WO2019116569A1 - 光学系、光学機器、および光学系の製造方法 - Google Patents

光学系、光学機器、および光学系の製造方法 Download PDF

Info

Publication number
WO2019116569A1
WO2019116569A1 PCT/JP2017/045189 JP2017045189W WO2019116569A1 WO 2019116569 A1 WO2019116569 A1 WO 2019116569A1 JP 2017045189 W JP2017045189 W JP 2017045189W WO 2019116569 A1 WO2019116569 A1 WO 2019116569A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
conditional expression
optical system
object side
lens group
Prior art date
Application number
PCT/JP2017/045189
Other languages
English (en)
French (fr)
Inventor
雅史 山下
智希 伊藤
洋 籔本
山本 浩史
哲史 三輪
啓介 坪野谷
歩 槇田
健 上原
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201780097710.2A priority Critical patent/CN111465881B/zh
Priority to JP2019558859A priority patent/JP6981478B2/ja
Priority to PCT/JP2017/045189 priority patent/WO2019116569A1/ja
Priority to US16/771,672 priority patent/US20210191112A1/en
Publication of WO2019116569A1 publication Critical patent/WO2019116569A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/005Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for correction of secondary colour or higher-order chromatic aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1425Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being negative
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • G02B15/143105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape

Definitions

  • the present invention relates to an optical system, an optical apparatus, and a method of manufacturing an optical system.
  • the imaging lens provided in an imaging apparatus using such an imaging element has good chromatic aberration so that the color of the image is not blurred in the white light source It is desirable that the lens be corrected to have a high resolution. In particular, in the correction of the chromatic aberration, in addition to the first-order achromatism, it is desirable that the second-order spectrum be well corrected.
  • the optical system according to the first aspect has a lens that satisfies the following conditional expression.
  • ndLZ refractive index of the lens to d-line
  • ⁇ dLZ Abbe number ⁇ gFLZ based on the d-line of the lens: partial dispersion ratio of the lens, wherein the refractive index of the lens to g-line is ngLZ, the lens
  • ⁇ gFLZ (ngLZ-nFLZ) / (nFLZ-nCLZ) defined by the following equation
  • An optical apparatus includes the above optical system.
  • each lens is disposed in the lens barrel so as to have a lens satisfying the following conditional expression.
  • ndLZ refractive index of the lens to d-line
  • ⁇ dLZ Abbe number ⁇ gFLZ based on the d-line of the lens: partial dispersion ratio of the lens, wherein the refractive index of the lens to g-line is ngLZ, the lens
  • ⁇ gFLZ (ngLZ-nFLZ) / (nFLZ-nCLZ) defined by the following equation
  • FIG. 5 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the first example. It is a lens block diagram in the infinite point focusing state of the optical system concerning 2nd Example.
  • FIGS. 4A, 4B, and 4C respectively show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the second embodiment.
  • FIG. 7 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the third example.
  • FIGS. 8A, 8B, and 8C respectively show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the fourth embodiment.
  • FIG. It is a lens block diagram in the infinite point focusing state of the optical system which concerns on 5th Example.
  • 10 (A), 10 (B), and 10 (C) show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the fifth embodiment, respectively.
  • FIG. It is a lens block diagram in the infinite point focusing state of the optical system which concerns on 6th Example.
  • FIG. 13 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the sixth example. It is a lens block diagram in the infinite point focusing state of the optical system which concerns on 7th Example.
  • FIG. 18 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the seventh example. It is a figure showing composition of a camera provided with an optical system concerning this embodiment. It is a flowchart which shows the manufacturing method of the optical system which concerns on this embodiment.
  • the camera 1 is a digital camera provided with an optical system according to the present embodiment as a photographing lens 2 as shown in FIG.
  • the camera 1 light from an object (a subject) (not shown) is collected by the photographing lens 2 and reaches the image pickup element 3.
  • the imaging device 3 light from the subject is captured by the imaging device 3 and recorded as a subject image in a memory (not shown).
  • the camera may be a mirrorless camera or a single-lens reflex camera having a quick return mirror.
  • An optical system LS (1) as an example of the optical system (shooting lens) LS according to the present embodiment is a lens (L22, L33) satisfying the following conditional expressions (1) to (2) as shown in FIG. )have.
  • a lens that satisfies the conditional expressions (1) and (2) may be referred to as a specific lens.
  • ndLZ refractive index to d-line of specific lens
  • ddLZ Abbe number based on d-line of specific lens
  • ⁇ gFLZ partial dispersion ratio of specific lens, where the refractive index for g-line of specific lens is ngLZ, specific lens
  • ⁇ gFLZ (ngLZ-nFLZ) / (nFLZ-nCLZ) defined by the following equation
  • the optical system LS according to the present embodiment may be the optical system LS (2) shown in FIG. 3, the optical system LS (3) shown in FIG. 5, or the optical system LS (4) shown in FIG.
  • the optical system LS according to the present embodiment may be the optical system LS (5) shown in FIG. 9, the optical system LS (6) shown in FIG. 11, or the optical system LS (7) shown in FIG. .
  • Conditional expression (1) defines an appropriate relationship between the refractive index for the d-line of the specific lens and the Abbe number based on the d-line.
  • the corresponding value of the conditional expression (1) exceeds the upper limit value, for example, the Petzval sum becomes small, which is not preferable because correction of curvature of field becomes difficult.
  • the upper limit value of the conditional expression (1) it is preferable to set the upper limit value of the conditional expression (1) to 2.10, 2.09, 2.08, 2.07, and further 2.06.
  • conditional expression (2) appropriately defines the anomalous dispersion of the specific lens. By satisfying conditional expression (2), it is possible to properly correct the secondary spectrum in addition to the first-order achromatism in the correction of the chromatic aberration.
  • conditional expression (2) When the corresponding value of the conditional expression (2) falls below the lower limit value, the anomalous dispersion of the specific lens becomes small, and it becomes difficult to correct the chromatic aberration.
  • the lower limit value of conditional expression (2) By setting the lower limit value of conditional expression (2) to 0.704, the effect of the present embodiment can be made more reliable.
  • Conditional expression (3) defines an appropriate range of the Abbe number based on the d-line of the specific lens. By satisfying conditional expression (3), correction of reference aberrations such as spherical aberration and coma aberration and correction (achromatization) of first-order chromatic aberration can be favorably performed.
  • the corresponding value of the conditional expression (3) exceeds the upper limit value, for example, correction of axial chromatic aberration becomes difficult in a partial group on the object side or the image side of the aperture stop S, which is not preferable.
  • the upper limit value of the conditional expression (3) is set to 32.0, 31.5, 31.0, 30.5, 30.0, and further 29.5. Is preferred.
  • the specific lens may satisfy the following conditional expression (3-1). 18.0 ⁇ dLZ ⁇ 35.0 (3-1)
  • the conditional expression (3-1) is the same expression as the conditional expression (3), and by satisfying the conditional expression (3-1), the correction of the reference aberration such as the spherical aberration and the coma aberration, and the first-order Correction of chromatic aberration (chromatism) can be performed satisfactorily.
  • the upper limit value of the conditional expression (3-1) is set to 32.0, 31.5, 31.0, 30.5, 30.0, and further 29.5. It is preferable to do.
  • the lower limit value of conditional expression (3-1) is set to 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26. It is preferable to set it as .0, 26.5, 27.0, 27.5, and further 27.7.
  • the specific lens satisfies the following conditional expression (4). 1.83 ⁇ nd LZ + (0.00 787 x d d LZ) (4)
  • Conditional expression (4) defines an appropriate relationship between the refractive index for the d-line of the specific lens and the Abbe number based on the d-line.
  • conditional expression (4) When the corresponding value of the conditional expression (4) falls below the lower limit value, for example, the refractive index of the specific lens decreases, which makes it difficult to correct the reference aberration, particularly the spherical aberration, which is not preferable.
  • the lower limit value of conditional expression (4) By setting the lower limit value of conditional expression (4) to 1.84, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (4) to 1.85, further 1.86.
  • Conditional expression (5) defines an appropriate range of the refractive index for the d-line of the specific lens.
  • various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and lateral chromatic aberration) can be corrected well.
  • conditional expression (5) If the corresponding value of the conditional expression (5) falls below the lower limit value, it becomes difficult to correct various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and lateral chromatic aberration), which is not preferable.
  • the lower limit value of conditional expression (5) By setting the lower limit value of conditional expression (5) to 1.58, the effect of the present embodiment can be made more reliable.
  • the lower limit value of conditional expression (5) should be set to 1.60, 1.62, 1.65, 1.68, 1.70 and further 1.72. Is preferred.
  • the specific lens satisfy the following conditional expression (6).
  • DLZ thickness on the optical axis of a specific lens [mm]
  • Condition (6) defines an appropriate range of the thickness on the optical axis of the specific lens.
  • various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and lateral chromatic aberration) can be corrected well.
  • conditional expression (6) If the corresponding value of the conditional expression (6) falls below the lower limit value, it becomes difficult to correct various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and lateral chromatic aberration), which is not preferable.
  • the lower limit value of conditional expression (6) By setting the lower limit value of conditional expression (6) to 0.90, the effect of the present embodiment can be made more reliable.
  • conditional expression (5-1) is the same expression as the conditional expression (5), and by satisfying the conditional expression (5-1), various aberrations such as coma and chromatic aberration (axial chromatic aberration and lateral chromatic aberration) Can be corrected well.
  • conditional expression (5-1) By setting the upper limit value of conditional expression (5-1) to 1.62, the effect of the present embodiment can be made more reliable.
  • Conditional expression (7) defines an appropriate relationship between the refractive index for the d-line of the specific lens and the Abbe number based on the d-line.
  • the upper limit value of conditional expression (7) should be 39.500, 39,000, 38.500, 38.000, 37.500, and further 36.800. Is preferred.
  • Conditional expression (8) defines an appropriate relationship between the refractive index to the d-line of the specific lens and the Abbe number based on the d-line.
  • the upper limit value of the conditional expression (8) is set to 16,000, 15.800, 15.500, 15.300, 15.000, 14.800, 14.500. , 14.000, and further preferably 13.500.
  • the specific lens may satisfy the following conditional expression (3-2). 18.0 ⁇ dLZ ⁇ 27.0 (3-2)
  • Conditional expression (3-2) is an expression similar to conditional expression (3), and by satisfying conditional expression (3-2), correction of reference aberrations such as spherical aberration and coma aberration, Correction of chromatic aberration (chromatism) can be performed satisfactorily.
  • the upper limit value of the conditional expression (3-2) By setting the upper limit value of the conditional expression (3-2) to 26.6, the effect of the present embodiment can be made more reliable.
  • the lower limit value of the conditional expression (3-2) to 21.0, the effect of the present embodiment can be made more reliable.
  • the specific lens may satisfy the following conditional expression (5-2). 1.700 ⁇ nd LZ ⁇ 1.850 (5-2)
  • Conditional expression (5-2) is an expression similar to conditional expression (5), and satisfying conditional expression (5-2) allows various aberrations such as coma and chromatic aberration (axial chromatic aberration and lateral chromatic aberration). Can be corrected well.
  • conditional expression (5-2) By setting the upper limit value of conditional expression (5-2) to 1.830, the effect of the present embodiment can be made more reliable.
  • the lower limit value of the conditional expression (5-2) to 1.709, the effect of the present embodiment can be made more reliable.
  • the specific lens may satisfy the following conditional expression (2-1). 0.702 ⁇ gFLZ + (0.00316 ⁇ ⁇ dLZ) ⁇ 0.900 (2-1)
  • conditional expression (2-1) is the same expression as the conditional expression (2), and by satisfying the conditional expression (2-1), in correction of the chromatic aberration, in addition to the primary achromatism, the secondary spectrum Can be corrected well.
  • the upper limit value of conditional expression (2-1) 0.850
  • the effect of the present embodiment can be made more reliable.
  • the lower limit value of the conditional expression (2-1) to 0.704, the effect of the present embodiment can be made more reliable.
  • the specific lens may satisfy the following conditional expression (5-3). 1.550 ⁇ nd LZ ⁇ 1.700 (5-3)
  • the conditional expression (5-3) is the same expression as the conditional expression (5), and by satisfying the conditional expression (5-3), various aberrations such as coma and chromatic aberration (axial chromatic aberration and lateral chromatic aberration) Can be corrected well.
  • the upper limit value of the conditional expression (5-3) is 1.699
  • the effect of the present embodiment can be made more reliable.
  • the lower limit value of conditional expression (5-3) to 1.560, the effect of the present embodiment can be made more reliable.
  • the specific lens may satisfy the following conditional expression (3-3). 27.0 ⁇ dLZ ⁇ 35.0 (3-3)
  • Conditional expression (3-3) is an expression similar to conditional expression (3), and by satisfying conditional expression (3-3), correction of reference aberrations such as spherical aberration and coma aberration, and first-order correction Correction of chromatic aberration (chromatism) can be performed satisfactorily.
  • the upper limit value of the conditional expression (3-3) 34.5
  • the effect of the present embodiment can be made more reliable.
  • the lower limit value of the conditional expression (3-3) to 28.0, the effect of the present embodiment can be made more reliable.
  • the specific lens may satisfy the following conditional expression (5-4). 1.550 ⁇ nd LZ ⁇ 1.700 (5-4)
  • the conditional expression (5-4) is the same expression as the conditional expression (5), and by satisfying the conditional expression (5-4), various aberrations such as coma and chromatic aberration (axial chromatic aberration and lateral chromatic aberration) Can be corrected well.
  • the upper limit value of the conditional expression (5-4) is 1.675, the effect of the present embodiment can be made more reliable.
  • the lower limit value of conditional expression (5-4) to 1.560, the effect of the present embodiment can be made more reliable.
  • the specific lens may satisfy the following conditional expression (3-4). 25.0 ⁇ dLZ ⁇ 31.0 (3-4)
  • the conditional expression (3-4) is the same expression as the conditional expression (3), and by satisfying the conditional expression (3-4), the correction of the reference aberration such as the spherical aberration and the coma aberration, and the first-order Correction of chromatic aberration (chromatism) can be performed satisfactorily.
  • the upper limit value of the conditional expression (3-4) 30.9
  • the effect of the present embodiment can be made more reliable.
  • the lower limit value of the conditional expression (3-4) to 25.6
  • the effect of the present embodiment can be made more reliable.
  • the specific lens may satisfy the following conditional expression (5-5). 1.550 ⁇ ndLZ ⁇ 1.800 ... (5-5)
  • conditional expression (5-5) is the same expression as the conditional expression (5), and by satisfying the conditional expression (5-5), various aberrations such as coma and chromatic aberration (axial chromatic aberration and lateral chromatic aberration) Can be corrected well.
  • the upper limit value of conditional expression (5-5) is 1.770, the effect of the present embodiment can be made more reliable.
  • the lower limit value of the conditional expression (5-5) to 1.565, the effect of the present embodiment can be made more reliable.
  • the optical system of the present embodiment has an object side lens disposed closest to the object side, and the specific lens be disposed on the image side of the object side lens.
  • various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and magnification chromatic aberration) can be corrected well.
  • the optical system according to the present embodiment preferably has an image-side lens disposed closest to the image side, and the specific lens is preferably disposed closer to the object than the image-side lens.
  • various aberrations such as coma aberration and chromatic aberration (axial chromatic aberration and magnification chromatic aberration) can be corrected well.
  • the specific lens is preferably a glass lens.
  • the specific lens is preferably a glass lens.
  • each lens is arranged in the lens barrel so that at least one of the lenses (specific lens) satisfies the conditional expressions (1) to (2) and the like (step ST2).
  • step ST1 at least one lens is arranged in the lens barrel so that at least one of the lenses (specific lens) satisfies the conditional expressions (1) to (2) and the like.
  • FIG. 1 shows the configurations and refractive powers of the optical systems LS ⁇ LS (1) to LS (7) ⁇ according to the first to seventh embodiments. It is sectional drawing which shows distribution. Cross sections of the optical system LS (1) according to the first embodiment, the optical system LS (3) according to the third embodiment, and the optical systems LS (6) to LS (7) according to the sixth to seventh embodiments In this case, the moving direction when the focusing lens unit focuses on a near distance object from infinity is indicated by an arrow along with the characters “focusing”.
  • each lens group is represented by a combination of a code G and a numeral, and each lens is represented by a combination of a code L and a numeral. .
  • the lens group and the like are represented using combinations of codes and numbers independently for each embodiment. For this reason, even if the combination of the same code
  • Tables 1 to 7 are shown below. Among these, Table 1 is the first embodiment, Table 2 is the second embodiment, Table 3 is the third embodiment, Table 4 is the fourth embodiment, and Table 5 is the fourth embodiment.
  • Table 6 is a table showing the sixth embodiment, and Table 7 is a table showing each item of data in the seventh embodiment.
  • f is the focal length of the whole lens system
  • FN o is the f-number
  • 2 ⁇ is the angle of view (unit is ° ( ⁇ )
  • is the half angle of view
  • Y is the image height Show.
  • TL represents a distance obtained by adding BF to the distance from the lens front surface to the lens final surface on the optical axis at infinity focusing
  • BF represents an image from the lens final surface on the optical axis at infinity focusing
  • the distance to the plane I (back focus) is shown. Note that when the optical system is a variable magnification optical system, these values are shown for each of the wide angle end (W), the intermediate focal length (M), and the telephoto end (T) in respective variable power states.
  • the surface number indicates the order of the optical surface from the object side along the traveling direction of the light ray
  • R indicates the radius of curvature of each optical surface (the surface on which the center of curvature is located on the image side)
  • a positive value D is the distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is the refractive index for the d-line of the material of the optical member
  • ⁇ d is the optical
  • ⁇ gF indicates the partial dispersion ratio of the material of the optical member.
  • the radius of curvature “ ⁇ ” indicates a plane or an aperture, and the (diaphragm S) indicates the aperture stop S, respectively.
  • the description of the refractive index nd 1.00000 of air is omitted.
  • the optical surface is an aspheric surface, the surface number is marked with * a, and when the optical surface is a diffractive optical surface, the surface number is marked with * b, and the radius of curvature R column is near.
  • the axis radius of curvature is shown.
  • the partial dispersion ratio ⁇ gF of the material of the optical member is defined by the following equation (A).
  • ⁇ (h, m) ⁇ 2 ⁇ / (m ⁇ ⁇ 0) ⁇ ⁇ (C2 ⁇ h 2 + C 4 ⁇ h 4 + C 6 ⁇ h 6 ...)
  • h height in the direction perpendicular to the optical axis
  • m diffraction order of diffracted light
  • ⁇ 0 design wavelength
  • the refractive power ⁇ D of the diffractive surface at an arbitrary wavelength ⁇ and an arbitrary diffraction order m can be expressed as the following equation (D) using the lowest order phase coefficient C 2.
  • ⁇ D (h, m) ⁇ 2 ⁇ C 2 ⁇ m ⁇ ⁇ / ⁇ 0 (D)
  • f represents the focal length of the entire lens system
  • represents the imaging magnification, as [variable-distance data during close-up imaging]. Also, in the table of [Near-distance shooting variable distance data], the surface distance at the surface number at which the surface distance is “variable” in [lens specification] corresponding to each focal length and shooting magnification is shown. .
  • the optical system When the optical system is a variable magnification optical system, it corresponds to each variable magnification state at the wide angle end (W), the intermediate focal length (M), and the telephoto end (T) as [variable interval data at variable magnification shooting].
  • Lens specification] indicates the surface separation at the surface number at which the surface separation is “variable”. Further, the table of [lens group data] shows the focal length and the respective starting surface (surface closest to the object) of each lens unit.
  • the table of [conditional expression corresponding value] shows values corresponding to the respective conditional expressions.
  • mm is generally used unless otherwise specified for the focal length f, radius of curvature R, surface distance D, other lengths, etc. listed, but the optical system is proportionally expanded. Alternatively, since the same optical performance can be obtained by proportional reduction, it is not limited to this.
  • FIG. 1 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a first example of the present embodiment.
  • the optical system LS (1) according to the first embodiment includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and positive refractive power, which are arranged in order from the object side And a third lens group G3 having a force.
  • the second lens group G2 moves to the image side along the optical axis.
  • the aperture stop S is disposed in the vicinity of the object side of the third lens group G3 and is fixed to the image plane I at the time of focusing, similarly to the first lens group G1 and the third lens group G3.
  • the sign (+) or (-) attached to each lens group symbol indicates the refractive power of each lens group, which is the same in all the following embodiments.
  • the first lens group G1 includes, in order from the object side, a protective glass HG having extremely weak refractive power, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. And a cemented lens including a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the positive lens L11 of the first lens group G1 corresponds to the object side lens.
  • the second lens group G2 is composed of a biconcave negative lens L21 and a cemented lens composed of a positive meniscus lens L22 concave on the object side and a biconcave negative lens L23 arranged in order from the object side Be done.
  • the positive meniscus lens L22 of the second lens group G2 corresponds to a lens (specific lens) which satisfies the conditional expressions (1) to (2) and the like.
  • the third lens group G3 includes, in order from the object side, a first partial group G31 having positive refractive power, a second partial group G32 having negative refractive power, and a third partial group having positive refractive power. And G33.
  • the first partial group G31 is composed of a cemented lens consisting of a biconvex positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side, which are arranged in order from the object side.
  • the second partial group G32 is composed of a cemented lens composed of a biconvex positive lens L33 and a biconcave negative lens L34 arranged in order from the object side, and a biconcave negative lens L35.
  • the third partial group G33 is composed of a biconvex positive lens L36 and a cemented lens composed of a biconvex positive lens L37 and a biconcave negative lens L38 arranged in order from the object side.
  • the negative lens L38 of the third lens group G3 corresponds to the image side lens
  • the positive lens L33 of the third lens group G3 corresponds to a lens satisfying the conditional expressions (1) to (2).
  • the second partial group G33 of the third lens group G3 constitutes a vibration reduction lens group (partial group) movable in a direction perpendicular to the optical axis, and displacement of the imaging position due to camera shake or the like (image plane I Correct the image blur).
  • a fixed stop (flare cut stop) Sa is disposed between the second partial group G32 and the third partial group G33 in the third lens group G3.
  • An image plane I is disposed on the image side of the third lens group G3.
  • a removable optical filter FL is disposed between the third lens group G3 and the image plane I.
  • an NC filter neutral color filter
  • a color filter a color filter
  • a polarizing filter a polarizing filter
  • an ND filter light reduction filter
  • an IR filter infrared cut filter
  • Table 1 below provides values of specifications of the optical system according to the first example.
  • FIG. 2 is a diagram of various types of aberration when in focus at infinity of the optical system according to the first example.
  • FNO denotes an F number
  • Y denotes an image height.
  • the f-number or numerical aperture value corresponding to the maximum aperture is shown, in the astigmatism diagram and the distortion diagram, the maximum value of the image height is shown, and in the coma aberration diagram, the value of each image height is shown. .
  • a solid line indicates a sagittal image plane
  • a broken line indicates a meridional image plane. Also in the aberration charts of the examples shown below, the same reference numerals as in the present example are used, and the redundant description is omitted.
  • the optical system according to the first example has various aberrations corrected well and has excellent imaging performance.
  • FIG. 3 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a second example of the present embodiment.
  • the optical system LS (2) according to the second example includes, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and a positive refractive index.
  • the third lens group G3 having a power
  • the fourth lens group G4 having a positive refractive power
  • the fifth lens group G5 having a negative refractive power
  • the sixth lens group G6 having a negative refractive power It is done.
  • the first to fifth lens groups G1 to G5 move in the directions shown by the arrows in FIG. 3, respectively.
  • the aperture stop S is disposed in the second lens group G2.
  • the first lens group G1 is a cemented lens consisting of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side And consists of
  • the negative meniscus lens L11 of the first lens group G1 corresponds to the object side lens.
  • a diffractive optical element DOE is disposed on the image-side lens surface of the positive meniscus lens L13.
  • the diffractive optical element DOE is, for example, an adhesive multilayer type diffractive optical element in which two types of diffractive element elements made of different materials are in contact in the same diffraction grating groove, and a predetermined grating height is made A first-order diffraction grating (a diffraction grating of rotational symmetry shape with respect to the optical axis) is formed.
  • the second lens group G2 includes, in order from the object side, a double concave negative lens L21 and a cemented lens including a positive meniscus lens L22 having a convex surface facing the object side, and a positive meniscus lens L23 having a concave surface facing the object side And a positive meniscus lens L24 having a convex surface facing the object side.
  • An aperture stop S is disposed between the positive meniscus lens L23 and the positive meniscus lens L24 in the second lens group G2.
  • the positive meniscus lens L22 of the second lens group G2 corresponds to a lens satisfying the conditional expressions (1) to (2) and the like.
  • the cemented lens composed of the negative lens L21 and the positive meniscus lens L22 of the second lens group G2 and the positive meniscus lens L23 constitute an anti-vibration lens group (sub-group) movable in the direction perpendicular to the optical axis.
  • the displacement of the imaging position (image blur on the image plane I) due to blur or the like is corrected.
  • the third lens group G3 is composed of, in order from the object side, a negative meniscus lens L31 with a convex surface facing the object side, and a biconvex positive lens L32.
  • the fourth lens group G4 is composed of, in order from the object side, a cemented lens including a double convex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
  • the fifth lens group G5 is composed of a cemented lens composed of a biconvex positive lens L51 and a biconcave negative lens L52 arranged in order from the object side. In this embodiment, focusing is performed by moving the entire fifth lens group G5 along the optical axis.
  • the sixth lens group G6 includes, in order from the object side, a cemented lens consisting of a negative meniscus lens L61 with a convex surface facing the object side and a biconvex positive lens L62, a biconcave negative lens L63, and an object side And a negative meniscus lens L64 having a concave surface facing the lens.
  • An image plane I is disposed on the image side of the sixth lens group G6.
  • the negative meniscus lens L64 of the sixth lens group G6 corresponds to the image side lens
  • the negative meniscus lens L61 of the sixth lens group G6 corresponds to a lens satisfying the conditional expressions (1) to (2) and the like. Do.
  • Table 2 below presents values of specifications of the optical system according to the second example.
  • FIGS. 4A, 4B, and 4C respectively show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the second embodiment.
  • FIG. From the respective aberration diagrams, it is understood that the optical system according to the second example has various aberrations corrected well and has excellent imaging performance.
  • FIG. 5 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a third example of the present embodiment.
  • the optical system LS (3) according to the third embodiment is composed of a first lens group G1 having negative refractive power and a second lens group G2 having positive refractive power, which are arranged in order from the object side There is.
  • the second lens group G2 moves to the object side along the optical axis.
  • the aperture stop S is disposed in the second lens group G2.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 with a convex surface facing the object side, a biconvex positive lens L12, a biconcave negative lens L13, and a biconvex positive lens. And a cemented lens including a lens L14 and a biconcave negative lens L15.
  • the negative meniscus lens L11 of the first lens group G1 corresponds to the object side lens
  • the negative lens L15 of the first lens group G1 corresponds to the lens satisfying the conditional expressions (1) to (2).
  • the negative lens L13 has an aspheric lens surface on the image side.
  • the second lens group G2 is a cemented lens consisting of a double convex positive lens L21, a positive meniscus lens L22 with a convex surface facing the object side, and a negative meniscus lens L23 with a convex surface facing the object side, arranged in order from the object side
  • Composed of An image plane I is disposed on the image side of the second lens group G2.
  • An aperture stop S is disposed between the positive lens L21 and the positive meniscus lens L22 in the second lens group G2.
  • the positive meniscus lens L27 of the second lens group G2 corresponds to the image side lens
  • the positive meniscus lens L22 of the second lens group G2 corresponds to a lens satisfying the conditional expressions (1) to (2) and the like.
  • the positive lens L26 has an aspheric lens surface on the image side.
  • Table 3 below presents values of specifications of the optical system according to the third example.
  • FIG. 6 shows various aberrations of the optical system in the infinity in-focus condition according to the third example. From the respective aberration diagrams, it is understood that the optical system according to the third example has various aberrations corrected well, and has excellent imaging performance.
  • FIG. 7 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a fourth example of the present embodiment.
  • the optical system LS (4) according to the fourth example includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and positive refractive power, which are arranged in order from the object side It comprises a third lens group G3 having a force and a fourth lens group G4 having a positive refractive power.
  • the first to fourth lens groups G1 to G4 move in the directions shown by the arrows in FIG. 7, respectively.
  • the aperture stop S is disposed in the fourth lens group G4.
  • the first lens group G1 is a cemented lens consisting of a double convex positive lens L11, a negative meniscus lens L12 having a convex surface facing the object side, and a positive meniscus lens L13 having a convex surface facing the object side, arranged in order from the object side And consists of
  • the positive lens L11 of the first lens group G1 corresponds to the object side lens
  • the negative meniscus lens L12 of the first lens group G1 corresponds to a lens satisfying the conditional expressions (1) to (2). .
  • the second lens group G2 is composed of a double-concave negative lens L21 and a cemented lens consisting of a positive meniscus lens L22 with a convex surface facing the object side, and a double-concave negative lens L23. Be done.
  • the third lens group G3 is composed of a double convex positive lens L31. In this embodiment, when focusing from an infinite distance object to a close distance (finite distance) object, the entire third lens group G3 moves to the object side along the optical axis.
  • the fourth lens group G4 has a concave surface facing the object side, a cemented lens consisting of a biconvex positive lens L41 and a biconcave negative lens L42 arranged in order from the object side, a biconvex positive lens L43, and a biconvex lens It comprises a cemented lens consisting of a positive meniscus lens L44 and a biconcave negative lens L45, a biconvex positive lens L46, and a negative meniscus lens L47 having a concave surface facing the object side.
  • An image plane I is disposed on the image side of the fourth lens group G4.
  • An aperture stop S is disposed between the positive lens L43 and the positive meniscus lens L44 in the fourth lens group G4.
  • the negative meniscus lens L47 of the fourth lens group G4 corresponds to the image side lens.
  • Table 4 below presents values of specifications of the optical system according to the fourth example.
  • FIGS. 8A, 8B, and 8C respectively show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the fourth embodiment.
  • FIG. From the respective aberration diagrams, it is understood that the optical system according to the fourth example has the various imaging properties corrected well and the excellent imaging performance.
  • FIG. 9 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a fifth example of the present embodiment.
  • the optical system LS (5) according to the fifth example includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a negative refractive index. It comprises a third lens group G3 having a force and a fourth lens group G4 having a positive refractive power.
  • the first to fourth lens groups G1 to G4 move in the directions shown by the arrows in FIG.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2, and moves along the optical axis together with the second lens group G2 during zooming.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a negative biconcave lens L13. And a convex positive lens L14.
  • the negative meniscus lens L11 of the first lens group G1 corresponds to the object side lens.
  • the negative meniscus lens L11 has aspheric lens surfaces on both sides.
  • the negative lens L13 has an aspheric lens surface on the image side.
  • the second lens group G2 includes, in order from the object side, a cemented lens including a negative meniscus lens L21 having a convex surface facing the object side and a positive meniscus lens L22 having a convex surface facing the object side, and a biconvex positive lens L23. And consists of In this embodiment, the negative meniscus lens L21 of the second lens group G2 corresponds to a lens satisfying the conditional expressions (1) to (2) and the like.
  • the third lens group G3 is a cemented lens consisting of a biconvex positive lens L31 and a biconcave negative lens L32 arranged in order from the object side, a negative meniscus lens L33 with a concave surface facing the object side, and a biconvex And a positive lens L34 of a shape.
  • the negative meniscus lens L33 and the positive lens L34 of the third lens group G3 move to the image side along the optical axis.
  • the fourth lens group G4 includes, in order from the object side, a cemented lens including a biconvex positive lens L41 and a biconcave negative lens L42, a biconvex positive lens L43, and a biconvex positive lens And a cemented lens composed of a negative lens L45 having a biconcave shape and a lens L44.
  • An image plane I is disposed on the image side of the fourth lens group G4.
  • the negative lens L45 of the fourth lens group G4 corresponds to the image side lens.
  • the negative lens L45 has an aspheric lens surface on the image side.
  • Table 5 below presents values of specifications of the optical system according to the fifth example.
  • FIG. 10 (A), 10 (B), and 10 (C) show various conditions at the time of infinity focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the fifth embodiment, respectively.
  • FIG. 11 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a sixth example of the present embodiment.
  • the optical system LS (6) according to the sixth example includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and positive refractive power, which are arranged in order from the object side And a third lens group G3 having a force.
  • the second lens group G2 moves to the image side along the optical axis.
  • the aperture stop S is disposed in the vicinity of the object side of the third lens group G3 and is fixed to the image plane I at the time of focusing, similarly to the first lens group G1 and the third lens group G3.
  • the first lens group G1 includes, in order from the object side, a protective glass HG having extremely weak refractive power, a biconvex positive lens L11, a biconvex positive lens L12, and a biconcave negative lens L13. And a cemented lens including a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.
  • the positive lens L11 of the first lens group G1 corresponds to the object side lens.
  • the second lens group G2 is composed of a biconcave negative lens L21 and a cemented lens composed of a positive meniscus lens L22 concave on the object side and a biconcave negative lens L23 arranged in order from the object side Be done.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a negative meniscus lens L32 with a concave surface facing the object side, a biconvex positive lens L33, and a biconcave negative lens A cemented lens consisting of L34, a biconcave negative lens L35, a biconvex positive lens L36, a biconvex positive lens L37 and a biconcave negative lens L38, and a concave surface on the object side And a negative meniscus lens L41 with a convex surface facing the object side, and a positive meniscus lens L42 with a convex surface facing the object side.
  • the negative meniscus lens L45 of the third lens group G3 corresponds to the image side lens
  • the positive meniscus lens L39 of the third lens group G3 corresponds to a lens satisfying the conditional expressions (1) to (2).
  • An image plane I is disposed on the image side of the third lens group G3.
  • a removable optical filter FL is disposed between the negative lens L38 and the positive meniscus lens L39 in the third lens group G3.
  • an NC filter neutral color filter
  • a color filter a color filter
  • a polarizing filter a polarizing filter
  • an ND filter light reduction filter
  • an IR filter infrared cut filter
  • Table 6 below presents values of specifications of the optical system according to the sixth example.
  • FIG. 12 shows various aberrations that occurred in the infinity in-focus condition of the optical system according to the sixth example. From the respective aberration diagrams, it is understood that the optical system according to the sixth example has various aberrations well corrected and has excellent imaging performance.
  • FIG. 13 is a diagram showing a lens configuration in an infinity in-focus condition of an optical system according to a seventh example of the present embodiment.
  • the optical system LS (7) according to the seventh example includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and positive refractive power, which are arranged in order from the object side And a third lens group G3 having a force.
  • the second lens group G2 moves to the image side along the optical axis.
  • the aperture stop S is disposed in the vicinity of the object side of the third lens group G3 and is fixed to the image plane I at the time of focusing, similarly to the first lens group G1 and the third lens group G3.
  • the first lens group G1 includes a cemented lens including a positive meniscus lens L11 having a convex surface, a biconvex positive lens L12, and a biconcave negative lens L13 arranged in order from the object side, and a biconvex positive lens. It comprises a lens L14 and a cemented lens consisting of a negative meniscus lens L15 having a convex surface directed to the object side and a positive meniscus lens L16 having a convex surface directed to the object side.
  • the positive meniscus lens L11 of the first lens group G1 corresponds to the object side lens.
  • the second lens group G2 includes, in order from the object side, a cemented lens including a positive meniscus lens L21 having a concave surface facing the object side and a biconcave negative lens L22, and a positive meniscus lens L23 having a concave surface facing the object side And a cemented lens composed of a biconcave negative lens L24.
  • the third lens group G3 includes, in order from the object side, a double convex positive lens L31, a negative meniscus lens L32 with a concave surface facing the object side, a positive meniscus lens L33 with a concave surface facing the object side, and A cemented lens including a convex positive lens L34, a negative meniscus lens L35 having a convex surface facing the object side, a biconvex positive lens L36, a biconcave negative lens L37, and a biconvex positive lens L38
  • the positive meniscus lens L39 has a concave surface facing the object side
  • the negative meniscus lens L40 has a concave surface facing the object side.
  • the negative meniscus lens L40 of the third lens group G3 corresponds to the image side lens
  • the positive lens L34 of the third lens group G3 corresponds to the lens satisfying the conditional expressions (1) to (2).
  • the positive meniscus lens L39 has an aspheric lens surface on the object side.
  • An image plane I is disposed on the image side of the third lens group G3.
  • a removable optical filter FL is disposed between the positive meniscus lens L33 and the positive lens L34 in the third lens group G3.
  • an NC filter neutral color filter
  • a color filter a color filter
  • a polarizing filter a polarizing filter
  • an ND filter light reduction filter
  • an IR filter infrared cut filter
  • Table 7 below presents values of specifications of the optical system according to the seventh example.
  • FIG. 14 is a diagram of various types of aberration when in focus at infinity of the optical system according to the seventh example. From the respective aberration diagrams, it is understood that the optical system according to the seventh example has various aberrations corrected well, and has excellent imaging performance.
  • the focusing lens group indicates a portion having at least one lens separated by an air gap that changes at the time of focusing. That is, a single or a plurality of lens groups or a partial lens group may be moved in the optical axis direction to provide a focusing lens group for focusing from an infinite distance object to a near distance object.
  • This focusing lens group can also be applied to auto focusing, and is also suitable for motor drive (using an ultrasonic motor or the like) for auto focusing.
  • the present invention is not limited to this, and the configuration may not have the anti-vibration function.
  • the other embodiment having no vibration isolation function can also be configured to have the vibration isolation function.
  • the lens surface may be formed as a spherical surface, a flat surface, or an aspherical surface.
  • the lens surface is spherical or flat, it is preferable because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented. In addition, even when the image plane shifts, it is preferable because there is little deterioration in the imaging performance.
  • the aspheric surface is an aspheric surface formed by grinding, a glass mold aspheric surface formed of glass into an aspheric surface shape, or a composite aspheric surface formed of resin on the surface of glass with an aspheric surface shape. Any one is fine.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • Each lens surface may be provided with an anti-reflection film having high transmittance over a wide wavelength range in order to reduce flare and ghost and to achieve optical performance with high contrast. This can reduce flare and ghost and achieve high contrast and high optical performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

光学系(LS)は、以下の条件式を満足するレンズ(L22,L33)を有している。 ndLZ+(0.01425×νdLZ)<2.12 0.702<θgFLZ+(0.00316×νdLZ) 但し、ndLZ:レンズのd線に対する屈折率 νdLZ:レンズのd線を基準とするアッベ数 θgFLZ:レンズの部分分散比であり、レンズのg線に対する屈折率をngLZとし、レンズのF線に対する屈折率をnFLZとし、レンズのC線に対する屈折率をnCLZとしたとき、次式で定義される θgFLZ=(ngLZ-nFLZ)/(nFLZ-nCLZ)

Description

光学系、光学機器、および光学系の製造方法
 本発明は、光学系、光学機器、および光学系の製造方法に関する。
 近年、デジタルカメラやビデオカメラ等の撮像装置に用いられる撮像素子は、高画素化が進んでいる。このような撮像素子を用いた撮像装置に設けられる撮影レンズは、球面収差、コマ収差等の基準収差(単一波長の収差)に加え、白色光源において像の色にじみがないように色収差も良好に補正された、高い解像力を有するレンズであることが望まれている。特に、色収差の補正においては、1次の色消しに加え、2次スペクトルが良好に補正されていることが望ましい。色収差の補正の手段として、例えば、異常分散性を有する樹脂材料を用いる方法(例えば、特許文献1を参照)が知られている。このように、近年の撮像素子の高画素化に伴い、諸収差が良好に補正された撮影レンズが望まれている。
特開2016-194609号公報
 第1の態様に係る光学系は、以下の条件式を満足するレンズを有する。
 ndLZ+(0.01425×νdLZ)<2.12
 0.702<θgFLZ+(0.00316×νdLZ)
 但し、ndLZ:前記レンズのd線に対する屈折率
    νdLZ:前記レンズのd線を基準とするアッベ数
    θgFLZ:前記レンズの部分分散比であり、前記レンズのg線に対する屈折率をngLZとし、前記レンズのF線に対する屈折率をnFLZとし、前記レンズのC線に対する屈折率をnCLZとしたとき、次式で定義される
 θgFLZ=(ngLZ-nFLZ)/(nFLZ-nCLZ)
 第2の態様に係る光学機器は、上記光学系を備えて構成される。
 第3の態様に係る光学系の製造方法は、以下の条件式を満足するレンズを有するように、レンズ鏡筒内に各レンズを配置する。
 ndLZ+(0.01425×νdLZ)<2.12
 0.702<θgFLZ+(0.00316×νdLZ)
 但し、ndLZ:前記レンズのd線に対する屈折率
    νdLZ:前記レンズのd線を基準とするアッベ数
    θgFLZ:前記レンズの部分分散比であり、前記レンズのg線に対する屈折率をngLZとし、前記レンズのF線に対する屈折率をnFLZとし、前記レンズのC線に対する屈折率をnCLZとしたとき、次式で定義される
 θgFLZ=(ngLZ-nFLZ)/(nFLZ-nCLZ)
第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第1実施例に係る光学系の無限遠合焦状態における諸収差図である。 第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図4(A)、図4(B)、および図4(C)はそれぞれ、第2実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第3実施例に係る光学系の無限遠合焦状態における諸収差図である。 第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図8(A)、図8(B)、および図8(C)はそれぞれ、第4実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第6実施例に係る光学系の無限遠合焦状態における諸収差図である。 第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 第7実施例に係る光学系の無限遠合焦状態における諸収差図である。 本実施形態に係る光学系を備えたカメラの構成を示す図である。 本実施形態に係る光学系の製造方法を示すフローチャートである。
 以下、本実施形態に係る光学系および光学機器について図を参照して説明する。まず、本実施形態に係る光学系を備えたカメラ(光学機器)を図15に基づいて説明する。このカメラ1は、図15に示すように撮影レンズ2として本実施形態に係る光学系を備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
 本実施形態に係る光学系(撮影レンズ)LSの一例としての光学系LS(1)は、図1に示すように、以下の条件式(1)~(2)を満足するレンズ(L22,L33)を有している。本実施形態においては、他のレンズと区別するため、条件式(1)~(2)を満足するレンズを特定レンズと称する場合がある。
 ndLZ+(0.01425×νdLZ)<2.12   ・・・(1)
 0.702<θgFLZ+(0.00316×νdLZ) ・・・(2)
 但し、ndLZ:特定レンズのd線に対する屈折率
    νdLZ:特定レンズのd線を基準とするアッベ数
    θgFLZ:特定レンズの部分分散比であり、特定レンズのg線に対する屈折率をngLZとし、特定レンズのF線に対する屈折率をnFLZとし、特定レンズのC線に対する屈折率をnCLZとしたとき、次式で定義される
 θgFLZ=(ngLZ-nFLZ)/(nFLZ-nCLZ)
 なお、特定レンズのd線を基準とするアッベ数νdLZは、次式で定義される
 νdLZ=(ndLZ-1)/(nFLZ-nCLZ)
 本実施形態によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系、およびこの光学系を備えた光学機器を得ることが可能になる。本実施形態に係る光学系LSは、図3に示す光学系LS(2)でも良く、図5に示す光学系LS(3)でも良く、図7に示す光学系LS(4)でも良い。また、本実施形態に係る光学系LSは、図9に示す光学系LS(5)でも良く、図11に示す光学系LS(6)でも良く、図13に示す光学系LS(7)でも良い。
 条件式(1)は、特定レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(1)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(1)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(1)の上限値を2.11に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(1)の上限値を、2.10、2.09、2.08、2.07、さらに2.06とすることが好ましい。
 条件式(2)は、特定レンズの異常分散性を適切に規定するものである。条件式(2)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。
 条件式(2)の対応値が下限値を下回ると、特定レンズの異常分散性が小さくなるため、色収差の補正が困難となる。条件式(2)の下限値を0.704に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2)の下限値を、0.708、0.710、0.712、さらに0.715とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(3)を満足することが望ましい。
 νdLZ<35.0 ・・・(3)
 条件式(3)は、特定レンズのd線を基準とするアッベ数の適切な範囲を規定するものである。条件式(3)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(3)の対応値が上限値を上回ると、例えば、開口絞りSより物体側もしくは像側の部分群において軸上色収差の補正が困難となるため、好ましくない。条件式(3)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3)の上限値を、32.0、31.5、31.0、30.5、30.0、さらに29.5とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(3-1)を満足してもよい。
 18.0<νdLZ<35.0 ・・・(3-1)
 条件式(3-1)は、条件式(3)と同様の式であり、条件式(3-1)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。条件式(3-1)の上限値を32.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3-1)の上限値を、32.0、31.5、31.0、30.5、30.0、さらに29.5とすることが好ましい。一方、条件式(3-1)の下限値を20.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3-1)の下限値を、23.0、23.5、24.0、24.5、25.0、25.5、26.0、26.5、27.0、27.5、さらに27.7とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(4)を満足することが望ましい。
 1.83<ndLZ+(0.00787×νdLZ) ・・・(4)
 条件式(4)は、特定レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(4)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(4)の対応値が下限値を下回ると、例えば特定レンズの屈折率が小さくなることで、基準収差、特に球面収差の補正が困難になるため、好ましくない。条件式(4)の下限値を1.84に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を、1.85、さらに1.86とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(5)を満足することが望ましい。
 1.55<ndLZ ・・・(5)
 条件式(5)は、特定レンズのd線に対する屈折率の適切な範囲を規定するものである。条件式(5)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
 条件式(5)の対応値が下限値を下回ると、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を補正することが困難になり、好ましくない。条件式(5)の下限値を1.58に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5)の下限値を、1.60、1.62、1.65、1.68、1.70、さらに1.72とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(6)を満足することが望ましい。
 DLZ>0.80 ・・・(6)
 但し、DLZ:特定レンズの光軸上の厚さ[mm]
 条件式(6)は、特定レンズの光軸上の厚さの適切な範囲を規定するものである。条件式(6)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
 条件式(6)の対応値が下限値を下回ると、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を補正することが困難になり、好ましくない。条件式(6)の下限値を0.90に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(6)の下限値を1.00、1.10、1.20、さらに1.30とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(5-1)および条件式(7)を満足することが望ましい。
 ndLZ<1.63 ・・・(5-1)
 ndLZ-(0.040×νdLZ-2.470)×νdLZ<39.809・・・(7)
 条件式(5-1)は、条件式(5)と同様の式であり、条件式(5-1)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。条件式(5-1)の上限値を1.62に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(7)は、特定レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(7)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(7)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(7)の上限値を39.800に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(7)の上限値を、39.500、39.000、38.500、38.000、37.500、さらに36.800とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(8)を満足することが望ましい。
 ndLZ-(0.020×νdLZ-1.080)×νdLZ<16.260・・・(8)
 条件式(8)は、特定レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(8)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(8)の対応値が上限値を上回ると、例えばペッツバール和が小さくなることで、像面湾曲の補正が困難になるため、好ましくない。条件式(8)の上限値を16.240に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(8)の上限値を、16.000、15.800、15.500、15.300、15.000、14.800、14.500、14.000、さらに13.500とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(3-2)を満足してもよい。
 18.0<νdLZ<27.0 ・・・(3-2)
 条件式(3-2)は、条件式(3)と同様の式であり、条件式(3-2)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。条件式(3-2)の上限値を26.6に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3-2)の上限値を、26.3、26.0、25.7、さらに25.4とすることが好ましい。一方、条件式(3-2)の下限値を21.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3-2)の下限値を、21.5、22.0、22.5、さらに23.0とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(5-2)を満足してもよい。
 1.700<ndLZ<1.850 ・・・(5-2)
 条件式(5-2)は、条件式(5)と同様の式であり、条件式(5-2)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。条件式(5-2)の上限値を1.830に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5-2)の上限値を、1.810、1.790、1.770、さらに1.764とすることが好ましい。一方、条件式(5-2)の下限値を1.709に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5-2)の下限値を、1.718、1.727、1.736、さらに1.745とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(2-1)を満足してもよい。
 0.702<θgFLZ+(0.00316×νdLZ)<0.900・・・(2-1)
 条件式(2-1)は、条件式(2)と同様の式であり、条件式(2-1)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。条件式(2-1)の上限値を0.850に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-1)の上限値を、0.800、さらに0.720とすることが好ましい。一方、条件式(2-1)の下限値を0.704に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(2-1)の下限値を0.706とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(5-3)を満足してもよい。
 1.550<ndLZ<1.700 ・・・(5-3)
 条件式(5-3)は、条件式(5)と同様の式であり、条件式(5-3)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。条件式(5-3)の上限値を1.699に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5-3)の上限値を、1.698、1.697、1.696、さらに1.695とすることが好ましい。一方、条件式(5-3)の下限値を1.560に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5-3)の下限値を、1.570、1.580、1.590、さらに1.600とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(3-3)を満足してもよい。
 27.0<νdLZ<35.0 ・・・(3-3)
 条件式(3-3)は、条件式(3)と同様の式であり、条件式(3-3)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。条件式(3-3)の上限値を34.5に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3-3)の上限値を、34.0、33.5、さらに32.9とすることが好ましい。一方、条件式(3-3)の下限値を28.0に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3-3)の下限値を、29.0、30.0、さらに31.0とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(5-4)を満足してもよい。
 1.550<ndLZ<1.700 ・・・(5-4)
 条件式(5-4)は、条件式(5)と同様の式であり、条件式(5-4)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。条件式(5-4)の上限値を1.675に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5-4)の上限値を、1.660、1.645、1.630、さらに1.615とすることが好ましい。一方、条件式(5-4)の下限値を1.560に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5-4)の下限値を、1.570、1.580、1.590、さらに1.600とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(3-4)を満足してもよい。
 25.0<νdLZ<31.0 ・・・(3-4)
 条件式(3-4)は、条件式(3)と同様の式であり、条件式(3-4)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。条件式(3-4)の上限値を30.9に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3-4)の上限値を30.8とすることが好ましい。一方、条件式(3-4)の下限値を25.6に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(3-4)の下限値を、26.0、26.4、さらに26.8とすることが好ましい。
 本実施形態の光学系において、特定レンズは、以下の条件式(5-5)を満足してもよい。
 1.550<ndLZ<1.800 ・・・(5-5)
 条件式(5-5)は、条件式(5)と同様の式であり、条件式(5-5)を満足することで、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。条件式(5-5)の上限値を1.770に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5-5)の上限値を、1.745、1.720、さらに1.695とすることが好ましい。一方、条件式(5-5)の下限値を1.565に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実にするために、条件式(5-5)の下限値を、1.590、1.605、さらに1.622とすることが好ましい。
 本実施形態の光学系は、最も物体側に配置された物体側レンズを有し、特定レンズが物体側レンズより像側に配置されることが望ましい。これにより、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
 本実施形態の光学系は、最も像側に配置された像側レンズを有し、特定レンズが像側レンズより物体側に配置されることが望ましい。これにより、コマ収差、色収差(軸状色収差および倍率色収差)等の諸収差を良好に補正することができる。
 本実施形態の光学系において、特定レンズは、ガラスレンズであることが望ましい。これにより、材料が樹脂である場合と比較して、経年変化に強く、温度変化等の環境変化に強いレンズを得ることができる。
 続いて、図16を参照しながら、上述の光学系LSの製造方法について概説する。まず、少なくとも1枚のレンズを配置する(ステップST1)。このとき、当該レンズのうち少なくとも1枚(特定レンズ)が上記条件式(1)~(2)等を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST2)。このような製造方法によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を製造することが可能になる。
 以下、本実施形態の実施例に係る光学系LSを図面に基づいて説明する。図1、図3、図5、図7、図9、図11、図13は、第1~第7実施例に係る光学系LS{LS(1)~LS(7)}の構成及び屈折力配分を示す断面図である。第1実施例に係る光学系LS(1)、第3実施例に係る光学系LS(3)、および第6~第7実施例に係る光学系LS(6)~LS(7)の断面図では、合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を、「合焦」という文字とともに矢印で示している。第2実施例に係る光学系LS(2)および第4~第5実施例に係る光学系LS(4)~LS(5)の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示している。
 これら図1、図3、図5、図7、図9、図11、図13において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表7を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)、C線(波長λ=656.3nm)、F線(波長λ=486.1nm)を選んでいる。
 [全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Yは像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。なお、光学系が変倍光学系である場合、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数を、θgFは光学部材の材料の部分分散比をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。光学面が非球面である場合には面番号に*a印を付し、光学面が回折光学面である場合には面番号に*b印を付して、曲率半径Rの欄には近軸曲率半径を示している。
 光学部材の材料のg線(波長λ=435.8nm)に対する屈折率をngとし、光学部材の材料のF線(波長λ=486.1nm)に対する屈折率をnFとし、光学部材の材料のC線(波長λ=656.3nm)に対する屈折率をnCとする。このとき、光学部材の材料の部分分散比θgFは次式(A)で定義される。
 θgF=(ng-nF)/(nF-nC)  …(A)
 [非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(B)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(ザグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 …(B)
 光学系が回折光学素子を有する場合、[回折光学面データ]において示す回折光学面の位相形状ψは、次式(C)によって表わされる。
 ψ(h,m)={2π/(m×λ0)}×(C2×h2+C4×h4+C6×h6…) …(C)
 但し、
 h:光軸に対して垂直な方向の高さ、
 m:回折光の回折次数、
 λ0:設計波長、
 Ci:位相係数(i=2,4,…)。
 なお、任意の波長λおよび任意の回折次数mにおける回折面の屈折力φDは、最も低次の位相係数C2を用いて、次式(D)のように表わすことができる。
 φD(h,m)=-2×C2×m×λ/λ0 …(D)
 [回折光学面データ]の表には、[レンズ諸元]に示した回折光学面について、式(C)における設計波長λ0、回折次数m、2次の位相係数C2、4次の位相係数C4を示す。「E-n」は、[非球面データ]の表と同様、「×10-n」を示す。
 光学系が変倍光学系でない場合、[近距離撮影時可変間隔データ]として、fはレンズ全系の焦点距離を、βは撮影倍率をそれぞれ示す。また、[近距離撮影時可変間隔データ]の表には、各焦点距離および撮影倍率に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。
 光学系が変倍光学系である場合、[変倍撮影時可変間隔データ]として、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。また、[レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 [条件式対応値]の表には、各条件式に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図2および表1を用いて説明する。図1は、本実施形態の第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第1実施例に係る光学系LS(1)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 第1レンズ群G1は、物体側から順に並んだ、極めて弱い屈折力を有する保護ガラスHGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた負メニスカスレンズL14および物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、から構成される。本実施例では、第1レンズ群G1の正レンズL11が物体側レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。本実施例では、第2レンズ群G2の正メニスカスレンズL22が条件式(1)~(2)等を満足するレンズ(特定レンズ)に該当する。
 第3レンズ群G3は、物体側から順に並んだ、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32と、正の屈折力を有する第3部分群G33とを有している。第1部分群G31は、物体側から順に並んだ、両凸形状の正レンズL31および物体側に凹面を向けた負メニスカスレンズL32からなる接合レンズ、から構成される。第2部分群G32は、物体側から順に並んだ、両凸形状の正レンズL33および両凹形状の負レンズL34からなる接合レンズと、両凹形状の負レンズL35と、から構成される。第3部分群G33は、物体側から順に並んだ、両凸形状の正レンズL36と、両凸形状の正レンズL37および両凹形状の負レンズL38からなる接合レンズと、から構成される。本実施例では、第3レンズ群G3の負レンズL38が像側レンズに該当し、第3レンズ群G3の正レンズL33が条件式(1)~(2)等を満足するレンズに該当する。第3レンズ群G3の第2部分群G33は、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。なお、第3レンズ群G3における第2部分群G32と第3部分群G33との間に、固定絞り(フレアカット絞り)Saが配置される。
 第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。
 以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。
(表1)
[全体諸元]
  f    392.000
FNO     2.881
 2ω     6.245
  Y    21.63
 TL    396.319
 BF    74.502
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1    1200.37020   5.000   1.51680   63.88   0.536
  2    1199.78950   1.000
  3     250.71590   16.414   1.43385   95.25   0.540
  4    -766.97150   45.000
  5     158.99440   18.720   1.43385   95.25   0.540
  6    -400.00000   2.261
  7    -377.29180   6.000   1.61266   44.46   0.564
  8     461.79700   95.451
  9     70.05760   4.000   1.79500   45.31   0.560
  10     47.57190   11.944   1.49782   82.57   0.539
  11    1223.84820   D11(可変)
  12    -546.41280   2.500   1.80610   40.97   0.569
  13     76.73180   6.996
  14    -241.81680   4.500   1.65940   26.87   0.633
  15    -56.62280   2.500   1.48749   70.32   0.529
  16    234.80990   D16(可変)
  17      ∞     5.100            (絞りS)
  18     95.57020   6.000   1.75500   52.33   0.548
  19    -75.36620   1.800   1.80809   22.74   0.629
  20    -757.80810   4.500
  21    279.80870   4.700   1.74971   24.66   0.627
  22    -82.76070   1.800   1.59319   67.90   0.544
  23     50.04470   3.390
  24    -226.07440   1.800   1.83481   42.73   0.565
  25    105.63280   4.250
  26      ∞     0.250
  27    105.07290   3.700   1.69680   55.52   0.543
  28    -158.46840   0.100
  29     92.25180   4.000   1.72047   34.71   0.583
  30    -129.17240   1.800   1.92119   23.96   0.620
  31    404.52160   7.500
  32      ∞     1.500   1.51680   63.88   0.536
  33      ∞     BF
[近距離撮影時可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=392.000    β=-0.173
 D11    13.847       29.047
 D16    33.495       18.295
[条件式対応値]
<正メニスカスレンズL22>
 条件式(1)
  ndLZ+(0.01425×νdLZ)=2.042
 条件式(2),(2-1)
  θgFLZ+(0.00316×νdLZ)=0.7179
 条件式(3),(3-1),(3-2),(3-3),(3-4)
  νdLZ=26.87
 条件式(4)
  ndLZ+(0.00787×νdLZ)=1.871
 条件式(5),(5-1),(5-2),(5-3),(5-4),(5-5)
  ndLZ=1.65940
 条件式(6)
  DLZ=4.500
 条件式(7)
  ndLZ-(0.040×νdLZ-2.470)×νdLZ=35.830
 条件式(8)
  ndLZ-(0.020×νdLZ-1.080)×νdLZ=12.920
<正レンズL33>
 条件式(1)
  ndLZ+(0.01425×νdLZ)=2.101
 条件式(2),(2-1)
  θgFLZ+(0.00316×νdLZ)=0.7049
 条件式(3),(3-1),(3-2),(3-3),(3-4)
  νdLZ=24.66
 条件式(4)
  ndLZ+(0.00787×νdLZ)=1.944
 条件式(5),(5-1),(5-2),(5-3),(5-4),(5-5)
  ndLZ=1.74971
 条件式(6)
  DLZ=4.700
 条件式(7)
  ndLZ-(0.040×νdLZ-2.470)×νdLZ=34.836
 条件式(8)
  ndLZ-(0.020×νdLZ-1.080)×νdLZ=12.721
 図2は、第1実施例に係る光学系の無限遠合焦状態における諸収差図である。各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)、CはC線(波長λ=656.3nm)、FはF線(波長λ=486.1nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各諸収差図より、第1実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
 第2実施例について、図3~図4および表2を用いて説明する。図3は、本実施形態の第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第2実施例に係る光学系LS(2)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図3の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2内に配設されている。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。本実施例では、第1レンズ群G1の負メニスカスレンズL11が物体側レンズに該当する。正メニスカスレンズL13における像側のレンズ面に、回折光学素子DOEが配設される。回折光学素子DOEは、例えば、互いに異なる材質の2種類の回折素子要素が同一の回折格子溝で接する密着複層型の回折光学素子であり、2種類の紫外線硬化樹脂によって所定の格子高さを有する1次の回折格子(光軸に対して回転対称形状の回折格子)が形成される。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL23と、物体側に凸面を向けた正メニスカスレンズL24と、から構成される。第2レンズ群G2における正メニスカスレンズL23と正メニスカスレンズL24との間に、開口絞りSが配置される。本実施例では、第2レンズ群G2の正メニスカスレンズL22が条件式(1)~(2)等を満足するレンズに該当する。第2レンズ群G2の負レンズL21および正メニスカスレンズL22からなる接合レンズと、正メニスカスレンズL23とは、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL31と、両凸形状の正レンズL32と、から構成される。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および物体側に凹面を向けた負メニスカスレンズL42からなる接合レンズ、から構成される。
 第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51および両凹形状の負レンズL52からなる接合レンズ、から構成される。本実施例では、第5レンズ群G5の全体を光軸に沿って移動させることにより、合焦を行う。
 第6レンズ群G6は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL61および両凸形状の正レンズL62からなる接合レンズと、両凹形状の負レンズL63と、物体側に凹面を向けた負メニスカスレンズL64と、から構成される。第6レンズ群G6の像側に、像面Iが配置される。本実施例では、第6レンズ群G6の負メニスカスレンズL64が像側レンズに該当し、第6レンズ群G6の負メニスカスレンズL61が条件式(1)~(2)等を満足するレンズに該当する。
 以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。
(表2)
[全体諸元]
 変倍比 2.00
        W      M       T
  f    199.985    300.128    400.487
FNO     5.770     5.773     7.777
 2ω    12.088     8.032     3.016
  Y    21.60     21.60     21.60
 TL    218.509    276.018    309.437
 BF    63.575     63.605     63.797
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1     338.9295   3.0000   1.806100   33.34  0.5904
  2     157.1292   7.1098   1.487490   70.32
  3    -645.1901   0.1000
  4     127.7241   6.3846   1.516800   64.13
  5*b   1000.0000   D5(可変)
  6    -122.6329   1.7000   1.743997   44.79
  7     65.7202   3.5689   1.659398   26.87  0.6323
  8     249.7691   15.0000
  9     -47.9778   3.5000   1.756462   24.89  0.6196
  10    -45.0509   2.2932
  11      ∞    0.5000            (絞りS)
  12     43.2479   2.9936   1.620041   36.26
  13     64.4050   D13(可変)
  14     82.9323   1.7000   1.808090   22.74
  15     46.2622   3.6463
  16     71.4836   4.1939   1.612720   58.54
  17    -405.4059   D17(可変)
  18     56.3851   6.9255   1.497820   82.57
  19    -60.8758   1.7000   1.755000   52.33
  20    -374.3030   D20(可変)
  21    102.7274   2.4918   1.592701   35.31
  22    -125.8788   1.0000   1.755000   52.33
  23     40.8982   D23(可変)
  24    121.6273   1.7000   1.659398   26.87  0.6323
  25     52.1810   5.7438   1.595510   39.21
  26    -42.4345   0.1000
  27    -97.3797   1.5000   1.456000   91.37
  28     59.1706   12.2493
  29    -26.6286   1.5000   1.755000   52.33  0.5476
  30    -37.6940   BF
[回折光学面データ]
 第5面
 λ0=587.6
 m=1
 C2=-2.57E-05
 C4=-2.04E-11
[変倍撮影時可変間隔データ]
       W     M     T
 D5    11.860   93.192   119.742
 D13   10.900    0.500    3.244
 D17    0.600    5.172    0.600
 D20   34.411   13.877    0.200
 D23    6.561    9.070   31.254
[レンズ群データ]
 群   始面   焦点距離
 G1    1    213.671
 G2    6   -546.584
 G3    14    370.319
 G4    18    149.206
 G5    21    -72.703
 G6    24   -875.523
[条件式対応値]
<正メニスカスレンズL22>
 条件式(1)
  ndLZ+(0.01425×νdLZ)=2.042
 条件式(2),(2-1)
  θgFLZ+(0.00316×νdLZ)=0.7172
 条件式(3),(3-1),(3-2),(3-3),(3-4)
  νdLZ=26.87
 条件式(4)
  ndLZ+(0.00787×νdLZ)=1.871
 条件式(5),(5-1),(5-2),(5-3),(5-4),(5-5)
  ndLZ=1.659398
 条件式(6)
  DLZ=3.5689
 条件式(7)
  ndLZ-(0.040×νdLZ-2.470)×νdLZ=35.830
 条件式(8)
  ndLZ-(0.020×νdLZ-1.080)×νdLZ=12.920
<負メニスカスレンズL61>
 条件式(1)
  ndLZ+(0.01425×νdLZ)=2.042
 条件式(2),(2-1)
  θgFLZ+(0.00316×νdLZ)=0.7172
 条件式(3),(3-1),(3-2),(3-3),(3-4)
  νdLZ=26.87
 条件式(4)
  ndLZ+(0.00787×νdLZ)=1.871
 条件式(5),(5-1),(5-2),(5-3),(5-4),(5-5)
  ndLZ=1.659398
 条件式(6)
  DLZ=1.7000
 条件式(7)
  ndLZ-(0.040×νdLZ-2.470)×νdLZ=35.830
 条件式(8)
  ndLZ-(0.020×νdLZ-1.080)×νdLZ=12.920
 図4(A)、図4(B)、および図4(C)はそれぞれ、第2実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第2実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第3実施例)
 第3実施例について、図5~図6並びに表3を用いて説明する。図5は、本実施形態の第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第3実施例に係る光学系LS(3)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動する。開口絞りSは、第2レンズ群G2内に配設されている。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、両凸形状の正レンズL14および両凹形状の負レンズL15からなる接合レンズと、から構成される。本実施例では、第1レンズ群G1の負メニスカスレンズL11が物体側レンズに該当し、第1レンズ群G1の負レンズL15が条件式(1)~(2)等を満足するレンズに該当する。負レンズL13は、像側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、両凸形状の正レンズL21と、物体側に凸面を向けた正メニスカスレンズL22および物体側に凸面を向けた負メニスカスレンズL23からなる接合レンズと、両凹形状の負レンズL24および両凸形状の正レンズL25からなる接合レンズと、像側に凸面を向けた片平形状の正レンズL26と、物体側に凹面を向けた正メニスカスレンズL27と、から構成される。第2レンズ群G2の像側に、像面Iが配置される。第2レンズ群G2における正レンズL21と正メニスカスレンズL22との間に、開口絞りSが配置される。本実施例では、第2レンズ群G2の正メニスカスレンズL27が像側レンズに該当し、第2レンズ群G2の正メニスカスレンズL22が条件式(1)~(2)等を満足するレンズに該当する。正レンズL26は、像側のレンズ面が非球面である。
 以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。
(表3)
[全体諸元]
  f    28.773
FNO     1.8796
 2ω    75.3311
  Y    21.60
 TL    131.9655
 BF    36.457
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1     57.6700   1.7000   1.713000   53.94  0.5441
  2     23.6385   10.630
  3     360.0000   3.4200   1.846660   23.78
  4    -149.5844   2.1000
  5     -91.6110   1.7000   1.487490   70.31
  6     34.8169   0.1000   1.520500   51.02
  7*a    31.0734   7.4700
  8     54.5000   8.5700   1.834000   37.18
  9     -43.5000   1.7000   1.749714   24.66  0.6272
  10    475.5646   D10(可変)
  11     41.6500   6.2000   1.589130   61.24
  12    -79.7342   8.8800
  13      ∞    1.0000           (絞りS)
  14     71.7000   1.3000   1.659398   26.87  0.6323
  15    165.1470   1.0000   1.672700   32.19
  16     41.0000   6.0900
  17    -19.3844   1.5200   1.805180   25.46
  18    400.0000   2.4200   1.772500   49.65
  19    -67.0000   0.6000
  20      ∞    3.0800   1.729160   54.66
  21    -50.8920   0.2000   1.520500   51.02
  22*a   -37.6986   1.1400
  23    -98.0000   5.2100   1.834810   42.72  0.5651
  24    -26.8452   2.3629
  25      ∞    BF
[非球面データ]
 第7面
 κ=0.0000
 A4=-2.99E-06,A6=-2.39E-08,A8=1.13E-10,A10=-3.69E-13
 第22面
 κ=0.0000
 A4=2.03E-05,A6=4.37E-09,A8=1.85E-10,A10=-1.33E-12
[近距離撮影時可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=28.7734    β=-0.2174
 D10    9.5660      2.3031
[条件式対応値]
<負レンズL15>
 条件式(1)
  ndLZ+(0.01425×νdLZ)=2.101
 条件式(2),(2-1)
  θgFLZ+(0.00316×νdLZ)=0.7051
 条件式(3),(3-1),(3-2),(3-3),(3-4)
  νdLZ=24.66
 条件式(4)
  ndLZ+(0.00787×νdLZ)=1.944
 条件式(5),(5-1),(5-2),(5-3),(5-4),(5-5)
  ndLZ=1.749714
 条件式(6)
  DLZ=1.7000
 条件式(7)
  ndLZ-(0.040×νdLZ-2.470)×νdLZ=34.836
 条件式(8)
  ndLZ-(0.020×νdLZ-1.080)×νdLZ=12.721
<正メニスカスレンズL22>
 条件式(1)
  ndLZ+(0.01425×νdLZ)=2.042
 条件式(2),(2-1)
  θgFLZ+(0.00316×νdLZ)=0.7172
 条件式(3),(3-1),(3-2),(3-3),(3-4)
  νdLZ=26.87
 条件式(4)
  ndLZ+(0.00787×νdLZ)=1.871
 条件式(5),(5-1),(5-2),(5-3),(5-4),(5-5)
  ndLZ=1.659398
 条件式(6)
  DLZ=1.3000
 条件式(7)
  ndLZ-(0.040×νdLZ-2.470)×νdLZ=35.830
 条件式(8)
  ndLZ-(0.020×νdLZ-1.080)×νdLZ=12.920
 図6は、第3実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第3実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第4実施例)
 第4実施例について、図7~図8および表4を用いて説明する。図7は、本実施形態の第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第4実施例に係る光学系LS(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第4レンズ群G1~G4がそれぞれ図7の矢印で示す方向に移動する。開口絞りSは、第4レンズ群G4内に配設されている。
 第1レンズ群G1は、物体側から順に並んだ、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12および物体側に凸面を向けた正メニスカスレンズL13からなる接合レンズと、から構成される。本実施例では、第1レンズ群G1の正レンズL11が物体側レンズに該当し、第1レンズ群G1の負メニスカスレンズL12が条件式(1)~(2)等を満足するレンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合レンズと、両凹形状の負レンズL23と、から構成される。
 第3レンズ群G3は、両凸形状の正レンズL31から構成される。本実施例では、無限遠物体から近距離(有限距離)物体への合焦の際、第3レンズ群G3の全体が光軸に沿って物体側に移動する。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および両凹形状の負レンズL42からなる接合レンズと、両凸形状の正レンズL43と、物体側に凹面を向けた正メニスカスレンズL44および両凹形状の負レンズL45からなる接合レンズと、両凸形状の正レンズL46と、物体側に凹面を向けた負メニスカスレンズL47と、から構成される。第4レンズ群G4の像側に、像面Iが配置される。第4レンズ群G4における正レンズL43と正メニスカスレンズL44との間に、開口絞りSが配置される。本実施例では、第4レンズ群G4の負メニスカスレンズL47が像側レンズに該当する。
 以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。
(表4)
[全体諸元]
 変倍比 4.05
        W      M       T
  f    72.1     135.0      292.1
FNO     4.707     4.863      6.494
 2ω    23.341    12.218      5.684
  Y    14.75     14.75     14.75
 TL    168.674    197.816     220.732
 BF    43.294    45.652     70.374
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1     93.841    5.6    1.51680   63.88   0.536
  2    -447.915    0.2
  3     112.303    1.7    1.61155   31.26   0.618
  4     39.024    8     1.51742   52.20   0.558
  5     262.500    D5(可変)
  6    -239.035    1.3    1.69680   55.52   0.543
  7     20.159    4        1.80809   22.74   0.629
  8     61.046    2.038
  9     -54.537    1.4    1.85026   32.35   0.595
  10    167.455    D10(可変)
  11    102.636    3.4    1.58913   61.22   0.540
  12    -68.899    D12(可変)
  13     39.218    5.5    1.49700   81.73   0.537
  14    -39.212    1.3    1.85026   32.35   0.595
  15    207.543    0.2
  16     51.630    3.7    1.48749   70.31   0.529
  17    -98.216    0.9
  18      ∞    23.297            (絞りS)
  19    -79.941    3.3    1.80100   34.92   0.585
  20    -17.991    1     1.70000   48.11   0.560
  21     29.977    2
  22     35.573    3.5    1.60342   38.03   0.583
  23    -52.781    6.6996
  24    -20.538    1.2    1.77250   49.62   0.552
  25    -34.657    BF
[変倍撮影時可変間隔データ]
       W     M     T
 D5    2.306   36.768   51.599
 D10   32.727   21.603    2.157
 D12   10.112   13.560   16.367
[レンズ群データ]
 群   始面   焦点距離
 G1    1    127.677
 G2    6    -31.532
 G3    11    70.494
 G4    13    147.512
[条件式対応値]
 条件式(1)
  ndLZ+(0.01425×νdLZ)=2.057
 条件式(2),(2-1)
  θgFLZ+(0.00316×νdLZ)=0.7168
 条件式(3),(3-1),(3-2),(3-3),(3-4)
  νdLZ=31.26
 条件式(4)
  ndLZ+(0.00787×νdLZ)=1.858
 条件式(5),(5-1),(5-2),(5-3),(5-4),(5-5)
  ndLZ=1.61155
 条件式(6)
  DLZ=1.7
 条件式(7)
  ndLZ-(0.040×νdLZ-2.470)×νdLZ=36.513
 条件式(8)
  ndLZ-(0.020×νdLZ-1.080)×νdLZ=12.605
 図8(A)、図8(B)、および図8(C)はそれぞれ、第4実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第4実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第5実施例)
 第5実施例について、図9~図10および表5を用いて説明する。図9は、本実施形態の第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第5実施例に係る光学系LS(5)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第4レンズ群G1~G4がそれぞれ図9の矢印で示す方向に移動する。開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設され、変倍の際、第2レンズ群G2とともに光軸に沿って移動する。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凹形状の負レンズL13と、両凸形状の正レンズL14と、から構成される。本実施例では、第1レンズ群G1の負メニスカスレンズL11が物体側レンズに該当する。負メニスカスレンズL11は、両側のレンズ面が非球面である。負レンズL13は、像側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21および物体側に凸面を向けた正メニスカスレンズL22からなる接合レンズと、両凸形状の正レンズL23と、から構成される。本実施例では、第2レンズ群G2の負メニスカスレンズL21が条件式(1)~(2)等を満足するレンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31および両凹形状の負レンズL32からなる接合レンズと、物体側に凹面を向けた負メニスカスレンズL33と、両凸形状の正レンズL34と、から構成される。本実施例では、無限遠物体から近距離(有限距離)物体への合焦の際、第3レンズ群G3の負メニスカスレンズL33および正レンズL34が光軸に沿って像側に移動する。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および両凹形状の負レンズL42からなる接合レンズと、両凸形状の正レンズL43と、両凸形状の正レンズL44および両凹形状の負レンズL45からなる接合レンズと、から構成される。第4レンズ群G4の像側に、像面Iが配置される。本実施例では、第4レンズ群G4の負レンズL45が像側レンズに該当する。負レンズL45は、像側のレンズ面が非球面である。
 以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。
(表5)
[全体諸元]
 変倍比 2.07
        W      M       T
  f    16.65     24.00     34.44
FNO     4.12      4.12      4.18
 2ω    53.80     41.66     31.60
  Y    21.60     21.60     21.60
 TL    168.91     164.50     169.42
 BF    39.00     48.25     65.00
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1*a    157.02850   3.000   1.76684   46.78   0.5576
  2*a    19.73150   8.955
  3     397.62390   1.550   1.88300   40.66   0.5668
  4     51.01700   5.065
  5     -57.91430   1.500   1.88300   40.66   0.5668
  6     51.94950   0.400   1.55389   38.09   0.5928
  7*a    70.15770   1.237
  8     44.62150   6.911   1.69895   30.13   0.6021
  9     -47.20650   D9(可変)
  10      ∞     0.000            (絞りS)
  11     42.61580   1.050   1.74971   24.66   0.6272
  12     17.74250   4.132   1.59154   39.29   0.5779
  13     75.16900   0.100
  14     34.28950   4.194   1.53404   48.26   0.5617
  15    -63.55520   D15(可変)
  16    151.28780   2.518   1.62004   36.40   0.5833
  17    -33.01780   1.000   1.88300   40.66   0.5668
  18     44.83300   2.756
  19    -20.44030   0.800   1.88300   40.66   0.5668
  20    -59.69050   0.150
  21    151.29690   3.966   1.84666   23.80   0.6215
  22    -32.91290   D22(可変)
  23     34.01270   10.039   1.49782   82.57   0.5386
  24    -29.32300   1.100   1.83400   37.18   0.5778
  25     71.52300   0.100
  26     34.90120   10.548   1.49782   82.57   0.5386
  27    -38.97720   0.100
  28     40.26640   11.985   1.50377   63.91   0.536
  29    -23.35670   1.600   1.80610   40.97   0.5688
  30*a  -1764.39570   BF
[非球面データ]
 第1面
 κ=1.0000
 A4=3.00E-06,A6=3.39E-09,A8=0.00E+00,A10=0.00E+00
 第2面
 κ=1.0000
 A4=-2.11E-05,A6=0.00E+00,A8=0.00E+00,A10=0.00E+00
 第7面
 κ=1.0000
 A4=1.75E-05,A6=-2.74E-08,A8=1.77E-11,A10=0.00E+00
 第30面
 κ=1.0000
 A4=1.53E-05,A6=8.95E-09,A8=0.00E+00,A10=0.00E+00
[変倍撮影時可変間隔データ]
       W     M     T
 D9    29.355   13.227    2.000
 D15    6.263   12.605   16.459
 D22    9.534    5.666    1.200
[レンズ群データ]
 群   始面   焦点距離
 G1    1    -23.700
 G2    10    41.700
 G3    16    -62.000
 G4    23    49.100
[条件式対応値]
 条件式(1)
  ndLZ+(0.01425×νdLZ)=2.101
 条件式(2),(2-1)
  θgFLZ+(0.00316×νdLZ)=0.7051
 条件式(3),(3-1),(3-2),(3-3),(3-4)
  νdLZ=24.66
 条件式(4)
  ndLZ+(0.00787×νdLZ)=1.944
 条件式(5),(5-1),(5-2),(5-3),(5-4),(5-5)
  ndLZ=1.74971
 条件式(6)
  DLZ=1.050
 条件式(7)
  ndLZ-(0.040×νdLZ-2.470)×νdLZ=34.836
 条件式(8)
  ndLZ-(0.020×νdLZ-1.080)×νdLZ=12.721
 図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第5実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第6実施例)
 第6実施例について、図11~図12および表6を用いて説明する。図11は、本実施形態の第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第6実施例に係る光学系LS(6)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。
 第1レンズ群G1は、物体側から順に並んだ、極めて弱い屈折力を有する保護ガラスHGと、両凸形状の正レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた負メニスカスレンズL14および物体側に凸面を向けた正メニスカスレンズL15からなる接合レンズと、から構成される。本実施例では、第1レンズ群G1の正レンズL11が物体側レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、両凹形状の負レンズL21と、物体側に凹面を向けた正メニスカスレンズL22および両凹形状の負レンズL23からなる接合レンズと、から構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸形状の正レンズL33および両凹形状の負レンズL34からなる接合レンズと、両凹形状の負レンズL35と、両凸形状の正レンズL36と、両凸形状の正レンズL37および両凹形状の負レンズL38からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL39および物体側に凹面を向けた負メニスカスレンズL40からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL41および物体側に凸面を向けた正メニスカスレンズL42からなる接合レンズと、両凹形状の負レンズL43と、両凸形状の正レンズL44および物体側に凹面を向けた負メニスカスレンズL45からなる接合レンズと、から構成される。本実施例では、第3レンズ群G3の負メニスカスレンズL45が像側レンズに該当し、第3レンズ群G3の正メニスカスレンズL39が条件式(1)~(2)等を満足するレンズに該当する。
 第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3における負レンズL38と正メニスカスレンズL39との間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。
 以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。
(表6)
[全体諸元]
  f    548.897246
FNO     4.028
 2ω     4.529
  Y    21.60
 TL    421.51451
 BF    41.79450
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1    1200.3704   5.0000   1.516800   63.88   0.536
  2    1199.7897
  3     207.5249   17.5000   1.433843   95.26   0.540
  4    -1086.1158   44.9000
  5     176.7586   18.0000   1.433843   95.26   0.540
  6    -399.9688   3.0700
  7    -360.7137   6.0000   1.612660   44.46   0.564
  8     360.6858   90.0000
  9     66.6831   4.0000   1.794997   45.32   0.560
  10     46.0960   15.0000   1.497820   82.54   0.539
  11    1030.2823   D11(可変)
  12   -1579.9519   2.5000   1.772499   49.68   0.552
  13    115.8247   3.3500
  14    -274.6805   3.5000   1.846679   23.83   0.620
  15    -87.1354   2.4000   1.518229   58.84   0.546
  16     65.0724   D16(可変)
  17      ∞    1.5000            (絞りS)
  18     89.0765   7.6000   1.487490   70.43   0.530
  19    -64.1681   1.2000
  20    -66.2092   1.9000   1.846679   23.83   0.620
  21    -113.6112   5.0000
  22    309.3141   3.5000   1.846679   23.83   0.620
  23    -136.2550   1.9000   1.593190   67.94   0.544
  24     53.6104   3.1000
  25    -343.3953   1.9000   1.754999   52.33   0.548
  26     94.6723   4.1900
  27    117.8519   3.5000   1.772499   49.68   0.552
  28    -385.7489   0.1000
  29     67.6179   4.5000   1.639999   60.14   0.537
  30    -410.4180   1.9000   1.846679   23.83   0.620
  31    247.6487   6.5000
  32      ∞    1.5000   1.516800   63.88   0.536
  33      ∞    25.3277
  34    -212.6904   6.2000   1.659398   26.84   0.632
  35    -34.5457   1.6000   1.850000   27.03   0.609
  36    -57.9415   0.1000
  37    171.5239   1.7000   1.729160   54.61   0.544
  38     20.3538   7.1000   1.581440   40.98   0.576
  39    199.2504   3.7000
  40    -61.4914   1.7000   1.772500   49.62   0.552
  41     80.1566   0.1000
  42     39.9229   7.8000   1.581440   40.98   0.576
  43    -38.2861   1.7000   1.808090   22.74   0.629
  44    -171.6744   BF
[近距離撮影時可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=548.89725   β=-0.24282
 D11    18.50291      33.77284
 D16    38.17937      22.90945
[条件式対応値]
 条件式(1)
  ndLZ+(0.01425×νdLZ)=2.042
 条件式(2),(2-1)
  θgFLZ+(0.00316×νdLZ)=0.7168
 条件式(3),(3-1),(3-2),(3-3),(3-4)
  νdLZ=26.84
 条件式(4)
  ndLZ+(0.00787×νdLZ)=1.871
 条件式(5),(5-1),(5-2),(5-3),(5-4),(5-5)
  ndLZ=1.659398
 条件式(6)
  DLZ=6.2000
 条件式(7)
  ndLZ-(0.040×νdLZ-2.470)×νdLZ=35.820
 条件式(8)
  ndLZ-(0.020×νdLZ-1.080)×νdLZ=12.920
 図12は、第6実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第6実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第7実施例)
 第7実施例について、図13~図14および表7を用いて説明する。図13は、本実施形態の第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第7実施例に係る光学系LS(7)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って像側に移動する。開口絞りSは、第3レンズ群G3の物体側近傍に配設され、合焦の際、第1レンズ群G1および第3レンズ群G3と同様に、像面Iに対して固定される。
 第1レンズ群G1は、物体側から順に並んだ、凸面を向けた正メニスカスレンズL11と、両凸形状の正レンズL12および両凹形状の負レンズL13からなる接合レンズと、両凸形状の正レンズL14と、物体側に凸面を向けた負メニスカスレンズL15および物体側に凸面を向けた正メニスカスレンズL16からなる接合レンズと、から構成される。本実施例では、第1レンズ群G1の正メニスカスレンズL11が物体側レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL21および両凹形状の負レンズL22からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL23および両凹形状の負レンズL24からなる接合レンズと、から構成される。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、物体側に凹面を向けた正メニスカスレンズL33と、両凸形状の正レンズL34と、物体側に凸面を向けた負メニスカスレンズL35と、両凸形状の正レンズL36、両凹形状の負レンズL37、および両凸形状の正レンズL38からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL39と、物体側に凹面を向けた負メニスカスレンズL40と、から構成される。本実施例では、第3レンズ群G3の負メニスカスレンズL40が像側レンズに該当し、第3レンズ群G3の正レンズL34が条件式(1)~(2)等を満足するレンズに該当する。正メニスカスレンズL39は、物体側のレンズ面が非球面である。
 第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3における正メニスカスレンズL33と正レンズL34との間には、抜き差し交換可能な光学フィルターFLが配設されている。抜き差し交換可能な光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。
 以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。
(表7)
[全体諸元]
  f    388.032537
FNO     4.038
 2ω     6.416
  Y    21.60
 TL    283.53069
 BF    53.66784
[レンズ諸元]
 面番号     R     D     nd    νd   θgF
  1     167.3500   10.6000   1.497820   82.52   0.539
  2    2361.5509   0.3000
  3     98.4074   20.8000   1.497820   82.52   0.539
  4    -306.6320   5.0000   1.772499   49.61   0.552
  5     165.4047   20.0000
  6     135.6601   9.6000   1.446791   91.03   0.534
  7    -731.2064   0.3000
  8     71.2883   4.0000   1.754999   52.31   0.547
  9     42.3960   16.5000   1.497820   82.52   0.539
  10    435.6465   D10(可変)
  11   -1745.8851   5.0000   1.850260   32.35   0.594
  12    -78.6510   3.0000   1.639999   60.09   0.538
  13     55.9799   6.0000
  14    -79.8113   4.2000   1.766840   46.80   0.558
  15    -45.8300   2.8000   1.516800   64.10   0.536
  16     51.2954   D16(可変)
  17      ∞    3.2000           (絞りS)
  18    126.0707   5.0000   1.729157   54.66   0.544
  19    -81.3057   2.1000
  20    -43.1962   3.4000   1.795040   28.54   0.607
  21    -104.9670   7.0000
  22    -827.9284   5.3000   1.603001   65.47   0.541
  23    -52.9313   5.3151
  24      ∞    2.0000   1.516800   64.12   0.536
  25      ∞    9.4440
  26     64.5713   5.0000   1.611553   31.26   0.618
  27    -280.9473   0.8000
  28    350.7347   1.5000   1.804000   46.58   0.557
  29     24.0250   5.4000
  30     33.9853   9.0000   1.620040   36.30   0.587
  31    -23.4510   2.0000   1.882997   40.76   0.567
  32     36.4535   8.2000   1.575010   41.49   0.576
  33    -45.3865   2.9000
  34*a   -91.9573   6.4000   1.589130   61.18   0.539
  35    -28.9225   0.5000
  36    -33.4300   2.5000   1.882997   40.76   0.567
  37    -192.4648   BF
[非球面データ]
 第34面
 κ=1.0000
 A4=8.36373E-06,A6=2.40160E-09,A8=0.00000E+00,A10=0.00000E+00
[近距離撮影時可変間隔データ]
    無限遠合焦状態  近距離合焦状態
     f=388.03254   β=-0.25415
 D10    19.01315      27.19783
 D16    15.10916      6.92448
[条件式対応値]
 条件式(1)
  ndLZ+(0.01425×νdLZ)=2.057
 条件式(2),(2-1)
  θgFLZ+(0.00316×νdLZ)=0.7168
 条件式(3),(3-1),(3-2),(3-3),(3-4)
  νdLZ=31.26
 条件式(4)
  ndLZ+(0.00787×νdLZ)=1.858
 条件式(5),(5-1),(5-2),(5-3),(5-4),(5-5)
  ndLZ=1.611553
 条件式(6)
  DLZ=5.0000
 条件式(7)
  ndLZ-(0.040×νdLZ-2.470)×νdLZ=36.513
 条件式(8)
  ndLZ-(0.020×νdLZ-1.080)×νdLZ=12.605
 図14は、第7実施例に係る光学系の無限遠合焦状態における諸収差図である。各諸収差図より、第7実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 上記各実施例によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を実現することができる。
 ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 合焦レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すものとする。すなわち、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
 本実施形態の光学系の第1、第2実施例において、防振機能を有する構成のものを示したが、本願はこれに限られず、防振機能を有していない構成とすることもできる。また、防振機能を有していない他の実施例についても、防振機能を有する構成とすることができる。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
 G5 第5レンズ群          G6 第6レンズ群
  I 像面               S 開口絞り

Claims (21)

  1.  以下の条件式を満足するレンズを有する光学系。
     ndLZ+(0.01425×νdLZ)<2.12
     0.702<θgFLZ+(0.00316×νdLZ)
     但し、ndLZ:前記レンズのd線に対する屈折率
        νdLZ:前記レンズのd線を基準とするアッベ数
        θgFLZ:前記レンズの部分分散比であり、前記レンズのg線に対する屈折率をngLZとし、前記レンズのF線に対する屈折率をnFLZとし、前記レンズのC線に対する屈折率をnCLZとしたとき、次式で定義される
     θgFLZ=(ngLZ-nFLZ)/(nFLZ-nCLZ)
  2.  前記レンズは、以下の条件式を満足する請求項1に記載の光学系。
     νdLZ<35.0
  3.  前記レンズは、以下の条件式を満足する請求項1または2に記載の光学系。
     18.0<νdLZ<35.0
  4.  前記レンズは、以下の条件式を満足する請求項1~3のいずれか一項に記載の光学系。
     1.83<ndLZ+(0.00787×νdLZ)
  5.  前記レンズは、以下の条件式を満足する請求項1~4のいずれか一項に記載の光学系。
     1.55<ndLZ
  6.  前記レンズは、以下の条件式を満足する請求項1~5のいずれか一項に記載の光学系。
     DLZ>0.80
     但し、DLZ:前記レンズの光軸上の厚さ[mm]
  7.  前記レンズは、以下の条件式を満足する請求項1~6のいずれか一項に記載の光学系。
     ndLZ<1.63
     ndLZ-(0.040×νdLZ-2.470)×νdLZ<39.809
  8.  前記レンズは、以下の条件式を満足する請求項1~7のいずれか一項に記載の光学系。
     ndLZ-(0.020×νdLZ-1.080)×νdLZ<16.260
  9.  前記レンズは、以下の条件式を満足する請求項1~6のいずれか一項に記載の光学系。
     18.0<νdLZ<27.0
  10.  前記レンズは、以下の条件式を満足する請求項1~6のいずれか一項、または請求項9に記載の光学系。
     1.70<ndLZ<1.85
  11.  前記レンズは、以下の条件式を満足する請求項1~6のいずれか一項に記載の光学系。
     0.702<θgFLZ+(0.00316×νdLZ)<0.900
  12.  前記レンズは、以下の条件式を満足する請求項11に記載の光学系。
     1.55<ndLZ<1.70
  13.  前記レンズは、以下の条件式を満足する請求項1~6のいずれか一項に記載の光学系。
     27.0<νdLZ<35.0
  14.  前記レンズは、以下の条件式を満足する請求項13に記載の光学系。
     1.55<ndLZ<1.70
  15.  前記レンズは、以下の条件式を満足する請求項1~6のいずれか一項に記載の光学系。
     25.0<νdLZ<31.0
  16.  前記レンズは、以下の条件式を満足する請求項15に記載の光学系。
     1.55<ndLZ<1.80
  17.  最も物体側に配置された物体側レンズを有し、
     前記レンズが前記物体側レンズより像側に配置される請求項1~16のいずれか一項に記載の光学系。
  18.  最も像側に配置された像側レンズを有し、
     前記レンズが前記像側レンズより物体側に配置される請求項1~17のいずれか一項に記載の光学系。
  19.  前記レンズは、ガラスレンズである請求項1~18のいずれか一項に記載の光学系。
  20.  請求項1~19のいずれか一項に記載の光学系を備えて構成される光学機器。
  21.  以下の条件式を満足するレンズを有するように、
     レンズ鏡筒内に各レンズを配置する光学系の製造方法。
     ndLZ+(0.01425×νdLZ)<2.12
     0.702<θgFLZ+(0.00316×νdLZ)
     但し、ndLZ:前記レンズのd線に対する屈折率
        νdLZ:前記レンズのd線を基準とするアッベ数
        θgFLZ:前記レンズの部分分散比であり、前記レンズのg線に対する屈折率をngLZとし、前記レンズのF線に対する屈折率をnFLZとし、前記レンズのC線に対する屈折率をnCLZとしたとき、次式で定義される
     θgFLZ=(ngLZ-nFLZ)/(nFLZ-nCLZ)
PCT/JP2017/045189 2017-12-15 2017-12-15 光学系、光学機器、および光学系の製造方法 WO2019116569A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780097710.2A CN111465881B (zh) 2017-12-15 2017-12-15 光学***以及光学设备
JP2019558859A JP6981478B2 (ja) 2017-12-15 2017-12-15 光学系および光学機器
PCT/JP2017/045189 WO2019116569A1 (ja) 2017-12-15 2017-12-15 光学系、光学機器、および光学系の製造方法
US16/771,672 US20210191112A1 (en) 2017-12-15 2017-12-15 Optical system, optical apparatus, and method of manufacturing optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045189 WO2019116569A1 (ja) 2017-12-15 2017-12-15 光学系、光学機器、および光学系の製造方法

Publications (1)

Publication Number Publication Date
WO2019116569A1 true WO2019116569A1 (ja) 2019-06-20

Family

ID=66819137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045189 WO2019116569A1 (ja) 2017-12-15 2017-12-15 光学系、光学機器、および光学系の製造方法

Country Status (4)

Country Link
US (1) US20210191112A1 (ja)
JP (1) JP6981478B2 (ja)
CN (1) CN111465881B (ja)
WO (1) WO2019116569A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021124804A1 (ja) * 2019-12-20 2021-06-24
JPWO2022085208A1 (ja) * 2020-10-22 2022-04-28

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301508A (ja) * 2005-04-25 2006-11-02 Canon Inc 接眼レンズ及びそれを用いた光学機器
JP2006349948A (ja) * 2005-06-15 2006-12-28 Canon Inc 光学系及びそれを有する光学機器
JP2007025653A (ja) * 2005-06-15 2007-02-01 Canon Inc 光学系
JP2009280724A (ja) * 2008-05-23 2009-12-03 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2017190280A (ja) * 2016-04-15 2017-10-19 株式会社オハラ 光学ガラス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380086B2 (ja) * 2001-05-23 2009-12-09 コニカミノルタオプト株式会社 ズームレンズ
JP5045267B2 (ja) * 2007-06-27 2012-10-10 コニカミノルタアドバンストレイヤー株式会社 ズームレンズ及び撮像装置
JP5675397B2 (ja) * 2010-02-16 2015-02-25 キヤノン株式会社 光学系および光学機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006301508A (ja) * 2005-04-25 2006-11-02 Canon Inc 接眼レンズ及びそれを用いた光学機器
JP2006349948A (ja) * 2005-06-15 2006-12-28 Canon Inc 光学系及びそれを有する光学機器
JP2007025653A (ja) * 2005-06-15 2007-02-01 Canon Inc 光学系
JP2009280724A (ja) * 2008-05-23 2009-12-03 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2017190280A (ja) * 2016-04-15 2017-10-19 株式会社オハラ 光学ガラス

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021124804A1 (ja) * 2019-12-20 2021-06-24
JP7324429B2 (ja) 2019-12-20 2023-08-10 株式会社ニコン 光学系、及び光学機器
JPWO2022085208A1 (ja) * 2020-10-22 2022-04-28
WO2022085208A1 (ja) * 2020-10-22 2022-04-28 株式会社ニコン 光学系、光学機器および光学系の製造方法
JP7306587B2 (ja) 2020-10-22 2023-07-11 株式会社ニコン 光学系、光学機器および光学系の製造方法

Also Published As

Publication number Publication date
CN111465881B (zh) 2022-05-03
JP6981478B2 (ja) 2021-12-15
JPWO2019116569A1 (ja) 2020-12-03
US20210191112A1 (en) 2021-06-24
CN111465881A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
JP2023065618A (ja) 光学系、光学機器、および光学系の製造方法
JP2021105746A (ja) 光学系および光学機器
JPWO2018066648A1 (ja) 変倍光学系および光学機器
JP2021105747A (ja) 光学系および光学機器
JP2023060137A (ja) 光学系、光学機器、および光学系の製造方法
JP2022060546A (ja) 光学系、光学機器、および光学系の製造方法
JPWO2018066649A1 (ja) 変倍光学系および光学機器
WO2017099244A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
CN114270238B (zh) 光学***及光学设备、以及变倍光学***及光学设备
JP6981478B2 (ja) 光学系および光学機器
JPWO2017131223A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6981477B2 (ja) 光学系および光学機器
JP6347098B2 (ja) ズームレンズおよび光学機器
WO2019229817A1 (ja) 光学系、光学機器、および光学系の製造方法
JP7218814B2 (ja) 変倍光学系および光学機器
CN114341696B (zh) 光学***以及光学设备
WO2014192288A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558859

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934389

Country of ref document: EP

Kind code of ref document: A1