating via (hopping) one or more other target vehicles is calculated.
 一例として、対象車両Aについて、算出部201は、最大車両を対象車両Fと特定する。従って、対象車両Aの最大遅延時間TAは、対象車両A-Fの遅延時間となる。しかしながら、図7または図8に示されたように、対象車両Aと対象車両Fとは直接通信フレームをやり取りする車車間通信の伝送ルートがない。そのため、算出部201は、対象車両Aと対象車両Fとの間に車両Bを経由する車車間通信の伝送ルートを設定する。この場合、算出部201は、対象車両A-B間の遅延時間(tAB=0.15[s])と対象車両B-F間の通信遅延時間(tBF=0.12[s])とを加算することで対象車両Aと対象車両Fとの間の通信遅延時間、つまり、対象車両Aの最大遅延時間TAを算出する(TA=0.15+0.12=0.27[s])。 As an example, for the target vehicle A, the calculation unit 201 identifies the maximum vehicle as the target vehicle F. Therefore, the maximum delay time TA of the target vehicle A is the delay time of the target vehicle AF. However, as shown in FIG. 7 or FIG. 8, the target vehicle A and the target vehicle F do not have a transmission route for inter-vehicle communication in which a communication frame is directly exchanged. Therefore, the calculation unit 201 sets a transmission route for inter-vehicle communication via the vehicle B between the target vehicle A and the target vehicle F. In this case, the calculation unit 201 calculates the delay time between the target vehicles AB (tAB = 0.15 [s]) and the communication delay time between the target vehicles BF (tBF = 0.12 [s]). By adding, the communication delay time between the target vehicle A and the target vehicle F, that is, the maximum delay time TA of the target vehicle A is calculated (TA = 0.15 + 0.12 = 0.27 [s]).
 算出部201は、各対象車両について、以下のように最大遅延時間を算出する。
  車両Aの最大遅延時間TA:車両A-Fの遅延時間(TA=tAB+tBF=0.15+0.12=0.27[s])
  車両Bの最大遅延時間TB:車両B-Aの遅延時間(TB=tAB=0.15[s])
  車両Cの最大遅延時間TC:車両C-Aの遅延時間(TC=tAB+tBC=0.15+0.06=0.21[s])
  車両Dの最大遅延時間TD:車両D-Aの遅延時間(TD=tBD+tAB=0.05+0.15=0.21[s])
  車両Eの最大遅延時間TE:車両C-Aの遅延時間(TE=tBE+tAB=0.05+0.15=0.20[s])
  車両Fの最大遅延時間TF:車両F-Aの遅延時間(TF=tBF+tAB=0.12+0.15=0.27[s])
The calculation unit 201 calculates the maximum delay time for each target vehicle as follows.
Maximum delay time TA of vehicle A: Delay time of vehicle AF (TA = tAB + tBF = 0.15 + 0.12 = 0.27 [s])
Maximum delay time TB of vehicle B: Delay time of vehicle BA (TB = tAB = 0.15 [s])
Maximum delay time TC of vehicle C: Delay time of vehicle CA (TC = tAB + tBC = 0.15 + 0.06 = 0.21 [s])
Maximum delay time TD of vehicle D: Delay time of vehicle DA (TD = tBD + tAB = 0.05 + 0.15 = 0.21 [s])
Maximum delay time TE of vehicle E: Delay time of vehicle CA (TE = tBE + tAB = 0.05 + 0.15 = 0.20 [s])
Maximum delay time TF of vehicle F: Delay time of vehicle FA (TF = tBF + tAB = 0.12 + 0.15 = 0.27 [s])
 第2決定部202は、各対象車両の最大遅延時間に基づいて予め規定されている所定条件(リーダー条件)を満たす、車群の中から1台の対象車両をリーダー車両に決定する機能である。リーダー車両は、車群に属する複数の対象車両の走行予定ルートの調整を主導する車両である。 The second determination unit 202 is a function that determines one target vehicle as a leader vehicle from the vehicle group that satisfies a predetermined condition (leader condition) defined in advance based on the maximum delay time of each target vehicle. . The leader vehicle is a vehicle that leads the adjustment of the scheduled travel route of the plurality of target vehicles belonging to the vehicle group.
 リーダー条件は、一例として、最大遅延時間が最も短いことである。この条件を満たす対象車両をリーダー車両とすることで、当該条件を満たさない対象車両をリーダー車両とするよりも、他の対象車両にデータを転送するために要する時間を短くすることができる。他の例として、リーダー条件は、最大遅延時間が比較的短いことである。具体的には、最大遅延時間が車群内の平均値よりも短いこと、最大遅延時間が最短の対象車両から規定数内の対象車両のうちのいずれかであること、などである。この条件を満たす対象車両をリーダー車両とする場合も、当該条件を満たさない対象車両をリーダー車両とするよりも、他の対象車両にデータを転送するために要する時間を短くすることができる。 The leader condition is, for example, that the maximum delay time is the shortest. By setting the target vehicle that satisfies this condition as the leader vehicle, it is possible to shorten the time required to transfer data to another target vehicle, compared to the target vehicle that does not satisfy the condition as the leader vehicle. As another example, the leader condition is that the maximum delay time is relatively short. Specifically, the maximum delay time is shorter than the average value in the vehicle group, the maximum delay time is one of the target vehicles within the specified number from the shortest target vehicle, and the like. When a target vehicle that satisfies this condition is a leader vehicle, the time required to transfer data to another target vehicle can be shortened compared to a target vehicle that does not satisfy the condition being a leader vehicle.
 第3通知部203は、決定されたリーダー車両の識別情報(車両ID)を含む通信フレームを生成して無線通信部193に渡し、車車間通信によって送信させることで、リーダー車両を他の車両に通知する機能である。 The third notification unit 203 generates a communication frame including the determined identification information (vehicle ID) of the leader vehicle, passes the communication frame to the wireless communication unit 193, and transmits the communication frame by inter-vehicle communication, so that the leader vehicle is transmitted to other vehicles. This is a notification function.
 図10は、車載通信機19で実行される選定処理の流れを表したフローチャートである。車載通信機19の制御部191は、CPUが記憶部192に記憶された1又は複数のプログラムを読み出して実行することによって図10のフローチャートに表わされた処理を実行する。図10の選定処理は、車両1が他車両から予測走行挙動データDを含む通信フレームを車車間通信によって受信すると開始される。 FIG. 10 is a flowchart showing the flow of selection processing executed by the in-vehicle communication device 19. The control unit 191 of the in-vehicle communication device 19 executes the processing shown in the flowchart of FIG. 10 when the CPU reads and executes one or more programs stored in the storage unit 192. The selection process in FIG. 10 is started when the vehicle 1 receives a communication frame including the predicted traveling behavior data D from another vehicle through inter-vehicle communication.
 図10を参照して、車載通信機19の制御部191は、車車間通信によって他車両から予測走行挙動データDを含む通信フレームを受信すると(ステップS101でYES)、自車両の通信先データ(図9)を生成して他車両に送信する(ステップS103)。 Referring to FIG. 10, when control unit 191 of in-vehicle communication device 19 receives a communication frame including predicted traveling behavior data D from another vehicle by inter-vehicle communication (YES in step S101), communication destination data of own vehicle ( FIG. 9) is generated and transmitted to the other vehicle (step S103).
 制御部191は、他車両の予測走行挙動データDに基づいて、自車両および他車両、および、他車両同士の衝突可能性の有無を判定する。その結果、衝突の可能性がある場合(ステップS105でYES)、制御部191は衝突の可能性がある対象車両の車両IDを含む判定結果を送信する(ステップS107)。ステップS107では、判定結果を含む通信フレームを生成し、無線通信部193に車車間通信によって送信させる。 The control unit 191 determines whether or not there is a possibility of collision between the own vehicle, the other vehicle, and the other vehicles based on the predicted traveling behavior data D of the other vehicle. As a result, when there is a possibility of a collision (YES in Step S105), the control unit 191 transmits a determination result including the vehicle ID of the target vehicle that has a possibility of a collision (Step S107). In step S107, a communication frame including the determination result is generated and transmitted to the wireless communication unit 193 by inter-vehicle communication.
 制御部191は、衝突の可能性があると判定した場合、対象車両からなる車群を形成する(ステップS109)。そして、制御部191は、車群の中からリーダー車両を選定する処理を実行する(ステップS111,S113)。すなわち、制御部191は、各対象車両について最大遅延時間を算出し図8の通信マップを生成する(ステップS111)。そして、各対象車両の最大遅延時間に基づいて、最大遅延時間が予め記憶しているリーダー条件を満たす対象車両をリーダー車両と決定する(ステップS113)。 When the control unit 191 determines that there is a possibility of a collision, the control unit 191 forms a vehicle group including the target vehicles (step S109). And the control part 191 performs the process which selects a leader vehicle from a vehicle group (step S111, S113). That is, the control unit 191 calculates the maximum delay time for each target vehicle and generates the communication map of FIG. 8 (step S111). Then, based on the maximum delay time of each target vehicle, the target vehicle that satisfies the leader condition stored in advance as the maximum delay time is determined as the leader vehicle (step S113).
 制御部191は、決定したリーダー車両を他の車両に通知する(ステップS115)。すなわち、制御部191は、リーダー車両の車両IDを含む通信フレームを生成し、無線通信部193に車車間通信によって送信させる。 The control unit 191 notifies the determined leader vehicle to other vehicles (step S115). That is, the control unit 191 generates a communication frame including the vehicle ID of the leader vehicle, and causes the wireless communication unit 193 to transmit the communication frame by inter-vehicle communication.
 [実施の形態の効果]
 本実施形態にかかる通信システムでは、上記選定処理が実行されることで、衝突の可能性のある対象車両からなる車群のうちから、他の対象車両への車車間通信での通信フレームの送信の遅延時間が比較的短い対象車両が、各対象車両の走行予定ルートの調整を主導するリーダー車両として決定される。これにより、車群内での調整に関するデータの通信時間の遅延を抑えることができ、データ転送の品質を向上させることができる。その結果、車群内での走行予定ルートの調整を円滑に行うことができる。
[Effect of the embodiment]
In the communication system according to the present embodiment, by performing the selection process, the communication frame is transmitted to the other target vehicle from the vehicle group including the target vehicles with the possibility of collision. The target vehicle having a relatively short delay time is determined as the leader vehicle that leads the adjustment of the scheduled travel route of each target vehicle. Thereby, the delay of the communication time of the data regarding the adjustment within a vehicle group can be suppressed, and the quality of data transfer can be improved. As a result, it is possible to smoothly adjust the scheduled travel route within the vehicle group.
 特に、上記選定処理においてリーダー条件を最大車両までの遅延時間が最も短いこととすることによって、他の対象車両への車車間通信での通信フレームの送信の遅延時間が最も短い対象車両がリーダー車両と選定される。これにより、車群内でのデータの通信時間の遅延を最も抑えることができ、すばやいデータ転送を実現することができる。その結果、車群内での走行予定ルートの調整をより円滑に行うことができる。 In particular, in the above selection process, the leader condition is that the delay time to the maximum vehicle is the shortest, so that the target vehicle having the shortest delay time of transmission of the communication frame in the inter-vehicle communication to other target vehicles is the leader vehicle. Is selected. As a result, the delay in data communication time within the vehicle group can be minimized, and quick data transfer can be realized. As a result, the scheduled travel route within the vehicle group can be adjusted more smoothly.
〔第2の実施の形態〕
 上記の選定処理では、各車両1が、すべての対象車両について最大遅延時間を算出するものとしているが、各車両1は自車両の最大遅延時間のみ算出してもよい。これにより、算出処理を簡易にすることができる。
[Second Embodiment]
In the above selection process, each vehicle 1 calculates the maximum delay time for all target vehicles. However, each vehicle 1 may calculate only the maximum delay time of its own vehicle. Thereby, calculation processing can be simplified.
 この場合、各車両は算出した自車両の最大遅延時間の算出結果を車車間通信によって送信する。そして、各車両は他車両から受信した最大遅延時間の算出結果に基づいてリーダー車両を決定する。 In this case, each vehicle transmits the calculation result of the calculated maximum delay time of its own vehicle by inter-vehicle communication. Each vehicle determines the leader vehicle based on the calculation result of the maximum delay time received from the other vehicle.
