WO2019119490A1 - 金属结构及其制作方法与应用的显示面板 - Google Patents

金属结构及其制作方法与应用的显示面板 Download PDF

Info

Publication number
WO2019119490A1
WO2019119490A1 PCT/CN2017/118978 CN2017118978W WO2019119490A1 WO 2019119490 A1 WO2019119490 A1 WO 2019119490A1 CN 2017118978 W CN2017118978 W CN 2017118978W WO 2019119490 A1 WO2019119490 A1 WO 2019119490A1
Authority
WO
WIPO (PCT)
Prior art keywords
molybdenum
patterned
substrate
oxide layer
layer
Prior art date
Application number
PCT/CN2017/118978
Other languages
English (en)
French (fr)
Inventor
王硕宏
林俊男
吴佳聪
郭吉庭
李格睿
李家宏
张家铭
Original Assignee
友达光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友达光电股份有限公司 filed Critical 友达光电股份有限公司
Priority to EP17935068.1A priority Critical patent/EP3731000A4/en
Priority to JP2020532745A priority patent/JP2021505971A/ja
Publication of WO2019119490A1 publication Critical patent/WO2019119490A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • H01L23/53223Additional layers associated with aluminium layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53242Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a noble metal, e.g. gold
    • H01L23/53252Additional layers associated with noble-metal layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • H01L23/53266Additional layers associated with refractory-metal layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/136295Materials; Compositions; Manufacture processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes

Definitions

  • the present invention relates to a metal structure and a display panel thereof.
  • the liquid crystal display panel has become a mainstream product of the current display because of its thin and light appearance, low power consumption, and wide application range.
  • the narrow bezel has gradually become the development goal of the liquid crystal display panel.
  • a black matrix layer is often disposed in the liquid crystal display panel to prevent the wire from reflecting the external light while causing the aperture ratio to decrease and display. The problem of reduced brightness.
  • the active device array substrate can be adjacent to the user (ie, the active device array substrate is provided with the display surface) by providing the patterned molybdenum tantalum oxide layer and the patterned metal layer.
  • the metal structure comprises a patterned molybdenum ruthenium oxide layer and a patterned metal layer.
  • the patterned molybdenum tantalum oxide layer is disposed on the first substrate, but the invention is not limited thereto.
  • the atomic percentage of germanium in the patterned molybdenum rhenium oxide layer is between about 2% and 12%, and the atomic percentage content of molybdenum and the atomic percentage of oxygen are both greater than the atomic percentage of germanium.
  • a patterned metal layer is disposed on the patterned molybdenum ruthenium oxide layer.
  • the atomic percentage of oxygen in the patterned molybdenum ruthenium oxide layer is between about 5% and 60%.
  • the patterned molybdenum ruthenium oxide layer has a thickness of about 50 angstroms. ⁇ about 600 angstroms between.
  • the patterned metal layer has a thickness of about 50 angstroms. ⁇ about 10000 angstroms between.
  • the patterned molybdenum lanthanum oxide layer has a reflectance in the visible range of between about 2% and about 20%.
  • the metal structure has an angle between the side surface and the bottom surface, and the included angle is between about 10 and 80 degrees.
  • a display panel includes a first substrate, a second substrate, a display dielectric layer, a patterned molybdenum ruthenium oxide layer, and a patterned metal layer.
  • the first substrate has an outer surface, an inner surface, and a first side connecting the outer surface and the inner surface, and the outer surface serves as a display surface of the display panel.
  • the second substrate has an outer surface, an inner surface, and a second side connecting the outer surface and the inner surface, and an inner surface of the second substrate is opposite to an inner surface of the first substrate, wherein the first side and the second side are located The same side of the display panel, and the first side is substantially aligned or beyond the second side.
  • the display medium layer is disposed between the first substrate and the second substrate.
  • the patterned molybdenum tantalum oxide layer is disposed on an inner surface of the first substrate.
  • the patterned metal layer is disposed between the patterned molybdenum ruthenium oxide layer and the inner surface of the second substrate.
  • the display panel includes a backlight component for providing a light to the second substrate, wherein the second substrate is located between the first substrate and the backlight component, and the light sequentially passes through the second substrate and the display medium.
  • the layer and the first substrate are located between the first substrate and the backlight component, and the light sequentially passes through the second substrate and the display medium.
  • the patterned metal layer includes at least one of a gate line, a gate, a common line, a data line, a source, or a drain.
  • the atomic percentage of germanium in the patterned molybdenum-rhenium oxide layer is between about 2% and 12%, and the atomic percentage of molybdenum and the atomic percentage of oxygen are greater than the atom of germanium. Percentage content.
  • the atomic percentage of oxygen in the patterned molybdenum ruthenium oxide layer is between about 5% and 60%.
  • the patterned molybdenum tantalum oxide layer has a thickness of about 50 angstroms. ⁇ about 600 angstroms between.
  • a method of fabricating a metal structure includes providing a first substrate; forming a molybdenum-rhenium oxide layer on an inner surface of the first substrate, wherein the molybdenum-niobium oxide layer comprises a molybdenum-niobium oxide layer Wherein the atomic percentage of germanium in the molybdenum rhenium oxide is between about 2% and 12%, and the atomic percentage content of molybdenum and the atomic percentage of oxygen are both greater than the atomic percentage of germanium; Forming a metal layer on the layer; and performing a patterning process on the molybdenum-ruthenium oxide layer and the metal layer to form a patterned molybdenum-rhenium oxide layer and a patterned metal layer.
  • the step of patterning the molybdenum-rhenium oxide layer and the metal layer comprises forming a patterned photoresist layer on the metal layer: and using an acidic etching solution to pattern the light
  • the engraved layer is a shield for etching the molybdenum-rhenium oxide layer and the metal layer.
  • the step of patterning the molybdenum-niobium oxide layer and the metal layer comprises removing the patterned photoresist layer using an alkaline de-etching photoresist.
  • the atomic percent content of oxygen in the molybdenum rhenium oxide is between about 5% and 60%.
  • the step of forming the molybdenum-rhenium oxide layer on the first substrate includes performing a non-reactive sputtering process.
  • the patterned molybdenum ruthenium oxide layer has a thickness of about 50 angstroms. ⁇ about 600 angstroms between.
  • the patterned molybdenum lanthanum oxide layer has a reflectance in the visible range of between about 2% and about 20%.
  • FIG. 1A is a schematic cross-sectional view of a display panel in accordance with some embodiments of the present invention.
  • FIG. 1B is a top view of a display panel in accordance with an embodiment of the present invention.
  • 1C is a schematic cross-sectional view taken along line 1B-1B of FIG. 1B.
  • 1D is a schematic cross-sectional view taken along line 1C-1C of FIG. 1B.
  • 2A-2E are schematic cross-sectional views of various stages of a method of fabricating a metal structure in accordance with some embodiments of the present invention.
  • 3A-3D are scanning electron micrographs of a metal structure in accordance with some embodiments of the present invention.
  • 4A-4D are transmission electron micrographs of metal structures in accordance with some embodiments of the present invention.
  • Figure 5 is a reflection spectrum diagram of a metal structure in accordance with some embodiments of the present invention.
  • backlight element 330 patterned photoresist
  • Light guide plate 410' patterned molybdenum tantalum oxide layer
  • first substrate 420' patterned metal layer
  • display dielectric layer GI gate dielectric layer
  • Molybdenum niobium oxide layer 1C-1C section line
  • first and second may be used herein to describe various elements, components, regions, layers and/or portions, these elements, components, regions, and/or portions should not be Limited by these terms. These terms are only used to distinguish one element, component, region, layer, Thus, "a first element”, “a component”, “a”, “a”, “a” or "a”
  • relative terms such as “lower” or “bottom” and “upper” or “top” may be used herein to describe the relationship of one element to another, as shown. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation shown. For example, if the device in one figure is turned over, the elements that are described as “on” the other elements will be directed to the "on" side of the other elements.
  • “about” or “substantially” includes the values and average values within acceptable deviations of the particular values determined by those of ordinary skill in the art, in view of the measurement in question and the error associated with the measurement. A specific number (ie, the limit of the measurement system). For example, “about” can mean within one or more standard deviations of the stated value, or within ⁇ 30%, ⁇ 20%, ⁇ 10%, ⁇ 5%. Furthermore, as used herein, “about” or “substantially” may select a more acceptable range of deviation or standard deviation depending on optical properties, etching properties, or other properties, and may apply all of the properties without one standard deviation.
  • the display panel 100 includes a first substrate 120, a display medium layer 130, and a second substrate 140.
  • the display medium layer 130 is disposed between the first substrate 120 and the second substrate 140.
  • the display medium layer 130 may be a self-luminous material (such as an organic light-emitting layer or a micro light-emitting diode) or a non-self-luminous material (such as a liquid crystal layer or an electrophoretic layer).
  • the display medium layer 100 is exemplified by a non-self-luminous material (for example, a liquid crystal layer).
  • the display panel 100 can selectively further provide a backlight element 110 for providing light to the second substrate 140.
  • the second substrate 140 is located between the first substrate 120 and the backlight element 110 , and the light passes through the second substrate 140 , the display medium layer 130 and the first substrate 120 in sequence.
  • the backlight element 110 may adopt a side-in type design, and the backlight element 110 may include a light source 112, a light guide plate 114 or other suitable components, and the light source 112 may include an inorganic light source, an organic light source, or other suitable Material, or a combination of the foregoing.
  • the backlight element 110 can be of a straight down design, and the backlight element 110 can include a light source 112 or other suitable component.
  • the configuration of the backlight element 110 may be omitted.
  • the first substrate 120 has an outer surface 122 , an inner surface 124 , and a first side 126 connecting the outer surface 122 and the inner surface 124 , and the outer surface 122 serves as the display surface I of the display panel 100 .
  • the inner surface 124 of the first substrate 120 is provided with a metal structure. Thereby the display medium layer 130 is controlled.
  • the first substrate 120 can be an active device array substrate, such as a thin film transistor substrate.
  • the second substrate 140 has an outer surface 142 , an inner surface 144 , and a second side 146 connecting the outer surface 142 and the inner surface 144 , and the inner surface 144 of the second substrate 140 faces the inner surface 124 of the first substrate 120 .
  • the first side 126 and the second side 146 are both on the same side of the display panel 100 , and the first side 126 is substantially aligned or beyond the second side 146 .
  • the second substrate 140 can be a color filter substrate or a general substrate.
  • the display panel 100 may further include a flexible circuit board 150, a circuit board 160, and a housing 170.
  • the flexible circuit board 150 is attached to the first substrate 120 for connecting the circuits on the first substrate 120 and the second substrate 140 to the circuit board 160.
  • the housing 170 is used to load various components of the above display panel 100.
  • the first substrate 120 for example, the active device array substrate
  • the first substrate 120 provides the display surface I (for example, the blank arrow of FIG. 1A)
  • the additional frame can be reduced (not labeled)
  • the circuit configuration such as the flexible circuit board 150 is shielded, thereby achieving the effect of a narrow bezel.
  • FIG. 1B is a partial top view of a display panel 100 in accordance with an embodiment of the present invention.
  • 1C is a schematic cross-sectional view taken along line 1B-1B of FIG. 1B.
  • 1D is a schematic cross-sectional view taken along line 1C-1C of FIG. 1B.
  • 1A to 1D are also referred to.
  • the display panel 100 may include a data line DL, a gate line GL, a gate dielectric layer GI, an active device AD, and a pixel electrode PE disposed on the inner surface 124 of the first substrate 120.
  • the display panel 100 can optionally include a common line CL or other suitable line.
  • the data line DL is interleaved with the gate line GL to define a plurality of pixel areas PA, but is not limited thereto.
  • one pixel area PA includes at least one active element AD and at least one pixel electrode PE, and the pixel electrode PE is electrically connected to the active element AD.
  • one pixel area PA may include at least one data line DL and at least one gate line GL or other suitable line.
  • the active device AD includes a semiconductor layer SL, a gate GE, a source SE, and a drain DE.
  • the source SE and the drain DE are electrically connected to both ends of the semiconductor layer SL, and the gate GE is used to control whether the two ends of the semiconductor layer SL are turned on or not.
  • the gate electrode GE and the semiconductor layer SL are separated by a gate dielectric layer GI.
  • the gate GE is electrically connected to the gate line GL
  • the source SE is electrically connected to the data line DL
  • the drain DE is electrically connected to the pixel electrode PE.
  • the active device AD can turn on the data line DL and the pixel electrode PE via the control of the gate line GL.
  • the active device AD is preferably a bottom gate type thin film transistor (Bottom Gate-TFT).
  • the gate electrode GE is located between the semiconductor layer SL and the inner surface 124 of the first substrate 120.
  • the active device AD may also be a top gate-type thin film transistor (Top Gate-TFT), for example, the semiconductor layer SL is located between the gate electrode GE and the inner surface 124 of the first substrate 120.
  • a protective layer 180 is also disposed between the pixel electrode PE and the active device AD.
  • the gate dielectric layer GI and the protective layer 180 are made of an insulating material, and include an inorganic material (for example, silicon oxide, silicon nitride, silicon oxynitride or other suitable materials), and an organic material (for example, colorless or colored light). Glue, polyimide, benzocyclobutene or other suitable material) or other suitable material.
  • the first substrate 120 (for example, the active device array substrate) is adjacent to the user (for example, the active device array substrate provides the display surface I (for example, at the blank arrow of FIG. 1A)), each metal on the first substrate 120
  • the material of the alloy layer and/or the alloy layer tends to reflect light and affect the visual effect.
  • the reflectivity can be reduced by the arrangement of a low reflective layer (eg, a metal or alloy layer).
  • the first substrate 120 may not need to be additionally provided with a black matrix, thereby increasing the aperture ratio of the display panel 100.
  • the present invention is not limited thereto, and those skilled in the art may Demand to make choices.
  • the gate line GL on the inner surface 124 of the first substrate 120, the selectively identifiable common line CL, and the gate of the active device AD GE, or any other suitable line, or any of the foregoing may be formed from a patterned metal layer 320'.
  • a patterned molybdenum tantalum oxide layer 310' is also disposed between the patterned metal layer 320' and the inner surface 124 of the first substrate 120.
  • the patterned molybdenum tantalum oxide layer 310' is disposed between the inner surface 124 of the first substrate 120 and the patterned metal layer 320', and the patterned molybdenum tantalum oxide layer 310' is combined with the patterned metal layer 320'. It is called a metal structure 300.
  • the patterned metal layer 320' may be a single layer or a multilayer structure, and the material thereof may comprise a metal, an alloy, or a salt thereof, or other material having reflectance.
  • the patterned molybdenum tantalum oxide layer 310' may also be a single layer or a multilayer structure.
  • the data line DL on the inner surface 124 of the first substrate 120, the source SE of the active device AD, the drain DE, or other suitable line, or any of the aforementioned lines can be formed by a patterned metal layer 420'.
  • a patterned molybdenum tantalum oxide layer 410' is further disposed between the patterned metal layer 420' and the gate dielectric layer GI.
  • the patterned molybdenum tantalum oxide layer 410' is disposed on the gate dielectric layer GI
  • the patterned metal layer 420' is disposed on the patterned molybdenum tantalum oxide layer 410'.
  • a patterned molybdenum-doped oxide layer 410' is further disposed between the patterned metal layer 420' and the inner surface 124 of the first substrate 120.
  • a patterned metal layer 420' is disposed on the patterned molybdenum tantalum oxide layer 410'.
  • the patterned molybdenum tantalum oxide layer 410' and the patterned metal layer 420' are collectively referred to as a metal structure 400.
  • the patterned metal layer 420' may be a single layer or a multilayer structure, and the material thereof may comprise a metal, an alloy, or a salt thereof, or other material having reflectivity.
  • the patterned molybdenum tantalum oxide layer 410' may also be a single layer or a multilayer structure.
  • the patterned molybdenum tantalum oxide layers 310', 410' can prevent light entering the display panel 100 from the outer surface 122 of the first substrate 120 from being reflected by the patterned metal layers 320', 420', thereby affecting the viewer's vision. effect.
  • the patterned molybdenum tantalum oxide layers 310', 410' may have a thickness of about 50 angstroms. ⁇ about 600 angstroms Between the patterned metal layers 320', 420' may have a thickness of about 50 angstroms ⁇ about 10000 angstroms Between, but not limited to.
  • the atomic percent content of germanium in the patterned molybdenum-rhenium oxide layer 310, 410 is between about 2% and about 12%, and the atomic percentage of molybdenum and the atom of oxygen. The percentage content is greater than the atomic percentage of germanium. This content setting can reduce or eliminate over-etching problems in the patterned molybdenum-doped oxide layer during patterning.
  • the atomic percentage of oxygen in the patterned molybdenum-doped oxide layers 310', 410' can be between about 5% and about 60%.
  • the sum of the percentage of molybdenum atoms + the percentage of yttrium atoms + the percentage of oxygen atoms is approximately equal to 100%, without units; if other elements or impurities are present in the molybdenum ruthenium oxide, In addition to the sum of the atomic percentages, the sum of other elements or impurities is equal to about 100%, no unit.
  • the common electrode CE can be selectively disposed on the second substrate 140.
  • the common electrode CE can be selectively disposed on one of the first substrate 120 or the second substrate 140.
  • the configuration of the lower electrode is taken as an example here, the invention is not limited thereto.
  • the foregoing metal structures 300, 400 may be disposed in a transverse electric field effect liquid crystal display panel (In-Plane-Switching, IPS) panel.
  • the metal structures 300 and 400 may be disposed in a multi-domain vertical alignment (MVA) liquid crystal display panel.
  • MVA multi-domain vertical alignment
  • 2A-2E are cross-sectional views of various stages of a method of fabricating a metal structure 300 in accordance with a portion of the present invention. The method of manufacturing the metal structure 300 will be described in detail below.
  • a first substrate 120 is provided, and a molybdenum-doped oxide layer 310 is formed on the inner surface 124 of the first substrate 120, and the molybdenum-doped oxide layer 310 may have a thickness of about 50 angstroms. ⁇ about 600 angstroms Between the molybdenum and niobium oxide layers 310 includes molybdenum niobium oxide.
  • the step of forming the molybdenum-rhenium oxide layer 310 on the first substrate 120 includes performing a non-reactive sputtering process or a reactive sputtering process.
  • a non-reactive sputtering process can be used as the physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • physical vapor deposition without introducing a reactive gas for example, oxygen, nitrogen, or other suitable gas, or a mixture of the foregoing gases
  • a reactive gas for example, oxygen, nitrogen, or other suitable gas, or a mixture of the foregoing gases
  • a metal layer 320 is formed on the molybdenum tantalum oxide layer 310.
  • the metal layer 320 can have a thickness of about 50 angstroms ⁇ about 10000 angstroms between.
  • the material of the metal layer 320 may be at least one of aluminum, copper, silver, titanium, molybdenum, niobium, tantalum, magnesium, zinc or niobium, a metal composite layer of the above materials, an alloy of the above materials, a salt of the above materials, Or other suitable metal conductive material.
  • the metal layer 320 is a single metal layer.
  • the metal layer 320 may also be a stacked structure of a metal material or a laminated structure of other materials and metal materials.
  • a molybdenum-ruthenium oxide layer 310 and a metal layer 320 are patterned to form a patterned molybdenum-doped oxide layer 310' and a patterned metal layer 320', collectively referred to as a metal structure 300.
  • a patterned photoresist 330 is formed on the metal layer 320.
  • the patterned photoresist 330 can be formed by coating a photoresist layer, partially exposing the photoresist layer, and removing the exposed/unexposed photoresist layer.
  • the patterned photoresist 330 can be a positive photoresist or a negative photoresist, and the invention is not limited thereto.
  • the metal layer 320 and the molybdenum tantalum oxide layer 310 are etched by using the patterned photoresist 330 as a shield to form a patterned metal layer 320' and a patterned molybdenum-doped oxide layer 310'.
  • the metal structure 300 is referred to.
  • the patterned metal layer 320' may comprise a gate line GL, a selectively configurable common line CL, a gate GE of the active device AD (refer to FIGS. 1B-1D) or in other suitable lines Either.
  • the etching is performed using an acidic etching solution, such as hydrogen peroxide, sulfuric acid, or a combination thereof, but is not limited thereto, and a suitable etching liquid component may be selected according to the composition of the metal structure 300.
  • an acidic etching solution such as hydrogen peroxide, sulfuric acid, or a combination thereof, but is not limited thereto, and a suitable etching liquid component may be selected according to the composition of the metal structure 300.
  • the patterned photoresist 330 is removed to facilitate placement of other layers on the patterned metal layer 320'.
  • the removal of the patterned photoresist 330 is preferably performed using an alkaline de-etching paste.
  • the side of the metal structure 300 adjacent to the first substrate 120 eg, the patterned molybdenum tantalum oxide layer 310' of the metal structure 300
  • This undercut problem can be improved by adjusting the percentage of germanium atoms in the patterned molybdenum tantalum oxide layer 310', with reference to Figures 3A through 3D and Figures 4A through 4D.
  • the side surface 300A of the metal structure 300 has an included angle Q with the bottom surface 300B that is between about 10 degrees and about 80 degrees.
  • the metal structure 400 can also be formed by the same manufacturing method (refer to FIG. 3A to FIG. 3D).
  • the patterned metal layer 420' can be any of the data line DL and the source SE or drain DE of the active device AD or other suitable circuitry.
  • the material of the patterned metal layer 420' may be substantially the same or different than the patterned metal layer 320'.
  • the material of the patterned metal layer 420 ′ (refer to FIG.
  • the patterned molybdenum tantalum oxide layers 310', 410' may be of substantially the same or different atomic percentages.
  • Other details of the metal structure 400 are substantially similar to those of the metal structure 300, and are not described herein again.
  • 3A-3D are scanning electron microscopy (SEM) images of various atomic ratio metal structures 300 (see FIG. 2D) before etching without etching, in accordance with some embodiments of the present invention.
  • the atomic ratio of tantalum (Ta) of the patterned molybdenum tantalum oxide layer 310' of the metal structure 300 (refer to FIG. 2D) in FIGS. 3A to 3D is about 0%, about 2%, about 4%, and about 6%, respectively.
  • the metal structure 300 has a significant undercut at a germanium atomic ratio of about 0%. As shown in FIG.
  • FIGS. 4A-4D are transmission electron microscopes (TEM) diagrams of various atomic ratio metal structures 300 (refer to FIG. 2E) after de-resisting according to some embodiments of the present invention.
  • the proportion of tantalum (Ta) atoms in the patterned molybdenum-doped oxide layer of metal structure 300 (see FIG. 2E) in FIGS. 4A-4D is about 6%, about 8%, about 10%, and about 12%, respectively.
  • the patterned metal layer 320' material is exemplified by copper, and the metal structure 300 (refer to FIG. 2E) in FIGS. 3A to 3D is etched for about 108 seconds, about 120 seconds, about 135 seconds, and about 148 seconds, respectively.
  • the etching time is sufficient to achieve the effect of the patterned metal structure 300.
  • the etching time may vary depending on the test conditions, and this is only a relative relationship between the etching times caused by the difference in the composition of the materials.
  • the atomic percentage of germanium in the molybdenum rhenium oxide is designed to be between about 2% and 12% to reduce the degree of undercut and improve process efficiency. Under this design, the atomic percentage content of molybdenum and the atomic percentage of oxygen are both greater than the atomic percentage of niobium. In some embodiments of the invention, the atomic percent content of oxygen in the molybdenum rhenium oxide is between about 5% and 60%.
  • the atomic percentage of cerium, molybdenum and oxygen in the molybdenum cerium oxide can be analyzed by Energy Dispersive Spectroscopy (EDS) to analyze the patterned molybdenum yttrium oxide layer 310' (refer to FIG. 2D, FIG. 2E).
  • EDS Energy Dispersive Spectroscopy
  • FIG. 5 is a reflection spectrum diagram of a metal structure 300 in accordance with some embodiments of the present invention.
  • Nos. 1 to 4 represent metal structures 300 having a tantalum (Ta) atomic ratio of about 6%, about 8%, about 10%, and about 12%, respectively, of the patterned molybdenum-doped oxide layer 310' (refer to FIG. 2E).
  • Ta tantalum
  • the metal structure 300 ie, the patterned metal layer 320' and the patterned molybdenum tantalum oxide layer 310'
  • the active device array substrate provides the display surface
  • the active device array substrate provides the display surface
  • the low reflection layer is designed to be located between the metal layer and the substrate, which can reduce the reflection of ambient light to achieve a better visual effect.
  • the display panel in the embodiment of the present invention can achieve a narrow bezel or a four-sided bezel-less, effectively preventing light reflection, and not reducing the display brightness.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

