WO2019116441A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2019116441A1
WO2019116441A1 PCT/JP2017/044516 JP2017044516W WO2019116441A1 WO 2019116441 A1 WO2019116441 A1 WO 2019116441A1 JP 2017044516 W JP2017044516 W JP 2017044516W WO 2019116441 A1 WO2019116441 A1 WO 2019116441A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
photoelectric conversion
region
voltage
regions
Prior art date
Application number
PCT/JP2017/044516
Other languages
French (fr)
Japanese (ja)
Inventor
良章 竹本
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/044516 priority Critical patent/WO2019116441A1/en
Publication of WO2019116441A1 publication Critical patent/WO2019116441A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/046Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for infrared imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to an imaging device.
  • a spectroscopic element that utilizes the principle of a Fabry-Perot interferometer that transmits only light of a specific wavelength based on the distance between two opposing reflective films.
  • the spectroscopic element is called an etalon.
  • Patent Document 1 discloses an endoscope apparatus in which the spectral element is disposed for each pixel. When a voltage is applied to the electrodes disposed on each of the two reflective films of the endoscope apparatus, the distance between the two reflective films changes due to electrostatic force. The voltage applied to the two reflective films controls the wavelength of light transmitted through the light separating element.
  • Light of wavelength bands of multiple orders based on the distance between the two reflective films is transmitted through the etalon.
  • imaging of light of a wavelength band of only a specific order among multiple orders may be required.
  • light of wavelength bands of orders other than a specific order may pass through the etalon. Therefore, the signal generated by the pixel may include noise based on light in wavelength bands other than the specific wavelength band.
  • An object of the present invention is to provide an imaging device capable of enhancing the selectivity of light transmitted through a spectral element.
  • an imaging device comprises a first substrate, a second substrate, and a dispersive element.
  • the first substrate has a plurality of first photoelectric conversion elements.
  • the second substrate is stacked on the first substrate and has a plurality of second photoelectric conversion elements.
  • the spectral element is disposed between the plurality of first photoelectric conversion elements and the plurality of second photoelectric conversion elements.
  • the spectroscopic element has a first film and a second film.
  • the first film has light reflectivity.
  • the second film is disposed at a position away from the first film in the direction of the plurality of second photoelectric conversion elements by a predetermined distance, and has light reflectivity.
  • the spectral element has a first spectral transmission characteristic that selectively transmits light in a wavelength band based on the predetermined distance.
  • the transmittance distribution in the first spectral transmission characteristic has a first peak at a first wavelength and a second peak at a second wavelength different from the first wavelength.
  • the first substrate has a second spectral transmission characteristic that transmits light of the first wavelength and blocks light of the second wavelength.
  • the first film and the second film may have conductivity.
  • the distance between the first film and the second film is equal to the distance between the first film and the second film.
  • the distance may be in accordance with the voltage difference of
  • the light separating element includes the first film and the light of light transmitted through the plurality of first photoelectric conversion elements. It may have the first spectral transmission characteristic of selectively transmitting light in a wavelength band based on the distance between the second films.
  • the imaging device may further include a support.
  • the support may be connected to the first membrane and the second membrane, fixed relative to the second membrane, and support the first membrane.
  • the second film may be fixed to the second substrate.
  • the area excluding the support between the first membrane and the second membrane may be hollow.
  • the first film and the second film may be disposed between the first substrate and the second substrate.
  • the support may be fixed to the first substrate and the second film.
  • the area excluding the support between the first substrate and the first film may be hollow.
  • the support in the third or fourth aspect, may be disposed at a corresponding position between two adjacent second photoelectric conversion elements.
  • the voltage is applied to at least one of the first film and the second film.
  • You may further have a suppression part which suppresses the deformation
  • the first film may have a first surface and a second surface facing in opposite directions.
  • the second surface may face the second film.
  • the suppressing portion may be disposed on any one of the first surface and the second surface.
  • the imaging device may have a support.
  • the support may be connected to the first membrane and the second membrane, fixed relative to the first membrane, and support the second membrane.
  • the first film may be fixed to the first substrate.
  • the area excluding the support between the first membrane and the second membrane may be hollow.
  • the first film and the second film may be disposed between the first substrate and the second substrate.
  • the support may be fixed to the first film and the second substrate.
  • the region excluding the support between the second film and the second substrate may be hollow.
  • the support in the seventh or eighth aspect, may be disposed at a corresponding position between two adjacent second photoelectric conversion elements.
  • the voltage is applied to at least one of the first film and the second film.
  • You may further have a suppression part which suppresses the deformation
  • the second film may have a third surface and a fourth surface facing in opposite directions.
  • the third surface may face the first film.
  • the suppressing portion may be disposed on any one of the third surface and the fourth surface.
  • the light separating element may have a plurality of the first films.
  • the plurality of second photoelectric conversion elements may be arranged in a matrix.
  • Each of the first films included in the plurality of first films is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements, and of the row or the column It may have a long shape in the direction.
  • the light separating element may have a plurality of the second films.
  • the plurality of second photoelectric conversion elements may be arranged in a matrix.
  • Each of the second films included in the plurality of second films is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements, and of the row or the column It may have a long shape in the direction.
  • the first film may be divided into a plurality of first regions.
  • the second film may be divided into a plurality of second regions.
  • the plurality of first regions and the plurality of second regions may be disposed at positions corresponding to the plurality of second photoelectric conversion elements.
  • the imaging device may further include a first voltage generation circuit and a second voltage generation circuit.
  • the first voltage generation circuit may generate a first voltage applied to the plurality of first regions.
  • the second voltage generation circuit may generate a second voltage applied to the plurality of second regions.
  • the difference between the first voltage and the second voltage at the first timing is at a second timing different from the first timing. It may be different from the difference between the first voltage and the second voltage.
  • the distance between each of the first regions included in the plurality of first regions and each of the second regions included in the plurality of second regions is the same at the first timing. It may be a distance of 1.
  • the distance between each of the first regions included in the plurality of first regions and each of the second regions included in the plurality of second regions is the same at the second timing. It may be a distance of two.
  • the second distance may be different from the first distance.
  • the plurality of second photoelectric conversion elements may be controlled by a pixel control signal of a predetermined cycle.
  • the first voltage may be applied to the plurality of first regions at a third timing based on the predetermined cycle.
  • the second voltage may be applied to the plurality of second regions at a fourth timing based on the predetermined cycle.
  • each of the first regions included in the plurality of first regions is included in any one of a plurality of first groups. May be Each of the first groups included in the plurality of first groups may include at least one of the first regions. Each of the second regions included in the plurality of second regions may be included in any one of a plurality of second groups. Each of the second groups included in the plurality of second groups may include at least one of the second regions.
  • the first voltage generation circuit may generate a plurality of different first voltages. Each of the first voltages may be applied to the first region belonging to any one of the plurality of first groups.
  • the second voltage generation circuit may generate a plurality of different second voltages.
  • Each of the second voltages may be applied to the second region belonging to any one of the plurality of second groups.
  • the distance between the first region and the second region is a combination of the first voltage applied to the first region and the second voltage applied to the second region. It may be based on the distance.
  • the first spectral region may transmit the excitation light reflected by the subject irradiated with the excitation light.
  • the first spectral region includes the first region belonging to any one of the plurality of first groups and the second region belonging to any one of the plurality of second groups. It may be configured.
  • the second spectral region may transmit fluorescence emitted from the subject irradiated with the excitation light.
  • the second spectral region includes the first region belonging to any one of the plurality of first groups and the second region belonging to any one of the plurality of second groups. It may be configured.
  • the first region of the first spectral region and the first region of the second spectral region may be different from each other.
  • the second region of the first spectral region and the second region of the second spectral region may be different from each other.
  • the plurality of first photoelectric conversion elements receive light incident on the plurality of first photoelectric conversion elements. It may be converted to the first signal.
  • the plurality of second photoelectric conversion elements may convert light incident on the plurality of second photoelectric conversion elements into a second signal.
  • the imaging device may further include a signal processing circuit that corrects the first signal based on the second signal.
  • the imaging device can enhance the selectivity of light transmitted through the spectral element.
  • FIG. 1 is a cross-sectional view of an imaging device according to a first embodiment of the present invention. It is sectional drawing and the top view of the imaging device of the 1st Embodiment of this invention. It is a graph which shows the 1st spectral transmission characteristic of the spectroscopy element of the 1st Embodiment of this invention. It is a graph which shows the 2nd spectral transmission characteristic of the 1st substrate of a 1st embodiment of the present invention. It is sectional drawing of the imaging device of the 2nd Embodiment of this invention. It is a block diagram which shows the structure of the imaging device of the 2nd Embodiment of this invention.
  • FIG. 1 is a cross-sectional view of an imaging device according to a first embodiment of the present invention. It is sectional drawing and the top view of the imaging device of the 1st Embodiment of this invention. It is a graph which shows the 1st spectral transmission characteristic of the spectroscopy element of the 1st Embodiment
  • FIG. 7 is a diagram showing voltages applied to the first film and the second film of the second embodiment of the present invention.
  • FIG. 7 is a diagram showing the state of the spectroscopic element when a voltage is applied to the first film and the second film in the second embodiment of the present invention. It is sectional drawing of the imaging device of the modification of the 2nd Embodiment of this invention. It is sectional drawing of the imaging device of the 3rd Embodiment of this invention.
  • FIG. 14 is a diagram showing the state of the spectroscopic element when a voltage is applied to the first film and the second film in the third embodiment of the present invention. It is sectional drawing of the imaging device of the 1st modification of the 3rd Embodiment of this invention.
  • FIG. 1 shows a configuration of an imaging device 10 according to a first embodiment of the present invention.
  • a cross section of the imaging device 10 is shown in FIG.
  • the dimensions of the parts constituting the imaging device 10 do not necessarily conform to the dimensions shown in FIG.
  • the dimensions of the parts constituting the imaging device 10 may be arbitrary. The same applies to the dimensions in other cross-sectional views.
  • the imaging device 10 includes a first substrate 100, a second substrate 200, and a spectral element 300.
  • the first substrate 100 has a plurality of first photoelectric conversion elements 111.
  • the second substrate 200 is stacked over the first substrate 100 and has a plurality of second photoelectric conversion elements 211.
  • the spectral element 300 is disposed between the plurality of first photoelectric conversion elements 111 and the plurality of second photoelectric conversion elements 211.
  • the spectral element 300 has a first film 310 and a second film 320.
  • the first film 310 is light reflective.
  • the second film 320 is disposed at a position separated by a predetermined distance in the direction from the first film 310 to the plurality of second photoelectric conversion elements 211, and has light reflectivity.
  • the spectral element 300 has a first spectral transmission characteristic that selectively transmits light in a wavelength band based on a predetermined distance.
  • the transmittance distribution in the first spectral transmission characteristic has a first peak at a first wavelength and a second peak at a second wavelength different from the first wavelength.
  • the first substrate 100 has a second spectral transmission characteristic that transmits light of a first wavelength and blocks light of a second wavelength.
  • the imaging device 10 includes a first substrate 100, a second substrate 200, a spectral element 300, a support 400, a microlens ML, and a color filter CF.
  • the first substrate 100 and the second substrate 200 are stacked in the direction Dr ⁇ b> 1 perpendicular to the surface 110 a of the first substrate 100 via the spectral element 300 and the support portion 400.
  • the first substrate 100 has a first semiconductor layer 110 and a first wiring layer 120.
  • the first semiconductor layer 110 and the first wiring layer 120 are stacked in the direction Dr1.
  • the first semiconductor layer 110 is made of a first semiconductor material.
  • the first semiconductor material is at least one of silicon (Si), germanium (Ge), gallium (Ga), arsenic (As), boron (B), and the like.
  • the first semiconductor layer 110 has a surface 110 a and a surface 110 b.
  • the face 110a and the face 110b face in opposite directions to each other.
  • the surface 110 a and the surface 110 b constitute the main surface of the first semiconductor layer 110.
  • the main surface of the first semiconductor layer 110 is a relatively wide surface among a plurality of surfaces forming the surface of the first semiconductor layer 110.
  • the surface 110 a constitutes the main surface of the first substrate 100.
  • the main surface of the first substrate 100 is a relatively wide surface among a plurality of surfaces forming the surface of the first substrate 100.
  • the first semiconductor layer 110 has a plurality of first photoelectric conversion elements 111 (photodiodes).
  • first photoelectric conversion elements 111 photodiodes
  • FIG. 1 reference numerals of one first photoelectric conversion element 111 are shown as a representative.
  • the first photoelectric conversion element 111 is formed of a semiconductor material having an impurity concentration different from that of the first semiconductor material forming the first semiconductor layer 110.
  • the first photoelectric conversion element 111 constitutes a first pixel.
  • the first photoelectric conversion element 111 converts the light incident on the first photoelectric conversion element 111 into a first signal.
  • An antireflective film that suppresses reflection of light incident on the first semiconductor layer 110 may be disposed on the surface 110 a.
  • the first wiring layer 120 has a surface 120 a and a surface 120 b.
  • the face 120a and the face 120b face in opposite directions to each other.
  • the surface 120 a and the surface 120 b constitute the main surface of the first wiring layer 120.
  • the main surface of the first wiring layer 120 is a relatively wide surface among a plurality of surfaces constituting the surface of the first wiring layer 120.
  • the surface 120 a is in contact with the surface 110 b of the first semiconductor layer 110.
  • the surface 120 b constitutes the main surface of the first substrate 100.
  • the first wiring layer 120 has a first wiring 121 and a first interlayer insulating film 122. Although a plurality of first wires 121 exist in FIG. 1, the symbol of one first wire 121 is shown as a representative.
  • the first wiring 121 is made of a first conductive material.
  • the first conductive material is a metal such as aluminum (Al) and copper (Cu).
  • the first wiring 121 is a thin film in which a wiring pattern is formed.
  • the first wiring 121 transmits the first signal generated by the first photoelectric conversion element 111.
  • the first wiring 121 of only one layer may be disposed, or the first wiring 121 of a plurality of layers may be disposed. In the example shown in FIG. 1, the first wiring 121 of three layers is disposed.
  • the plurality of first wires 121 are connected by vias (not shown).
  • the first wiring 121 is disposed at a position that does not prevent the progress of the light transmitted through the first photoelectric conversion element 111.
  • the first wiring 121 is disposed at a position corresponding to a position between two adjacent second photoelectric conversion elements 211.
  • the first interlayer insulating film 122 is made of a first insulating material.
  • the first insulating material is at least one of silicon dioxide (SiO 2), silicon nitride (SiN), silicon nitride (SiCN) containing carbon, hafnium oxide (HfO 2), titanium oxide (TiO 2), and the like. is there.
  • At least one of the first semiconductor layer 110 and the first wiring layer 120 may have a circuit element such as a transistor.
  • a plurality of color filters CF are disposed on the surface 110 a of the first semiconductor layer 110.
  • the sign of one color filter CF is shown as a representative.
  • Each of the plurality of color filters CF is disposed at a position corresponding to each of the plurality of first photoelectric conversion elements 111.
  • the color filter CF transmits light of a specific wavelength band.
  • the plurality of color filters CF include a red filter, a green filter, and a blue filter.
  • the red filter transmits red light.
  • the green filter transmits green light.
  • the blue filter transmits blue light.
  • an array of red filters, green filters, and blue filters constitute a Bayer array.
  • the plurality of microlenses ML are disposed on the plurality of color filters CF.
  • the symbol of one microlens ML is shown as a representative.
  • Each of the plurality of microlenses ML is disposed at a position corresponding to each of the plurality of first photoelectric conversion elements 111.
  • the plurality of microlenses ML form an image of light.
  • the second substrate 200 has a second semiconductor layer 210 and a second wiring layer 220.
  • the second semiconductor layer 210 and the second wiring layer 220 are stacked in the direction Dr1.
  • the second semiconductor layer 210 is made of a second semiconductor material.
  • the second semiconductor material is the same as the first semiconductor material that constitutes the first semiconductor layer 110.
  • the second semiconductor material is different from the first semiconductor material.
  • the second semiconductor material is at least one of silicon (Si), germanium (Ge), gallium (Ga), arsenic (As), and boron (B).
  • the second semiconductor layer 210 has a surface 210a and a surface 210b.
  • the face 210a and the face 210b face in opposite directions to each other.
  • the surface 210 a and the surface 210 b constitute the main surface of the second semiconductor layer 210.
  • the main surface of the second semiconductor layer 210 is a relatively wide surface among a plurality of surfaces forming the surface of the second semiconductor layer 210.
  • the surface 210 b constitutes the main surface of the second substrate 200.
  • the main surface of the second substrate 200 is a relatively wide surface among a plurality of surfaces forming the surface of the second substrate 200.
  • the second semiconductor layer 210 includes a plurality of second photoelectric conversion elements 211 (photodiodes).
  • second photoelectric conversion elements 211 photodiodes
  • FIG. 1 reference numerals of one second photoelectric conversion element 211 are shown as a representative.
  • the second photoelectric conversion element 211 is formed of a semiconductor material having an impurity concentration different from that of the second semiconductor material forming the second semiconductor layer 210.
  • the second photoelectric conversion element 211 constitutes a second pixel.
  • the second photoelectric conversion element 211 converts the light incident on the second photoelectric conversion element 211 into a second signal.
  • one second photoelectric conversion element 211 is arranged to correspond to one first photoelectric conversion element 111.
  • One second photoelectric conversion element 211 may be arranged to correspond to the plurality of first photoelectric conversion elements 111.
  • the second wiring layer 220 has a surface 220a and a surface 220b.
  • the face 220a and the face 220b face in opposite directions to each other.
  • the surface 220 a and the surface 220 b constitute the main surface of the second wiring layer 220.
  • the main surface of the second wiring layer 220 is a relatively wide surface among a plurality of surfaces constituting the surface of the second wiring layer 220.
  • the surface 220 a constitutes the main surface of the second substrate 200.
  • the surface 220 b is in contact with the surface 210 a of the second semiconductor layer 210.
  • the second wiring layer 220 has a second wiring 221 and a second interlayer insulating film 222.
  • a plurality of second wires 221 exist, but the symbol of one second wire 221 is shown as a representative.
  • the second wiring 221 is made of a second conductive material.
  • the second conductive material is the same as the first conductive material constituting the first wiring 121.
  • the second conductive material is different from the first conductive material.
  • the second conductive material is a metal such as aluminum (Al) and copper (Cu).
  • the second wiring 221 is a thin film in which a wiring pattern is formed.
  • the second wiring 221 transmits the second signal generated by the second photoelectric conversion element 211.
  • the second wiring 221 of only one layer may be disposed, or the second wiring 221 of a plurality of layers may be disposed. In the example shown in FIG. 1, the second wiring 221 of three layers is disposed.
  • the plurality of second wirings 221 are connected by vias (not shown).
  • the second wiring 221 is disposed at a position that does not prevent the progress of the light transmitted through the first photoelectric conversion element 111.
  • the second wiring 221 is disposed at a position corresponding to a position between two adjacent second photoelectric conversion elements 211.
  • the second interlayer insulating film 222 is made of a second insulating material.
  • the second insulating material is the same as the first insulating material forming the first interlayer insulating film 122.
  • the second insulating material is different from the first insulating material.
  • the second insulating material is at least one of silicon dioxide (SiO.sub.2), silicon nitride (SiN), nitride of silicon containing carbon (SiCN), hafnium oxide (HfO.sub.2), and titanium oxide (TiO.sub.2). is there.
  • At least one of the second semiconductor layer 210 and the second wiring layer 220 may have a circuit element such as a transistor.
  • the spectral element 300 has a first film 310 and a second film 320 opposed to each other.
  • the first film 310 and the second film 320 are made of a material having high light reflectance.
  • the material forming the first film 310 and the second film 320 is a metal such as aluminum (Al), silver (Ag), and gold (Au).
  • the first film 310 and the second film 320 may be composed of different materials.
  • the first film 310 and the second film 320 are thin films each having a thickness of several hundred nm or less.
  • the first film 310 and the second film 320 are disposed between the first substrate 100 and the second substrate 200.
  • the first film 310 is disposed on the surface 120 b of the first wiring layer 120.
  • the second film 320 is disposed on the surface 220 a of the second wiring layer 220.
  • the first film 310 is disposed on the first photoelectric conversion element 111 side
  • the second film 320 is disposed on the second photoelectric conversion element 211 side.
  • the distance d1 between the first film 310 and the first photoelectric conversion element 111 is smaller than the distance d2 between the second film 320 and the first photoelectric conversion element 111.
  • the second film 320 is disposed at a position separated by a distance d 3 in the direction from the first film 310 to the plurality of second photoelectric conversion elements 211.
  • the first film 310 is fixed to the first substrate 100, and the second film 320 is fixed to the second substrate 200.
  • the spectral element 300 is configured as an etalon using the principle of a Fabry-Perot interferometer.
  • the spectral element 300 has a first spectral transmission characteristic that selectively transmits light in a wavelength band corresponding to the distance d3.
  • the first spectral transmission characteristic is set such that light having a wavelength longer than that of visible light (for example, infrared light) is transmitted through the spectral element 300.
  • visible light for example, infrared light
  • at least one of the red filter, the green filter, and the blue filter included in the plurality of color filters CF transmits light having a wavelength longer than that of visible light.
  • the spectral element 300 and the second photoelectric conversion element 211 are disposed at positions where light transmitted through the color filter CF transmitting light having a wavelength longer than that of visible light passes.
  • the support 400 is made of a third insulating material.
  • the third insulating material is the same as the first insulating material forming the first interlayer insulating film 122 or the second insulating material forming the second interlayer insulating film 222.
  • the third insulating material is different from the first insulating material and the second insulating material.
  • the third insulating material is at least one of silicon dioxide (SiO 2), silicon nitride (SiN), silicon nitride (SiCN) containing carbon, hafnium oxide (HfO 2), titanium oxide (TiO 2), and the like. is there.
  • the support part 400 is columnar (wall-like).
  • the support portion 400 is disposed between the first substrate 100 and the second substrate 200.
  • the support 400 is disposed between the first membrane 310 and the second membrane 320.
  • the support portion 400 is in contact with the surface 120 b of the first wiring layer 120 and in contact with the surface 220 a of the second wiring layer 220. In FIG. 1, the portion where the support 400 contacts the surface 120 b is not shown.
  • the support 400 is fixed relative to the first membrane 310 and the second membrane 320.
  • the support portion 400 is fixed to the first substrate 100 and the second substrate 200.
  • the support portion 400 connects the first substrate 100 and the second substrate 200.
  • the support 400 supports the first membrane 310.
  • the support portion 400 is disposed at a position that does not impede the progress of the light transmitted through the first photoelectric conversion element 111.
  • the support portion 400 is disposed at a corresponding position between two adjacent second photoelectric conversion elements 211.
  • the area excluding the support 400 between the first membrane 310 and the second membrane 320 is hollow. Hollow means that there is no substance in the solid phase, and is in a vacuum or in a controlled atmosphere.
  • a controlled atmosphere is, for example, filled with an inert gas such as nitrogen and argon and in a state of normal pressure or reduced pressure.
  • the controlled atmosphere is not limited to the inert gas, and may have the same composition as the atmosphere.
  • FIG. 2 is an enlarged view of the first film 310 and the second film 320.
  • a cross section of the part comprising the first membrane 310 and the second membrane 320 is shown.
  • a first film 310 and a second film 320 are shown when the imaging device 10 is viewed in a direction perpendicular to the surface 110 a of the first semiconductor layer 110. That is, the first film 310 and the second film 320 when the imaging device 10 is viewed from the front of the first substrate 100 are shown.
  • the microlens ML and the color filter CF are omitted.
  • the spectral element 300 has a plurality of first films 310 and a plurality of second films 320.
  • reference numerals of one first film 310 and one second film 320 are shown as a representative.
  • the plurality of second photoelectric conversion elements 211 are arranged in a matrix. In FIG. 2, the positions of the plurality of second photoelectric conversion elements 211 are shown. In FIG. 2, reference numerals of one second photoelectric conversion element 211 are shown as a representative. In FIG. 2, the plurality of first photoelectric conversion elements 111 are not shown.
  • the plurality of first photoelectric conversion elements 111 are arranged in a matrix like the plurality of second photoelectric conversion elements 211.
  • the number of rows and columns in the arrangement of the plurality of first photoelectric conversion elements 111 and the plurality of second photoelectric conversion elements 211 is two or more.
  • Each first film 310 included in the plurality of first films 310 is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements 211, and the direction of the row or the column Has a long shape.
  • the plurality of first membranes 310 have an elongated shape in the row direction Dr2.
  • the row direction Dr2 is parallel to the rows in the array of the plurality of second photoelectric conversion elements 211.
  • Each second film 320 included in the plurality of second films 320 is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements 211, and the direction of the row or the column Has a long shape.
  • the plurality of second films 320 have an elongated shape in the column direction Dr3.
  • the column direction Dr3 is parallel to the column in the array of the plurality of second photoelectric conversion elements 211.
  • the light from the subject passes through an imaging lens disposed optically in front of the imaging device 10.
  • the light that has passed through the imaging lens is incident on the microlens ML.
  • the microlens ML focuses the light transmitted through the imaging lens.
  • the light transmitted through the microlens ML is incident on the color filter CF.
  • the color filter CF transmits light of a specific wavelength band.
  • the light transmitted through the color filter CF is incident on the first semiconductor layer 110.
  • the first photoelectric conversion element 111 is disposed in a region corresponding to the microlens ML. That is, the first photoelectric conversion element 111 is disposed in a region through which the light transmitted through the microlens ML passes.
  • the light incident on the first semiconductor layer 110 is incident on the first photoelectric conversion element 111.
  • the first photoelectric conversion element 111 converts the light incident on the first photoelectric conversion element 111 into a first signal.
  • the first signal generated by the first photoelectric conversion element 111 constitutes a color image signal (visible light image signal) based on light in the visible light band.
  • the light transmitted through the first photoelectric conversion element 111 is incident on the first wiring layer 120.
  • the first wiring 121 is disposed so as not to shield most of the light transmitted through the first photoelectric conversion element 111.
  • the light incident on the first wiring layer 120 is transmitted through the first wiring layer 120 and is incident on the light separating element 300.
  • the light separating element 300 selectively transmits the light of the wavelength band corresponding to the distance d 3 among the light incident on the light separating element 300.
  • the light transmitted through the dispersive element 300 is incident on the second wiring layer 220.
  • the second wiring 221 is disposed so as not to shield most of the light transmitted through the first photoelectric conversion element 111.
  • the light incident on the second wiring layer 220 passes through the second wiring layer 220 and is incident on the second semiconductor layer 210.
  • the second photoelectric conversion element 211 is disposed in a region corresponding to the microlens ML and the first photoelectric conversion element 111. That is, the second photoelectric conversion element 211 is disposed in a region through which the light transmitted through the microlens ML and the first photoelectric conversion element 111 passes.
  • the light that has entered the second semiconductor layer 210 enters the second photoelectric conversion element 211.
  • the second photoelectric conversion element 211 converts the light incident on the second photoelectric conversion element 211 into a second signal.
  • the second signal generated by the second photoelectric conversion element 211 constitutes an image signal based on narrowband light.
  • narrow band light is excitation light or fluorescence.
  • excitation light is irradiated to indocyanine green (ICG), and fluorescence from a lesion is detected.
  • ICG is a fluorescent substance.
  • the ICG is previously administered into the test subject's body.
  • the ICG is excited in the infrared region by the excitation light and emits fluorescence.
  • the administered ICG is accumulated in a lesion such as cancer. Since strong fluorescence is generated from the lesion area, the examiner can determine the presence or absence of the lesion area based on the captured fluorescence image.
  • the examiner can determine whether the excitation light is irradiated to the site to be observed based on the imaged excitation light image.
  • the spectroscopic element 300 is configured to transmit only excitation light or fluorescence.
  • the plurality of second photoelectric conversion elements 211 generate a second signal based on excitation light or fluorescence.
  • the second signal generated by the second photoelectric conversion element 211 constitutes an image signal based on excitation light or fluorescence.
  • the first spectral transmission characteristic of the spectral element 300 will be described.
  • the following equation (1) indicates the peak wavelength ⁇ of the light transmitted by the light separating element 300.
  • Formula (1) is simplified on the assumption that light is incident perpendicularly to the light separating element 300.
  • Equation (1) d is the distance d3 between the first film 310 and the second film 320. Equation (1) is a function of order n. The order n is a natural number. The wavelengths of the first peak and the second peak in the first spectral transmission characteristic are included in the plurality of peak wavelengths ⁇ indicated by equation (1).
  • Equation (2) indicates a full width at half maximum FWHM based on equation (1).
  • Equation (2) R represents the light reflectance of the first film 310 and the second film 320. Since the light reflectance R is large, ie, close to 1, the value of the full width half maximum FWHM is small. That is, in the first spectral transmission characteristic, the transmittance of light in a very narrow wavelength band (narrow band light) is high.