〔第3の実施の形態〕
 以上の説明では、選定処理のすべてを車載通信機19の制御部191が行うものとしている。しかしながら、車載通信機19の制御部191は、他の車載装置と協働して選定処理を行ってもよい。たとえば、少なくとも一部の処理を中継装置20の制御部21が行ってもよい。すなわち、中継装置20の制御部21が、取得部195、生成部196、第1通知部197、判定部198、第2通知部199、第1決定部200、算出部201、第2決定部202、および第3通知部203の少なくとも1つとして機能してもよい。
[Third Embodiment]
In the above description, all of the selection processing is performed by the control unit 191 of the in-vehicle communication device 19. However, the control unit 191 of the in-vehicle communication device 19 may perform the selection process in cooperation with other in-vehicle devices. For example, the control unit 21 of the relay device 20 may perform at least a part of the processing. That is, the control unit 21 of the relay device 20 includes an acquisition unit 195, a generation unit 196, a first notification unit 197, a determination unit 198, a second notification unit 199, a first determination unit 200, a calculation unit 201, and a second determination unit 202. , And may function as at least one of the third notification unit 203.
 開示された特徴は、1つ以上のモジュールによって実現される。たとえば、当該特徴は、回路素子その他のハードウェアモジュールによって、当該特徴を実現する処理を規定したソフトウェアモジュールによって、または、ハードウェアモジュールとソフトウェアモジュールとの組み合わせによって実現され得る。 The disclosed features are realized by one or more modules. For example, the feature can be realized by a circuit element or other hardware module, by a software module that defines processing for realizing the feature, or by a combination of a hardware module and a software module.
 上述の動作をコンピュータに実行させるための、1つ以上のソフトウェアモジュールの組み合わせであるプログラムとして提供することもできる。このようなプログラムは、コンピュータに付属するフレキシブルディスク、CD-ROM(Compact Disk-Read Only Memory)、ROM、RAMおよびメモリカードなどのコンピュータ読取り可能な記録媒体にて記録させて、プログラム製品として提供することもできる。あるいは、コンピュータに内蔵するハードディスクなどの記録媒体にて記録させて、プログラムを提供することもできる。また、ネットワークを介したダウンロードによって、プログラムを提供することもできる。 It can also be provided as a program that is a combination of one or more software modules for causing a computer to execute the above-described operation. Such a program is recorded on a computer-readable recording medium such as a flexible disk attached to a computer, a CD-ROM (Compact Disk-Read Only Memory), a ROM, a RAM, and a memory card, and provided as a program product. You can also. Alternatively, the program can be provided by being recorded on a recording medium such as a hard disk built in the computer. A program can also be provided by downloading via a network.
 なお、本開示にかかるプログラムは、コンピュータのオペレーティングシステム(OS)の一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の配列で所定のタイミングで呼出して処理を実行させるものであってもよい。その場合、プログラム自体には上記モジュールが含まれずOSと協働して処理が実行される。このようなモジュールを含まないプログラムも、本開示にかかるプログラムに含まれ得る。 The program according to the present disclosure is a program module that is provided as a part of a computer operating system (OS) and calls necessary modules in a predetermined arrangement at a predetermined timing to execute processing. Also good. In that case, the program itself does not include the module, and the process is executed in cooperation with the OS. Such a program that does not include a module may also be included in the program according to the present disclosure.
 また、本開示にかかるプログラムは他のプログラムの一部に組込まれて提供されるものであってもよい。その場合にも、プログラム自体には上記他のプログラムに含まれるモジュールが含まれず、他のプログラムと協働して処理が実行される。このような他のプログラムに組込まれたプログラムも、本開示にかかるプログラムに含まれ得る。提供されるプログラム製品は、ハードディスクなどのプログラム格納部にインストールされて実行される。なお、プログラム製品は、プログラム自体と、プログラムが記録された記録媒体とを含む。 Further, the program according to the present disclosure may be provided by being incorporated in a part of another program. Even in this case, the program itself does not include the module included in the other program, and the process is executed in cooperation with the other program. A program incorporated in such another program may also be included in the program according to the present disclosure. The provided program product is installed in a program storage unit such as a hard disk and executed. The program product includes the program itself and a recording medium on which the program is recorded.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 車両
 10 車内システム
 12,12A,12B,12C 通信ネットワーク
 13 車内通信線
 16A1 エンジンECU
 16A2 EPS-ECU
 16A3 ブレーキECU
 16A4 ABS-ECU
 16B1 ナビゲーションECU
 16B2 メータECU
 16B3 HUD-ECU
 16C1 ADAS-ECU
 16C2 環境認識ECU
 19 車載通信機(車載装置)
 20 中継装置
 21 制御部
 22 記憶部
 23 車内通信部
 31 燃料噴射装置
 32 EPS
 33 ブレーキアクチュエータ
 34 ABSアクチュエータ
 41 HDD
 42 ディスプレイ
 43 GPS受信機
 44 車速センサ
 45 ジャイロセンサ
 46 スピーカ
 47 入力デバイス
 48 メータアクチュエータ
 49 HUD
 51 第1センサ
 52 第2センサ
 191 制御部
 192 記憶部
 193 無線通信部(通信部)
 194 アンテナ
 195 取得部
 196 生成部
 197 第1通知部
 198 判定部
 199 第2通知部
 200 第1決定部
 201 算出部
 202 第2決定部
 203 第3通知部
 AC1~AC4 衝突
 R1~R8 車線
 
DESCRIPTION OF SYMBOLS 1 Vehicle 10 In- vehicle system 12, 12A, 12B, 12C Communication network 13 In-vehicle communication line 16A1 Engine ECU
16A2 EPS-ECU
16A3 Brake ECU
16A4 ABS-ECU
16B1 Navigation ECU
16B2 Meter ECU
16B3 HUD-ECU
16C1 ADAS-ECU
16C2 Environment recognition ECU
19 In-vehicle communication device (in-vehicle device)
20 Relay Device 21 Control Unit 22 Storage Unit 23 In-Vehicle Communication Unit 31 Fuel Injection Device 32 EPS
33 Brake actuator 34 ABS actuator 41 HDD
42 Display 43 GPS receiver 44 Vehicle speed sensor 45 Gyro sensor 46 Speaker 47 Input device 48 Meter actuator 49 HUD
51 First sensor 52 Second sensor 191 Control unit 192 Storage unit 193 Wireless communication unit (communication unit)
194 antenna 195 acquisition unit 196 generation unit 197 first notification unit 198 determination unit 199 second notification unit 200 first determination unit 201 calculation unit 202 second determination unit 203 third notification unit AC1 to AC4 collision R1 to R8 lane

Claims (7)

  1.  他車両と車車間通信フレームを送受信する通信部と、
     受信した前記車車間通信フレームの送信元車両の識別情報と、前記送信元車両から自車両までの前記車車間通信フレームの通信遅延時間と、を対応付けた通信先情報を生成する生成部と、
     生成した前記通信先情報を含む車車間通信フレームを前記通信部に送信させる通知部と、を備える、車載装置。
    A communication unit that transmits and receives a vehicle-to-vehicle communication frame with another vehicle;
    A generating unit that generates communication destination information that associates the received identification information of the transmission source vehicle of the inter-vehicle communication frame with the communication delay time of the inter-vehicle communication frame from the transmission source vehicle to the host vehicle;
    An in-vehicle device comprising: a notifying unit that transmits a vehicle-to-vehicle communication frame including the generated communication destination information to the communication unit.
  2.  自車両の前記通信先情報と複数の他車両から受信した前記通信先情報とに基づいて、自車両を送信元車両としたときの以下の最大遅延時間を算出する算出部をさらに備える、請求項1に記載の車載装置。
      最大遅延時間:送信元車両から複数の他車両のうちの最も遠い車両までの通信遅延時間
    The apparatus further comprises a calculation unit that calculates the following maximum delay time when the host vehicle is a transmission source vehicle based on the communication destination information of the host vehicle and the communication destination information received from a plurality of other vehicles. The vehicle-mounted device according to 1.
    Maximum delay time: Communication delay time from the source vehicle to the farthest of the other vehicles
  3.  前記算出部は、
     自車両の前記通信先情報と複数の他車両から受信した前記通信先情報とに基づいて、複数の他車両それぞれについて当該車両を送信元車両としたときの最大遅延時間を算出し、
     自車両の前記最大遅延時間と複数の他車両の前記最大遅延時間とを含む遅延時間情報を生成する、請求項2に記載の車載装置。
    The calculation unit includes:
    Based on the communication destination information of the host vehicle and the communication destination information received from a plurality of other vehicles, a maximum delay time when the vehicle is set as a transmission source vehicle for each of a plurality of other vehicles,
    The in-vehicle device according to claim 2, wherein delay time information including the maximum delay time of the host vehicle and the maximum delay times of a plurality of other vehicles is generated.
  4.  前記最大遅延時間は、送信元車両から1または複数の他車両を経由して前記最も遠い車両までの通信遅延時間を含む、請求項2または請求項3に記載の車載装置。 The in-vehicle device according to claim 2 or 3, wherein the maximum delay time includes a communication delay time from a transmission source vehicle to the farthest vehicle via one or more other vehicles.
  5.  車両間の衝突の可能性のある対象車両の判定結果に基づいて、複数の前記対象車両からなる車群を決定する第1の決定部と、
     前記車群に属する前記複数の対象車両のうち、前記最大遅延時間が所定の条件を満たす対象車両を以下のリーダー車両と決定する第2の決定部と、をさらに備える、請求項2~請求項4のいずれか1項に記載の車載装置。
      リーダー車両:車群に属する車両の走行予定ルートの調整を主導する車両
    A first determination unit that determines a vehicle group including a plurality of the target vehicles based on a determination result of the target vehicles that may cause a collision between the vehicles;
    A second determination unit that determines, from among the plurality of target vehicles belonging to the vehicle group, a target vehicle that satisfies a predetermined condition that satisfies the predetermined maximum delay time as a following leader vehicle. The vehicle-mounted device according to any one of 4.
    Leader vehicle: A vehicle that leads the adjustment of the planned travel route of vehicles belonging to the vehicle group
  6.  車車間通信機能を有する車両の車載装置における通信方法であって、
     他車両から受信した車車間通信フレームの送信元車両の識別情報と、前記送信元車両から自車両までの前記車車間通信フレームの通信遅延時間と、を対応付けた通信先情報を生成するステップと、
     生成した前記通信先情報を含む車車間通信フレームを車車間通信によって送信するステップと、を備える、通信方法。
    A communication method in a vehicle-mounted device having a vehicle-to-vehicle communication function,
    Generating communication destination information in which the identification information of the transmission source vehicle of the inter-vehicle communication frame received from another vehicle is associated with the communication delay time of the inter-vehicle communication frame from the transmission source vehicle to the host vehicle; ,
    Transmitting a vehicle-to-vehicle communication frame including the generated communication destination information by vehicle-to-vehicle communication.
  7.  車車間通信機能を有する車両の車載装置としてコンピュータを機能させるためのコンピュータプログラムであって、
     前記車載装置は他車両と車車間通信フレームを送受信する通信部を有し、
     前記コンピュータを、
     受信した前記車車間通信フレームの送信元車両の識別情報と、前記送信元車両から自車両までの前記車車間通信フレームの通信遅延時間と、を対応付けた通信先情報を生成する生成部と、
     生成した前記通信先情報を含む車車間通信フレームを前記通信部に送信させる通知部、として機能させる、コンピュータプログラム。
     
    A computer program for causing a computer to function as a vehicle-mounted device having a vehicle-to-vehicle communication function,
    The in-vehicle device has a communication unit that transmits and receives a vehicle-to-vehicle communication frame with another vehicle,
    The computer,
    A generating unit that generates communication destination information that associates the received identification information of the transmission source vehicle of the inter-vehicle communication frame with the communication delay time of the inter-vehicle communication frame from the transmission source vehicle to the host vehicle;
    A computer program causing a vehicle-to-vehicle communication frame including the generated communication destination information to be transmitted to the communication unit.
PCT/JP2018/003068 2018-01-31 2018-01-31 Automotive device, communication method, and computer program WO2019150455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003068 WO2019150455A1 (en) 2018-01-31 2018-01-31 Automotive device, communication method, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003068 WO2019150455A1 (en) 2018-01-31 2018-01-31 Automotive device, communication method, and computer program

Publications (1)

Publication Number Publication Date
WO2019150455A1 true WO2019150455A1 (en) 2019-08-08

Family

ID=67479169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003068 WO2019150455A1 (en) 2018-01-31 2018-01-31 Automotive device, communication method, and computer program

Country Status (1)

Country Link
WO (1) WO2019150455A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115130852A (en) * 2022-06-24 2022-09-30 重庆长安新能源汽车科技有限公司 Data transmission quality evaluation method, device, equipment and medium for Internet of vehicles equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027011A (en) * 2006-07-19 2008-02-07 Nec Corp Probe information collection system, its collection device, collection method, and program
JP2009018680A (en) * 2007-07-11 2009-01-29 Toyota Motor Corp Relative relationship measuring system and on-vehicle relative relationship measuring device
WO2010128537A1 (en) * 2009-05-07 2010-11-11 トヨタ自動車株式会社 Distance detection device and collision judgment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027011A (en) * 2006-07-19 2008-02-07 Nec Corp Probe information collection system, its collection device, collection method, and program
JP2009018680A (en) * 2007-07-11 2009-01-29 Toyota Motor Corp Relative relationship measuring system and on-vehicle relative relationship measuring device
WO2010128537A1 (en) * 2009-05-07 2010-11-11 トヨタ自動車株式会社 Distance detection device and collision judgment device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAC: "A reliable MAC protocol with vehicle grouping for ITS", IPSJ SIG TECHNICAL REPORTS, vol. 2005, no. 61, pages 31 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115130852A (en) * 2022-06-24 2022-09-30 重庆长安新能源汽车科技有限公司 Data transmission quality evaluation method, device, equipment and medium for Internet of vehicles equipment
CN115130852B (en) * 2022-06-24 2024-06-07 深蓝汽车科技有限公司 Data transmission quality assessment method and device for Internet of vehicles equipment

Similar Documents

Publication Publication Date Title
US10752244B2 (en) Devices, method and computer program for providing information about an expected driving intention
CN105799700A (en) Collision avoidance control system and control method
KR20180066191A (en) A method and a control system for determining a traffic gap between two vehicles for lane change of a vehicle
US20200184827A1 (en) Electronic control device and vehicle comprising the same
WO2019138485A1 (en) Collision possibility determination device, collision possibility determination method, and computer program
WO2021035722A1 (en) Verifying timing of sensors used in autonomous driving vehicles
US11397440B2 (en) Vehicle control system, external electronic control unit, vehicle control method, and application
WO2021035721A1 (en) Synchronizing sensors of autonomous driving vehicles
WO2019138488A1 (en) Predicted travel behavior data adjustment device, predicted travel behavior data transmission device, predicted travel behavior data adjustment method, predicted travel behavior data transmission method, computer program, and communication frame data structure
WO2019150458A1 (en) Vehicle-mounted device, generation method, and computer program
EP3757711B1 (en) A vehicle-platoons implementation under autonomous driving system designed for single vehicle
US10867516B2 (en) Surrounding area monitoring apparatus and surrounding area monitoring method
JP6784338B2 (en) In-vehicle device, communication path information generation method, and computer program
WO2019150455A1 (en) Automotive device, communication method, and computer program
WO2019150460A1 (en) Vehicle-mounted device, vehicle-to-vehicle communication method, and computer program
US11551553B2 (en) Traffic control preemption according to vehicle aspects
JP2020140616A (en) Operation control device and vehicle
WO2019138486A1 (en) Vehicle-mounted device, determination method, and computer program
WO2019138498A1 (en) Vehicle-mounted device, adjustment method, and computer program
CN114834460A (en) V2X communication system with autonomous driving information
Huang et al. Design and implementation of a cooperative collision warning system
US20210155244A1 (en) Method, apparatus, and computer program product for automated lane merging assistance
JP2017173905A (en) Communication control device for vehicle
JP2018076004A (en) Vehicle control method and vehicle control device
WO2019138487A1 (en) Vehicle-mounted device, travel control method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP