WO2019114259A1 - 枝干状Ag纳米结构、修饰电极及其及制备方法和应用 - Google Patents

枝干状Ag纳米结构、修饰电极及其及制备方法和应用 Download PDF

Info

Publication number
WO2019114259A1
WO2019114259A1 PCT/CN2018/094242 CN2018094242W WO2019114259A1 WO 2019114259 A1 WO2019114259 A1 WO 2019114259A1 CN 2018094242 W CN2018094242 W CN 2018094242W WO 2019114259 A1 WO2019114259 A1 WO 2019114259A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed solution
amount
branched
nanostructure
ethylene glycol
Prior art date
Application number
PCT/CN2018/094242
Other languages
English (en)
French (fr)
Inventor
张燕
陈妹琼
程发良
钟娟
何俊毅
吕宛蔚
张裕铭
胡炜棠
许琰婷
梁瑞芳
Original Assignee
东莞理工学院城市学院
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞理工学院城市学院, 东莞理工学院 filed Critical 东莞理工学院城市学院
Publication of WO2019114259A1 publication Critical patent/WO2019114259A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Definitions

  • the present invention relates to the field of electrochemical biosensor technology, and more particularly to a stem-like nanostructure, a modified electrode, and a preparation method and application thereof.
  • the chemical formula of hydrogen peroxide is: 3 ⁇ 40 2 , commonly known as hydrogen peroxide. Appearance is a colorless transparent liquid, it is a strong oxidant, its aqueous solution is suitable for medical wound disinfection and environmental disinfection and food disinfection. Under normal circumstances, it will decompose into water and oxygen, but the decomposition rate is extremely slow.
  • the method of accelerating the reaction speed is to add a catalyst - manganese dioxide or short-wave radiation.
  • the use of hydrogen peroxide is divided into medical, military and industrial uses.
  • the daily disinfection is medical hydrogen peroxide.
  • the medical hydrogen peroxide can kill intestinal pathogenic bacteria, pyogenic cocci, and pathogenic yeast, and is generally used for surface disinfection of objects.
  • Hydrogen peroxide has an oxidation effect, but the concentration of medical hydrogen peroxide is equal to or lower than 3%. When it is wiped onto the wound surface, it will burn, the surface will be oxidized into white and bubble, and it can be washed with water. After 3-5 minutes Restore the original skin tone.
  • the chemical industry is used as a raw material for producing sodium perborate, sodium percarbonate, peracetic acid, sodium chlorite, thiourea peroxide, etc., oxidizing agents such as tartaric acid and vitamins.
  • the pharmaceutical industry is used as a bactericide, disinfectant, and oxidizer for the production of thiram and 401 antibacterial agents.
  • the printing and dyeing industry is used as a bleaching agent for cotton fabrics to reduce the coloring agent after dyeing. Removal of iron and other heavy metals when used to produce metal salts or other compounds. Also used in electroplating baths to remove inorganic impurities and improve the quality of the plated parts. Also used for bleaching wool, raw silk, ivory, pulp, fat, etc. High concentrations of hydrogen peroxide can be used as a rocket power fuel.
  • an object of the present invention is to provide an eight-shaped branches ⁇ nanostructures and its preparation method, and thus form eight branches ⁇ nanostructures modified glassy carbon electrode for the hydrogen peroxide to achieve Detection.
  • the present invention provides a stem-like nanostructure, which is self-assembled from eight ⁇ nanowires and nanorods, the length of the eight nanostructure being 5-1 (VM, An eight-eight-nano wire having a diameter of 70-20 ⁇ 11111 , the eight-nano-structured branch is an eight ⁇ nanorod having a length of 200-800 11111 and a diameter of 20-12 ⁇ 11111 , and the resulting branched nanostructure exhibits delamination. structure.
  • VM An eight-eight-nano wire having a diameter of 70-20 ⁇ 11111
  • the eight-nano-structured branch is an eight ⁇ nanorod having a length of 200-800 11111 and a diameter of 20-12 ⁇ 11111
  • the resulting branched nanostructure exhibits delamination. structure.
  • the present invention further provides a method for preparing ⁇ eight branches like nanostructures, comprising the following reaction steps:
  • Step Eight a certain amount of polyethylene dissolved in Jie than an amount of deionized water slightly firing ketone with an amount of sodium tellurite and stirred for a certain time form a mixed solution;
  • Step 2 eight the amount of hydrazine hydrate, ammonia water was added to a mixed solution of an eight step, stirring was continued for a certain time, to form a mixed solution;
  • Step 3 eight, eight in step 2 resulting solution was transferred to Teflon autoclave, the hydrothermal reaction at a temperature, time, then cool to room temperature after completion of the reaction, the reaction kettle lid open, after cooling to A certain amount of acetone is added to the reaction kettle, and after standing for a certain period of time, it is centrifuged, and the precipitate is washed after centrifugation.
  • Step respectively, take a certain amount of copper chloride and ethylene glycol, copper chloride is added to ethylene glycol to make a certain concentration of copper chloride / ethylene glycol mixed solution;
  • Step 62 respectively, take a certain amount of silver nitrate and ethylene glycol, silver nitrate is added to ethylene glycol to make a certain concentration of silver nitrate / ethylene glycol mixed solution, protected from light;
  • Step 63 taking a certain amount of the copper chloride / ethylene glycol mixed solution prepared in step 81, sequentially adding a certain amount of 6 nanowires, a certain amount of polyvinylpyrrolidone to the mixed solution, stirring for a period of time , obtaining a mixed solution;
  • Step 64 taking a certain amount of the silver nitrate / ethylene glycol mixed solution in step 82, under stirring, the mixed solution in step 82 is added dropwise to the mixed solution of step 83, and stirring is continued for a certain period of time. ;
  • Step 65 the step 64 fat into the microwave into the microwave, the reaction is carried out at a certain power, a certain time, after the reaction is completed, cooled to room temperature, and then centrifuged, the precipitate after centrifugation for washing, drying That is, a branched nanostructure is obtained.
  • the amount of polyvinylpyrrolidone in the step VIII is 0.5-2, the amount of sodium citrate is 0.01 l-0.2 g, and the amount of deionized water is 15-6 ⁇ 11 ⁇ , stirring time For 10-30 1 ⁇ 11;
  • the amount of hydrazine hydrate in the step VIII is 0.1-5.0 11 ⁇ , the amount of ammonia water is 0.5-8 11 ⁇ , and the stirring time is 10-30 111111;
  • the reaction temperature in the step VIII is 120-220 ° (:, the reaction time is 0.5-4 hours, the amount of the acetone is 80-150 11 ⁇ , and the standing time is 10- 30 1 ⁇ 11 , the washing solvent consists of ethanol and deionized water having a mass ratio of 1:1, the number of washings is 2, and the drying temperature is 50-80.
  • the concentration of the copper chloride / ethylene glycol mixed solution in the step is 0.1-5.0 11 ⁇ , the concentration of the silver nitrate / ethylene glycol mixed solution in step 62 is 10-30 mM ;
  • the amount of the copper chloride/ethylene glycol mixed solution used in the step 83 is 8-3 ⁇ 11 ⁇
  • the amount of the nanowire used is 0.5-3 113 ⁇ 4
  • the amount of the polyvinylpyrrolidone is 0.2- 2
  • stirring time is 10-30 111111
  • the amount of silver nitrate / ethylene glycol mixed solution in the step is 1-15 11 ⁇
  • the stirring time is 10-30 111 111;
  • the heating power used in the step 65 is 250-35 ( ⁇ , the reaction time is 60-90 seconds, ⁇ 0 2019/114259
  • the washing solvent consists of ethanol and deionized water with a mass ratio of 1:1, the number of washings is 2, and the drying temperature is 50-80 ° (:.
  • the present invention also provides a method for preparing a dendritic nanostructured modified electrode, comprising the following steps: [0030] Step 1: The glassy carbon electrode is polished on the surface of the suede with eight 1 2 3 powder, respectively The polished glassy carbon electrode is separately washed with deionized water and ethanol solution, and then the glassy carbon electrode is blown dry with nitrogen;
  • Step two the branched shape of the ⁇ nanostructure is dispersed in a certain amount of distilled water to obtain a branched nanostructured aqueous solution, a certain amount of naphthol is added to the obtained aqueous solution, and the mixture is stirred to obtain a mixed solution, and a certain amount is obtained.
  • the mixed solution was applied dropwise to the surface of the treated glassy carbon electrode, and dried with an infrared lamp to obtain a branch-shaped eight-eight-nano structure modified electrode.
  • step 2 the amount of the branched nanostructure is 0.5-311 ⁇ , the amount of the distilled water is 2-5 11 ⁇ , and the naphthol is 0.5-3 ⁇ % naphthol solution. 0.5-3 11 ⁇ ; The amount of mixed solution used is 1-3 drops
  • the present invention also provides a use of a stem-like nanostructured modified electrode for the determination of hydrogen peroxide;
  • the specific application is: using a stem-like nanostructure modified electrode and Ag/AgCl (3 ⁇ 5M KCl) ) electrode, the electrode sheets are assembled into three-electrode system electrochemical cyclic voltammetry method, and the like for measuring chronoamperometry catalytic oxidation behavior of 202.
  • the electrochemical test uses an electrochemical workstation 03 ⁇ 41 66 (®, the three-electrode system is a branch of the eight ⁇ nanostructure modified electrode as a working electrode, and the platinum plate electrode is a counter electrode, (3.5111 ⁇ 1/1 ⁇ ( :1)
  • the electrode is a reference electrode, and the scanning electron microscope (SEM) used for the characterization is 13 ⁇ 4& ⁇ 3-5200 model (Japan), X-ray diffractometer (1?1)) .
  • the invention synthesizes a branched-shaped eight ⁇ nanostructure by hydrothermal method and microwave method, in the process of synthesis
  • the nanowires are synthesized by hydrothermal method and then passed through a microwave heating condition using a 16 nm line as a template.
  • the substitution reaction generates a stem-like nanostructure; the stem-like nanostructure is self-assembled by a nanowire and an eight ⁇ nanorod, and the dryness of the eight nanostructure is a length of 5-1 (VM , ⁇ the diameter of eight nanowires 70-20 ⁇ 11111, branched nanostructures of the eight 200-80011111 length, a diameter of eight ⁇ nanorods 20-12 ⁇ 11111; ⁇ like the branches having a layered nanostructure
  • the mechanism has a large surface area and has high sensitivity in catalyzing hydrogen peroxide;
  • electrochemical data branches like nanostructures can be accelerated electrons 202 and the transfer electrode surface, an electrochemical reduction Overpotential during oxidation; in addition, the sensor has good selectivity, repeatability and stability
  • 1 is an SEM image of a nanowire structure prepared in accordance with the present invention.
  • FIG. 2 is a -ray diffraction pattern of a nanowire prepared in accordance with the present invention.
  • FIG. 4 shows that the microwave power is set to 300.
  • Fig. 4 is the nanostructure diagram obtained when the reaction time is 308, and Fig. 4 (:, 40 is the nanostructure diagram obtained when the reaction time is 608, Fig. 4, 4? The nanostructure pattern obtained at a reaction time of 908.
  • the microwave power is set to 500 and the reaction time is set to 90 8 , and the obtained product is a large number of vertical branch nanosheets instead of the branch nanowires grown on the surface of the rod nanowires.
  • Microwave power is set to 300 ⁇ ⁇ , the reaction time was changed to 908, the resulting product is not a large number of nanoparticles in the nanowire growth nanowire surface ⁇ eight rods.
  • FIG. 8 is a schematic view showing the synthesis of a branched polymorphous nanostructure according to the present invention.
  • FIG. 10 is an electrocatalytic activity of a plurality of eight ⁇ nanostructures for 20 2 when 11 2 ⁇ 2
  • the concentration gradually increased from 2 mM to 8 mM, and the oxidation peak current also gradually increased in the cyclic voltammogram.
  • 11 is a timing current response curve of the 11 20 2 sensor.
  • FIG. 12 is a linear relationship diagram between the step reduction current and the concentration of 20 2 in the corresponding solution.
  • Figure 13 is an interference diagram of some coexisting materials determined for 20 2 .
  • Step 1 take 1. (polyvinylpyrrolidone and 0.0922 sodium sulfite dissolved in 35 11 ⁇ deionized water solution, stirred 20 11 ⁇ 11 to form a mixed solution;
  • Step VIII adding 1.65 11 ⁇ hydrazine hydrate, 3.35 11 ⁇ ammonia water to the mixed solution of step VIII, continue to stir 20 11 ⁇ 11 to form a mixed solution;
  • Step VIII the solution obtained in step VIII is transferred to a polytetrafluoroethylene reactor, hydrothermal reaction at 180 ° (: 4 hours, after the reaction is completed, taken out to cool to room temperature, open the reaction lid, to After cooling the reactor, 110 11 ⁇ acetone was added, and the mixture was allowed to stand for 20 11 ⁇ 11 and then centrifuged. The precipitate after centrifugation was washed twice with ethanol and deionized water at a mass ratio of 1:1 at 60 ° (at a temperature). Drying, that is, obtaining nanowires;
  • Step 61 respectively, take a certain amount of copper chloride and ethylene glycol, copper chloride is added to ethylene glycol to make a 1 mM copper chloride / ethylene glycol mixed solution;
  • Step 62 respectively, take a certain amount of silver nitrate and ethylene glycol, silver nitrate is added to ethylene glycol to make a 20 mM silver nitrate / ethylene glycol mixed solution, stored in the dark;
  • Step 63 taking the copper chloride / ethylene glycol mixed solution prepared in the step of 15 11 ⁇ , sequentially into the mixed solution
  • Step 64 taking the silver nitrate / ethylene glycol mixed solution in step 5 11 ⁇ step 62, the mixed solution in step 62 is added dropwise to the mixed solution of step 83 under stirring, and stirring is continued 20 11 ⁇ 11; ⁇ 0 2019/114259
  • Step 65 the solution after stirring in step 84 is transferred to a microwave oven, and the reaction is carried out at 300 kPa for 9 ⁇ 8. After the reaction is completed, it is cooled to room temperature, and then centrifuged, and the mass ratio of the precipitate after centrifugation is 1: Washing with ethanol and deionized water for 2 times, drying at 60 ° (: temperature, to obtain the branches-like nanostructures; the branched nanostructures are self-assembled by eight nanowires and eight nanorods, The dryness of the eight-nanostructure is 5-10 in length.
  • the eight-nano-structured branches are eight ⁇ nanorods having a length of 200-80011111 and a diameter of 20-12 ⁇ 11111.
  • Step VIII taking 0.5 ⁇ polyvinylpyrrolidone and 0.0 ⁇ sodium citrate dissolved in 1511 ⁇ deionized water solution, stirring 101 ⁇ 11 to form a mixed solution;
  • Step VIII the solution obtained in the step VIII is transferred to a polytetrafluoroethylene reactor, hydrothermal reaction at 120 ° (: 0.5 hours, after the reaction is completed, taken out to cool to room temperature, open the reaction lid, to After cooling, the reactor was charged with 8 ⁇ 11 ⁇ acetone, and after standing at 101°, it was centrifuged. The precipitate after centrifugation was washed twice with ethanol and deionized water at a mass ratio of 1:1, and baked at 50 ° (: temperature). Dry, that is, to obtain nanowires;
  • Step respectively, take a certain amount of copper chloride and ethylene glycol, copper chloride is added to ethylene glycol to make a 0.1 mM copper chloride / ethylene glycol mixed solution;
  • Step 62 respectively, take a certain amount of silver nitrate and ethylene glycol, silver nitrate is added to ethylene glycol to make a 10 mM silver nitrate / ethylene glycol mixed solution, stored in the dark;
  • Step 63 taking the copper chloride / ethylene glycol mixed solution prepared in the step of 11 11 ⁇ , sequentially adding 0.5 113 ⁇ 4 76 nanometer wire, 03 ⁇ 4 polyvinylpyrrolidone to the mixed solution, stirring 101 ⁇ 11 to obtain a mixed solution ;
  • Step 64 taking 1 11 ⁇ step 62 in the silver nitrate / ethylene glycol mixed solution, under stirring, the mixed solution in step 62 is added dropwise to the mixed solution of step 83, continue to stir 2011 ⁇ 11;
  • Step 65 the solution after the stirring in step 84 is transferred to a microwave oven, and the reaction is carried out at 250 kPa for 6 ⁇ 8. After the reaction is completed, it is cooled to room temperature, and then centrifuged, and the mass ratio of the precipitate after centrifugation is 1: Wash 1 with ethanol and deionized water twice, and dry at 50 ° (: temperature to obtain the branches-like nanostructures; the branches ⁇ 0 2019/114259
  • the nanostructure is self-assembled by eight nanowires and eight nanorods. The length of the eight nanostructures is 5-10.
  • the eight-nano-structured branches are eight ⁇ nanorods having a length of 200-80011111 and a diameter of 20-12 ⁇ 11111.
  • Step VIII taking 2. (polyvinylpyrrolidone and 0.2 ⁇ sodium citrate dissolved in 6 ⁇ 11 ⁇ deionized water solution, stirring 3011 ⁇ 11 to form a mixed solution;
  • Step VIII the solution obtained in step VIII is transferred to a polytetrafluoroethylene reactor, hydrothermal reaction at 220 ° (: 3 hours, after the reaction is completed, taken out to cool to room temperature, open the reaction kettle cover, After cooling, the reactor was charged with 15011 mmol of acetone, and the mixture was allowed to stand for 3011 ° 11 and then centrifuged. The precipitate after centrifugation was washed twice with ethanol and deionized water at a mass ratio of 1:1, and dried at 80 ° (: temperature). , that is, to obtain nanowires;
  • Step 61 respectively, take a certain amount of copper chloride and ethylene glycol, copper chloride is added to ethylene glycol to make a 5mM copper chloride / ethylene glycol mixed solution;
  • Step 62 respectively, take a certain amount of silver nitrate and ethylene glycol, silver nitrate is added to ethylene glycol to make a 30 mM silver nitrate / ethylene glycol mixed solution, stored in the dark;
  • Step 63 taking the copper chloride / ethylene glycol mixed solution prepared in the step 30 11 ⁇ , sequentially adding 3113 ⁇ 4 76 nanowires, 2 polyvinylpyrrolidone to the mixed solution, stirring 301 ⁇ , to obtain a mixed solution;
  • Step 64 taking the silver nitrate / ethylene glycol mixed solution in step 61, under the stirring conditions, the mixed solution in step 62 is added dropwise to the mixed solution of step 83, continue to stir 2011 ⁇ 11;
  • Step 65 the solution after stirring in step 84 is transferred to a microwave oven, and the reaction is carried out at 300 kPa for 9 ⁇ 8. After the reaction is completed, it is cooled to room temperature, and then centrifuged, and the mass ratio of the precipitate after centrifugation is 1: Washing with ethanol and deionized water for 2 times, drying at 80 ° (: temperature, to obtain the branches-like nanostructures; the branched nanostructures are self-assembled by eight nanowires and eight nanorods, The dryness of the eight-nanostructure is 5-10 in length.
  • the eight-nano-structured branches are eight ⁇ nanorods having a length of 200-80011111 and a diameter of 20-12 ⁇ 11111. ⁇ 0 2019/114259
  • FIG. 1 is an SEM image of a 6 nanometer line structure, as shown in FIG. 1, the diameter of the prepared 6 nanometer wire is about 100 nanometers;
  • the nanowire-ray diffraction pattern (110) is compared with the standard card " ⁇ 0 number 36-1452", 23.08. , 27.72. , 38.36. , 40.52. , 43.44. , 45.98. , 46.92.
  • reaction time is further increased to 90 8 , and the nanorods continue to grow to a diameter of about 80-120 11111 and a length of about 500-80011111.
  • Time is set to 908, the resulting product is a large number of nanoparticles instead of eight ⁇ nanowire growth pole Carolina ⁇ 0 2019/114259 , the time is set to 608 under the branch nanostructures with diffraction peaks and eight diffraction peaks; the microwave power is set to 300 ⁇ ⁇ , the time is set to 9 Diffraction peaks of nanostructures 38.14°, 44.32°, 64.43°, 77.56° and 81.54° are caused by (111), (200), (220), (311) and (222) crystal plane diffraction; Eight ⁇ nanostructures are face-centered cubic crystal structures, The diffraction peak was not found at 9
  • Nanostructured surface The nanowires have been completely taken by the eight ⁇ .
  • FIG. 8 is a schematic diagram of the synthesis of a branched polymorphic ⁇ nanostructure according to the present invention, in which a substitution reaction occurs in a microwave heating state, and a large number of Nanoparticle substitution generates ⁇ nanowires.
  • the reaction process is as follows:
  • nanoparticle growth on the surface of the eight ⁇ nanowires can grow dendritic nanonails and nanosheets as seed crystals.
  • nanonails and nanosheets continue to grow into nanorods.
  • a large number of eight nanorods grow on the surface of the nanowires.
  • Step one the glassy carbon electrode is polished on the surface of the suede with eight 1 2 3 powder, and the polished glassy carbon electrode is separately washed with deionized water and ethanol solution, and then the glassy carbon electrode is blown with nitrogen. dry;
  • Step two The branched ⁇ nanostructure in Example 1 was dispersed in 3 distilled water to obtain a stem shape.
  • the naphthol solution is stirred to obtain a mixed solution, and 2 drops of the mixed solution are dropped onto the surface of the treated glassy carbon electrode, and dried by an infrared lamp to obtain a branched-shaped eight-nano-structured electrode.
  • Table 1 is compared with 11,202 reported sensor 202 the linear sensor detection limit and sensitivity we prepared; data, we prepared a 2 square second sensor having a wide linear range ⁇ 0 2019/114259 ⁇ (:17 € ⁇ 18/094242
  • the actual sample was analyzed by standard addition method.
  • the milk sample was diluted 10 times with distilled water and placed in different beakers labeled as sample 1, sample 2, sample 3, sample 4 and sample 5. Then, different concentrations of 11 20 2 were added to the above sample to prepare 0.01. , 0.05, 0.10, 0.15, 0.20 20 2 solution.
  • the chronocurrent correspondingly records the corresponding steps of different concentrations, and the average of three experiments is performed.
  • Table 2 shows that the 20 2 sensor we prepared has good repeatability and sensitivity.
  • the measured interference ( Figure 13); at -0.5 potential, gradually add 100 ⁇ 11 lmM H 20 2 , 1 1 ⁇ 11 2 2 2, 10 mM ascorbic acid (eight eight), 10 mM dopamine eight), 10 mM uric acid ( 11 8) & 11 (1 1 ⁇ 11 ⁇ glucose & 11 (1200 ⁇ 1 1 11 ⁇ 20 2 , the stem-like nanostructured electrode showed a significant current step for 20 2 , while the interfering ascorbic acid, glucose and dopamine were not obvious Current step, ⁇ 0 2019/114259 Interfering substances dopamine only showed a weak current step, basically no interference to the 11 2 2 2 measurement.
  • the branched 11 nm structure was prepared by a simple synthesis method, and the 11 2 2 2 sensor was assembled using a branched 11 nm structure modified electrode. Electrochemical data show that the sensor has good electron transport capability, wide linear range and good sensitivity; in addition, the sensor has good selectivity, repeatability and stability. Therefore, the sensor has potential practical application value. We used the prepared sensor to detect hydrogen peroxide in milk and the results were satisfactory.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种枝干状Ag纳米结构、修饰电极及其及制备方法和应用,该枝干状Ag纳米结构通过水热法和微波法合成,Te纳米线通过水热法合成,然后利用Te纳米线作为模板在微波加热条件下通过取代反应生成枝干状Ag纳米结构。以此枝干状Ag纳米结构修饰电极为工作电极来制备H2O2无酶传感器。电化学数据显示枝干状Ag纳米结构能够加速电子在H2O2和电极表面传递,减少电化学氧化过程中的过电位,在H2O2的浓度0.05μM - 1.925mM范围,氧化峰电流与浓度存在线性关系(R=0.998)。检测限为0.013μM。另外,所合成的电化学传感器具有良好的稳定性和重复性,所得传感器为H2O2实际分析检测提供新方法。

Description

\¥0 2019/114259 卩(:17 謂18/094242
枝干状 纳米结构、 修饰电极及其及制备方法和应用 技术领域
[0001] 本发明涉及电化学生物传感器技术领域, 特别是一种枝干状 纳米结构、 修饰 电极及其及制备方法和应用。
背景技术
[0002] 过氧化氢化学式为:¾02, 俗称双氧水。 外观为无色透明液体, 是一种强氧化剂 , 其水溶液适用于医用伤口消毒及环境消毒和食品消毒。 在一般情况下会分解 成水和氧气, 但分解速度极其慢, 加快其反应速度的办法是加入催化剂—二 氧化锰或用短波射线照射。
[0003] 双氧水的用途分医用、 军用和工业用三种, 日常消毒的是医用双氧水, 医用双 氧水可杀灭肠道致病菌、 化脓性球菌, 致病酵母菌, 一般用于物体表面消毒。 双氧水具有氧化作用, 但医用双氧水浓度等于或低于 3%, 擦拭到创伤面, 会有 灼烧感、 表面被氧化成白色并冒气泡, 用清水清洗一下就可以了, 过 3-5分钟 就恢复原来的肤色。
[0004] 化学工业用作生产过硼酸钠、 过碳酸钠、 过氧乙酸、 亚氯酸钠、 过氧化硫脲等 的原料, 酒石酸、 维生素等的氧化剂。 医药工业用作杀菌剂、 消毒剂, 以及生 产福美双杀虫剂和 401抗菌剂的氧化剂。 印染工业用作棉织物的漂白剂, 还原染 料染色后的发色剂。 用于生产金属盐类或其他化合物时除去铁及其他重金属。 也用于电镀液, 可除去无机杂质, 提高镀件质量。 还用于羊毛、 生丝、 象牙、 纸浆、 脂肪等的漂白。 高浓度的过氧化氢可用作火箭动力燃料。
[0005] 民用: 处理厨房下水道的异味, 到药店购买双氧水加水加洗衣粉倒进下水道可 去污, 消毒, 杀菌, 3%的过氧化氢 (医用级) 可供伤口消毒。
[0006] 06
2760-86: 生牛乳保鲜与硫氰酸钠配合使用, 限量为 0.03%过氧化氢 2.〇1111 加硫 氰酸钠 15.〇1111 。 限黑龙江、 内蒙地区使用, 扩大使用地区时须由所在省级卫生 部门报请***批准并按农业部有关实施规范执行。 \¥02019/114259
[0007] 食品添加剂最大允许使用量最大允许残留量标准: 过氧化氢为食品工业用加工 助剂, 一般应在制成最后成品之前除去, 有规定食品中残留量的除外。
[0008] 对过氧化氢含量的快速准确检测在食品、制药、 生物和环境分析中具有非常重 要的意义。 目前用于检测过氧化氢的方法很多, 如滴定法、分光光度法以及电 化学方法等。 其中, 电化学方法, 特别是酶电化学生物传感器, 由于其方法简 单、 灵敏度高等特点而被广泛应用于过氧化氢的测定。 但由于酶容易受外界各 种因素影响而失活, 从而导致酶电化学生物传感器在检测过氧化氢浓度时稳定 性和再生性较差, 适用范围窄。
发明概述
技术问题
问题的解决方案
技术解决方案
[0009] 为解决上述问题, 本发明的目的在于提供一种枝干状八§纳米结构及其制备方法 , 并以此枝干状八§纳米结构对玻碳电极进行修饰来实现对过氧化氢的检测。
[0010] 本发明的目的可以通过以下技术方案实现:
[0011] 本发明提供了一种枝干状 纳米结构, 所述枝干状 纳米结构由八§纳米线与 纳米棒自组装而成, 所述八纳米结构的干为长度 5-l(VM、直径 70-20〇11111的八 8纳米线, 所述八纳米结构的枝为长度为 200-80011111、直径为 20-12〇11111的八§纳米 棒, 所得枝干状 纳米结构呈现出分层结构。
[0012] 本发明还提供了一种枝干状八§纳米结构的制备方法, 包括以下反应步骤:
Figure imgf000004_0001
[0014] 步骤八1、取一定量的聚乙稀卩比咯焼酮与一定量的亚碲酸钠溶解于一定量的去 离子水溶液中, 搅拌一定时间形成混合溶液;
[0015] 步骤八2、将一定量的水合肼、氨水加入到步骤八1的混合溶液中, 继续搅拌一 定时间, 形成混合溶液;
[0016] 步骤八3、将步骤八2所得溶液转移到聚四氟乙烯反应釜中, 在一定温度、 时间 下进行水热反应, 反应完毕后取出冷却到室温, 打开反应釜盖, 向冷却后的反 应釜中加入一定量的丙酮, 静置一定时间后进行离心, 将离心后沉淀进行洗涤 \¥0 2019/114259
、烘干, 即得到 1^纳米线;
[0017] 步骤 枝干状八§纳米结构的合成
[0018] 步骤 、分别取一定量的氯化铜和乙二醇, 将氯化铜加入乙二醇中制成一定浓 度的氯化铜/乙二醇混合溶液;
[0019] 步骤 62、分别取一定量的硝酸银和乙二醇, 将硝酸银加入乙二醇中制成一定浓 度的硝酸银 /乙二醇混合溶液, 避光保存;
[0020] 步骤 63、取一定量的步骤81中制成的氯化铜/乙二醇混合溶液, 依次向混合溶 液中加入一定量的了6纳米线、 一定量的聚乙烯吡咯烷酮, 搅拌一段时间, 得到 混合溶液;
[0021] 步骤 64、取一定量的步骤82中的硝酸银 /乙二醇混合溶液, 在搅拌的条件下, 将步骤 82中的混合溶液滴加到步骤83的混合溶液中, 继续搅拌一定时间;
[0022] 步骤 65、将步骤 64揽胖后的溶液转入微波炉中, 在一定功率、 一定时间下进 行反应, 反应结束后冷却至室温, 然后进行离心分离, 将离心后沉淀进行洗涤 、烘干, 即得到枝干状 纳米结构。
[0023] 进一步地, 所述步骤八1中聚乙烯吡咯烷酮的量为 0.5-2 , 亚碲酸钠的量为 0.0 l-0.2g, 去离子水的量为 15-6〇11^, 搅拌时间为 10-301^11;
[0024] 进一步地, 所述步骤八2中水合肼的量为 0.1-5.011^, 氨水的量为 0.5-811^, 搅拌 时间为 10-30111111;
[0025] 进一步地, 所述步骤八3中反应温度为 120-220 ° (:, 反应时间为 0.5-4小时, 所述 丙酮的用量为 80-15011^, 所述静置时间为 10-301^11, 所述洗涤溶剂由质量比为 1: 1的乙醇和去离子水组成, 洗涤次数为 2次, 所述烘干温度为 50-80。(:;
[0026] 进一步地, 所述步骤 中所述氯化铜 /乙二醇混合溶液的浓度为 0.1-5.011^, 步 骤62中所述硝酸银 /乙二醇混合溶液的浓度为 10-30mM;
[0027] 进一步地, 所述步骤83中所用氯化铜 /乙二醇混合溶液的量为 8-3〇11^, 所用 纳米线的量为 0.5-311¾、 聚乙烯吡咯烷酮的量为 0.2-2 , 搅拌时间为 10-30111111; 步骤 中所述硝酸银 /乙二醇混合溶液的量为 1-1511^, 继续搅拌的时间为 10-30111 111 ;
[0028] 进一步地, 所述步骤65中所用加热功率为 250-35(^, 反应时间为 60-90秒, 所 \¥0 2019/114259 述洗涤溶剂由质量比为 1: 1的乙醇和去离子水组成, 洗涤次数为 2次, 所述烘干温 度为 50-80 ° (:。
[0029] 本发明还提供了一种枝干状 纳米结构修饰电极的制备方法, 包括以下步骤: [0030] 步骤一、 玻碳电极在麂皮表面用八1 20 3粉末分别进行抛光, 将抛光后的玻碳电 极用去离子水和乙醇溶液中分别清洗, 后用氮气将玻碳电极吹干;
[0031] 步骤二、 将枝干状八§纳米结构分散于一定量的蒸馏水中得到枝干状 纳米结 构水溶液, 向所得水溶液中加入一定量的萘酚, 搅拌均匀后得到混合溶液, 取 一定量的混合溶液滴涂到处理好的玻碳电极表面, 用红外灯烘干, 得到枝干状八 8纳米结构修饰电极。
[0032] 步骤二中, 所述枝干状 纳米结构的用量为 0.5-311^, 所述蒸馏水的用量为 2-5 11^, 所述萘酚为 0.5-3\¥%萘酚溶液, 用量为 0.5-3 11^ ; 所用混合溶液量为 1-3滴
[0033] 本发明还提供了一种枝干状 纳米结构修饰电极在测定过氧化氢中的应用; [0034] 具体应用为: 利用枝干状 纳米结构修饰电极与 Ag/AgCl (3·5M KCl)电极、 片电极组装成三电极体系, 采用循环伏安、 计时电流等电化学方法用于测定 2 0 2的催化氧化行为。
[0035] 其中, 电化学测试采用电化学工作站0¾1 66(®, 三电极体系分别为枝干八§纳 米结构修饰电极为工作电极, 铂片电极为对电极,
Figure imgf000006_0001
(3.5111〇1/1^(:1) 电 极为参比电极, 表征所用扫面电子显微镜 (SEM) 为1¾&〇^ 3-5200型号 (日本 ) , X -射线衍射仪 ( 1?1)) 为。 111(x
Figure imgf000006_0002
(日本 日立公司) 。 所用:^ 3 6(  6, :^ 4 6(  6, 氨水, 丙酮 (5(½1%), 101 ^0 4 1^ 0 4
买于天津大茂化学试剂公司, 聚乙稀 [I比咯焼酮购置于8 11^-八1(^1(:11, 八 1^0 3,
20 2西亚试剂有限公司, 所有的化学试剂均为分析纯.实验所用水为二 次蒸馏水。
[0036] 本发明与现有技术相比其优点为:
[0037] 1、 本发明通过水热法和微波法合成出了枝干状八§纳米结构, 在合成的过程中
, 纳米线通过水热法合成, 然后利用 16纳米线作为模板在微波加热条件下通 \¥0 2019/114259 过取代反应生成枝干状 纳米结构; 所述枝干状 纳米结构由 纳米线与八§纳 米棒自组装而成, 所述八纳米结构的干为长度 5-l(VM、 直径 70-20〇11111的八§纳米 线, 所述八纳米结构的枝为长度为 200-80011111、 直径为 20-12〇11111的八§纳米棒; 该枝干状 §纳米结构具有层状机构, 具有较大的表面积, 在催化过氧化氢过程 中具有很高的灵敏度;
[0038] 2、 利用枝干状 纳米结构修饰电极为工作电极来制备11 20 2无酶传感器, 电化 学数据显示枝干状 纳米结构能够加速电子在 20 2和电极表面传递, 减少电化 学氧化过程中的过电位; 另外, 该传感器存在良好的选择性、 重复性和稳定性
[0039] 3、 本发明的枝干状八§纳米结构修饰电极对 20 2有很好的响应, 在11 20 2的 浓度 0.05# - 1.92511^范围, 氧化峰电流与浓度存在线性关系 (11=0.998) , 检 测限为 0.013^^。
发明的有益效果
对附图的简要说明
附图说明
[0040] 图 1为本发明所制备的 纳米线结构的 SEM图。
[0041] 图 2为本发明所制备的 纳米线的 -射线衍射图。
[0042]
Figure imgf000007_0001
中的循环伏安图。
[0043] 图 4为在微波功率设置为 300
下, 不同反应时间所得 纳米结构图, 图 4八、 46为反应时间为 308时所得 纳米结构图, 图 4(:、 40为反应时间为 608时所得 纳米结构图, 图 4£、 4?为反 应时间为 908时所得 纳米结构图。
[0044] 图 5为微波功率设置为 500 和反应时间设定为 90 8的条件下, 得到的产品为 大量垂直的 枝纳米片而不是 枝纳米线生长在 杆纳米线表面。
[0045]
Figure imgf000007_0002
微波功率设定为 300 \¥, 反应时 间设定为 90 8 , 得到的产品为大量的 纳米颗粒而不是纳米线生长在八§杆纳米 线表面。
[0046]
Figure imgf000007_0003
纳米结构的 \¥02019/114259
[0047] 图 8为本发明枝干多状 纳米结构合成示意图。
Figure imgf000008_0001
[0049] 图 10为枝干多八§纳米结构对于 20 2的电催化活性, 当1122
的浓度从 2mM到 8mM逐渐增加, 氧化峰电流也逐渐增加的循环伏安图。
[0050] 图 11为1120 2传感器的计时电流响应曲线。
[0051] 图 12为台阶还原电流与对应溶液中 20 2浓度做线性关系图。
[0052] 图 13为一些共存物质对 20 2测定的干扰图。
发明实施例
本发明的实施方式
[0053] 下面结合实施例对本发明做进一步详细解释
[0054] 实施例 1
[0055] 步骤 1、取 1.(^聚乙烯吡咯烷酮与 0.0922亚碲酸钠溶解于 3511^去离子水溶 液中, 搅拌 2011^11形成混合溶液;
[0056] 步骤八2、将 1.6511^水合肼、 3.3511^氨水加入到步骤八1的混合溶液中, 继续搅 拌 2011^11, 形成混合溶液;
[0057] 步骤八3、将步骤八2所得溶液转移到聚四氟乙烯反应釜中, 在 180 ° (:下进行水热 反应 4小时, 反应完毕后取出冷却到室温, 打开反应釜盖, 向冷却后的反应釜中 加入 11011^丙酮, 静置 2011^11后进行离心, 将离心后沉淀用质量比为 1:1的乙醇和 去离子水洗涤 2次, 在 60 ° (:温度下烘干, 即得到 纳米线;
[0058] 步骤 枝干状 §纳米结构的合成
[0059] 步骤 61、分别取一定量的氯化铜和乙二醇, 将氯化铜加入乙二醇中制成 1 mM 氯化铜 /乙二醇混合溶液;
[0060] 步骤 62、分别取一定量的硝酸银和乙二醇, 将硝酸银加入乙二醇中制成 20 mM 硝酸银 /乙二醇混合溶液, 避光保存;
[0061] 步骤 63、取 1511^步骤 中制成的氯化铜/乙二醇混合溶液, 依次向混合溶液中
Figure imgf000008_0002
[0062] 步骤 64、取 511^步骤 62中的硝酸银 /乙二醇混合溶液, 在搅拌的条件下, 将步 骤62中的混合溶液滴加到步骤83的混合溶液中, 继续搅拌 2011^11; \¥0 2019/114259
[0063] 步骤 65、 将步骤 84搅拌后的溶液转入微波炉中, 在 300\¥下反应 9〇8, 反应结束 后冷却至室温, 然后进行离心分离, 将离心后沉淀用质量比为 1: 1的乙醇和去离 子水洗涤 2次, 在 60 ° (:温度下烘干, 即得到枝干状 纳米结构; 所述枝干状 纳米结构由八纳米线与八 纳米棒自组装而成, 所述八纳米结构的干为长度 5-10
Figure imgf000009_0001
所述八 纳米结构的枝为长度为 200-80011111、 直 径为 20- 12〇11111的八§纳米棒。
[0064] 实施例 2
[0065] 步骤八1、 取 0.5§聚乙烯吡咯烷酮与 0.0^亚碲酸钠溶解于 1511^去离子水溶液中 , 搅拌 101^11形成混合溶液;
[0066] 步骤 2、 将
0.111^水合肼、 0.511^氨水加入到步骤八1的混合溶液中, 继续搅拌
Figure imgf000009_0002
形成 混合溶液;
[0067] 步骤八3、 将步骤八2所得溶液转移到聚四氟乙烯反应釜中, 在 120 ° (:下进行水热 反应 0.5小时, 反应完毕后取出冷却到室温, 打开反应釜盖, 向冷却后的反应釜 中加入 8〇11^丙酮, 静置 101^后进行离心, 将离心后沉淀用质量比为 1: 1的乙醇 和去离子水洗涤 2次, 在 50 ° (:温度下烘干, 即得到 纳米线;
[0068] 步骤 枝干状八§纳米结构的合成
[0069] 步骤 、 分别取一定量的氯化铜和乙二醇, 将氯化铜加入乙二醇中制成 0.1 mM氯化铜 /乙二醇混合溶液;
[0070] 步骤 62、 分别取一定量的硝酸银和乙二醇, 将硝酸银加入乙二醇中制成 10 mM 硝酸银 /乙二醇混合溶液, 避光保存;
[0071] 步骤 63、 取 8 11^步骤 中制成的氯化铜/乙二醇混合溶液, 依次向混合溶液中 加入 0.5 11¾ 76纳米线、 0¾聚乙烯吡咯烷酮, 搅拌 101^11, 得到混合溶液;
[0072] 步骤 64、 取 1 11^步骤 62中的硝酸银 /乙二醇混合溶液, 在搅拌的条件下, 将步 骤62中的混合溶液滴加到步骤83的混合溶液中, 继续搅拌 2011^11;
[0073] 步骤 65、 将步骤 84搅拌后的溶液转入微波炉中, 在 250\¥下反应 6〇8, 反应结束 后冷却至室温, 然后进行离心分离, 将离心后沉淀用质量比为 1: 1的乙醇和去离 子水洗涤 2次, 在 50 ° (:温度下烘干, 即得到枝干状 纳米结构; 所述枝干状 \¥0 2019/114259 纳米结构由八纳米线与八 纳米棒自组装而成, 所述八纳米结构的干为长度 5-10
Figure imgf000010_0001
所述八纳米结构的枝为长度为 200-80011111、 直 径为 20- 12〇11111的八§纳米棒。
[0074] 实施例 3
[0075] 步骤八1、 取 2.(^聚乙烯吡咯烷酮与 0.2§亚碲酸钠溶解于 6〇11^去离子水溶液中 , 搅拌 3011^11形成混合溶液;
[0076] 步骤八2、 将
5.〇11^水合肼、 811^氨水加入到步骤八1的混合溶液中, 继续搅拌 3011^11, 形成混 合溶液;
[0077] 步骤八3、 将步骤八2所得溶液转移到聚四氟乙烯反应釜中, 在 220 ° (:下进行水热 反应 3小时, 反应完毕后取出冷却到室温, 打开反应釜盖, 向冷却后的反应釜中 加入 15011^丙酮, 静置 3011^11后进行离心, 将离心后沉淀用质量比为 1: 1的乙醇和 去离子水洗涤 2次, 在 80 ° (:温度下烘干, 即得到 纳米线;
[0078] 步骤 枝干状八§纳米结构的合成
[0079] 步骤 61、 分别取一定量的氯化铜和乙二醇, 将氯化铜加入乙二醇中制成 5mM 氯化铜 /乙二醇混合溶液;
[0080] 步骤 62、 分别取一定量的硝酸银和乙二醇, 将硝酸银加入乙二醇中制成 30 mM 硝酸银 /乙二醇混合溶液, 避光保存;
[0081] 步骤 63、 取 30 11^步骤 中制成的氯化铜/乙二醇混合溶液, 依次向混合溶液中 加入 311¾ 76纳米线、 2 聚乙烯吡咯烷酮, 搅拌 301^, 得到混合溶液;
[0082] 步骤 64、 取 15 11^步骤 62中的硝酸银 /乙二醇混合溶液, 在搅拌的条件下, 将步 骤62中的混合溶液滴加到步骤83的混合溶液中, 继续搅拌 2011^11;
[0083] 步骤 65、 将步骤 84搅拌后的溶液转入微波炉中, 在 300\¥下反应 9〇8, 反应结束 后冷却至室温, 然后进行离心分离, 将离心后沉淀用质量比为 1: 1的乙醇和去离 子水洗涤 2次, 在 80 ° (:温度下烘干, 即得到枝干状 纳米结构; 所述枝干状 纳米结构由八纳米线与八 纳米棒自组装而成, 所述八纳米结构的干为长度 5-10
Figure imgf000010_0002
所述八纳米结构的枝为长度为 200-80011111、 直 径为 20- 12〇11111的八§纳米棒。 \¥0 2019/114259
[0084] 图 1为了6纳米线结构的 SEM图, 如图 1所示, 所制备的了6纳米线的直径有一 百纳米左右; 纳米线的 -射线衍射图 ( 110) , 与标准卡《^0 号码 36- 1452对照可知, 23.08。, 27.72。, 38.36。, 40.52。, 43.44。, 45.98。, 46.92。
Figure imgf000011_0002
应(100), (101), (102),
(110), (111), (003), (200), (201), (202), (113), (210), (211), (104), (212)和 (304)晶面, 说明我们合成的纳米材料为 纳米线结构,
Figure imgf000011_0003
液中的循环伏安图。 由图 3可知, 在 +0.264¥和-0.74 有一对尖锐的氧化还原峰 为了6纳米线的自身氧化还原。
[0085] 利用 纳米线为模板和前驱体通过微波加热制备枝干
Figure imgf000011_0004
纳米结构, 通过调整 实验参数和添加剂的用量合成不同形貌的枝干多层结构。
[0086] 作为对比
Figure imgf000011_0005
壳杆纳米线表面。
[0088] 如图 4(:、 40, 当反应时间延长到 60
8 , 直径大约为 20-8011111和长度大约 200-50011111枝纳米棒垂直的长在杆纳米线表面
[0089] 如图 4£、 4?, 继续增加反应时间到 908, 枝纳米棒继续生长到直径约 80-120 11111和长度约 500-80011111。
Figure imgf000011_0006
不是枝纳米线生长在杆纳米线表面; 由此可知, 在低压、 高温的反应状态下, 所形成的的不是纳米线而是纳米片;
Figure imgf000011_0007
时间设定为 908, 得到的产品为大量的 纳米颗粒而不是纳米线生长在八§杆纳
Figure imgf000011_0008
\¥0 2019/114259 , 时间设置为 608下枝干纳米结构有 的衍射峰和八 的衍射峰; 在微波功率设 置为 300 \¥, 时间设置为 9
Figure imgf000012_0001
纳米结构的衍射峰 38.14°, 44.32°, 64.43°, 77.56°和 81.54°为(111), (200), (220), (311)和(222)晶面衍射所致; 所制备的枝 干八§纳米结构为面心立方晶体结构,
Figure imgf000012_0002
的衍射峰没有发现在 9
Figure imgf000012_0003
纳米结构表面
Figure imgf000012_0004
纳米线已经被八§完全取。
[0093] 图 8为本发明枝干多状八§纳米结构合成示意图, 在微波加热状态下, 发生取代 反应, 大量的
Figure imgf000012_0005
纳米颗粒取代 生成 §纳米线。 反应过程如下式:
[0094]
Figure imgf000012_0006
+611 +
[0095] 当反应过程继续进行, 纳米颗粒生长在八§纳米线表面可以作为晶种生长枝状 纳米钉和纳米片。 随着反应继续进行,纳米钉和纳米片继续增长为纳米棒。 最后 , 大量的八纳米棒生长在 纳米线表面。
[0096] 实施例 2
[0097] 步骤一、 玻碳电极在麂皮表面用八1 20 3粉末分别进行抛光, 将抛光后的玻碳电 极用去离子水和乙醇溶液中分别清洗, 后用氮气将玻碳电极吹干;
[0098] 步骤二
Figure imgf000012_0007
实施例 1中的枝干状八§纳米结构分散于 3的蒸馏水中得到枝干状
Figure imgf000012_0008
的萘酚溶液, 搅拌均匀后得 到混合溶液, 取 2滴的混合溶液滴涂到处理好的玻碳电极表面, 用红外灯烘干, 得到枝干状八纳米结构修饰电极。
[0099]
Figure imgf000012_0009
纳米结构修饰电极对 0.5 mM 20 2的催化还原伏安曲线。
如图 9所示, 在电位 -0.48 V处有一个明显的11 20 2还原峰, 峰电流为 -107|1八。
[0100] 图 10为11 22传感器的计时电流响应曲线, 当电位设置 -0.5 V, 随着 11 20 2的加 入, 还原电流台阶逐渐降低, 并且 58内完成跃迁: 取台阶还原电流与对应溶液中
Figure imgf000012_0010
(如图 11) ; 由图可知, 在11 20 2浓度 0.05 iM到 1.925mM浓度范围内, 台阶电流与对应11 20 2浓度存在很好的线性关系, 线性方 相关系数为 0.998, 检测限
Figure imgf000012_0011
[0101] 表 1是我们所制备的11 20 2传感器与文献报道 20 2传感器在线性范围、 检测限 和灵敏度方面进行比较; 数据显示, 我们制备的 22传感器具有宽的线性范围 \¥0 2019/114259 卩(:17€謂18/094242
, 高的灵敏。
Figure imgf000013_0001
[0102] 为了进一步考察该传感器在实际样品检测中的应用价值, 将其用于实际牛奶样 品中 202浓度的测定.
实际样品分析采用标准加入法, 牛奶样品用蒸馏水稀释 10倍后置入不同的烧杯 标记为样品 1, 样品 2, 样品 3, 样品 4和样品 5, 然后不同浓度的1120 2加入上述 样品制备 0.01, 0.05, 0.10, 0.15,
Figure imgf000013_0002
0.20 20 2溶液。 计时电流相应记录不同 浓度的对应的台阶, 三次实验去平均值。
[0103] 表 2显示我们所制备的 20 2传感器具有好重复性和灵敏性。
Figure imgf000013_0003
[0104] 在实际样品分析中, 一些共存的生物分子往往容易干扰 〇的测定, 我们研 究了一些共存物质对 0
测定的干扰 (如图 13) ; 在 -0.5 电位下, 逐渐滴加 100 ^11 lmM H 20 2, 1 1^ 11 20 2, 10 mM抗坏血酸 (八八) , 10mM多巴胺 八) , 10mM尿酸 (11八) &11(1 1〇11^葡萄糖 &11(1200^1 111^ 20 2, 枝干状 纳米结构修饰电极对 20 2显示 明显的电流台阶, 而干扰物抗坏血酸, 葡萄糖和多巴胺没有明显的电流台阶, \¥0 2019/114259 干扰物多巴胺仅出现微弱的电流台阶, 基本上对11 20 2测定不产生干扰。
[0105] 作为评价传感器的重要指标, 我们对 20 2传感器的重复性和稳定性进行了研 究, 枝干多层
Figure imgf000014_0001
纳米结构修饰电极在 1 mM 20 2的缓冲溶液中连续扫描 10圈, 催化氧化电流变为原来的 90.5%, 说明传感器存在良好的重复性; 另外, 5只修 饰电极 0.5 11^ 20 2溶液中测定的标准偏差为 2.8%, 进一步证明所制备的传感 器存在好的重复性。 为了研究传感器的稳定性, 枝干多层八§纳米结构修饰电极 保存在 4° (:的冰箱中, 21天之后催化氧化电流变为原来的 90%, 显示传感器存在 良好的稳定性。
[0106] 通过简单的合成法制备枝干状 11纳米结构, 并利用枝干状 11纳米结构修饰电 极组装 11 20 2传感器。 电化学数据显示, 传感器存在好的传输电子能力, 宽的线 性范围和良好的灵敏性; 另外, 该传感器存在良好的选择性、 重复性和稳定性 。 因此, 传感器具有潜在的实际应用价值。 我们用所制备的传感器检测牛奶中 的过氧化氢, 结果令人满意。

Claims

\¥02019/114259 卩(:17€謂18/094242 权利要求书
[权利要求 1] 一种枝干状 纳米结构, 其特征在于, 所述枝干状 纳米结构由 纳米线与 纳米棒自组装而成, 所述 纳米结构的干为长度 5-10
、直径 70-2011111的八§纳米线, 所述八纳米结构的枝为长度为 200-800 11111、直径为 20-12〇11111的八§纳米棒。
[权利要求 2] 如权利要求1中所述一种枝干状八纳米结构的制备方法, 其特征在于 , 包括以下反应步骤:
Figure imgf000015_0001
步骤八1、 取一定量的聚乙烯吡咯烷酮与一定量的亚碲酸钠溶解于一 定量的去离子水溶液中, 搅拌一定时间形成混合溶液;
步骤八2、 将一定量的水合肼、 氨水加入到步骤八1的混合溶液中, 继 续搅拌一定时间, 形成混合溶液;
步骤八3、 将步骤八2所得溶液转移到聚四氟乙烯反应釜中, 在一定温 度、 时间下进行水热反应, 反应完毕后取出冷却到室温, 打开反应釜 盖, 向冷却后的反应釜中加入一定量的丙酮, 静置一定时间后进行离 心, 将离心后沉淀进行洗涤、 烘干, 即得到1^纳米线;
步骤 6、枝干状八§纳米结构的合成
步骤 61、分别取一定量的氯化铜和乙二醇, 将氯化铜加入乙二醇中 制成一定浓度的氯化铜/乙二醇混合溶液;
步骤 62、分别取一定量的硝酸银和乙二醇, 将硝酸银加入乙二醇中 制成一定浓度的硝酸银/乙二醇混合溶液, 避光保存;
步骤 63、取一定量的步骤61中制成的氯化铜/乙二醇混合溶液, 依次 向混合溶液中加入一定量的 纳米线、 一定量的聚乙烯吡咯烷酮, 搅拌一段时间, 得到混合溶液;
步骤 64、取一定量的步骤62中的硝酸银 /乙二醇混合溶液, 在搅拌的 条件下, 将步骤 82中的混合溶液滴加到步骤83的混合溶液中, 继续 搅拌一定时间;