  • FIG. 3 shows a first spectral transmission characteristic of the spectral element 300.
  • the vertical axis in FIG. 3 indicates the transmittance, and the horizontal axis in FIG. 3 indicates the wavelength.
  • the transmittance distribution in the case where the order n is 1, 2 and 3 is shown as a representative. As the order n increases, the peak wavelength ⁇ decreases. The transmittance in the full width at half maximum FWHM including the peak wavelength ⁇ is larger than the transmittance outside the full width at half maximum FWHM.
  • the spectral element 300 has a first spectral transmission characteristic that selectively transmits a plurality of narrow band lights corresponding to a plurality of peak wavelengths ⁇ .
  • FIG. 4 shows a second spectral transmission characteristic of the first substrate 100.
  • the vertical axis in FIG. 4 indicates the transmittance, and the horizontal axis in FIG. 4 indicates the wavelength.
  • the transmittance distribution is shown for each thickness T of the first substrate 100 in the direction Dr1.
  • second spectral transmission characteristics are shown when the thickness T of the first substrate 100 is 1000 nm, 2000 nm, 3000 nm, and 6000 nm.
  • the transmittance shown in FIG. 4 is normalized so that the maximum transmittance is 1.
  • peak wavelengths ⁇ corresponding to the first, second and third orders are 800 nm, 400 nm and 267 nm.
  • the transmission at 800 nm, which is the first order peak wavelength ⁇ is about 0.5 to about 0.9.
  • the transmittance at 400 nm, which is the second order peak wavelength ⁇ , is approximately zero.
  • the transmittance at 267 nm, which is the third-order peak wavelength ⁇ is approximately zero.
  • the transmission at 267 nm is not shown in FIG.
  • the transmission at the peak wavelength ⁇ corresponding to an order n greater than 4 is approximately zero.
  • the first wavelength at the first peak of the first spectral transmission characteristic of the spectral element 300 is 800 nm corresponding to the first.
  • the second wavelength at the second peak of the first spectral transmission characteristic of the spectral element 300 is a wavelength corresponding to an order n larger than one. Therefore, the transmittance of the light of the first wavelength in the second spectral transmission characteristic of the first substrate 100 is higher than the transmittance of the light of the second wavelength in the second spectral transmission characteristic of the first substrate 100. large.
  • the first wavelength is longer than the second wavelength.
  • the transmittance at wavelengths other than the maximum wavelength among the plurality of peak wavelengths ⁇ in the first spectral transmission characteristic of the spectral element 300 is substantially It is 0. That is, the first substrate 100 transmits the light of the first wavelength at the first peak and blocks the light of the second wavelength at the second peak. Since the maximum wavelength of visible light is about 780 nm, the first substrate 100 transmits infrared light and blocks visible light.
  • the light transmitted through the first substrate 100 and incident on the light separating element 300 does not include light of wavelengths other than the first wavelength at the first peak of the first spectral transmission characteristic of the light separating element 300. Therefore, only light of the first wavelength passes through the spectral element 300 and is incident on the second photoelectric conversion element 211.
  • the second photoelectric conversion element 211 generates a second signal based on the light of the first wavelength. Since light of wavelengths other than the first wavelength does not enter the second photoelectric conversion element 211, noise included in the second signal is reduced.
  • the first spectral transmission characteristic of the spectral element 300 Due to the change of the distance d3 between the first film 310 and the second film 320, the first spectral transmission characteristic of the spectral element 300 is changed. Therefore, the first wavelength at the first peak of the first spectral transmission characteristic is not limited to the wavelength of infrared light.
  • the spectral element 300 has the first spectral transmission characteristic of selectively transmitting the light of the wavelength band based on the predetermined distance.
  • the transmittance distribution in the first spectral transmission characteristic has a first peak at a first wavelength and a second peak at a second wavelength different from the first wavelength.
  • the first substrate 100 has a second spectral transmission characteristic that transmits light of a first wavelength and blocks light of a second wavelength.
  • the light of the second wavelength that causes the noise of the second signal generated by the second photoelectric conversion element 211 does not enter the light separating element 300. Therefore, the light transmitted through the light separating element 300 includes the light of the first wavelength but does not include the light of the second wavelength.
  • the imaging device 10 can enhance the selectivity of the light transmitted through the spectral element 300.
  • FIG. 5 shows a configuration of an imaging device 11 according to a second embodiment of the present invention.
  • a cross section of the imaging device 11 is shown.
  • the configuration shown in FIG. 5 will be described about differences from the configuration shown in FIG.
  • the first film 310 and the second film 320 have conductivity.
  • the first film 310 and the second film 320 function as electrodes.
  • the distance between the first film 310 and the second film 320 is equal to the voltage of the first film 310 and the second film 320. It becomes the distance according to the difference.
  • the spectral element 300 includes the first film 310 and the second of the light transmitted through the plurality of first photoelectric conversion elements 111.
  • the first spectral transmission characteristic selectively transmits light of a wavelength band based on the distance d3 between the films 320 of
  • the first membrane 310 and the second membrane 320 constitute a diaphragm.
  • the first film 310 is divided into a plurality of first regions 310a.
  • the second film 320 is divided into a plurality of second regions 320a.
  • the symbols of one first region 310a and one second region 320a are shown as a representative.
  • the first region 310 a is a region of the first film 310 to which light transmitted through the first photoelectric conversion element 111 is incident.
  • the first region 310 a is a region different from the region of the first film 310 connected to the support portion 401.
  • the second region 320a is a region facing the first region 310a.
  • the second region 320 a is a region different from the region of the second film 320 connected to the support portion 401.
  • the plurality of first regions 310 a and the plurality of second regions 320 a are disposed at positions corresponding to the plurality of second photoelectric conversion elements 211.
  • One first region 310 a and one second region 320 a are disposed at positions corresponding to any one second photoelectric conversion element 211 included in the plurality of second photoelectric conversion elements 211.
  • the number of first regions 310 a and the number of second regions 320 a are the same as the number of second photoelectric conversion elements 211.
  • the plurality of second photoelectric conversion elements 211 are arranged in a matrix.
  • Each first film 310 included in the plurality of first films 310 is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements 211, and the direction of the row or the column Has a long shape.
  • the plurality of first films 310 are arranged at positions corresponding to the rows
  • the plurality of second films 320 are arranged at positions corresponding to the columns. That is, when the plurality of first membranes 310 are elongated in the row direction Dr2, the plurality of second membranes 320 are elongated in the column direction Dr3.
  • the plurality of second films 320 are disposed at the positions corresponding to the rows. That is, when the plurality of first membranes 310 are elongated in the column direction Dr3, the plurality of second membranes 320 are elongated in the row direction Dr2.
  • the spectral element 300 has a plurality of spectral regions 300a. Each spectral region 300a included in the plurality of spectral regions 300a has a first region 310a and a second region 320a opposed to each other.
  • the support 400 shown in FIG. 1 is changed to a support 401.
  • the support portion 401 is disposed between the first substrate 100 and the second substrate 200.
  • the support portion 401 is connected to the first membrane 310 and the second membrane 320.
  • the support 401 is fixed relative to the second membrane 320 and supports the first membrane 310.
  • the second film 320 is fixed to the second substrate 200.
  • the area excluding the support portion 401 between the first membrane 310 and the second membrane 320 is hollow.
  • the support portion 401 has a first support portion 410 and a second support portion 420.
  • the first support portion 410 is disposed between the first substrate 100 and the first film 310.
  • the first support portion 410 is connected to the first film 310 and fixed to the first substrate 100.
  • the second support 420 is disposed between the first membrane 310 and the second membrane 320.
  • the second support 420 is connected to the first membrane 310 and fixed relative to the second membrane 320. Therefore, the support portion 401 is fixed to the first substrate 100 and the second film 320.
  • the second support 420 is connected to the second substrate 200.
  • the first support 410 and the second support 420 support the first membrane 310.
  • the area excluding the first support portion 410 between the first substrate 100 and the first film 310 is hollow.
  • the area except the second support 420 between the first membrane 310 and the second membrane 320 is hollow.
  • the first support portion 410 is in contact with the surface 120 b of the first wiring layer 120.
  • the first support 410 is in contact with the second support 420.
  • the portion in which the first support portion 410 contacts the second support portion 420 is not shown.
  • the second support 420 is in contact with the surface 220 a of the second wiring layer 220.
  • the second support 420 is fixed to the second substrate 200.
  • the first support portion 410 and the second support portion 420 are disposed at positions that do not prevent the progress of light transmitted through the first photoelectric conversion element 111.
  • the first support portion 410 and the second support portion 420 are arranged at corresponding positions between two adjacent second photoelectric conversion elements 211.
  • FIG. 6 shows the configuration of the imaging device 11 including peripheral circuits of pixels.
  • the imaging device 11 has a support substrate 500.
  • the support substrate 500 includes a pixel array 510, a row selection circuit 520, a column processing circuit 530, an output circuit 540, and voltage generation circuits 550 to 553.
  • the pixel array 510 is an area in which a plurality of first pixels and a plurality of second pixels are arranged in a matrix.
  • the pixel array 510 has a structure shown in FIG.
  • the row selection circuit 520 is a vertical scanning circuit.
  • the row selection circuit 520 controls timing at which signals are read out from the first pixel and the second pixel.
  • the row selection circuit 520 controls the operation of the first pixel and the second pixel by outputting a control signal to the first pixel and the second pixel.
  • the row selection circuit 520 outputs a control signal for each row in the array of the plurality of first pixels and the plurality of second pixels. In FIG. 6, two row selection circuits 520 are arranged.
  • the column processing circuit 530 performs processing such as noise removal on the signals output from the first pixel and the second pixel.
  • the output circuit 540 outputs the signal processed by the column processing circuit 530 to an external circuit.
  • four output circuits 540 are arranged.
  • the voltage generation circuits 550 to 553 generate voltages applied to the first film 310 and the second film 320. In FIG. 6, four voltage generation circuits 550 to 553 are arranged.
  • each circuit is not limited to the number shown in FIG.
  • the position where each circuit is arranged in the support substrate 500 is not limited to the position shown in FIG.
  • FIG. 7 schematically shows voltages applied to the first film 310 and the second film 320.
  • the voltage generation circuit 550 and the voltage generation circuit 551 (first voltage generation circuit) generate a first voltage applied to the first film 310, that is, the plurality of first regions 310a.
  • the voltage generation circuit 552 and the voltage generation circuit 553 (second voltage generation circuit) generate a second voltage applied to the second film 320, that is, the plurality of second regions 320a.
  • the voltage generation circuit 550 generates a first voltage V 1 applied to the plurality of first regions 310 a in the even row.
  • Voltage generating circuit 551 generates a first voltage V 2 applied to the plurality of first regions 310a in the odd rows.
  • Voltage generating circuit 552 generates a second voltage V 3 applied to the plurality of second regions 320a in odd-numbered columns.
  • Voltage generating circuit 553 generates a second voltage V 4 is applied to the plurality of second regions 320a in the even columns.
  • the first voltage V 1 , the first voltage V 2 , the second voltage V 3 , and the second voltage V 4 are different from one another.
  • FIG. 8 shows the state of the spectroscopic element 300 when a voltage is applied to the first film 310 and the second film 320.
  • the distance d3 between the first region 310a and the second region 320a is the difference between the first voltage applied to the first region 310a and the second voltage applied to the second region 320a. Based on.
  • the first membrane 310 is displaced towards the second membrane 320.
  • portions connected to the first support portion 410 and the second support portion 420 are not displaced.
  • the distance d3 when a voltage is applied to each film is smaller than the distance d3 when a voltage is not applied to each film.
  • the distance between the first region 310a and second region 320a corresponding to the odd go One odd columns d3 is based on the difference between the first voltage V 2 and the second voltage V 3.
  • the distance between the first region 310a and second region 320a corresponding to the odd go One even column d3 is based on the difference between the first voltage V 2 and the second voltage V 4.
  • the distance between the first region 310a and second region 320a corresponding to the even go One odd columns d3 is based on the difference between the first voltage V 1 and the second voltage V 3.
  • the distance between the first region 310a and second region 320a corresponding to the even go One even columns d3 is based on the difference between the first voltage V 1 and the second voltage V 4.
  • the voltage difference between the first region 310a and the second region 320a is four. Therefore, the spectral element 300 can transmit light in wavelength bands corresponding to each of the four distances d3.
  • First voltage V 1 and the first voltage V 2 may be the same.
  • the second voltage V 3 and the second voltage V 4 may be the same.
  • the voltage difference between the first region 310a and the second region 320a is two. Therefore, the spectral element 300 can transmit light of wavelength bands corresponding to each of the two distances d3.
  • the spectral element 300 may transmit light of wavelength bands corresponding to each of the three distances d3.
  • the spectral element 300 may transmit light in wavelength bands corresponding to each of the more than four distances d3.
  • the same first voltage is applied to the plurality of first regions 310a
  • the same second voltage is applied to the plurality of second regions 320a.
  • the spectral element 300 transmits light in a wavelength band corresponding to one distance d3.
  • a voltage may be applied to only one of the first region 310a and the second region 320a. For example, a voltage may be applied only to the first region 310a. Alternatively, a voltage may be applied only to the second region 320a.
  • the difference between the first voltage and the second voltage at the first timing is different from the difference between the first voltage and the second voltage at the second timing different from the first timing.
  • the first timing is before or after the second timing.
  • the distance d3 between each first region 310a included in the plurality of first regions 310a and each second region 320a included in the plurality of second regions 320a is the same first at a first timing. It is a distance of 1. That is, the distance d3 in the plurality of spectral regions 300a is the same first distance at the first timing.
  • the distance d3 between each first region 310a included in the plurality of first regions 310a and each second region 320a included in the plurality of second regions 320a is the same first at a second timing. It is a distance of 2. That is, the distance d3 in the plurality of spectral regions 300a is the same second distance at the second timing. The second distance is different from the first distance.
  • the first voltages V 1 generated by the voltage generating circuit 550 the voltage first is a voltage V 2 generated by the generating circuit 551, the same timing as the first timing or the first timing earlier than the timing Are applied to the plurality of first regions 310a.
  • a second voltage V 3 which is generated by the voltage generating circuit 552, the voltage and the second voltage V 4 generated by the generating circuit 553, the same timing as the first timing or the first timing earlier than the timing Are applied to the plurality of second regions 320a.
  • the spectroscopic element 300 transmits light of a wavelength band corresponding to the first distance at the first timing.
  • the first voltages V 1 generated by the voltage generating circuit 550 the voltage first is a voltage V 2 generated by the generating circuit 551, the same timing as the second timing or the second timing earlier than the timing Are applied to the plurality of first regions 310a.
  • a second voltage V 3 which is generated by the voltage generating circuit 552, the voltage and the second voltage V 4 generated by the generating circuit 553, the same timing as the second timing or the second timing earlier than the timing Are applied to the plurality of second regions 320a.
  • the spectroscopic element 300 transmits light of a wavelength band corresponding to the second distance at the second timing.
  • the imaging device 11 may repeat the above operation.
  • the spectral element 300 sequentially transmits light of a plurality of different wavelength bands. Thereby, the imaging device 11 can obtain light of a specific wavelength band in a plane-sequential manner.
  • the plurality of second photoelectric conversion elements 211 are controlled by a pixel control signal of a predetermined cycle.
  • the predetermined cycle is a frame cycle.
  • the pixel control signal is generated by the row selection circuit 520.
  • the pixel control signal is a vertical synchronization signal.
  • the first voltage is applied to the plurality of first regions 310a at a third timing based on a predetermined cycle.
  • the second voltage is applied to the plurality of second regions 320a at a fourth timing based on a predetermined cycle.
  • the plurality of second photoelectric conversion elements 211 generate a second signal .
  • the fourth timing is the same as the third timing.
  • the fourth timing may be different from the third timing.
  • the third timing is identical to at least one of the first timing and the second timing.
  • the third timing may be different from the first timing and the second timing.
  • the fourth timing is identical to at least one of the first timing and the second timing.
  • the fourth timing may be different from the first timing and the second timing.
  • the plurality of third timing intervals and the plurality of fourth timing intervals are the same.
  • the voltage generation circuits 550 to 553 may be controlled by a pixel control signal. That is, the voltage generation circuit 550 and the voltage generation circuit 551 may generate the first voltage at a predetermined cycle based on the pixel control signal. The voltage generation circuit 552 and the voltage generation circuit 553 may generate the second voltage at a predetermined cycle based on the pixel control signal.
  • the plurality of first photoelectric conversion elements 111 are controlled by a pixel control signal of a predetermined cycle.
  • the plurality of first photoelectric conversion elements 111 and the plurality of second photoelectric conversion elements 211 may be controlled by the same pixel control signal.
  • the plurality of first photoelectric conversion elements 111 and the plurality of second photoelectric conversion elements 211 generate signals at a predetermined cycle.
  • the plurality of second photoelectric conversion elements 211 can generate the second signal of each frame in synchronization with the operation of the plurality of first photoelectric conversion elements 111 generating the first signal of each frame.
  • the plurality of second photoelectric conversion elements 211 generate second signals based on infrared light of a plurality of wavelength bands different from each other at a predetermined cycle.
  • the second signals generated by the plurality of second photoelectric conversion elements 211 generate infrared light image signals based on infrared light.
  • Infrared light includes excitation light and fluorescence.
  • the first distance is set to a distance corresponding to excitation light
  • the second distance is set to a distance corresponding to fluorescence.
  • the spectral element 300 transmits excitation light at a first timing and transmits fluorescence at a second timing.
  • the second photoelectric conversion element 211 generates a second signal based on the excitation light at a first timing.
  • the second signals generated by the plurality of second photoelectric conversion elements 211 in which the excitation light is incident constitute an excitation light image signal based on the excitation light.
  • the second photoelectric conversion element 211 generates a second signal based on fluorescence at a second timing.
  • the second signals generated by the plurality of second photoelectric conversion elements 211 to which the fluorescence is incident constitute a fluorescence image signal based on the fluorescence.
  • Each first region 310a included in the plurality of first regions 310a is included in any one of the plurality of first groups.
  • Each first group included in the plurality of first groups includes at least one first region 310a. In the example shown in FIG. 7, two first groups are set. One first group includes the first regions 310 a in odd rows. Another first group includes even regions of first regions 310a in even rows.
  • Each second region 320a included in the plurality of second regions 320a is included in any one of the plurality of second groups.
  • Each second group included in the plurality of second groups includes at least one second region 320a. In the example shown in FIG. 7, two second groups are set. One second group includes the second region 320a of the odd-numbered column. The other second group includes the second region 320a of even columns.
  • the voltage generation circuit 550 and the voltage generation circuit 551 generate a plurality of different first voltages.
  • the voltage generating circuit 550 generates a first voltage V 1
  • the voltage generating circuit 551 generates a first voltage V 1 is different from the first voltage V 2.
  • the number of first voltages generated by the voltage generation circuit 550 and the voltage generation circuit 551 is the same as the number of first groups.
  • Each first voltage is applied to a first region 310a belonging to any one of a plurality of first groups.
  • First voltages V 1 is applied to the first region 310a of the even-numbered rows belonging to one of the first group.
  • the first voltage V 2 is applied to the first region 310a of the odd-numbered rows belonging to other first group.
  • the voltage generation circuit 552 and the voltage generation circuit 553 generate a plurality of different second voltages.
  • the voltage generating circuit 552 generates a second voltage V 3
  • the voltage generating circuit 553 generates a second voltage V 4 that is different from the second voltage V 3.
  • the number of second voltages generated by the voltage generation circuit 552 and the voltage generation circuit 553 is the same as the number of second groups.
  • Each second voltage is applied to a second region 320a belonging to any one of a plurality of second groups.
  • the second voltage V 3 is applied to a second region 320a of the odd-numbered columns belonging to one of the second group.
  • the second voltage V 4 is applied to the second region 320a of the even columns belonging to other second group.
  • the distance d3 between the first region 310a and the second region 320a is based on the combination of the first voltage applied to the first region 310a and the second voltage applied to the second region 320a. It is a distance. That is, the distance d3 is based on the difference between the first voltage and the second voltage.
  • the plurality of first voltages generated by the voltage generation circuit 550 and the voltage generation circuit 551 are applied to the plurality of first regions 310 a at the same timing as the fifth timing or at a timing earlier than the fifth timing. Be done.
  • the plurality of second voltages generated by the voltage generation circuit 552 and the voltage generation circuit 553 are applied to the plurality of second regions 320 a at the same timing as the fifth timing or at a timing earlier than the fifth timing.
  • the voltage of each first region 310a at the fifth timing is any one of the plurality of first voltages
  • the voltage of each second region 320a at the fifth timing is the plurality of second voltages. It is one of the voltages.
  • the spectroscopic element 300 transmits light of wavelength bands corresponding to each of the plurality of distances d3 based on the combination of the first voltage and the second voltage at the fifth timing. Thereby, the imaging device 11 can obtain a signal based on the light of the wavelength band corresponding to each of the plurality of distances d3 at the fifth timing.
  • the first spectral regions included in the plurality of spectral regions 300 a transmit the excitation light reflected by the subject irradiated with the excitation light.
  • the first spectral region is configured of a first region 310a belonging to any one of a plurality of first groups and a second region 320a belonging to any one of a plurality of second groups. .
  • the second spectral regions included in the plurality of spectral regions 300a transmit fluorescence emitted from the subject irradiated with the excitation light.
  • the second spectral region includes a first region 310a belonging to any one of a plurality of first groups, and a second region 320a belonging to any one of a plurality of second groups. .
  • the first region 310a of the first spectral region and the first region 310a of the second spectral region are different from each other.
  • the second region 320a of the first spectral region and the second region 320a of the second spectral region are different from each other.
  • the second photoelectric conversion element 211 disposed at a position corresponding to the first spectral region generates a second signal based on the excitation light.
  • the second signals generated by the plurality of second photoelectric conversion elements 211 in which the excitation light is incident constitute an excitation light image signal based on the excitation light.
  • the second photoelectric conversion element 211 arranged at a position corresponding to the second spectral region generates a second signal based on fluorescence.
  • the second signals generated by the plurality of second photoelectric conversion elements 211 to which the fluorescence is incident constitute a fluorescence image signal based on the fluorescence.
  • the light separating element 300 transmits light of wavelength bands corresponding to each of the four distances d3.
  • light in a wavelength band corresponding to at least one of the four distances d3 is excitation light.
  • the light of the wavelength band corresponding to at least one of the four distances d3 is fluorescence.
  • the plurality of first photoelectric conversion elements 111 convert light incident on the plurality of first photoelectric conversion elements 111 into a first signal.
  • the plurality of second photoelectric conversion elements 211 convert light incident on the plurality of second photoelectric conversion elements 211 into a second signal.
  • the output circuit 540 (signal processing circuit) may correct the first signal based on the second signal. That is, the output circuit 540 may correct the first signal so that the specific component contained in the first signal is reduced.
  • the specific component is a component based on the light of the first wavelength at the first peak of the first spectral transmission characteristic of the light separating element 300.
  • the light of the first wavelength is infrared light.
  • indicates a ratio at which the first photoelectric conversion element 111 absorbs visible light.
  • indicates a ratio at which the first photoelectric conversion element 111 absorbs infrared light.
  • indicates a ratio at which the second photoelectric conversion element 211 absorbs infrared light.
  • ⁇ , ⁇ , and ⁇ can be calculated from the spectral sensitivities of the first substrate 100 and the second substrate 200.
  • the ratio of ⁇ and ⁇ is determined by the ratio of the spectral sensitivity of the first photoelectric conversion element 111 to infrared light and the spectral sensitivity of the second photoelectric conversion element 211 to infrared light.
  • ⁇ , ⁇ , and ⁇ are parameters based on the manufacturing conditions of the imaging device 11.
  • the first photoelectric conversion element 111 generates a first signal based on visible light and infrared light.
  • the signal value of the first signal is ( ⁇ V + ⁇ IR).
  • ⁇ V is a signal value based on visible light.
  • ⁇ IR is a signal value based on infrared light.
  • the second photoelectric conversion element 211 generates a second signal based on infrared light.
  • the signal value of the second signal generated by the second photoelectric conversion element 211 is ⁇ IR.
  • ⁇ IR is a signal value based on infrared light.
  • the output circuit 540 multiplies the value of the second signal generated by the second photoelectric conversion element 211, ie, ⁇ IR, by the ratio of ⁇ and ⁇ , ie, ( ⁇ / ⁇ ).
  • the output circuit 540 can calculate the signal value ⁇ IR based on the infrared light detected by the first photoelectric conversion element 111.
  • the output circuit 540 subtracts the signal value ⁇ IR calculated by the above method from the value ( ⁇ V + ⁇ IR) of the first signal generated by the first photoelectric conversion element 111. Thereby, the output circuit 540 generates a signal based only on visible light.
  • the signal value of this signal is ⁇ V.
  • the spectral element 300 can transmit light in a wavelength band corresponding to the voltage difference. Thereby, the transmission wavelength characteristic of the spectral element 300 becomes variable.
  • the support portion 401 supports the first substrate 100 and the first film 310. Therefore, the structure supporting the first substrate 100 and the first film 310 can be made common.
  • the first film 310 has a long shape in the row or column direction in the arrangement of the plurality of second photoelectric conversion elements 211. Since the first film 310 is not divided for every second pixel formed by the second photoelectric conversion element 211, a wiring for supplying a voltage to the first film 310 needs to be provided for every second pixel. Absent.
  • the second film 320 has a long shape in the direction of the rows or columns in the array of the plurality of second photoelectric conversion elements 211. Since the second film 320 is not divided for every second pixel formed by the second photoelectric conversion element 211, it is necessary to arrange a wire for supplying a voltage to the second film 320 for every second pixel. Absent.
  • the voltage generation circuit 550 and the voltage generation circuit 551 generate a first voltage applied to the plurality of first regions 310 a in the first film 310.
  • the voltage generation circuit 552 and the voltage generation circuit 553 generate a second voltage applied to the plurality of second regions 320 a in the second film 320.
  • the imaging device 11 can obtain a signal based on the light of the wavelength band according to the combination of the first voltage and the second voltage.
  • the distance d3 between the first area 310a and the second area 320a may be the same first distance based on the first voltage at the first timing.
  • the distance d3 between the first area 310a and the second area 320a may be the same second distance based on the second voltage at the second timing.
  • the plurality of second photoelectric conversion elements 211 may be controlled by a pixel control signal of a predetermined cycle.
  • the first voltage is applied to the plurality of first regions 310a at a third timing based on a predetermined cycle
  • the second voltage is applied to the plurality of second regions 320a at a fourth timing based on the predetermined cycle. Applied. This simplifies voltage control.
  • the distance d3 between the first region 310a and the second region 320a is based on the combination of the first voltage applied to the first region 310a and the second voltage applied to the second region 320a. It may be a distance.
  • a plurality of first groups including the first area 310a and a plurality of second groups including the second area 320a are set, a plurality of distances d3 are set. Thereby, the imaging device 11 can simultaneously obtain a signal based on the light of the wavelength band corresponding to each of the plurality of distances d3.
  • the first spectral region included in the plurality of spectral regions 300a may transmit excitation light, and the second spectral region included in the plurality of spectral regions 300a may transmit fluorescence. Thereby, the imaging device 11 can simultaneously obtain a signal based on excitation light and a signal based on fluorescence.
  • the first signal generated by the first photoelectric conversion element 111 may be corrected based on the second signal generated by the second photoelectric conversion element 211.
  • Light of the same wavelength as the wavelength of light transmitted by the light separating element 300 may cause noise of a signal in the first photoelectric conversion element 111. The above correction reduces noise in the first signal.
  • FIG. 9 shows a configuration of an imaging device 12 according to a modification of the second embodiment of the present invention.
  • a cross section of the imaging device 12 is shown.
  • the configuration shown in FIG. 9 will be described about differences from the configuration shown in FIG.
  • the support portion 401 is connected to the first membrane 310 and the second membrane 320.
  • the support 401 is fixed relative to the first membrane 310 and supports the second membrane 320.
  • the first film 310 is fixed to the first substrate 100.
  • the area excluding the support portion 401 between the first membrane 310 and the second membrane 320 is hollow.
  • the first support portion 410 is disposed between the first membrane 310 and the second membrane 320.
  • the first support 410 is connected to the second membrane 320 and fixed relative to the first membrane 310.
  • the first support portion 410 is connected to the first substrate 100.
  • the second support 420 is disposed between the second film 320 and the second substrate 200.
  • the second support 420 is connected to the second film 320 and fixed to the second substrate 200. Therefore, the support portion 401 is fixed to the second substrate 200 and the first film 310.
  • the first support portion 410 and the second support portion 420 support the second membrane 320.
  • the area excluding the first support portion 410 between the first membrane 310 and the second membrane 320 is hollow.
  • the area excluding the second support 420 between the second film 320 and the second substrate 200 is hollow.
  • the second film 320 displaces towards the first film 310.
  • portions connected to the first support portion 410 and the second support portion 420 are not displaced.
  • the support 401 including the first support 410 and the second support 420 supports the first substrate 100 and the second film 320. Therefore, the structure supporting the first substrate 100 and the second film 320 can be made common.
  • FIG. 10 shows the configuration of an imaging device 13 according to a third embodiment of the present invention.
  • a cross section of a portion including the light separating element 300 is shown.
  • points different from the configuration shown in FIG. 5 will be described.
  • the imaging device 13 has a suppression unit 600 in addition to the configuration shown in FIG. In the example shown in FIG. 10, a plurality of suppression units 600 are arranged.
  • the suppression part 600 is comprised by the 4th insulating material.
  • the fourth insulating material is a first insulating material forming the first interlayer insulating film 122, a second insulating material forming the second interlayer insulating film 222, or a third insulating material forming the support portion 401. It is the same as the material. Alternatively, the fourth insulating material is different from the first insulating material, the second insulating material, and the third insulating material.
  • the fourth insulating material is at least one of silicon dioxide (SiO.sub.2), silicon nitride (SiN), nitride of silicon containing carbon (SiCN), hafnium oxide (HfO.sub.2), titanium oxide (TiO.sub.2), and the like. is there.
  • the suppression unit 600 may be made of metal or the like.
  • the suppressor 600 may be made of the same material as that of the first film 310 or the second film 320.
  • the suppressor 600 suppresses deformation of the first film 310 when a voltage is applied to at least one of the first film 310 and the second film 320.
  • the suppression unit 600 is a thin film.
  • the first film 310 has a surface 310 b (first surface) and a surface 310 c (second surface) facing in opposite directions.
  • the surface 310 b and the surface 310 c constitute the main surface of the first film 310.
  • the main surface of the first film 310 is a relatively wide surface among a plurality of surfaces constituting the surface of the first film 310.
  • the surface 310 b faces the first substrate 100.
  • the face 310 c faces the second film 320.
  • the suppressor 600 is disposed on any one of the surface 310 b and the surface 310 c.
  • the suppression unit 600 is disposed on the surface 310b.
  • the suppressor 600 may be disposed on the surface 310c.
  • the suppressor 600 is in contact with only the first film 310.
  • the suppressor 600 is fixed to only the first film 310.
  • the suppressor 600 has a surface 600a and a surface 600b.
  • the face 600a and the face 600b face in opposite directions.
  • the surface 600 a and the surface 600 b constitute the main surface of the suppressing portion 600.
  • the main surface of the suppression unit 600 is a relatively wide surface among a plurality of surfaces constituting the surface of the suppression unit 600.
  • the surface 600 a faces the first substrate 100.
  • the surface 600 b is in contact with the surface 310 b of the first film 310.
  • the light transmittance of the suppression unit 600 is high.
  • the suppression unit 600 transmits the light transmitted through the first photoelectric conversion element 111.
  • the width d4 of the suppressing portion 600 is smaller than the width d5 of the first region 310a and the second region 320a.
  • the widths d4 and d5 are widths in the direction Dr4 horizontal to the surface 110a of the first semiconductor layer 110.
  • the width d5 is equal to the distance between two adjacent supports 401.
  • the portion where the suppressor 600 contacts the first film 310 is smaller than the portion occupied by the first region 310 a on the surface 310 b.
  • the upper surface of the suppression unit 600 is planar.
  • the upper surface of the suppression unit 600 may be curved.
  • FIG. 11 shows the state of the spectroscopic element 300 when a voltage is applied to the first film 310 and the second film 320.
  • the first film 310 deforms.
  • the first film 310 is displaced toward the second film 320.
  • the suppressor 600 is disposed on the surface 310 b of the first film 310. Since the suppressing portion 600 is in contact with the surface 310 b, the deformation of the portion P1 including the region where the suppressing portion 600 is disposed in the first film 310 is suppressed. Therefore, the variation in the distance d3 between the portion P1 and the second film 320 on the surface 310c of the first film 310 is suppressed. As a result, the full width at half maximum FWHM shown in FIG. 3 decreases and the peak of the transmittance increases. As a result, the spectral element 300 can transmit light of a specific wavelength band with high accuracy.
  • FIG. 12 shows a configuration of an imaging device 14 of a first modified example of the third embodiment of the present invention.
  • a cross section of a portion including the light separating element 300 is shown.
  • the configuration shown in FIG. 12 will be described about differences from the configuration shown in FIG.
  • the suppression unit 600 illustrated in FIG. 10 is changed to a suppression unit 601.
  • the suppression unit 601 is a thin film.
  • the first support portion 410 is disposed between the first substrate 100 and the suppression portion 601.
  • the first support portion 410 is connected to the suppression portion 601 and fixed to the first substrate 100.
  • the second support 420 is disposed between the suppressor 601 and the second membrane 320.
  • the second support 420 is connected to the suppressor 601 and fixed to the second membrane 320. Therefore, the support portion 402 is fixed to the first substrate 100 and the second film 320.
  • the first support portion 410 and the second support portion 420 support the first membrane 310 and the suppression portion 601.
  • the suppressor 601 supports the first membrane 310.
  • the area excluding the first support portion 410 between the first substrate 100 and the first film 310 is hollow.
  • the area excluding the second support 420 and the suppressor 601 between the first membrane 310 and the second membrane 320 is hollow.
  • the suppression unit 601 has a surface 601 a and a surface 601 b.
  • the surface 601a and the surface 601b face in the opposite direction to each other.
  • the surface 601 a faces the first substrate 100.
  • the surface 601 a is in contact with the surface 310 c of the first film 310.
  • the surface 601 b faces the second substrate 200.
  • the first film 310 is disposed between the first substrate 100 and the suppression unit 601.
  • the first film 310 is disposed on the surface 601 a.
  • the first film 310 may be disposed on the surface 601 b.
  • the plurality of first films 310 aligned in the direction Dr4 horizontal to the surface 110a of the first semiconductor layer 110 are connected to each other at a position not shown in FIG. That is, the plurality of first films 310 shown in FIG. 12 have one structure.
  • the configuration shown in FIG. 12 is the same as the configuration shown in FIG.
  • FIG. 13 shows a configuration of an imaging device 15 of a second modified example of the third embodiment of the present invention.
  • a cross section of a portion including the light separating element 300 is shown.
  • points different from the configuration shown in FIG. 10 will be described.
  • the support portion 402 has a first support portion 410, a second support portion 420, and a third support portion 430.
  • the third support 430 is a thin film.
  • the first support portion 410 is disposed between the first substrate 100 and the first film 310.
  • the first support portion 410 is connected to the first film 310 and fixed to the first substrate 100.
  • the second support 420 is disposed between the third support 430 and the second membrane 320.
  • the second support 420 is connected to the third support 430 and fixed relative to the second membrane 320. Therefore, the support portion 402 is fixed to the first substrate 100 and the second film 320.
  • the first film 310 is disposed on the third support 430.
  • the surface 310 c of the first film 310 is in contact with the third support 430.
  • the configuration shown in FIG. 13 is the same as the configuration shown in FIG.
  • the first membrane 310 and the third support 430 may be arranged such that the surface 310 b of the first membrane 310 is in contact with the third support 430. In that case, the suppression unit 600 is disposed on the surface 310 c of the first film 310.
  • FIG. 14 shows a configuration of an imaging device 16 according to a third modified example of the third embodiment of the present invention.
  • a cross section of a portion including the light separating element 300 is shown.
  • the configuration shown in FIG. 14 will be described about differences from the configuration shown in FIG.
  • the imaging device 16 has a suppression unit 600 in addition to the configuration shown in FIG.
  • the suppression unit 600 is configured in the same manner as the suppression unit 600 shown in FIG.
  • the second film 320 has a face 320 b (third face) and a face 320 c (fourth face) facing in opposite directions.
  • the surface 320 b and the surface 320 c constitute the main surface of the second film 320.
  • the main surface of the second film 320 is a relatively wide surface among a plurality of surfaces constituting the surface of the second film 320.
  • the face 320 b faces the first film 310.
  • the surface 320 c faces the second substrate 200.
  • the suppression unit 600 is disposed on any one of the surface 320 b and the surface 320 c. In the example illustrated in FIG. 14, the suppression unit 600 is disposed on the surface 320 b.
  • the suppressor 600 may be disposed on the surface 320 c.
  • the suppressor 600 is in contact with only the second film 320.
  • the suppressor 600 is fixed to only the second film 320.
  • the surface 600 b of the suppressor 600 is in contact with the surface 320 b of the second film 320.
  • the portion where the suppressor 600 contacts the second film 320 is smaller than the portion occupied by the second region 320 a on the surface 320 b.
  • FIG. 15 shows a configuration of an imaging device 17 of a fourth modified example of the third embodiment of the present invention.
  • a cross section of a portion including the light separating element 300 is shown.
  • the configuration shown in FIG. 15 will be described about differences from the configuration shown in FIG.
  • the suppression unit 600 shown in FIG. 14 is changed to a suppression unit 601.
  • the suppression unit 601 is configured in the same manner as the suppression unit 601 shown in FIG.
  • the first support portion 410 and the second support portion 420 support the second membrane 320 and the suppression portion 601.
  • the suppressor 601 supports the second membrane 320.
  • the area excluding the first support portion 410 between the first membrane 310 and the second membrane 320 is hollow.
  • the area excluding the second supporting portion 420 and the suppressing portion 601 between the second film 320 and the second substrate 200 is hollow.
  • the surface 601 a of the suppression unit 601 faces the first film 310.
  • the surface 601 a is in contact with the surface 320 c of the second film 320.
  • the surface 601 b of the suppression unit 601 faces the second substrate 200.
  • the first film 310 is disposed between the first substrate 100 and the suppression unit 601.
  • the second film 320 is disposed on the surface 601 a.
  • the second film 320 may be disposed on the surface 601 b.
  • FIG. 16 shows a configuration of an imaging device 18 of a fifth modified example of the third embodiment of the present invention.
  • a cross section of a portion including the light separating element 300 is shown.
  • the configuration shown in FIG. 16 will be described about differences from the configuration shown in FIG.
  • the support portion 401 shown in FIG. 14 is changed to a support portion 402.
  • the support portion 402 is configured in the same manner as the support portion 402 shown in FIG.
  • the first support 410 is disposed between the first membrane 310 and the third support 430.
  • the first support 410 is connected to the third support 430 and fixed relative to the first membrane 310.
  • the second support 420 is disposed between the third support 430 and the second substrate 200.
  • the second support 420 is connected to the third support 430 and fixed to the second substrate 200. Therefore, the support portion 402 is fixed to the first film 310 and the second substrate 200.
  • the second film 320 is disposed on the third support 430.
  • the surface 320 c of the second film 320 is in contact with the third support 430.
  • the second membrane 320 and the third support 430 may be disposed such that the surface 320 b of the second membrane 320 is in contact with the third support 430. In that case, the suppressor 600 is disposed on the surface 320 c of the second film 320.
  • the imaging device can enhance the selectivity of light transmitted through the spectral element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

In this imaging device, a spectrometric element is disposed between a plurality of first photoelectric conversion elements from a first base board and a plurality of second photoelectric conversion elements from a second base board. The spectrometric element has a first film and a second film. The first film is disposed on the side toward the plurality of first photoelectric conversion elements. The second film is disposed on the side toward the plurality of second photoelectric conversion elements. The spectrometric element has first spectral transmission characteristics. In the first spectral transmission characteristics, the transmittance distribution has peaks, respectively at a first wavelength and at a second wavelength. The first base board has second spectral transmission characteristics allowing light having the first wavelength to be transmitted and blocking light having the second wavelength.

Description

撮像装置Imaging device
 本発明は、撮像装置に関する。 The present invention relates to an imaging device.
 対向する2枚の反射膜の間の距離に基づいて特定の波長の光のみを透過させるファブリペロー干渉計の原理を利用した分光素子が開示されている。その分光素子は、エタロンと呼ばれている。例えば、その分光素子が画素毎に配置された内視鏡装置が特許文献1に開示されている。その内視鏡装置の2枚の反射膜の各々に配置された電極に電圧が印加されたとき、2枚の反射膜の間の距離が静電気力により変化する。2枚の反射膜に印加される電圧により、分光素子を透過する光の波長が制御される。 A spectroscopic element is disclosed that utilizes the principle of a Fabry-Perot interferometer that transmits only light of a specific wavelength based on the distance between two opposing reflective films. The spectroscopic element is called an etalon. For example, Patent Document 1 discloses an endoscope apparatus in which the spectral element is disposed for each pixel. When a voltage is applied to the electrodes disposed on each of the two reflective films of the endoscope apparatus, the distance between the two reflective films changes due to electrostatic force. The voltage applied to the two reflective films controls the wavelength of light transmitted through the light separating element.
日本国特開2006-0178320号公報Japanese Patent Application Laid-Open No. 2006-0178320
 2枚の反射膜の間の距離に基づく複数次数の波長帯域の光がエタロンを透過する。撮像装置において、複数次数のうち特定の次数のみの波長帯域の光の撮像が必要な場合がある。特許文献1に開示された従来技術では、特定の次数以外の次数の波長帯域の光がエタロンを透過する可能性がある。そのため、画素で生成された信号には、特定の波長帯域以外の波長帯域の光に基づくノイズが含まれる可能性がある。 Light of wavelength bands of multiple orders based on the distance between the two reflective films is transmitted through the etalon. In an imaging device, imaging of light of a wavelength band of only a specific order among multiple orders may be required. In the prior art disclosed in Patent Document 1, light of wavelength bands of orders other than a specific order may pass through the etalon. Therefore, the signal generated by the pixel may include noise based on light in wavelength bands other than the specific wavelength band.
 本発明は、分光素子を透過する光の選択性を高めることができる撮像装置を提供することを目的とする。 An object of the present invention is to provide an imaging device capable of enhancing the selectivity of light transmitted through a spectral element.
 本発明の第1の態様によれば、撮像装置は、第1の基板、第2の基板、および分光素子を有する。前記第1の基板は、複数の第1の光電変換素子を有する。前記第2の基板は、前記第1の基板に積層され、かつ複数の第2の光電変換素子を有する。前記分光素子は、前記複数の第1の光電変換素子および前記複数の第2の光電変換素子の間に配置されている。前記分光素子は、第1の膜および第2の膜を有する。前記第1の膜は、光反射性を有する。前記第2の膜は、前記第1の膜から所定距離だけ前記複数の第2の光電変換素子の方向に離れた位置に配置され、かつ光反射性を有する。前記分光素子は、前記所定距離に基づく波長帯域の光を選択的に透過させる第1の分光透過特性を有する。前記第1の分光透過特性における透過率分布は、第1の波長における第1のピークと、前記第1の波長と異なる第2の波長における第2のピークとを有する。前記第1の基板は、前記第1の波長の光を透過させ、かつ前記第2の波長の光を遮断する第2の分光透過特性を有する。 According to a first aspect of the invention, an imaging device comprises a first substrate, a second substrate, and a dispersive element. The first substrate has a plurality of first photoelectric conversion elements. The second substrate is stacked on the first substrate and has a plurality of second photoelectric conversion elements. The spectral element is disposed between the plurality of first photoelectric conversion elements and the plurality of second photoelectric conversion elements. The spectroscopic element has a first film and a second film. The first film has light reflectivity. The second film is disposed at a position away from the first film in the direction of the plurality of second photoelectric conversion elements by a predetermined distance, and has light reflectivity. The spectral element has a first spectral transmission characteristic that selectively transmits light in a wavelength band based on the predetermined distance. The transmittance distribution in the first spectral transmission characteristic has a first peak at a first wavelength and a second peak at a second wavelength different from the first wavelength. The first substrate has a second spectral transmission characteristic that transmits light of the first wavelength and blocks light of the second wavelength.
 本発明の第2の態様によれば、第1の態様において、前記第1の膜および前記第2の膜は導電性を有してもよい。前記第1の膜および前記第2の膜の少なくとも一方に電圧が印加されたとき、前記第1の膜および前記第2の膜の間の距離は、前記第1の膜および前記第2の膜の電圧差に応じた距離になってもよい。前記分光素子は、前記第1の膜および前記第2の膜の少なくとも一方に前記電圧が印加されたとき、前記複数の第1の光電変換素子を透過した光のうち前記第1の膜および前記第2の膜の間の前記距離に基づく波長帯域の光を選択的に透過させる前記第1の分光透過特性を有してもよい。 According to a second aspect of the present invention, in the first aspect, the first film and the second film may have conductivity. When a voltage is applied to at least one of the first film and the second film, the distance between the first film and the second film is equal to the distance between the first film and the second film. The distance may be in accordance with the voltage difference of When the voltage is applied to at least one of the first film and the second film, the light separating element includes the first film and the light of light transmitted through the plurality of first photoelectric conversion elements. It may have the first spectral transmission characteristic of selectively transmitting light in a wavelength band based on the distance between the second films.
 本発明の第3の態様によれば、第2の態様において、前記撮像装置は、支持部をさらに有してもよい。前記支持部は、前記第1の膜および前記第2の膜に接続され、前記第2の膜に対して固定され、かつ前記第1の膜を支持してもよい。前記第2の膜は前記第2の基板に対して固定されてもよい。前記第1の膜および前記第2の膜の間において前記支持部を除く領域は中空であってもよい。 According to a third aspect of the present invention, in the second aspect, the imaging device may further include a support. The support may be connected to the first membrane and the second membrane, fixed relative to the second membrane, and support the first membrane. The second film may be fixed to the second substrate. The area excluding the support between the first membrane and the second membrane may be hollow.
 本発明の第4の態様によれば、第3の態様において、前記第1の膜および前記第2の膜は、前記第1の基板および前記第2の基板の間に配置されてもよい。前記支持部は、前記第1の基板および前記第2の膜に対して固定されてもよい。前記第1の基板および前記第1の膜の間において前記支持部を除く領域は中空であってもよい。 According to a fourth aspect of the present invention, in the third aspect, the first film and the second film may be disposed between the first substrate and the second substrate. The support may be fixed to the first substrate and the second film. The area excluding the support between the first substrate and the first film may be hollow.
 本発明の第5の態様によれば、第3または第4の態様において、前記支持部は、隣接する2つの前記第2の光電変換素子の間に対応する位置に配置されてもよい。 According to a fifth aspect of the present invention, in the third or fourth aspect, the support may be disposed at a corresponding position between two adjacent second photoelectric conversion elements.
 本発明の第6の態様によれば、第3から第5の態様のいずれか1つにおいて、前記撮像装置は、前記第1の膜および前記第2の膜の少なくとも一方に前記電圧が印加されたときに前記第1の膜における変形を抑制する抑制部をさらに有してもよい。前記第1の膜は、互いに反対方向を向く第1の面および第2の面を有してもよい。前記第2の面は前記第2の膜と対向してもよい。前記抑制部は、前記第1の面および前記第2の面のいずれか1つに配置されてもよい。 According to a sixth aspect of the present invention, in any one of the third to fifth aspects, in the imaging device, the voltage is applied to at least one of the first film and the second film. You may further have a suppression part which suppresses the deformation | transformation in a said 1st film | membrane, The first film may have a first surface and a second surface facing in opposite directions. The second surface may face the second film. The suppressing portion may be disposed on any one of the first surface and the second surface.
 本発明の第7の態様によれば、第2の態様において、前記撮像装置は、支持部を有してもよい。前記支持部は、前記第1の膜および前記第2の膜に接続され、前記第1の膜に対して固定され、かつ前記第2の膜を支持してもよい。前記第1の膜は前記第1の基板に対して固定されてもよい。前記第1の膜および前記第2の膜の間において前記支持部を除く領域は中空であってもよい。 According to a seventh aspect of the present invention, in the second aspect, the imaging device may have a support. The support may be connected to the first membrane and the second membrane, fixed relative to the first membrane, and support the second membrane. The first film may be fixed to the first substrate. The area excluding the support between the first membrane and the second membrane may be hollow.
 本発明の第8の態様によれば、第7の態様において、前記第1の膜および前記第2の膜は、前記第1の基板および前記第2の基板の間に配置されてもよい。前記支持部は、前記第1の膜および前記第2の基板に対して固定されてもよい。前記第2の膜および前記第2の基板の間において前記支持部を除く領域は中空であってもよい。 According to an eighth aspect of the present invention, in the seventh aspect, the first film and the second film may be disposed between the first substrate and the second substrate. The support may be fixed to the first film and the second substrate. The region excluding the support between the second film and the second substrate may be hollow.
 本発明の第9の態様によれば、第7または第8の態様において、前記支持部は、隣接する2つの前記第2の光電変換素子の間に対応する位置に配置されてもよい。 According to a ninth aspect of the present invention, in the seventh or eighth aspect, the support may be disposed at a corresponding position between two adjacent second photoelectric conversion elements.
 本発明の第10の態様によれば、第7から第9の態様のいずれか1つにおいて、前記撮像装置は、前記第1の膜および前記第2の膜の少なくとも一方に前記電圧が印加されたときに前記第2の膜における変形を抑制する抑制部をさらに有してもよい。前記第2の膜は、互いに反対方向を向く第3の面および第4の面を有してもよい。前記第3の面は前記第1の膜と対向してもよい。前記抑制部は、前記第3の面および前記第4の面のいずれか1つに配置されてもよい。 According to a tenth aspect of the present invention, in any one of the seventh to ninth aspects, in the imaging device, the voltage is applied to at least one of the first film and the second film. You may further have a suppression part which suppresses the deformation | transformation in a said 2nd film | membrane at the time of. The second film may have a third surface and a fourth surface facing in opposite directions. The third surface may face the first film. The suppressing portion may be disposed on any one of the third surface and the fourth surface.
 本発明の第11の態様によれば、第2から第10の態様のいずれか1つにおいて、前記分光素子は、複数の前記第1の膜を有してもよい。前記複数の第2の光電変換素子は行列状に配置されてもよい。前記複数の前記第1の膜に含まれる各々の前記第1の膜は、前記複数の第2の光電変換素子の配列における行または列に対応する位置に配置され、かつ前記行または前記列の方向に長い形状を有してもよい。 According to an eleventh aspect of the present invention, in any one of the second to tenth aspects, the light separating element may have a plurality of the first films. The plurality of second photoelectric conversion elements may be arranged in a matrix. Each of the first films included in the plurality of first films is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements, and of the row or the column It may have a long shape in the direction.
 本発明の第12の態様によれば、第2から第10の態様のいずれか1つにおいて、前記分光素子は、複数の前記第2の膜を有してもよい。前記複数の第2の光電変換素子は行列状に配置されてもよい。前記複数の前記第2の膜に含まれる各々の前記第2の膜は、前記複数の第2の光電変換素子の配列における行または列に対応する位置に配置され、かつ前記行または前記列の方向に長い形状を有してもよい。 According to a twelfth aspect of the present invention, in any one of the second to tenth aspects, the light separating element may have a plurality of the second films. The plurality of second photoelectric conversion elements may be arranged in a matrix. Each of the second films included in the plurality of second films is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements, and of the row or the column It may have a long shape in the direction.
 本発明の第13の態様によれば、第2から第10の態様のいずれか1つにおいて、前記第1の膜は、複数の第1の領域に分割されてもよい。前記第2の膜は、複数の第2の領域に分割されてもよい。前記複数の第1の領域および前記複数の第2の領域は、前記複数の第2の光電変換素子に対応する位置に配置されてもよい。前記撮像装置は、第1の電圧生成回路および第2の電圧生成回路をさらに有してもよい。前記第1の電圧生成回路は、前記複数の第1の領域に印加される第1の電圧を生成してもよい。前記第2の電圧生成回路は、前記複数の第2の領域に印加される第2の電圧を生成してもよい。 According to a thirteenth aspect of the present invention, in any one of the second to tenth aspects, the first film may be divided into a plurality of first regions. The second film may be divided into a plurality of second regions. The plurality of first regions and the plurality of second regions may be disposed at positions corresponding to the plurality of second photoelectric conversion elements. The imaging device may further include a first voltage generation circuit and a second voltage generation circuit. The first voltage generation circuit may generate a first voltage applied to the plurality of first regions. The second voltage generation circuit may generate a second voltage applied to the plurality of second regions.
 本発明の第14の態様によれば、第13の態様において、第1のタイミングにおける前記第1の電圧と前記第2の電圧との差は、前記第1のタイミングと異なる第2のタイミングにおける前記第1の電圧と前記第2の電圧との差と異なってもよい。前記複数の第1の領域に含まれる各々の前記第1の領域と前記複数の第2の領域に含まれる各々の前記第2の領域との間の距離は前記第1のタイミングで同一の第1の距離であってもよい。前記複数の第1の領域に含まれる各々の前記第1の領域と前記複数の第2の領域に含まれる各々の前記第2の領域との間の距離は前記第2のタイミングで同一の第2の距離であってもよい。前記第2の距離は前記第1の距離と異なってもよい。 According to a fourteenth aspect of the present invention, in the thirteenth aspect, the difference between the first voltage and the second voltage at the first timing is at a second timing different from the first timing. It may be different from the difference between the first voltage and the second voltage. The distance between each of the first regions included in the plurality of first regions and each of the second regions included in the plurality of second regions is the same at the first timing. It may be a distance of 1. The distance between each of the first regions included in the plurality of first regions and each of the second regions included in the plurality of second regions is the same at the second timing. It may be a distance of two. The second distance may be different from the first distance.
 本発明の第15の態様によれば、第14の態様において、前記複数の第2の光電変換素子は、所定周期の画素制御信号によって制御されてもよい。前記第1の電圧は、前記所定周期に基づく第3のタイミングで前記複数の第1の領域に印加されてもよい。前記第2の電圧は、前記所定周期に基づく第4のタイミングで前記複数の第2の領域に印加されてもよい。 According to a fifteenth aspect of the present invention, in the fourteenth aspect, the plurality of second photoelectric conversion elements may be controlled by a pixel control signal of a predetermined cycle. The first voltage may be applied to the plurality of first regions at a third timing based on the predetermined cycle. The second voltage may be applied to the plurality of second regions at a fourth timing based on the predetermined cycle.
 本発明の第16の態様によれば、第13の態様において、前記複数の第1の領域に含まれる各々の前記第1の領域は、複数の第1のグループのいずれか1つに含まれてもよい。前記複数の第1のグループに含まれる各々の前記第1のグループは、少なくとも1つの前記第1の領域を含んでもよい。前記複数の第2の領域に含まれる各々の前記第2の領域は、複数の第2のグループのいずれか1つに含まれてもよい。前記複数の第2のグループに含まれる各々の前記第2のグループは、少なくとも1つの前記第2の領域を含んでもよい。前記第1の電圧生成回路は、互いに異なる複数の前記第1の電圧を生成してもよい。各々の前記第1の電圧は、前記複数の第1のグループのいずれか1つに属する前記第1の領域に印加されてもよい。前記第2の電圧生成回路は、互いに異なる複数の前記第2の電圧を生成してもよい。各々の前記第2の電圧は、前記複数の第2のグループのいずれか1つに属する前記第2の領域に印加されてもよい。前記第1の領域および前記第2の領域の間の距離は、前記第1の領域に印加された前記第1の電圧と前記第2の領域に印加された前記第2の電圧との組み合わせに基づく距離であってもよい。 According to a sixteenth aspect of the present invention, in the thirteenth aspect, each of the first regions included in the plurality of first regions is included in any one of a plurality of first groups. May be Each of the first groups included in the plurality of first groups may include at least one of the first regions. Each of the second regions included in the plurality of second regions may be included in any one of a plurality of second groups. Each of the second groups included in the plurality of second groups may include at least one of the second regions. The first voltage generation circuit may generate a plurality of different first voltages. Each of the first voltages may be applied to the first region belonging to any one of the plurality of first groups. The second voltage generation circuit may generate a plurality of different second voltages. Each of the second voltages may be applied to the second region belonging to any one of the plurality of second groups. The distance between the first region and the second region is a combination of the first voltage applied to the first region and the second voltage applied to the second region. It may be based on the distance.
 本発明の第17の態様によれば、第16の態様において、第1の分光領域は、励起光が照射された被写体によって反射された励起光を透過させてもよい。前記第1の分光領域は、前記複数の第1のグループのいずれか1つに属する前記第1の領域と、前記複数の第2のグループのいずれか1つに属する前記第2の領域とで構成されてもよい。第2の分光領域は、前記励起光が照射された被写体が発する蛍光を透過させてもよい。前記第2の分光領域は、前記複数の第1のグループのいずれか1つに属する前記第1の領域と、前記複数の第2のグループのいずれか1つに属する前記第2の領域とで構成されてもよい。前記第1の分光領域の前記第1の領域および前記第2の分光領域の前記第1の領域は互いに異なってもよい。前記第1の分光領域の前記第2の領域および前記第2の分光領域の前記第2の領域は互いに異なってもよい。 According to a seventeenth aspect of the present invention, in the sixteenth aspect, the first spectral region may transmit the excitation light reflected by the subject irradiated with the excitation light. The first spectral region includes the first region belonging to any one of the plurality of first groups and the second region belonging to any one of the plurality of second groups. It may be configured. The second spectral region may transmit fluorescence emitted from the subject irradiated with the excitation light. The second spectral region includes the first region belonging to any one of the plurality of first groups and the second region belonging to any one of the plurality of second groups. It may be configured. The first region of the first spectral region and the first region of the second spectral region may be different from each other. The second region of the first spectral region and the second region of the second spectral region may be different from each other.
 本発明の第18の態様によれば、第1から第17の態様のいずれか1つにおいて、前記複数の第1の光電変換素子は、前記複数の第1の光電変換素子に入射した光を第1の信号に変換してもよい。前記複数の第2の光電変換素子は、前記複数の第2の光電変換素子に入射した光を第2の信号に変換してもよい。前記撮像装置は、前記第2の信号に基づいて前記第1の信号を補正する信号処理回路をさらに有してもよい。 According to an eighteenth aspect of the present invention, in any one of the first to seventeenth aspects, the plurality of first photoelectric conversion elements receive light incident on the plurality of first photoelectric conversion elements. It may be converted to the first signal. The plurality of second photoelectric conversion elements may convert light incident on the plurality of second photoelectric conversion elements into a second signal. The imaging device may further include a signal processing circuit that corrects the first signal based on the second signal.
 上記の各態様によれば、撮像装置は、分光素子を透過する光の選択性を高めることができる。 According to each of the above aspects, the imaging device can enhance the selectivity of light transmitted through the spectral element.
本発明の第1の実施形態の撮像装置の断面図である。FIG. 1 is a cross-sectional view of an imaging device according to a first embodiment of the present invention. 本発明の第1の実施形態の撮像装置の断面図および平面図である。It is sectional drawing and the top view of the imaging device of the 1st Embodiment of this invention. 本発明の第1の実施形態の分光素子の第1の分光透過特性を示すグラフである。It is a graph which shows the 1st spectral transmission characteristic of the spectroscopy element of the 1st Embodiment of this invention. 本発明の第1の実施形態の第1の基板の第2の分光透過特性を示すグラフである。It is a graph which shows the 2nd spectral transmission characteristic of the 1st substrate of a 1st embodiment of the present invention. 本発明の第2の実施形態の撮像装置の断面図である。It is sectional drawing of the imaging device of the 2nd Embodiment of this invention. 本発明の第2の実施形態の撮像装置の構成を示すブロック図である。It is a block diagram which shows the structure of the imaging device of the 2nd Embodiment of this invention. 本発明の第2の実施形態の第1の膜および第2の膜に印加される電圧を示す図である。FIG. 7 is a diagram showing voltages applied to the first film and the second film of the second embodiment of the present invention. 本発明の第2の実施形態において、電圧が第1の膜および第2の膜に印加されたときの分光素子の状態を示す図である。FIG. 7 is a diagram showing the state of the spectroscopic element when a voltage is applied to the first film and the second film in the second embodiment of the present invention. 本発明の第2の実施形態の変形例の撮像装置の断面図である。It is sectional drawing of the imaging device of the modification of the 2nd Embodiment of this invention. 本発明の第3の実施形態の撮像装置の断面図である。It is sectional drawing of the imaging device of the 3rd Embodiment of this invention. 本発明の第3の実施形態において、電圧が第1の膜および第2の膜に印加されたときの分光素子の状態を示す図である。FIG. 14 is a diagram showing the state of the spectroscopic element when a voltage is applied to the first film and the second film in the third embodiment of the present invention. 本発明の第3の実施形態の第1の変形例の撮像装置の断面図である。It is sectional drawing of the imaging device of the 1st modification of the 3rd Embodiment of this invention. 本発明の第3の実施形態の第2の変形例の撮像装置の断面図である。It is sectional drawing of the imaging device of the 2nd modification of the 3rd Embodiment of this invention. 本発明の第3の実施形態の第3の変形例の撮像装置の断面図である。It is sectional drawing of the imaging device of the 3rd modification of the 3rd Embodiment of this invention. 本発明の第3の実施形態の第4の変形例の撮像装置の断面図である。It is sectional drawing of the imaging device of the 4th modification of the 3rd Embodiment of this invention. 本発明の第3の実施形態の第5の変形例の撮像装置の断面図である。It is sectional drawing of the imaging device of the 5th modification of the 3rd Embodiment of this invention.
 図面を参照し、本発明の実施形態を説明する。 Embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態の撮像装置10の構成を示す。図1において、撮像装置10の断面が示されている。撮像装置10を構成する部分の寸法は、図1に示される寸法に従うとは限らない。撮像装置10を構成する部分の寸法は任意であってよい。他の断面図における寸法についても同様である。
First Embodiment
FIG. 1 shows a configuration of an imaging device 10 according to a first embodiment of the present invention. A cross section of the imaging device 10 is shown in FIG. The dimensions of the parts constituting the imaging device 10 do not necessarily conform to the dimensions shown in FIG. The dimensions of the parts constituting the imaging device 10 may be arbitrary. The same applies to the dimensions in other cross-sectional views.
 撮像装置10の概略構成について説明する。撮像装置10は、第1の基板100、第2の基板200、および分光素子300を有する。第1の基板100は、複数の第1の光電変換素子111を有する。第2の基板200は、第1の基板100に積層され、かつ複数の第2の光電変換素子211を有する。分光素子300は、複数の第1の光電変換素子111および複数の第2の光電変換素子211の間に配置されている。分光素子300は、第1の膜310および第2の膜320を有する。第1の膜310は、光反射性を有する。第2の膜320は、第1の膜310から複数の第2の光電変換素子211への方向に所定距離だけ離れた位置に配置され、かつ光反射性を有する。分光素子300は、所定距離に基づく波長帯域の光を選択的に透過させる第1の分光透過特性を有する。第1の分光透過特性における透過率分布は、第1の波長における第1のピークと、第1の波長と異なる第2の波長における第2のピークとを有する。第1の基板100は、第1の波長の光を透過させ、かつ第2の波長の光を遮断する第2の分光透過特性を有する。 The schematic configuration of the imaging device 10 will be described. The imaging device 10 includes a first substrate 100, a second substrate 200, and a spectral element 300. The first substrate 100 has a plurality of first photoelectric conversion elements 111. The second substrate 200 is stacked over the first substrate 100 and has a plurality of second photoelectric conversion elements 211. The spectral element 300 is disposed between the plurality of first photoelectric conversion elements 111 and the plurality of second photoelectric conversion elements 211. The spectral element 300 has a first film 310 and a second film 320. The first film 310 is light reflective. The second film 320 is disposed at a position separated by a predetermined distance in the direction from the first film 310 to the plurality of second photoelectric conversion elements 211, and has light reflectivity. The spectral element 300 has a first spectral transmission characteristic that selectively transmits light in a wavelength band based on a predetermined distance. The transmittance distribution in the first spectral transmission characteristic has a first peak at a first wavelength and a second peak at a second wavelength different from the first wavelength. The first substrate 100 has a second spectral transmission characteristic that transmits light of a first wavelength and blocks light of a second wavelength.
 撮像装置10の詳細な構成について説明する。図1に示すように、撮像装置10は、第1の基板100、第2の基板200、分光素子300、支持部400、マイクロレンズML、およびカラーフィルタCFを有する。 The detailed configuration of the imaging device 10 will be described. As shown in FIG. 1, the imaging device 10 includes a first substrate 100, a second substrate 200, a spectral element 300, a support 400, a microlens ML, and a color filter CF.
 第1の基板100および第2の基板200は、分光素子300および支持部400を介して第1の基板100の面110aに垂直な方向Dr1に積層されている。第1の基板100は、第1の半導体層110および第1の配線層120を有する。第1の半導体層110および第1の配線層120は、方向Dr1に積層されている。 The first substrate 100 and the second substrate 200 are stacked in the direction Dr <b> 1 perpendicular to the surface 110 a of the first substrate 100 via the spectral element 300 and the support portion 400. The first substrate 100 has a first semiconductor layer 110 and a first wiring layer 120. The first semiconductor layer 110 and the first wiring layer 120 are stacked in the direction Dr1.
 第1の半導体層110は、第1の半導体材料で構成されている。例えば、第1の半導体材料は、シリコン(Si)、ゲルマニウム(Ge)、ガリウム(Ga)、ヒ素(As)、およびホウ素(B)等の少なくとも1つである。第1の半導体層110は、面110aおよび面110bを有する。面110aおよび面110bは、互いに反対方向を向く。面110aおよび面110bは、第1の半導体層110の主面を構成する。第1の半導体層110の主面は、第1の半導体層110の表面を構成する複数の面のうち相対的に広い面である。面110aは、第1の基板100の主面を構成する。第1の基板100の主面は、第1の基板100の表面を構成する複数の面のうち相対的に広い面である。 The first semiconductor layer 110 is made of a first semiconductor material. For example, the first semiconductor material is at least one of silicon (Si), germanium (Ge), gallium (Ga), arsenic (As), boron (B), and the like. The first semiconductor layer 110 has a surface 110 a and a surface 110 b. The face 110a and the face 110b face in opposite directions to each other. The surface 110 a and the surface 110 b constitute the main surface of the first semiconductor layer 110. The main surface of the first semiconductor layer 110 is a relatively wide surface among a plurality of surfaces forming the surface of the first semiconductor layer 110. The surface 110 a constitutes the main surface of the first substrate 100. The main surface of the first substrate 100 is a relatively wide surface among a plurality of surfaces forming the surface of the first substrate 100.
 第1の半導体層110は、複数の第1の光電変換素子111(フォトダイオード)を有する。図1では、代表として1つの第1の光電変換素子111の符号が示されている。例えば、第1の光電変換素子111は、第1の半導体層110を構成する第1の半導体材料とは不純物濃度が異なる半導体材料で構成されている。第1の光電変換素子111は、第1の画素を構成する。第1の光電変換素子111は、第1の光電変換素子111に入射した光を第1の信号に変換する。第1の半導体層110に入射する光の反射を抑制する反射防止膜が面110aに配置されてもよい。 The first semiconductor layer 110 has a plurality of first photoelectric conversion elements 111 (photodiodes). In FIG. 1, reference numerals of one first photoelectric conversion element 111 are shown as a representative. For example, the first photoelectric conversion element 111 is formed of a semiconductor material having an impurity concentration different from that of the first semiconductor material forming the first semiconductor layer 110. The first photoelectric conversion element 111 constitutes a first pixel. The first photoelectric conversion element 111 converts the light incident on the first photoelectric conversion element 111 into a first signal. An antireflective film that suppresses reflection of light incident on the first semiconductor layer 110 may be disposed on the surface 110 a.
 第1の配線層120は、面120aおよび面120bを有する。面120aおよび面120bは、互いに反対方向を向く。面120aおよび面120bは、第1の配線層120の主面を構成する。第1の配線層120の主面は、第1の配線層120の表面を構成する複数の面のうち相対的に広い面である。面120aは、第1の半導体層110の面110bと接触している。面120bは、第1の基板100の主面を構成する。 The first wiring layer 120 has a surface 120 a and a surface 120 b. The face 120a and the face 120b face in opposite directions to each other. The surface 120 a and the surface 120 b constitute the main surface of the first wiring layer 120. The main surface of the first wiring layer 120 is a relatively wide surface among a plurality of surfaces constituting the surface of the first wiring layer 120. The surface 120 a is in contact with the surface 110 b of the first semiconductor layer 110. The surface 120 b constitutes the main surface of the first substrate 100.
 第1の配線層120は、第1の配線121および第1の層間絶縁膜122を有する。図1では、複数の第1の配線121が存在するが、代表として1つの第1の配線121の符号が示されている。 The first wiring layer 120 has a first wiring 121 and a first interlayer insulating film 122. Although a plurality of first wires 121 exist in FIG. 1, the symbol of one first wire 121 is shown as a representative.
 第1の配線121は、第1の導電材料で構成されている。例えば、第1の導電材料は、アルミニウム(Al)および銅(Cu)等の金属である。第1の配線121は、配線パターンが形成された薄膜である。第1の配線121は、第1の光電変換素子111によって生成された第1の信号を伝送する。1層のみの第1の配線121が配置されてもよいし、複数層の第1の配線121が配置されてもよい。図1に示す例では、3層の第1の配線121が配置されている。複数層の第1の配線121は、図示していないビアによって接続されている。 The first wiring 121 is made of a first conductive material. For example, the first conductive material is a metal such as aluminum (Al) and copper (Cu). The first wiring 121 is a thin film in which a wiring pattern is formed. The first wiring 121 transmits the first signal generated by the first photoelectric conversion element 111. The first wiring 121 of only one layer may be disposed, or the first wiring 121 of a plurality of layers may be disposed. In the example shown in FIG. 1, the first wiring 121 of three layers is disposed. The plurality of first wires 121 are connected by vias (not shown).
 第1の配線121は、第1の光電変換素子111を透過した光の進行を妨げない位置に配置されている。第1の配線121は、隣接する2つの第2の光電変換素子211の間に対応する位置に配置されている。 The first wiring 121 is disposed at a position that does not prevent the progress of the light transmitted through the first photoelectric conversion element 111. The first wiring 121 is disposed at a position corresponding to a position between two adjacent second photoelectric conversion elements 211.
 第1の配線層120において、第1の配線121以外の部分は、第1の層間絶縁膜122で構成されている。第1の層間絶縁膜122は、第1の絶縁材料で構成されている。例えば、第1の絶縁材料は、二酸化珪素(SiO2)、窒化珪素(SiN)、炭素を含む珪素の窒化物(SiCN)、酸化ハフニウム(HfO2)、および酸化チタン(TiO2)等の少なくとも1つである。 In the first wiring layer 120, portions other than the first wiring 121 are formed of the first interlayer insulating film 122. The first interlayer insulating film 122 is made of a first insulating material. For example, the first insulating material is at least one of silicon dioxide (SiO 2), silicon nitride (SiN), silicon nitride (SiCN) containing carbon, hafnium oxide (HfO 2), titanium oxide (TiO 2), and the like. is there.
 第1の半導体層110および第1の配線層120の少なくとも1つは、トランジスタ等の回路要素を有してもよい。 At least one of the first semiconductor layer 110 and the first wiring layer 120 may have a circuit element such as a transistor.
 第1の半導体層110の面110aに複数のカラーフィルタCFが配置されている。図1において、代表として1つのカラーフィルタCFの符号が示されている。複数のカラーフィルタCFの各々は、複数の第1の光電変換素子111の各々に対応する位置に配置されている。カラーフィルタCFは、特定の波長帯域の光を透過させる。 A plurality of color filters CF are disposed on the surface 110 a of the first semiconductor layer 110. In FIG. 1, the sign of one color filter CF is shown as a representative. Each of the plurality of color filters CF is disposed at a position corresponding to each of the plurality of first photoelectric conversion elements 111. The color filter CF transmits light of a specific wavelength band.
 例えば、複数のカラーフィルタCFは、赤フィルタ、緑フィルタ、および青フィルタを含む。赤フィルタは、赤色光を透過させる。緑フィルタは、緑色光を透過させる。青フィルタは、青色光を透過させる。例えば、赤フィルタ、緑フィルタ、および青フィルタの配列は、ベイヤー配列を構成する。 For example, the plurality of color filters CF include a red filter, a green filter, and a blue filter. The red filter transmits red light. The green filter transmits green light. The blue filter transmits blue light. For example, an array of red filters, green filters, and blue filters constitute a Bayer array.
 複数のカラーフィルタCF上に複数のマイクロレンズMLが配置されている。図1において、代表として1つのマイクロレンズMLの符号が示されている。複数のマイクロレンズMLの各々は、複数の第1の光電変換素子111の各々に対応する位置に配置されている。複数のマイクロレンズMLは、光を結像する。 The plurality of microlenses ML are disposed on the plurality of color filters CF. In FIG. 1, the symbol of one microlens ML is shown as a representative. Each of the plurality of microlenses ML is disposed at a position corresponding to each of the plurality of first photoelectric conversion elements 111. The plurality of microlenses ML form an image of light.
 第2の基板200は、第2の半導体層210および第2の配線層220を有する。第2の半導体層210および第2の配線層220は、方向Dr1に積層されている。 The second substrate 200 has a second semiconductor layer 210 and a second wiring layer 220. The second semiconductor layer 210 and the second wiring layer 220 are stacked in the direction Dr1.
 第2の半導体層210は、第2の半導体材料で構成されている。第2の半導体材料は、第1の半導体層110を構成する第1の半導体材料と同一である。あるいは、第2の半導体材料は、第1の半導体材料と異なる。例えば、第2の半導体材料は、シリコン(Si)、ゲルマニウム(Ge)、ガリウム(Ga)、ヒ素(As)、およびホウ素(B)等の少なくとも1つである。第2の半導体層210は、面210aおよび面210bを有する。面210aおよび面210bは、互いに反対方向を向く。面210aおよび面210bは、第2の半導体層210の主面を構成する。第2の半導体層210の主面は、第2の半導体層210の表面を構成する複数の面のうち相対的に広い面である。面210bは、第2の基板200の主面を構成する。第2の基板200の主面は、第2の基板200の表面を構成する複数の面のうち相対的に広い面である。 The second semiconductor layer 210 is made of a second semiconductor material. The second semiconductor material is the same as the first semiconductor material that constitutes the first semiconductor layer 110. Alternatively, the second semiconductor material is different from the first semiconductor material. For example, the second semiconductor material is at least one of silicon (Si), germanium (Ge), gallium (Ga), arsenic (As), and boron (B). The second semiconductor layer 210 has a surface 210a and a surface 210b. The face 210a and the face 210b face in opposite directions to each other. The surface 210 a and the surface 210 b constitute the main surface of the second semiconductor layer 210. The main surface of the second semiconductor layer 210 is a relatively wide surface among a plurality of surfaces forming the surface of the second semiconductor layer 210. The surface 210 b constitutes the main surface of the second substrate 200. The main surface of the second substrate 200 is a relatively wide surface among a plurality of surfaces forming the surface of the second substrate 200.
 第2の半導体層210は、複数の第2の光電変換素子211(フォトダイオード)を有する。図1では、代表として1つの第2の光電変換素子211の符号が示されている。例えば、第2の光電変換素子211は、第2の半導体層210を構成する第2の半導体材料とは不純物濃度が異なる半導体材料で構成されている。第2の光電変換素子211は、第2の画素を構成する。第2の光電変換素子211は、第2の光電変換素子211に入射した光を第2の信号に変換する。 The second semiconductor layer 210 includes a plurality of second photoelectric conversion elements 211 (photodiodes). In FIG. 1, reference numerals of one second photoelectric conversion element 211 are shown as a representative. For example, the second photoelectric conversion element 211 is formed of a semiconductor material having an impurity concentration different from that of the second semiconductor material forming the second semiconductor layer 210. The second photoelectric conversion element 211 constitutes a second pixel. The second photoelectric conversion element 211 converts the light incident on the second photoelectric conversion element 211 into a second signal.
 図1において、1つの第2の光電変換素子211は、1つの第1の光電変換素子111に対応するように配置されている。1つの第2の光電変換素子211が、複数の第1の光電変換素子111に対応するように配置されてもよい。 In FIG. 1, one second photoelectric conversion element 211 is arranged to correspond to one first photoelectric conversion element 111. One second photoelectric conversion element 211 may be arranged to correspond to the plurality of first photoelectric conversion elements 111.
 第2の配線層220は、面220aおよび面220bを有する。面220aおよび面220bは、互いに反対方向を向く。面220aおよび面220bは、第2の配線層220の主面を構成する。第2の配線層220の主面は、第2の配線層220の表面を構成する複数の面のうち相対的に広い面である。面220aは、第2の基板200の主面を構成する。面220bは、第2の半導体層210の面210aと接触している。 The second wiring layer 220 has a surface 220a and a surface 220b. The face 220a and the face 220b face in opposite directions to each other. The surface 220 a and the surface 220 b constitute the main surface of the second wiring layer 220. The main surface of the second wiring layer 220 is a relatively wide surface among a plurality of surfaces constituting the surface of the second wiring layer 220. The surface 220 a constitutes the main surface of the second substrate 200. The surface 220 b is in contact with the surface 210 a of the second semiconductor layer 210.
 第2の配線層220は、第2の配線221および第2の層間絶縁膜222を有する。図1では、複数の第2の配線221が存在するが、代表として1つの第2の配線221の符号が示されている。 The second wiring layer 220 has a second wiring 221 and a second interlayer insulating film 222. In FIG. 1, a plurality of second wires 221 exist, but the symbol of one second wire 221 is shown as a representative.
 第2の配線221は、第2の導電材料で構成されている。第2の導電材料は、第1の配線121を構成する第1の導電材料と同一である。あるいは、第2の導電材料は、第1の導電材料と異なる。例えば、第2の導電材料は、アルミニウム(Al)および銅(Cu)等の金属である。第2の配線221は、配線パターンが形成された薄膜である。第2の配線221は、第2の光電変換素子211によって生成された第2の信号を伝送する。1層のみの第2の配線221が配置されてもよいし、複数層の第2の配線221が配置されてもよい。図1に示す例では、3層の第2の配線221が配置されている。複数層の第2の配線221は、図示していないビアによって接続されている。 The second wiring 221 is made of a second conductive material. The second conductive material is the same as the first conductive material constituting the first wiring 121. Alternatively, the second conductive material is different from the first conductive material. For example, the second conductive material is a metal such as aluminum (Al) and copper (Cu). The second wiring 221 is a thin film in which a wiring pattern is formed. The second wiring 221 transmits the second signal generated by the second photoelectric conversion element 211. The second wiring 221 of only one layer may be disposed, or the second wiring 221 of a plurality of layers may be disposed. In the example shown in FIG. 1, the second wiring 221 of three layers is disposed. The plurality of second wirings 221 are connected by vias (not shown).
 第2の配線221は、第1の光電変換素子111を透過した光の進行を妨げない位置に配置されている。第2の配線221は、隣接する2つの第2の光電変換素子211の間に対応する位置に配置されている。 The second wiring 221 is disposed at a position that does not prevent the progress of the light transmitted through the first photoelectric conversion element 111. The second wiring 221 is disposed at a position corresponding to a position between two adjacent second photoelectric conversion elements 211.
 第2の配線層220において、第2の配線221以外の部分は、第2の層間絶縁膜222で構成されている。第2の層間絶縁膜222は、第2の絶縁材料で構成されている。第2の絶縁材料は、第1の層間絶縁膜122を構成する第1の絶縁材料と同一である。あるいは、第2の絶縁材料は、第1の絶縁材料と異なる。例えば、第2の絶縁材料は、二酸化珪素(SiO2)、窒化珪素(SiN)、炭素を含む珪素の窒化物(SiCN)、酸化ハフニウム(HfO2)、および酸化チタン(TiO2)等の少なくとも1つである。 In the second wiring layer 220, portions other than the second wiring 221 are formed of the second interlayer insulating film 222. The second interlayer insulating film 222 is made of a second insulating material. The second insulating material is the same as the first insulating material forming the first interlayer insulating film 122. Alternatively, the second insulating material is different from the first insulating material. For example, the second insulating material is at least one of silicon dioxide (SiO.sub.2), silicon nitride (SiN), nitride of silicon containing carbon (SiCN), hafnium oxide (HfO.sub.2), and titanium oxide (TiO.sub.2). is there.
 第2の半導体層210および第2の配線層220の少なくとも1つは、トランジスタ等の回路要素を有してもよい。 At least one of the second semiconductor layer 210 and the second wiring layer 220 may have a circuit element such as a transistor.
 分光素子300は、対向する第1の膜310および第2の膜320を有する。第1の膜310および第2の膜320は、光の反射率が高い材料で構成されている。例えば、第1の膜310および第2の膜320を構成する材料は、アルミニウム(Al)、銀(Ag)、および金(Au)等の金属である。第1の膜310および第2の膜320が互いに異なる材料で構成されてもよい。 The spectral element 300 has a first film 310 and a second film 320 opposed to each other. The first film 310 and the second film 320 are made of a material having high light reflectance. For example, the material forming the first film 310 and the second film 320 is a metal such as aluminum (Al), silver (Ag), and gold (Au). The first film 310 and the second film 320 may be composed of different materials.
 第1の膜310および第2の膜320は、厚さが数百nm以下の薄膜である。第1の膜310および第2の膜320は、第1の基板100および第2の基板200の間に配置されている。第1の膜310は、第1の配線層120の面120bに配置されている。第2の膜320は、第2の配線層220の面220aに配置されている。第1の膜310が第1の光電変換素子111側に配置され、かつ第2の膜320が第2の光電変換素子211側に配置されている。 The first film 310 and the second film 320 are thin films each having a thickness of several hundred nm or less. The first film 310 and the second film 320 are disposed between the first substrate 100 and the second substrate 200. The first film 310 is disposed on the surface 120 b of the first wiring layer 120. The second film 320 is disposed on the surface 220 a of the second wiring layer 220. The first film 310 is disposed on the first photoelectric conversion element 111 side, and the second film 320 is disposed on the second photoelectric conversion element 211 side.
 第1の膜310および第1の光電変換素子111の間の距離d1は、第2の膜320および第1の光電変換素子111の間の距離d2よりも小さい。第2の膜320は、第1の膜310から複数の第2の光電変換素子211への方向に距離d3だけ離れた位置に配置されている。第1の膜310は第1の基板100に対して固定され、かつ第2の膜320は第2の基板200に対して固定されている。 The distance d1 between the first film 310 and the first photoelectric conversion element 111 is smaller than the distance d2 between the second film 320 and the first photoelectric conversion element 111. The second film 320 is disposed at a position separated by a distance d 3 in the direction from the first film 310 to the plurality of second photoelectric conversion elements 211. The first film 310 is fixed to the first substrate 100, and the second film 320 is fixed to the second substrate 200.
 分光素子300は、ファブリペロー干渉計の原理を利用したエタロンとして構成されている。分光素子300は、距離d3に対応する波長帯域の光を選択的に透過させる第1の分光透過特性を有する。 The spectral element 300 is configured as an etalon using the principle of a Fabry-Perot interferometer. The spectral element 300 has a first spectral transmission characteristic that selectively transmits light in a wavelength band corresponding to the distance d3.
 例えば、第1の分光透過特性は、可視光よりも波長が長い光(例えば、赤外光)が分光素子300を透過するように設定される。この場合、複数のカラーフィルタCFに含まれる赤フィルタ、緑フィルタ、および青フィルタの少なくとも1つは、可視光よりも波長が長い光を透過させる。分光素子300および第2の光電変換素子211は、可視光よりも波長が長い光を透過させるカラーフィルタCFを透過した光が通過する位置に配置されている。 For example, the first spectral transmission characteristic is set such that light having a wavelength longer than that of visible light (for example, infrared light) is transmitted through the spectral element 300. In this case, at least one of the red filter, the green filter, and the blue filter included in the plurality of color filters CF transmits light having a wavelength longer than that of visible light. The spectral element 300 and the second photoelectric conversion element 211 are disposed at positions where light transmitted through the color filter CF transmitting light having a wavelength longer than that of visible light passes.
 支持部400は、第3の絶縁材料で構成されている。第3の絶縁材料は、第1の層間絶縁膜122を構成する第1の絶縁材料または第2の層間絶縁膜222を構成する第2の絶縁材料と同一である。あるいは、第3の絶縁材料は、第1の絶縁材料および第2の絶縁材料と異なる。例えば、第3の絶縁材料は、二酸化珪素(SiO2)、窒化珪素(SiN)、炭素を含む珪素の窒化物(SiCN)、酸化ハフニウム(HfO2)、および酸化チタン(TiO2)等の少なくとも1つである。 The support 400 is made of a third insulating material. The third insulating material is the same as the first insulating material forming the first interlayer insulating film 122 or the second insulating material forming the second interlayer insulating film 222. Alternatively, the third insulating material is different from the first insulating material and the second insulating material. For example, the third insulating material is at least one of silicon dioxide (SiO 2), silicon nitride (SiN), silicon nitride (SiCN) containing carbon, hafnium oxide (HfO 2), titanium oxide (TiO 2), and the like. is there.
 支持部400は、柱状(壁状)である。支持部400は、第1の基板100および第2の基板200の間に配置されている。支持部400は、第1の膜310および第2の膜320の間に配置されている。支持部400は、第1の配線層120の面120bと接触し、かつ第2の配線層220の面220aと接触している。図1において、支持部400が面120bと接触する部分は示されていない。支持部400は、第1の膜310および第2の膜320に対して固定されている。これにより、支持部400は、第1の基板100および第2の基板200に対して固定されている。支持部400は、第1の基板100および第2の基板200を接続する。支持部400は、第1の膜310を支持する。 The support part 400 is columnar (wall-like). The support portion 400 is disposed between the first substrate 100 and the second substrate 200. The support 400 is disposed between the first membrane 310 and the second membrane 320. The support portion 400 is in contact with the surface 120 b of the first wiring layer 120 and in contact with the surface 220 a of the second wiring layer 220. In FIG. 1, the portion where the support 400 contacts the surface 120 b is not shown. The support 400 is fixed relative to the first membrane 310 and the second membrane 320. Thus, the support portion 400 is fixed to the first substrate 100 and the second substrate 200. The support portion 400 connects the first substrate 100 and the second substrate 200. The support 400 supports the first membrane 310.
 支持部400は、第1の光電変換素子111を透過した光の進行を妨げない位置に配置されている。支持部400は、隣接する2つの第2の光電変換素子211の間に対応する位置に配置されている。第1の膜310および第2の膜320の間において支持部400を除く領域は中空である。中空とは、固相状態の物質が存在せず、真空状態または制御された雰囲気の状態である。制御された雰囲気とは、例えば、窒素およびアルゴンなどの不活性なガスによって充填され、常圧または減圧された状態である。なお、制御された雰囲気は、不活性なガスに限らず、大気と同様の組成であってもかまわない。 The support portion 400 is disposed at a position that does not impede the progress of the light transmitted through the first photoelectric conversion element 111. The support portion 400 is disposed at a corresponding position between two adjacent second photoelectric conversion elements 211. The area excluding the support 400 between the first membrane 310 and the second membrane 320 is hollow. Hollow means that there is no substance in the solid phase, and is in a vacuum or in a controlled atmosphere. A controlled atmosphere is, for example, filled with an inert gas such as nitrogen and argon and in a state of normal pressure or reduced pressure. The controlled atmosphere is not limited to the inert gas, and may have the same composition as the atmosphere.
 図2は、第1の膜310および第2の膜320の拡大図である。図2の上側において、第1の膜310および第2の膜320を含む部分の断面が示されている。図2の下側において、第1の半導体層110の面110aに垂直な方向に撮像装置10を見たときの第1の膜310および第2の膜320が示されている。つまり、第1の基板100の正面から撮像装置10を見たときの第1の膜310および第2の膜320が示されている。図2において、マイクロレンズMLおよびカラーフィルタCFは省略されている。 FIG. 2 is an enlarged view of the first film 310 and the second film 320. At the top of FIG. 2 a cross section of the part comprising the first membrane 310 and the second membrane 320 is shown. On the lower side of FIG. 2, a first film 310 and a second film 320 are shown when the imaging device 10 is viewed in a direction perpendicular to the surface 110 a of the first semiconductor layer 110. That is, the first film 310 and the second film 320 when the imaging device 10 is viewed from the front of the first substrate 100 are shown. In FIG. 2, the microlens ML and the color filter CF are omitted.
 分光素子300は、複数の第1の膜310および複数の第2の膜320を有する。図2において、代表として1つの第1の膜310および1つの第2の膜320の符号が示されている。複数の第2の光電変換素子211は、行列状に配置されている。図2において、複数の第2の光電変換素子211の位置が示されている。図2において、代表として1つの第2の光電変換素子211の符号が示されている。図2において、複数の第1の光電変換素子111は示されていない。複数の第1の光電変換素子111は、複数の第2の光電変換素子211と同様に行列状に配置されている。複数の第1の光電変換素子111および複数の第2の光電変換素子211の配列における行および列の数はそれぞれ2以上である。 The spectral element 300 has a plurality of first films 310 and a plurality of second films 320. In FIG. 2, reference numerals of one first film 310 and one second film 320 are shown as a representative. The plurality of second photoelectric conversion elements 211 are arranged in a matrix. In FIG. 2, the positions of the plurality of second photoelectric conversion elements 211 are shown. In FIG. 2, reference numerals of one second photoelectric conversion element 211 are shown as a representative. In FIG. 2, the plurality of first photoelectric conversion elements 111 are not shown. The plurality of first photoelectric conversion elements 111 are arranged in a matrix like the plurality of second photoelectric conversion elements 211. The number of rows and columns in the arrangement of the plurality of first photoelectric conversion elements 111 and the plurality of second photoelectric conversion elements 211 is two or more.
 複数の第1の膜310に含まれる各々の第1の膜310は、複数の第2の光電変換素子211の配列における行または列に対応する位置に配置され、かつその行またはその列の方向に長い形状を有する。図2に示す例では、複数の第1の膜310は、行方向Dr2に細長い形状を有する。行方向Dr2は、複数の第2の光電変換素子211の配列における行と平行である。 Each first film 310 included in the plurality of first films 310 is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements 211, and the direction of the row or the column Has a long shape. In the example shown in FIG. 2, the plurality of first membranes 310 have an elongated shape in the row direction Dr2. The row direction Dr2 is parallel to the rows in the array of the plurality of second photoelectric conversion elements 211.
 複数の第2の膜320に含まれる各々の第2の膜320は、複数の第2の光電変換素子211の配列における行または列に対応する位置に配置され、かつその行またはその列の方向に長い形状を有する。図2に示す例では、複数の第2の膜320は、列方向Dr3に細長い形状を有する。列方向Dr3は、複数の第2の光電変換素子211の配列における列と平行である。 Each second film 320 included in the plurality of second films 320 is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements 211, and the direction of the row or the column Has a long shape. In the example shown in FIG. 2, the plurality of second films 320 have an elongated shape in the column direction Dr3. The column direction Dr3 is parallel to the column in the array of the plurality of second photoelectric conversion elements 211.
 被写体からの光は、撮像装置10の光学的前方に配置された撮像レンズを通過する。撮像レンズを通過した光は、マイクロレンズMLに入射する。マイクロレンズMLは、撮像レンズを透過した光を結像する。マイクロレンズMLを透過した光は、カラーフィルタCFに入射する。カラーフィルタCFは、特定の波長帯域の光を透過させる。 Light from the subject passes through an imaging lens disposed optically in front of the imaging device 10. The light that has passed through the imaging lens is incident on the microlens ML. The microlens ML focuses the light transmitted through the imaging lens. The light transmitted through the microlens ML is incident on the color filter CF. The color filter CF transmits light of a specific wavelength band.
 カラーフィルタCFを透過した光は、第1の半導体層110に入射する。第1の半導体層110において第1の光電変換素子111は、マイクロレンズMLに対応する領域に配置されている。つまり、第1の光電変換素子111は、マイクロレンズMLを透過した光が通過する領域に配置されている。第1の半導体層110に入射した光は、第1の光電変換素子111に入射する。第1の光電変換素子111は、第1の光電変換素子111に入射した光を第1の信号に変換する。第1の光電変換素子111によって生成された第1の信号は、可視光帯域の光に基づくカラー画像信号(可視光画像信号)を構成する。 The light transmitted through the color filter CF is incident on the first semiconductor layer 110. In the first semiconductor layer 110, the first photoelectric conversion element 111 is disposed in a region corresponding to the microlens ML. That is, the first photoelectric conversion element 111 is disposed in a region through which the light transmitted through the microlens ML passes. The light incident on the first semiconductor layer 110 is incident on the first photoelectric conversion element 111. The first photoelectric conversion element 111 converts the light incident on the first photoelectric conversion element 111 into a first signal. The first signal generated by the first photoelectric conversion element 111 constitutes a color image signal (visible light image signal) based on light in the visible light band.
 第1の光電変換素子111を透過した光は、第1の配線層120に入射する。第1の配線121は、第1の光電変換素子111を透過した光の大部分を遮蔽しないように配置されている。第1の配線層120に入射した光は、第1の配線層120を透過し、かつ分光素子300に入射する。分光素子300は、分光素子300に入射した光のうち、距離d3に対応する波長帯域の光を選択的に透過させる。 The light transmitted through the first photoelectric conversion element 111 is incident on the first wiring layer 120. The first wiring 121 is disposed so as not to shield most of the light transmitted through the first photoelectric conversion element 111. The light incident on the first wiring layer 120 is transmitted through the first wiring layer 120 and is incident on the light separating element 300. The light separating element 300 selectively transmits the light of the wavelength band corresponding to the distance d 3 among the light incident on the light separating element 300.
 分光素子300を透過した光は、第2の配線層220に入射する。第2の配線221は、第1の光電変換素子111を透過した光の大部分を遮蔽しないように配置されている。第2の配線層220に入射した光は、第2の配線層220を透過し、かつ第2の半導体層210に入射する。第2の半導体層210において第2の光電変換素子211は、マイクロレンズMLおよび第1の光電変換素子111に対応する領域に配置されている。つまり、第2の光電変換素子211は、マイクロレンズMLおよび第1の光電変換素子111を透過した光が通過する領域に配置されている。第2の半導体層210に入射した光は、第2の光電変換素子211に入射する。第2の光電変換素子211は、第2の光電変換素子211に入射した光を第2の信号に変換する。第2の光電変換素子211によって生成された第2の信号は、狭帯域光に基づく画像信号を構成する。 The light transmitted through the dispersive element 300 is incident on the second wiring layer 220. The second wiring 221 is disposed so as not to shield most of the light transmitted through the first photoelectric conversion element 111. The light incident on the second wiring layer 220 passes through the second wiring layer 220 and is incident on the second semiconductor layer 210. In the second semiconductor layer 210, the second photoelectric conversion element 211 is disposed in a region corresponding to the microlens ML and the first photoelectric conversion element 111. That is, the second photoelectric conversion element 211 is disposed in a region through which the light transmitted through the microlens ML and the first photoelectric conversion element 111 passes. The light that has entered the second semiconductor layer 210 enters the second photoelectric conversion element 211. The second photoelectric conversion element 211 converts the light incident on the second photoelectric conversion element 211 into a second signal. The second signal generated by the second photoelectric conversion element 211 constitutes an image signal based on narrowband light.
 例えば、狭帯域光は、励起光または蛍光である。医療現場では、カラー画像と蛍光画像とを用いた病変部の観察が行われている。例えば、励起光がインドシアニングリーン(ICG)に照射され、かつ病変部からの蛍光が検出される。ICGは、蛍光物質である。ICGは、予め検査対象者の体内に投与される。ICGは、励起光によって赤外領域で励起され、かつ蛍光を発する。投与されたICGは、癌などの病変部に集積される。病変部から強い蛍光が発生するため、検査者は撮像された蛍光画像に基づいて病変部の有無を判断することができる。また、検査者は撮像された励起光画像に基づいて、励起光が観察対象の部位に照射されているか否かを判断することができる。例えば、分光素子300は、励起光または蛍光のみを透過させるように構成される。複数の第2の光電変換素子211は、励起光または蛍光に基づく第2の信号を生成する。第2の光電変換素子211によって生成された第2の信号は、励起光または蛍光に基づく画像信号を構成する。 For example, narrow band light is excitation light or fluorescence. In the medical field, observation of a lesion site using a color image and a fluorescence image is performed. For example, excitation light is irradiated to indocyanine green (ICG), and fluorescence from a lesion is detected. ICG is a fluorescent substance. The ICG is previously administered into the test subject's body. The ICG is excited in the infrared region by the excitation light and emits fluorescence. The administered ICG is accumulated in a lesion such as cancer. Since strong fluorescence is generated from the lesion area, the examiner can determine the presence or absence of the lesion area based on the captured fluorescence image. Further, the examiner can determine whether the excitation light is irradiated to the site to be observed based on the imaged excitation light image. For example, the spectroscopic element 300 is configured to transmit only excitation light or fluorescence. The plurality of second photoelectric conversion elements 211 generate a second signal based on excitation light or fluorescence. The second signal generated by the second photoelectric conversion element 211 constitutes an image signal based on excitation light or fluorescence.
 分光素子300の第1の分光透過特性を説明する。以下の式(1)は、分光素子300が透過させる光のピーク波長λを示す。分光素子300に対して垂直に光が入射すると仮定して、式(1)は簡略化されている。 The first spectral transmission characteristic of the spectral element 300 will be described. The following equation (1) indicates the peak wavelength λ of the light transmitted by the light separating element 300. Formula (1) is simplified on the assumption that light is incident perpendicularly to the light separating element 300.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)においてdは、第1の膜310および第2の膜320の間の距離d3である。式(1)は次数nの関数である。次数nは、自然数である。第1の分光透過特性における第1のピークおよび第2のピークの波長は、式(1)が示す複数のピーク波長λに含まれる。 In equation (1), d is the distance d3 between the first film 310 and the second film 320. Equation (1) is a function of order n. The order n is a natural number. The wavelengths of the first peak and the second peak in the first spectral transmission characteristic are included in the plurality of peak wavelengths λ indicated by equation (1).
 以下の式(2)は、式(1)に基づく半値全幅FWHMを示す。 The following equation (2) indicates a full width at half maximum FWHM based on equation (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)においてRは、第1の膜310および第2の膜320の光反射率を示す。光反射率Rが大きい、すなわち1に近いため、半値全幅FWHMの値は小さい。つまり、第1の分光透過特性において、非常に狭い波長帯域の光(狭帯域光)の透過率が高い。 In Equation (2), R represents the light reflectance of the first film 310 and the second film 320. Since the light reflectance R is large, ie, close to 1, the value of the full width half maximum FWHM is small. That is, in the first spectral transmission characteristic, the transmittance of light in a very narrow wavelength band (narrow band light) is high.
 図3は、分光素子300の第1の分光透過特性を示す。図3における縦軸は透過率を示し、かつ図3における横軸は波長を示す。 FIG. 3 shows a first spectral transmission characteristic of the spectral element 300. The vertical axis in FIG. 3 indicates the transmittance, and the horizontal axis in FIG. 3 indicates the wavelength.
 図3において、代表として次数nが1、2、および3の場合における透過率分布が示されている。次数nが増加するにつれて、ピーク波長λは減少する。ピーク波長λを含む半値全幅FWHM内の透過率は、半値全幅FWHM外の透過率よりも大きい。分光素子300は、複数のピーク波長λに対応する複数の狭帯域光を選択的に透過させる第1の分光透過特性を有する。 In FIG. 3, the transmittance distribution in the case where the order n is 1, 2 and 3 is shown as a representative. As the order n increases, the peak wavelength λ decreases. The transmittance in the full width at half maximum FWHM including the peak wavelength λ is larger than the transmittance outside the full width at half maximum FWHM. The spectral element 300 has a first spectral transmission characteristic that selectively transmits a plurality of narrow band lights corresponding to a plurality of peak wavelengths λ.
 図4は、第1の基板100の第2の分光透過特性を示す。図4における縦軸は透過率を示し、かつ図4における横軸は波長を示す。図4において、方向Dr1における第1の基板100の厚さT毎に透過率分布が示されている。図4において、第1の基板100の厚さTが1000nm、2000nm、3000nm、および6000nmの場合における第2の分光透過特性が示されている。図4に示す透過率は、最大透過率が1となるように正規化されている。 FIG. 4 shows a second spectral transmission characteristic of the first substrate 100. The vertical axis in FIG. 4 indicates the transmittance, and the horizontal axis in FIG. 4 indicates the wavelength. In FIG. 4, the transmittance distribution is shown for each thickness T of the first substrate 100 in the direction Dr1. In FIG. 4, second spectral transmission characteristics are shown when the thickness T of the first substrate 100 is 1000 nm, 2000 nm, 3000 nm, and 6000 nm. The transmittance shown in FIG. 4 is normalized so that the maximum transmittance is 1.
 第1の膜310および第2の膜320の間の距離d3が400nmである例を説明する。式(1)によると、1次、2次、および3次のそれぞれに対応するピーク波長λは、800nm、400nm、および267nmである。1次のピーク波長λである800nmにおける透過率は、約0.5から約0.9である。2次のピーク波長λである400nmにおける透過率は、ほぼ0である。3次のピーク波長λである267nmにおける透過率は、ほぼ0である。267nmにおける透過率は図4に示されていない。4よりも大きい次数nに対応するピーク波長λにおける透過率は、ほぼ0である。 An example in which the distance d3 between the first film 310 and the second film 320 is 400 nm will be described. According to equation (1), peak wavelengths λ corresponding to the first, second and third orders are 800 nm, 400 nm and 267 nm. The transmission at 800 nm, which is the first order peak wavelength λ, is about 0.5 to about 0.9. The transmittance at 400 nm, which is the second order peak wavelength λ, is approximately zero. The transmittance at 267 nm, which is the third-order peak wavelength λ, is approximately zero. The transmission at 267 nm is not shown in FIG. The transmission at the peak wavelength λ corresponding to an order n greater than 4 is approximately zero.
 例えば、分光素子300の第1の分光透過特性の第1のピークにおける第1の波長は、1次に対応する800nmである。分光素子300の第1の分光透過特性の第2のピークにおける第2の波長は、1よりも大きい次数nに対応する波長である。したがって、第1の基板100の第2の分光透過特性における第1の波長の光の透過率は、第1の基板100の第2の分光透過特性における第2の波長の光の透過率よりも大きい。第1の波長は、第2の波長よりも長い。 For example, the first wavelength at the first peak of the first spectral transmission characteristic of the spectral element 300 is 800 nm corresponding to the first. The second wavelength at the second peak of the first spectral transmission characteristic of the spectral element 300 is a wavelength corresponding to an order n larger than one. Therefore, the transmittance of the light of the first wavelength in the second spectral transmission characteristic of the first substrate 100 is higher than the transmittance of the light of the second wavelength in the second spectral transmission characteristic of the first substrate 100. large. The first wavelength is longer than the second wavelength.
 図4に示すように、第1の基板100の第2の分光透過特性において、分光素子300の第1の分光透過特性における複数のピーク波長λのうち最大波長以外の波長における透過率は、ほぼ0である。つまり、第1の基板100は、第1のピークにおける第1の波長の光を透過させ、かつ第2のピークにおける第2の波長の光を遮断する。可視光の最大波長が約780nmであるため、第1の基板100は、赤外光を透過させ、かつ可視光を遮断する。 As shown in FIG. 4, in the second spectral transmission characteristic of the first substrate 100, the transmittance at wavelengths other than the maximum wavelength among the plurality of peak wavelengths λ in the first spectral transmission characteristic of the spectral element 300 is substantially It is 0. That is, the first substrate 100 transmits the light of the first wavelength at the first peak and blocks the light of the second wavelength at the second peak. Since the maximum wavelength of visible light is about 780 nm, the first substrate 100 transmits infrared light and blocks visible light.
 第1の基板100を透過し、かつ分光素子300に入射する光は、分光素子300の第1の分光透過特性の第1のピークにおける第1の波長の以外の波長の光を含まない。そのため、第1の波長の光のみが分光素子300を透過し、かつ第2の光電変換素子211に入射する。第2の光電変換素子211は、第1の波長の光に基づく第2の信号を生成する。第1の波長以外の波長の光が第2の光電変換素子211に入射しないため、第2の信号に含まれるノイズが低減される。 The light transmitted through the first substrate 100 and incident on the light separating element 300 does not include light of wavelengths other than the first wavelength at the first peak of the first spectral transmission characteristic of the light separating element 300. Therefore, only light of the first wavelength passes through the spectral element 300 and is incident on the second photoelectric conversion element 211. The second photoelectric conversion element 211 generates a second signal based on the light of the first wavelength. Since light of wavelengths other than the first wavelength does not enter the second photoelectric conversion element 211, noise included in the second signal is reduced.
 第1の膜310および第2の膜320の間の距離d3の変化により、分光素子300の第1の分光透過特性は変化する。そのため、第1の分光透過特性の第1のピークにおける第1の波長は、赤外光の波長に限らない。 Due to the change of the distance d3 between the first film 310 and the second film 320, the first spectral transmission characteristic of the spectral element 300 is changed. Therefore, the first wavelength at the first peak of the first spectral transmission characteristic is not limited to the wavelength of infrared light.
 上記のように、分光素子300は、所定距離に基づく波長帯域の光を選択的に透過させる第1の分光透過特性を有する。第1の分光透過特性における透過率分布は、第1の波長における第1のピークと、第1の波長と異なる第2の波長における第2のピークとを有する。第1の基板100は、第1の波長の光を透過させ、かつ第2の波長の光を遮断する第2の分光透過特性を有する。第2の光電変換素子211により生成される第2の信号のノイズの原因となる第2の波長の光は分光素子300に入射しない。そのため、分光素子300を透過する光は第1の波長の光を含むが、第2の波長の光を含まない。その結果、撮像装置10は、分光素子300を透過する光の選択性を高めることができる。 As described above, the spectral element 300 has the first spectral transmission characteristic of selectively transmitting the light of the wavelength band based on the predetermined distance. The transmittance distribution in the first spectral transmission characteristic has a first peak at a first wavelength and a second peak at a second wavelength different from the first wavelength. The first substrate 100 has a second spectral transmission characteristic that transmits light of a first wavelength and blocks light of a second wavelength. The light of the second wavelength that causes the noise of the second signal generated by the second photoelectric conversion element 211 does not enter the light separating element 300. Therefore, the light transmitted through the light separating element 300 includes the light of the first wavelength but does not include the light of the second wavelength. As a result, the imaging device 10 can enhance the selectivity of the light transmitted through the spectral element 300.
 (第2の実施形態)
 図5は、本発明の第2の実施形態の撮像装置11の構成を示す。図5において、撮像装置11の断面が示されている。図5に示す構成について、図1に示す構成と異なる点を説明する。
Second Embodiment
FIG. 5 shows a configuration of an imaging device 11 according to a second embodiment of the present invention. In FIG. 5, a cross section of the imaging device 11 is shown. The configuration shown in FIG. 5 will be described about differences from the configuration shown in FIG.
 第1の膜310および第2の膜320は導電性を有する。第1の膜310および第2の膜320は電極として機能する。第1の膜310および第2の膜320の少なくとも一方に電圧が印加されたとき、第1の膜310および第2の膜320の距離は、第1の膜310および第2の膜320の電圧差に応じた距離になる。分光素子300は、第1の膜310および第2の膜320の少なくとも一方に電圧が印加されたとき、複数の第1の光電変換素子111を透過した光のうち第1の膜310および第2の膜320の間の距離d3に基づく波長帯域の光を選択的に透過させる第1の分光透過特性を有する。 The first film 310 and the second film 320 have conductivity. The first film 310 and the second film 320 function as electrodes. When a voltage is applied to at least one of the first film 310 and the second film 320, the distance between the first film 310 and the second film 320 is equal to the voltage of the first film 310 and the second film 320. It becomes the distance according to the difference. When a voltage is applied to at least one of the first film 310 and the second film 320, the spectral element 300 includes the first film 310 and the second of the light transmitted through the plurality of first photoelectric conversion elements 111. The first spectral transmission characteristic selectively transmits light of a wavelength band based on the distance d3 between the films 320 of
 第1の膜310および第2の膜320の少なくとも一方に電圧が印加されたとき、第1の膜310は第2の膜320に対して変位する。第1の膜310および第2の膜320によりダイヤフラムが構成される。 When a voltage is applied to at least one of the first film 310 and the second film 320, the first film 310 is displaced relative to the second film 320. The first membrane 310 and the second membrane 320 constitute a diaphragm.
 第1の膜310は、複数の第1の領域310aに分割されている。第2の膜320は、複数の第2の領域320aに分割されている。図5において、代表として1つの第1の領域310aおよび1つの第2の領域320aの符号が示されている。第1の領域310aは、第1の膜310のうち第1の光電変換素子111を透過した光が入射する領域である。第1の領域310aは、第1の膜310のうち支持部401に接続された領域と異なる領域である。第2の領域320aは、第1の領域310aと対向する領域である。第2の領域320aは、第2の膜320のうち支持部401に接続された領域と異なる領域である。複数の第1の領域310aおよび複数の第2の領域320aは、複数の第2の光電変換素子211に対応する位置に配置されている。1つの第1の領域310aおよび1つの第2の領域320aは、複数の第2の光電変換素子211に含まれるいずれか1つの第2の光電変換素子211に対応する位置に配置されている。第1の領域310aの数および第2の領域320aの数は、第2の光電変換素子211の数と同一である。 The first film 310 is divided into a plurality of first regions 310a. The second film 320 is divided into a plurality of second regions 320a. In FIG. 5, the symbols of one first region 310a and one second region 320a are shown as a representative. The first region 310 a is a region of the first film 310 to which light transmitted through the first photoelectric conversion element 111 is incident. The first region 310 a is a region different from the region of the first film 310 connected to the support portion 401. The second region 320a is a region facing the first region 310a. The second region 320 a is a region different from the region of the second film 320 connected to the support portion 401. The plurality of first regions 310 a and the plurality of second regions 320 a are disposed at positions corresponding to the plurality of second photoelectric conversion elements 211. One first region 310 a and one second region 320 a are disposed at positions corresponding to any one second photoelectric conversion element 211 included in the plurality of second photoelectric conversion elements 211. The number of first regions 310 a and the number of second regions 320 a are the same as the number of second photoelectric conversion elements 211.
 複数の第2の光電変換素子211は、行列状に配置されている。複数の第1の膜310に含まれる各々の第1の膜310は、複数の第2の光電変換素子211の配列における行または列に対応する位置に配置され、かつその行またはその列の方向に長い形状を有する。複数の第1の膜310が行に対応する位置に配置されている場合には、複数の第2の膜320は列に対応する位置に配置されている。つまり、複数の第1の膜310が行方向Dr2に細長い場合、複数の第2の膜320は列方向Dr3に細長い。複数の第1の膜310が列に対応する位置に配置されている場合には、複数の第2の膜320は行に対応する位置に配置されている。つまり、複数の第1の膜310が列方向Dr3に細長い場合、複数の第2の膜320は行方向Dr2に細長い。 The plurality of second photoelectric conversion elements 211 are arranged in a matrix. Each first film 310 included in the plurality of first films 310 is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements 211, and the direction of the row or the column Has a long shape. When the plurality of first films 310 are arranged at positions corresponding to the rows, the plurality of second films 320 are arranged at positions corresponding to the columns. That is, when the plurality of first membranes 310 are elongated in the row direction Dr2, the plurality of second membranes 320 are elongated in the column direction Dr3. When the plurality of first films 310 are disposed at the positions corresponding to the columns, the plurality of second films 320 are disposed at the positions corresponding to the rows. That is, when the plurality of first membranes 310 are elongated in the column direction Dr3, the plurality of second membranes 320 are elongated in the row direction Dr2.
 分光素子300は、複数の分光領域300aを有する。複数の分光領域300aに含まれる各々の分光領域300aは、対向する第1の領域310aおよび第2の領域320aを有する。 The spectral element 300 has a plurality of spectral regions 300a. Each spectral region 300a included in the plurality of spectral regions 300a has a first region 310a and a second region 320a opposed to each other.
 撮像装置11において、図1に示す支持部400は支持部401に変更される。支持部401は、第1の基板100および第2の基板200の間に配置されている。支持部401は、第1の膜310および第2の膜320に接続されている。支持部401は、第2の膜320に対して固定され、かつ第1の膜310を支持する。第2の膜320は第2の基板200に対して固定されている。第1の膜310および第2の膜320の間において支持部401を除く領域は中空である。 In the imaging device 11, the support 400 shown in FIG. 1 is changed to a support 401. The support portion 401 is disposed between the first substrate 100 and the second substrate 200. The support portion 401 is connected to the first membrane 310 and the second membrane 320. The support 401 is fixed relative to the second membrane 320 and supports the first membrane 310. The second film 320 is fixed to the second substrate 200. The area excluding the support portion 401 between the first membrane 310 and the second membrane 320 is hollow.
 支持部401は、第1の支持部410および第2の支持部420を有する。第1の支持部410は、第1の基板100および第1の膜310の間に配置されている。第1の支持部410は、第1の膜310に接続され、かつ第1の基板100に対して固定されている。第2の支持部420は、第1の膜310および第2の膜320の間に配置されている。第2の支持部420は、第1の膜310に接続され、かつ第2の膜320に対して固定されている。したがって、支持部401は、第1の基板100および第2の膜320に対して固定されている。第2の支持部420は、第2の基板200に接続されている。第1の支持部410および第2の支持部420は、第1の膜310を支持する。第1の基板100および第1の膜310の間において第1の支持部410を除く領域は中空である。第1の膜310および第2の膜320の間において第2の支持部420を除く領域は中空である。 The support portion 401 has a first support portion 410 and a second support portion 420. The first support portion 410 is disposed between the first substrate 100 and the first film 310. The first support portion 410 is connected to the first film 310 and fixed to the first substrate 100. The second support 420 is disposed between the first membrane 310 and the second membrane 320. The second support 420 is connected to the first membrane 310 and fixed relative to the second membrane 320. Therefore, the support portion 401 is fixed to the first substrate 100 and the second film 320. The second support 420 is connected to the second substrate 200. The first support 410 and the second support 420 support the first membrane 310. The area excluding the first support portion 410 between the first substrate 100 and the first film 310 is hollow. The area except the second support 420 between the first membrane 310 and the second membrane 320 is hollow.
 第1の支持部410は、第1の配線層120の面120bと接触している。第1の支持部410は、第2の支持部420と接触している。図5において、第1の支持部410が第2の支持部420と接触する部分は示されていない。第2の支持部420は、第2の配線層220の面220aと接触している。第2の支持部420は、第2の基板200に対して固定されている。 The first support portion 410 is in contact with the surface 120 b of the first wiring layer 120. The first support 410 is in contact with the second support 420. In FIG. 5, the portion in which the first support portion 410 contacts the second support portion 420 is not shown. The second support 420 is in contact with the surface 220 a of the second wiring layer 220. The second support 420 is fixed to the second substrate 200.
 第1の支持部410および第2の支持部420は、第1の光電変換素子111を透過した光の進行を妨げない位置に配置されている。第1の支持部410および第2の支持部420は、隣接する2つの第2の光電変換素子211の間に対応する位置に配置されている。 The first support portion 410 and the second support portion 420 are disposed at positions that do not prevent the progress of light transmitted through the first photoelectric conversion element 111. The first support portion 410 and the second support portion 420 are arranged at corresponding positions between two adjacent second photoelectric conversion elements 211.
 上記以外の点について、図5に示す構成は、図1に示す構成と同様である。 Except for the points described above, the configuration shown in FIG. 5 is the same as the configuration shown in FIG.
 図6は、画素の周辺回路を含む撮像装置11の構成を示す。図6に示すように、撮像装置11は、支持基板500を有する。支持基板500は、画素アレイ510、行選択回路520、列処理回路530、出力回路540、および電圧生成回路550から553を有する。 FIG. 6 shows the configuration of the imaging device 11 including peripheral circuits of pixels. As shown in FIG. 6, the imaging device 11 has a support substrate 500. The support substrate 500 includes a pixel array 510, a row selection circuit 520, a column processing circuit 530, an output circuit 540, and voltage generation circuits 550 to 553.
 画素アレイ510は、複数の第1の画素および複数の第2の画素が行列状に配置された領域である。画素アレイ510は、図5に示す構造を有する。 The pixel array 510 is an area in which a plurality of first pixels and a plurality of second pixels are arranged in a matrix. The pixel array 510 has a structure shown in FIG.
 行選択回路520は、垂直走査回路である。行選択回路520は、第1の画素および第2の画素から信号を読み出すタイミングを制御する。行選択回路520は、制御信号を第1の画素および第2の画素に出力することにより、第1の画素および第2の画素の動作を制御する。行選択回路520は、複数の第1の画素および複数の第2の画素の配列における行毎に制御信号を出力する。図6において、2つの行選択回路520が配置されている。 The row selection circuit 520 is a vertical scanning circuit. The row selection circuit 520 controls timing at which signals are read out from the first pixel and the second pixel. The row selection circuit 520 controls the operation of the first pixel and the second pixel by outputting a control signal to the first pixel and the second pixel. The row selection circuit 520 outputs a control signal for each row in the array of the plurality of first pixels and the plurality of second pixels. In FIG. 6, two row selection circuits 520 are arranged.
 列処理回路530は、第1の画素および第2の画素から出力された信号にノイズ除去等の処理を行う。図6において、2つの列処理回路530が配置されている。出力回路540は、列処理回路530によって処理された信号を外部の回路に出力する。図6において、4つの出力回路540が配置されている。 The column processing circuit 530 performs processing such as noise removal on the signals output from the first pixel and the second pixel. In FIG. 6, two column processing circuits 530 are arranged. The output circuit 540 outputs the signal processed by the column processing circuit 530 to an external circuit. In FIG. 6, four output circuits 540 are arranged.
 電圧生成回路550から553は、第1の膜310および第2の膜320に印加される電圧を生成する。図6において、4つの電圧生成回路550から553が配置されている。 The voltage generation circuits 550 to 553 generate voltages applied to the first film 310 and the second film 320. In FIG. 6, four voltage generation circuits 550 to 553 are arranged.
 各回路の数は、図6に示す数に限らない。支持基板500において各回路が配置される位置は、図6に示す位置に限らない。 The number of each circuit is not limited to the number shown in FIG. The position where each circuit is arranged in the support substrate 500 is not limited to the position shown in FIG.
 図7は、第1の膜310および第2の膜320に印加される電圧を模式的に示す。電圧生成回路550および電圧生成回路551(第1の電圧生成回路)は、第1の膜310すなわち複数の第1の領域310aに印加される第1の電圧を生成する。電圧生成回路552および電圧生成回路553(第2の電圧生成回路)は、第2の膜320すなわち複数の第2の領域320aに印加される第2の電圧を生成する。 FIG. 7 schematically shows voltages applied to the first film 310 and the second film 320. The voltage generation circuit 550 and the voltage generation circuit 551 (first voltage generation circuit) generate a first voltage applied to the first film 310, that is, the plurality of first regions 310a. The voltage generation circuit 552 and the voltage generation circuit 553 (second voltage generation circuit) generate a second voltage applied to the second film 320, that is, the plurality of second regions 320a.
 電圧生成回路550は、偶数行における複数の第1の領域310aに印加される第1の電圧Vを生成する。電圧生成回路551は、奇数行における複数の第1の領域310aに印加される第1の電圧Vを生成する。電圧生成回路552は、奇数列における複数の第2の領域320aに印加される第2の電圧Vを生成する。電圧生成回路553は、偶数列における複数の第2の領域320aに印加される第2の電圧Vを生成する。例えば、第1の電圧V、第1の電圧V、第2の電圧V、および第2の電圧Vは互いに異なる。 The voltage generation circuit 550 generates a first voltage V 1 applied to the plurality of first regions 310 a in the even row. Voltage generating circuit 551 generates a first voltage V 2 applied to the plurality of first regions 310a in the odd rows. Voltage generating circuit 552 generates a second voltage V 3 applied to the plurality of second regions 320a in odd-numbered columns. Voltage generating circuit 553 generates a second voltage V 4 is applied to the plurality of second regions 320a in the even columns. For example, the first voltage V 1 , the first voltage V 2 , the second voltage V 3 , and the second voltage V 4 are different from one another.
 図8は、電圧が第1の膜310および第2の膜320に印加されたときの分光素子300の状態を示す。第1の領域310aおよび第2の領域320aの間の距離d3は、第1の領域310aに印加される第1の電圧と、第2の領域320aに印加される第2の電圧との差に基づく。電圧が各膜に印加されたとき、第1の膜310は、第2の膜320に向かって変位する。第1の膜310において、第1の支持部410および第2の支持部420に接続された部分は変位しない。電圧が各膜に印加されたときの距離d3は、電圧が各膜に印加されないときの距離d3よりも小さい。 FIG. 8 shows the state of the spectroscopic element 300 when a voltage is applied to the first film 310 and the second film 320. The distance d3 between the first region 310a and the second region 320a is the difference between the first voltage applied to the first region 310a and the second voltage applied to the second region 320a. Based on. When a voltage is applied to each membrane, the first membrane 310 is displaced towards the second membrane 320. In the first membrane 310, portions connected to the first support portion 410 and the second support portion 420 are not displaced. The distance d3 when a voltage is applied to each film is smaller than the distance d3 when a voltage is not applied to each film.
 奇数行かつ奇数列に対応する第1の領域310aおよび第2の領域320aの間の距離d3は、第1の電圧Vと第2の電圧Vとの差に基づく。奇数行かつ偶数列に対応する第1の領域310aおよび第2の領域320aの間の距離d3は、第1の電圧Vと第2の電圧Vとの差に基づく。偶数行かつ奇数列に対応する第1の領域310aおよび第2の領域320aの間の距離d3は、第1の電圧Vと第2の電圧Vとの差に基づく。偶数行かつ偶数列に対応する第1の領域310aおよび第2の領域320aの間の距離d3は、第1の電圧Vと第2の電圧Vとの差に基づく。 The distance between the first region 310a and second region 320a corresponding to the odd go One odd columns d3 is based on the difference between the first voltage V 2 and the second voltage V 3. The distance between the first region 310a and second region 320a corresponding to the odd go One even column d3 is based on the difference between the first voltage V 2 and the second voltage V 4. The distance between the first region 310a and second region 320a corresponding to the even go One odd columns d3 is based on the difference between the first voltage V 1 and the second voltage V 3. The distance between the first region 310a and second region 320a corresponding to the even go One even columns d3 is based on the difference between the first voltage V 1 and the second voltage V 4.
 上記のように、第1の領域310aおよび第2の領域320aの電圧差は4種類である。したがって、分光素子300は、4つの距離d3の各々に対応する波長帯域の光を透過させることができる。 As described above, the voltage difference between the first region 310a and the second region 320a is four. Therefore, the spectral element 300 can transmit light in wavelength bands corresponding to each of the four distances d3.
 第1の電圧Vおよび第1の電圧Vが同一であってもよい。あるいは、第2の電圧Vおよび第2の電圧Vが同一であってもよい。その場合、第1の領域310aおよび第2の領域320aの電圧差は2種類である。そのため、分光素子300は、2つの距離d3の各々に対応する波長帯域の光を透過させることができる。分光素子300は、3つの距離d3の各々に対応する波長帯域の光を透過させてもよい。分光素子300は、4つよりも多い距離d3の各々に対応する波長帯域の光を透過させてもよい。 First voltage V 1 and the first voltage V 2 may be the same. Alternatively, the second voltage V 3 and the second voltage V 4 may be the same. In that case, the voltage difference between the first region 310a and the second region 320a is two. Therefore, the spectral element 300 can transmit light of wavelength bands corresponding to each of the two distances d3. The spectral element 300 may transmit light of wavelength bands corresponding to each of the three distances d3. The spectral element 300 may transmit light in wavelength bands corresponding to each of the more than four distances d3.
 第1の電圧Vおよび第1の電圧Vが同一であり、かつ第2の電圧Vおよび第2の電圧Vが同一であってもよい。その場合、同一の第1の電圧が複数の第1の領域310aに印加され、かつ同一の第2の電圧が複数の第2の領域320aに印加される。これにより、分光素子300は、1つの距離d3に対応する波長帯域の光を透過させる。 The first voltage V 1 and the first and is the same voltage V 2, and a second voltage V 3 and the second voltage V 4 may be the same. In that case, the same first voltage is applied to the plurality of first regions 310a, and the same second voltage is applied to the plurality of second regions 320a. Thereby, the spectral element 300 transmits light in a wavelength band corresponding to one distance d3.
 第1の領域310aおよび第2の領域320aの一方のみに電圧が印加されてもよい。例えば、第1の領域310aのみに電圧が印加されてもよい。あるいは、第2の領域320aのみに電圧が印加されてもよい。 A voltage may be applied to only one of the first region 310a and the second region 320a. For example, a voltage may be applied only to the first region 310a. Alternatively, a voltage may be applied only to the second region 320a.
 分光素子300の動作の第1の例を説明する。第1のタイミングにおける第1の電圧と第2の電圧との差は、第1のタイミングと異なる第2のタイミングにおける第1の電圧と第2の電圧との差と異なる。第1のタイミングは、第2のタイミングよりも前または後である。複数の第1の領域310aに含まれる各々の第1の領域310aと複数の第2の領域320aに含まれる各々の第2の領域320aとの間の距離d3は第1のタイミングで同一の第1の距離である。つまり、複数の分光領域300aにおける距離d3は第1のタイミングで同一の第1の距離である。複数の第1の領域310aに含まれる各々の第1の領域310aと複数の第2の領域320aに含まれる各々の第2の領域320aとの間の距離d3は第2のタイミングで同一の第2の距離である。つまり、複数の分光領域300aにおける距離d3は第2のタイミングで同一の第2の距離である。第2の距離は第1の距離と異なる。 A first example of the operation of the spectral element 300 will be described. The difference between the first voltage and the second voltage at the first timing is different from the difference between the first voltage and the second voltage at the second timing different from the first timing. The first timing is before or after the second timing. The distance d3 between each first region 310a included in the plurality of first regions 310a and each second region 320a included in the plurality of second regions 320a is the same first at a first timing. It is a distance of 1. That is, the distance d3 in the plurality of spectral regions 300a is the same first distance at the first timing. The distance d3 between each first region 310a included in the plurality of first regions 310a and each second region 320a included in the plurality of second regions 320a is the same first at a second timing. It is a distance of 2. That is, the distance d3 in the plurality of spectral regions 300a is the same second distance at the second timing. The second distance is different from the first distance.
 電圧生成回路550によって生成された第1の電圧Vと、電圧生成回路551によって生成された第1の電圧Vとは、第1のタイミングと同じタイミングまたは第1のタイミングよりも前のタイミングで複数の第1の領域310aに印加される。電圧生成回路552によって生成された第2の電圧Vと、電圧生成回路553によって生成された第2の電圧Vとは、第1のタイミングと同じタイミングまたは第1のタイミングよりも前のタイミングで複数の第2の領域320aに印加される。分光素子300は、第1のタイミングにおいて、第1の距離に対応する波長帯域の光を透過させる。 The first voltages V 1 generated by the voltage generating circuit 550, the voltage first is a voltage V 2 generated by the generating circuit 551, the same timing as the first timing or the first timing earlier than the timing Are applied to the plurality of first regions 310a. A second voltage V 3 which is generated by the voltage generating circuit 552, the voltage and the second voltage V 4 generated by the generating circuit 553, the same timing as the first timing or the first timing earlier than the timing Are applied to the plurality of second regions 320a. The spectroscopic element 300 transmits light of a wavelength band corresponding to the first distance at the first timing.
 電圧生成回路550によって生成された第1の電圧Vと、電圧生成回路551によって生成された第1の電圧Vとは、第2のタイミングと同じタイミングまたは第2のタイミングよりも前のタイミングで複数の第1の領域310aに印加される。電圧生成回路552によって生成された第2の電圧Vと、電圧生成回路553によって生成された第2の電圧Vとは、第2のタイミングと同じタイミングまたは第2のタイミングよりも前のタイミングで複数の第2の領域320aに印加される。分光素子300は、第2のタイミングにおいて、第2の距離に対応する波長帯域の光を透過させる。 The first voltages V 1 generated by the voltage generating circuit 550, the voltage first is a voltage V 2 generated by the generating circuit 551, the same timing as the second timing or the second timing earlier than the timing Are applied to the plurality of first regions 310a. A second voltage V 3 which is generated by the voltage generating circuit 552, the voltage and the second voltage V 4 generated by the generating circuit 553, the same timing as the second timing or the second timing earlier than the timing Are applied to the plurality of second regions 320a. The spectroscopic element 300 transmits light of a wavelength band corresponding to the second distance at the second timing.
 撮像装置11は、上記の動作を繰り返してもよい。分光素子300は、互いに異なる複数の波長帯域の光を順次透過させる。これにより、撮像装置11は、特定の波長帯域の光を面順次に得ることができる。 The imaging device 11 may repeat the above operation. The spectral element 300 sequentially transmits light of a plurality of different wavelength bands. Thereby, the imaging device 11 can obtain light of a specific wavelength band in a plane-sequential manner.
 複数の第2の光電変換素子211は、所定周期の画素制御信号によって制御される。例えば、所定周期は、フレーム周期である。画素制御信号は、行選択回路520によって生成される。例えば、画素制御信号は、垂直同期信号である。第1の電圧は、所定周期に基づく第3のタイミングで複数の第1の領域310aに印加される。第2の電圧は、所定周期に基づく第4のタイミングで複数の第2の領域320aに印加される。第1の電圧が第1の領域310aに印加され、かつ第2の電圧が第2の領域320aに印加されているとき、複数の第2の光電変換素子211は、第2の信号を生成する。 The plurality of second photoelectric conversion elements 211 are controlled by a pixel control signal of a predetermined cycle. For example, the predetermined cycle is a frame cycle. The pixel control signal is generated by the row selection circuit 520. For example, the pixel control signal is a vertical synchronization signal. The first voltage is applied to the plurality of first regions 310a at a third timing based on a predetermined cycle. The second voltage is applied to the plurality of second regions 320a at a fourth timing based on a predetermined cycle. When the first voltage is applied to the first region 310a and the second voltage is applied to the second region 320a, the plurality of second photoelectric conversion elements 211 generate a second signal .
 例えば、第4のタイミングは、第3のタイミングと同一である。第4のタイミングは、第3のタイミングと異なっていてもよい。例えば、第3のタイミングは、第1のタイミングおよび第2のタイミングの少なくとも1つと同一である。第3のタイミングは、第1のタイミングおよび第2のタイミングと異なっていてもよい。第4のタイミングは、第1のタイミングおよび第2のタイミングの少なくとも1つと同一である。第4のタイミングは、第1のタイミングおよび第2のタイミングと異なっていてもよい。複数の第3のタイミングの間隔と複数の第4のタイミングの間隔とは同一である。 For example, the fourth timing is the same as the third timing. The fourth timing may be different from the third timing. For example, the third timing is identical to at least one of the first timing and the second timing. The third timing may be different from the first timing and the second timing. The fourth timing is identical to at least one of the first timing and the second timing. The fourth timing may be different from the first timing and the second timing. The plurality of third timing intervals and the plurality of fourth timing intervals are the same.
 電圧生成回路550から553は、画素制御信号によって制御されてもよい。つまり、電圧生成回路550および電圧生成回路551は、画素制御信号に基づく所定周期で第1の電圧を生成してもよい。電圧生成回路552および電圧生成回路553は、画素制御信号に基づく所定周期で第2の電圧を生成してもよい。 The voltage generation circuits 550 to 553 may be controlled by a pixel control signal. That is, the voltage generation circuit 550 and the voltage generation circuit 551 may generate the first voltage at a predetermined cycle based on the pixel control signal. The voltage generation circuit 552 and the voltage generation circuit 553 may generate the second voltage at a predetermined cycle based on the pixel control signal.
 複数の第1の光電変換素子111は、所定周期の画素制御信号によって制御される。複数の第1の光電変換素子111および複数の第2の光電変換素子211は、同一の画素制御信号によって制御されてもよい。複数の第1の光電変換素子111および複数の第2の光電変換素子211は所定周期で信号を生成する。複数の第1の光電変換素子111が各フレームの第1の信号を生成する動作と同期して、複数の第2の光電変換素子211は各フレームの第2の信号を生成することができる。例えば、複数の第2の光電変換素子211は、互いに異なる複数の波長帯域の赤外光に基づく第2の信号を所定周期で生成する。複数の第2の光電変換素子211によって生成された第2の信号は、赤外光に基づく赤外光画像信号を生成する。 The plurality of first photoelectric conversion elements 111 are controlled by a pixel control signal of a predetermined cycle. The plurality of first photoelectric conversion elements 111 and the plurality of second photoelectric conversion elements 211 may be controlled by the same pixel control signal. The plurality of first photoelectric conversion elements 111 and the plurality of second photoelectric conversion elements 211 generate signals at a predetermined cycle. The plurality of second photoelectric conversion elements 211 can generate the second signal of each frame in synchronization with the operation of the plurality of first photoelectric conversion elements 111 generating the first signal of each frame. For example, the plurality of second photoelectric conversion elements 211 generate second signals based on infrared light of a plurality of wavelength bands different from each other at a predetermined cycle. The second signals generated by the plurality of second photoelectric conversion elements 211 generate infrared light image signals based on infrared light.
 赤外光は、励起光および蛍光を含む。例えば、第1の距離は励起光に対応する距離に設定され、かつ第2の距離は蛍光に対応する距離に設定される。その場合、分光素子300は、第1のタイミングにおいて励起光を透過させ、かつ第2のタイミングにおいて蛍光を透過させる。第2の光電変換素子211は、第1のタイミングにおいて、励起光に基づく第2の信号を生成する。励起光が入射した複数の第2の光電変換素子211によって生成された第2の信号は、励起光に基づく励起光画像信号を構成する。第2の光電変換素子211は、第2のタイミングにおいて、蛍光に基づく第2の信号を生成する。蛍光が入射した複数の第2の光電変換素子211によって生成された第2の信号は、蛍光に基づく蛍光画像信号を構成する。 Infrared light includes excitation light and fluorescence. For example, the first distance is set to a distance corresponding to excitation light, and the second distance is set to a distance corresponding to fluorescence. In that case, the spectral element 300 transmits excitation light at a first timing and transmits fluorescence at a second timing. The second photoelectric conversion element 211 generates a second signal based on the excitation light at a first timing. The second signals generated by the plurality of second photoelectric conversion elements 211 in which the excitation light is incident constitute an excitation light image signal based on the excitation light. The second photoelectric conversion element 211 generates a second signal based on fluorescence at a second timing. The second signals generated by the plurality of second photoelectric conversion elements 211 to which the fluorescence is incident constitute a fluorescence image signal based on the fluorescence.
 分光素子300の動作の第2の例を説明する。複数の第1の領域310aに含まれる各々の第1の領域310aは、複数の第1のグループのいずれか1つに含まれる。複数の第1のグループに含まれる各々の第1のグループは、少なくとも1つの第1の領域310aを含む。図7に示す例では、2つの第1のグループが設定される。1つの第1のグループは、奇数行の第1の領域310aを含む。他の第1のグループは、偶数行の第1の領域310aを含む。 A second example of the operation of the spectral element 300 will be described. Each first region 310a included in the plurality of first regions 310a is included in any one of the plurality of first groups. Each first group included in the plurality of first groups includes at least one first region 310a. In the example shown in FIG. 7, two first groups are set. One first group includes the first regions 310 a in odd rows. Another first group includes even regions of first regions 310a in even rows.
 複数の第2の領域320aに含まれる各々の第2の領域320aは、複数の第2のグループのいずれか1つに含まれる。複数の第2のグループに含まれる各々の第2のグループは、少なくとも1つの第2の領域320aを含む。図7に示す例では、2つの第2のグループが設定される。1つの第2のグループは、奇数列の第2の領域320aを含む。他の第2のグループは、偶数列の第2の領域320aを含む。 Each second region 320a included in the plurality of second regions 320a is included in any one of the plurality of second groups. Each second group included in the plurality of second groups includes at least one second region 320a. In the example shown in FIG. 7, two second groups are set. One second group includes the second region 320a of the odd-numbered column. The other second group includes the second region 320a of even columns.
 電圧生成回路550および電圧生成回路551は、互いに異なる複数の第1の電圧を生成する。電圧生成回路550は第1の電圧Vを生成し、かつ電圧生成回路551は第1の電圧Vと異なる第1の電圧Vを生成する。電圧生成回路550および電圧生成回路551によって生成される第1の電圧の数は、第1のグループの数と同一である。各々の第1の電圧は、複数の第1のグループのいずれか1つに属する第1の領域310aに印加される。第1の電圧Vは、1つの第1のグループに属する偶数行の第1の領域310aに印加される。第1の電圧Vは、他の第1のグループに属する奇数行の第1の領域310aに印加される。 The voltage generation circuit 550 and the voltage generation circuit 551 generate a plurality of different first voltages. The voltage generating circuit 550 generates a first voltage V 1, and the voltage generating circuit 551 generates a first voltage V 1 is different from the first voltage V 2. The number of first voltages generated by the voltage generation circuit 550 and the voltage generation circuit 551 is the same as the number of first groups. Each first voltage is applied to a first region 310a belonging to any one of a plurality of first groups. First voltages V 1 is applied to the first region 310a of the even-numbered rows belonging to one of the first group. The first voltage V 2 is applied to the first region 310a of the odd-numbered rows belonging to other first group.
 電圧生成回路552および電圧生成回路553は、互いに異なる複数の第2の電圧を生成する。電圧生成回路552は第2の電圧Vを生成し、かつ電圧生成回路553は第2の電圧Vと異なる第2の電圧Vを生成する。電圧生成回路552および電圧生成回路553によって生成される第2の電圧の数は、第2のグループの数と同一である。各々の第2の電圧は、複数の第2のグループのいずれか1つに属する第2の領域320aに印加される。第2の電圧Vは、1つの第2のグループに属する奇数列の第2の領域320aに印加される。第2の電圧Vは、他の第2のグループに属する偶数列の第2の領域320aに印加される。 The voltage generation circuit 552 and the voltage generation circuit 553 generate a plurality of different second voltages. The voltage generating circuit 552 generates a second voltage V 3, and the voltage generating circuit 553 generates a second voltage V 4 that is different from the second voltage V 3. The number of second voltages generated by the voltage generation circuit 552 and the voltage generation circuit 553 is the same as the number of second groups. Each second voltage is applied to a second region 320a belonging to any one of a plurality of second groups. The second voltage V 3 is applied to a second region 320a of the odd-numbered columns belonging to one of the second group. The second voltage V 4 is applied to the second region 320a of the even columns belonging to other second group.
 第1の領域310aおよび第2の領域320aの間の距離d3は、第1の領域310aに印加された第1の電圧と第2の領域320aに印加された第2の電圧との組み合わせに基づく距離である。つまり、距離d3は、第1の電圧および第2の電圧の差に基づく。 The distance d3 between the first region 310a and the second region 320a is based on the combination of the first voltage applied to the first region 310a and the second voltage applied to the second region 320a. It is a distance. That is, the distance d3 is based on the difference between the first voltage and the second voltage.
 例えば、電圧生成回路550および電圧生成回路551によって生成された複数の第1の電圧は、第5のタイミングと同じタイミングまたは第5のタイミングよりも前のタイミングで複数の第1の領域310aに印加される。電圧生成回路552および電圧生成回路553によって生成された複数の第2の電圧は、第5のタイミングと同じタイミングまたは第5のタイミングよりも前のタイミングで複数の第2の領域320aに印加される。第5のタイミングにおける各々の第1の領域310aの電圧は複数の第1の電圧のいずれか1つであり、かつ第5のタイミングにおける各々の第2の領域320aの電圧は複数の第2の電圧のいずれか1つである。分光素子300は、第5のタイミングにおいて、第1の電圧および第2の電圧の組み合わせに基づく複数の距離d3の各々に対応する波長帯域の光を透過させる。これにより、撮像装置11は、第5のタイミングにおいて、複数の距離d3の各々に対応する波長帯域の光に基づく信号を得ることができる。 For example, the plurality of first voltages generated by the voltage generation circuit 550 and the voltage generation circuit 551 are applied to the plurality of first regions 310 a at the same timing as the fifth timing or at a timing earlier than the fifth timing. Be done. The plurality of second voltages generated by the voltage generation circuit 552 and the voltage generation circuit 553 are applied to the plurality of second regions 320 a at the same timing as the fifth timing or at a timing earlier than the fifth timing. . The voltage of each first region 310a at the fifth timing is any one of the plurality of first voltages, and the voltage of each second region 320a at the fifth timing is the plurality of second voltages. It is one of the voltages. The spectroscopic element 300 transmits light of wavelength bands corresponding to each of the plurality of distances d3 based on the combination of the first voltage and the second voltage at the fifth timing. Thereby, the imaging device 11 can obtain a signal based on the light of the wavelength band corresponding to each of the plurality of distances d3 at the fifth timing.
 複数の分光領域300aに含まれる第1の分光領域は、励起光が照射された被写体によって反射された励起光を透過させる。第1の分光領域は、複数の第1のグループのいずれか1つに属する第1の領域310aと、複数の第2のグループのいずれか1つに属する第2の領域320aとで構成される。複数の分光領域300aに含まれる第2の分光領域は、励起光が照射された被写体が発する蛍光を透過させる。第2の分光領域は、複数の第1のグループのいずれか1つに属する第1の領域310aと、複数の第2のグループのいずれか1つに属する第2の領域320aとで構成される。第1の分光領域の第1の領域310aおよび第2の分光領域の第1の領域310aは互いに異なる。第1の分光領域の第2の領域320aおよび第2の分光領域の第2の領域320aは互いに異なる。 The first spectral regions included in the plurality of spectral regions 300 a transmit the excitation light reflected by the subject irradiated with the excitation light. The first spectral region is configured of a first region 310a belonging to any one of a plurality of first groups and a second region 320a belonging to any one of a plurality of second groups. . The second spectral regions included in the plurality of spectral regions 300a transmit fluorescence emitted from the subject irradiated with the excitation light. The second spectral region includes a first region 310a belonging to any one of a plurality of first groups, and a second region 320a belonging to any one of a plurality of second groups. . The first region 310a of the first spectral region and the first region 310a of the second spectral region are different from each other. The second region 320a of the first spectral region and the second region 320a of the second spectral region are different from each other.
 第1の分光領域に対応する位置に配置された第2の光電変換素子211は、励起光に基づく第2の信号を生成する。励起光が入射した複数の第2の光電変換素子211によって生成された第2の信号は、励起光に基づく励起光画像信号を構成する。第2の分光領域に対応する位置に配置された第2の光電変換素子211は、蛍光に基づく第2の信号を生成する。蛍光が入射した複数の第2の光電変換素子211によって生成された第2の信号は、蛍光に基づく蛍光画像信号を構成する。 The second photoelectric conversion element 211 disposed at a position corresponding to the first spectral region generates a second signal based on the excitation light. The second signals generated by the plurality of second photoelectric conversion elements 211 in which the excitation light is incident constitute an excitation light image signal based on the excitation light. The second photoelectric conversion element 211 arranged at a position corresponding to the second spectral region generates a second signal based on fluorescence. The second signals generated by the plurality of second photoelectric conversion elements 211 to which the fluorescence is incident constitute a fluorescence image signal based on the fluorescence.
 第1の領域310aおよび第2の領域320aの電圧差が4種類である場合、分光素子300は、4つの距離d3の各々に対応する波長帯域の光を透過させる。例えば、4つの距離d3の少なくとも1つに対応する波長帯域の光は、励起光である。4つの距離d3の少なくとも1つに対応する波長帯域の光は、蛍光である。 When the voltage difference between the first region 310a and the second region 320a is four, the light separating element 300 transmits light of wavelength bands corresponding to each of the four distances d3. For example, light in a wavelength band corresponding to at least one of the four distances d3 is excitation light. The light of the wavelength band corresponding to at least one of the four distances d3 is fluorescence.
 複数の第1の光電変換素子111は、複数の第1の光電変換素子111に入射した光を第1の信号に変換する。複数の第2の光電変換素子211は、複数の第2の光電変換素子211に入射した光を第2の信号に変換する。出力回路540(信号処理回路)は、第2の信号に基づいて第1の信号を補正してもよい。つまり、出力回路540は、第1の信号に含まれる特定の成分が減るように第1の信号を補正してもよい。特定の成分は、分光素子300の第1の分光透過特性の第1のピークにおける第1の波長の光に基づく成分である。 The plurality of first photoelectric conversion elements 111 convert light incident on the plurality of first photoelectric conversion elements 111 into a first signal. The plurality of second photoelectric conversion elements 211 convert light incident on the plurality of second photoelectric conversion elements 211 into a second signal. The output circuit 540 (signal processing circuit) may correct the first signal based on the second signal. That is, the output circuit 540 may correct the first signal so that the specific component contained in the first signal is reduced. The specific component is a component based on the light of the first wavelength at the first peak of the first spectral transmission characteristic of the light separating element 300.
 補正処理の例を説明する。以下の説明において、第1の波長の光は赤外光である。αは第1の光電変換素子111が可視光を吸収する割合を示す。βは第1の光電変換素子111が赤外光を吸収する割合を示す。γは第2の光電変換素子211が赤外光を吸収する割合を示す。α、β、およびγは、第1の基板100および第2の基板200の分光感度から算出することができる。βおよびγの比率は、第1の光電変換素子111の、赤外光に対する分光感度と、第2の光電変換素子211の、赤外光に対する分光感度との比率で決まる。α、β、およびγは、撮像装置11の製造条件に基づくパラメータである。 An example of the correction process will be described. In the following description, the light of the first wavelength is infrared light. α indicates a ratio at which the first photoelectric conversion element 111 absorbs visible light. β indicates a ratio at which the first photoelectric conversion element 111 absorbs infrared light. γ indicates a ratio at which the second photoelectric conversion element 211 absorbs infrared light. α, β, and γ can be calculated from the spectral sensitivities of the first substrate 100 and the second substrate 200. The ratio of β and γ is determined by the ratio of the spectral sensitivity of the first photoelectric conversion element 111 to infrared light and the spectral sensitivity of the second photoelectric conversion element 211 to infrared light. α, β, and γ are parameters based on the manufacturing conditions of the imaging device 11.
 第1の光電変換素子111は、可視光および赤外光に基づく第1の信号を生成する。以下の説明において、第1の信号の信号値は(αV+βIR)である。αVは可視光に基づく信号値である。βIRは赤外光に基づく信号値である。 The first photoelectric conversion element 111 generates a first signal based on visible light and infrared light. In the following description, the signal value of the first signal is (αV + βIR). αV is a signal value based on visible light. βIR is a signal value based on infrared light.
 第2の光電変換素子211は、赤外光に基づく第2の信号を生成する。以下の説明において、第2の光電変換素子211によって生成される第2の信号の信号値はγIRである。γIRは赤外光に基づく信号値である。 The second photoelectric conversion element 211 generates a second signal based on infrared light. In the following description, the signal value of the second signal generated by the second photoelectric conversion element 211 is γIR. γIR is a signal value based on infrared light.
 出力回路540は、第2の光電変換素子211によって生成された第2の信号の値すなわちγIRに、βとγとの比すなわち(β/γ)を乗じる。これにより、出力回路540は、第1の光電変換素子111によって検出された赤外光に基づく信号値βIRを算出することができる。出力回路540は、第1の光電変換素子111によって生成された第1の信号の値(αV+βIR)から、上記の方法で算出された信号値βIRを減算する。これにより、出力回路540は、可視光のみに基づく信号を生成する。この信号の信号値はαVである。 The output circuit 540 multiplies the value of the second signal generated by the second photoelectric conversion element 211, ie, γIR, by the ratio of β and γ, ie, (β / γ). Thus, the output circuit 540 can calculate the signal value βIR based on the infrared light detected by the first photoelectric conversion element 111. The output circuit 540 subtracts the signal value βIR calculated by the above method from the value (αV + βIR) of the first signal generated by the first photoelectric conversion element 111. Thereby, the output circuit 540 generates a signal based only on visible light. The signal value of this signal is αV.
 上記のように、第1の膜310および第2の膜320の少なくとも一方に電圧が印加されたとき、第1の膜310および第2の膜320の間の距離d3は、第1の膜310および第2の膜320の電圧差に応じた距離になる。そのため、分光素子300は、電圧差に応じた波長帯域の光を透過させることができる。これにより、分光素子300の透過波長特性が可変になる。 As described above, when a voltage is applied to at least one of the first film 310 and the second film 320, the distance d 3 between the first film 310 and the second film 320 is equal to the first film 310. And the distance corresponding to the voltage difference of the second film 320. Therefore, the spectral element 300 can transmit light in a wavelength band corresponding to the voltage difference. Thereby, the transmission wavelength characteristic of the spectral element 300 becomes variable.
 支持部401は、第1の基板100および第1の膜310を支持する。そのため、第1の基板100および第1の膜310を支持する構造を共通にすることができる。 The support portion 401 supports the first substrate 100 and the first film 310. Therefore, the structure supporting the first substrate 100 and the first film 310 can be made common.
 第1の膜310は、複数の第2の光電変換素子211の配列における行または列の方向に長い形状を有する。第2の光電変換素子211が構成する第2の画素毎に第1の膜310が分割されないため、第1の膜310に電圧を供給するための配線を第2の画素毎に配置する必要がない。 The first film 310 has a long shape in the row or column direction in the arrangement of the plurality of second photoelectric conversion elements 211. Since the first film 310 is not divided for every second pixel formed by the second photoelectric conversion element 211, a wiring for supplying a voltage to the first film 310 needs to be provided for every second pixel. Absent.
 第2の膜320は、複数の第2の光電変換素子211の配列における行または列の方向に長い形状を有する。第2の光電変換素子211が構成する第2の画素毎に第2の膜320が分割されないため、第2の膜320に電圧を供給するための配線を第2の画素毎に配置する必要がない。 The second film 320 has a long shape in the direction of the rows or columns in the array of the plurality of second photoelectric conversion elements 211. Since the second film 320 is not divided for every second pixel formed by the second photoelectric conversion element 211, it is necessary to arrange a wire for supplying a voltage to the second film 320 for every second pixel. Absent.
 電圧生成回路550および電圧生成回路551は、第1の膜310における複数の第1の領域310aに印加される第1の電圧を生成する。電圧生成回路552および電圧生成回路553は、第2の膜320における複数の第2の領域320aに印加される第2の電圧を生成する。これにより、撮像装置11は、第1の電圧および第2の電圧の組み合わせに応じた波長帯域の光に基づく信号を得ることができる。 The voltage generation circuit 550 and the voltage generation circuit 551 generate a first voltage applied to the plurality of first regions 310 a in the first film 310. The voltage generation circuit 552 and the voltage generation circuit 553 generate a second voltage applied to the plurality of second regions 320 a in the second film 320. Thereby, the imaging device 11 can obtain a signal based on the light of the wavelength band according to the combination of the first voltage and the second voltage.
 第1の領域310aおよび第2の領域320aの間の距離d3は、第1のタイミングで第1の電圧に基づく同一の第1の距離であってもよい。第1の領域310aおよび第2の領域320aの間の距離d3は、第2のタイミングで第2の電圧に基づく同一の第2の距離であってもよい。これにより、撮像装置11は、特定の波長帯域の光を面順次に得ることができる。 The distance d3 between the first area 310a and the second area 320a may be the same first distance based on the first voltage at the first timing. The distance d3 between the first area 310a and the second area 320a may be the same second distance based on the second voltage at the second timing. Thereby, the imaging device 11 can obtain light of a specific wavelength band in a plane-sequential manner.
 複数の第2の光電変換素子211は、所定周期の画素制御信号によって制御されてもよい。第1の電圧は、所定周期に基づく第3のタイミングで複数の第1の領域310aに印加され、かつ第2の電圧は、所定周期に基づく第4のタイミングで複数の第2の領域320aに印加される。これにより、電圧制御が簡単になる。 The plurality of second photoelectric conversion elements 211 may be controlled by a pixel control signal of a predetermined cycle. The first voltage is applied to the plurality of first regions 310a at a third timing based on a predetermined cycle, and the second voltage is applied to the plurality of second regions 320a at a fourth timing based on the predetermined cycle. Applied. This simplifies voltage control.
 第1の領域310aおよび第2の領域320aの間の距離d3は、第1の領域310aに印加された第1の電圧と第2の領域320aに印加された第2の電圧との組み合わせに基づく距離であってもよい。第1の領域310aを含む複数の第1のグループと、第2の領域320aを含む複数の第2のグループとが設定された場合、複数の距離d3が設定される。これにより、撮像装置11は、複数の距離d3の各々に対応する波長帯域の光に基づく信号を同時に得ることができる。 The distance d3 between the first region 310a and the second region 320a is based on the combination of the first voltage applied to the first region 310a and the second voltage applied to the second region 320a. It may be a distance. When a plurality of first groups including the first area 310a and a plurality of second groups including the second area 320a are set, a plurality of distances d3 are set. Thereby, the imaging device 11 can simultaneously obtain a signal based on the light of the wavelength band corresponding to each of the plurality of distances d3.
 複数の分光領域300aに含まれる第1の分光領域は励起光を透過させ、かつ複数の分光領域300aに含まれる第2の分光領域は蛍光を透過させてもよい。これにより、撮像装置11は、励起光に基づく信号と蛍光に基づく信号とを同時に得ることができる。 The first spectral region included in the plurality of spectral regions 300a may transmit excitation light, and the second spectral region included in the plurality of spectral regions 300a may transmit fluorescence. Thereby, the imaging device 11 can simultaneously obtain a signal based on excitation light and a signal based on fluorescence.
 第2の光電変換素子211によって生成された第2の信号に基づいて、第1の光電変換素子111によって生成された第1の信号が補正されてもよい。分光素子300が透過させる光の波長と同一波長の光が、第1の光電変換素子111における信号のノイズの原因となる場合がある。上記の補正により、第1の信号におけるノイズが低減される。 The first signal generated by the first photoelectric conversion element 111 may be corrected based on the second signal generated by the second photoelectric conversion element 211. Light of the same wavelength as the wavelength of light transmitted by the light separating element 300 may cause noise of a signal in the first photoelectric conversion element 111. The above correction reduces noise in the first signal.
 (第2の実施形態の変形例)
 図9は、本発明の第2の実施形態の変形例の撮像装置12の構成を示す。図9において、撮像装置12の断面が示されている。図9に示す構成について、図5に示す構成と異なる点を説明する。
(Modification of the second embodiment)
FIG. 9 shows a configuration of an imaging device 12 according to a modification of the second embodiment of the present invention. In FIG. 9, a cross section of the imaging device 12 is shown. The configuration shown in FIG. 9 will be described about differences from the configuration shown in FIG.
 支持部401は、第1の膜310および第2の膜320に接続されている。支持部401は、第1の膜310に対して固定され、かつ第2の膜320を支持する。第1の膜310は第1の基板100に対して固定されている。第1の膜310および第2の膜320の間において支持部401を除く領域は中空である。 The support portion 401 is connected to the first membrane 310 and the second membrane 320. The support 401 is fixed relative to the first membrane 310 and supports the second membrane 320. The first film 310 is fixed to the first substrate 100. The area excluding the support portion 401 between the first membrane 310 and the second membrane 320 is hollow.
 第1の支持部410は、第1の膜310および第2の膜320の間に配置されている。第1の支持部410は、第2の膜320に接続され、かつ第1の膜310に対して固定されている。第1の支持部410は、第1の基板100に接続されている。第2の支持部420は、第2の膜320および第2の基板200の間に配置されている。第2の支持部420は、第2の膜320に接続され、かつ第2の基板200に対して固定されている。したがって、支持部401は、第2の基板200および第1の膜310に対して固定されている。第1の支持部410および第2の支持部420は、第2の膜320を支持する。第1の膜310および第2の膜320の間において第1の支持部410を除く領域は中空である。第2の膜320および第2の基板200の間において第2の支持部420を除く領域は中空である。 The first support portion 410 is disposed between the first membrane 310 and the second membrane 320. The first support 410 is connected to the second membrane 320 and fixed relative to the first membrane 310. The first support portion 410 is connected to the first substrate 100. The second support 420 is disposed between the second film 320 and the second substrate 200. The second support 420 is connected to the second film 320 and fixed to the second substrate 200. Therefore, the support portion 401 is fixed to the second substrate 200 and the first film 310. The first support portion 410 and the second support portion 420 support the second membrane 320. The area excluding the first support portion 410 between the first membrane 310 and the second membrane 320 is hollow. The area excluding the second support 420 between the second film 320 and the second substrate 200 is hollow.
 電圧が第1の膜310および第2の膜320に印加されたとき、第2の膜320は、第1の膜310に向かって変位する。第2の膜320において、第1の支持部410および第2の支持部420に接続された部分は変位しない。 When a voltage is applied to the first film 310 and the second film 320, the second film 320 displaces towards the first film 310. In the second membrane 320, portions connected to the first support portion 410 and the second support portion 420 are not displaced.
 上記以外の点について、図9に示す構成は、図5に示す構成と同様である。 Regarding the points other than the above, the configuration shown in FIG. 9 is the same as the configuration shown in FIG.
 第1の支持部410および第2の支持部420を含む支持部401は、第1の基板100および第2の膜320を支持する。そのため、第1の基板100および第2の膜320を支持する構造を共通にすることができる。 The support 401 including the first support 410 and the second support 420 supports the first substrate 100 and the second film 320. Therefore, the structure supporting the first substrate 100 and the second film 320 can be made common.
 (第3の実施形態)
 図10は、本発明の第3の実施形態の撮像装置13の構成を示す。図10において、分光素子300を含む部分の断面が示されている。図10に示す構成について、図5に示す構成と異なる点を説明する。
Third Embodiment
FIG. 10 shows the configuration of an imaging device 13 according to a third embodiment of the present invention. In FIG. 10, a cross section of a portion including the light separating element 300 is shown. Regarding the configuration shown in FIG. 10, points different from the configuration shown in FIG. 5 will be described.
 撮像装置13は、図5に示す構成に加えて抑制部600を有する。図10に示す例では、複数の抑制部600が配置されている。抑制部600は、第4の絶縁材料で構成されている。第4の絶縁材料は、第1の層間絶縁膜122を構成する第1の絶縁材料、第2の層間絶縁膜222を構成する第2の絶縁材料、または支持部401を構成する第3の絶縁材料と同一である。あるいは、第4の絶縁材料は、第1の絶縁材料、第2の絶縁材料、および第3の絶縁材料と異なる。例えば、第4の絶縁材料は、二酸化珪素(SiO2)、窒化珪素(SiN)、炭素を含む珪素の窒化物(SiCN)、酸化ハフニウム(HfO2)、および酸化チタン(TiO2)等の少なくとも1つである。 The imaging device 13 has a suppression unit 600 in addition to the configuration shown in FIG. In the example shown in FIG. 10, a plurality of suppression units 600 are arranged. The suppression part 600 is comprised by the 4th insulating material. The fourth insulating material is a first insulating material forming the first interlayer insulating film 122, a second insulating material forming the second interlayer insulating film 222, or a third insulating material forming the support portion 401. It is the same as the material. Alternatively, the fourth insulating material is different from the first insulating material, the second insulating material, and the third insulating material. For example, the fourth insulating material is at least one of silicon dioxide (SiO.sub.2), silicon nitride (SiN), nitride of silicon containing carbon (SiCN), hafnium oxide (HfO.sub.2), titanium oxide (TiO.sub.2), and the like. is there.
 抑制部600は、金属等で構成されてもよい。抑制部600は、第1の膜310または第2の膜320を構成する材料と同一の材料で構成されてもよい。 The suppression unit 600 may be made of metal or the like. The suppressor 600 may be made of the same material as that of the first film 310 or the second film 320.
 抑制部600は、第1の膜310および第2の膜320の少なくとも一方に電圧が印加されたときに第1の膜310における変形を抑制する。抑制部600は、薄膜である。第1の膜310は、互いに反対方向を向く面310b(第1の面)および面310c(第2の面)を有する。面310bおよび面310cは、第1の膜310の主面を構成する。第1の膜310の主面は、第1の膜310の表面を構成する複数の面のうち相対的に広い面である。面310bは第1の基板100と対向する。面310cは第2の膜320と対向する。抑制部600は、面310bおよび面310cのいずれか1つに配置されている。図10に示す例では、抑制部600は面310bに配置されている。抑制部600は、面310cに配置されてもよい。抑制部600は、第1の膜310のみに接触している。抑制部600は、第1の膜310のみに対して固定されている。 The suppressor 600 suppresses deformation of the first film 310 when a voltage is applied to at least one of the first film 310 and the second film 320. The suppression unit 600 is a thin film. The first film 310 has a surface 310 b (first surface) and a surface 310 c (second surface) facing in opposite directions. The surface 310 b and the surface 310 c constitute the main surface of the first film 310. The main surface of the first film 310 is a relatively wide surface among a plurality of surfaces constituting the surface of the first film 310. The surface 310 b faces the first substrate 100. The face 310 c faces the second film 320. The suppressor 600 is disposed on any one of the surface 310 b and the surface 310 c. In the example illustrated in FIG. 10, the suppression unit 600 is disposed on the surface 310b. The suppressor 600 may be disposed on the surface 310c. The suppressor 600 is in contact with only the first film 310. The suppressor 600 is fixed to only the first film 310.
 抑制部600は、面600aおよび面600bを有する。面600aおよび面600bは、互いに反対方向を向く。面600aおよび面600bは、抑制部600の主面を構成する。抑制部600の主面は、抑制部600の表面を構成する複数の面のうち相対的に広い面である。面600aは、第1の基板100と対向する。面600bは、第1の膜310の面310bと接触している。 The suppressor 600 has a surface 600a and a surface 600b. The face 600a and the face 600b face in opposite directions. The surface 600 a and the surface 600 b constitute the main surface of the suppressing portion 600. The main surface of the suppression unit 600 is a relatively wide surface among a plurality of surfaces constituting the surface of the suppression unit 600. The surface 600 a faces the first substrate 100. The surface 600 b is in contact with the surface 310 b of the first film 310.
 抑制部600の光の透過率は高い。抑制部600は、第1の光電変換素子111を透過した光を透過させる。 The light transmittance of the suppression unit 600 is high. The suppression unit 600 transmits the light transmitted through the first photoelectric conversion element 111.
 抑制部600の幅d4は、第1の領域310aおよび第2の領域320aの幅d5よりも小さい。幅d4および幅d5は、第1の半導体層110の面110aに水平な方向Dr4における幅である。幅d5は、隣接する2つの支持部401の間の距離に等しい。抑制部600が第1の膜310と接触する部分は、面310bにおいて第1の領域310aが占める部分よりも小さい。第1の半導体層110の面110aに垂直な方向に撮像装置13を見たとき、複数の抑制部600はドット状に配置されている。 The width d4 of the suppressing portion 600 is smaller than the width d5 of the first region 310a and the second region 320a. The widths d4 and d5 are widths in the direction Dr4 horizontal to the surface 110a of the first semiconductor layer 110. The width d5 is equal to the distance between two adjacent supports 401. The portion where the suppressor 600 contacts the first film 310 is smaller than the portion occupied by the first region 310 a on the surface 310 b. When the imaging device 13 is viewed in the direction perpendicular to the surface 110 a of the first semiconductor layer 110, the plurality of suppression units 600 are arranged in a dot shape.
 抑制部600の上面は平面状である。抑制部600の上面は曲線状であってもよい。 The upper surface of the suppression unit 600 is planar. The upper surface of the suppression unit 600 may be curved.
 上記以外の点について、図10に示す構成は、図5に示す構成と同様である。 Except for the points described above, the configuration shown in FIG. 10 is the same as the configuration shown in FIG.
 図11は、電圧が第1の膜310および第2の膜320に印加されたときの分光素子300の状態を示す。電圧が各膜に印加されたとき、第1の膜310は変形する。このとき、第1の膜310は、第2の膜320に向かって変位する。抑制部600は、第1の膜310の面310bに配置されている。抑制部600が面310bと接触しているため、第1の膜310において抑制部600が配置された領域を含む部分P1の変形が抑制される。そのため、第1の膜310の面310cにおいてその部分P1と第2の膜320との距離d3のばらつきが抑制される。これにより、図3に示す半値全幅FWHMが小さくなり、かつ透過率のピークが大きくなる。その結果、分光素子300は、特定の波長帯域の光を高精度に透過させることができる。 FIG. 11 shows the state of the spectroscopic element 300 when a voltage is applied to the first film 310 and the second film 320. When a voltage is applied to each film, the first film 310 deforms. At this time, the first film 310 is displaced toward the second film 320. The suppressor 600 is disposed on the surface 310 b of the first film 310. Since the suppressing portion 600 is in contact with the surface 310 b, the deformation of the portion P1 including the region where the suppressing portion 600 is disposed in the first film 310 is suppressed. Therefore, the variation in the distance d3 between the portion P1 and the second film 320 on the surface 310c of the first film 310 is suppressed. As a result, the full width at half maximum FWHM shown in FIG. 3 decreases and the peak of the transmittance increases. As a result, the spectral element 300 can transmit light of a specific wavelength band with high accuracy.
 (第3の実施形態の第1の変形例)
 図12は、本発明の第3の実施形態の第1の変形例の撮像装置14の構成を示す。図12において、分光素子300を含む部分の断面が示されている。図12に示す構成について、図10に示す構成と異なる点を説明する。
First Modification of Third Embodiment
FIG. 12 shows a configuration of an imaging device 14 of a first modified example of the third embodiment of the present invention. In FIG. 12, a cross section of a portion including the light separating element 300 is shown. The configuration shown in FIG. 12 will be described about differences from the configuration shown in FIG.
 撮像装置14において、図10に示す抑制部600は抑制部601に変更される。抑制部601は、薄膜である。第1の支持部410は、第1の基板100および抑制部601の間に配置されている。第1の支持部410は、抑制部601に接続され、かつ第1の基板100に対して固定されている。第2の支持部420は、抑制部601および第2の膜320の間に配置されている。第2の支持部420は、抑制部601に接続され、かつ第2の膜320に対して固定されている。したがって、支持部402は、第1の基板100および第2の膜320に対して固定されている。 In the imaging device 14, the suppression unit 600 illustrated in FIG. 10 is changed to a suppression unit 601. The suppression unit 601 is a thin film. The first support portion 410 is disposed between the first substrate 100 and the suppression portion 601. The first support portion 410 is connected to the suppression portion 601 and fixed to the first substrate 100. The second support 420 is disposed between the suppressor 601 and the second membrane 320. The second support 420 is connected to the suppressor 601 and fixed to the second membrane 320. Therefore, the support portion 402 is fixed to the first substrate 100 and the second film 320.
 第1の支持部410および第2の支持部420は、第1の膜310および抑制部601を支持する。抑制部601は、第1の膜310を支持する。第1の基板100および第1の膜310の間において第1の支持部410を除く領域は中空である。第1の膜310および第2の膜320の間において第2の支持部420および抑制部601を除く領域は中空である。 The first support portion 410 and the second support portion 420 support the first membrane 310 and the suppression portion 601. The suppressor 601 supports the first membrane 310. The area excluding the first support portion 410 between the first substrate 100 and the first film 310 is hollow. The area excluding the second support 420 and the suppressor 601 between the first membrane 310 and the second membrane 320 is hollow.
 抑制部601は、面601aおよび面601bを有する。面601aおよび面601bは、互いに反対方向を向く。面601aは、第1の基板100と対向する。面601aは、第1の膜310の面310cと接触している。面601bは、第2の基板200と対向する。第1の膜310は、第1の基板100および抑制部601の間に配置されている。第1の膜310は、面601aに配置されている。第1の膜310は、面601bに配置されてもよい。電圧が第1の膜310および第2の膜320に印加されたとき、第1の膜310および抑制部601は、第2の膜320に向かって変位する。 The suppression unit 601 has a surface 601 a and a surface 601 b. The surface 601a and the surface 601b face in the opposite direction to each other. The surface 601 a faces the first substrate 100. The surface 601 a is in contact with the surface 310 c of the first film 310. The surface 601 b faces the second substrate 200. The first film 310 is disposed between the first substrate 100 and the suppression unit 601. The first film 310 is disposed on the surface 601 a. The first film 310 may be disposed on the surface 601 b. When a voltage is applied to the first film 310 and the second film 320, the first film 310 and the suppressor 601 are displaced toward the second film 320.
 第1の膜310が面601aと接触しているため、第1の膜310の変形が抑制される。第1の半導体層110の面110aに水平な方向Dr4に並んだ複数の第1の膜310は、図12に示されていない位置で互いに接続されている。つまり、図12に示す複数の第1の膜310は、1つの構造である。 Since the first film 310 is in contact with the surface 601 a, deformation of the first film 310 is suppressed. The plurality of first films 310 aligned in the direction Dr4 horizontal to the surface 110a of the first semiconductor layer 110 are connected to each other at a position not shown in FIG. That is, the plurality of first films 310 shown in FIG. 12 have one structure.
 上記以外の点について、図12に示す構成は、図10に示す構成と同様である。 Regarding the points other than the above, the configuration shown in FIG. 12 is the same as the configuration shown in FIG.
 (第3の実施形態の第2の変形例)
 図13は、本発明の第3の実施形態の第2の変形例の撮像装置15の構成を示す。図13において、分光素子300を含む部分の断面が示されている。図13に示す構成について、図10に示す構成と異なる点を説明する。
Second Modification of Third Embodiment
FIG. 13 shows a configuration of an imaging device 15 of a second modified example of the third embodiment of the present invention. In FIG. 13, a cross section of a portion including the light separating element 300 is shown. Regarding the configuration shown in FIG. 13, points different from the configuration shown in FIG. 10 will be described.
 撮像装置15において、図10に示す支持部401は支持部402に変更される。支持部402は、第1の支持部410、第2の支持部420、および第3の支持部430を有する。第3の支持部430は、薄膜である。第1の支持部410は、第1の基板100および第1の膜310の間に配置されている。第1の支持部410は、第1の膜310に接続され、かつ第1の基板100に対して固定されている。第2の支持部420は、第3の支持部430および第2の膜320の間に配置されている。第2の支持部420は、第3の支持部430に接続され、かつ第2の膜320に対して固定されている。したがって、支持部402は、第1の基板100および第2の膜320に対して固定されている。第1の膜310は、第3の支持部430に配置されている。第1の膜310の面310cは、第3の支持部430と接触している。電圧が第1の膜310および第2の膜320に印加されたとき、第1の膜310および第3の支持部430は、第2の膜320に向かって変位する。 In the imaging device 15, the support 401 shown in FIG. 10 is changed to a support 402. The support portion 402 has a first support portion 410, a second support portion 420, and a third support portion 430. The third support 430 is a thin film. The first support portion 410 is disposed between the first substrate 100 and the first film 310. The first support portion 410 is connected to the first film 310 and fixed to the first substrate 100. The second support 420 is disposed between the third support 430 and the second membrane 320. The second support 420 is connected to the third support 430 and fixed relative to the second membrane 320. Therefore, the support portion 402 is fixed to the first substrate 100 and the second film 320. The first film 310 is disposed on the third support 430. The surface 310 c of the first film 310 is in contact with the third support 430. When a voltage is applied to the first membrane 310 and the second membrane 320, the first membrane 310 and the third support 430 are displaced towards the second membrane 320.
 上記以外の点について、図13に示す構成は、図10に示す構成と同様である。 Regarding the points other than the above, the configuration shown in FIG. 13 is the same as the configuration shown in FIG.
 第1の膜310の面310bが第3の支持部430と接触するように第1の膜310および第3の支持部430が配置されてもよい。その場合、抑制部600は、第1の膜310の面310cに配置される。 The first membrane 310 and the third support 430 may be arranged such that the surface 310 b of the first membrane 310 is in contact with the third support 430. In that case, the suppression unit 600 is disposed on the surface 310 c of the first film 310.
 (第3の実施形態の第3の変形例)
 図14は、本発明の第3の実施形態の第3の変形例の撮像装置16の構成を示す。図14において、分光素子300を含む部分の断面が示されている。図14に示す構成について、図9に示す構成と異なる点を説明する。
(Third Modification of Third Embodiment)
FIG. 14 shows a configuration of an imaging device 16 according to a third modified example of the third embodiment of the present invention. In FIG. 14, a cross section of a portion including the light separating element 300 is shown. The configuration shown in FIG. 14 will be described about differences from the configuration shown in FIG.
 撮像装置16は、図9に示す構成に加えて抑制部600を有する。抑制部600は、図10に示す抑制部600と同様に構成されている。 The imaging device 16 has a suppression unit 600 in addition to the configuration shown in FIG. The suppression unit 600 is configured in the same manner as the suppression unit 600 shown in FIG.
 第2の膜320は、互いに反対方向を向く面320b(第3の面)および面320c(第4の面)を有する。面320bおよび面320cは、第2の膜320の主面を構成する。第2の膜320の主面は、第2の膜320の表面を構成する複数の面のうち相対的に広い面である。面320bは第1の膜310と対向する。面320cは第2の基板200と対向する。抑制部600は、面320bおよび面320cのいずれか1つに配置されている。図14に示す例では、抑制部600は面320bに配置されている。抑制部600は、面320cに配置されてもよい。抑制部600は、第2の膜320のみに接触している。抑制部600は、第2の膜320のみに対して固定されている。抑制部600の面600bは、第2の膜320の面320bと接触している。抑制部600が第2の膜320と接触する部分は、面320bにおいて第2の領域320aが占める部分よりも小さい。 The second film 320 has a face 320 b (third face) and a face 320 c (fourth face) facing in opposite directions. The surface 320 b and the surface 320 c constitute the main surface of the second film 320. The main surface of the second film 320 is a relatively wide surface among a plurality of surfaces constituting the surface of the second film 320. The face 320 b faces the first film 310. The surface 320 c faces the second substrate 200. The suppression unit 600 is disposed on any one of the surface 320 b and the surface 320 c. In the example illustrated in FIG. 14, the suppression unit 600 is disposed on the surface 320 b. The suppressor 600 may be disposed on the surface 320 c. The suppressor 600 is in contact with only the second film 320. The suppressor 600 is fixed to only the second film 320. The surface 600 b of the suppressor 600 is in contact with the surface 320 b of the second film 320. The portion where the suppressor 600 contacts the second film 320 is smaller than the portion occupied by the second region 320 a on the surface 320 b.
 上記以外の点について、図14に示す構成は、図9に示す構成と同様である。 Except for the points described above, the configuration shown in FIG. 14 is the same as the configuration shown in FIG.
 (第3の実施形態の第4の変形例)
 図15は、本発明の第3の実施形態の第4の変形例の撮像装置17の構成を示す。図15において、分光素子300を含む部分の断面が示されている。図15に示す構成について、図14に示す構成と異なる点を説明する。
(Fourth Modification of the Third Embodiment)
FIG. 15 shows a configuration of an imaging device 17 of a fourth modified example of the third embodiment of the present invention. In FIG. 15, a cross section of a portion including the light separating element 300 is shown. The configuration shown in FIG. 15 will be described about differences from the configuration shown in FIG.
 撮像装置17において、図14に示す抑制部600は抑制部601に変更される。抑制部601は、図12に示す抑制部601と同様に構成されている。 In the imaging device 17, the suppression unit 600 shown in FIG. 14 is changed to a suppression unit 601. The suppression unit 601 is configured in the same manner as the suppression unit 601 shown in FIG.
 第1の支持部410および第2の支持部420は、第2の膜320および抑制部601を支持する。抑制部601は、第2の膜320を支持する。第1の膜310および第2の膜320の間において第1の支持部410を除く領域は中空である。第2の膜320および第2の基板200の間において第2の支持部420および抑制部601を除く領域は中空である。 The first support portion 410 and the second support portion 420 support the second membrane 320 and the suppression portion 601. The suppressor 601 supports the second membrane 320. The area excluding the first support portion 410 between the first membrane 310 and the second membrane 320 is hollow. The area excluding the second supporting portion 420 and the suppressing portion 601 between the second film 320 and the second substrate 200 is hollow.
 抑制部601の面601aは、第1の膜310と対向する。面601aは、第2の膜320の面320cと接触している。抑制部601の面601bは、第2の基板200と対向する。第1の膜310は、第1の基板100および抑制部601の間に配置されている。第2の膜320は、面601aに配置されている。第2の膜320は、面601bに配置されてもよい。電圧が第1の膜310および第2の膜320に印加されたとき、第2の膜320および抑制部601は、第1の膜310に向かって変位する。第2の膜320が面601aと接触しているため、第2の膜320の変形が抑制される。 The surface 601 a of the suppression unit 601 faces the first film 310. The surface 601 a is in contact with the surface 320 c of the second film 320. The surface 601 b of the suppression unit 601 faces the second substrate 200. The first film 310 is disposed between the first substrate 100 and the suppression unit 601. The second film 320 is disposed on the surface 601 a. The second film 320 may be disposed on the surface 601 b. When a voltage is applied to the first film 310 and the second film 320, the second film 320 and the suppressor 601 are displaced toward the first film 310. Since the second film 320 is in contact with the surface 601 a, deformation of the second film 320 is suppressed.
 上記以外の点について、図15に示す構成は、図14に示す構成と同様である。 Except for the points described above, the configuration shown in FIG. 15 is the same as the configuration shown in FIG.
 (第3の実施形態の第5の変形例)
 図16は、本発明の第3の実施形態の第5の変形例の撮像装置18の構成を示す。図16において、分光素子300を含む部分の断面が示されている。図16に示す構成について、図14に示す構成と異なる点を説明する。
(Fifth Modification of the Third Embodiment)
FIG. 16 shows a configuration of an imaging device 18 of a fifth modified example of the third embodiment of the present invention. In FIG. 16, a cross section of a portion including the light separating element 300 is shown. The configuration shown in FIG. 16 will be described about differences from the configuration shown in FIG.
 撮像装置18において、図14に示す支持部401は支持部402に変更される。支持部402は、図13に示す支持部402と同様に構成されている。第1の支持部410は、第1の膜310および第3の支持部430の間に配置されている。第1の支持部410は、第3の支持部430に接続され、かつ第1の膜310に対して固定されている。第2の支持部420は、第3の支持部430および第2の基板200の間に配置されている。第2の支持部420は、第3の支持部430に接続され、かつ第2の基板200に対して固定されている。したがって、支持部402は、第1の膜310および第2の基板200に対して固定されている。第2の膜320は、第3の支持部430に配置されている。第2の膜320の面320cは、第3の支持部430と接触している。電圧が第1の膜310および第2の膜320に印加されたとき、第2の膜320および第3の支持部430は、第1の膜310に向かって変位する。 In the imaging device 18, the support portion 401 shown in FIG. 14 is changed to a support portion 402. The support portion 402 is configured in the same manner as the support portion 402 shown in FIG. The first support 410 is disposed between the first membrane 310 and the third support 430. The first support 410 is connected to the third support 430 and fixed relative to the first membrane 310. The second support 420 is disposed between the third support 430 and the second substrate 200. The second support 420 is connected to the third support 430 and fixed to the second substrate 200. Therefore, the support portion 402 is fixed to the first film 310 and the second substrate 200. The second film 320 is disposed on the third support 430. The surface 320 c of the second film 320 is in contact with the third support 430. When a voltage is applied to the first membrane 310 and the second membrane 320, the second membrane 320 and the third support 430 are displaced towards the first membrane 310.
 上記以外の点について、図16に示す構成は、図14に示す構成と同様である。 Except for the points described above, the configuration shown in FIG. 16 is the same as the configuration shown in FIG.
 第2の膜320の面320bが第3の支持部430と接触するように第2の膜320および第3の支持部430が配置されてもよい。その場合、抑制部600は、第2の膜320の面320cに配置される。 The second membrane 320 and the third support 430 may be disposed such that the surface 320 b of the second membrane 320 is in contact with the third support 430. In that case, the suppressor 600 is disposed on the surface 320 c of the second film 320.
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments and their modifications. Additions, omissions, substitutions, and other modifications of the configuration are possible without departing from the spirit of the present invention. Also, the present invention is not limited by the above description, and is limited only by the scope of the attached claims.
 本発明の各実施形態によれば、撮像装置は、分光素子を透過する光の選択性を高めることができる。 According to each embodiment of the present invention, the imaging device can enhance the selectivity of light transmitted through the spectral element.
 10,11,12,13,14,15,16,17,18 撮像装置
 100 第1の基板
 110 第1の半導体層
 111 第1の光電変換素子
 120 第1の配線層
 121 第1の配線
 122 第1の層間絶縁膜
 200 第2の基板
 210 第2の半導体層
 211 第2の光電変換素子
 220 第2の配線層
 221 第2の配線
 222 第2の層間絶縁膜
 300 分光素子
 300a 分光領域
 310 第1の膜
 310a 第1の領域
 320 第2の膜
 320a 第2の領域
 400,401,402 支持部
 410 第1の支持部
 420 第2の支持部
 430 第3の支持部
 500 支持基板
 510 画素アレイ
 520 行選択回路
 530 列処理回路
 540 出力回路
 550,551,552,553 電圧生成回路
 600,601 抑制部
10, 11, 12, 13, 14, 15, 16, 17, 18 Imaging device 100 First substrate 110 First semiconductor layer 111 First photoelectric conversion element 120 First wiring layer 121 First wiring 122 First First interlayer insulating film 200 second substrate 210 second semiconductor layer 211 second photoelectric conversion element 220 second wiring layer 221 second wiring 222 second interlayer insulating film 300 spectroscopic element 300 a spectral region 310 first Film 310a first region 320 second film 320a second region 400, 401, 402 supporting portion 410 first supporting portion 420 second supporting portion 430 third supporting portion 500 supporting substrate 510 pixel array 520 rows Selection circuit 530 Column processing circuit 540 Output circuit 550, 551, 552, 553 Voltage generation circuit 600, 601 Suppressor

Claims (18)

  1.  複数の第1の光電変換素子を有する第1の基板と、
     前記第1の基板に積層され、かつ複数の第2の光電変換素子を有する第2の基板と、
     前記複数の第1の光電変換素子および前記複数の第2の光電変換素子の間に配置された分光素子と、
     を有し、
     前記分光素子は、
     光反射性を有する第1の膜と、
     前記第1の膜から前記複数の第2の光電変換素子への方向に所定距離だけ離れた位置に配置され、かつ光反射性を有する第2の膜と、
     を有し、
     前記分光素子は、前記所定距離に基づく波長帯域の光を選択的に透過させる第1の分光透過特性を有し、
     前記第1の分光透過特性における透過率分布は、第1の波長における第1のピークと、前記第1の波長と異なる第2の波長における第2のピークとを有し、
     前記第1の基板は、前記第1の波長の光を透過させ、かつ前記第2の波長の光を遮断する第2の分光透過特性を有する
     撮像装置。
    A first substrate having a plurality of first photoelectric conversion elements;
    A second substrate stacked on the first substrate and having a plurality of second photoelectric conversion elements;
    A spectral element disposed between the plurality of first photoelectric conversion elements and the plurality of second photoelectric conversion elements;
    Have
    The spectral element is
    A first film having light reflectivity,
    A second film disposed at a position separated by a predetermined distance in a direction from the first film to the plurality of second photoelectric conversion elements, and having light reflectivity;
    Have
    The spectral element has a first spectral transmission characteristic that selectively transmits light in a wavelength band based on the predetermined distance,
    The transmittance distribution in the first spectral transmission characteristic has a first peak at a first wavelength and a second peak at a second wavelength different from the first wavelength,
    An imaging device having a second spectral transmission characteristic in which the first substrate transmits light of the first wavelength and blocks light of the second wavelength.
  2.  前記第1の膜および前記第2の膜は導電性を有し、
     前記第1の膜および前記第2の膜の少なくとも一方に電圧が印加されたとき、前記第1の膜および前記第2の膜の間の距離は、前記第1の膜および前記第2の膜の電圧差に応じた距離になり、
     前記分光素子は、前記第1の膜および前記第2の膜の少なくとも一方に前記電圧が印加されたとき、前記複数の第1の光電変換素子を透過した光のうち前記第1の膜および前記第2の膜の間の前記距離に基づく波長帯域の光を選択的に透過させる前記第1の分光透過特性を有する
     請求項1に記載の撮像装置。
    The first film and the second film have conductivity.
    When a voltage is applied to at least one of the first film and the second film, the distance between the first film and the second film is equal to the distance between the first film and the second film. The distance according to the voltage difference of the
    When the voltage is applied to at least one of the first film and the second film, the light separating element includes the first film and the light of light transmitted through the plurality of first photoelectric conversion elements. The imaging device according to claim 1, having the first spectral transmission characteristic that selectively transmits light in a wavelength band based on the distance between the second films.
  3.  前記第1の膜および前記第2の膜に接続され、前記第2の膜に対して固定され、かつ前記第1の膜を支持する支持部をさらに有し、
     前記第2の膜は前記第2の基板に対して固定され、
     前記第1の膜および前記第2の膜の間において前記支持部を除く領域は中空である
     請求項2に記載の撮像装置。
    A support connected to the first membrane and the second membrane, fixed relative to the second membrane, and supporting the first membrane;
    The second film is fixed to the second substrate,
    The imaging device according to claim 2, wherein a region excluding the support portion is hollow between the first film and the second film.
  4.  前記第1の膜および前記第2の膜は、前記第1の基板および前記第2の基板の間に配置され、
     前記支持部は、前記第1の基板および前記第2の膜に対して固定され、
     前記第1の基板および前記第1の膜の間において前記支持部を除く領域は中空である
     請求項3に記載の撮像装置。
    The first film and the second film are disposed between the first substrate and the second substrate,
    The support is fixed to the first substrate and the second film,
    The imaging device according to claim 3, wherein a region excluding the support portion is hollow between the first substrate and the first film.
  5.  前記支持部は、隣接する2つの前記第2の光電変換素子の間に対応する位置に配置されている
     請求項3または請求項4に記載の撮像装置。
    The imaging device according to claim 3, wherein the support portion is disposed at a position corresponding to a position between two adjacent second photoelectric conversion elements.
  6.  前記第1の膜および前記第2の膜の少なくとも一方に前記電圧が印加されたときに前記第1の膜における変形を抑制する抑制部をさらに有し、
     前記第1の膜は、互いに反対方向を向く第1の面および第2の面を有し、
     前記第2の面は前記第2の膜と対向し、
     前記抑制部は、前記第1の面および前記第2の面のいずれか1つに配置されている
     請求項3から請求項5のいずれか一項に記載の撮像装置。
    The device further includes a suppression unit that suppresses deformation of the first film when the voltage is applied to at least one of the first film and the second film,
    The first film has a first surface and a second surface facing in opposite directions,
    The second surface faces the second film,
    The imaging device according to any one of claims 3 to 5, wherein the suppression unit is disposed on any one of the first surface and the second surface.
  7.  前記第1の膜および前記第2の膜に接続され、前記第1の膜に対して固定され、かつ前記第2の膜を支持する支持部をさらに有し、
     前記第1の膜は前記第1の基板に対して固定され、
     前記第1の膜および前記第2の膜の間において前記支持部を除く領域は中空である
     請求項2に記載の撮像装置。
    A support connected to the first membrane and the second membrane, fixed relative to the first membrane, and supporting the second membrane;
    The first film is fixed to the first substrate,
    The imaging device according to claim 2, wherein a region excluding the support portion is hollow between the first film and the second film.
  8.  前記第1の膜および前記第2の膜は、前記第1の基板および前記第2の基板の間に配置され、
     前記支持部は、前記第1の膜および前記第2の基板に対して固定され、
     前記第2の膜および前記第2の基板の間において前記支持部を除く領域は中空である
     請求項7に記載の撮像装置。
    The first film and the second film are disposed between the first substrate and the second substrate,
    The support is fixed to the first film and the second substrate,
    The imaging device according to claim 7, wherein a region excluding the support portion is hollow between the second film and the second substrate.
  9.  前記支持部は、隣接する2つの前記第2の光電変換素子の間に対応する位置に配置されている
     請求項7または請求項8に記載の撮像装置。
    The imaging device according to claim 7, wherein the support portion is disposed at a position corresponding to a position between two adjacent second photoelectric conversion elements.
  10.  前記第1の膜および前記第2の膜の少なくとも一方に前記電圧が印加されたときに前記第2の膜における変形を抑制する抑制部をさらに有し、
     前記第2の膜は、互いに反対方向を向く第3の面および第4の面を有し、
     前記第3の面は前記第1の膜と対向し、
     前記抑制部は、前記第3の面および前記第4の面のいずれか1つに配置されている
     請求項7から請求項9のいずれか一項に記載の撮像装置。
    The device further includes a suppression unit that suppresses deformation of the second film when the voltage is applied to at least one of the first film and the second film,
    The second film has a third surface and a fourth surface facing in opposite directions,
    The third surface faces the first film,
    The imaging device according to any one of claims 7 to 9, wherein the suppression unit is disposed on any one of the third surface and the fourth surface.
  11.  前記分光素子は、複数の前記第1の膜を有し、
     前記複数の第2の光電変換素子は行列状に配置され、
     前記複数の前記第1の膜に含まれる各々の前記第1の膜は、前記複数の第2の光電変換素子の配列における行または列に対応する位置に配置され、かつ前記行または前記列の方向に長い形状を有する
     請求項2から請求項10のいずれか一項に記載の撮像装置。
    The spectroscopic element includes a plurality of the first films,
    The plurality of second photoelectric conversion elements are arranged in a matrix.
    Each of the first films included in the plurality of first films is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements, and of the row or the column The imaging device according to any one of claims 2 to 10 having a long shape in the direction.
  12.  前記分光素子は、複数の前記第2の膜を有し、
     前記複数の第2の光電変換素子は行列状に配置され、
     前記複数の前記第2の膜に含まれる各々の前記第2の膜は、前記複数の第2の光電変換素子の配列における行または列に対応する位置に配置され、かつ前記行または前記列の方向に長い形状を有する
     請求項2から請求項10のいずれか一項に記載の撮像装置。
    The spectroscopic element comprises a plurality of the second films,
    The plurality of second photoelectric conversion elements are arranged in a matrix.
    Each of the second films included in the plurality of second films is disposed at a position corresponding to a row or column in the array of the plurality of second photoelectric conversion elements, and of the row or the column The imaging device according to any one of claims 2 to 10 having a long shape in the direction.
  13.  前記第1の膜は、複数の第1の領域に分割され、
     前記第2の膜は、複数の第2の領域に分割され、
     前記複数の第1の領域および前記複数の第2の領域は、前記複数の第2の光電変換素子に対応する位置に配置され、
     前記撮像装置は、
     前記複数の第1の領域に印加される第1の電圧を生成する第1の電圧生成回路と、
     前記複数の第2の領域に印加される第2の電圧を生成する第2の電圧生成回路と、
     をさらに有する
     請求項2から請求項10のいずれか一項に記載の撮像装置。
    The first film is divided into a plurality of first regions,
    The second film is divided into a plurality of second regions,
    The plurality of first regions and the plurality of second regions are disposed at positions corresponding to the plurality of second photoelectric conversion elements,
    The imaging device is
    A first voltage generation circuit that generates a first voltage applied to the plurality of first regions;
    A second voltage generation circuit that generates a second voltage applied to the plurality of second regions;
    The imaging device according to any one of claims 2 to 10, further comprising:
  14.  第1のタイミングにおける前記第1の電圧と前記第2の電圧との差は、前記第1のタイミングと異なる第2のタイミングにおける前記第1の電圧と前記第2の電圧との差と異なり、
     前記複数の第1の領域に含まれる各々の前記第1の領域と前記複数の第2の領域に含まれる各々の前記第2の領域との間の距離は前記第1のタイミングで同一の第1の距離であり、
     前記複数の第1の領域に含まれる各々の前記第1の領域と前記複数の第2の領域に含まれる各々の前記第2の領域との間の距離は前記第2のタイミングで同一の第2の距離であり、
     前記第2の距離は前記第1の距離と異なる
     請求項13に記載の撮像装置。
    The difference between the first voltage and the second voltage at a first timing is different from the difference between the first voltage and the second voltage at a second timing different from the first timing,
    The distance between each of the first regions included in the plurality of first regions and each of the second regions included in the plurality of second regions is the same at the first timing. It is one distance,
    The distance between each of the first regions included in the plurality of first regions and each of the second regions included in the plurality of second regions is the same at the second timing. Distance of 2,
    The imaging device according to claim 13, wherein the second distance is different from the first distance.
  15.  前記複数の第2の光電変換素子は、所定周期の画素制御信号によって制御され、
     前記第1の電圧は、前記所定周期に基づく第3のタイミングで前記複数の第1の領域に印加され、
     前記第2の電圧は、前記所定周期に基づく第4のタイミングで前記複数の第2の領域に印加される
     請求項14に記載の撮像装置。
    The plurality of second photoelectric conversion elements are controlled by a pixel control signal of a predetermined cycle,
    The first voltage is applied to the plurality of first regions at a third timing based on the predetermined cycle,
    The imaging device according to claim 14, wherein the second voltage is applied to the plurality of second regions at a fourth timing based on the predetermined cycle.
  16.  前記複数の第1の領域に含まれる各々の前記第1の領域は、複数の第1のグループのいずれか1つに含まれ、
     前記複数の第1のグループに含まれる各々の前記第1のグループは、少なくとも1つの前記第1の領域を含み、
     前記複数の第2の領域に含まれる各々の前記第2の領域は、複数の第2のグループのいずれか1つに含まれ、
     前記複数の第2のグループに含まれる各々の前記第2のグループは、少なくとも1つの前記第2の領域を含み、
     前記第1の電圧生成回路は、互いに異なる複数の前記第1の電圧を生成し、
     各々の前記第1の電圧は、前記複数の第1のグループのいずれか1つに属する前記第1の領域に印加され、
     前記第2の電圧生成回路は、互いに異なる複数の前記第2の電圧を生成し、
     各々の前記第2の電圧は、前記複数の第2のグループのいずれか1つに属する前記第2の領域に印加され、
     前記第1の領域および前記第2の領域の間の距離は、前記第1の領域に印加された前記第1の電圧と前記第2の領域に印加された前記第2の電圧との組み合わせに基づく距離である
     請求項13に記載の撮像装置。
    Each of the first regions included in the plurality of first regions is included in any one of a plurality of first groups,
    Each of the first groups included in the plurality of first groups includes at least one of the first regions,
    Each of the second regions included in the plurality of second regions is included in any one of a plurality of second groups,
    Each of the second groups included in the plurality of second groups includes at least one of the second regions,
    The first voltage generation circuit generates a plurality of different first voltages,
    Each of the first voltages is applied to the first region belonging to any one of the plurality of first groups;
    The second voltage generation circuit generates a plurality of different second voltages,
    Each of the second voltages is applied to the second region belonging to any one of the plurality of second groups;
    The distance between the first region and the second region is a combination of the first voltage applied to the first region and the second voltage applied to the second region. The imaging device according to claim 13, which is a distance based on.
  17.  第1の分光領域は、励起光が照射された被写体によって反射された励起光を透過させ、
     前記第1の分光領域は、前記複数の第1のグループのいずれか1つに属する前記第1の領域と、前記複数の第2のグループのいずれか1つに属する前記第2の領域とで構成され、
     第2の分光領域は、前記励起光が照射された被写体が発する蛍光を透過させ、
     前記第2の分光領域は、前記複数の第1のグループのいずれか1つに属する前記第1の領域と、前記複数の第2のグループのいずれか1つに属する前記第2の領域とで構成され、
     前記第1の分光領域の前記第1の領域および前記第2の分光領域の前記第1の領域は互いに異なり、
     前記第1の分光領域の前記第2の領域および前記第2の分光領域の前記第2の領域は互いに異なる
     請求項16に記載の撮像装置。
    The first spectral region transmits the excitation light reflected by the subject irradiated with the excitation light,
    The first spectral region includes the first region belonging to any one of the plurality of first groups and the second region belonging to any one of the plurality of second groups. Configured and
    The second spectral region transmits fluorescence emitted from the subject irradiated with the excitation light,
    The second spectral region includes the first region belonging to any one of the plurality of first groups and the second region belonging to any one of the plurality of second groups. Configured and
    The first region of the first spectral region and the first region of the second spectral region are different from one another;
    The imaging device according to claim 16, wherein the second region of the first spectral region and the second region of the second spectral region are different from each other.
  18.  前記複数の第1の光電変換素子は、前記複数の第1の光電変換素子に入射した光を第1の信号に変換し、
     前記複数の第2の光電変換素子は、前記複数の第2の光電変換素子に入射した光を第2の信号に変換し、
     前記撮像装置は、前記第2の信号に基づいて前記第1の信号を補正する信号処理回路をさらに有する
     請求項1から請求項17のいずれか一項に記載の撮像装置。
    The plurality of first photoelectric conversion elements convert light incident on the plurality of first photoelectric conversion elements into a first signal,
    The plurality of second photoelectric conversion elements convert light incident on the plurality of second photoelectric conversion elements into a second signal,
    The imaging device according to any one of claims 1 to 17, further comprising a signal processing circuit that corrects the first signal based on the second signal.
PCT/JP2017/044516 2017-12-12 2017-12-12 Imaging device WO2019116441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044516 WO2019116441A1 (en) 2017-12-12 2017-12-12 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044516 WO2019116441A1 (en) 2017-12-12 2017-12-12 Imaging device

Publications (1)

Publication Number Publication Date
WO2019116441A1 true WO2019116441A1 (en) 2019-06-20

Family

ID=66820849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044516 WO2019116441A1 (en) 2017-12-12 2017-12-12 Imaging device

Country Status (1)

Country Link
WO (1) WO2019116441A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178320A (en) * 2004-12-24 2006-07-06 Olympus Corp Variable spectral transmittance element and endoscope apparatus equipped with same
JP2009168597A (en) * 2008-01-16 2009-07-30 Hoya Corp Spectroscopic instrument, electronic endoscope and electronic endoscope system
JP2015099875A (en) * 2013-11-20 2015-05-28 オリンパス株式会社 Image pickup element
WO2016056396A1 (en) * 2014-10-06 2016-04-14 ソニー株式会社 Solid state image pickup device and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178320A (en) * 2004-12-24 2006-07-06 Olympus Corp Variable spectral transmittance element and endoscope apparatus equipped with same
JP2009168597A (en) * 2008-01-16 2009-07-30 Hoya Corp Spectroscopic instrument, electronic endoscope and electronic endoscope system
JP2015099875A (en) * 2013-11-20 2015-05-28 オリンパス株式会社 Image pickup element
WO2016056396A1 (en) * 2014-10-06 2016-04-14 ソニー株式会社 Solid state image pickup device and electronic apparatus

Similar Documents

Publication Publication Date Title
US7248297B2 (en) Integrated color pixel (ICP)
TWI398948B (en) Fused multi-array color image sensor, image system and method of capturing image
US7714368B2 (en) Method and apparatus providing imager pixel array with grating structure and imager device containing the same
US11309284B2 (en) Solid-state image capturing apparatus and electronic device for acquiring a normal image and a narrow band image
US9960198B2 (en) Solid-state image sensor, and imaging system
JP5331107B2 (en) Imaging device
US20090323060A1 (en) Spectral optical sensor and method for producing an optical spectral sensor
CN109564928B (en) Solid-state image pickup element, pupil correction method for solid-state image pickup element, image pickup apparatus, and information processing apparatus
JP6094936B2 (en) Color filter and photodiode patterning configuration
JP6105728B2 (en) Solid-state imaging device
JP2007318002A (en) Solid-state imaging apparatus and method of manufacturing the same
JP6027832B2 (en) Imaging device
US10602919B2 (en) Imaging device
JP2009257919A (en) Solid-state imaging device, imaging system, and detection device
JP2010212306A (en) Solid-state image device
JP2016164956A (en) Solid-state image pickup device
JP2005010114A (en) Measuring method of incidence light, and sensor having spectroscopic mechanism using method
JP2012060411A (en) Multiband one-dimensional line sensor camera
WO2019116441A1 (en) Imaging device
WO2016051594A1 (en) Solid state imaging device, and imaging device
JP4503452B2 (en) Method for manufacturing solid-state imaging device
JP2005223700A (en) Photographic device and color separation optical system
US20240085678A1 (en) Flat optics camera module for high quality imaging
WO2024029383A1 (en) Light detecting device and electronic apparatus
US6984812B2 (en) Auto registered component RGB imaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP