WO2016051594A1 - Solid state imaging device, and imaging device - Google Patents

Solid state imaging device, and imaging device Download PDF

Info

Publication number
WO2016051594A1
WO2016051594A1 PCT/JP2014/076568 JP2014076568W WO2016051594A1 WO 2016051594 A1 WO2016051594 A1 WO 2016051594A1 JP 2014076568 W JP2014076568 W JP 2014076568W WO 2016051594 A1 WO2016051594 A1 WO 2016051594A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photoelectric conversion
conversion unit
wavelength
imaging device
Prior art date
Application number
PCT/JP2014/076568
Other languages
French (fr)
Japanese (ja)
Inventor
青木 潤
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2014/076568 priority Critical patent/WO2016051594A1/en
Publication of WO2016051594A1 publication Critical patent/WO2016051594A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a solid-state imaging device and an imaging device having a structure in which a plurality of substrates are stacked.
  • Patent Document 1 discloses a solid-state imaging device in which a first substrate and a second substrate are stacked.
  • the first substrate has imaging pixels that generate a signal for imaging a subject image.
  • the second substrate includes a phase difference detection pixel that detects a phase difference of a subject image and generates a signal for calculating a focal point.
  • imaging pixels and phase difference detection pixels are separately arranged on a first substrate and a second substrate, respectively. Therefore, it is possible to generate a signal used for focus detection by the phase difference detection method while reducing a decrease in the resolution of the imaging signal.
  • FIG. 10 shows a configuration of the solid-state imaging device 1000 described in Patent Document 1.
  • FIG. 10 shows a cross section of the solid-state imaging device 1000.
  • the solid-state imaging device 1000 includes a first substrate 80, a second substrate 90 stacked on the first substrate 80, a microlens ML, and a color filter CF.
  • the color filter CF is formed on the main surface of the first substrate 80 (the widest surface among the plurality of surfaces constituting the surface of the substrate), and the microlens ML is formed on the color filter CF.
  • the microlens ML is formed on the color filter CF.
  • FIG. 10 there are a plurality of microlenses ML, but a symbol of one microlens ML is shown as a representative.
  • FIG. 10 there are a plurality of color filters CF, but a symbol of one color filter CF is shown as a representative.
  • the microlens ML forms an image of light from a subject that has passed through an imaging lens disposed optically in front of the solid-state imaging device 1000.
  • the color filter CF transmits light having a wavelength corresponding to a predetermined color. For example, red, green, and blue color filters CF are arranged to form a two-dimensional Bayer array.
  • the first substrate 80 includes a first semiconductor layer 800 and a first wiring layer 810.
  • the first semiconductor layer 800 includes a first photoelectric conversion unit 801 that converts incident light into a signal.
  • the first wiring layer 810 includes a first wiring 811, a first via 812, and a first interlayer insulating film 813.
  • first wiring 811 there are a plurality of first wirings 811, but a reference numeral of one first wiring 811 is shown as a representative.
  • first vias 812 there are a plurality of first vias 812, but a symbol of one first via 812 is shown as a representative.
  • the first wiring 811 is a thin film on which a wiring pattern is formed.
  • the first wiring 811 transmits the signal generated by the first photoelectric conversion unit 801 and other signals (power supply voltage, ground voltage, and the like). In the example shown in FIG. 10, four layers of first wirings 811 are formed.
  • the first wiring 811 formed in the fourth layer closest to the second substrate 90 functions as the light shielding layer 811a.
  • the light shielding layer 811a has an opening 8110 through which only a part of the light incident on the first substrate 80 passes.
  • the opening 8110 is constituted by a side wall of the light shielding layer 811a.
  • the first via 812 connects the first wiring 811 of different layers.
  • portions other than the first wiring 811 and the first via 812 are configured by a first interlayer insulating film 813.
  • the second substrate 90 has a second semiconductor layer 900 and a second wiring layer 910.
  • the second semiconductor layer 900 includes a second photoelectric conversion unit 901 that converts incident light into a signal.
  • the second wiring layer 910 includes a second wiring 911, a second via 912, a second interlayer insulating film 913, and a MOS transistor 920.
  • a second wiring 911 there are a plurality of second wirings 911, but a symbol of one second wiring 911 is shown as a representative.
  • a plurality of second vias 912 there are a symbol of one second via 912 is shown as a representative.
  • MOS transistors 920 there are a plurality of MOS transistors 920, but a symbol of one MOS transistor 920 is shown as a representative.
  • the second wiring 911 is a thin film on which a wiring pattern is formed.
  • the second wiring 911 transmits the signal generated by the first photoelectric conversion unit 801, the signal generated by the second photoelectric conversion unit 901, and other signals (power supply voltage, ground voltage, etc.). .
  • a two-layer second wiring 911 is formed.
  • the second via 912 connects the second wirings 911 of different layers.
  • portions other than the second wiring 911 and the second via 912 are constituted by a second interlayer insulating film 913.
  • the MOS transistor 920 has a source region and a drain region, which are diffusion regions formed in the second semiconductor layer 900, and a gate electrode formed in the second wiring layer 910. The source region and the drain region are connected to the second via 912. The gate electrode is disposed between the source region and the drain region.
  • the MOS transistor 920 processes a signal transmitted by the second wiring 911 and the second via 912.
  • the first substrate 80 and the second substrate 90 are electrically connected at the interface between the first substrate 80 and the second substrate 90 through the first via 812 and the second via 912. Yes.
  • the solid-state imaging device 1000 shown in FIG. 10 can generate an imaging signal from the signal generated by the first photoelectric conversion unit 801.
  • the solid-state imaging device 1000 illustrated in FIG. 10 can generate a signal (phase difference calculation signal) used for focus detection by the phase difference detection method from the signal generated by the second photoelectric conversion unit 901.
  • the use of the solid-state imaging device having a plurality of substrates is not limited to focus detection by the phase difference detection method.
  • a solid-state imaging device mounted on an endoscope can obtain a signal corresponding to visible light and a signal corresponding to infrared light. That is, it is possible to obtain a signal for performing normal observation and a signal for performing observation of blood vessels and the like.
  • an endoscope apparatus mounted on a microscope can obtain a signal corresponding to visible light and a signal corresponding to fluorescence from a specimen that has emitted light upon receiving excitation light. That is, it is possible to obtain a signal for performing normal observation and a signal for performing fluorescence observation.
  • the first substrate and the second substrate are made of silicon (Si).
  • the thickness of the silicon layer necessary for obtaining an imaging signal from visible light is 2.5 ⁇ m to 3 ⁇ m.
  • light having a silicon layer thickness of 3 ⁇ m and a wavelength of 535 nm is incident on the first substrate.
  • the S / N ratio of the signal obtained by the second substrate may not be good.
  • the present invention is a solid-state imaging device having a first semiconductor substrate and a second semiconductor substrate, wherein the amount of light transmitted through the first semiconductor substrate and incident on the second semiconductor substrate can be increased.
  • a solid-state imaging device having a first semiconductor substrate and a second semiconductor substrate, wherein the amount of light transmitted through the first semiconductor substrate and incident on the second semiconductor substrate can be increased.
  • the solid-state imaging device is a first semiconductor substrate having a first photoelectric conversion unit and a second photoelectric conversion unit
  • the first photoelectric conversion unit includes: The first semiconductor substrate is formed in a first region having a first thickness, and the second photoelectric conversion unit is formed in a second region having a second thickness in the first semiconductor substrate.
  • the first photoelectric conversion unit converts light of a first wavelength into a signal
  • the second photoelectric conversion unit converts light of a second wavelength into a signal
  • the first thickness is equal to the first thickness.
  • a second semiconductor substrate stacked on the first semiconductor substrate.
  • the solid-state imaging device is disposed between the first photoelectric conversion unit and the third photoelectric conversion unit, and the first photoelectric conversion unit is provided.
  • a selection unit that selects only the second light that has passed through a part of the pupil region of the exit pupil of the imaging lens from the first light that has passed through the conversion unit, and the second light selected by the selection unit; May be incident on the third photoelectric conversion unit.
  • the solid-state imaging device is disposed between the first photoelectric conversion unit and the third photoelectric conversion unit, and the first photoelectric conversion unit is provided. It further has a selection part which selects only the 2nd light of a specific wavelength among the 1st light which permeate
  • the solid-state imaging device receives the first light from the subject, and has a first wavelength of red or green among the incident first light.
  • a color filter that transmits the second light, the second light transmitted through the color filter is incident on the second photoelectric conversion unit, and the red light of the first light from the subject
  • Third light including components of the respective wavelengths of green and blue may be incident on the first photoelectric conversion unit.
  • the solid-state imaging device receives the first light from the subject, and the second light having a blue wavelength out of the incident first light.
  • a first color filter that transmits light, and a second color that allows the first light from the subject to enter and transmits third light having a red or green wavelength among the incident first light.
  • the first semiconductor substrate further includes a fourth photoelectric conversion unit, and the fourth photoelectric conversion unit includes the first semiconductor.
  • the fourth photoelectric conversion unit converts light of a third wavelength into a signal, and the third thickness is greater than the first thickness.
  • the third thickness may be less than the second thickness
  • the third wavelength may be longer than the first wavelength
  • the third wavelength may be shorter than the second wavelength.
  • the imaging device includes the solid-state imaging device.
  • the first thickness of the first region in which the first photoelectric conversion unit that photoelectrically converts light of the first wavelength is formed is photoelectrically converted to light of the second wavelength. Smaller than the second thickness of the second region where the second photoelectric conversion portion is formed. For this reason, light tends to pass through the first region. As a result, the amount of light that passes through the first semiconductor substrate and enters the second semiconductor substrate can be increased.
  • FIG. 1 is a plan view of a solid-state imaging device according to a first embodiment of the present invention. It is sectional drawing of the solid-state imaging device of the 2nd Embodiment of this invention. It is sectional drawing of the solid-state imaging device of the 3rd Embodiment of this invention. It is sectional drawing of the solid-state imaging device of the 4th Embodiment of this invention. It is sectional drawing of the solid-state imaging device of the 5th Embodiment of this invention. It is sectional drawing of the solid-state imaging device of the 6th Embodiment of this invention. It is sectional drawing of the solid-state imaging device of the 7th Embodiment of this invention. It is sectional drawing of the imaging device of the 8th Embodiment of this invention. It is sectional drawing of the conventional solid-state imaging device.
  • FIG. 1 shows the configuration of a solid-state imaging device 1a according to the first embodiment of the present invention.
  • FIG. 1 shows a cross section of the solid-state imaging device 1a.
  • the solid-state imaging device 1a includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, and A microlens 301, a transparent layer 302, and a color filter 303 are included.
  • the dimensions of the parts constituting the solid-state imaging device 1a do not follow the dimensions shown in FIG.
  • the dimension of the part which comprises the solid-state imaging device 1a may be arbitrary.
  • FIG. 1 there are a plurality of microlenses 301, but a symbol of one microlens 301 is shown as a representative.
  • FIG. 1 there are a plurality of transparent layers 302, but a symbol of one transparent layer 302 is shown as a representative.
  • FIG. 1 there are a plurality of color filters 303, but a symbol of one color filter 303 is shown as a representative.
  • the microlens 301 forms an image of light from a subject that has passed through an imaging lens disposed optically in front of the solid-state imaging device 1a.
  • the transparent layer 302 and the color filter 303 are formed on the surface of the first substrate 10.
  • the transparent layer 302 is disposed at a position corresponding to the first region A1 of the first substrate 10. In FIG. 1, there are a plurality of first regions A1, but a reference numeral of one first region A1 is shown as a representative.
  • the transparent layer 302 is made of the same material as the organic material or inorganic material constituting the color filter 303.
  • the transparent layer 302 transmits incident light.
  • the color filter 303 is disposed at a position corresponding to the second region A2 of the first substrate 10. In FIG.
  • the color filter 303 transmits light having a wavelength corresponding to a predetermined color.
  • the color filter 303 transmits light having a red or green wavelength.
  • Microlenses 301 are formed on the surfaces of the transparent layer 302 and the color filter 303.
  • the first substrate 10 includes a first semiconductor layer 100 and a first wiring layer 110.
  • the first semiconductor layer 100 and the first wiring layer 110 are formed in a direction (for example, substantially on the main surface) across the main surface of the first substrate 10 (the widest surface among a plurality of surfaces constituting the surface of the substrate). (Vertical direction). Further, the first semiconductor layer 100 and the first wiring layer 110 are in contact with each other.
  • the first semiconductor layer 100 includes a first photoelectric conversion unit 101 and a second photoelectric conversion unit 102.
  • first photoelectric conversion units 101 there are a plurality of first photoelectric conversion units 101, but a symbol of one first photoelectric conversion unit 101 is shown as a representative.
  • second photoelectric conversion units 102 there are a plurality of second photoelectric conversion units 102, but a symbol of one second photoelectric conversion unit 102 is shown as a representative.
  • the first semiconductor layer 100 is made of a material containing a semiconductor such as silicon (Si).
  • the first semiconductor layer 100 has a first surface that is in contact with the first wiring layer 110. The surface of the first semiconductor layer 100 opposite to the first surface is in contact with the transparent layer 302 or the color filter 303.
  • the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102 are made of a semiconductor material having an impurity concentration different from that of the semiconductor material forming the first semiconductor layer 100, for example.
  • the first photoelectric conversion unit 101 is formed in the first region A1 having the first thickness in the first substrate 10.
  • the first region A1 corresponds to a B pixel that receives blue light.
  • the first thickness is between the surface of the first semiconductor layer 100 in contact with the transparent layer 302 and the first surface of the first semiconductor layer 100 in contact with the first wiring layer 110. Equal to the distance.
  • the second photoelectric conversion unit 102 is formed in the second region A2 having the second thickness in the first substrate 10.
  • the second region A2 corresponds to an R pixel that receives red light or a G pixel that receives green light.
  • the second thickness is between the surface of the first semiconductor layer 100 in contact with the color filter 303 and the first surface of the first semiconductor layer 100 in contact with the first wiring layer 110. Equal to the distance.
  • the first region A1 and the second region A2 are included in the first semiconductor layer 100. The first thickness is smaller than the second thickness.
  • the light transmitted through the microlens 301 and the transparent layer 302 is incident on the first semiconductor layer 100 in the first region A1.
  • the light that has entered the first semiconductor layer 100 in the first region A1 travels through the first semiconductor layer 100 and enters the first photoelectric conversion unit 101.
  • the first photoelectric conversion unit 101 converts light having the first wavelength into a signal.
  • the light transmitted through the microlens 301 and the color filter 303 is incident on the first semiconductor layer 100 in the second region A2.
  • the light incident on the first semiconductor layer 100 in the second region A2 travels through the first semiconductor layer 100 and enters the second photoelectric conversion unit 102.
  • the second photoelectric conversion unit 102 converts light having the second wavelength into a signal.
  • the first wavelength is shorter than the second wavelength.
  • signals generated by the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102 are used as imaging signals.
  • the first wiring layer 110 includes a first wiring 111 and a first interlayer insulating film 112.
  • first wiring 111 there are a plurality of first wirings 111, but a symbol of one first wiring 111 is shown as a representative.
  • the first wiring 111 is made of a conductive material (for example, a metal such as aluminum (Al) or copper (Cu)).
  • the first wiring layer 110 has a first surface and a second surface. The first surface of the first wiring layer 110 is in contact with the second substrate 20. The second surface opposite to the first surface of the first wiring layer 110 is in contact with the first semiconductor layer 100. The first surface of the first wiring layer 110 constitutes the main surface of the first substrate 10.
  • the first wiring 111 is a thin film on which a wiring pattern is formed.
  • the first wiring 111 transmits signals generated by the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102 and other signals (power supply voltage, ground voltage, etc.). Only one layer of the first wiring 111 may be formed, or a plurality of layers of the first wiring 111 may be formed. In the example shown in FIG. 1, four layers of first wirings 111 are formed. The multiple layers of first wirings 111 are connected by vias (not shown).
  • the first wiring 111 formed in the first layer closest to the first semiconductor layer 100 and the second layer functions as a light shielding layer 111a.
  • the light shielding layer 111 a reflects the light transmitted through the second photoelectric conversion unit 102.
  • the light shielding layer 111 a is arranged so that light that has passed through only the first photoelectric conversion unit 101 out of the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102 is incident on the second substrate 20.
  • a combination of a plurality of first wirings 111 may function as a light shielding layer.
  • the plurality of layers of the first wirings 111 may have openings, and the openings of different layers may not overlap in a direction perpendicular to the main surface of the first substrate 10 or the second substrate 20.
  • the light shielding layer 111a an opening for transmitting light is formed in a region corresponding to the first region A1 where the first photoelectric conversion unit 101 is formed.
  • the two layers of the first wiring 111 constitute a light shielding layer 111a.
  • the light shielding layer may have a structure different from that of the first wiring 111.
  • the portion other than the first wiring 111 is configured by a first interlayer insulating film 112 formed of, for example, silicon dioxide (SiO 2) or the like.
  • the second substrate 20 includes a second semiconductor layer 200 and a second wiring layer 210.
  • the second semiconductor layer 200 and the second wiring layer 210 overlap in a direction crossing the main surface of the second substrate 20 (for example, a direction substantially perpendicular to the main surface). Further, the second semiconductor layer 200 and the second wiring layer 210 are in contact with each other.
  • the second semiconductor layer 200 includes a third photoelectric conversion unit 201.
  • the second semiconductor layer 200 is made of a material containing a semiconductor such as silicon (Si).
  • the third photoelectric conversion unit 201 is made of, for example, a semiconductor material having an impurity concentration different from that of the semiconductor material forming the second semiconductor layer 200.
  • a third photoelectric conversion unit 201 is formed in a region corresponding to the first photoelectric conversion unit 101.
  • the second semiconductor layer 200 has a first surface and a second surface. The first surface of the second semiconductor layer 200 is in contact with the second wiring layer 210. The second surface of the second semiconductor layer 200 constitutes one of the main surfaces of the second substrate 20.
  • the third photoelectric conversion unit 201 is formed in the second semiconductor layer 200 in the vicinity of the first surface on which light is incident.
  • the light that has passed through the first photoelectric conversion unit 101 passes through the first wiring layer 110 and enters the second wiring layer 210 of the second substrate 20.
  • the light incident on the second wiring layer 210 passes through the second wiring layer 210 and enters the first surface of the second semiconductor layer 200.
  • the light incident on the first surface of the second semiconductor layer 200 travels through the second semiconductor layer 200 and enters the third photoelectric conversion unit 201.
  • a portion arranged between the first photoelectric conversion unit 101 and the third photoelectric conversion unit 201 has an opening. For this reason, the light transmitted through the first photoelectric conversion unit 101 enters the third photoelectric conversion unit 201.
  • the third photoelectric conversion unit 201 converts incident light into a signal.
  • the third photoelectric conversion unit 201 converts light having a wavelength longer than the first wavelength into a signal.
  • the signal generated by the third photoelectric conversion unit 201 is used as a focus detection signal.
  • the signal generated by the third photoelectric conversion unit 201 may be used as a signal for observing a blood vessel or the like or a signal for performing fluorescence observation.
  • the second wiring layer 210 includes a second wiring 211 and a second interlayer insulating film 212.
  • FIG. 1 there are a plurality of second wirings 211, but a symbol of one second wiring 211 is shown as a representative.
  • the second wiring 211 is made of a conductive material (for example, a metal such as aluminum (Al) or copper (Cu)).
  • the second wiring layer 210 has a first surface and a second surface. The first surface of the second wiring layer 210 is in contact with the first wiring layer 110. The second surface opposite to the first surface of the second wiring layer 210 is in contact with the second semiconductor layer 200. The first surface of the second wiring layer 210 constitutes one of the main surfaces of the second substrate 20.
  • the second wiring 211 is a thin film on which a wiring pattern is formed.
  • the second wiring 211 includes a signal for an imaging signal generated by the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102, a signal generated by the third photoelectric conversion unit 201, and other signals. Transmit signals (power supply voltage, ground voltage, etc.). Only one layer of the second wiring 211 may be formed, or a plurality of layers of the second wiring 211 may be formed. In the example shown in FIG. 1, four layers of second wirings 211 are formed. The plurality of layers of second wirings 211 are connected by vias not shown.
  • the first substrate 10 and the second substrate 20 are connected with the first wiring layer 110 of the first substrate 10 and the second wiring layer 210 of the second substrate 20 facing each other.
  • the first substrate 10 and the second substrate 20 are electrically connected.
  • the first wiring layer 110 and the second wiring layer 210 may not be in contact with each other.
  • a layer made of resin or the like may be disposed between the first wiring layer 110 and the second wiring layer 210.
  • the first light from the subject enters the color filter 303.
  • the color filter 303 transmits the second light having a red or green wavelength out of the incident first light.
  • the second light transmitted through the color filter 303 is incident on the second photoelectric conversion unit 102.
  • Third light including red, green, and blue wavelength components of the first light from the subject enters the first photoelectric conversion unit 101.
  • the first wavelength of light converted into a signal by the first photoelectric conversion unit 101 corresponds to blue.
  • the second wavelength of light converted into a signal by the second photoelectric conversion unit 102 corresponds to red or green.
  • the absorption efficiency of a semiconductor (such as silicon) with respect to light of the first wavelength is higher than that of light of the second wavelength.
  • the first thickness of the first region A1 where the first photoelectric conversion unit 101 is formed is the second thickness of the second region A2 where the second photoelectric conversion unit 102 is formed. It can be made smaller than this.
  • the amount of light transmitted through the first region A1 is less than the amount of light transmitted through the second region A2. It tends to be more than the amount. That is, light is likely to pass through the first region A1. For this reason, the amount of light that passes through the first substrate 10 and enters the second substrate 20 is likely to increase. Therefore, light is likely to enter the third photoelectric conversion unit 201 included in the second substrate 20.
  • FIG. 2 shows a state in which the solid-state imaging device 1a is viewed in a plan view.
  • FIG. 2 shows a state in which the solid-state imaging device 1a is viewed in a direction perpendicular to the main surface of the first substrate 10 or the second substrate 20.
  • the solid-state imaging device 1 a includes a plurality of first photoelectric conversion units 101, a plurality of second photoelectric conversion units 102, and a plurality of third photoelectric conversion units 201.
  • symbol of one 1st photoelectric conversion part 101 is shown as a representative.
  • a symbol of one second photoelectric conversion unit 102 is shown as a representative.
  • a symbol of one third photoelectric conversion unit 201 is shown as a representative.
  • the microlens 301 and the color filter 303 are not shown in FIG.
  • the region described as “R” corresponds to an R pixel that receives red light.
  • a region described as “G” corresponds to a G pixel that receives green light.
  • the region described as “B” corresponds to a B pixel that receives blue light.
  • the first photoelectric conversion unit 101 and the third photoelectric conversion unit 201 are arranged in the B pixel.
  • the 1st photoelectric conversion part 101 and the 3rd photoelectric conversion part 201 are arrange
  • the 2nd photoelectric conversion part 102 is arrange
  • the R pixel, the G pixel, and the B pixel are arranged to form a two-dimensional Bayer array.
  • the plurality of first photoelectric conversion units 101 and the plurality of second photoelectric conversion units 102 are arranged in a matrix.
  • the solid-state imaging device has a configuration corresponding to at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, the transparent layer 302, and the color filter 303. It may not have.
  • the first photoelectric conversion unit 101 includes a first semiconductor substrate (first substrate 10) having a first photoelectric conversion unit 101 and a second photoelectric conversion unit 102. Is formed in the first region A1 having the first thickness in the first semiconductor substrate, and the second photoelectric conversion unit 102 is formed in the second region A2 having the second thickness in the first semiconductor substrate.
  • the first photoelectric conversion unit 101 converts light of the first wavelength into a signal
  • the second photoelectric conversion unit 102 converts light of the second wavelength into a signal
  • the first thickness is the first thickness.
  • a solid-state imaging device 1a having a second semiconductor substrate (second substrate 20) stacked on the first semiconductor substrate. It is.
  • the first thickness of the first region A1 in which the first photoelectric conversion unit 101 that photoelectrically converts the light having the first wavelength is formed is the light having the second wavelength.
  • the thickness is smaller than the second thickness of the second region A2 where the second photoelectric conversion unit 102 to be converted is formed. For this reason, light is likely to pass through the first region A1. As a result, the amount of light that passes through the first substrate 10 and enters the second substrate 20 can be increased.
  • the light that has passed through the color filter CF is incident on the second photoelectric conversion unit 901. For this reason, light having a wavelength other than the wavelength of light transmitted through the color filter CF is not easily absorbed by the second photoelectric conversion unit 901.
  • the color filter CF is a red filter
  • focus detection is performed based on the signal generated by the second photoelectric conversion unit 901, there is a shift between the focus for visible light and the detected focus.
  • the solid-state imaging device 1 a shown in FIG. 1 light having a wavelength other than the wavelength of light absorbed by the first photoelectric conversion unit 101 is easily absorbed by the third photoelectric conversion unit 201.
  • the third photoelectric conversion unit 201 When blue light is absorbed by the first photoelectric conversion unit 101, red light and green light are easily absorbed by the third photoelectric conversion unit 201.
  • focus detection is performed based on the signal generated by the third photoelectric conversion unit 201, the shift between the focus with respect to visible light and the detected focus becomes smaller.
  • FIG. 3 shows a configuration of a solid-state imaging device 1b according to the second embodiment of the present invention.
  • FIG. 3 shows a cross section of the solid-state imaging device 1b.
  • the solid-state imaging device 1 b includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, and A microlens 301 and a transparent layer 302 are included.
  • the color filter 303 is not disposed in the solid-state imaging device 1b.
  • the transparent layer 302 is disposed at a position corresponding to the first region A1, the second region A2, and the third region A3 of the first substrate 10. In FIG. 1, there are a plurality of third regions A3, but a symbol of one third region A3 is shown as a representative.
  • a microlens 301 is formed on the surface of the transparent layer 302.
  • the first semiconductor layer 100 includes a first photoelectric conversion unit 101, a second photoelectric conversion unit 102, and a fourth photoelectric conversion unit 104.
  • a first photoelectric conversion unit 101 includes a first photoelectric conversion unit 101, a second photoelectric conversion unit 102, and a fourth photoelectric conversion unit 104.
  • FIG. 3 there are a plurality of fourth photoelectric conversion units 104, but a symbol of one fourth photoelectric conversion unit 104 is shown as a representative.
  • the fourth photoelectric conversion unit 104 is made of a semiconductor material having an impurity concentration different from that of the semiconductor material forming the first semiconductor layer 100, for example.
  • the fourth photoelectric conversion unit 104 is formed in the third region A3 having the third thickness in the first substrate 10.
  • the third region A3 corresponds to a G pixel that receives green light.
  • the third thickness is between the surface of the first semiconductor layer 100 in contact with the transparent layer 302 and the first surface of the first semiconductor layer 100 in contact with the first wiring layer 110. Equal to the distance.
  • the third region A3 is included in the first semiconductor layer 100.
  • the third thickness is larger than the first thickness of the first region A1.
  • the third thickness is smaller than the second thickness of the second region A2.
  • the first region A1 in the second embodiment corresponds to a B pixel that receives blue light.
  • the second region A2 in the second embodiment corresponds to an R pixel that receives red light.
  • the light transmitted through the transparent layer 302 enters the first semiconductor layer 100.
  • the light that has entered the first semiconductor layer 100 in the first region A1 travels through the first semiconductor layer 100 and enters the first photoelectric conversion unit 101.
  • the first photoelectric conversion unit 101 converts light having the first wavelength into a signal.
  • the light incident on the first semiconductor layer 100 in the second region A2 travels through the first semiconductor layer 100 and enters the second photoelectric conversion unit 102.
  • the second photoelectric conversion unit 102 converts light having the second wavelength into a signal.
  • the first wavelength is shorter than the second wavelength.
  • Light that has entered the first semiconductor layer 100 in the third region A3 travels through the first semiconductor layer 100 and enters the fourth photoelectric conversion unit 104.
  • the fourth photoelectric conversion unit 104 converts light having the third wavelength into a signal.
  • the third wavelength is longer than the first wavelength.
  • the third wavelength is shorter than the second wavelength.
  • FIG. 3 other than the above, the configuration shown in FIG. 3 is the same as the configuration shown in FIG.
  • the first wavelength of light converted into a signal by the first photoelectric conversion unit 101 corresponds to blue.
  • the second wavelength of light converted into a signal by the second photoelectric conversion unit 102 corresponds to red.
  • the third wavelength of light converted into a signal by the fourth photoelectric conversion unit 104 corresponds to green.
  • the absorption efficiency of the semiconductor (such as silicon) with respect to the light of the third wavelength is high.
  • the first thickness of the third region A3 in which the fourth photoelectric conversion unit 104 is formed is the second thickness of the second region A2 in which the second photoelectric conversion unit 102 is formed. It can be made smaller than this.
  • the absorption efficiency of a semiconductor (such as silicon) with respect to light of the first wavelength is higher than that of light of the third wavelength.
  • the first thickness of the first region A1 in which the first photoelectric conversion unit 101 is formed is the third thickness of the third region A3 in which the fourth photoelectric conversion unit 104 is formed. It can be made smaller than this.
  • the solid-state imaging device of each aspect of the present invention does not have a configuration corresponding to at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, and the transparent layer 302. Also good.
  • the thickness of the first semiconductor layer 100 is different for each region of the first semiconductor layer 100, that is, for each pixel. For this reason, the wavelength band of light that can be absorbed is different for each pixel. Therefore, the color filter 303 may not be arranged.
  • FIG. 4 shows a configuration of a solid-state imaging device 1c according to the third embodiment of the present invention.
  • FIG. 4 shows a cross section of the solid-state imaging device 1c.
  • the solid-state imaging device 1 c includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, and A microlens 301, a transparent layer 302, a first color filter 304, and a second color filter 305 are included.
  • the transparent layer 302, the first color filter 304 and the second color filter 305 are formed on the surface of the first substrate 10.
  • the first color filter 304 is disposed at a position corresponding to the second region A2 of the first substrate 10.
  • the second color filter 305 is disposed at a position corresponding to the third region A3 of the first substrate 10.
  • the first color filter 304 and the second color filter 305 transmit light having a wavelength corresponding to a predetermined color.
  • Microlenses 301 are formed on the surfaces of the transparent layer 302, the first color filter 304, and the second color filter 305.
  • the light transmitted through the microlens 301 and the transparent layer 302 is incident on the first semiconductor layer 100 in the first region A1.
  • the light transmitted through the microlens 301 and the first color filter 304 is incident on the first semiconductor layer 100 in the second region A2.
  • the light transmitted through the microlens 301 and the second color filter 305 is incident on the first semiconductor layer 100 in the third region A3.
  • the first light from the subject enters the first color filter 304.
  • the first color filter 304 transmits the second light having a red wavelength among the incident first light.
  • the first light from the subject enters the second color filter 305.
  • the second color filter 305 transmits the third light having the green wavelength in the incident first light.
  • the second light transmitted through the first color filter 304 enters the second photoelectric conversion unit 102.
  • the third light transmitted through the second color filter 305 enters the fourth photoelectric conversion unit 104.
  • the solid-state imaging device includes a first wiring layer 110, a second wiring layer 210, a microlens 301, a transparent layer 302, a first color filter 304, and a second color filter. It is not necessary to have a configuration corresponding to at least one of 305.
  • a first color filter 304 and a second color filter 305 are arranged.
  • the wavelength of the light absorbed by the second photoelectric conversion unit 102 and the fourth photoelectric conversion unit 104 can be controlled more finely.
  • the second thickness of the second region A2 is adjusted to a thickness suitable for absorption of red light, and the first color filter 304 transmits red light
  • the second photoelectric conversion unit At 102 only red light is easily absorbed.
  • the third thickness of the third region A3 is adjusted to a thickness suitable for absorption of green light, and the second color filter 305 transmits green light
  • the fourth photoelectric conversion unit At 104 only green light is easily absorbed.
  • FIG. 5 shows a configuration of a solid-state imaging device 1d according to the fourth embodiment of the present invention.
  • FIG. 5 shows a cross section of the solid-state imaging device 1d.
  • the solid-state imaging device 1 d includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, and A microlens 301, a transparent layer 302, and a color filter 303 are included.
  • the light shielding layer 111a is not disposed.
  • a third photoelectric conversion unit 201 is formed in a region corresponding to the first photoelectric conversion unit 101 and a region corresponding to the second photoelectric conversion unit 102.
  • the first light from the subject enters the color filter 303.
  • the color filter 303 transmits the second light having a red or green wavelength out of the incident first light.
  • the second light transmitted through the color filter 303 is incident on the second photoelectric conversion unit 102.
  • the second photoelectric conversion unit 102 transmits the incident second light.
  • the second light transmitted through the second photoelectric conversion unit 102 enters the third photoelectric conversion unit 201.
  • the color filter 303 is configured to transmit red or green wavelength light and infrared light. For this reason, light including infrared light can be absorbed by the third photoelectric conversion unit 201.
  • the solid-state imaging device has a configuration corresponding to at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, the transparent layer 302, and the color filter 303. It may not have.
  • more third photoelectric conversion units 201 than the third photoelectric conversion unit 201 in the first embodiment can acquire signals.
  • FIG. 6 shows a configuration of a solid-state imaging device 1e according to the fifth embodiment of the present invention.
  • FIG. 6 shows a cross section of the solid-state imaging device 1e.
  • the solid-state imaging device 1e includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, A microlens 301, a first color filter 306, and a second color filter 307 are included.
  • the first color filter 306 and the second color filter 307 are formed on the surface of the first substrate 10.
  • the first color filter 306 is disposed at a position corresponding to the first region A1 of the first substrate 10.
  • the second color filter 307 is disposed at a position corresponding to the second region A2 of the first substrate 10.
  • the first color filter 306 and the second color filter 307 transmit light having a wavelength corresponding to a predetermined color.
  • Microlenses 301 are formed on the surfaces of the first color filter 306 and the second color filter 307.
  • the first light from the subject enters the first color filter 306.
  • the first color filter 306 transmits the second light having the blue wavelength among the incident first light.
  • First light from the subject enters the second color filter 307.
  • the second color filter 307 transmits the third light having a red or green wavelength out of the incident first light.
  • the second light transmitted through the first color filter 306 enters the first photoelectric conversion unit 101.
  • the third light transmitted through the second color filter 307 enters the second photoelectric conversion unit 102.
  • the first color filter 306 can be configured to transmit blue light and infrared light. For this reason, the light transmitted through the first photoelectric conversion unit 101 may include infrared light. As a result, light including infrared light can be absorbed by the third photoelectric conversion unit 201.
  • the solid-state imaging device includes at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, the first color filter 306, and the second color filter 307. It is not necessary to have the structure corresponding to one.
  • the first color filter 306 and the second color filter 307 are arranged. For this reason, the wavelength of the light absorbed by the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102 can be controlled more finely. For example, when the first thickness of the first region A1 is adjusted to a thickness suitable for absorption of blue light, and the first color filter 306 transmits blue light, the first photoelectric conversion unit In 101, only blue light is easily absorbed. Alternatively, when the second thickness of the second region A2 is adjusted to a thickness suitable for absorption of red or green light, and the second color filter 307 transmits red or green light, In the photoelectric conversion unit 102, only red or green light is easily absorbed.
  • FIG. 7 shows a configuration of a solid-state imaging device 1f according to the sixth embodiment of the present invention.
  • FIG. 7 shows a cross section of the solid-state imaging device 1f.
  • the solid-state imaging device 1f includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, A microlens 301, a transparent layer 302, and a color filter 303 are included.
  • the imaging lens IL is disposed optically in front of the micro lens 301.
  • the imaging lens IL need not be included in the solid-state imaging device 1f.
  • the first wiring 111 formed in the fourth layer closest to the second substrate 20 functions as the selection unit 111b.
  • the selection unit 111b is disposed between the first photoelectric conversion unit 101 and the third photoelectric conversion unit 201.
  • the selection unit 111b selects only the second light that has passed through a part of the pupil region in the exit pupil of the imaging lens IL from the first light transmitted through the first photoelectric conversion unit 101.
  • the second light selected by the selection unit 111b enters the third photoelectric conversion unit 201.
  • the selection unit 111b is disposed at a position corresponding to the first region A1 of the first substrate 10.
  • the selection unit 111 b is disposed at a position (image formation point) where light is imaged by the microlens 301 in a direction perpendicular to the main surface of the first substrate 10 or the second substrate 20.
  • the selection unit 111b includes a first opening 1110a and a second opening 1110b that are formed at positions where light passing through only one of the two pupil regions in the exit pupil of the imaging lens IL is imaged.
  • the 1st opening part 1110a and the 2nd opening part 1110b are comprised by the side wall of the selection part 111b.
  • the first opening 1110a is a position through which light that has passed through one of the two pupil regions in the exit pupil of the imaging lens IL passes among the light that has passed through the microlens 301 and passed through the first photoelectric conversion unit 101. Is formed.
  • the first opening 1110 a is formed at a position that is offset to the right side from the center of the microlens 301.
  • the second opening 1110b passes through the microlens 301 and passes through the first photoelectric conversion unit 101, and one of the two pupil regions in the exit pupil of the imaging lens IL (passes through the first opening 1110a). It is formed at a position where light that has passed only through a pupil region that is different from the pupil region through which transmitted light passes.
  • the second opening 1110b is formed at a position deviated to the left of the center of the microlens 301.
  • the position where the microlens 301 forms light is a position corresponding to the pupil region through which the light has passed.
  • the first opening 1110a is formed at a position where light that has passed through the left pupil region of the left and right pupil regions of the imaging lens IL forms an image. Therefore, the selection unit 111b selectively allows the light that has passed through the left pupil region to pass through the first opening 1110a.
  • the second opening 1110b is formed at a position where light that has passed through the right pupil region of the left and right pupil regions of the imaging lens IL forms an image. Therefore, the selection unit 111b selectively allows the light that has passed through the right pupil region to pass through the second opening 1110b.
  • one layer of the first wiring 111 constitutes the selection unit 111b. However, the selection unit 111b may have a structure different from that of the first wiring 111.
  • the solid-state imaging device has a configuration corresponding to at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, the transparent layer 302, and the color filter 303. It may not have.
  • a signal group generated by the plurality of third photoelectric conversion units 201 is acquired based on light that has passed through different pupil regions in the exit pupil of the imaging lens IL.
  • the focal point is calculated by detecting the phase difference of the light that has passed through the left and right pupil regions that are biased in the left and right directions opposite to each other in the exit pupil of the imaging lens IL.
  • the calculation of the focal point may be performed within the solid-state imaging device 1f or may be performed outside the solid-state imaging device 1f. Therefore, focus detection by the phase difference detection method can be performed.
  • the solid-state imaging devices 1a to 1e of the first to fifth embodiments may include the selection unit 111b. As a result, the solid-state imaging devices 1a to 1e can perform focus detection by the phase difference detection method.
  • FIG. 8 shows a configuration of a solid-state imaging device 1g according to the seventh embodiment of the present invention.
  • FIG. 8 shows a cross section of the solid-state imaging device 1g.
  • the solid-state imaging device 1g includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, A microlens 301, a transparent layer 302, a color filter 303, and a selection unit 308 are included.
  • the selection unit 308 is disposed between the first substrate 10 and the second substrate 20.
  • the selection unit 308 is made of a material similar to the organic material or the inorganic material constituting the color filter 303.
  • the selection unit 308 is in contact with the first wiring layer 110 of the first substrate 10 and the second wiring layer 210 of the second substrate 20.
  • the selection unit 308 is disposed between the first photoelectric conversion unit 101 and the third photoelectric conversion unit 201, and the second light having a specific wavelength among the first light transmitted through the first photoelectric conversion unit 101. Select only light. For example, the selection unit 308 selects light having a red wavelength.
  • the second light selected by the selection unit 308 passes through the selection unit 308.
  • the second light selected by the selection unit 308 enters the third photoelectric conversion unit 201.
  • the solid-state imaging device includes at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, the transparent layer 302, the color filter 303, and the selection unit 308. It is not necessary to have the structure corresponding to.
  • the selection unit 308 transmits light of a specific wavelength. For this reason, light of a specific wavelength is incident on the third photoelectric conversion unit 201. As a result, imaging based on light of a specific wavelength can be performed.
  • the specific wavelength can be arbitrarily selected.
  • the solid-state imaging devices 1a to 1e may include the selection unit 308. Thereby, the solid-state imaging devices 1a to 1e can perform imaging based on light of a specific wavelength.
  • FIG. 9 shows a configuration of an imaging apparatus 7 according to the eighth embodiment of the present invention.
  • the imaging device 7 may be an electronic device having an imaging function.
  • the imaging device 7 is any one of a digital camera, a digital video camera, an endoscope, and a microscope.
  • the imaging device 7 includes a solid-state imaging device 1, a lens unit unit 2, an image signal processing device 3, a recording device 4, a camera control device 5, and a display device 6.
  • the solid-state imaging device 1 is any one of the solid-state imaging devices 1a to 1g of the first to seventh embodiments.
  • the lens unit 2 has a zoom lens and a focus lens.
  • the lens unit 2 forms a subject image based on light from the subject on the light receiving surface of the solid-state imaging device 1.
  • the light taken in through the lens unit 2 is imaged on the light receiving surface of the solid-state imaging device 1.
  • the solid-state imaging device 1 converts the subject image formed on the light receiving surface into a signal such as an imaging signal and outputs the signal.
  • the image signal processing device 3 performs a predetermined process on the signal output from the solid-state imaging device 1.
  • the processing performed by the image signal processing device 3 includes conversion to image data, various corrections of the image data, and compression of the image data.
  • the image signal processing device 3 may perform a calculation by a phase difference detection method using the focus detection signal output from the solid-state imaging device 1 to calculate a focal point.
  • the recording device 4 includes a semiconductor memory for recording or reading image data.
  • the recording device 4 is detachable from the imaging device 7.
  • the display device 6 displays an image based on the image data processed by the image signal processing device 3 or the image data read from the recording device 4.
  • the camera control device 5 controls the entire imaging device 7.
  • the operation of the camera control device 5 is defined by a program stored in a ROM built in the imaging device 7.
  • the camera control device 5 reads out this program and performs various controls according to the contents defined by the program.
  • the imaging device has a configuration corresponding to at least one of the lens unit unit 2, the image signal processing device 3, the recording device 4, the camera control device 5, and the display device 6. It does not have to be.
  • the imaging device 7 having the solid-state imaging device 1 is configured. For this reason, the amount of light that passes through the first substrate 10 and enters the second substrate 20 can be increased.
  • the first thickness of the first region in which the first photoelectric conversion unit that photoelectrically converts light of the first wavelength is formed is the light of the second wavelength.
  • the thickness is smaller than the second thickness of the second region in which the second photoelectric conversion portion for photoelectric conversion is formed. For this reason, light tends to pass through the first region. As a result, the amount of light that passes through the first semiconductor substrate and enters the second semiconductor substrate can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

This solid state imaging device is provided with a first semiconductor substrate and a second semiconductor substrate. The first semiconductor substrate is provided with first photoelectric conversion units and second photoelectric conversion units. The first photoelectric conversion units are formed in the first semiconductor substrate, in first areas which have a first thickness. The second photoelectric conversion units are formed in the first semiconductor substrate, in second areas which have a second thickness. The first photoelectric conversion units convert light of a first wavelength into signals. The second photoelectric conversion units convert light of a second wavelength into signals. The first thickness is smaller than the second thickness. The first wavelength is shorter than the second wavelength. The second semiconductor substrate is stacked on the first semiconductor substrate, and is provided with third photoelectric conversion units on which light transmitted through the first photoelectric conversion units is incident.

Description

固体撮像装置および撮像装置Solid-state imaging device and imaging device
 本発明は、複数の基板が積層された構造を有する固体撮像装置および撮像装置に関する。 The present invention relates to a solid-state imaging device and an imaging device having a structure in which a plurality of substrates are stacked.
 複数の基板を有する固体撮像装置が開示されている。例えば、第1の基板と第2の基板とが積層された固体撮像装置が特許文献1に開示されている。第1の基板は、被写体像を撮像するための信号を生成する撮像用画素を有する。第2の基板は、被写体像の位相差を検出し合焦点を算出するための信号を生成する位相差検出用画素を有する。特許文献1に開示された固体撮像装置では、撮像用画素と位相差検出用画素とがそれぞれ第1の基板と第2の基板とに別々に配置されている。このため、撮像信号の解像度の減少を低減しつつ、位相差検出方式による焦点検出に用いる信号を生成することができる。 A solid-state imaging device having a plurality of substrates is disclosed. For example, Patent Document 1 discloses a solid-state imaging device in which a first substrate and a second substrate are stacked. The first substrate has imaging pixels that generate a signal for imaging a subject image. The second substrate includes a phase difference detection pixel that detects a phase difference of a subject image and generates a signal for calculating a focal point. In the solid-state imaging device disclosed in Patent Document 1, imaging pixels and phase difference detection pixels are separately arranged on a first substrate and a second substrate, respectively. Therefore, it is possible to generate a signal used for focus detection by the phase difference detection method while reducing a decrease in the resolution of the imaging signal.
 特許文献1に開示された固体撮像装置の詳細を説明する。図10は、特許文献1に記載された固体撮像装置1000の構成を示している。図10では固体撮像装置1000の断面が示されている。図10に示すように、固体撮像装置1000は、第1の基板80と、第1の基板80に積層された第2の基板90と、マイクロレンズMLと、カラーフィルタCFとを有する。 Details of the solid-state imaging device disclosed in Patent Document 1 will be described. FIG. 10 shows a configuration of the solid-state imaging device 1000 described in Patent Document 1. FIG. 10 shows a cross section of the solid-state imaging device 1000. As shown in FIG. 10, the solid-state imaging device 1000 includes a first substrate 80, a second substrate 90 stacked on the first substrate 80, a microlens ML, and a color filter CF.
 第1の基板80の主面(基板の表面を構成する複数の面のうち最も広い面)にカラーフィルタCFが形成され、カラーフィルタCF上にマイクロレンズMLが形成されている。図10では複数のマイクロレンズMLが存在するが、代表として1つのマイクロレンズMLの符号が示されている。また、図10では複数のカラーフィルタCFが存在するが、代表として1つのカラーフィルタCFの符号が示されている。 The color filter CF is formed on the main surface of the first substrate 80 (the widest surface among the plurality of surfaces constituting the surface of the substrate), and the microlens ML is formed on the color filter CF. In FIG. 10, there are a plurality of microlenses ML, but a symbol of one microlens ML is shown as a representative. In FIG. 10, there are a plurality of color filters CF, but a symbol of one color filter CF is shown as a representative.
 マイクロレンズMLは、固体撮像装置1000の光学的前方に配置された撮像レンズを通過した、被写体からの光を結像する。カラーフィルタCFは、所定の色に対応した波長の光を透過させる。例えば、赤、緑、青のカラーフィルタCFが、2次元状のベイヤー配列を構成するように配置される。 The microlens ML forms an image of light from a subject that has passed through an imaging lens disposed optically in front of the solid-state imaging device 1000. The color filter CF transmits light having a wavelength corresponding to a predetermined color. For example, red, green, and blue color filters CF are arranged to form a two-dimensional Bayer array.
 第1の基板80は、第1の半導体層800と、第1の配線層810とを有する。第1の半導体層800は、入射した光を信号に変換する第1の光電変換部801を有する。 The first substrate 80 includes a first semiconductor layer 800 and a first wiring layer 810. The first semiconductor layer 800 includes a first photoelectric conversion unit 801 that converts incident light into a signal.
 第1の配線層810は、第1の配線811と、第1のビア812と、第1の層間絶縁膜813とを有する。図10では複数の第1の配線811が存在するが、代表として1つの第1の配線811の符号が示されている。また、図10では複数の第1のビア812が存在するが、代表として1つの第1のビア812の符号が示されている。 The first wiring layer 810 includes a first wiring 811, a first via 812, and a first interlayer insulating film 813. In FIG. 10, there are a plurality of first wirings 811, but a reference numeral of one first wiring 811 is shown as a representative. In FIG. 10, there are a plurality of first vias 812, but a symbol of one first via 812 is shown as a representative.
 第1の配線811は、配線パターンが形成された薄膜である。第1の配線811は、第1の光電変換部801で生成された信号とその他の信号(電源電圧、グランド電圧等)とを伝送する。図10に示す例では、4層の第1の配線811が形成されている。第2の基板90に最も近い第4層に形成された第1の配線811は、遮光層811aとして機能する。 The first wiring 811 is a thin film on which a wiring pattern is formed. The first wiring 811 transmits the signal generated by the first photoelectric conversion unit 801 and other signals (power supply voltage, ground voltage, and the like). In the example shown in FIG. 10, four layers of first wirings 811 are formed. The first wiring 811 formed in the fourth layer closest to the second substrate 90 functions as the light shielding layer 811a.
 遮光層811aは、第1の基板80に入射した光の一部のみが通過する開口部8110を有する。開口部8110は、遮光層811aの側壁で構成されている。 The light shielding layer 811a has an opening 8110 through which only a part of the light incident on the first substrate 80 passes. The opening 8110 is constituted by a side wall of the light shielding layer 811a.
 第1のビア812は、異なる層の第1の配線811を接続する。第1の配線層810において、第1の配線811および第1のビア812以外の部分は、第1の層間絶縁膜813で構成されている。 The first via 812 connects the first wiring 811 of different layers. In the first wiring layer 810, portions other than the first wiring 811 and the first via 812 are configured by a first interlayer insulating film 813.
 第2の基板90は、第2の半導体層900と、第2の配線層910とを有する。第2の半導体層900は、入射した光を信号に変換する第2の光電変換部901を有する。 The second substrate 90 has a second semiconductor layer 900 and a second wiring layer 910. The second semiconductor layer 900 includes a second photoelectric conversion unit 901 that converts incident light into a signal.
 第2の配線層910は、第2の配線911と、第2のビア912と、第2の層間絶縁膜913と、MOSトランジスタ920とを有する。図10では複数の第2の配線911が存在するが、代表として1つの第2の配線911の符号が示されている。また、図10では複数の第2のビア912が存在するが、代表として1つの第2のビア912の符号が示されている。また、図10では複数のMOSトランジスタ920が存在するが、代表として1つのMOSトランジスタ920の符号が示されている。 The second wiring layer 910 includes a second wiring 911, a second via 912, a second interlayer insulating film 913, and a MOS transistor 920. In FIG. 10, there are a plurality of second wirings 911, but a symbol of one second wiring 911 is shown as a representative. In FIG. 10, there are a plurality of second vias 912, but a symbol of one second via 912 is shown as a representative. In FIG. 10, there are a plurality of MOS transistors 920, but a symbol of one MOS transistor 920 is shown as a representative.
 第2の配線911は、配線パターンが形成された薄膜である。第2の配線911は、第1の光電変換部801で生成された信号と、第2の光電変換部901で生成された信号と、その他の信号(電源電圧、グランド電圧等)とを伝送する。図10に示す例では、2層の第2の配線911が形成されている。 The second wiring 911 is a thin film on which a wiring pattern is formed. The second wiring 911 transmits the signal generated by the first photoelectric conversion unit 801, the signal generated by the second photoelectric conversion unit 901, and other signals (power supply voltage, ground voltage, etc.). . In the example shown in FIG. 10, a two-layer second wiring 911 is formed.
 第2のビア912は、異なる層の第2の配線911を接続する。第2の配線層910において、第2の配線911および第2のビア912以外の部分は、第2の層間絶縁膜913で構成されている。 The second via 912 connects the second wirings 911 of different layers. In the second wiring layer 910, portions other than the second wiring 911 and the second via 912 are constituted by a second interlayer insulating film 913.
 MOSトランジスタ920は、第2の半導体層900に形成された拡散領域であるソース領域およびドレイン領域と、第2の配線層910に形成されたゲート電極とを有する。ソース領域およびドレイン領域は、第2のビア912と接続されている。ゲート電極は、ソース領域とドレイン領域との間に配置されている。MOSトランジスタ920は、第2の配線911と第2のビア912とによって伝送された信号を処理する。 The MOS transistor 920 has a source region and a drain region, which are diffusion regions formed in the second semiconductor layer 900, and a gate electrode formed in the second wiring layer 910. The source region and the drain region are connected to the second via 912. The gate electrode is disposed between the source region and the drain region. The MOS transistor 920 processes a signal transmitted by the second wiring 911 and the second via 912.
 第1の基板80と第2の基板90とは、第1のビア812と第2のビア912とを介して第1の基板80と第2の基板90との界面で電気的に接続されている。 The first substrate 80 and the second substrate 90 are electrically connected at the interface between the first substrate 80 and the second substrate 90 through the first via 812 and the second via 912. Yes.
 図10に示す固体撮像装置1000は、第1の光電変換部801で生成された信号から撮像信号を生成することができる。また、図10に示す固体撮像装置1000は、第2の光電変換部901で生成された信号から、位相差検出方式による焦点検出に用いる信号(位相差算出用信号)を生成することができる。 The solid-state imaging device 1000 shown in FIG. 10 can generate an imaging signal from the signal generated by the first photoelectric conversion unit 801. In addition, the solid-state imaging device 1000 illustrated in FIG. 10 can generate a signal (phase difference calculation signal) used for focus detection by the phase difference detection method from the signal generated by the second photoelectric conversion unit 901.
 複数の基板を有する固体撮像装置の用途は、位相差検出方式による焦点検出に限らない。例えば、可視光に対応した信号と、可視光の波長以外の波長の光(赤外光など)に対応した信号とを得ることが可能である。例えば、内視鏡に搭載される固体撮像装置が、可視光に対応した信号と、赤外光に対応した信号とを得ることが可能である。つまり、通常の観察を行うための信号と、血管等の観察を行うための信号とを得ることが可能である。あるいは、顕微鏡に搭載される内視鏡装置が、可視光に対応した信号と、励起光を受けて発光した標本からの蛍光に対応した信号とを得ることが可能である。つまり、通常の観察を行うための信号と、蛍光観察を行うための信号とを得ることが可能である。 The use of the solid-state imaging device having a plurality of substrates is not limited to focus detection by the phase difference detection method. For example, it is possible to obtain a signal corresponding to visible light and a signal corresponding to light having a wavelength other than the wavelength of visible light (such as infrared light). For example, a solid-state imaging device mounted on an endoscope can obtain a signal corresponding to visible light and a signal corresponding to infrared light. That is, it is possible to obtain a signal for performing normal observation and a signal for performing observation of blood vessels and the like. Alternatively, an endoscope apparatus mounted on a microscope can obtain a signal corresponding to visible light and a signal corresponding to fluorescence from a specimen that has emitted light upon receiving excitation light. That is, it is possible to obtain a signal for performing normal observation and a signal for performing fluorescence observation.
日本国特開2013-187475号公報Japanese Unexamined Patent Publication No. 2013-187475
 例えば、第1の基板と第2の基板とは、シリコン(Si)で構成されている。可視光から撮像信号を得るために必要なシリコン層の厚さは2.5μm~3μmである。例えば、第1の基板のシリコン層の厚さが3μmであり、波長が535nmである光が第1の基板に入射する。第1の基板と第2の基板との界面における光の反射が無視される場合、第1の基板に入射した光のうち約半分の光のみが第2の基板に入射する。第1の基板と第2の基板との界面における光の反射が考慮される場合、第1の基板に入射した光のうち約2割の光のみが第2の基板に入射する。したがって、第2の基板で得られる信号のS/N比が良好でない可能性がある。 For example, the first substrate and the second substrate are made of silicon (Si). The thickness of the silicon layer necessary for obtaining an imaging signal from visible light is 2.5 μm to 3 μm. For example, light having a silicon layer thickness of 3 μm and a wavelength of 535 nm is incident on the first substrate. When light reflection at the interface between the first substrate and the second substrate is ignored, only about half of the light incident on the first substrate is incident on the second substrate. When reflection of light at the interface between the first substrate and the second substrate is considered, only about 20% of the light incident on the first substrate is incident on the second substrate. Therefore, the S / N ratio of the signal obtained by the second substrate may not be good.
 本発明は、第1の半導体基板と第2の半導体基板とを有する固体撮像装置であって、第1の半導体基板を透過して第2の半導体基板に入射する光の量を増加させることができる固体撮像装置を提供する。 The present invention is a solid-state imaging device having a first semiconductor substrate and a second semiconductor substrate, wherein the amount of light transmitted through the first semiconductor substrate and incident on the second semiconductor substrate can be increased. Provided is a solid-state imaging device.
 本発明の第1の態様によれば、固体撮像装置は、第1の光電変換部と第2の光電変換部とを有する第1の半導体基板であって、前記第1の光電変換部は、前記第1の半導体基板において第1の厚さの第1の領域に形成され、前記第2の光電変換部は、前記第1の半導体基板において第2の厚さの第2の領域に形成され、前記第1の光電変換部は第1の波長の光を信号に変換し、前記第2の光電変換部は第2の波長の光を信号に変換し、前記第1の厚さは前記第2の厚さよりも小さく、前記第1の波長は前記第2の波長よりも短い前記第1の半導体基板と、前記第1の光電変換部を透過した光が入射する第3の光電変換部を有し、前記第1の半導体基板に積層された第2の半導体基板と、を有する。 According to the first aspect of the present invention, the solid-state imaging device is a first semiconductor substrate having a first photoelectric conversion unit and a second photoelectric conversion unit, and the first photoelectric conversion unit includes: The first semiconductor substrate is formed in a first region having a first thickness, and the second photoelectric conversion unit is formed in a second region having a second thickness in the first semiconductor substrate. The first photoelectric conversion unit converts light of a first wavelength into a signal, the second photoelectric conversion unit converts light of a second wavelength into a signal, and the first thickness is equal to the first thickness. And a third photoelectric conversion unit on which light transmitted through the first photoelectric conversion unit is incident, and the first semiconductor substrate is shorter than the second wavelength and the first wavelength is shorter than the second wavelength. And a second semiconductor substrate stacked on the first semiconductor substrate.
 本発明の第2の態様によれば、第1の態様において、前記固体撮像装置は、前記第1の光電変換部と前記第3の光電変換部との間に配置され、前記第1の光電変換部を透過した第1の光のうち撮像レンズの射出瞳における瞳領域の一部を通過した第2の光のみを選択する選択部をさらに有し、前記選択部によって選択された前記第2の光が前記第3の光電変換部に入射してもよい。 According to a second aspect of the present invention, in the first aspect, the solid-state imaging device is disposed between the first photoelectric conversion unit and the third photoelectric conversion unit, and the first photoelectric conversion unit is provided. A selection unit that selects only the second light that has passed through a part of the pupil region of the exit pupil of the imaging lens from the first light that has passed through the conversion unit, and the second light selected by the selection unit; May be incident on the third photoelectric conversion unit.
 本発明の第3の態様によれば、第1の態様において、前記固体撮像装置は、前記第1の光電変換部と前記第3の光電変換部との間に配置され、前記第1の光電変換部を透過した第1の光のうち特定の波長の第2の光のみを選択する選択部をさらに有し、前記選択部によって選択された前記第2の光が前記第3の光電変換部に入射してもよい。 According to a third aspect of the present invention, in the first aspect, the solid-state imaging device is disposed between the first photoelectric conversion unit and the third photoelectric conversion unit, and the first photoelectric conversion unit is provided. It further has a selection part which selects only the 2nd light of a specific wavelength among the 1st light which permeate | transmitted the conversion part, and the 2nd light selected by the selection part is the 3rd photoelectric conversion part May be incident.
 本発明の第4の態様によれば、第1の態様において、前記固体撮像装置は、被写体からの第1の光が入射し、入射した前記第1の光のうち赤または緑の波長の第2の光を透過させるカラーフィルタをさらに有し、前記カラーフィルタを透過した前記第2の光が前記第2の光電変換部に入射し、前記被写体からの前記第1の光のうち前記赤と前記緑と青とのそれぞれの波長の成分を含む第3の光が前記第1の光電変換部に入射してもよい。 According to a fourth aspect of the present invention, in the first aspect, the solid-state imaging device receives the first light from the subject, and has a first wavelength of red or green among the incident first light. A color filter that transmits the second light, the second light transmitted through the color filter is incident on the second photoelectric conversion unit, and the red light of the first light from the subject Third light including components of the respective wavelengths of green and blue may be incident on the first photoelectric conversion unit.
 本発明の第5の態様によれば、第1の態様において、前記固体撮像装置は、被写体からの第1の光が入射し、入射した前記第1の光のうち青の波長の第2の光を透過させる第1のカラーフィルタと、前記被写体からの前記第1の光が入射し、入射した前記第1の光のうち赤または緑の波長の第3の光を透過させる第2のカラーフィルタと、をさらに有し、前記第1のカラーフィルタを透過した前記第2の光が前記第1の光電変換部に入射し、前記第2のカラーフィルタを透過した前記第3の光が前記第2の光電変換部に入射してもよい。 According to a fifth aspect of the present invention, in the first aspect, the solid-state imaging device receives the first light from the subject, and the second light having a blue wavelength out of the incident first light. A first color filter that transmits light, and a second color that allows the first light from the subject to enter and transmits third light having a red or green wavelength among the incident first light. A filter, wherein the second light transmitted through the first color filter is incident on the first photoelectric conversion unit, and the third light transmitted through the second color filter is You may inject into a 2nd photoelectric conversion part.
 本発明の第6の態様によれば、第1の態様において、前記第1の半導体基板はさらに、第4の光電変換部を有し、前記第4の光電変換部は、前記第1の半導体基板において第3の厚さの第3の領域に形成され、前記第4の光電変換部は第3の波長の光を信号に変換し、前記第3の厚さは前記第1の厚さよりも大きく、前記第3の厚さは前記第2の厚さよりも小さく、前記第3の波長は前記第1の波長よりも長く、前記第3の波長は前記第2の波長よりも短くてもよい。 According to a sixth aspect of the present invention, in the first aspect, the first semiconductor substrate further includes a fourth photoelectric conversion unit, and the fourth photoelectric conversion unit includes the first semiconductor. Formed in a third region of the third thickness in the substrate, the fourth photoelectric conversion unit converts light of a third wavelength into a signal, and the third thickness is greater than the first thickness. Large, the third thickness may be less than the second thickness, the third wavelength may be longer than the first wavelength, and the third wavelength may be shorter than the second wavelength. .
 本発明の第7の態様によれば、撮像装置は、前記固体撮像装置を有する。 According to the seventh aspect of the present invention, the imaging device includes the solid-state imaging device.
 上記の各態様によれば、第1の波長の光を光電変換する第1の光電変換部が形成されている第1の領域の第1の厚さは、第2の波長の光を光電変換する第2の光電変換部が形成されている第2の領域の第2の厚さよりも小さい。このため、光が第1の領域を透過しやすい。この結果、第1の半導体基板を透過して第2の半導体基板に入射する光の量を増加させることができる。 According to each aspect described above, the first thickness of the first region in which the first photoelectric conversion unit that photoelectrically converts light of the first wavelength is formed is photoelectrically converted to light of the second wavelength. Smaller than the second thickness of the second region where the second photoelectric conversion portion is formed. For this reason, light tends to pass through the first region. As a result, the amount of light that passes through the first semiconductor substrate and enters the second semiconductor substrate can be increased.
本発明の第1の実施形態の固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device of the 1st Embodiment of this invention. 本発明の第1の実施形態の固体撮像装置の平面図である。1 is a plan view of a solid-state imaging device according to a first embodiment of the present invention. 本発明の第2の実施形態の固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device of the 2nd Embodiment of this invention. 本発明の第3の実施形態の固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device of the 3rd Embodiment of this invention. 本発明の第4の実施形態の固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device of the 4th Embodiment of this invention. 本発明の第5の実施形態の固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device of the 5th Embodiment of this invention. 本発明の第6の実施形態の固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device of the 6th Embodiment of this invention. 本発明の第7の実施形態の固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device of the 7th Embodiment of this invention. 本発明の第8の実施形態の撮像装置の断面図である。It is sectional drawing of the imaging device of the 8th Embodiment of this invention. 従来の固体撮像装置の断面図である。It is sectional drawing of the conventional solid-state imaging device.
 図面を参照し、本発明の実施形態を説明する。 Embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態の固体撮像装置1aの構成を示している。図1では固体撮像装置1aの断面が示されている。図1に示すように、固体撮像装置1aは、第1の基板10(第1の半導体基板)と、第1の基板10に積層された第2の基板20(第2の半導体基板)と、マイクロレンズ301と、透明層302と、カラーフィルタ303とを有する。
(First embodiment)
FIG. 1 shows the configuration of a solid-state imaging device 1a according to the first embodiment of the present invention. FIG. 1 shows a cross section of the solid-state imaging device 1a. As shown in FIG. 1, the solid-state imaging device 1a includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, and A microlens 301, a transparent layer 302, and a color filter 303 are included.
 固体撮像装置1aを構成する部分の寸法は、図1に示される寸法に従うわけではない。固体撮像装置1aを構成する部分の寸法は任意であってよい。 The dimensions of the parts constituting the solid-state imaging device 1a do not follow the dimensions shown in FIG. The dimension of the part which comprises the solid-state imaging device 1a may be arbitrary.
 図1では複数のマイクロレンズ301が存在するが、代表として1つのマイクロレンズ301の符号が示されている。また、図1では複数の透明層302が存在するが、代表として1つの透明層302の符号が示されている。また、図1では複数のカラーフィルタ303が存在するが、代表として1つのカラーフィルタ303の符号が示されている。 In FIG. 1, there are a plurality of microlenses 301, but a symbol of one microlens 301 is shown as a representative. In FIG. 1, there are a plurality of transparent layers 302, but a symbol of one transparent layer 302 is shown as a representative. In FIG. 1, there are a plurality of color filters 303, but a symbol of one color filter 303 is shown as a representative.
 マイクロレンズ301は、固体撮像装置1aの光学的前方に配置された撮像レンズを通過した、被写体からの光を結像する。透明層302とカラーフィルタ303とは、第1の基板10の表面に形成されている。透明層302は、第1の基板10の第1の領域A1に対応する位置に配置されている。図1では複数の第1の領域A1が存在するが、代表として1つの第1の領域A1の符号が示されている。透明層302は、カラーフィルタ303を構成する有機材料または無機材料と同様の材料で構成されている。透明層302は、入射した光を透過させる。カラーフィルタ303は、第1の基板10の第2の領域A2に対応する位置に配置されている。図1では複数の第2の領域A2が存在するが、代表として1つの第2の領域A2の符号が示されている。カラーフィルタ303は、所定の色に対応した波長の光を透過させる。例えば、カラーフィルタ303は、赤または緑の波長の光を透過させる。透明層302とカラーフィルタ303との表面にマイクロレンズ301が形成されている。 The microlens 301 forms an image of light from a subject that has passed through an imaging lens disposed optically in front of the solid-state imaging device 1a. The transparent layer 302 and the color filter 303 are formed on the surface of the first substrate 10. The transparent layer 302 is disposed at a position corresponding to the first region A1 of the first substrate 10. In FIG. 1, there are a plurality of first regions A1, but a reference numeral of one first region A1 is shown as a representative. The transparent layer 302 is made of the same material as the organic material or inorganic material constituting the color filter 303. The transparent layer 302 transmits incident light. The color filter 303 is disposed at a position corresponding to the second region A2 of the first substrate 10. In FIG. 1, there are a plurality of second areas A2, but the reference numerals of one second area A2 are shown as representatives. The color filter 303 transmits light having a wavelength corresponding to a predetermined color. For example, the color filter 303 transmits light having a red or green wavelength. Microlenses 301 are formed on the surfaces of the transparent layer 302 and the color filter 303.
 第1の基板10は、第1の半導体層100と、第1の配線層110とを有する。第1の半導体層100と第1の配線層110とは、第1の基板10の主面(基板の表面を構成する複数の面のうち最も広い面)を横切る方向(例えば、主面にほぼ垂直な方向)に重なっている。また、第1の半導体層100と第1の配線層110とは互いに接触している。 The first substrate 10 includes a first semiconductor layer 100 and a first wiring layer 110. The first semiconductor layer 100 and the first wiring layer 110 are formed in a direction (for example, substantially on the main surface) across the main surface of the first substrate 10 (the widest surface among a plurality of surfaces constituting the surface of the substrate). (Vertical direction). Further, the first semiconductor layer 100 and the first wiring layer 110 are in contact with each other.
 第1の半導体層100は、第1の光電変換部101と、第2の光電変換部102とを有する。図1では複数の第1の光電変換部101が存在するが、代表として1つの第1の光電変換部101の符号が示されている。また、図1では複数の第2の光電変換部102が存在するが、代表として1つの第2の光電変換部102の符号が示されている。第1の半導体層100は、シリコン(Si)等の半導体を含む材料で構成されている。第1の半導体層100は、第1の配線層110と接触している第1の面を有する。第1の半導体層100において第1の面と反対側の表面は、透明層302またはカラーフィルタ303と接触している。 The first semiconductor layer 100 includes a first photoelectric conversion unit 101 and a second photoelectric conversion unit 102. In FIG. 1, there are a plurality of first photoelectric conversion units 101, but a symbol of one first photoelectric conversion unit 101 is shown as a representative. In FIG. 1, there are a plurality of second photoelectric conversion units 102, but a symbol of one second photoelectric conversion unit 102 is shown as a representative. The first semiconductor layer 100 is made of a material containing a semiconductor such as silicon (Si). The first semiconductor layer 100 has a first surface that is in contact with the first wiring layer 110. The surface of the first semiconductor layer 100 opposite to the first surface is in contact with the transparent layer 302 or the color filter 303.
 第1の光電変換部101と第2の光電変換部102とは、例えば第1の半導体層100を構成する半導体材料とは不純物濃度が異なる半導体材料で構成されている。第1の光電変換部101は、第1の基板10において第1の厚さの第1の領域A1に形成されている。例えば、第1の領域A1は、青の光を受光するB画素に対応する。第1の厚さは、透明層302と接触している第1の半導体層100の表面と、第1の配線層110と接触している第1の半導体層100の第1の面との間の距離に等しい。第2の光電変換部102は、第1の基板10において第2の厚さの第2の領域A2に形成されている。例えば、第2の領域A2は、赤の光を受光するR画素または緑の光を受光するG画素に対応する。第2の厚さは、カラーフィルタ303と接触している第1の半導体層100の表面と、第1の配線層110と接触している第1の半導体層100の第1の面との間の距離に等しい。第1の領域A1と第2の領域A2とは第1の半導体層100に含まれる。第1の厚さは第2の厚さよりも小さい。 The first photoelectric conversion unit 101 and the second photoelectric conversion unit 102 are made of a semiconductor material having an impurity concentration different from that of the semiconductor material forming the first semiconductor layer 100, for example. The first photoelectric conversion unit 101 is formed in the first region A1 having the first thickness in the first substrate 10. For example, the first region A1 corresponds to a B pixel that receives blue light. The first thickness is between the surface of the first semiconductor layer 100 in contact with the transparent layer 302 and the first surface of the first semiconductor layer 100 in contact with the first wiring layer 110. Equal to the distance. The second photoelectric conversion unit 102 is formed in the second region A2 having the second thickness in the first substrate 10. For example, the second region A2 corresponds to an R pixel that receives red light or a G pixel that receives green light. The second thickness is between the surface of the first semiconductor layer 100 in contact with the color filter 303 and the first surface of the first semiconductor layer 100 in contact with the first wiring layer 110. Equal to the distance. The first region A1 and the second region A2 are included in the first semiconductor layer 100. The first thickness is smaller than the second thickness.
 マイクロレンズ301と透明層302とを透過した光は、第1の領域A1における第1の半導体層100に入射する。第1の領域A1における第1の半導体層100に入射した光は、第1の半導体層100内を進んで第1の光電変換部101に入射する。第1の光電変換部101は第1の波長の光を信号に変換する。マイクロレンズ301とカラーフィルタ303とを透過した光は、第2の領域A2における第1の半導体層100に入射する。第2の領域A2における第1の半導体層100に入射した光は、第1の半導体層100内を進んで第2の光電変換部102に入射する。第2の光電変換部102は第2の波長の光を信号に変換する。第1の波長は第2の波長よりも短い。例えば、第1の光電変換部101と第2の光電変換部102とで生成された信号は、撮像信号として使用される。 The light transmitted through the microlens 301 and the transparent layer 302 is incident on the first semiconductor layer 100 in the first region A1. The light that has entered the first semiconductor layer 100 in the first region A1 travels through the first semiconductor layer 100 and enters the first photoelectric conversion unit 101. The first photoelectric conversion unit 101 converts light having the first wavelength into a signal. The light transmitted through the microlens 301 and the color filter 303 is incident on the first semiconductor layer 100 in the second region A2. The light incident on the first semiconductor layer 100 in the second region A2 travels through the first semiconductor layer 100 and enters the second photoelectric conversion unit 102. The second photoelectric conversion unit 102 converts light having the second wavelength into a signal. The first wavelength is shorter than the second wavelength. For example, signals generated by the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102 are used as imaging signals.
 第1の配線層110は、第1の配線111と、第1の層間絶縁膜112とを有する。図1では複数の第1の配線111が存在するが、代表として1つの第1の配線111の符号が示されている。 The first wiring layer 110 includes a first wiring 111 and a first interlayer insulating film 112. In FIG. 1, there are a plurality of first wirings 111, but a symbol of one first wiring 111 is shown as a representative.
 第1の配線111は、導電性を有する材料(例えば、アルミニウム(Al)または銅(Cu)等の金属)で構成されている。第1の配線層110は、第1の面と第2の面とを有する。第1の配線層110の第1の面は第2の基板20と接触している。第1の配線層110の第1の面と反対側の第2の面は第1の半導体層100と接触している。第1の配線層110の第1の面は第1の基板10の主面を構成する。 The first wiring 111 is made of a conductive material (for example, a metal such as aluminum (Al) or copper (Cu)). The first wiring layer 110 has a first surface and a second surface. The first surface of the first wiring layer 110 is in contact with the second substrate 20. The second surface opposite to the first surface of the first wiring layer 110 is in contact with the first semiconductor layer 100. The first surface of the first wiring layer 110 constitutes the main surface of the first substrate 10.
 第1の配線111は、配線パターンが形成された薄膜である。第1の配線111は、第1の光電変換部101と第2の光電変換部102とで生成された信号と、その他の信号(電源電圧、グランド電圧等)とを伝送する。1層のみの第1の配線111が形成されていてもよいし、複数層の第1の配線111が形成されていてもよい。図1に示す例では、4層の第1の配線111が形成されている。複数層の第1の配線111は、図示されていないビアによって接続されている。第1の半導体層100に最も近い第1層と、第2層とに形成された第1の配線111は、遮光層111aとして機能する。 The first wiring 111 is a thin film on which a wiring pattern is formed. The first wiring 111 transmits signals generated by the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102 and other signals (power supply voltage, ground voltage, etc.). Only one layer of the first wiring 111 may be formed, or a plurality of layers of the first wiring 111 may be formed. In the example shown in FIG. 1, four layers of first wirings 111 are formed. The multiple layers of first wirings 111 are connected by vias (not shown). The first wiring 111 formed in the first layer closest to the first semiconductor layer 100 and the second layer functions as a light shielding layer 111a.
 遮光層111aは、第2の光電変換部102を透過した光を反射する。第1の光電変換部101と第2の光電変換部102とのうち第1の光電変換部101のみを透過した光が第2の基板20に入射するように遮光層111aが配置されている。複数層の第1の配線111の組合せが遮光層として機能してもよい。例えば、複数層の第1の配線111が開口部を有し、異なる層の開口部が第1の基板10または第2の基板20の主面に垂直な方向に重なっていなくてもよい。遮光層111aにおいて、第1の光電変換部101が形成されている第1の領域A1に対応する領域に、光を透過させるための開口部が形成されている。図1では、第1の配線111の2つの層が遮光層111aを構成している。しかし、遮光層は、第1の配線111とは別の構造であってもよい。 The light shielding layer 111 a reflects the light transmitted through the second photoelectric conversion unit 102. The light shielding layer 111 a is arranged so that light that has passed through only the first photoelectric conversion unit 101 out of the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102 is incident on the second substrate 20. A combination of a plurality of first wirings 111 may function as a light shielding layer. For example, the plurality of layers of the first wirings 111 may have openings, and the openings of different layers may not overlap in a direction perpendicular to the main surface of the first substrate 10 or the second substrate 20. In the light shielding layer 111a, an opening for transmitting light is formed in a region corresponding to the first region A1 where the first photoelectric conversion unit 101 is formed. In FIG. 1, the two layers of the first wiring 111 constitute a light shielding layer 111a. However, the light shielding layer may have a structure different from that of the first wiring 111.
 第1の配線層110において、第1の配線111以外の部分は、例えば二酸化珪素(SiO2)等で形成された第1の層間絶縁膜112で構成されている。 In the first wiring layer 110, the portion other than the first wiring 111 is configured by a first interlayer insulating film 112 formed of, for example, silicon dioxide (SiO 2) or the like.
 第2の基板20は、第2の半導体層200と、第2の配線層210とを有する。第2の半導体層200と第2の配線層210とは、第2の基板20の主面を横切る方向(例えば、主面にほぼ垂直な方向)に重なっている。また、第2の半導体層200と第2の配線層210とは互いに接触している。 The second substrate 20 includes a second semiconductor layer 200 and a second wiring layer 210. The second semiconductor layer 200 and the second wiring layer 210 overlap in a direction crossing the main surface of the second substrate 20 (for example, a direction substantially perpendicular to the main surface). Further, the second semiconductor layer 200 and the second wiring layer 210 are in contact with each other.
 第2の半導体層200は、第3の光電変換部201を有する。図1では複数の第3の光電変換部201が存在するが、代表として1つの第3の光電変換部201の符号が示されている。第2の半導体層200は、シリコン(Si)等の半導体を含む材料で構成されている。第3の光電変換部201は、例えば第2の半導体層200を構成する半導体材料とは不純物濃度が異なる半導体材料で構成されている。第1の光電変換部101に対応する領域に第3の光電変換部201が形成されている。第2の半導体層200は、第1の面と第2の面とを有する。第2の半導体層200の第1の面は第2の配線層210と接触している。第2の半導体層200の第2の面は第2の基板20の主面の1つを構成する。第3の光電変換部201は、第2の半導体層200において、光が入射する第1の面の近傍に形成されている。 The second semiconductor layer 200 includes a third photoelectric conversion unit 201. In FIG. 1, there are a plurality of third photoelectric conversion units 201, but a symbol of one third photoelectric conversion unit 201 is shown as a representative. The second semiconductor layer 200 is made of a material containing a semiconductor such as silicon (Si). The third photoelectric conversion unit 201 is made of, for example, a semiconductor material having an impurity concentration different from that of the semiconductor material forming the second semiconductor layer 200. A third photoelectric conversion unit 201 is formed in a region corresponding to the first photoelectric conversion unit 101. The second semiconductor layer 200 has a first surface and a second surface. The first surface of the second semiconductor layer 200 is in contact with the second wiring layer 210. The second surface of the second semiconductor layer 200 constitutes one of the main surfaces of the second substrate 20. The third photoelectric conversion unit 201 is formed in the second semiconductor layer 200 in the vicinity of the first surface on which light is incident.
 第1の光電変換部101を透過した光は、第1の配線層110を透過し、第2の基板20の第2の配線層210に入射する。第2の配線層210に入射した光は、第2の配線層210を透過し、第2の半導体層200の第1の面に入射する。第2の半導体層200の第1の面に入射した光は、第2の半導体層200内を進んで第3の光電変換部201に入射する。第1の配線111と第2の配線211とにおいて、第1の光電変換部101と第3の光電変換部201との間に配置されている部分は開口部を有する。このため、第1の光電変換部101を透過した光は第3の光電変換部201に入射する。第3の光電変換部201は、入射した光を信号に変換する。第1の波長よりも長い波長の光が第3の光電変換部201に入射しやすい。このため、第3の光電変換部201は、第1の波長よりも長い波長の光を信号に変換する。例えば、第3の光電変換部201で生成された信号は、焦点検出用の信号として使用される。第3の光電変換部201で生成された信号は、血管等の観察を行うための信号または蛍光観察を行うための信号として使用されてもよい。 The light that has passed through the first photoelectric conversion unit 101 passes through the first wiring layer 110 and enters the second wiring layer 210 of the second substrate 20. The light incident on the second wiring layer 210 passes through the second wiring layer 210 and enters the first surface of the second semiconductor layer 200. The light incident on the first surface of the second semiconductor layer 200 travels through the second semiconductor layer 200 and enters the third photoelectric conversion unit 201. In the first wiring 111 and the second wiring 211, a portion arranged between the first photoelectric conversion unit 101 and the third photoelectric conversion unit 201 has an opening. For this reason, the light transmitted through the first photoelectric conversion unit 101 enters the third photoelectric conversion unit 201. The third photoelectric conversion unit 201 converts incident light into a signal. Light having a wavelength longer than the first wavelength is likely to enter the third photoelectric conversion unit 201. Therefore, the third photoelectric conversion unit 201 converts light having a wavelength longer than the first wavelength into a signal. For example, the signal generated by the third photoelectric conversion unit 201 is used as a focus detection signal. The signal generated by the third photoelectric conversion unit 201 may be used as a signal for observing a blood vessel or the like or a signal for performing fluorescence observation.
 第2の配線層210は、第2の配線211と、第2の層間絶縁膜212とを有する。図1では複数の第2の配線211が存在するが、代表として1つの第2の配線211の符号が示されている。 The second wiring layer 210 includes a second wiring 211 and a second interlayer insulating film 212. In FIG. 1, there are a plurality of second wirings 211, but a symbol of one second wiring 211 is shown as a representative.
 第2の配線211は、導電性を有する材料(例えば、アルミニウム(Al)または銅(Cu)等の金属)で構成されている。第2の配線層210は、第1の面と第2の面とを有する。第2の配線層210の第1の面は第1の配線層110と接触している。第2の配線層210の第1の面と反対側の第2の面は第2の半導体層200と接触している。第2の配線層210の第1の面は第2の基板20の主面の1つを構成する。 The second wiring 211 is made of a conductive material (for example, a metal such as aluminum (Al) or copper (Cu)). The second wiring layer 210 has a first surface and a second surface. The first surface of the second wiring layer 210 is in contact with the first wiring layer 110. The second surface opposite to the first surface of the second wiring layer 210 is in contact with the second semiconductor layer 200. The first surface of the second wiring layer 210 constitutes one of the main surfaces of the second substrate 20.
 第2の配線211は、配線パターンが形成された薄膜である。第2の配線211は、第1の光電変換部101と第2の光電変換部102とで生成された撮像信号用の信号と、第3の光電変換部201で生成された信号と、その他の信号(電源電圧、グランド電圧等)とを伝送する。1層のみの第2の配線211が形成されていてもよいし、複数層の第2の配線211が形成されていてもよい。図1に示す例では、4層の第2の配線211が形成されている。複数層の第2の配線211は、図示されていないビアによって接続されている。 The second wiring 211 is a thin film on which a wiring pattern is formed. The second wiring 211 includes a signal for an imaging signal generated by the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102, a signal generated by the third photoelectric conversion unit 201, and other signals. Transmit signals (power supply voltage, ground voltage, etc.). Only one layer of the second wiring 211 may be formed, or a plurality of layers of the second wiring 211 may be formed. In the example shown in FIG. 1, four layers of second wirings 211 are formed. The plurality of layers of second wirings 211 are connected by vias not shown.
 第1の基板10と第2の基板20とは、第1の基板10の第1の配線層110と第2の基板20の第2の配線層210とが向かい合った状態で接続されている。第1の基板10と第2の基板20とは、電気的に接続されている。第1の配線層110と第2の配線層210とが接触していなくてもよい。例えば、樹脂等で構成された層が第1の配線層110と第2の配線層210との間に配置されてもよい。  The first substrate 10 and the second substrate 20 are connected with the first wiring layer 110 of the first substrate 10 and the second wiring layer 210 of the second substrate 20 facing each other. The first substrate 10 and the second substrate 20 are electrically connected. The first wiring layer 110 and the second wiring layer 210 may not be in contact with each other. For example, a layer made of resin or the like may be disposed between the first wiring layer 110 and the second wiring layer 210.
 被写体からの第1の光がカラーフィルタ303に入射する。例えば、カラーフィルタ303は、入射した第1の光のうち赤または緑の波長の第2の光を透過させる。カラーフィルタ303を透過した第2の光が第2の光電変換部102に入射する。被写体からの第1の光のうち赤と緑と青とのそれぞれの波長の成分を含む第3の光が第1の光電変換部101に入射する。 The first light from the subject enters the color filter 303. For example, the color filter 303 transmits the second light having a red or green wavelength out of the incident first light. The second light transmitted through the color filter 303 is incident on the second photoelectric conversion unit 102. Third light including red, green, and blue wavelength components of the first light from the subject enters the first photoelectric conversion unit 101.
 例えば、第1の光電変換部101によって信号に変換される光の第1の波長は青に対応する。例えば、第2の光電変換部102によって信号に変換される光の第2の波長は赤または緑に対応する。第2の波長の光と比較して第1の波長の光に対する半導体(シリコン等)の吸収効率は高い。このため、第1の光電変換部101が形成されている第1の領域A1の第1の厚さを、第2の光電変換部102が形成されている第2の領域A2の第2の厚さよりも小さくすることができる。 For example, the first wavelength of light converted into a signal by the first photoelectric conversion unit 101 corresponds to blue. For example, the second wavelength of light converted into a signal by the second photoelectric conversion unit 102 corresponds to red or green. The absorption efficiency of a semiconductor (such as silicon) with respect to light of the first wavelength is higher than that of light of the second wavelength. For this reason, the first thickness of the first region A1 where the first photoelectric conversion unit 101 is formed is the second thickness of the second region A2 where the second photoelectric conversion unit 102 is formed. It can be made smaller than this.
 第1の領域A1の第1の厚さが第2の領域A2の第2の厚さよりも小さいため、第1の領域A1を透過する光の量が、第2の領域A2を透過する光の量よりも多くなりやすい。つまり、光が第1の領域A1を透過しやすい。このため、第1の基板10を透過して第2の基板20に入射する光の量が増加しやすい。したがって、第2の基板20が有する第3の光電変換部201に光が入射しやすい。 Since the first thickness of the first region A1 is smaller than the second thickness of the second region A2, the amount of light transmitted through the first region A1 is less than the amount of light transmitted through the second region A2. It tends to be more than the amount. That is, light is likely to pass through the first region A1. For this reason, the amount of light that passes through the first substrate 10 and enters the second substrate 20 is likely to increase. Therefore, light is likely to enter the third photoelectric conversion unit 201 included in the second substrate 20.
 図2は、固体撮像装置1aを平面的に見た状態を示している。図2では、第1の基板10または第2の基板20の主面に垂直な方向に固体撮像装置1aを見た状態が示されている。 FIG. 2 shows a state in which the solid-state imaging device 1a is viewed in a plan view. FIG. 2 shows a state in which the solid-state imaging device 1a is viewed in a direction perpendicular to the main surface of the first substrate 10 or the second substrate 20.
 図2に示すように、固体撮像装置1aは、複数の第1の光電変換部101と、複数の第2の光電変換部102と、複数の第3の光電変換部201とを有する。図2では代表として1つの第1の光電変換部101の符号が示されている。また、図2では代表として1つの第2の光電変換部102の符号が示されている。また、図2では代表として1つの第3の光電変換部201の符号が示されている。便宜のため、図2ではマイクロレンズ301およびカラーフィルタ303等は図示されていない。 As shown in FIG. 2, the solid-state imaging device 1 a includes a plurality of first photoelectric conversion units 101, a plurality of second photoelectric conversion units 102, and a plurality of third photoelectric conversion units 201. In FIG. 2, the code | symbol of one 1st photoelectric conversion part 101 is shown as a representative. Further, in FIG. 2, a symbol of one second photoelectric conversion unit 102 is shown as a representative. Further, in FIG. 2, a symbol of one third photoelectric conversion unit 201 is shown as a representative. For convenience, the microlens 301 and the color filter 303 are not shown in FIG.
 図2において、「R」と記載されている領域は、赤の光を受光するR画素に対応する。図2において、「G」と記載されている領域は、緑の光を受光するG画素に対応する。図2において、「B」と記載されている領域は、青の光を受光するB画素に対応する。第1の光電変換部101と第3の光電変換部201とはB画素に配置されている。第1の光電変換部101と第3の光電変換部201とは、互いに重なるように配置されている。第2の光電変換部102はR画素とG画素とに配置されている。R画素とG画素とB画素とは、2次元状のベイヤー配列を構成するように配置されている。複数の第1の光電変換部101と複数の第2の光電変換部102とは行列状に配置されている。 In FIG. 2, the region described as “R” corresponds to an R pixel that receives red light. In FIG. 2, a region described as “G” corresponds to a G pixel that receives green light. In FIG. 2, the region described as “B” corresponds to a B pixel that receives blue light. The first photoelectric conversion unit 101 and the third photoelectric conversion unit 201 are arranged in the B pixel. The 1st photoelectric conversion part 101 and the 3rd photoelectric conversion part 201 are arrange | positioned so that it may mutually overlap. The 2nd photoelectric conversion part 102 is arrange | positioned at R pixel and G pixel. The R pixel, the G pixel, and the B pixel are arranged to form a two-dimensional Bayer array. The plurality of first photoelectric conversion units 101 and the plurality of second photoelectric conversion units 102 are arranged in a matrix.
 本発明の各態様の固体撮像装置は、第1の配線層110と、第2の配線層210と、マイクロレンズ301と、透明層302と、カラーフィルタ303との少なくとも1つに対応する構成を有していなくてもよい。 The solid-state imaging device according to each aspect of the present invention has a configuration corresponding to at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, the transparent layer 302, and the color filter 303. It may not have.
 第1の実施形態によれば、第1の光電変換部101と第2の光電変換部102とを有する第1の半導体基板(第1の基板10)であって、第1の光電変換部101は、第1の半導体基板において第1の厚さの第1の領域A1に形成され、第2の光電変換部102は、第1の半導体基板において第2の厚さの第2の領域A2に形成され、第1の光電変換部101は第1の波長の光を信号に変換し、第2の光電変換部102は第2の波長の光を信号に変換し、第1の厚さは第2の厚さよりも小さく、第1の波長は第2の波長よりも短い第1の半導体基板と、第1の光電変換部101を透過した光が入射する第3の光電変換部201を有し、第1の半導体基板に積層された第2の半導体基板(第2の基板20)と、を有する固体撮像装置1aが構成される。 According to the first embodiment, the first photoelectric conversion unit 101 includes a first semiconductor substrate (first substrate 10) having a first photoelectric conversion unit 101 and a second photoelectric conversion unit 102. Is formed in the first region A1 having the first thickness in the first semiconductor substrate, and the second photoelectric conversion unit 102 is formed in the second region A2 having the second thickness in the first semiconductor substrate. The first photoelectric conversion unit 101 converts light of the first wavelength into a signal, the second photoelectric conversion unit 102 converts light of the second wavelength into a signal, and the first thickness is the first thickness. A first semiconductor substrate having a first wavelength shorter than the second wavelength and a third photoelectric conversion unit 201 on which light transmitted through the first photoelectric conversion unit 101 is incident. A solid-state imaging device 1a having a second semiconductor substrate (second substrate 20) stacked on the first semiconductor substrate. It is.
 第1の実施形態では、第1の波長の光を光電変換する第1の光電変換部101が形成されている第1の領域A1の第1の厚さは、第2の波長の光を光電変換する第2の光電変換部102が形成されている第2の領域A2の第2の厚さよりも小さい。このため、光が第1の領域A1を透過しやすい。この結果、第1の基板10を透過して第2の基板20に入射する光の量を増加させることができる。 In the first embodiment, the first thickness of the first region A1 in which the first photoelectric conversion unit 101 that photoelectrically converts the light having the first wavelength is formed is the light having the second wavelength. The thickness is smaller than the second thickness of the second region A2 where the second photoelectric conversion unit 102 to be converted is formed. For this reason, light is likely to pass through the first region A1. As a result, the amount of light that passes through the first substrate 10 and enters the second substrate 20 can be increased.
 図10に示す固体撮像装置1000では、カラーフィルタCFを透過した光が第2の光電変換部901に入射する。このため、カラーフィルタCFを透過する光の波長以外の波長を有する光が第2の光電変換部901で吸収されにくい。例えば、カラーフィルタCFが赤のフィルタである場合、緑の光と青の光とが第2の光電変換部901で吸収されにくい。つまり、赤の光のみが第2の光電変換部901で吸収されやすい。第2の光電変換部901で生成された信号に基づいて焦点検出が行われる場合、可視光に対する焦点と、検出された焦点とのずれがある。 In the solid-state imaging device 1000 shown in FIG. 10, the light that has passed through the color filter CF is incident on the second photoelectric conversion unit 901. For this reason, light having a wavelength other than the wavelength of light transmitted through the color filter CF is not easily absorbed by the second photoelectric conversion unit 901. For example, when the color filter CF is a red filter, it is difficult for the second photoelectric conversion unit 901 to absorb green light and blue light. That is, only red light is easily absorbed by the second photoelectric conversion unit 901. When focus detection is performed based on the signal generated by the second photoelectric conversion unit 901, there is a shift between the focus for visible light and the detected focus.
 図1に示す固体撮像装置1aでは、第1の光電変換部101で吸収される光の波長以外の波長を有する光が第3の光電変換部201で吸収されやすい。例えば、青の光が第1の光電変換部101で吸収される場合、赤の光と緑の光とが第3の光電変換部201で吸収されやすい。第3の光電変換部201で生成された信号に基づいて焦点検出が行われる場合、可視光に対する焦点と、検出された焦点とのずれがより小さくなる。 In the solid-state imaging device 1 a shown in FIG. 1, light having a wavelength other than the wavelength of light absorbed by the first photoelectric conversion unit 101 is easily absorbed by the third photoelectric conversion unit 201. For example, when blue light is absorbed by the first photoelectric conversion unit 101, red light and green light are easily absorbed by the third photoelectric conversion unit 201. When focus detection is performed based on the signal generated by the third photoelectric conversion unit 201, the shift between the focus with respect to visible light and the detected focus becomes smaller.
 (第2の実施形態)
 図3は、本発明の第2の実施形態の固体撮像装置1bの構成を示している。図3では固体撮像装置1bの断面が示されている。図3に示すように、固体撮像装置1bは、第1の基板10(第1の半導体基板)と、第1の基板10に積層された第2の基板20(第2の半導体基板)と、マイクロレンズ301と、透明層302とを有する。
(Second Embodiment)
FIG. 3 shows a configuration of a solid-state imaging device 1b according to the second embodiment of the present invention. FIG. 3 shows a cross section of the solid-state imaging device 1b. As shown in FIG. 3, the solid-state imaging device 1 b includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, and A microlens 301 and a transparent layer 302 are included.
 図3に示す構成について、図1に示す構成と異なる点を説明する。 The configuration shown in FIG. 3 will be described while referring to differences from the configuration shown in FIG.
 カラーフィルタ303は固体撮像装置1bに配置されていない。透明層302は、第1の基板10の第1の領域A1と第2の領域A2と第3の領域A3とに対応する位置に配置されている。図1では複数の第3の領域A3が存在するが、代表として1つの第3の領域A3の符号が示されている。透明層302の表面にマイクロレンズ301が形成されている。 The color filter 303 is not disposed in the solid-state imaging device 1b. The transparent layer 302 is disposed at a position corresponding to the first region A1, the second region A2, and the third region A3 of the first substrate 10. In FIG. 1, there are a plurality of third regions A3, but a symbol of one third region A3 is shown as a representative. A microlens 301 is formed on the surface of the transparent layer 302.
 第1の半導体層100は、第1の光電変換部101と、第2の光電変換部102と、第4の光電変換部104とを有する。図3では複数の第4の光電変換部104が存在するが、代表として1つの第4の光電変換部104の符号が示されている。 The first semiconductor layer 100 includes a first photoelectric conversion unit 101, a second photoelectric conversion unit 102, and a fourth photoelectric conversion unit 104. In FIG. 3, there are a plurality of fourth photoelectric conversion units 104, but a symbol of one fourth photoelectric conversion unit 104 is shown as a representative.
 第4の光電変換部104は、例えば第1の半導体層100を構成する半導体材料とは不純物濃度が異なる半導体材料で構成されている。第4の光電変換部104は、第1の基板10において第3の厚さの第3の領域A3に形成されている。例えば、第3の領域A3は、緑の光を受光するG画素に対応する。第3の厚さは、透明層302と接触している第1の半導体層100の表面と、第1の配線層110と接触している第1の半導体層100の第1の面との間の距離に等しい。第3の領域A3は第1の半導体層100に含まれる。第3の厚さは第1の領域A1の第1の厚さよりも大きい。また、第3の厚さは第2の領域A2の第2の厚さよりも小さい。例えば、第2の実施形態における第1の領域A1は、青の光を受光するB画素に対応する。例えば、第2の実施形態における第2の領域A2は、赤の光を受光するR画素に対応する。 The fourth photoelectric conversion unit 104 is made of a semiconductor material having an impurity concentration different from that of the semiconductor material forming the first semiconductor layer 100, for example. The fourth photoelectric conversion unit 104 is formed in the third region A3 having the third thickness in the first substrate 10. For example, the third region A3 corresponds to a G pixel that receives green light. The third thickness is between the surface of the first semiconductor layer 100 in contact with the transparent layer 302 and the first surface of the first semiconductor layer 100 in contact with the first wiring layer 110. Equal to the distance. The third region A3 is included in the first semiconductor layer 100. The third thickness is larger than the first thickness of the first region A1. The third thickness is smaller than the second thickness of the second region A2. For example, the first region A1 in the second embodiment corresponds to a B pixel that receives blue light. For example, the second region A2 in the second embodiment corresponds to an R pixel that receives red light.
 透明層302を透過した光は第1の半導体層100に入射する。第1の領域A1における第1の半導体層100に入射した光は、第1の半導体層100内を進んで第1の光電変換部101に入射する。第1の光電変換部101は第1の波長の光を信号に変換する。第2の領域A2における第1の半導体層100に入射した光は、第1の半導体層100内を進んで第2の光電変換部102に入射する。第2の光電変換部102は第2の波長の光を信号に変換する。第1の波長は第2の波長よりも短い。第3の領域A3における第1の半導体層100に入射した光は、第1の半導体層100内を進んで第4の光電変換部104に入射する。第4の光電変換部104は第3の波長の光を信号に変換する。第3の波長は第1の波長よりも長い。また、第3の波長は第2の波長よりも短い。例えば、第1の光電変換部101と第2の光電変換部102と第4の光電変換部104とで生成された信号は、撮像信号として使用される。 The light transmitted through the transparent layer 302 enters the first semiconductor layer 100. The light that has entered the first semiconductor layer 100 in the first region A1 travels through the first semiconductor layer 100 and enters the first photoelectric conversion unit 101. The first photoelectric conversion unit 101 converts light having the first wavelength into a signal. The light incident on the first semiconductor layer 100 in the second region A2 travels through the first semiconductor layer 100 and enters the second photoelectric conversion unit 102. The second photoelectric conversion unit 102 converts light having the second wavelength into a signal. The first wavelength is shorter than the second wavelength. Light that has entered the first semiconductor layer 100 in the third region A3 travels through the first semiconductor layer 100 and enters the fourth photoelectric conversion unit 104. The fourth photoelectric conversion unit 104 converts light having the third wavelength into a signal. The third wavelength is longer than the first wavelength. The third wavelength is shorter than the second wavelength. For example, signals generated by the first photoelectric conversion unit 101, the second photoelectric conversion unit 102, and the fourth photoelectric conversion unit 104 are used as imaging signals.
 上記以外の点については、図3に示す構成は図1に示す構成と同様である。 3 other than the above, the configuration shown in FIG. 3 is the same as the configuration shown in FIG.
 例えば、第1の光電変換部101によって信号に変換される光の第1の波長は青に対応する。例えば、第2の光電変換部102によって信号に変換される光の第2の波長は赤に対応する。例えば、第4の光電変換部104によって信号に変換される光の第3の波長は緑に対応する。第2の波長の光と比較して第3の波長の光に対する半導体(シリコン等)の吸収効率は高い。このため、第4の光電変換部104が形成されている第3の領域A3の第1の厚さを、第2の光電変換部102が形成されている第2の領域A2の第2の厚さよりも小さくすることができる。第3の波長の光と比較して第1の波長の光に対する半導体(シリコン等)の吸収効率は高い。このため、第1の光電変換部101が形成されている第1の領域A1の第1の厚さを、第4の光電変換部104が形成されている第3の領域A3の第3の厚さよりも小さくすることができる。 For example, the first wavelength of light converted into a signal by the first photoelectric conversion unit 101 corresponds to blue. For example, the second wavelength of light converted into a signal by the second photoelectric conversion unit 102 corresponds to red. For example, the third wavelength of light converted into a signal by the fourth photoelectric conversion unit 104 corresponds to green. Compared with light of the second wavelength, the absorption efficiency of the semiconductor (such as silicon) with respect to the light of the third wavelength is high. For this reason, the first thickness of the third region A3 in which the fourth photoelectric conversion unit 104 is formed is the second thickness of the second region A2 in which the second photoelectric conversion unit 102 is formed. It can be made smaller than this. The absorption efficiency of a semiconductor (such as silicon) with respect to light of the first wavelength is higher than that of light of the third wavelength. For this reason, the first thickness of the first region A1 in which the first photoelectric conversion unit 101 is formed is the third thickness of the third region A3 in which the fourth photoelectric conversion unit 104 is formed. It can be made smaller than this.
 本発明の各態様の固体撮像装置は、第1の配線層110と、第2の配線層210と、マイクロレンズ301と、透明層302との少なくとも1つに対応する構成を有していなくてもよい。 The solid-state imaging device of each aspect of the present invention does not have a configuration corresponding to at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, and the transparent layer 302. Also good.
 第2の実施形態では、第1の半導体層100の領域ごと、すなわち画素ごとに第1の半導体層100の厚さが異なる。このため、画素ごとに吸収できる光の波長帯が異なる。したがって、カラーフィルタ303が配置されていなくてよい。 In the second embodiment, the thickness of the first semiconductor layer 100 is different for each region of the first semiconductor layer 100, that is, for each pixel. For this reason, the wavelength band of light that can be absorbed is different for each pixel. Therefore, the color filter 303 may not be arranged.
 (第3の実施形態)
 図4は、本発明の第3の実施形態の固体撮像装置1cの構成を示している。図4では固体撮像装置1cの断面が示されている。図4に示すように、固体撮像装置1cは、第1の基板10(第1の半導体基板)と、第1の基板10に積層された第2の基板20(第2の半導体基板)と、マイクロレンズ301と、透明層302と、第1のカラーフィルタ304と、第2のカラーフィルタ305とを有する。
(Third embodiment)
FIG. 4 shows a configuration of a solid-state imaging device 1c according to the third embodiment of the present invention. FIG. 4 shows a cross section of the solid-state imaging device 1c. As shown in FIG. 4, the solid-state imaging device 1 c includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, and A microlens 301, a transparent layer 302, a first color filter 304, and a second color filter 305 are included.
 図4に示す構成について、図3に示す構成と異なる点を説明する。 4 will be described with respect to differences from the configuration shown in FIG.
 透明層302と第1のカラーフィルタ304と第2のカラーフィルタ305とは、第1の基板10の表面に形成されている。第1のカラーフィルタ304は、第1の基板10の第2の領域A2に対応する位置に配置されている。第2のカラーフィルタ305は、第1の基板10の第3の領域A3に対応する位置に配置されている。第1のカラーフィルタ304と第2のカラーフィルタ305とは、所定の色に対応した波長の光を透過させる。透明層302と第1のカラーフィルタ304と第2のカラーフィルタ305との表面にマイクロレンズ301が形成されている。 The transparent layer 302, the first color filter 304 and the second color filter 305 are formed on the surface of the first substrate 10. The first color filter 304 is disposed at a position corresponding to the second region A2 of the first substrate 10. The second color filter 305 is disposed at a position corresponding to the third region A3 of the first substrate 10. The first color filter 304 and the second color filter 305 transmit light having a wavelength corresponding to a predetermined color. Microlenses 301 are formed on the surfaces of the transparent layer 302, the first color filter 304, and the second color filter 305.
 マイクロレンズ301と透明層302とを透過した光は、第1の領域A1における第1の半導体層100に入射する。マイクロレンズ301と第1のカラーフィルタ304とを透過した光は、第2の領域A2における第1の半導体層100に入射する。マイクロレンズ301と第2のカラーフィルタ305とを透過した光は、第3の領域A3における第1の半導体層100に入射する。 The light transmitted through the microlens 301 and the transparent layer 302 is incident on the first semiconductor layer 100 in the first region A1. The light transmitted through the microlens 301 and the first color filter 304 is incident on the first semiconductor layer 100 in the second region A2. The light transmitted through the microlens 301 and the second color filter 305 is incident on the first semiconductor layer 100 in the third region A3.
 被写体からの第1の光が第1のカラーフィルタ304に入射する。例えば、第1のカラーフィルタ304は、入射した第1の光のうち赤の波長の第2の光を透過させる。被写体からの第1の光が第2のカラーフィルタ305に入射する。例えば、第2のカラーフィルタ305は、入射した第1の光のうち緑の波長の第3の光を透過させる。第1のカラーフィルタ304を透過した第2の光が第2の光電変換部102に入射する。第2のカラーフィルタ305を透過した第3の光が第4の光電変換部104に入射する。 The first light from the subject enters the first color filter 304. For example, the first color filter 304 transmits the second light having a red wavelength among the incident first light. The first light from the subject enters the second color filter 305. For example, the second color filter 305 transmits the third light having the green wavelength in the incident first light. The second light transmitted through the first color filter 304 enters the second photoelectric conversion unit 102. The third light transmitted through the second color filter 305 enters the fourth photoelectric conversion unit 104.
 上記以外の点については、図4に示す構成は図3に示す構成と同様である。 4 is the same as the configuration shown in FIG. 3 with respect to points other than the above.
 本発明の各態様の固体撮像装置は、第1の配線層110と、第2の配線層210と、マイクロレンズ301と、透明層302と、第1のカラーフィルタ304と、第2のカラーフィルタ305との少なくとも1つに対応する構成を有していなくてもよい。 The solid-state imaging device according to each aspect of the present invention includes a first wiring layer 110, a second wiring layer 210, a microlens 301, a transparent layer 302, a first color filter 304, and a second color filter. It is not necessary to have a configuration corresponding to at least one of 305.
 第3の実施形態では、第1のカラーフィルタ304と第2のカラーフィルタ305とが配置されている。このため、第2の光電変換部102と第4の光電変換部104とで吸収される光の波長をより細かく制御することができる。例えば、第2の領域A2の第2の厚さが、赤の光の吸収に適した厚さに調整され、第1のカラーフィルタ304が赤の光を透過する場合、第2の光電変換部102で赤の光のみが吸収されやすくなる。あるいは、第3の領域A3の第3の厚さが、緑の光の吸収に適した厚さに調整され、第2のカラーフィルタ305が緑の光を透過する場合、第4の光電変換部104で緑の光のみが吸収されやすくなる。 In the third embodiment, a first color filter 304 and a second color filter 305 are arranged. For this reason, the wavelength of the light absorbed by the second photoelectric conversion unit 102 and the fourth photoelectric conversion unit 104 can be controlled more finely. For example, when the second thickness of the second region A2 is adjusted to a thickness suitable for absorption of red light, and the first color filter 304 transmits red light, the second photoelectric conversion unit At 102, only red light is easily absorbed. Alternatively, when the third thickness of the third region A3 is adjusted to a thickness suitable for absorption of green light, and the second color filter 305 transmits green light, the fourth photoelectric conversion unit At 104, only green light is easily absorbed.
 (第4の実施形態)
 図5は、本発明の第4の実施形態の固体撮像装置1dの構成を示している。図5では固体撮像装置1dの断面が示されている。図5に示すように、固体撮像装置1dは、第1の基板10(第1の半導体基板)と、第1の基板10に積層された第2の基板20(第2の半導体基板)と、マイクロレンズ301と、透明層302と、カラーフィルタ303とを有する。
(Fourth embodiment)
FIG. 5 shows a configuration of a solid-state imaging device 1d according to the fourth embodiment of the present invention. FIG. 5 shows a cross section of the solid-state imaging device 1d. As shown in FIG. 5, the solid-state imaging device 1 d includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, and A microlens 301, a transparent layer 302, and a color filter 303 are included.
 図5に示す構成について、図1に示す構成と異なる点を説明する。 The configuration shown in FIG. 5 will be described while referring to differences from the configuration shown in FIG.
 遮光層111aは配置されていない。また、第2の半導体層200において、第1の光電変換部101に対応する領域と第2の光電変換部102に対応する領域とに第3の光電変換部201が形成されている。 The light shielding layer 111a is not disposed. In the second semiconductor layer 200, a third photoelectric conversion unit 201 is formed in a region corresponding to the first photoelectric conversion unit 101 and a region corresponding to the second photoelectric conversion unit 102.
 被写体からの第1の光がカラーフィルタ303に入射する。例えば、カラーフィルタ303は、入射した第1の光のうち赤または緑の波長の第2の光を透過させる。カラーフィルタ303を透過した第2の光が第2の光電変換部102に入射する。第2の光電変換部102は、入射した第2の光を透過させる。第2の光電変換部102を透過した第2の光が第3の光電変換部201に入射する。例えば、カラーフィルタ303は、赤または緑の波長の光と赤外光とを透過させるように構成されている。このため、赤外光を含む光が第3の光電変換部201で吸収され得る。 The first light from the subject enters the color filter 303. For example, the color filter 303 transmits the second light having a red or green wavelength out of the incident first light. The second light transmitted through the color filter 303 is incident on the second photoelectric conversion unit 102. The second photoelectric conversion unit 102 transmits the incident second light. The second light transmitted through the second photoelectric conversion unit 102 enters the third photoelectric conversion unit 201. For example, the color filter 303 is configured to transmit red or green wavelength light and infrared light. For this reason, light including infrared light can be absorbed by the third photoelectric conversion unit 201.
 本発明の各態様の固体撮像装置は、第1の配線層110と、第2の配線層210と、マイクロレンズ301と、透明層302と、カラーフィルタ303との少なくとも1つに対応する構成を有していなくてもよい。 The solid-state imaging device according to each aspect of the present invention has a configuration corresponding to at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, the transparent layer 302, and the color filter 303. It may not have.
 第4の実施形態では、第1の実施形態における第3の光電変換部201よりも多くの第3の光電変換部201が信号を取得することができる。 In the fourth embodiment, more third photoelectric conversion units 201 than the third photoelectric conversion unit 201 in the first embodiment can acquire signals.
 (第5の実施形態)
 図6は、本発明の第5の実施形態の固体撮像装置1eの構成を示している。図6では固体撮像装置1eの断面が示されている。図6に示すように、固体撮像装置1eは、第1の基板10(第1の半導体基板)と、第1の基板10に積層された第2の基板20(第2の半導体基板)と、マイクロレンズ301と、第1のカラーフィルタ306と、第2のカラーフィルタ307とを有する。
(Fifth embodiment)
FIG. 6 shows a configuration of a solid-state imaging device 1e according to the fifth embodiment of the present invention. FIG. 6 shows a cross section of the solid-state imaging device 1e. As illustrated in FIG. 6, the solid-state imaging device 1e includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, A microlens 301, a first color filter 306, and a second color filter 307 are included.
 図6に示す構成について、図1に示す構成と異なる点を説明する。 6 will be described with respect to differences from the configuration shown in FIG.
 第1のカラーフィルタ306と第2のカラーフィルタ307とは、第1の基板10の表面に形成されている。第1のカラーフィルタ306は、第1の基板10の第1の領域A1に対応する位置に配置されている。第2のカラーフィルタ307は、第1の基板10の第2の領域A2に対応する位置に配置されている。第1のカラーフィルタ306と第2のカラーフィルタ307とは、所定の色に対応した波長の光を透過させる。第1のカラーフィルタ306と第2のカラーフィルタ307との表面にマイクロレンズ301が形成されている。 The first color filter 306 and the second color filter 307 are formed on the surface of the first substrate 10. The first color filter 306 is disposed at a position corresponding to the first region A1 of the first substrate 10. The second color filter 307 is disposed at a position corresponding to the second region A2 of the first substrate 10. The first color filter 306 and the second color filter 307 transmit light having a wavelength corresponding to a predetermined color. Microlenses 301 are formed on the surfaces of the first color filter 306 and the second color filter 307.
 被写体からの第1の光が第1のカラーフィルタ306に入射する。例えば、第1のカラーフィルタ306は、入射した第1の光のうち青の波長の第2の光を透過させる。被写体からの第1の光が第2のカラーフィルタ307に入射する。例えば、第2のカラーフィルタ307は、入射した第1の光のうち赤または緑の波長の第3の光を透過させる。第1のカラーフィルタ306を透過した第2の光が第1の光電変換部101に入射する。第2のカラーフィルタ307を透過した第3の光が第2の光電変換部102に入射する。 The first light from the subject enters the first color filter 306. For example, the first color filter 306 transmits the second light having the blue wavelength among the incident first light. First light from the subject enters the second color filter 307. For example, the second color filter 307 transmits the third light having a red or green wavelength out of the incident first light. The second light transmitted through the first color filter 306 enters the first photoelectric conversion unit 101. The third light transmitted through the second color filter 307 enters the second photoelectric conversion unit 102.
 例えば、青の波長の光と赤外光とを透過させるように第1のカラーフィルタ306を構成することが可能である。このため、第1の光電変換部101を透過した光は赤外光を含み得る。この結果、赤外光を含む光が第3の光電変換部201で吸収され得る。 For example, the first color filter 306 can be configured to transmit blue light and infrared light. For this reason, the light transmitted through the first photoelectric conversion unit 101 may include infrared light. As a result, light including infrared light can be absorbed by the third photoelectric conversion unit 201.
 上記以外の点については、図6に示す構成は図1に示す構成と同様である。 Regarding the points other than the above, the configuration shown in FIG. 6 is the same as the configuration shown in FIG.
 本発明の各態様の固体撮像装置は、第1の配線層110と、第2の配線層210と、マイクロレンズ301と、第1のカラーフィルタ306と、第2のカラーフィルタ307との少なくとも1つに対応する構成を有していなくてもよい。 The solid-state imaging device according to each aspect of the present invention includes at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, the first color filter 306, and the second color filter 307. It is not necessary to have the structure corresponding to one.
 第5の実施形態では、第1のカラーフィルタ306と第2のカラーフィルタ307とが配置されている。このため、第1の光電変換部101と第2の光電変換部102とで吸収される光の波長をより細かく制御することができる。例えば、第1の領域A1の第1の厚さが、青の光の吸収に適した厚さに調整され、第1のカラーフィルタ306が青の光を透過する場合、第1の光電変換部101で青の光のみが吸収されやすくなる。あるいは、第2の領域A2の第2の厚さが、赤または緑の光の吸収に適した厚さに調整され、第2のカラーフィルタ307が赤または緑の光を透過する場合、第2の光電変換部102で赤または緑の光のみが吸収されやすくなる。 In the fifth embodiment, the first color filter 306 and the second color filter 307 are arranged. For this reason, the wavelength of the light absorbed by the first photoelectric conversion unit 101 and the second photoelectric conversion unit 102 can be controlled more finely. For example, when the first thickness of the first region A1 is adjusted to a thickness suitable for absorption of blue light, and the first color filter 306 transmits blue light, the first photoelectric conversion unit In 101, only blue light is easily absorbed. Alternatively, when the second thickness of the second region A2 is adjusted to a thickness suitable for absorption of red or green light, and the second color filter 307 transmits red or green light, In the photoelectric conversion unit 102, only red or green light is easily absorbed.
 (第6の実施形態)
 図7は、本発明の第6の実施形態の固体撮像装置1fの構成を示している。図7では固体撮像装置1fの断面が示されている。図7に示すように、固体撮像装置1fは、第1の基板10(第1の半導体基板)と、第1の基板10に積層された第2の基板20(第2の半導体基板)と、マイクロレンズ301と、透明層302と、カラーフィルタ303とを有する。
(Sixth embodiment)
FIG. 7 shows a configuration of a solid-state imaging device 1f according to the sixth embodiment of the present invention. FIG. 7 shows a cross section of the solid-state imaging device 1f. As shown in FIG. 7, the solid-state imaging device 1f includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, A microlens 301, a transparent layer 302, and a color filter 303 are included.
 図7に示す構成について、図1に示す構成と異なる点を説明する。 The configuration shown in FIG. 7 will be described while referring to differences from the configuration shown in FIG.
 マイクロレンズ301の光学的前方に撮像レンズILが配置されている。撮像レンズILは固体撮像装置1fに含まれている必要はない。4層の第1の配線111のうち、第2の基板20に最も近い第4層に形成された第1の配線111は、選択部111bとして機能する。選択部111bは、第1の光電変換部101と第3の光電変換部201との間に配置されている。選択部111bは、第1の光電変換部101を透過した第1の光のうち撮像レンズILの射出瞳における瞳領域の一部を通過した第2の光のみを選択する。選択部111bによって選択された第2の光が第3の光電変換部201に入射する。 The imaging lens IL is disposed optically in front of the micro lens 301. The imaging lens IL need not be included in the solid-state imaging device 1f. Of the four layers of the first wiring 111, the first wiring 111 formed in the fourth layer closest to the second substrate 20 functions as the selection unit 111b. The selection unit 111b is disposed between the first photoelectric conversion unit 101 and the third photoelectric conversion unit 201. The selection unit 111b selects only the second light that has passed through a part of the pupil region in the exit pupil of the imaging lens IL from the first light transmitted through the first photoelectric conversion unit 101. The second light selected by the selection unit 111b enters the third photoelectric conversion unit 201.
 選択部111bは、第1の基板10の第1の領域A1に対応する位置に配置されている。また、選択部111bは、第1の基板10または第2の基板20の主面に垂直な方向において、マイクロレンズ301によって光が結像される位置(結像点)に配置されている。選択部111bは、撮像レンズILの射出瞳における2つの瞳領域の一方のみを通過した光が結像する位置に形成された第1の開口部1110aと第2の開口部1110bとを有する。第1の開口部1110aと第2の開口部1110bとは、選択部111bの側壁で構成されている。 The selection unit 111b is disposed at a position corresponding to the first region A1 of the first substrate 10. The selection unit 111 b is disposed at a position (image formation point) where light is imaged by the microlens 301 in a direction perpendicular to the main surface of the first substrate 10 or the second substrate 20. The selection unit 111b includes a first opening 1110a and a second opening 1110b that are formed at positions where light passing through only one of the two pupil regions in the exit pupil of the imaging lens IL is imaged. The 1st opening part 1110a and the 2nd opening part 1110b are comprised by the side wall of the selection part 111b.
 第1の開口部1110aは、マイクロレンズ301を通過して第1の光電変換部101を透過した光のうち撮像レンズILの射出瞳における2つの瞳領域の一方のみを通過した光が通過する位置に形成されている。第1の開口部1110aは、マイクロレンズ301の中心よりも右側に偏った位置に形成されている。 The first opening 1110a is a position through which light that has passed through one of the two pupil regions in the exit pupil of the imaging lens IL passes among the light that has passed through the microlens 301 and passed through the first photoelectric conversion unit 101. Is formed. The first opening 1110 a is formed at a position that is offset to the right side from the center of the microlens 301.
 第2の開口部1110bは、マイクロレンズ301を通過して第1の光電変換部101を透過した光のうち撮像レンズILの射出瞳における2つの瞳領域の一方(第1の開口部1110aを通過する光が通過した瞳領域とは異なる瞳領域)のみを通過した光が通過する位置に形成されている。第2の開口部1110bは、マイクロレンズ301の中心よりも左側に偏った位置に形成されている。 The second opening 1110b passes through the microlens 301 and passes through the first photoelectric conversion unit 101, and one of the two pupil regions in the exit pupil of the imaging lens IL (passes through the first opening 1110a). It is formed at a position where light that has passed only through a pupil region that is different from the pupil region through which transmitted light passes. The second opening 1110b is formed at a position deviated to the left of the center of the microlens 301.
 第1の基板10の主面に平行な平面において、マイクロレンズ301が光を結像する位置は、その光が通過した瞳領域に応じた位置である。第1の開口部1110aは、撮像レンズILの左右の瞳領域のうち左側の瞳領域を通過した光が結像する位置に形成されている。したがって、選択部111bは、左側の瞳領域を通過した光を選択的に第1の開口部1110aに通過させる。第2の開口部1110bは、撮像レンズILの左右の瞳領域のうち右側の瞳領域を通過した光が結像する位置に形成されている。したがって、選択部111bは、右側の瞳領域を通過した光を選択的に第2の開口部1110bに通過させる。図7では、第1の配線111の1つの層が選択部111bを構成している。しかし、選択部111bは、第1の配線111とは別の構造であってもよい。 In the plane parallel to the main surface of the first substrate 10, the position where the microlens 301 forms light is a position corresponding to the pupil region through which the light has passed. The first opening 1110a is formed at a position where light that has passed through the left pupil region of the left and right pupil regions of the imaging lens IL forms an image. Therefore, the selection unit 111b selectively allows the light that has passed through the left pupil region to pass through the first opening 1110a. The second opening 1110b is formed at a position where light that has passed through the right pupil region of the left and right pupil regions of the imaging lens IL forms an image. Therefore, the selection unit 111b selectively allows the light that has passed through the right pupil region to pass through the second opening 1110b. In FIG. 7, one layer of the first wiring 111 constitutes the selection unit 111b. However, the selection unit 111b may have a structure different from that of the first wiring 111.
 上記以外の点については、図7に示す構成は図1に示す構成と同様である。 With respect to points other than those described above, the configuration shown in FIG. 7 is the same as the configuration shown in FIG.
 本発明の各態様の固体撮像装置は、第1の配線層110と、第2の配線層210と、マイクロレンズ301と、透明層302と、カラーフィルタ303との少なくとも1つに対応する構成を有していなくてもよい。 The solid-state imaging device according to each aspect of the present invention has a configuration corresponding to at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, the transparent layer 302, and the color filter 303. It may not have.
 第6の実施形態では、撮像レンズILの射出瞳における異なる瞳領域を通過した光に基づいて複数の第3の光電変換部201で生成された信号群が取得される。信号群を用いて、撮像レンズILの射出瞳において互いに逆方向となる左方向および右方向に偏った左側・右側の瞳領域を通過した光の位相差を検出することによって、合焦点が算出される。合焦点の算出は、固体撮像装置1f内で行われてもよいし、固体撮像装置1fの外部で行われてもよい。したがって、位相差検出方式による焦点検出を行うことができる。 In the sixth embodiment, a signal group generated by the plurality of third photoelectric conversion units 201 is acquired based on light that has passed through different pupil regions in the exit pupil of the imaging lens IL. Using the signal group, the focal point is calculated by detecting the phase difference of the light that has passed through the left and right pupil regions that are biased in the left and right directions opposite to each other in the exit pupil of the imaging lens IL. The The calculation of the focal point may be performed within the solid-state imaging device 1f or may be performed outside the solid-state imaging device 1f. Therefore, focus detection by the phase difference detection method can be performed.
 第1から第5の実施形態の固体撮像装置1aから1eが選択部111bを有していてもよい。これによって、固体撮像装置1aから1eが位相差検出方式による焦点検出を行うことができる。 The solid-state imaging devices 1a to 1e of the first to fifth embodiments may include the selection unit 111b. As a result, the solid-state imaging devices 1a to 1e can perform focus detection by the phase difference detection method.
 (第7の実施形態)
 図8は、本発明の第7の実施形態の固体撮像装置1gの構成を示している。図8では固体撮像装置1gの断面が示されている。図8に示すように、固体撮像装置1gは、第1の基板10(第1の半導体基板)と、第1の基板10に積層された第2の基板20(第2の半導体基板)と、マイクロレンズ301と、透明層302と、カラーフィルタ303と、選択部308とを有する。
(Seventh embodiment)
FIG. 8 shows a configuration of a solid-state imaging device 1g according to the seventh embodiment of the present invention. FIG. 8 shows a cross section of the solid-state imaging device 1g. As shown in FIG. 8, the solid-state imaging device 1g includes a first substrate 10 (first semiconductor substrate), a second substrate 20 (second semiconductor substrate) stacked on the first substrate 10, A microlens 301, a transparent layer 302, a color filter 303, and a selection unit 308 are included.
 図8に示す構成について、図1に示す構成と異なる点を説明する。 The difference between the configuration shown in FIG. 8 and the configuration shown in FIG. 1 will be described.
 第1の基板10と第2の基板20との間に選択部308が配置されている。選択部308は、カラーフィルタ303を構成する有機材料または無機材料と同様の材料で構成されている。選択部308は、第1の基板10の第1の配線層110と第2の基板20の第2の配線層210とに接触している。選択部308は、第1の光電変換部101と第3の光電変換部201との間に配置され、第1の光電変換部101を透過した第1の光のうち特定の波長の第2の光のみを選択する。例えば、選択部308は、赤の波長の光を選択する。選択部308によって選択された第2の光は選択部308を透過する。選択部308によって選択された第2の光が第3の光電変換部201に入射する。 The selection unit 308 is disposed between the first substrate 10 and the second substrate 20. The selection unit 308 is made of a material similar to the organic material or the inorganic material constituting the color filter 303. The selection unit 308 is in contact with the first wiring layer 110 of the first substrate 10 and the second wiring layer 210 of the second substrate 20. The selection unit 308 is disposed between the first photoelectric conversion unit 101 and the third photoelectric conversion unit 201, and the second light having a specific wavelength among the first light transmitted through the first photoelectric conversion unit 101. Select only light. For example, the selection unit 308 selects light having a red wavelength. The second light selected by the selection unit 308 passes through the selection unit 308. The second light selected by the selection unit 308 enters the third photoelectric conversion unit 201.
 上記以外の点については、図8に示す構成は図1に示す構成と同様である。 Other than the above, the configuration shown in FIG. 8 is the same as the configuration shown in FIG.
 本発明の各態様の固体撮像装置は、第1の配線層110と、第2の配線層210と、マイクロレンズ301と、透明層302と、カラーフィルタ303と、選択部308との少なくとも1つに対応する構成を有していなくてもよい。 The solid-state imaging device according to each aspect of the present invention includes at least one of the first wiring layer 110, the second wiring layer 210, the microlens 301, the transparent layer 302, the color filter 303, and the selection unit 308. It is not necessary to have the structure corresponding to.
 第7の実施形態では、選択部308が特定の波長の光を透過させる。このため、特定の波長の光が第3の光電変換部201に入射する。この結果、特定の波長の光に基づく撮像を行うことができる。特定の波長は任意に選択可能である。 In the seventh embodiment, the selection unit 308 transmits light of a specific wavelength. For this reason, light of a specific wavelength is incident on the third photoelectric conversion unit 201. As a result, imaging based on light of a specific wavelength can be performed. The specific wavelength can be arbitrarily selected.
 第1から第5の実施形態の固体撮像装置1aから1eが選択部308を有していてもよい。これによって、固体撮像装置1aから1eが特定の波長の光に基づく撮像を行うことができる。 The solid-state imaging devices 1a to 1e according to the first to fifth embodiments may include the selection unit 308. Thereby, the solid-state imaging devices 1a to 1e can perform imaging based on light of a specific wavelength.
(第8の実施形態)
 図9は、本発明の第8の実施形態の撮像装置7の構成を示している。撮像装置7は、撮像機能を有する電子機器であればよい。例えば、撮像装置7は、デジタルカメラと、デジタルビデオカメラと、内視鏡と、顕微鏡とのいずれか1つである。図9に示すように、撮像装置7は、固体撮像装置1と、レンズユニット部2と、画像信号処理装置3と、記録装置4と、カメラ制御装置5と、表示装置6とを有する。
(Eighth embodiment)
FIG. 9 shows a configuration of an imaging apparatus 7 according to the eighth embodiment of the present invention. The imaging device 7 may be an electronic device having an imaging function. For example, the imaging device 7 is any one of a digital camera, a digital video camera, an endoscope, and a microscope. As illustrated in FIG. 9, the imaging device 7 includes a solid-state imaging device 1, a lens unit unit 2, an image signal processing device 3, a recording device 4, a camera control device 5, and a display device 6.
 固体撮像装置1は第1から第7の実施形態の固体撮像装置1aから1gのいずれか1つである。レンズユニット部2は、ズームレンズとフォーカスレンズとを有する。レンズユニット部2は、被写体からの光に基づく被写体像を固体撮像装置1の受光面に形成する。レンズユニット部2を介して取り込まれた光は固体撮像装置1の受光面に結像される。固体撮像装置1は、受光面に結像された被写体像を撮像信号等の信号に変換し、その信号を出力する。 The solid-state imaging device 1 is any one of the solid-state imaging devices 1a to 1g of the first to seventh embodiments. The lens unit 2 has a zoom lens and a focus lens. The lens unit 2 forms a subject image based on light from the subject on the light receiving surface of the solid-state imaging device 1. The light taken in through the lens unit 2 is imaged on the light receiving surface of the solid-state imaging device 1. The solid-state imaging device 1 converts the subject image formed on the light receiving surface into a signal such as an imaging signal and outputs the signal.
 画像信号処理装置3は、固体撮像装置1から出力された信号に対して、予め定められた処理を行う。画像信号処理装置3によって行われる処理は、画像データへの変換、画像データの各種の補正、および画像データの圧縮などである。画像信号処理装置3は、固体撮像装置1から出力された焦点検出用の信号を用いて、位相差検出方式による演算を行い、合焦点を算出してもよい。 The image signal processing device 3 performs a predetermined process on the signal output from the solid-state imaging device 1. The processing performed by the image signal processing device 3 includes conversion to image data, various corrections of the image data, and compression of the image data. The image signal processing device 3 may perform a calculation by a phase difference detection method using the focus detection signal output from the solid-state imaging device 1 to calculate a focal point.
 記録装置4は、画像データの記録または読み出しを行うための半導体メモリなどを有する。記録装置4は、撮像装置7に対して着脱可能である。表示装置6は、画像信号処理装置3によって処理された画像データ、または記録装置4から読み出された画像データに基づく画像を表示する。 The recording device 4 includes a semiconductor memory for recording or reading image data. The recording device 4 is detachable from the imaging device 7. The display device 6 displays an image based on the image data processed by the image signal processing device 3 or the image data read from the recording device 4.
 カメラ制御装置5は、撮像装置7全体の制御を行う。カメラ制御装置5の動作は、撮像装置7に内蔵されたROMに格納されているプログラムに規定されている。カメラ制御装置5は、このプログラムを読み出して、プログラムが規定する内容に従って、各種の制御を行う。 The camera control device 5 controls the entire imaging device 7. The operation of the camera control device 5 is defined by a program stored in a ROM built in the imaging device 7. The camera control device 5 reads out this program and performs various controls according to the contents defined by the program.
 本発明の各態様の撮像装置は、レンズユニット部2と、画像信号処理装置3と、記録装置4と、カメラ制御装置5と、表示装置6との少なくとも1つに対応する構成を有していなくてもよい。 The imaging device according to each aspect of the present invention has a configuration corresponding to at least one of the lens unit unit 2, the image signal processing device 3, the recording device 4, the camera control device 5, and the display device 6. It does not have to be.
 第8の実施形態によれば、固体撮像装置1を有する撮像装置7が構成される。このため、第1の基板10を透過して第2の基板20に入射する光の量を増加させることができる。 According to the eighth embodiment, the imaging device 7 having the solid-state imaging device 1 is configured. For this reason, the amount of light that passes through the first substrate 10 and enters the second substrate 20 can be increased.
 以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成は上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the above-described embodiments, and includes design changes and the like without departing from the gist of the present invention. .
 本発明の各実施形態によれば、第1の波長の光を光電変換する第1の光電変換部が形成されている第1の領域の第1の厚さは、第2の波長の光を光電変換する第2の光電変換部が形成されている第2の領域の第2の厚さよりも小さい。このため、光が第1の領域を透過しやすい。この結果、第1の半導体基板を透過して第2の半導体基板に入射する光の量を増加させることができる。 According to each embodiment of the present invention, the first thickness of the first region in which the first photoelectric conversion unit that photoelectrically converts light of the first wavelength is formed is the light of the second wavelength. The thickness is smaller than the second thickness of the second region in which the second photoelectric conversion portion for photoelectric conversion is formed. For this reason, light tends to pass through the first region. As a result, the amount of light that passes through the first semiconductor substrate and enters the second semiconductor substrate can be increased.
 1,1a,1b,1c,1d,1e,1f,1g,1000 固体撮像装置
 2 レンズユニット部
 3 画像信号処理装置
 4 記録装置
 5 カメラ制御装置
 6 表示装置
 7 撮像装置
 10,80 第1の基板
 20,90 第2の基板
 100,800 第1の半導体層
 101,801 第1の光電変換部
 102,901 第2の光電変換部
 104 第4の光電変換部
 110,810 第1の配線層
 111,811 第1の配線
 111a,811a 遮光層
 111b,308 選択部
 112,813 第1の層間絶縁膜
 200,900 第2の半導体層
 201 第3の光電変換部
 210,910 第2の配線層
 211,911 第2の配線
 212,913 第2の層間絶縁膜
 301,ML マイクロレンズ
 302 透明層
 303,CF カラーフィルタ
 304,306 第1のカラーフィルタ
 305,307 第2のカラーフィルタ
 812 第1のビア
 912 第2のビア
 920 MOSトランジスタ
 1110a 第1の開口部
 1110b 第2の開口部
 8110 開口部
1, 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1000 Solid-state imaging device 2 Lens unit section 3 Image signal processing device 4 Recording device 5 Camera control device 6 Display device 7 Imaging device 10, 80 First substrate 20 , 90 Second substrate 100, 800 First semiconductor layer 101, 801 First photoelectric conversion unit 102, 901 Second photoelectric conversion unit 104 Fourth photoelectric conversion unit 110, 810 First wiring layer 111, 811 1st wiring 111a, 811a Light shielding layer 111b, 308 Selection part 112,813 1st interlayer insulation film 200,900 2nd semiconductor layer 201 3rd photoelectric conversion part 210,910 2nd wiring layer 211,911 1st Second wiring 212, 913 Second interlayer insulating film 301, ML microlens 302 Transparent layer 303, CF color filter 304, 306 First color filter 305, 307 Second color filter 812 First via 912 Second via 920 MOS transistor 1110a First opening 1110b Second opening 8110 Opening

Claims (7)

  1.  第1の光電変換部と第2の光電変換部とを有する第1の半導体基板であって、前記第1の光電変換部は、前記第1の半導体基板において第1の厚さの第1の領域に形成され、前記第2の光電変換部は、前記第1の半導体基板において第2の厚さの第2の領域に形成され、前記第1の光電変換部は第1の波長の光を信号に変換し、前記第2の光電変換部は第2の波長の光を信号に変換し、前記第1の厚さは前記第2の厚さよりも小さく、前記第1の波長は前記第2の波長よりも短い前記第1の半導体基板と、
     前記第1の光電変換部を透過した光が入射する第3の光電変換部を有し、前記第1の半導体基板に積層された第2の半導体基板と、
     を有する固体撮像装置。
    A first semiconductor substrate having a first photoelectric conversion unit and a second photoelectric conversion unit, wherein the first photoelectric conversion unit has a first thickness of a first thickness in the first semiconductor substrate. The second photoelectric conversion unit is formed in a second region having a second thickness in the first semiconductor substrate, and the first photoelectric conversion unit emits light having a first wavelength. The second photoelectric conversion unit converts light having a second wavelength into a signal, the first thickness is smaller than the second thickness, and the first wavelength is the second wavelength. The first semiconductor substrate shorter than the wavelength of
    A second semiconductor substrate having a third photoelectric conversion unit on which light transmitted through the first photoelectric conversion unit is incident and stacked on the first semiconductor substrate;
    A solid-state imaging device.
  2.  前記第1の光電変換部と前記第3の光電変換部との間に配置され、前記第1の光電変換部を透過した第1の光のうち撮像レンズの射出瞳における瞳領域の一部を通過した第2の光のみを選択する選択部をさらに有し、
     前記選択部によって選択された前記第2の光が前記第3の光電変換部に入射する
     請求項1に記載の固体撮像装置。
    A portion of the pupil region in the exit pupil of the imaging lens of the first light that is arranged between the first photoelectric conversion unit and the third photoelectric conversion unit and transmitted through the first photoelectric conversion unit. A selector that selects only the second light that has passed;
    The solid-state imaging device according to claim 1, wherein the second light selected by the selection unit is incident on the third photoelectric conversion unit.
  3.  前記第1の光電変換部と前記第3の光電変換部との間に配置され、前記第1の光電変換部を透過した第1の光のうち特定の波長の第2の光のみを選択する選択部をさらに有し、
     前記選択部によって選択された前記第2の光が前記第3の光電変換部に入射する
     請求項1に記載の固体撮像装置。
    Only the second light having a specific wavelength is selected from the first light that is arranged between the first photoelectric conversion unit and the third photoelectric conversion unit and transmitted through the first photoelectric conversion unit. A selection unit;
    The solid-state imaging device according to claim 1, wherein the second light selected by the selection unit is incident on the third photoelectric conversion unit.
  4.  被写体からの第1の光が入射し、入射した前記第1の光のうち赤または緑の波長の第2の光を透過させるカラーフィルタをさらに有し、
     前記カラーフィルタを透過した前記第2の光が前記第2の光電変換部に入射し、
     前記被写体からの前記第1の光のうち前記赤と前記緑と青とのそれぞれの波長の成分を含む第3の光が前記第1の光電変換部に入射する
     請求項1に記載の固体撮像装置。
    A color filter that receives the first light from the subject and transmits the second light having a wavelength of red or green among the incident first light;
    The second light transmitted through the color filter is incident on the second photoelectric conversion unit;
    2. The solid-state imaging according to claim 1, wherein third light including components of wavelengths of red, green, and blue out of the first light from the subject is incident on the first photoelectric conversion unit. apparatus.
  5.  被写体からの第1の光が入射し、入射した前記第1の光のうち青の波長の第2の光を透過させる第1のカラーフィルタと、
     前記被写体からの前記第1の光が入射し、入射した前記第1の光のうち赤または緑の波長の第3の光を透過させる第2のカラーフィルタと、
     をさらに有し、
     前記第1のカラーフィルタを透過した前記第2の光が前記第1の光電変換部に入射し、
     前記第2のカラーフィルタを透過した前記第3の光が前記第2の光電変換部に入射する
     請求項1に記載の固体撮像装置。
    A first color filter that receives first light from a subject and transmits second light having a blue wavelength in the incident first light;
    A second color filter that receives the first light from the subject and transmits a third light having a red or green wavelength among the incident first light;
    Further comprising
    The second light transmitted through the first color filter is incident on the first photoelectric conversion unit;
    The solid-state imaging device according to claim 1, wherein the third light transmitted through the second color filter is incident on the second photoelectric conversion unit.
  6.  前記第1の半導体基板はさらに、第4の光電変換部を有し、前記第4の光電変換部は、前記第1の半導体基板において第3の厚さの第3の領域に形成され、前記第4の光電変換部は第3の波長の光を信号に変換し、前記第3の厚さは前記第1の厚さよりも大きく、前記第3の厚さは前記第2の厚さよりも小さく、前記第3の波長は前記第1の波長よりも長く、前記第3の波長は前記第2の波長よりも短い請求項1に記載の固体撮像装置。 The first semiconductor substrate further includes a fourth photoelectric conversion unit, and the fourth photoelectric conversion unit is formed in a third region having a third thickness in the first semiconductor substrate, The fourth photoelectric conversion unit converts the light of the third wavelength into a signal, the third thickness is larger than the first thickness, and the third thickness is smaller than the second thickness. The solid-state imaging device according to claim 1, wherein the third wavelength is longer than the first wavelength, and the third wavelength is shorter than the second wavelength.
  7.  請求項1に記載の固体撮像装置を有する撮像装置。 An imaging device having the solid-state imaging device according to claim 1.
PCT/JP2014/076568 2014-10-03 2014-10-03 Solid state imaging device, and imaging device WO2016051594A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076568 WO2016051594A1 (en) 2014-10-03 2014-10-03 Solid state imaging device, and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076568 WO2016051594A1 (en) 2014-10-03 2014-10-03 Solid state imaging device, and imaging device

Publications (1)

Publication Number Publication Date
WO2016051594A1 true WO2016051594A1 (en) 2016-04-07

Family

ID=55629679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076568 WO2016051594A1 (en) 2014-10-03 2014-10-03 Solid state imaging device, and imaging device

Country Status (1)

Country Link
WO (1) WO2016051594A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194577A1 (en) * 2015-05-29 2016-12-08 ソニー株式会社 Imaging element, imaging method, program, and electronic device
CN111081727A (en) * 2018-10-19 2020-04-28 佳能株式会社 Photoelectric conversion apparatus, photoelectric conversion system, and movable object
CN111697015A (en) * 2019-03-15 2020-09-22 株式会社东芝 Solid-state imaging device
WO2021157250A1 (en) * 2020-02-06 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 Light receiving element, solid-state imaging device, and electronic apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332602A (en) * 2005-05-25 2006-12-07 Samsung Electro Mech Co Ltd Image sensor for semiconductor sensitization devices, and image sensor processor using this
JP2007184603A (en) * 2005-12-29 2007-07-19 Magnachip Semiconductor Ltd Cmos image sensor with backside illumination structure
JP2013187475A (en) * 2012-03-09 2013-09-19 Olympus Corp Solid state imaging device and camera system
JP2014130890A (en) * 2012-12-28 2014-07-10 Canon Inc Photoelectric conversion device
JP2014179413A (en) * 2013-03-14 2014-09-25 Toshiba Corp Solid-state image pickup device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332602A (en) * 2005-05-25 2006-12-07 Samsung Electro Mech Co Ltd Image sensor for semiconductor sensitization devices, and image sensor processor using this
JP2007184603A (en) * 2005-12-29 2007-07-19 Magnachip Semiconductor Ltd Cmos image sensor with backside illumination structure
JP2013187475A (en) * 2012-03-09 2013-09-19 Olympus Corp Solid state imaging device and camera system
JP2014130890A (en) * 2012-12-28 2014-07-10 Canon Inc Photoelectric conversion device
JP2014179413A (en) * 2013-03-14 2014-09-25 Toshiba Corp Solid-state image pickup device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194577A1 (en) * 2015-05-29 2016-12-08 ソニー株式会社 Imaging element, imaging method, program, and electronic device
CN111081727A (en) * 2018-10-19 2020-04-28 佳能株式会社 Photoelectric conversion apparatus, photoelectric conversion system, and movable object
CN111081727B (en) * 2018-10-19 2023-12-01 佳能株式会社 Photoelectric conversion apparatus, photoelectric conversion system, and movable object
CN111697015A (en) * 2019-03-15 2020-09-22 株式会社东芝 Solid-state imaging device
CN111697015B (en) * 2019-03-15 2023-05-26 株式会社东芝 Solid-state imaging device
WO2021157250A1 (en) * 2020-02-06 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 Light receiving element, solid-state imaging device, and electronic apparatus
JP7437957B2 (en) 2020-02-06 2024-02-26 ソニーセミコンダクタソリューションズ株式会社 Photodetector, solid-state imaging device, and electronic equipment

Similar Documents

Publication Publication Date Title
JP5331107B2 (en) Imaging device
JP6196911B2 (en) Solid-state imaging device and imaging device
JP6566734B2 (en) Solid-state image sensor
JP2015128131A (en) Solid state image sensor and electronic apparatus
US11838662B2 (en) Solid-state imaging device and electronic apparatus
JP2013187475A (en) Solid state imaging device and camera system
JP2015228467A (en) Photoelectric conversion device and imaging system
WO2016103365A1 (en) Solid-state image pickup device, and image pickup device
WO2016052249A1 (en) Solid-state imaging element, production method, and electronic device
JPWO2016147837A1 (en) Solid-state imaging device, driving method, and electronic apparatus
WO2018030213A1 (en) Solid-state image capture element, pupil correction method for solid-state image capture element, image capture device, and information processing device
JP2016127043A (en) Solid-state image pickup element and electronic equipment
WO2016051594A1 (en) Solid state imaging device, and imaging device
JP2007279512A (en) Stereoscopic camera and stereoscopic imaging apparatus
JP6445048B2 (en) Solid-state imaging device
US10032823B2 (en) Solid-state imaging device and imaging apparatus
JP2008053627A (en) Solid-state imaging device
WO2016194620A1 (en) Solid-state imaging device and electronic device
WO2020070887A1 (en) Solid-state imaging device
WO2017068713A1 (en) Solid-state image pickup device, and image pickup device
WO2016103315A1 (en) Solid-state image pickup device, and image pickup device
JP2006324810A (en) Optical module
WO2024029383A1 (en) Light detecting device and electronic apparatus
WO2022149488A1 (en) Light detection device and electronic apparatus
WO2016163242A1 (en) Solid-state image capture element and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP