WO2019116627A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2019116627A1
WO2019116627A1 PCT/JP2018/027381 JP2018027381W WO2019116627A1 WO 2019116627 A1 WO2019116627 A1 WO 2019116627A1 JP 2018027381 W JP2018027381 W JP 2018027381W WO 2019116627 A1 WO2019116627 A1 WO 2019116627A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
inner liner
pneumatic tire
carcass
joint portion
Prior art date
Application number
PCT/JP2018/027381
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 森田
純一 折出
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2019558893A priority Critical patent/JP7063917B2/en
Publication of WO2019116627A1 publication Critical patent/WO2019116627A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre

Definitions

  • the present disclosure relates to a pneumatic tire.
  • an unvulcanized rubber sheet to be an inner liner of a product tire is wound around the outer peripheral surface of a drum to form a cylindrical shape, and the cylindrically formed rubber sheet is vulcanized can Semi-cure in the Next, the semi-vulcanized inner liner (so-called precure inner liner) is removed from the drum and mounted on a tire-forming drum, and then a carcass, bead core, bead filler, belt, tread rubber, side rubber, etc. are attached to make a cylindrical shape.
  • a green tire is molded, and the inside of the green tire is filled with gas and expanded on a tire forming drum, and each member is crimped to obtain a green tire having a shape close to that of a product tire.
  • this green tire is loaded into a vulcanizing molding machine without bladders, and the inside of the tire is directly filled with a gas for expansion and heating, whereby the green tire is vulcanized and formed.
  • the tread of the green tire may be deformed to undulate in the circumferential direction, and there is room for improvement.
  • the present disclosure aims to provide a pneumatic tire having a structure capable of suppressing deformation of a green tire before vulcanization.
  • a carcass extending from one bead portion to the other bead portion and having an end portion locked to the bead core is attached to the inner circumferential surface of the carcass, and one side in the circumferential direction And an inner liner provided with a joint portion in which the side end and the other end overlap each other and the residual tension acting inside is in the range of 1 to 3 N / mm.
  • the residual tension acting on the inner liner is set in the range of 1 to 3 N / mm in the product state, the diameter growth during traveling is suppressed. Since distortion is relieved, it is advantageous to the crack of the groove bottom and the belt end of the groove provided in the tread.
  • the unvulcanized rubber inner liner plastically deforms when force is applied, and does not have elasticity like vulcanized rubber.
  • the semi-vulcanized inner liner elastically deforms like a vulcanized rubber when force is applied, and tries to return to the original shape when the force is removed.
  • the inner liner When the green raw tire in which the semi-vulcanized inner liner is attached to the inner circumferential surface of the carcass is expanded to a shape close to the product tire, the inner liner is elastically deformed (in other words, distorted) and the inner liner is made Although tension is generated inside, the rubber members other than the inner liner are unvulcanized and thus only plastically deform and tension does not act inside (minimum even if tension is acting).
  • the tension generated in the inflated inner liner (referred to as residual tension as appropriate) is too large, the tire constituting members such as the carcass disposed on the outer side of the inner liner receive a large force in the direction of diameter reduction. As a result, the outer peripheral surface is deformed in a wavelike manner.
  • the residual tension acting on the inner liner is set to 3 N / mm or less.
  • the residual tension acting on the semi-vulcanized inner liner in the unvulcanized green tire is also suppressed, and the deformation of the unvulcanized green tire on which the semi-vulcanized inner liner is attached can be suppressed.
  • the residual tension of the inner liner of the pneumatic tire of a product is measured, it will be understood that the green tire is manufactured without deformation at the time of manufacturing the tire.
  • the inner circumferential surface of the green tire is pressed by the bladder by the expansion of the rubber bladder, and the inner liner presses the carcass.
  • the rubber of the bladder is a vulcanized rubber, which is harder and more elastic than unvulcanized rubber.
  • the bladder can uniformly press the entire inner liner, and the joint portion in which the end portions of the carcass overlap one another can reliably receive the pressing force of the bladder through the inner liner. Therefore, one end of the carcass and the other end are strongly pressed to crush the rubber of the joint (unvulcanized rubber covering the cord of the carcass) and the step amount at the joint (joint) Thickness-the thickness of the inner liner can be kept small.
  • an inner liner provided on the inner circumferential surface of a green tire substitutes for the bladder.
  • the inner liner is expanded under the pressure of the gas to supply the gas directly when the green tire is supplied, and the inner liner cures the outer member. Press toward the inner surface of the mold of the molding machine.
  • the joint portion of the carcass is pressed by the inner liner, but if the inner liner is not vulcanized, the unvulcanized rubber of the inner liner hits the joint portion of the carcass and flows when the inner liner expands. Do. Therefore, the pressing force acting on the joint portion escapes and the pressing force on the joint portion decreases, so that it is difficult to crush the rubber of the joint portion, and it becomes difficult to reduce the step amount in the joint portion.
  • the inner liner of the green tire before vulcanization close to the product shape is in a semi-vulcanized state, and the rubber like vulcanized rubber It turns out that it has elasticity.
  • the unvulcanized inner liner when the unvulcanized inner liner is expanded in diameter to form a green tire having a shape close to the product, the unvulcanized rubber of the inner liner plastically deforms, so tension does not remain inside the inner liner. Also, no tension remains (even if it remains) in the inner liner of the pneumatic tire of a product obtained by vulcanizing and molding this green tire.
  • the entire carcass can be uniformly pressed by the inner liner having rubber elasticity at the time of vulcanization. It is possible to reduce the step amount at the joint portion.
  • pressing force can be uniformly applied from the inner periphery of the tire toward the outer periphery of the tire to the entire tire constituting member on the tire radial direction outer side of the inner liner (so-called ironing effect).
  • the air gap in the tire can be squeezed to suppress air in the tire.
  • the above-described configuration has an excellent effect that deformation of a green tire before vulcanization can be suppressed.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing along the rotating shaft which shows the pneumatic tire concerning one Embodiment of this invention. It is a top view of the inner liner which stuck the strain gauge. It is a top view of the inner liner which shows a measurement field. It is a longitudinal cross-sectional view which shows the vulcanizing molding machine for vulcanizing and forming the pneumatic tire of this invention. It is a longitudinal cross-sectional view which shows the vulcanizing molding machine for vulcanizing and forming the pneumatic tire of this invention. BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing orthogonal to the tire rotating shaft which shows the inner liner of a pneumatic tire.
  • the pneumatic tire 10 according to an embodiment of the present invention is a general radial pneumatic tire for a passenger car, and includes a pair of bead cores 12, a carcass core straddling one bead core 12 and the other bead core 12. 14, inner liner 16 disposed on the inner peripheral surface of carcass 14, bead filler 18 disposed on the outer side in the tire radial direction of bead core 12, belt 20 disposed on the radial outer side of carcass 14, tire radial direction of belt 20 A tread rubber layer 22 disposed outside, a side rubber layer 24 disposed outside the carcass 14 in the tire width direction, and the like are provided.
  • the carcass 14 has a general structure in which a plurality of carcass cords arranged in parallel to one another are coated with a covering rubber.
  • the belt 20 of the present embodiment is composed of two belt plies, and the belt plies have a general structure in which a plurality of belt cords arranged in parallel to each other are coated with a covering rubber.
  • a drainage groove 25 is formed on the tread surface of the tread rubber layer 22.
  • well-known tire structural members other than the above may be provided.
  • the inner liner 16 is in a free state (a state in which no external force is applied by a single tire. A state in which the tire is attached to a rim and an internal pressure may not be applied). A residual tension of 1 to 3 N / mm is acting.
  • the residual tension acting on the inner liner 16 can be measured, for example, as follows.
  • a notch 28 is made by a cutter or the like in the portion of the inner liner 16 indicated by a two-dot chain line so as to surround the strain gauge 26 to form a rectangular measurement area 30.
  • the direction of the cuts 28 is, for example, the tire circumferential direction (arrow S direction) and the tire width direction (arrow W direction). Further, the depth of the incisions 28 is set to reach the carcass 14 or more, that is, the gauge of the inner liner 16 or more.
  • the inner liner 16 of the measurement area 30 may be cut out of the pneumatic tire 10 (i.e. cut away from the carcass 14).
  • FIG. 3A a schematic configuration of a vulcanizing molding machine 38 used to manufacture the pneumatic tire 10 will be described.
  • the vulcanizing molding machine 38 is provided with a sector mold 40 which is divided into a plurality of pieces in the circumferential direction. Segments 42 are attached to the outer peripheral surface of the sector mold 40. The outer circumferential surface of the segment 42 is tapered so that the segment 42 is tapered upward.
  • An upper mold 44 is disposed on the upper side inside the sector mold 40, and a lower mold 46 is disposed on the lower side.
  • the upper base ring 48 for curing one bead portion 10A of the green tire 36 is attached to the lower surface inside of the upper mold 44, and the other bead portion 10A is vulcanized on the upper surface inside of the lower mold 46
  • the lower base ring 50 is attached.
  • the upper mold 44 is closely attached to the lower surface of the upper platen 52
  • the lower mold 46 is closely attached to the upper surface of the lower platen 54.
  • a container 56 is disposed outside the segment 42.
  • the inner peripheral surface of the container 56 is tapered so as to expand in diameter as it goes downward, and slides on the outer peripheral surface of the segment 42.
  • Steam or the like is circulated in the container 56. When steam is passed through the container 56, the container 56 is heated, and the heat of the container 56 is transferred to the sector mold 40 via the segment 42.
  • a center support device 58 is disposed at the center of the vulcanizing and molding machine 38.
  • An upper ring 60 is disposed in the center support device 58, and the upper ring 60 and the upper base ring 48 can hold the upper bead portion 10A of the green tire 36.
  • the lower ring 62 is attached to the lower side of the upper ring 60 in the center support device 58, and the lower ring 62 and the lower base ring 50 can hold the lower bead portion 10A of the green tire 36. ing.
  • the upper surface of the upper ring 60 and the lower surface of the lower ring 62 are in close contact with the inner liner 16 on the inner peripheral side of the bead portion 10A, whereby the inside of the green tire 36 is sealed (see FIG. 3B).
  • a heating fluid such as steam can be jetted out from between the upper ring 60 and the lower ring 62 into the sealed inside of the green tire 36.
  • the semi-vulcanized inner liner 16 can be inflated and the green tire 36 can be heated from the inside.
  • the semi-vulcanized cylindrical rubber sheet 34 is mounted on the outer peripheral surface of the tire forming drum 32 (see FIG. 5).
  • a carcass, a bead core, a bead filler, a belt, a tread rubber, and a side rubber (all unvulcanized) Etc. to form a cylindrical green tire 36.
  • the inside of the green tire 36 is filled with gas and expanded on the tire forming drum 32, and both bead portions are made to approach each other, and finally, as shown in FIG.
  • the raw tire 36 has a shape close to that of the product tire.
  • the outer diameter of the central portion in the tire width direction of the green tire 36 after diameter expansion shown in FIG. 7 is greater than the outer diameter of the central portion in the tire width direction of the green tire 36 before diameter expansion shown in FIG.
  • the diameter is also expanded by 60%.
  • a green tire 36 having a shape close to that of a product tire is loaded into a bladder-free vulcanization molding machine 38, and the inside of the tire is directly filled with gas to expand and heat while being expanded. Perform molding.
  • the outer diameter of the central portion in the tire width direction of the pneumatic tire 10 of the product is expanded by 3% as compared with the outer diameter of the green tire 36 having a shape close to the product before loading into the vulcanizing molding machine 38 It is diameter.
  • the residual tension acting on the inner liner 16 (in the present embodiment, the residual tension in the circumferential direction on the tire equatorial plane CL) is set within a range of 1 to 3 N / mm Because of this, the radial growth during traveling is suppressed (because the force in the direction in which the inner liner 16 having the residual tension shrinks inward in the radial direction), and the distortion of the tire radial direction outer portion of the tire 10 is alleviated. Therefore, it is advantageous to the crack which arises from the slot bottom of slot 25 of tread rubber layer 22, or the end of belt 20.
  • the residual tension acting on the inner liner 16 is set in the range of 1 to 3 N / mm, before the vulcanization in which the semi-cured inner liner 16 is attached It is possible to suppress deformation of the green tire 36 (see FIG. 7) having a shape close to that of the product tire, and, as an example, deformation of the tread portion of the green tire 36 in the circumferential direction into a corrugated shape.
  • the residual tension in the circumferential direction near the center of the inner liner 16 largely contributes to deformation of the tread portion of the green tire 36, so residual tension on the tire equatorial plane CL on the back surface side of the tread portion 10B of the pneumatic tire 10 It is preferable to measure
  • the ratio t1 / t2 of the gauge t1 of the joint portion 16A of the inner liner 16 and the gauge t2 of the portion on the opposite side by 180 degrees between the joint portion 16A of the inner liner 16 Is set within the range of 105% to 130%, the occurrence of wrinkles on both sides in the circumferential direction of the joint portion 16A of the green tire 36 is suppressed, and the shortage of the tread gauge in the product is suppressed.
  • the overlap length OL of the joint portion 16A in the circumferential direction is set in the range of 1 to 10% of the circumferential length of the inner liner 16, the joint in the green tire is obtained. It is possible to suppress the occurrence of cracking and uniformity defects of the product.
  • the width direction end of the inner liner 16 is located on the inner side in the tire radial direction (arrow C direction side) with respect to the center 12C of the bead core 12 as in the pneumatic tire 10 of the present embodiment shown in FIG.
  • the widthwise end of the inner liner 16 is brought into close contact with the upper ring 60 and the lower ring 62 of the vulcanization molding machine 38
  • the semi-vulcanized rubber inner liner 16 can effectively suppress the gas leakage (compared to the unvulcanized inner liner), and functions as a substitute for the bladder of a conventional vulcanizing machine.
  • the peeling resistance between the inner liner 16 and the carcass 14 is set to 10 N / mm or more, in the green tire 36 having a shape close to the product before vulcanization, the inner liner 16 and Peeling with the carcass 14 can be suppressed.
  • the inner peripheral surface of the inner liner 16 is not used as compared with a pneumatic tire that is molded by using a bladder, since a bladder that contacts the inner liner 16 at the time of vulcanization molding is not used. Is smooth.
  • Test Example 1 In order to determine an appropriate value of the magnitude of the residual tension acting on the inner liner, the inner liner and a plurality of test tires (tires 1 to 4) having different manufacturing conditions were manufactured and evaluated.
  • the tires 1 to 4 are pneumatic tires having a radial structure shown in FIG. Tire size: 205/65 R16 NKTZ Carcass: 1 ply. The thickness is 1.39 mm. The material of the cord is PET. The diameter of the cord is 0.66 mm (structure: 2 twists). The number of code inputs is 580. Belt: Thickness is 0.86 mm. The material of the cord is steel. The diameter of the cord is 0.66 mm. The number of cords driven is 90, and the angle of inclination of the cord is 68 °. Tread: The gauge is 13.8 mm on average.
  • Tire 1 A pneumatic tire obtained by vulcanizing a green tire manufactured using a rubber sheet for an inner liner having a degree of vulcanization of 0% (unvulcanized) and a thickness of 1.0 mm with a vulcanizing machine that does not use a bladder.
  • the residual tension of the product inner liner is 0.3 N / mm.
  • Tire 2 A pneumatic tire obtained by vulcanizing a green tire manufactured using a rubber sheet for an inner liner having a degree of vulcanization of 90% and a thickness of 1.0 mm using a vulcanizing machine that does not use a bladder.
  • the residual tension of the product inner liner is 1.3 N / mm.
  • Tire 3 A pneumatic tire obtained by vulcanizing a green tire manufactured using a rubber sheet for an inner liner having a degree of vulcanization of 90% and a thickness of 2.0 mm using a vulcanizing machine that does not use a bladder.
  • the residual tension of the product inner liner is 2.6 N / mm.
  • Tire 4 A pneumatic tire obtained by vulcanizing a green tire manufactured using a rubber sheet for an inner liner having a degree of vulcanization of 90% and a thickness of 2.5 mm using a vulcanizing machine that does not use a bladder.
  • the residual tension of the product inner liner is 3.3 N / mm.
  • the residual tension of the inner liner in the tires 1 to 4 is residual tension in the circumferential direction of the tire on the equatorial plane of the tire.
  • the appearance of the manufactured green tire is visually observed to observe the deformation of the green tire, and the vulcanized molded product is cut to obtain the stepped amount of the joint portion of the inner liner (unit: mm, see FIG. 4).
  • the stepped amount of the joint portion of the inner liner (unit: mm, see FIG. 4).
  • the results of the test were as follows. In the tire 1, no deformation was found in the green tire, but in the product tire, the shouldered amount of the joint portion of the inner liner was 1.2 mm, and could not be suppressed to 1.0 mm or less. In the tire 2, no deformation was observed in the green tire. In the product tire, the stepped amount of the joint portion of the inner liner was 1.1 mm. In the tire 3, no deformation was observed in the green tire. In the product tire, the step amount of the joint portion of the inner liner was 0.35 mm and could be suppressed to 1.0 mm or less. When the green tire was removed from the tire forming drum, as a result of the residual tension of the inner liner being too large, the tire 4 was deformed so that the tread was corrugated in the circumferential direction.
  • the residual tension of the inner liner 16 is made larger than 2.3 (N / mm) I know it is necessary.
  • Test Example 2 In addition, in order to obtain an appropriate value of the magnitude of the residual tension acting on the inner liner from the viewpoint different from that of Test Example 1, the inner liner and a plurality of test tires (tires 1 to 5) having different manufacturing conditions are manufactured. And evaluated.
  • Tire 1 A pneumatic tire obtained by vulcanizing a green tire manufactured using a rubber sheet for an inner liner having a degree of vulcanization of 51% and a thickness of 1 mm with a vulcanizing machine that does not use a bladder.
  • the residual tension of the product inner liner is 0.8 N / mm.
  • a green tire is manufactured by changing manufacturing conditions so that the ratio t1 / t2 of the gauge t1 of the joint portion of the inner liner in the product tire and the gauge t2 of the portion on the opposite side to the joint portion of the inner liner changes.
  • the thickness of the joint portion of the unvulcanized rubber sheet of 1.0 mm in thickness which will be the inner liner of the product tire, is made in advance in the drum It is wound around the outer peripheral surface to be formed into a cylindrical shape, and is vulcanized in a vulcanizer at about 145 ° C. for about 30 minutes to obtain a semi-vulcanized inner liner.
  • the relationship between the ratio t1 / t2 of the product tire, the deformation of the green tire, and the tread gauge was examined.
  • the tire 4 in the product state in which the ratio t1 / t2 is set to 135 is insufficient in the tread gauge on the outer side in the tire radial direction of the joint portion.
  • the standard for judging that the tread gauge is insufficient is that the tread gauge at the joint portion is -0.5 mm or more in actual dimension as compared with the tread gauge at other than the joint portion.
  • overlap length is ratio (%) of the length of the joint part measured to the tire circumferential direction on the tire equatorial plane and the tire circumferential direction length of an inner liner.
  • overlap length is ratio (%) of the length of the joint part measured to the tire circumferential direction on the tire equatorial plane and the tire circumferential direction length of an inner liner.
  • the green tire was removed from the tire forming drum, and in the green tire having a shape close to that of the product tire, it was visually examined whether or not there is a circumferentially spaced portion in the joint portion of the inner liner.
  • Uniformity defect Measured under conditions of rim width 8 inches, internal pressure 180 kPa, load 5170 N. In the evaluation, it was judged that the RFV value was defective with a + 10% increase.
  • the circumferential length of the inner liner measured on the equatorial plane of the overlap length (measured in the tire circumferential direction) at the joint portion of the inner liner It can be seen that it may be in the range of 1% to 10% of the height (measured on the inner circumferential surface).
  • Test Example 5 The production conditions were changed to produce a green tire.
  • An unvulcanized rubber sheet to be the inner liner of a product tire is wound around the outer peripheral surface of a drum to form a cylindrical shape, and by changing the time at a constant temperature in a vulcanized can, the degree of vulcanization is changed to half cure.
  • An inner liner of vulcanization (90% vulcanization) and complete vulcanization (100% vulcanization) was obtained. While investigating whether peeling occurred between the inner liner and the carcass in the manufactured green tire, the peeling resistance between the inner liner and the carcass in the product tire obtained by vulcanizing and molding the green tire was investigated. . Peeling resistance: Cut a test piece from the tire side.
  • the semi-vulcanized inner liner 16 when manufacturing the green tire 36, is formed of a rubber sheet of a fixed thickness, but the inner liner 16 is not limited to a fixed thickness, but the thickness is It may be different.
  • the thickness of the portion corresponding to the bead portion 10A of the pneumatic tire 10 may be reduced, and the thickness of the portion corresponding to both sides of the tire equatorial plane corresponding to the tread portion 10B may be increased.
  • the gauge of the bead to the side portion of the pneumatic tire can be thin, and the weight of the tire can be reduced.
  • the modulus of the portion corresponding to both sides of the tire equatorial plane corresponding to the tread portion 10B may be larger than the modulus of the portion corresponding to the bead portion 10A.
  • the gauge of the bead to the side portion of the pneumatic tire can be thinned, and the weight of the tire can be reduced.
  • the inner liner 16 of this embodiment is made of rubber, but the rubber may contain other materials other than rubber, such as thermoplastic synthetic resin, and a synthetic resin film or the like is attached. It is good.
  • the present invention is applicable not only to passenger cars but also to pneumatic tires other than passenger cars.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

This pneumatic tire has: a carcass extending from one bead section to the other bead section and having ends engaged with bead cores; and an inner liner which is affixed to the inner peripheral surface of the carcass, is provided with a joint portion where one and the other circumferential ends of the inner liner overlap each other, and is configured so that residual tension acting in the inner liner is in the range of 1 to 3 N/mm.

Description

空気入りタイヤPneumatic tire
 本開示は、空気入りタイヤに関する。 The present disclosure relates to a pneumatic tire.
 加硫時に、ブラダーを用いずに成形された空気入りタイヤがある(例えば、特表2003-523288号公報)。 There is a pneumatic tire molded without using a bladder at the time of vulcanization (for example, JP-A-2003-523288).
 この空気入りタイヤの製造方法は、先ず、製品タイヤのインナーライナーとなる未加硫のゴムシートをドラムの外周面に巻き付けて円筒状に形成し、その円筒状に形成したゴムシートを加硫缶の中で半加硫する。
 次に、半加硫したインナーライナー(所謂プレキュアインナーライナー)をドラムから外してタイヤ成形ドラムに装着した後、カーカス、ビードコア、ビードフィラー、ベルト、トレッドゴム、サイドゴム等を貼り付けて円筒状の生タイヤを成形し、タイヤ成形ドラム上でこの生タイヤの内部に気体を充填して膨張させ、各部材を圧着し、製品タイヤに近い形状の生タイヤを得る。
 次に、この生タイヤをブラダーの無い加硫成形機に装填し、タイヤ内部に直接気体を充填して膨張させると共に加熱を行い、生タイヤの加硫成形を行う。
In this method of manufacturing a pneumatic tire, first, an unvulcanized rubber sheet to be an inner liner of a product tire is wound around the outer peripheral surface of a drum to form a cylindrical shape, and the cylindrically formed rubber sheet is vulcanized can Semi-cure in the
Next, the semi-vulcanized inner liner (so-called precure inner liner) is removed from the drum and mounted on a tire-forming drum, and then a carcass, bead core, bead filler, belt, tread rubber, side rubber, etc. are attached to make a cylindrical shape. A green tire is molded, and the inside of the green tire is filled with gas and expanded on a tire forming drum, and each member is crimped to obtain a green tire having a shape close to that of a product tire.
Next, this green tire is loaded into a vulcanizing molding machine without bladders, and the inside of the tire is directly filled with a gas for expansion and heating, whereby the green tire is vulcanized and formed.
 しかしながら、この製法では、タイヤ成形ドラムから生タイヤを取り外した後に、生タイヤのトレッドが周方向に波打つように変形する場合があり、改善の余地があった。 However, in this manufacturing method, after the green tire is removed from the tire forming drum, the tread of the green tire may be deformed to undulate in the circumferential direction, and there is room for improvement.
 本開示は上記事実を考慮し、加硫前の生タイヤの変形を抑制可能な構造を有する空気入りタイヤの提供を目的とする。 In light of the above-described facts, the present disclosure aims to provide a pneumatic tire having a structure capable of suppressing deformation of a green tire before vulcanization.
 第1の態様に係る空気入りタイヤは、一方のビード部から他方のビード部へ延びて端部がビードコアに係止されるカーカスと、前記カーカスの内周面に貼り付けられ、周方向の一方側の端部と他方側の端部とが重ねられたジョイント部を備え、内部に作用している残留張力が1~3N/mmの範囲内とされたインナーライナーと、を有している。 In the pneumatic tire according to the first aspect, a carcass extending from one bead portion to the other bead portion and having an end portion locked to the bead core is attached to the inner circumferential surface of the carcass, and one side in the circumferential direction And an inner liner provided with a joint portion in which the side end and the other end overlap each other and the residual tension acting inside is in the range of 1 to 3 N / mm.
 第1の態様に係る空気入りタイヤは、製品の状態において、インナーライナーに作用している残留張力が1~3N/mmの範囲内に設定されているので、走行中の径成長が抑えられ、歪みが緩和されるため、トレッドに設けられた溝の溝底やベルト端のクラックに対して有利になる。 In the pneumatic tire according to the first aspect, since the residual tension acting on the inner liner is set in the range of 1 to 3 N / mm in the product state, the diameter growth during traveling is suppressed. Since distortion is relieved, it is advantageous to the crack of the groove bottom and the belt end of the groove provided in the tread.
 未加硫のゴム製のインナーライナーは力を付与すると塑性変形してしまい、加硫済みのゴムのような弾性は無い。一方、半加硫したインナーライナーは力を付与すると加硫済みのゴムと同様に弾性変形し、力を除去すると元の形状に戻ろうとする。 The unvulcanized rubber inner liner plastically deforms when force is applied, and does not have elasticity like vulcanized rubber. On the other hand, the semi-vulcanized inner liner elastically deforms like a vulcanized rubber when force is applied, and tries to return to the original shape when the force is removed.
 半加硫したインナーライナーがカーカスの内周面に貼り付けられた円筒状の生タイヤを膨張させ、製品タイヤに近い形状にすると、インナーライナーは弾性変形(言い換えれば、歪む)してインナーライナーの内部に張力が生じるが、インナーライナー以外のゴム部材は未加硫状態であるため塑性変形するだけであり内部に張力は作用しない(張力が作用していたとしても極小)。 When the green raw tire in which the semi-vulcanized inner liner is attached to the inner circumferential surface of the carcass is expanded to a shape close to the product tire, the inner liner is elastically deformed (in other words, distorted) and the inner liner is made Although tension is generated inside, the rubber members other than the inner liner are unvulcanized and thus only plastically deform and tension does not act inside (minimum even if tension is acting).
 ここで、膨張させたインナーライナーに生ずる張力は、インナーライナーを元の形状(ドラムに巻きつけた状態)に戻そうとする方向に働くので、インナーライナーには縮径する方向の力が作用することになる。 Here, since the tension generated in the expanded inner liner acts in the direction to return the inner liner to the original shape (in a state of being wound on the drum), a force in the direction of decreasing the diameter acts on the inner liner. It will be.
 このため、膨張させたインナーライナーに生じた張力(適宜、残留張力と呼ぶ)が大きすぎると、インナーライナーの外側に配置されているカーカス等のタイヤ構成部材が縮径する方向の大きな力を受けて外周面が波打つような変形を生じてしまう。 For this reason, if the tension generated in the inflated inner liner (referred to as residual tension as appropriate) is too large, the tire constituting members such as the carcass disposed on the outer side of the inner liner receive a large force in the direction of diameter reduction. As a result, the outer peripheral surface is deformed in a wavelike manner.
 そこで、第1の態様に係る空気入りタイヤのように、製品時において、インナーライナーに作用している残留張力を3N/mm以下に設定する。これにより、加硫前の生タイヤにおける半加硫状態のインナーライナーに作用する残留張力も抑えられ、半加硫状態のインナーライナーを貼り付けた加硫前の生タイヤの変形を抑制できる。なお、製品の空気入りタイヤのインナーライナーの残留張力を測定すれば、タイヤ製造時に、生タイヤが変形することなく製造されていることが分かる。 Therefore, as in the pneumatic tire according to the first aspect, at the time of production, the residual tension acting on the inner liner is set to 3 N / mm or less. As a result, the residual tension acting on the semi-vulcanized inner liner in the unvulcanized green tire is also suppressed, and the deformation of the unvulcanized green tire on which the semi-vulcanized inner liner is attached can be suppressed. In addition, if the residual tension of the inner liner of the pneumatic tire of a product is measured, it will be understood that the green tire is manufactured without deformation at the time of manufacturing the tire.
 ブラダーを用いた従来の加硫成形機では、ゴムからなるブラダーが膨張することによって生タイヤの内周面がブラダーに押圧され、インナーライナーがカーカスを押圧する。ブラダーのゴムは、加硫ゴムであり、未加硫ゴムよりも硬く、かつ弾性を有している。これにより、ブラダーは、インナーライナー全体を均一に押圧することができ、カーカスの端部同士を重ねたジョイント部分は、インナーライナーを介してブラダーの押圧力を確実に受けることができる。そのため、カーカスの一方の端部と他方の端部とは強く押圧されてジョイント部分のゴム(カーカスのコードを被覆している未加硫ゴム)が潰され、ジョイント部分における段付き量(ジョイント部分の厚さ-インナーライナーの厚さ)を小さく抑えることができる。 In the conventional vulcanization molding machine using a bladder, the inner circumferential surface of the green tire is pressed by the bladder by the expansion of the rubber bladder, and the inner liner presses the carcass. The rubber of the bladder is a vulcanized rubber, which is harder and more elastic than unvulcanized rubber. Thus, the bladder can uniformly press the entire inner liner, and the joint portion in which the end portions of the carcass overlap one another can reliably receive the pressing force of the bladder through the inner liner. Therefore, one end of the carcass and the other end are strongly pressed to crush the rubber of the joint (unvulcanized rubber covering the cord of the carcass) and the step amount at the joint (joint) Thickness-the thickness of the inner liner can be kept small.
 一方、ブラダーを用いない加硫成形機では、生タイヤの内周面に設けられたインナーライナーが、ブラダーの代わりとなる。生タイヤを加硫成形する際には、生タイヤの内部に直接気体を供給するため、気体が供給されるとインナーライナーが気体の圧力を受けて膨張し、インナーライナーが外側の部材を加硫成形機の金型の内面に向けて押圧する。このとき、カーカスのジョイント部分が、インナーライナーによって押圧されるが、仮にインナーライナーが未加硫であると、インナーライナーが膨張する際に、インナーライナーの未加硫ゴムがカーカスのジョイント部分に当たって流動する。したがって、ジョイント部分に作用する押圧力が逃げてしまい、ジョイント部分の押圧力が減少することで、ジョイント部分のゴムを潰し難くなり、ジョイント部分における段付き量を小さくすることが困難となる。 On the other hand, in a vulcanizing molding machine which does not use a bladder, an inner liner provided on the inner circumferential surface of a green tire substitutes for the bladder. When a green tire is vulcanized and molded, the inner liner is expanded under the pressure of the gas to supply the gas directly when the green tire is supplied, and the inner liner cures the outer member. Press toward the inner surface of the mold of the molding machine. At this time, the joint portion of the carcass is pressed by the inner liner, but if the inner liner is not vulcanized, the unvulcanized rubber of the inner liner hits the joint portion of the carcass and flows when the inner liner expands. Do. Therefore, the pressing force acting on the joint portion escapes and the pressing force on the joint portion decreases, so that it is difficult to crush the rubber of the joint portion, and it becomes difficult to reduce the step amount in the joint portion.
 製品の空気入りタイヤのインナーライナーに作用している残留張力が1N/mm以上であれば、製品形状に近い加硫前の生タイヤのインナーライナーが半加硫状態で、加硫ゴム様のゴム弾性を有していることが分かる。言い換えれば、未加硫のインナーライナーを拡径して製品に近い形状の生タイヤを形成したとき、インナーライナーの未加硫ゴムは塑性変形するため、インナーライナーの内部に張力が残ることはなく、この生タイヤを加硫成形して得られた製品の空気入りタイヤのインナーライナーにおいても張力は残らない(残っていたとしても極小)。 If the residual tension acting on the inner liner of the pneumatic tire of the product is 1 N / mm or more, the inner liner of the green tire before vulcanization close to the product shape is in a semi-vulcanized state, and the rubber like vulcanized rubber It turns out that it has elasticity. In other words, when the unvulcanized inner liner is expanded in diameter to form a green tire having a shape close to the product, the unvulcanized rubber of the inner liner plastically deforms, so tension does not remain inside the inner liner. Also, no tension remains (even if it remains) in the inner liner of the pneumatic tire of a product obtained by vulcanizing and molding this green tire.
 したがって、製品の空気入りタイヤのインナーライナーに作用している残留張力が1N/mm以上であれば、加硫時に、ゴム弾性を有するインナーライナーでカーカス全体を均一に押圧することができ、カーカスのジョイント部分における段付き量を小さくすることが可能である。 Therefore, if the residual tension acting on the inner liner of the pneumatic tire of the product is 1 N / mm or more, the entire carcass can be uniformly pressed by the inner liner having rubber elasticity at the time of vulcanization. It is possible to reduce the step amount at the joint portion.
 また、インナーライナーで、インナーライナーのタイヤ径方向外側のタイヤ構成部材全体にタイヤ内周からタイヤ外周へ向けて均一に押圧力を作用させることができる(所謂、アイロン効果)ので、タイヤ構成部材間の隙間を潰して、タイヤ内のエア入りを抑制することができる。 Further, with the inner liner, pressing force can be uniformly applied from the inner periphery of the tire toward the outer periphery of the tire to the entire tire constituting member on the tire radial direction outer side of the inner liner (so-called ironing effect). The air gap in the tire can be squeezed to suppress air in the tire.
 以上説明したように本開示の空気入りタイヤによれば、上記構成とすることで、加硫前の生タイヤの変形を抑制することができる、という優れた効果を有する。 As described above, according to the pneumatic tire of the present disclosure, the above-described configuration has an excellent effect that deformation of a green tire before vulcanization can be suppressed.
本発明の一実施形態に係る空気入りタイヤを示す回転軸に沿った断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing along the rotating shaft which shows the pneumatic tire concerning one Embodiment of this invention. 歪みゲージを貼り付けたインナーライナーの平面図である。It is a top view of the inner liner which stuck the strain gauge. 測定領域を示すインナーライナーの平面図である。It is a top view of the inner liner which shows a measurement field. 本発明の空気入りタイヤを加硫成形するための加硫成形機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vulcanizing molding machine for vulcanizing and forming the pneumatic tire of this invention. 本発明の空気入りタイヤを加硫成形するための加硫成形機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vulcanizing molding machine for vulcanizing and forming the pneumatic tire of this invention. 空気入りタイヤのインナーライナーを示すタイヤ回転軸に直角な断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing orthogonal to the tire rotating shaft which shows the inner liner of a pneumatic tire. タイヤ成形ドラム上に形成した生タイヤを示す断面図である。It is sectional drawing which shows the green tire formed on the tire forming drum. タイヤ成形ドラム上の拡径途中の生タイヤを示す断面図である。It is a sectional view showing a green tire in the middle of diameter expansion on a tire formation drum. タイヤ成形ドラムから取り外した生タイヤを示す断面図である。It is sectional drawing which shows the green tire removed from the tire formation drum. 試験例1の試験結果を示すグラフである。7 is a graph showing the test results of Test Example 1;
 図面を用いて、本発明の一実施形態に係る空気入りタイヤ10について説明する。
 図1に示すように、本実施形態の空気入りタイヤ10は、乗用車用の一般的なラジアル構造の空気入りタイヤであり、一対のビードコア12、一方のビードコア12と他方のビードコア12とを跨るカーカス14、カーカス14の内周面に配置されるインナーライナー16、ビードコア12のタイヤ径方向外側に配置されるビードフィラー18、カーカス14の径方向外側に配置されるベルト20、ベルト20のタイヤ径方向外側に配置されるトレッドゴム層22、カーカス14のタイヤ幅方向外側に配置されるサイドゴム層24等を備えている。カーカス14は、互いに平行に並べられた複数本のカーカスコードを被覆ゴムでコーティングした一般的な構造のものである。また、本実施形態のベルト20は、2枚のベルトプライからなり、ベルトプライは、互いに平行に並べられた複数本のベルトコードを被覆ゴムでコーティングした一般的な構造のものである。トレッドゴム層22の踏面には、排水用の溝25が形成されている。なお、この空気入りタイヤ10においては、上記以外の公知のタイヤ構成部材が設けられていてもよい。
A pneumatic tire 10 according to an embodiment of the present invention will be described using the drawings.
As shown in FIG. 1, the pneumatic tire 10 according to the present embodiment is a general radial pneumatic tire for a passenger car, and includes a pair of bead cores 12, a carcass core straddling one bead core 12 and the other bead core 12. 14, inner liner 16 disposed on the inner peripheral surface of carcass 14, bead filler 18 disposed on the outer side in the tire radial direction of bead core 12, belt 20 disposed on the radial outer side of carcass 14, tire radial direction of belt 20 A tread rubber layer 22 disposed outside, a side rubber layer 24 disposed outside the carcass 14 in the tire width direction, and the like are provided. The carcass 14 has a general structure in which a plurality of carcass cords arranged in parallel to one another are coated with a covering rubber. Further, the belt 20 of the present embodiment is composed of two belt plies, and the belt plies have a general structure in which a plurality of belt cords arranged in parallel to each other are coated with a covering rubber. A drainage groove 25 is formed on the tread surface of the tread rubber layer 22. In addition, in this pneumatic tire 10, well-known tire structural members other than the above may be provided.
 以下に、本実施形態の空気入りタイヤ10と従来の空気入りタイヤとの相違点を説明する。
 本実施形態の空気入りタイヤ10では、自由状態(タイヤ単体で外力を与えていない状態。リムに装着して、内圧を付与していない状態であってもよい。)で、インナーライナー16に、1~3N/mmの残留張力が作用している。
Hereinafter, differences between the pneumatic tire 10 of the present embodiment and the conventional pneumatic tire will be described.
In the pneumatic tire 10 of the present embodiment, the inner liner 16 is in a free state (a state in which no external force is applied by a single tire. A state in which the tire is attached to a rim and an internal pressure may not be applied). A residual tension of 1 to 3 N / mm is acting.
 インナーライナー16に作用している残留張力は、一例として以下のようにして測定することができる。 The residual tension acting on the inner liner 16 can be measured, for example, as follows.
(1) 製品の空気入りタイヤ10を用意し、図2Aに示すように、インナーライナー16のタイヤ赤道面CL上に、歪みゲージ26を貼り付け、歪みゲージ26を歪み測定器(図示せず)に接続する。ここでは、インナーライナー16のタイヤ周方向(矢印S方向)に作用する残留張力を測定するため、歪みゲージ26の向きは、タイヤ周方向とする。 (1) Prepare a pneumatic tire 10 of a product, and as shown in FIG. 2A, affix the strain gauge 26 on the tire equatorial plane CL of the inner liner 16 and measure the strain gauge 26 as a strain gauge (not shown) Connect to Here, in order to measure the residual tension acting in the tire circumferential direction (arrow S direction) of the inner liner 16, the direction of the strain gauge 26 is in the tire circumferential direction.
(2) 次に、歪みゲージ26を取り囲むように、インナーライナー16の2点鎖線で示す部分にカッター等で切り込み28を入れて、矩形の測定領域30を形成する。なお、切り込み28の向きは、例えば、タイヤ周方向(矢印S方向)、及びタイヤ幅方向(矢印W方向)である。また、切り込み28の深さは、インナーライナー16のゲージ以上、言い換えれば、カーカス14に到達するまでとする。なお、測定領域30のインナーライナー16を、空気入りタイヤ10から切り出してもよい(即ち、カーカス14から切り離す)。 (2) Next, a notch 28 is made by a cutter or the like in the portion of the inner liner 16 indicated by a two-dot chain line so as to surround the strain gauge 26 to form a rectangular measurement area 30. The direction of the cuts 28 is, for example, the tire circumferential direction (arrow S direction) and the tire width direction (arrow W direction). Further, the depth of the incisions 28 is set to reach the carcass 14 or more, that is, the gauge of the inner liner 16 or more. The inner liner 16 of the measurement area 30 may be cut out of the pneumatic tire 10 (i.e. cut away from the carcass 14).
(3) インナーライナー16には全体的に残留張力Fが作用しているので、インナーライナー16に切り込み28を入れて矩形の測定領域30を形成すると、図2Bに示すように、測定領域30のインナーライナー16が収縮し、測定領域30においては残留張力は無くなる。なお、切り込み28を入れると切り込み28が開くので、インナーライナー16に残留張力が作用していたことが分かる。そして、測定領域30の収縮の度合い、即ち、歪みゲージ26で測定された歪み(モジュラス(N/mm))と、インナーライナー16のゲージに基づいてインナーライナー16に作用している残留張力を以下のようにして計算で簡単に求めることができる。
 残留張力(N/mm)=インナーライナーのモジュラス(N/mm)×インナーライナーのゲージ(mm)・・・式(1)
(3) Since the residual tension F acts on the inner liner 16 as a whole, if a notch 28 is made in the inner liner 16 to form a rectangular measurement area 30, as shown in FIG. The inner liner 16 contracts and the residual tension disappears in the measurement area 30. It should be noted that since the incisions 28 open when the incisions 28 are made, it can be seen that residual tension was acting on the inner liner 16. Then, the degree of contraction of the measurement area 30, that is, the strain (modulus (N / mm 2 )) measured by the strain gauge 26 and the residual tension acting on the inner liner 16 based on the gauge of the inner liner 16 It can be easily obtained by calculation as follows.
Residual tension (N / mm) = Modulus of inner liner (N / mm 2 ) × Gage of inner liner (mm) (1)
(空気入りタイヤの製造方法)
 先ず最初に、図3Aにしたがって、空気入りタイヤ10の製造に用いる加硫成形機38の概略構成を説明する。
 図3Aに示すように、加硫成形機38は、周方向に複数個に分割されるセクターモールド40を備えている。セクターモールド40の外周面にはセグメント42が取り付けられている。セグメント42は、上方が先細りとなるように外周面がテーパー状とされている。
(Method of manufacturing pneumatic tire)
First, in accordance with FIG. 3A, a schematic configuration of a vulcanizing molding machine 38 used to manufacture the pneumatic tire 10 will be described.
As shown in FIG. 3A, the vulcanizing molding machine 38 is provided with a sector mold 40 which is divided into a plurality of pieces in the circumferential direction. Segments 42 are attached to the outer peripheral surface of the sector mold 40. The outer circumferential surface of the segment 42 is tapered so that the segment 42 is tapered upward.
 セクターモールド40の内側には、上側に上部モールド44が配設されており、下側には下部モールド46が配設されている。
 上部モールド44の下面内側には生タイヤ36の一方のビード部10Aを加硫するための上部ベースリング48が取り付けられており、下部モールド46の上面内側には他方のビード部10Aを加硫するための下部ベースリング50が取り付けられている。
 上部モールド44は、上部プラテン52の下面に密着して取り付けられており、下部モールド46は、下部プラテン54の上面に密着して取り付けられている。
An upper mold 44 is disposed on the upper side inside the sector mold 40, and a lower mold 46 is disposed on the lower side.
The upper base ring 48 for curing one bead portion 10A of the green tire 36 is attached to the lower surface inside of the upper mold 44, and the other bead portion 10A is vulcanized on the upper surface inside of the lower mold 46 The lower base ring 50 is attached.
The upper mold 44 is closely attached to the lower surface of the upper platen 52, and the lower mold 46 is closely attached to the upper surface of the lower platen 54.
 上部プラテン52、及び下部プラテン54の内部には、スチーム等が循環するようになっている。これら上部プラテン52、及び下部プラテン54にスチームが通されると、上部モールド44、及び上部ベースリング48が加熱され、また、下部モールド46、及び下部ベースリング50が加熱されるようになっている。なお、上部プラテン52は、プレス装置に連結され上下方向へ移動できるようになっている。 Steam or the like is circulated in the upper platen 52 and the lower platen 54. When steam is passed through the upper platen 52 and the lower platen 54, the upper mold 44 and the upper base ring 48 are heated, and the lower mold 46 and the lower base ring 50 are heated. . The upper platen 52 is connected to a press and can be moved in the vertical direction.
 セグメント42の外側には、コンテナー56が配設されている。コンテナー56は、下方に行くにしたがって拡径するように内周面がテーパー状とされており、セグメント42の外周面と摺動するようになっている。コンテナー56の内部には、スチーム等が循環するようになっている。このコンテナー56にスチームが通されるとコンテナー56が加熱され、コンテナー56の熱がセグメント42を介してセクターモールド40へと伝達される。 Outside the segment 42, a container 56 is disposed. The inner peripheral surface of the container 56 is tapered so as to expand in diameter as it goes downward, and slides on the outer peripheral surface of the segment 42. Steam or the like is circulated in the container 56. When steam is passed through the container 56, the container 56 is heated, and the heat of the container 56 is transferred to the sector mold 40 via the segment 42.
 加硫成形機38の中央には、中心支持装置58が配置されている。中心支持装置58には、上部リング60が配設されており、この上部リング60と上部ベースリング48とで生タイヤ36の上側のビード部10Aを挟持可能となっている。
 また、中心支持装置58には、上部リング60の下側に下部リング62が取り付けられており、下部リング62と下部ベースリング50とで生タイヤ36の下側のビード部10Aを挟持可能となっている。上部リング60の上面、及び下部リング62の下面が、ビード部10Aの内周側のインナーライナー16に密着することで、生タイヤ36の内部が密閉される(図3B参照)。
A center support device 58 is disposed at the center of the vulcanizing and molding machine 38. An upper ring 60 is disposed in the center support device 58, and the upper ring 60 and the upper base ring 48 can hold the upper bead portion 10A of the green tire 36.
Further, the lower ring 62 is attached to the lower side of the upper ring 60 in the center support device 58, and the lower ring 62 and the lower base ring 50 can hold the lower bead portion 10A of the green tire 36. ing. The upper surface of the upper ring 60 and the lower surface of the lower ring 62 are in close contact with the inner liner 16 on the inner peripheral side of the bead portion 10A, whereby the inside of the green tire 36 is sealed (see FIG. 3B).
 なお、中心支持装置58においては、上部リング60と下部リング62との間から、スチーム等の加熱流体を、生タイヤ36の密閉された内部に噴出可能となっており、これによって生タイヤ36の半加硫のインナーライナー16を膨張させ、かつ生タイヤ36を内側から加熱することができる。 In the center support device 58, a heating fluid such as steam can be jetted out from between the upper ring 60 and the lower ring 62 into the sealed inside of the green tire 36. The semi-vulcanized inner liner 16 can be inflated and the green tire 36 can be heated from the inside.
 なお、本実施形態の加硫成形機38において、上述した中心支持装置58以外の構成は、ブラダーを備えた従来一般の加硫成形機と同様の構成を採用することができる。 In addition, in the vulcanizing molding machine 38 of this embodiment, structures other than the center support apparatus 58 mentioned above can employ | adopt the structure similar to the conventional general vulcanizing molding machine provided with the bladder.
 次に、本実施形態の空気入りタイヤ10の製造工程を以下に説明する。
(1) 円筒状のドラムの外周面(図示省略)に、空気入りタイヤ10のインナーライナー16となる一定厚さのゴムシート34を巻き付け、円筒状に形成する。このとき、ゴムシート34のドラム周方向の一端部分と他端部分とを重ね合わせてジョイント部分を形成する(図4参照。なお、図4は、加硫後の空気入りタイヤ10におけるインナーライナー16の断面を模式的に示している。符号16Aがジョイント部分。)。
(2) 次に、この円筒状のゴムシート34を加硫缶の中で半加硫する。なお、半加硫の程度は、30%以上、95%以下が好ましい。
(3) 半加硫した円筒状のゴムシート34を、タイヤ成形ドラム32(図5参照)の外周面に装着する。
(4) 図5に示すように、タイヤ成形ドラム32の外周面に装着した円筒状のゴムシート34の上に、カーカス、ビードコア、ビードフィラー、ベルト、トレッドゴム、サイドゴム(何れも未加硫)等を貼り付けて円筒状の生タイヤ36を形成する。
(5) 図6に示すように、タイヤ成形ドラム32上でこの生タイヤ36の内部に気体を充填して膨張させると共に、両ビード部を互いに接近させ、最終的に、図7に示すような製品タイヤに近い形状の生タイヤ36とする。なお、本実施形態では、図7に示す拡径後の生タイヤ36のタイヤ幅方向中央部の外径は、図5に示す拡径前の生タイヤ36のタイヤ幅方向中央部の外径よりも60%拡径されている。
(6) 図3Aに示すように、製品タイヤに近い形状の生タイヤ36をブラダーの無い加硫成形機38に装填し、タイヤ内部に直接気体を充填して膨張させると共に加熱を行い、加硫成形を行う。なお、本実施形態では、製品の空気入りタイヤ10のタイヤ幅方向中央部の外径は、加硫成形機38に装填する前の製品に近い形状の生タイヤ36の外径よりも3%拡径されている。
 以上の工程を経ることにより、インナーライナー16に残留張力が作用している本実施形態の空気入りタイヤ10が製造される。
Next, the manufacturing process of the pneumatic tire 10 of the present embodiment will be described below.
(1) A rubber sheet 34 having a predetermined thickness, which is to be the inner liner 16 of the pneumatic tire 10, is wound around the outer peripheral surface (not shown) of the cylindrical drum to form a cylindrical shape. At this time, one end portion and the other end portion in the drum circumferential direction of the rubber sheet 34 are overlapped to form a joint portion (see FIG. 4. Note that FIG. 4 shows the inner liner 16 of the pneumatic tire 10 after vulcanization. The cross-section of is schematically shown in FIG.
(2) Next, the cylindrical rubber sheet 34 is semi-vulcanized in a vulcanizer. The degree of semi-vulcanization is preferably 30% or more and 95% or less.
(3) The semi-vulcanized cylindrical rubber sheet 34 is mounted on the outer peripheral surface of the tire forming drum 32 (see FIG. 5).
(4) As shown in FIG. 5, on the cylindrical rubber sheet 34 mounted on the outer peripheral surface of the tire forming drum 32, a carcass, a bead core, a bead filler, a belt, a tread rubber, and a side rubber (all unvulcanized) Etc. to form a cylindrical green tire 36.
(5) As shown in FIG. 6, the inside of the green tire 36 is filled with gas and expanded on the tire forming drum 32, and both bead portions are made to approach each other, and finally, as shown in FIG. The raw tire 36 has a shape close to that of the product tire. In the present embodiment, the outer diameter of the central portion in the tire width direction of the green tire 36 after diameter expansion shown in FIG. 7 is greater than the outer diameter of the central portion in the tire width direction of the green tire 36 before diameter expansion shown in FIG. The diameter is also expanded by 60%.
(6) As shown in FIG. 3A, a green tire 36 having a shape close to that of a product tire is loaded into a bladder-free vulcanization molding machine 38, and the inside of the tire is directly filled with gas to expand and heat while being expanded. Perform molding. In the present embodiment, the outer diameter of the central portion in the tire width direction of the pneumatic tire 10 of the product is expanded by 3% as compared with the outer diameter of the green tire 36 having a shape close to the product before loading into the vulcanizing molding machine 38 It is diameter.
Through the above steps, the pneumatic tire 10 according to the present embodiment in which the residual tension acts on the inner liner 16 is manufactured.
(作用、効果)
 本実施形態の空気入りタイヤ10は、インナーライナー16に作用している残留張力(本実施形態では、タイヤ赤道面CL上での周方向の残留張力)が1~3N/mmの範囲内に設定されているので、走行中の径成長が抑えられ(残留張力を有するインナーライナー16が径方向内側に収縮する方向の力を出すため)、タイヤ10のタイヤ径方向外側部分の歪みが緩和されるため、トレッドゴム層22の溝25の溝底やベルト20の端部から生ずるクラックに対して有利になる。
(Action, effect)
In the pneumatic tire 10 of the present embodiment, the residual tension acting on the inner liner 16 (in the present embodiment, the residual tension in the circumferential direction on the tire equatorial plane CL) is set within a range of 1 to 3 N / mm Because of this, the radial growth during traveling is suppressed (because the force in the direction in which the inner liner 16 having the residual tension shrinks inward in the radial direction), and the distortion of the tire radial direction outer portion of the tire 10 is alleviated. Therefore, it is advantageous to the crack which arises from the slot bottom of slot 25 of tread rubber layer 22, or the end of belt 20.
 本実施形態の空気入りタイヤ10は、インナーライナー16に作用している残留張力が1~3N/mmの範囲内に設定されているので、半加硫したインナーライナー16を貼り付けた加硫前の製品タイヤに近い形状の生タイヤ36(図7参照)が変形すること、一例として、生タイヤ36のトレッド部が周方向に波打状に変形することを抑制できる。
 なお、生タイヤ36におけるトレッド部の変形は、インナーライナー16のセンター付近の周方向の残留張力の寄与が大きいので、空気入りタイヤ10のトレッド部10Bの裏面側のタイヤ赤道面CL上で残留張力を測定することが好ましい。
In the pneumatic tire 10 of the present embodiment, since the residual tension acting on the inner liner 16 is set in the range of 1 to 3 N / mm, before the vulcanization in which the semi-cured inner liner 16 is attached It is possible to suppress deformation of the green tire 36 (see FIG. 7) having a shape close to that of the product tire, and, as an example, deformation of the tread portion of the green tire 36 in the circumferential direction into a corrugated shape.
The residual tension in the circumferential direction near the center of the inner liner 16 largely contributes to deformation of the tread portion of the green tire 36, so residual tension on the tire equatorial plane CL on the back surface side of the tread portion 10B of the pneumatic tire 10 It is preferable to measure
 また、空気入りタイヤ10において、図4に示すように、インナーライナー16のジョイント部分16Aのゲージt1とインナーライナー16のジョイント部分16Aとは180度反対側の部分のゲージt2との比t1/t2を105~130%の範囲内に設定されていれば、生タイヤ36におけるジョイント部分16Aの周方向の両側に皺が発生することが抑制されると共に、製品でのトレッドゲージの不足を抑制することができる。 Further, in the pneumatic tire 10, as shown in FIG. 4, the ratio t1 / t2 of the gauge t1 of the joint portion 16A of the inner liner 16 and the gauge t2 of the portion on the opposite side by 180 degrees between the joint portion 16A of the inner liner 16 Is set within the range of 105% to 130%, the occurrence of wrinkles on both sides in the circumferential direction of the joint portion 16A of the green tire 36 is suppressed, and the shortage of the tread gauge in the product is suppressed. Can.
 本実施形態の空気入りタイヤ10のように、ジョイント部分16Aの周方向の重なり長さOLを、インナーライナー16の周方向長さの1~10%の範囲内に設定すれば、生タイヤにおけるジョイント割れの発生、及び製品のユニフォミティ不良を抑制することができる。 As in the pneumatic tire 10 of the present embodiment, when the overlap length OL of the joint portion 16A in the circumferential direction is set in the range of 1 to 10% of the circumferential length of the inner liner 16, the joint in the green tire is obtained. It is possible to suppress the occurrence of cracking and uniformity defects of the product.
 図3Bに示す本実施形態の空気入りタイヤ10のように、インナーライナー16の幅方向端が、ビードコア12の中心12Cよりもタイヤ径方向内側(矢印C方向側)に位置していれば、図3Aに示すように生タイヤ36を加硫成形機38に装填した際に、インナーライナー16の幅方向端部付近を加硫成形機38の上部リング60、及び下部リング62に密着させて生タイヤ36の内部を半加硫したインナーライナー16で密閉することが可能となり、タイヤ内を加硫成形に必要な圧力に設定することができる。なお、半加硫したゴム製のインナーライナー16は、気体の漏れを効果的に抑制することができ(未加硫のインナーライナー対比)、従来の加硫成形機のブラダーの代わりとして機能する。 If the width direction end of the inner liner 16 is located on the inner side in the tire radial direction (arrow C direction side) with respect to the center 12C of the bead core 12 as in the pneumatic tire 10 of the present embodiment shown in FIG. As shown in FIG. 3A, when the green tire 36 is loaded into the vulcanization molding machine 38, the widthwise end of the inner liner 16 is brought into close contact with the upper ring 60 and the lower ring 62 of the vulcanization molding machine 38 It is possible to seal the inside of 36 with the semi-vulcanized inner liner 16, and the pressure inside the tire can be set to the pressure required for vulcanization molding. The semi-vulcanized rubber inner liner 16 can effectively suppress the gas leakage (compared to the unvulcanized inner liner), and functions as a substitute for the bladder of a conventional vulcanizing machine.
 本実施形態の空気入りタイヤ10のように、インナーライナー16とカーカス14との剥離抗力を10N/mm以上に設定すれば、加硫前の製品に近い形状の生タイヤ36において、インナーライナー16とカーカス14との剥離を抑制することができる。 As in the pneumatic tire 10 of the present embodiment, if the peeling resistance between the inner liner 16 and the carcass 14 is set to 10 N / mm or more, in the green tire 36 having a shape close to the product before vulcanization, the inner liner 16 and Peeling with the carcass 14 can be suppressed.
 本実施形態の空気入りタイヤ10では、加硫成形時にインナーライナー16に接触するブラダーを用いていないので、ブラダーを用いて加硫成形した空気入りタイヤに比較して、インナーライナー16の内周面が滑らかになっている。 In the pneumatic tire 10 of the present embodiment, the inner peripheral surface of the inner liner 16 is not used as compared with a pneumatic tire that is molded by using a bladder, since a bladder that contacts the inner liner 16 at the time of vulcanization molding is not used. Is smooth.
[試験例1]
 インナーライナーに作用する残留張力の大きさの適正値を求めるために、インナーライナー、及び製造条件の異なる複数の供試タイヤ(タイヤ1~4)を製造し、評価を行った。
[Test Example 1]
In order to determine an appropriate value of the magnitude of the residual tension acting on the inner liner, the inner liner and a plurality of test tires (tires 1 to 4) having different manufacturing conditions were manufactured and evaluated.
(空気入りタイヤの仕様)
 以下にタイヤ1~4の仕様を説明する。
 先ず最初に、タイヤ1~4の共通の構造について説明する。タイヤ1~4は、図1に示すラジアル構造の空気入りタイヤである。
 タイヤサイズ:205/65 R16 NXTZ
 カーカス:プライ数は1枚。厚さは1.39mm。コードの材質はPET。コードの径は0.66mm(構造:2本撚り)。コードの打ち込み数は580本。
 ベルト:厚さは0.86mm。コードの材質はスチール。コードの径は0.66mm。コードの打ち込み数は90本、コードの傾斜角度は68°。
 トレッド:ゲージは平均で13.8mm。
(Specification of pneumatic tire)
The specifications of the tires 1 to 4 will be described below.
First, the common structure of the tires 1 to 4 will be described. The tires 1 to 4 are pneumatic tires having a radial structure shown in FIG.
Tire size: 205/65 R16 NKTZ
Carcass: 1 ply. The thickness is 1.39 mm. The material of the cord is PET. The diameter of the cord is 0.66 mm (structure: 2 twists). The number of code inputs is 580.
Belt: Thickness is 0.86 mm. The material of the cord is steel. The diameter of the cord is 0.66 mm. The number of cords driven is 90, and the angle of inclination of the cord is 68 °.
Tread: The gauge is 13.8 mm on average.
 タイヤ1:加硫度0%(未加硫)の厚さ1.0mmのインナーライナー用ゴムシートを用いて製造した生タイヤを、ブラダーを用いない加硫成形機で加硫した空気入りタイヤ。製品のインナーライナーの残留張力は0.3N/mm。 Tire 1: A pneumatic tire obtained by vulcanizing a green tire manufactured using a rubber sheet for an inner liner having a degree of vulcanization of 0% (unvulcanized) and a thickness of 1.0 mm with a vulcanizing machine that does not use a bladder. The residual tension of the product inner liner is 0.3 N / mm.
 タイヤ2:加硫度90%の厚さ1.0mmのインナーライナー用ゴムシートを用いて製造した生タイヤを、ブラダーを用いない加硫成形機で加硫した空気入りタイヤ。製品のインナーライナーの残留張力は1.3N/mm。 Tire 2: A pneumatic tire obtained by vulcanizing a green tire manufactured using a rubber sheet for an inner liner having a degree of vulcanization of 90% and a thickness of 1.0 mm using a vulcanizing machine that does not use a bladder. The residual tension of the product inner liner is 1.3 N / mm.
 タイヤ3:加硫度90%の厚さ2.0mmのインナーライナー用ゴムシートを用いて製造した生タイヤを、ブラダーを用いない加硫成形機で加硫した空気入りタイヤ。製品のインナーライナーの残留張力は2.6N/mm。 Tire 3: A pneumatic tire obtained by vulcanizing a green tire manufactured using a rubber sheet for an inner liner having a degree of vulcanization of 90% and a thickness of 2.0 mm using a vulcanizing machine that does not use a bladder. The residual tension of the product inner liner is 2.6 N / mm.
 タイヤ4:加硫度90%の厚さ2.5mmのインナーライナー用ゴムシートを用いて製造した生タイヤを、ブラダーを用いない加硫成形機で加硫成形した空気入りタイヤ。製品のインナーライナーの残留張力は3.3N/mm。 Tire 4: A pneumatic tire obtained by vulcanizing a green tire manufactured using a rubber sheet for an inner liner having a degree of vulcanization of 90% and a thickness of 2.5 mm using a vulcanizing machine that does not use a bladder. The residual tension of the product inner liner is 3.3 N / mm.
 上記タイヤ1~4におけるインナーライナーの残留張力は、タイヤ赤道面上におけるタイヤ周方向の残留張力である。
 試験は、製造された生タイヤの外観を目視して生タイヤの変形を観察すると共に、加硫成形した製品を切断して、インナーライナーのジョイント部分の段付き量(単位mm。図4参照。)を測定した。
The residual tension of the inner liner in the tires 1 to 4 is residual tension in the circumferential direction of the tire on the equatorial plane of the tire.
In the test, the appearance of the manufactured green tire is visually observed to observe the deformation of the green tire, and the vulcanized molded product is cut to obtain the stepped amount of the joint portion of the inner liner (unit: mm, see FIG. 4). Was measured.
 試験の結果は以下の通りであった。
 タイヤ1は、生タイヤに変形は見られなかったが、製品タイヤにおいて、インナーライナーのジョイント部分の段付き量が1.2mmとなり、1.0mm以下に抑えることができなかった。
 タイヤ2は、生タイヤに変形は見られなかった。製品タイヤにおいて、インナーライナーのジョイント部分の段付き量が1.1mmであった。
 タイヤ3は、生タイヤに変形は見られなかった。製品タイヤにおいて、インナーライナーのジョイント部分の段付き量が0.35mmであり、1.0mm以下に抑えることができた。 
 タイヤ4は、タイヤ成形ドラムから生タイヤを外すと、インナーライナーの残留張力が大き過ぎた結果、トレッドが周方向に波打つように変形してしまった。
The results of the test were as follows.
In the tire 1, no deformation was found in the green tire, but in the product tire, the shouldered amount of the joint portion of the inner liner was 1.2 mm, and could not be suppressed to 1.0 mm or less.
In the tire 2, no deformation was observed in the green tire. In the product tire, the stepped amount of the joint portion of the inner liner was 1.1 mm.
In the tire 3, no deformation was observed in the green tire. In the product tire, the step amount of the joint portion of the inner liner was 0.35 mm and could be suppressed to 1.0 mm or less.
When the green tire was removed from the tire forming drum, as a result of the residual tension of the inner liner being too large, the tire 4 was deformed so that the tread was corrugated in the circumferential direction.
 上記の試験結果を纏めたものが図8に示したグラフであり、このグラフから、製品の空気入りタイヤ10において、インナーライナー16の残留張力が1~3N/mmの範囲内に抑えられていれば、生タイヤ36の変形を抑制でき、かつカーカス14の段付き量も抑えられることが分かる。 The above test results are summarized in the graph shown in FIG. 8. From this graph, in the pneumatic tire 10 of the product, the residual tension of the inner liner 16 is suppressed within the range of 1 to 3 N / mm. For example, it is understood that the deformation of the green tire 36 can be suppressed, and the step amount of the carcass 14 can also be suppressed.
 また、製品の空気入りタイヤ10において、インナーライナー16のジョイント部分16Aの段差量を1.0mm以下に抑えるためには、インナーライナー16の残留張力を2.3(N/mm)よりも大きくする必要があることが分かる。 Further, in the pneumatic tire 10 of the product, in order to suppress the step amount of the joint portion 16A of the inner liner 16 to 1.0 mm or less, the residual tension of the inner liner 16 is made larger than 2.3 (N / mm) I know it is necessary.
[試験例2]
 また、試験例1とは別の観点からインナーライナーに作用する残留張力の大きさの適正値を求めるために、インナーライナー、及び製造条件の異なる複数の供試タイヤ(タイヤ1~5)を製造し、評価を行った。
[Test Example 2]
In addition, in order to obtain an appropriate value of the magnitude of the residual tension acting on the inner liner from the viewpoint different from that of Test Example 1, the inner liner and a plurality of test tires (tires 1 to 5) having different manufacturing conditions are manufactured. And evaluated.
(空気入りタイヤの仕様)
 以下にタイヤ1~5の仕様を説明する。
 タイヤ1~4は、前述した試験例1と同一仕様のものである。
 タイヤ5:加硫度51%の厚さ1mmのインナーライナー用ゴムシートを用いて製造した生タイヤを、ブラダーを用いない加硫成形機で加硫した空気入りタイヤ。製品のインナーライナーの残留張力は0.8N/mm。
(Specification of pneumatic tire)
The specifications of the tires 1 to 5 will be described below.
The tires 1 to 4 have the same specifications as those of the test example 1 described above.
Tire 5: A pneumatic tire obtained by vulcanizing a green tire manufactured using a rubber sheet for an inner liner having a degree of vulcanization of 51% and a thickness of 1 mm with a vulcanizing machine that does not use a bladder. The residual tension of the product inner liner is 0.8 N / mm.
 試験は、製造された生タイヤを加硫成形した製品を切断し、タイヤ1本当たりのエア入り量(タイヤのゴム中に形成されたエア溜まりの容積:cm)を測定すると共に、RRO測定機にてRRO(Radial Run out:単位mm)を測定した。 In the test, a product obtained by vulcanizing and molding a manufactured green tire is cut, and the amount of air contained per tire (volume of air pool formed in the rubber of the tire: cm 2 ) is measured, and RRO measurement is performed. The RRO (Radial Run out: unit mm) was measured on the machine.
Figure JPOXMLDOC01-appb-T000001

 試験の結果から、インナーライナー16の残留張力が1~3N/mmの範囲内、好ましくは1.3~2.6N/mmに抑えられていれば、生タイヤ36のエア入りを抑制でき、かつRROの少ないユニフォミティに優れたタイヤを製造できることが分かる。
Figure JPOXMLDOC01-appb-T000001

According to the results of the test, if the residual tension of the inner liner 16 is suppressed within the range of 1 to 3 N / mm, preferably 1.3 to 2.6 N / mm, the inclusion of air in the green tire 36 can be suppressed, and It can be seen that a tire excellent in uniformity with less RRO can be manufactured.
[試験例3]
 製品タイヤにおけるインナーライナーのジョイント部分のゲージt1と、インナーライナーのジョイント部分とは反対側の部分のゲージt2との比t1/t2が変わるように製造条件を変えて生タイヤを製造する。比t1/t2が変わるように、製品タイヤのインナーライナーとなる厚さが1.0mmの未加硫のゴムシートのジョイントとなる部分の厚さを、予め厚く、または薄くした状態で、ドラムの外周面に巻き付けて円筒状に形成し、加硫缶の中で約145℃で約30分加硫し、半加硫のインナーライナーを得る。
 製品タイヤにおける比t1/t2と、生タイヤの変形と、トレッドゲージとの3者の関係を調べた。
Figure JPOXMLDOC01-appb-T000002
[Test Example 3]
A green tire is manufactured by changing manufacturing conditions so that the ratio t1 / t2 of the gauge t1 of the joint portion of the inner liner in the product tire and the gauge t2 of the portion on the opposite side to the joint portion of the inner liner changes. In order to change the ratio t1 / t2, the thickness of the joint portion of the unvulcanized rubber sheet of 1.0 mm in thickness, which will be the inner liner of the product tire, is made in advance in the drum It is wound around the outer peripheral surface to be formed into a cylindrical shape, and is vulcanized in a vulcanizer at about 145 ° C. for about 30 minutes to obtain a semi-vulcanized inner liner.
The relationship between the ratio t1 / t2 of the product tire, the deformation of the green tire, and the tread gauge was examined.
Figure JPOXMLDOC01-appb-T000002
 試験の結果、比t1/t2が100とされたタイヤ1は、生タイヤの状態で、ジョイント部分の周方向の両側に皺が発生していたものであった。また、比t1/t2が135とされた製品の状態のタイヤ4は、ジョイント部分のタイヤ径方向外側のトレッドゲージが不足していた。
 なお、トレッドゲージが不足と判断される基準は、ジョイント部分のトレッドゲージが、ジョイント部分以外のトレッドゲージと比べて、実寸法で-0.5mm以上となる場合である。
As a result of the test, in the tire 1 in which the ratio t1 / t2 was set to 100, wrinkles were generated on both sides in the circumferential direction of the joint portion in the state of a green tire. Further, the tire 4 in the product state in which the ratio t1 / t2 is set to 135 is insufficient in the tread gauge on the outer side in the tire radial direction of the joint portion.
The standard for judging that the tread gauge is insufficient is that the tread gauge at the joint portion is -0.5 mm or more in actual dimension as compared with the tread gauge at other than the joint portion.
 上記試験の結果から、比t1/t2が105~130%の範囲内に設定されていれば、生タイヤの状態でジョイント部分の周方向の両側に皺が発生することが抑制され、製品においてはインナーライナーのジョイント部分のタイヤ径方向外側のトレッドゲージの不足(周方向のゲージのムラの原因)を抑制できることが分かる。 From the above test results, if the ratio t1 / t2 is set in the range of 105 to 130%, generation of wrinkles on both sides in the circumferential direction of the joint portion in the state of a green tire is suppressed, and in the product It can be seen that the shortage of the tread gauge on the outer side in the tire radial direction of the joint portion of the inner liner (the cause of the unevenness of the circumferential gauge) can be suppressed.
[試験例4]
 インナーライナーの重なり長さを種々変更したタイヤを4種類試作し、ジョイント割れの有無、及びユニフォミティ不良の発生の有無を調べた。
 なお、ここでの「重なり長さ」とは、タイヤ赤道面上で、タイヤ周方向に測定したジョイント部分の長さとインナーライナーのタイヤ周方向長さとの比(%)である。
 ジョイント割れは、タイヤ成形ドラムから生タイヤを取り外し、製品タイヤに近い形状の生タイヤにおいて、インナーライナーのジョイント部分に周方向に離間した部分があるか否かを目視にて調べた。
 ユニフォミティ不良:リム幅8インチ、内圧180kPa、荷重5170Nの条件で測定した。評価は、RFV値が+10%増加で不良と判断した。 
Figure JPOXMLDOC01-appb-T000003
[Test Example 4]
Four types of tires with various changes in the overlap length of the inner liner were made, and the presence or absence of joint cracking and the occurrence of uniformity defects were examined.
In addition, "overlap length" here is ratio (%) of the length of the joint part measured to the tire circumferential direction on the tire equatorial plane and the tire circumferential direction length of an inner liner.
For joint cracking, the green tire was removed from the tire forming drum, and in the green tire having a shape close to that of the product tire, it was visually examined whether or not there is a circumferentially spaced portion in the joint portion of the inner liner.
Uniformity defect: Measured under conditions of rim width 8 inches, internal pressure 180 kPa, load 5170 N. In the evaluation, it was judged that the RFV value was defective with a + 10% increase.
Figure JPOXMLDOC01-appb-T000003
 試験の結果から、ジョイント割れが無く、ユニフォミティ不良の無い製品を得るには、インナーライナーのジョイント部分における重なり長さ(タイヤ周方向に測定)をタイヤ赤道面上で測定したインナーライナーの周方向長さ(内周面で測定)の1%~10%の範囲内にすればよいことが分かる。 From the test results, in order to obtain a product without joint cracking and uniformity defects, the circumferential length of the inner liner measured on the equatorial plane of the overlap length (measured in the tire circumferential direction) at the joint portion of the inner liner It can be seen that it may be in the range of 1% to 10% of the height (measured on the inner circumferential surface).
[試験例5]
 製造条件を変えて生タイヤを製造した。製品タイヤのインナーライナーとなる未加硫のゴムシートをドラムの外周面に巻き付けて円筒状に形成し、加硫缶の中で一定温度で時間を変えることで、加硫程度を変え、半加硫(加硫度90%)、完全加硫(加硫度100%)のインナーライナーを得た。
 製造された生タイヤにおいてインナーライナーとカーカスとの間に剥離が生じたか否かを調べると共に、該生タイヤを加硫成形して得られた製品タイヤにおけるインナーライナーとカーカスとの剥離抗力を調べた。
 剥離抗力:タイヤサイド部から試験片を切り出す。試験片の片側につかみ部としてインナーライナーとカーカスとの間に切り込みを50mm程度入れる。剥離するインナーライナー側を上側クランプに、剥離されるカーカス側を下側クランプに取り付け、一定の引張速度で剥離する。引張速度:50±2.5mm/min。
Figure JPOXMLDOC01-appb-T000004
[Test Example 5]
The production conditions were changed to produce a green tire. An unvulcanized rubber sheet to be the inner liner of a product tire is wound around the outer peripheral surface of a drum to form a cylindrical shape, and by changing the time at a constant temperature in a vulcanized can, the degree of vulcanization is changed to half cure. An inner liner of vulcanization (90% vulcanization) and complete vulcanization (100% vulcanization) was obtained.
While investigating whether peeling occurred between the inner liner and the carcass in the manufactured green tire, the peeling resistance between the inner liner and the carcass in the product tire obtained by vulcanizing and molding the green tire was investigated. .
Peeling resistance: Cut a test piece from the tire side. Make a notch of about 50 mm between the inner liner and the carcass as a grip on one side of the test piece. The inner liner side to be peeled is attached to the upper clamp, and the carcass side to be peeled is attached to the lower clamp, and peeling is performed at a constant tensile speed. Tensile speed: 50 ± 2.5 mm / min.
Figure JPOXMLDOC01-appb-T000004
 試験の結果から、製品のタイヤにおいてインナーライナーとカーカスとの剥離抗力が10N/mm以上となるようにすれば、生タイヤを製造したときに、未加硫のカーカスと残留張力を有する半加硫のインナーライナーとの剥離を抑制できることが分かる。即ち、製品タイヤの上記剥離抗力を調べることで、生タイヤの製造条件が適正であったか否かを間接的に知ることができる。 According to the test results, if the peel resistance between the inner liner and the carcass is 10 N / mm or more in the product tire, semi-vulcanized rubber having unvulcanized carcass and residual tension when producing a green tire It can be seen that peeling of the inner liner of the That is, it is possible to indirectly know whether or not the manufacturing conditions of the green tire were appropriate by examining the peeling resistance of the product tire.
[その他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
Other Embodiments
As mentioned above, although one Embodiment of this invention was described, this invention is not limited above, Of course, it can be variously deformed and implemented in the range which does not deviate from the main point other than the above. It is.
 上記実施形態では、生タイヤ36を製造する際に、一定厚さのゴムシートで半加硫のインナーライナー16を形成したが、インナーライナー16は一定厚さに限らず、部位毎に厚さが異なっていてもよい。例えば、空気入りタイヤ10のビード部10Aに対応する部分の厚さを薄く、トレッド部10Bに対応するタイヤ赤道面両側に対応する部分の厚さを厚くしてもよい。例えば、インナーライナーのビード部分~サイド部分を厚く、トレッド部分を薄くすると、空気入りタイヤのビード~サイド部のゲージを薄くでき、タイヤの軽量化が可能となる。 In the above embodiment, when manufacturing the green tire 36, the semi-vulcanized inner liner 16 is formed of a rubber sheet of a fixed thickness, but the inner liner 16 is not limited to a fixed thickness, but the thickness is It may be different. For example, the thickness of the portion corresponding to the bead portion 10A of the pneumatic tire 10 may be reduced, and the thickness of the portion corresponding to both sides of the tire equatorial plane corresponding to the tread portion 10B may be increased. For example, if the bead portion to the side portion of the inner liner is thick and the tread portion is thin, the gauge of the bead to the side portion of the pneumatic tire can be thin, and the weight of the tire can be reduced.
 また、製品である空気入りタイヤ10のインナーライナー16において、トレッド部10Bに対応するタイヤ赤道面両側に対応する部分のモジュラスが、ビード部10Aに対応する部分のモジュラスよりも大きくなっていてもよい。例えば、インナーライナーのビード部分~サイド部分のモジュラスを大きく、トレッド部分のモジュラスを小さくすると、空気入りタイヤのビード~サイド部のゲージを薄くでき、タイヤの軽量化が可能となる。 Further, in the inner liner 16 of the pneumatic tire 10 which is a product, the modulus of the portion corresponding to both sides of the tire equatorial plane corresponding to the tread portion 10B may be larger than the modulus of the portion corresponding to the bead portion 10A. . For example, if the modulus of the bead portion to the side portion of the inner liner is increased and the modulus of the tread portion is decreased, the gauge of the bead to the side portion of the pneumatic tire can be thinned, and the weight of the tire can be reduced.
 本実施形態のインナーライナー16は、ゴム製であったが、ゴム中に熱可塑性の合成樹脂等のゴム以外の他の材料が含まれていてもよく、合成樹脂のフィルム等が貼り付けられていても良い。 The inner liner 16 of this embodiment is made of rubber, but the rubber may contain other materials other than rubber, such as thermoplastic synthetic resin, and a synthetic resin film or the like is attached. It is good.
 本発明は、乗用車用に限らず、乗用車用以外の空気入りタイヤにも適用できる。 The present invention is applicable not only to passenger cars but also to pneumatic tires other than passenger cars.
 2017年12月13日に出願された日本国特許出願2017-238586号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載されたすべての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2017-238586, filed December 13, 2017, is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are as specific and distinct as when individual documents, patent applications, and technical standards are incorporated by reference. Incorporated herein by reference.
 10…空気入りタイヤ、10A…ビード部、12…ビードコア、14…カーカス、16…インナーライナー、16A…ジョイント部分 DESCRIPTION OF SYMBOLS 10 ... Pneumatic tire, 10A ... Bead part, 12 ... Bead core, 14 ... Carcass, 16 ... Inner liner, 16A ... Joint part

Claims (5)

  1.  一方のビード部から他方のビード部へ延びて端部がビードコアに係止されるカーカスと、
     前記カーカスの内周面に貼り付けられ、周方向の一方側の端部と他方側の端部とが重ねられたジョイント部分を備え、内部に作用している残留張力が1~3N/mmの範囲内とされたインナーライナーと、
     を有する空気入りタイヤ。
    A carcass extending from one bead portion to the other bead portion and having its end engaged with the bead core;
    The joint portion is attached to the inner circumferential surface of the carcass, and one end of the circumferential direction is overlapped with the other end, and the residual tension applied to the inside is 1 to 3 N / mm. With the inner liner, which was considered to be in range
    Having a pneumatic tire.
  2.  前記インナーライナーの前記ジョイント部分のゲージをt1、前記インナーライナーの前記ジョイント部分とは反対側の部分のゲージをt2としたときに、t1/t2の比が105~130%の範囲内に設定されている、請求項1に記載の空気入りタイヤ。 Assuming that the gauge of the joint portion of the inner liner is t1 and the gauge of the portion of the inner liner opposite to the joint portion is t2, the ratio of t1 / t2 is set in the range of 105 to 130%. The pneumatic tire according to claim 1.
  3.  タイヤ赤道面上において、前記ジョイント部分の周方向の重なり長さは、前記インナーライナーの周方向長さの1~10%の範囲内に設定されている、請求項1または請求項2に記載の空気入りタイヤ。 The circumferential overlapping length of the joint portion on the tire equatorial plane is set within a range of 1 to 10% of the circumferential length of the inner liner. Pneumatic tire.
  4.  前記インナーライナーの幅方向端は、前記ビードコアの中心よりもタイヤ径方向内側に位置している、請求項1~請求項3の何れか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the widthwise end of the inner liner is positioned on the inner side in the tire radial direction than the center of the bead core.
  5.  前記インナーライナーと前記カーカスとの剥離抗力が、10N/mm以上に設定されている、請求項1~請求項4の何れか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 4, wherein a peeling resistance between the inner liner and the carcass is set to 10 N / mm or more.
PCT/JP2018/027381 2017-12-13 2018-07-20 Pneumatic tire WO2019116627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019558893A JP7063917B2 (en) 2017-12-13 2018-07-20 Pneumatic tires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-238586 2017-12-13
JP2017238586 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019116627A1 true WO2019116627A1 (en) 2019-06-20

Family

ID=66819602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027381 WO2019116627A1 (en) 2017-12-13 2018-07-20 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP7063917B2 (en)
WO (1) WO2019116627A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105578A (en) * 1977-02-25 1978-09-13 Yokohama Rubber Co Ltd Method for making pneumatic tire
JPS61118205A (en) * 1984-11-15 1986-06-05 Bridgestone Corp Preventing method of flow of rubber between adjoining rubber components
US6964719B1 (en) * 1999-10-18 2005-11-15 The Goodyear Tire & Rubber Company Process for manufacturing tires
JP2008024215A (en) * 2006-07-24 2008-02-07 Bridgestone Corp Inner liner for pneumatic tire, and pneumatic tire having the same
JP2008126727A (en) * 2006-11-17 2008-06-05 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2011074142A (en) * 2009-09-29 2011-04-14 Bridgestone Corp Rubber composition and manufacturing method therefor, inner liner, and pneumatic tire
US20110146869A1 (en) * 2009-12-18 2011-06-23 Ramendra Nath Majumdar Pneumatic tire having a built-in seamless polyurethane sealant layer and preparation thereof
JP2014507319A (en) * 2010-12-30 2014-03-27 コーロン インダストリーズ インク Film for tire inner liner and method for producing the same
US20170313132A1 (en) * 2014-12-19 2017-11-02 Exxonmobil Chemical Patents Inc. Expansible Barrier Film Assemblies

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105578A (en) * 1977-02-25 1978-09-13 Yokohama Rubber Co Ltd Method for making pneumatic tire
JPS61118205A (en) * 1984-11-15 1986-06-05 Bridgestone Corp Preventing method of flow of rubber between adjoining rubber components
US6964719B1 (en) * 1999-10-18 2005-11-15 The Goodyear Tire & Rubber Company Process for manufacturing tires
JP2008024215A (en) * 2006-07-24 2008-02-07 Bridgestone Corp Inner liner for pneumatic tire, and pneumatic tire having the same
JP2008126727A (en) * 2006-11-17 2008-06-05 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2011074142A (en) * 2009-09-29 2011-04-14 Bridgestone Corp Rubber composition and manufacturing method therefor, inner liner, and pneumatic tire
US20110146869A1 (en) * 2009-12-18 2011-06-23 Ramendra Nath Majumdar Pneumatic tire having a built-in seamless polyurethane sealant layer and preparation thereof
JP2014507319A (en) * 2010-12-30 2014-03-27 コーロン インダストリーズ インク Film for tire inner liner and method for producing the same
US20170313132A1 (en) * 2014-12-19 2017-11-02 Exxonmobil Chemical Patents Inc. Expansible Barrier Film Assemblies

Also Published As

Publication number Publication date
JP7063917B2 (en) 2022-05-09
JPWO2019116627A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
TW436434B (en) Elastomeric innerliner, methods of manufacturing an elastomeric innerliner, method of manufacturing a tubeless, pneumatic tire, and a method of retreading a tire
JP6035433B2 (en) Manufacturing method of tire vulcanizing bladder
US2625981A (en) Method of making pneumatic tires
US6740280B1 (en) Tire construction method for improving tire uniformity
JP4114710B2 (en) Pneumatic tire manufacturing method
JP5016088B2 (en) Tire manufacturing method
US6651716B1 (en) Method and tire adapted for post cure tire uniformity correction
JP2018099850A (en) Method for manufacturing pneumatic tire
US4178198A (en) Method and apparatus for treading tires
JP5787732B2 (en) Tire vulcanizing bladder
US6673184B1 (en) Tire and method for correcting tire uniformity thereof
WO2019116627A1 (en) Pneumatic tire
JP5533704B2 (en) Pneumatic tire and manufacturing method thereof
JP2008093952A (en) Manufacturing method of pneumatic tire
JP2001212888A (en) Method of forming green tire
EP1226043B1 (en) Improvements in bead construction
US7189298B1 (en) Hot forming system to produce pre-cured innerliners
CN106488838B (en) Rigid stiffener rings and the tire curing method for using the rigidity stiffener rings
JP5056440B2 (en) Pneumatic tire manufacturing method and pneumatic tire
US1462452A (en) Method of manufacturing pneumatic tires and the like
US20210122127A1 (en) Tire manufacturing method
EP1226023B1 (en) An improved process for manufacturing tires
JP2001269945A (en) Tire and manufacturing method therefor
JP6024697B2 (en) Pneumatic tire manufacturing method
JPH04261836A (en) Manufacture of pneumatic type

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558893

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888748

Country of ref document: EP

Kind code of ref document: A1