金属结构包括图案化钼钽氧化物层以及图案化金属层。图案化钼钽氧化物层设置于一第一基板上,其中该图案化钼钽氧化物层中钽的原子百分比含量约介于2%至12%之间,钼的原子百分比含量与氧的原子百分比含量都大于钽的原子百分比含量。图案化金属层设置于该图案化钼钽氧化物层上。

Description

金属结构及其制作方法与应用的显示面板 技术领域
本发明是关于一种金属结构及其制作方法与应用的显示面板。
背景技术
液晶显示面板由于具有外型轻薄、耗电量少以及应用范围广等特性,故已成为目前显示器的主流商品。一方面,为了达到更宽广的视觉效果,窄边框逐渐成为液晶显示面板的发展目标。另一方面,由于液晶显示面板内的导线会反射外界的光线而影响视觉效果,现今常在液晶显示面板内设置黑色矩阵层,在防止导线反射外界光线的同时,却也造成开口率下降、显示亮度降低的问题。
因此,如何发展出窄边框或全平面无边框、能有效降低光线反射、且不降低显示亮度的显示面板,是当前的目标。
发明内容
于本发明的多个实施方式中,借由设置图案化钼钽氧化物层以及图案化金属层,能将主动元件阵列基板邻近用户(亦即主动元件阵列基板提供显示面)。根据本发明的部分实施方式,金属结构包括图案化钼钽氧化物层以及图案化金属层。图案化钼钽氧化物层,设置于第一基板上,但本发明不以此为限。其中该图案化钼钽氧化物层中钽的原子百分比含量约介于2%至12%之间,钼的原子百分比含量与氧的原子百分比含量都大于钽的原子百分比含量。图案化金属层设置于该图案化钼钽氧化物层上。
于本发明的部分实施方式中,图案化钼钽氧化物层中氧的原子百分比含量系约介于5%至60%之间。
于本发明的部分实施方式中,图案化钼钽氧化物层的厚度系介于约50埃
Figure PCTCN2017118978-appb-000001
~约600埃
Figure PCTCN2017118978-appb-000002
之间。
于本发明的部分实施方式中,图案化金属层的厚度系介于约50埃
Figure PCTCN2017118978-appb-000003
~约10000埃
Figure PCTCN2017118978-appb-000004
之间。
于本发明的部分实施方式中,图案化钼钽氧化物层于可见光范围内的反射率介于约2%至约20%之间。
于本发明的部分实施方式中,金属结构的侧表面与底表面之间具有一夹角,且该夹角约介于10度至80度之间。
根据本发明的部分实施方式,显示面板包含第一基板、第二基板、显示介质层、图案化钼钽氧化物层以及图案化金属层。第一基板具有外表面、内表面、以及连接外表面与内表面的第一侧边,且外表面作为显示面板的显示面。第二基板具有外表面、内表面、以及连接外表面与内表面的第二侧边,且第二基板的内表面对于第一基板的内表面,其中,第一侧边与第二侧边位于显示面板的同一侧,且第一侧边实质上对齐或超出第二侧边。显示介质层设置于第一基板与第二基板之间。图案化钼钽氧化物层设置于第一基板的内表面。图案化金属层设置于图案化钼钽氧化物层与第二基板的内表面之间。
于本发明的部分实施方式中,显示面板包含背光元件,用以向第二基板提供一光线,其中第二基板位于第一基板与背光元件之间,且光线依序经过第二基板、显示介质层与第一基板。
于本发明的部分实施方式中,图案化金属层包括栅极线、栅极、共通线、数据线、源极或漏极的其中至少一者。
于本发明的部分实施方式中,图案化钼钽氧化物层中钽的原子百分比含量约介于2%至12%之间,且钼的原子百分比含量与氧的原子百分比含量都大于钽的原子百分比含量。
于本发明的部分实施方式中,图案化钼钽氧化物层中氧的原子百分比含量约介于5%至60%之间。
于本发明的部分实施方式中,图案化钼钽氧化物层的厚度介于约50埃
Figure PCTCN2017118978-appb-000005
~约600埃
Figure PCTCN2017118978-appb-000006
之间。
根据本发明的部分实施方式,制作金属结构的方法包含提供一第一基板;于该第一基板的内表面上形成一钼钽氧化物层,其中该钼钽氧化物层包括一钼钽氧化物,其中该钼钽氧化物中钽的原子百分比含量约介于2%至12%之间,且钼的原子百分比含量与氧的原子百分比含量皆大于钽的原子百分比含量;于该钼钽氧化物层上形成一金属层;以及对该钼钽氧化物层与该金属层进行一图案化工艺,以形成一图案化钼钽氧化物层以及一图案化金属层。
于本发明的部分实施方式中,对该钼钽氧化物层与该金属层进行一图案化工艺的步骤包含于金属层上形成图案化光刻胶层:以及采用酸性蚀刻液,以图 案化光刻胶层为屏蔽对钼钽氧化物层与金属层进行蚀刻。
于本发明的部分实施方式中,对钼钽氧化物层与该金属层进行图案化工艺的步骤包含采用碱性去光刻胶液,去除图案化光刻胶层。
于本发明的部分实施方式中,钼钽氧化物中氧的原子百分比含量系约介于5%至60%之间。
于本发明的部分实施方式中,于第一基板上形成该钼钽氧化物层的步骤包括进行非反应性溅镀(non-reactive sputtering)工艺。
于本发明的部分实施方式中,图案化钼钽氧化物层的厚度系介于约50埃
Figure PCTCN2017118978-appb-000007
~约600埃
Figure PCTCN2017118978-appb-000008
之间。
于本发明的部分实施方式中,图案化钼钽氧化物层于可见光范围内的反射率介于约2%至约20%之间。
附图说明
图1A为根据本发明的部分实施方式的显示面板的剖面示意图。
图1B为本发明的一实施例的显示面板的上视图。
图1C为沿图1B中剖线1B-1B所绘示的剖面示意图。
图1D为沿图1B中剖线1C-1C所绘示的剖面示意图。
图2A至图2E为根据本发明的部分实施方式的金属结构于其制作方法的多个阶段的剖面示意图。
图3A至图3D为根据本发明的部分实施方式的金属结构的扫描式电子显微镜图。
图4A至图4D为根据本发明的部分实施方式的金属结构的穿透式电子显微镜图。
图5为根据本发明的部分实施方式的金属结构的反射频谱图。
其中,附图标记:
100:显示面板                  320’:图案化金属层
110:背光元件                  330:图案化光刻胶
112:光源                      400:金属结构
114:导光板                    410’:图案化钼钽氧化物层
120:第一基板                  420’:图案化金属层
122:外表面                    DL:数据线
124:内表面                    GL:栅极线
126:第一侧边                  CL:共通线
130:显示介质层                GI:栅极介电层
140:第二基板                  AD:主动元件
142:外表面                    PE:像素电极
144:内表面                    PA:像素区域
146:第二侧边                  SL:半导体层
150:软性电路板                GE:栅极
160:电路板                    SE:源极
170:壳体                      DE:漏极
180:保护层                    Q:夹角
300:金属结构                  1B-1B:剖线
310:钼钽氧化物层              1C-1C:剖线
310’:图案化钼钽氧化物层      UC:标记
320:金属层
I:显示面
具体实施方式
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些现有惯用的结构与元件在图式中将以简单示意的方式为之。
在附图中,为了清楚起见,放大了层、膜、面板、区域等的厚度。在整个说明书中,相同的附图标记表示相同的元件。应当理解,当诸如层、膜、区域或基板的元件被称为在另一元件”上”或”连接到”另一元件时,其可以直接在另一元件上或与另一元件连接,或者中间元件可以也存在。相反地,当元件被称为”直接在另一元件上”或”直接连接到”另一元件时,不存在中间元件。如本文所使用的,”连接”可以指物理及/或电性连接(或称为耦接)。然而,电性连接(或 称为耦接)系为二元件间存在其它元件。
应当理解,尽管术语“第一”与“第二”等在本文中可以用于描述各种元件、部件、区域、层及/或部分,但是这些元件、部件、区域、及/或部分不应受这些术语的限制。这些术语仅用于将一个元件、部件、区域、层或部分与另一个元件、部件、区域、层或部分区分开。因此,下面讨论的“第一元件”、“部件”、“区域”、“层”、或“部分”可以被称为第二元件、部件、区域、层或部分而不脱离本文的教导。
这里使用的术语仅仅是为了描述特定实施例的目的,而不是限制性的。如本文所使用的,除非内容清楚地指示,否则单数形式“一”、“一个”和“该”旨在包括复数形式,包括“至少一个”。“或”表示“及/或”。如本文所使用的,术语“及/或”包括一个或多个相关所列项目的任何和所有组合。还应当理解,当在本说明书中使用时,术语“包括”及/或“包括”指定所述特征、区域、整体、步骤、操作、元件的存在及/或部件,但不排除一个或多个其它特征、区域整体、步骤、操作、元件、部件及/或其组合的存在或添加。
此外,诸如“下”或“底部”和“上”或“顶部”的相对术语可在本文中用于描述一个元件与另一元件的关系,如图所示。应当理解,相对术语旨在包括除了图中所示的方位之外的装置的不同方位。例如,如果一个附图中的装置翻转,则被描述为在其他元件的“下”侧的元件将被定向在其他元件的“上”侧。因此,示例性术语“下”可以包括“下”和“上”的取向,取决于附图的特定取向。类似地,如果一个附图中的装置翻转,则被描述为在其它元件“下”或“下方”的元件将被定向为在其它元件“上方”。因此,示例性术语“下”或“下面”可以包括上方和下方的取向。
本文使用的“约”或“实质上”包括所述值和在本领域普通技术人员确定的特定值的可接受的偏差范围内的平均值,考虑到所讨论的测量和与测量相关的误差的特定数量(即,测量***的限制)。例如,“约”可以表示在所述值的一个或多个标准偏差内,或±30%、±20%、±10%、±5%内。再者,本文使用的“约”或“实质上”可依光学性质、蚀刻性质或其它性质,来选择较可接受的偏差范围或标准偏差,而可不用一个标准偏差适用全部性质。
除非另有定义,本文使用的所有术语(包括技术和科学术语)具有与本发明所属领域的普通技术人员通常理解的相同的含义。将进一步理解的是,诸如在 通常使用的字典中定义的那些术语应当被解释为具有与它们在相关技术和本发明的上下文中的含义一致的含义,并且将不被解释为理想化的或过度正式的意义,除非本文中明确地这样定义。
图1A为根据本发明的部分实施方式的显示面板100的剖面示意图。显示面板100包含第一基板120、显示介质层130以及第二基板140。显示介质层130设置于第一基板120与第二基板140之间。显示介质层130可为自发光材料(例如有机发光层或微型发光二极管)或非自发光材料(例如液晶层或电泳层)。于本实施例中,显示介质层130以非自发光材料(例如液晶层)为范例,则显示面板100可选择性的更设置背光元件110,其用以向第二基板140提供光线。第二基板140位于第一基板120与背光元件110之间,且光线依序经过第二基板140、显示介质层130与第一基板120。于本实施方式中,背光元件110可采用侧入式的设计,且背光元件110可包含光源112、导光板114或其他适合元件,而光源112可包含无机发光源、有机发光源、或其它合适的材料、或前述的组合。于部份实施方式中,背光元件110可采用直下式的设计,且背光元件110可包含光源112或其他适合元件。于其它实施方式中,当显示介质层130为自发光材料时,可以省略背光元件110的配置。
第一基板120具有外表面122、内表面124以及连接外表面122与内表面124的第一侧边126,且外表面122作为显示面板100的显示面I。于本发明的部分实施方式中,第一基板120的内表面124上设置有金属结构。藉以控制显示介质层130。举例而言,第一基板120可为主动元件阵列基板,例如薄膜晶体管基板。
第二基板140具有外表面142、内表面144、以及连接外表面142与内表面144的第二侧边146,且第二基板140的内表面144面对第一基板120的内表面124。于一实施例中,第一侧边126与第二侧边146皆位于显示面板100的同一侧,且第一侧边126实质上对齐或超出第二侧边146。举例而言,第二基板140可为彩色滤光基板或一般基板。
显示面板100还可包含软性电路板150、电路板160以及壳体170。软性电路板150贴合第一基板120,用以将第一基板120以及第二基板140上的电路连接至电路板160。壳体170用以装载上述显示面板100的各种元件。于此,借由设置第一基板120(例如主动元件阵列基板)邻近用户(例如:第一基板120 提供显示面I(例如:图1A的空白箭头处),能够减少额外设置框体(未标示)遮蔽软性电路板150等电路配置,进而达到窄边框的效果。
图1B为本发明的一实施例的显示面板100的局部上视图。图1C为沿图1B中剖线1B-1B所绘示的剖面示意图。图1D为沿图1B中剖线1C-1C所绘示的剖面示意图。同时参照图1A至图1D。
显示面板100可包括数据线DL、栅极线GL、栅极介电层GI、主动元件AD以及像素电极PE,设置于第一基板120的内表面124上。于部份实施例中,显示面板100可选择性更包含共通线CL或其它合适的线路。数据线DL与栅极线GL交错,以定义多个像素区域PA,但不限于此。于部份实施例中,一个像素区域PA包括至少一个主动元件AD以及至少一个像素电极PE,且像素电极PE电性连接主动元件AD。于部份实施例中,一个像素区域PA可包含至少一条数据线DL与至少一条栅极线GL或其它合适的线路。
主动元件AD包括半导体层SL、栅极GE、源极SE、漏极DE。源极SE、漏极DE分别电性连接半导体层SL的两端,栅极GE用以控制半导体层SL的两端导通与否。栅极GE与半导体层SL由栅极介电层GI隔开。于部分实施方式中,栅极GE电性连接栅极线GL,源极SE电性连接数据线DL,漏极DE电性连接像素电极PE。借此,主动元件AD可经由栅极线GL的控制导通数据线DL与像素电极PE。于本实施方式中,主动元件AD较佳为底部栅极型薄膜晶体管(Bottom Gate-TFT),例如:栅极GE位于半导体层SL与第一基板120的内表面124之间。在其他实施例中,主动元件AD也可以是顶部栅极型薄膜晶体管(Top Gate-TFT),例如:半导体层SL位于栅极GE与第一基板120的内表面124之间。
此外,像素电极PE和主动元件AD之间亦设有保护层180。于此,栅极介电层GI与保护层180采用绝缘材料,包含无机材料(例如:氧化硅、氮化硅、氮氧化硅或其它合适的材料)、有机材料(例如:无色或有色光刻胶、聚亚酰胺、苯并环丁烯或其它合适的材料)或其它合适的材料。
于此,由于以第一基板120(例如主动元件阵列基板)邻近用户(例如:主动元件阵列基板提供显示面I(例如:图1A的空白箭头处)),因此第一基板120上的各个金属及/或合金层的材料容易反射光线,而影响视觉效果。于本发明的多个实施方式中,可以借由低反射层(例如:金属或合金层)的设置降低反射率。 于一较佳实施例中,第一基板120可不需额外设置黑色矩阵(Black Matrix),借此增加显示面板100的开口率,然本发明并不以此为限,本领域技术人员可示实际需求做选择。
详细而言,参照图1C与图1D,于本发明的部分实施方式中,第一基板120的内表面124上的栅极线GL、可选择性设置的共通线CL、主动元件AD的栅极GE、或其它合适的线路、或前述线路中的任一者,可以由一图案化金属层320’所形成。此图案化金属层320’与第一基板120的内表面124之间还设有图案化钼钽氧化物层310’。举例而言,图案化钼钽氧化物层310’设置于第一基板120的内表面124与图案化金属层320’之间,图案化钼钽氧化物层310’与图案化金属层320’合称为金属结构300。其中,图案化金属层320’可为单层或多层结构,且其材料可包含金属、合金、或其盐类、或其它具有反射率的材料。图案化钼钽氧化物层310’也可为单层或多层结构。
于本发明的部分实施方式中,第一基板120的内表面124上的数据线DL、主动元件AD的源极SE、漏极DE、或其它合适的线路、或前述线路中的任一者,可以由一图案化金属层420’所形成。若以底部栅极型薄膜晶体管(Bottom Gate-TFT)为范例,此图案化金属层420’与栅极介电层GI之间还设有图案化钼钽氧化物层410’。举例而言,图案化钼钽氧化物层410’设置于栅极介电层GI上,图案化金属层420’设置于该图案化钼钽氧化物层410’上。若以顶部栅极型薄膜晶体管(Top Gate-TFT)为范例,此图案化金属层420’与第一基板120的内表面124之间还设有图案化钼钽氧化物层410’。举例而言,图案化金属层420’设置于该图案化钼钽氧化物层410’上。图案化钼钽氧化物层410’与图案化金属层420’合称为金属结构400。其中,图案化金属层420’可为单层或多层结构,且其材料可包含金属、合金、或其盐类、或其它具有反射率的材料。图案化钼钽氧化物层410’也可为单层或多层结构。
借此,图案化钼钽氧化物层310’、410’可以防止从第一基板120的外表面122进入显示面板100的光线被图案化金属层320’、420’反射,而影响观察者的视觉效果。
于此,图案化钼钽氧化物层310’、410’的厚度可介于约50埃
Figure PCTCN2017118978-appb-000009
~约600埃
Figure PCTCN2017118978-appb-000010
之间,图案化金属层320’、420’的厚度可介于约50埃
Figure PCTCN2017118978-appb-000011
~约10000埃
Figure PCTCN2017118978-appb-000012
之间,但不限于此。
于本发明的部分实施方式中,图案化钼钽氧化物层310、410中钽的原子百分比(atomic percent)含量介于约2%至约12%之间,钼的原子百分比含量与氧的原子百分比含量皆大于钽的原子百分比含量。此含量设置能够降低或消除图案化钼钽氧化物层在图案化过程中的过蚀(over etching)问题。于部分实施方式中,图案化钼钽氧化物层310’、410’中氧的原子百分比含量可介于约5%至约60%之间。若钼钽氧化物中不存在其它元素或杂质,则钼原子百分比+钽原子百分比+氧原子百分比的总和约等于100%,无单位;若钼钽氧化物中存在其它元素或杂质,则除了前述的原子百分比总和之外,要再加上其它元素或杂质的总和约等于100%,无单位。
于本实施例中,可选择性更包含共通电极CE设置于第二基板140上,但本发明不以此为限,共通电极CE可选择设置于第一基板120或第二基板140的其中一者上。虽然在此以上下电极的配置为例,但本发明不以此为限。于部分实施方式中,前述金属结构300、400可以配置于横向电场效应液晶显示面板(In-Plane-Switching,IPS)面板中。或者,于其他实施方式中,前述金属结构300、400可以配置于多区域垂直配向型(Multi-domain Vertical Alignment,MVA)液晶显示面板中。
图2A至图2E为根据本发明的部分实施方式的金属结构300于其制作方法的多个阶段的剖面示意图。以下详细介绍金属结构300的制造方法。
参照图2A。提供第一基板120,并于第一基板120的内表面124上形成钼钽氧化物层310,钼钽氧化物层310的厚度可介于约50埃
Figure PCTCN2017118978-appb-000013
~约600埃
Figure PCTCN2017118978-appb-000014
之间,其中钼钽氧化物层310包括钼钽氧化物。于本发明的部分实施方式中,于第一基板120上形成钼钽氧化物层310的步骤包括进行非反应性溅镀(non-reactive sputtering)工艺或反应性溅镀(reactive sputtering)工艺。于一实施例中,以非反应性溅镀工艺为例,可以采用物理气相沉积法(physical vapor deposition;PVD)。于本实施例中,在不通入反应性气体(例如:氧气、氮气、或其它合适的气体、或前述气体的混合)进行物理气相沉积,可增加钼钽氧化物层310成膜的均匀性。
参照图2B。于钼钽氧化物层310上形成一金属层320。金属层320的厚度可介于约50埃
Figure PCTCN2017118978-appb-000015
~约10000埃
Figure PCTCN2017118978-appb-000016
之间。金属层320的材料可以是铝、铜、银、钛、钼、钽、铌、镁、锌或钕的其中至少一者、上述材料的金属复合层、 上述材料的合金、上述材料的盐类、或其他适合的金属导电材料。于本实施例中,金属层320为单层金属层,但本发明不以此为限,金属层320亦可为金属材料的迭合结构,或其它材料与金属材料的迭合结构。
参照图2C至图2E。对钼钽氧化物层310与金属层320进行一图案化工艺,以形成一图案化钼钽氧化物层310’以及一图案化金属层320’,合称金属结构300。
详细而言,首先,参照图2C,于金属层320上形成图案化光刻胶330。图案化光刻胶330可以经由涂布一光刻胶层、局部曝光该光刻胶层以及移除经曝光/未经曝光的光刻胶层而形成。图案化光刻胶330可为正型光刻胶或负型光刻胶,本发明并不以此为限。
接着,参照图2D,以图案化光刻胶330为屏蔽,对金属层320以及钼钽氧化物层310进行蚀刻,而形成图案化金属层320’以及图案化钼钽氧化物层310’,合称金属结构300。如前所述,图案化金属层320’可包含栅极线GL、可选择性设置的共通线CL、主动元件AD的栅极GE(参考图1B至图1D)或与其它合适的线路中的任一者。于部分实施方式中,此蚀刻以采用酸性蚀刻液进行,例如双氧水、硫酸或其组合,但不限于此,可依金属结构300的成份加以选择合适的蚀刻液成份。
再来,参照图2E,去除图案化光刻胶330,以利于其他层体设置于图案化金属层320’上。于部分实施方式中,此去除图案化光刻胶330,较佳采用碱性去光刻胶液进行。经历酸性蚀刻液与碱性去光刻胶液,金属结构300邻近第一基板120的一侧(例如金属结构300的图案化钼钽氧化物层310’)可能会有侧蚀(undercut)的问题。此侧蚀问题可经由调整图案化钼钽氧化物层310’中的钽原子百分比含量而获得改善,可参照图3A至图3D与图4A至图4D。于部分实施方式中,理想上,金属结构300的侧表面300A与底表面300B之间具有夹角Q,该夹角Q介于约10度至约80度之间。
虽然在此仅提到金属结构300(参照图1B、图2E)的制作方法,但应了解到,金属结构400(参照图1B)亦可采用相同的制作方法(参照图3A至图3D)形成。图案化金属层420’(参照图1B)可为数据线DL以及主动元件AD的源极SE或漏极DE或与其它合适的线路中的任一者。图案化金属层420’的材料可以与图案化金属层320’实质上相同或不同。举例而言,图案化金属层420’(参 照图1B)的材料可以是铝、铜、银、钛、钼、钽、铌、镁、锌或钕的其中至少一者、上述材料的金属复合层、上述材料的合金、上述材料的盐类、或其他适合的金属导电材料。图案化钼钽氧化物层310’、410’的可以采用原子百分比实质上相同或不同的材料。金属结构400(参照图1B)的其他细节大致如同金属结构300的制作方法,在此不再赘述。
图3A至图3D为根据本发明的部分实施方式的各种原子比例的金属结构300(参照图2D)在蚀刻后尚未去光刻胶前的扫描式电子显微镜(Scanning Electron Microscope;SEM)图。图3A至图3D中金属结构300(参照图2D)的图案化钼钽氧化物层310’的钽(tantalum;Ta)原子比例分别为约0%、约2%、约4%以及约6%。由图可知,在钽原子比例约为0%时,金属结构300具有明显的侧蚀(undercut)。如图3A所示,在标记UC处,金属结构300的边缘处有一凹槽,而与第一基板120并未相连,即为侧蚀现象。随着钽原子比例的提升,侧蚀的程度逐渐降低。如图3B至图3D所示,金属结构300的边缘处的凹槽,随着钽原子比例的升高逐渐缩小。
虽然图3A至图3D中金属结构300(参照图2D)仅经历过酸性蚀刻液,尚未碱性去光刻胶液,但已可看出,侧蚀的程度与钽的关系。
图4A至图4D为根据本发明的部分实施方式的各种原子比例的金属结构300(参照图2E)在去光刻胶后的穿透式电子显微镜(Transmission Electron Microscope;TEM)图。图4A至图4D中金属结构300(参照图2E)的图案化钼钽氧化物层的钽(tantalum;Ta)原子比例分别为约6%、约8%、约10%以及约12%。由图可知,而随着钽原子比例的提升,侧蚀(undercut)的程度逐渐降低。然而,随着钽原子比例的提升,所需的蚀刻时间也逐间增长。本实施例中,图案化金属层320’材料以铜为例,图3A至图3D中的金属结构300(参照图2E)蚀刻分别经历约108秒、约120秒、约135秒、约148秒的蚀刻时间,才能达到图案化金属结构300的效果,然此蚀刻时间可随测试条件不同,此仅为说明材料组成的不同所造成蚀刻时间相对的关系。
据此,本发明的部分实施方式中,设计钼钽氧化物中钽的原子百分比含量约介于2%至12%之间,以降低侧蚀(undercut)的程度并提升工艺效率。在此设计下,钼的原子百分比含量与氧的原子百分比含量皆大于钽的原子百分比含量。于本发明的部分实施方式中,钼钽氧化物中氧的原子百分比含量系约介于 5%至60%之间。其中,钼钽氧化物中钽、钼、氧的原子百分比可以透过能量散布分析仪(Energy Dispersive Spectroscopy;EDS),分析图案化钼钽氧化物层310’(参照图2D、图2E)中的元素含量而获知。
图5为根据本发明的部分实施方式的金属结构300的反射频谱图。编号1至4分别代表图案化钼钽氧化物层310’(参照图2E)的钽(tantalum;Ta)原子比例分别为约6%、约8%、约10%以及约12%的金属结构300(参照图2E)的反射率。如图所示,金属结构300(即图案化金属层320’以及图案化钼钽氧化物层310’)于可见光范围内的反射率约介于2%至20%之间,能达到降低环境光反射,而避免观察者的视觉效果受到影响。
工业应用性
于本发明的多个实施方式中,借由设置主动元件阵列基板邻近用户(亦即主动元件阵列基板提供显示面),能够避免电路配置占据显示的边框,进而达到窄边框的效果。再者,在主动元件阵列基板中,设计低反射层位于金属层与基板之间,能够降低环境光的反射,以达到更好的视觉效果。据此,本发明的实施方式中的显示面板,能达到窄边框或全平面无边框(four side bezel-less)、有效防止光线反射、且不降低显示亮度的效果。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。

Claims (19)

  1. 一种金属结构,其特征在于,包括:
    一图案化钼钽氧化物层,设置于一第一基板上,其中该图案化钼钽氧化物层中钽的原子百分比含量系介于2%至12%之间,钼的原子百分比含量与氧的原子百分比含量都大于钽的原子百分比含量;以及
    一图案化金属层,设置于该图案化钼钽氧化物层上。
  2. 根据权利要求1所述的金属结构,其特征在于,该图案化钼钽氧化物层中氧的原子百分比含量系介于5%至60%之间。
  3. 根据权利要求1所述的金属结构,其特征在于,该图案化钼钽氧化物层的厚度系介于
    Figure PCTCN2017118978-appb-100001
    之间。
  4. 根据权利要求1所述的金属结构,其特征在于,该图案化金属层的厚度系介于
    Figure PCTCN2017118978-appb-100002
    之间。
  5. 根据权利要求1所述的金属结构,其特征在于,该金属结构于可见光范围内的反射率介于2%至20%之间。
  6. 根据权利要求1所述的金属结构,其特征在于,该金属结构的侧表面与底表面之间具有一夹角,且该夹角介于10度至80度之间。
  7. 一种显示面板,其特征在于,包含:
    一第一基板,具有一外表面、一内表面、以及一连接该第一基板的该外表面与该内表面的第一侧边,且该外表面作为该显示面板的显示面;
    一第二基板,具有一外表面、一内表面、以及一连接该第一基板的该外表面与该内表面的第二侧边,且该第二基板的该内表面对于该第一基板的该内表面,其中,该第一侧边与该第二侧边位于该显示面板的同一侧,且该第一侧边实质上对齐或超出该第二侧边;
    一显示介质层,设置于该第一基板与该第二基板之间;
    一图案化钼钽氧化物层,设置于该第一基板的内表面;以及
    一图案化金属层,设置于该图案化钼钽氧化物层与该第二基板的内表面之间。
  8. 根据权利要求7所述的显示面板,其特征在于,更包含:
    一背光元件,用以向该第二基板提供一光线,其中该第二基板位于该第一基板与该背光元件之间,且该光线依序经过该第二基板、该显示介质层与该第 一基板。
  9. 根据权利要求7所述的显示面板,其特征在于,该图案化金属层包括一栅极线、一栅极、一共通线、一数据线、一源极或一漏极的其中至少一者。
  10. 根据权利要求7所述的显示面板,其特征在于,该图案化钼钽氧化物层中钽的原子百分比含量介于2%至12%之间,且钼的原子百分比含量与氧的原子百分比含量都大于钽的原子百分比含量。
  11. 根据权利要求10所述的显示面板,其特征在于,该图案化钼钽氧化物层中氧的原子百分比含量介于5%至60%之间。
  12. 根据权利要求7所述的显示面板,其特征在于,该图案化钼钽氧化物层的厚度介于
    Figure PCTCN2017118978-appb-100003
    之间。
  13. 一种制作金属结构的方法,其特征在于,包含:
    提供一第一基板;
    于该第一基板的内表面上形成一钼钽氧化物层,其中该钼钽氧化物层包括一钼钽氧化物,其中该钼钽氧化物中钽的原子百分比含量介于2%至12%之间,且钼的原子百分比含量与氧的原子百分比含量皆大于钽的原子百分比含量;
    于该钼钽氧化物层上形成一金属层;以及
    对该钼钽氧化物层与该金属层进行一图案化工艺,以形成一图案化钼钽氧化物层以及一图案化金属层。
  14. 根据权利要求13所述的制作金属结构的方法,其特征在于,对该钼钽氧化物层与该金属层进行一图案化工艺的步骤包含:
    于该金属层上形成一图案化光刻胶层:以及
    采用一酸性蚀刻液,以该图案化光刻胶层为屏蔽对该钼钽氧化物层与该金属层进行蚀刻。
  15. 根据权利要求13所述的制作金属结构的方法,其特征在于,对该钼钽氧化物层与该金属层进行一图案化工艺的步骤包含:
    采用一碱性去光刻胶液,去除该图案化光刻胶层。
  16. 根据权利要求13所述的制作金属结构的方法,其特征在于,该钼钽氧化物中氧的原子百分比含量介于5%至60%之间。
  17. 根据权利要求13所述的制作金属结构的方法,其特征在于,于该第一基板上形成该钼钽氧化物层的步骤包括进行一非反应性溅镀工艺。
  18. 根据权利要求13所述的制作金属结构的方法,其特征在于,该图案化钼钽氧化物层的厚度介于
    Figure PCTCN2017118978-appb-100004
    之间。
  19. 根据权利要求13所述的制作金属结构的方法,其特征在于,该图案化钼钽氧化物层于可见光范围内的反射率介于2%至20%之间。
PCT/CN2017/118978 2017-12-19 2017-12-27 金属结构及其制作方法与应用的显示面板 WO2019119490A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17935068.1A EP3731000A4 (en) 2017-12-19 2017-12-27 METAL STRUCTURE, MANUFACTURING PROCESS FOR IT AND THE DISPLAY BOARD USED IN IT
JP2020532745A JP2021505971A (ja) 2017-12-19 2017-12-27 金属構造、その作成方法及びそれを応用した表示パネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711373560.1 2017-12-19
CN201711373560.1A CN108121098B (zh) 2017-12-19 2017-12-19 金属结构及其制作方法与应用的显示面板

Publications (1)

Publication Number Publication Date
WO2019119490A1 true WO2019119490A1 (zh) 2019-06-27

Family

ID=62229328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118978 WO2019119490A1 (zh) 2017-12-19 2017-12-27 金属结构及其制作方法与应用的显示面板

Country Status (6)

Country Link
US (2) US10852605B2 (zh)
EP (1) EP3731000A4 (zh)
JP (1) JP2021505971A (zh)
CN (1) CN108121098B (zh)
TW (1) TWI669559B (zh)
WO (1) WO2019119490A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678579B (zh) 2017-12-19 2019-12-01 友達光電股份有限公司 顯示面板以及顯示裝置
KR102526507B1 (ko) * 2018-07-17 2023-04-26 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 배선 기판 및 이를 포함하는 표시 장치
EP3992701A4 (en) * 2019-08-20 2022-05-18 BOE Technology Group Co., Ltd. DISPLAY SUBSTRATE AND METHOD FOR PRODUCTION THEREOF, AND DISPLAY DEVICE
CN112259557B (zh) * 2020-10-15 2022-12-06 Tcl华星光电技术有限公司 显示面板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727259B1 (ko) * 2005-12-29 2007-06-11 동부일렉트로닉스 주식회사 반도체 장치의 배선 형성방법
CN105204692A (zh) * 2015-10-28 2015-12-30 京东方科技集团股份有限公司 一种触摸屏、显示装置及显示装置的显示驱动方法
CN105785639A (zh) * 2016-03-30 2016-07-20 友达光电股份有限公司 低反射金属结构、显示面板及其制作方法
CN106646975A (zh) * 2017-01-03 2017-05-10 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制作方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109792A (zh) 2007-04-27 2014-10-22 H.C.施塔克公司 抗水腐蚀的钽基合金
KR102246529B1 (ko) * 2009-09-16 2021-04-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101597312B1 (ko) * 2009-11-16 2016-02-25 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
AT13879U1 (de) 2013-10-04 2014-10-15 Plansee Se Berührungssensoranordnung
KR20150142139A (ko) * 2014-06-10 2015-12-22 삼성디스플레이 주식회사 박막트랜지스터 어레이 기판 및 그 제조방법
CN104730603B (zh) 2015-04-01 2017-10-17 京东方科技集团股份有限公司 一种防反射层叠结构及其制作方法、基板和显示装置
KR20160128518A (ko) * 2015-04-28 2016-11-08 삼성디스플레이 주식회사 표시장치 및 그 제조방법
CN104765191B (zh) * 2015-04-30 2018-07-06 京东方科技集团股份有限公司 阵列基板及其制作方法和显示装置
CN104880879A (zh) * 2015-06-19 2015-09-02 京东方科技集团股份有限公司 Coa阵列基板及其制造方法、显示装置
CN104898886A (zh) * 2015-06-19 2015-09-09 京东方科技集团股份有限公司 一种基板及其制备方法、触控显示屏
CN105093654B (zh) * 2015-08-27 2018-12-25 京东方科技集团股份有限公司 阵列基板及其制作方法和显示装置
JP6138400B1 (ja) * 2016-02-01 2017-05-31 株式会社ワコム 電子ペン
KR20190001629A (ko) * 2017-06-26 2019-01-07 삼성디스플레이 주식회사 발광소자 및 표시패널의 제조방법
KR102543167B1 (ko) * 2017-09-15 2023-06-13 삼성디스플레이 주식회사 배선 기판, 이를 포함하는 표시 장치 및 배선 기판의 제조 방법
KR102390321B1 (ko) * 2017-09-27 2022-04-26 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727259B1 (ko) * 2005-12-29 2007-06-11 동부일렉트로닉스 주식회사 반도체 장치의 배선 형성방법
CN105204692A (zh) * 2015-10-28 2015-12-30 京东方科技集团股份有限公司 一种触摸屏、显示装置及显示装置的显示驱动方法
CN105785639A (zh) * 2016-03-30 2016-07-20 友达光电股份有限公司 低反射金属结构、显示面板及其制作方法
CN106646975A (zh) * 2017-01-03 2017-05-10 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3731000A4 *

Also Published As

Publication number Publication date
JP2021505971A (ja) 2021-02-18
US20190187529A1 (en) 2019-06-20
US11556036B2 (en) 2023-01-17
TW201928480A (zh) 2019-07-16
EP3731000A4 (en) 2021-09-15
CN108121098B (zh) 2019-08-06
TWI669559B (zh) 2019-08-21
US10852605B2 (en) 2020-12-01
CN108121098A (zh) 2018-06-05
US20210041751A1 (en) 2021-02-11
EP3731000A1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2019119490A1 (zh) 金属结构及其制作方法与应用的显示面板
US7696088B2 (en) Manufacturing methods of metal wire, electrode and TFT array substrate
CN100458516C (zh) 液晶显示装置用基板和使用它的液晶显示装置
KR100698950B1 (ko) 박막 트랜지스터 어레이 기판의 제조방법
KR101124831B1 (ko) 표시 장치, 그 제조 방법 및 스퍼터링 타깃
KR101486180B1 (ko) 액티브 매트릭스 기판의 제조 방법, 표시 패널 및 표시 장치
US8520183B2 (en) Display substrate, liquid crystal display including the display substrate, and method of manufacturing the display substrate
US9952480B2 (en) Display device
KR20080114573A (ko) 표시 장치 및 표시 장치의 제조 방법
WO2016177213A1 (zh) 阵列基板及其制造方法、显示装置
WO2016090853A1 (zh) 阵列基板及其制造方法和全反射式液晶显示器
US20060261335A1 (en) Liquid crystal display device
JP4677654B2 (ja) 透過型液晶表示装置及びその製造方法
JP2010165732A (ja) エッチング液及びこれを用いたパターン形成方法並びに液晶表示装置の製造方法
US20090173944A1 (en) Thin film transistor, active device array substrate and liquid crystal display panel
US20090117333A1 (en) Method of manufacturing display device and display device therefrom
US8829524B2 (en) Thin film transistor array substrate having sandwich structure gate electrode and manufacturing method thereof
CN102637634B (zh) 一种阵列基板及其制作方法、显示装置
WO2017147973A1 (zh) 阵列基板的制作方法及制得的阵列基板
CN104419932A (zh) 用于形成银或银合金的布线和反射层的蚀刻剂组合物
US20070148802A1 (en) Method for fabricating transflective liquid crystal display
US9366922B2 (en) Thin film transistor array and method for manufacturing the same
KR101156330B1 (ko) 표시 장치 및 그 제조 방법
JP2006301560A (ja) 液晶表示装置とその製造方法
WO2017008343A1 (zh) 反射式tft阵列面板及其制备方法和液晶显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017935068

Country of ref document: EP

Effective date: 20200720