步骤 65、将步骤 64搅拌后的溶液转入微波炉中, 在一定功率、 一定 \¥0 2019/114259 时间下进行反应, 反应结束后冷却至室温, 然后进行离心分离, 将离 心后沉淀进行洗涤、 烘干, 即得到枝干状 纳米结构。
[权利要求 3] 如权利要求 2所述的一种枝干状八纳米结构的制备方法, 其特征在于 , 所述步骤八1中聚乙烯吡咯烷酮的量为 0.5-2 , 亚碲酸钠的量为 0.0 l-0.2g, 去离子水的量为 15-6〇11^, 搅拌时间为 10-301^11; 所述步骤八 2中水合肼的量为 0.1-5.011^, 氨水的量为 0.5-811^, 搅拌时间为 10-30
Figure imgf000016_0001
[权利要求 4] 如权利要求 2所述的一种枝干状八纳米结构的制备方法, 其特征在于 , 所述步骤八3中反应温度为 120-220 ° (:, 反应时间为 0.5-4小时, 所述 丙酮的用量为 80-1501111^ 所述静置时间为 10-30111111, 所述洗涂溶剂 由质量比为 1: 1的乙醇和去离子水组成, 洗涤次数为 2次, 所述烘干温 度为 50-80 ° (:。
[权利要求 5] 如权利要求 2所述的一种枝干状八纳米结构的制备方法, 其特征在于 , 所述步骤81中所述氯化铜 /乙二醇混合溶液的浓度为 0.1-5.0 mM, 步骤 62中所述硝酸银 /乙二醇混合溶液的浓度为 10-3011^。
[权利要求 6] 如权利要求 2所述的一种枝干状八纳米结构的制备方法, 其特征在于 , 所述步骤63中所用氯化铜 /乙二醇混合溶液的量为 8-3〇11^, 所用 纳米线的量为 0.5-31^、 聚乙烯吡咯烷酮的量为 0.2-2 , 搅拌时间为 10-30111111; 步骤 84中所述硝酸银 /乙二醇混合溶液的量为 1-1511^, 继 续搅拌的时间为 10-3011^11。
[权利要求 7] 如权利要求 2所述的一种枝干状八纳米结构的制备方法, 其特征在于 , 所述步骤85中所用加热功率为 250-350\¥, 反应时间为 60-90秒; 所 述洗涤溶剂由质量比为 1 : 1的乙醇和去离子水组成, 洗涤次数为 2次, 所述烘干温度为 50-80 ° (:。
[权利要求 8] 一种采用权利要求 2-7中任一项所述的枝干状八§纳米结构的制备方法 制备的枝干状八§纳米结构修饰电极的制备方法, 其特征在于, 包括 以下步骤:
步骤一、 玻碳电极在麂皮表面用 20 3粉末分别进行抛光, 将抛光后 \¥0 2019/114259 卩(:17 謂18/094242 的玻碳电极用去离子水和乙醇溶液中分别清洗, 后用氮气将玻碳电极 吹干;
步骤二、 取一定量的枝干状 纳米结构, 将枝干状 §纳米结构分散 于一定量的蒸馏水中得到枝干状八§纳米结构水溶液, 向所得水溶液 中加入一定量的萘酚, 搅拌均匀后得到混合溶液, 取一定量的混合溶 液滴涂到处理好的玻碳电极表面, 用红外灯烘干, 得到枝干状八§纳 米结构修饰电极。
[权利要求 9] 一种如权利要求 8所述的枝干状八纳米结构修饰电极的制备方法, 其 特征在于, 步骤二中, 所述枝干状 纳米结构的用量为 0.5-311^, 所 述蒸馏水的用量为 2-511^, 所述萘酚为 0.5-3\^%萘酚溶液, 用量为 0.5 -3 11^ ; 所用混合溶液量为 1-3滴。
[权利要求 10] 一种利用权利要求 9的制备方法制备的枝干状多层八§纳米结构修饰电 极在测定过氧化氢中的应用。
PCT/CN2018/094242 2017-12-11 2018-07-03 枝干状Ag纳米结构、修饰电极及其及制备方法和应用 WO2019114259A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711307173.8 2017-12-11
CN201711307173.8A CN108226248B (zh) 2017-12-11 2017-12-11 枝干状Ag纳米结构、修饰电极及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019114259A1 true WO2019114259A1 (zh) 2019-06-20

Family

ID=62654071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094242 WO2019114259A1 (zh) 2017-12-11 2018-07-03 枝干状Ag纳米结构、修饰电极及其及制备方法和应用

Country Status (2)

Country Link
CN (1) CN108226248B (zh)
WO (1) WO2019114259A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252756A (zh) * 2020-02-12 2021-08-13 福建医科大学 基于牛血清白蛋白-二氧化钌纳米粒子构建的电化学分析方法检测细胞内过氧化氢

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226248B (zh) * 2017-12-11 2019-09-17 东莞理工学院城市学院 枝干状Ag纳米结构、修饰电极及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832932A (zh) * 2009-03-13 2010-09-15 中国科学院合肥物质科学研究院 使用银纳米树枝叶检测多氯联苯的方法
CN102181891A (zh) * 2011-04-08 2011-09-14 温州大学 银纳米枝晶表面增强拉曼散射基底及其制备方法和用途
US20160158740A1 (en) * 2014-12-03 2016-06-09 National Applied Research Laboratories Visible light response catalyst structure and process for manufacturing the same
CN105675688A (zh) * 2015-11-04 2016-06-15 东莞理工学院 一种纳米线–纳米颗粒修饰电极的制备方法及其应用
CN105908220A (zh) * 2016-05-06 2016-08-31 上海应用技术学院 一种液相电沉积制备微纳米银枝晶的方法
CN108226248A (zh) * 2017-12-11 2018-06-29 东莞理工学院城市学院 枝干状Ag纳米结构、修饰电极及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107377991B (zh) * 2017-07-11 2020-07-07 陕西科技大学 一种聚乙烯吡咯烷酮修饰纳米银线粉体的宏量制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832932A (zh) * 2009-03-13 2010-09-15 中国科学院合肥物质科学研究院 使用银纳米树枝叶检测多氯联苯的方法
CN102181891A (zh) * 2011-04-08 2011-09-14 温州大学 银纳米枝晶表面增强拉曼散射基底及其制备方法和用途
US20160158740A1 (en) * 2014-12-03 2016-06-09 National Applied Research Laboratories Visible light response catalyst structure and process for manufacturing the same
CN105675688A (zh) * 2015-11-04 2016-06-15 东莞理工学院 一种纳米线–纳米颗粒修饰电极的制备方法及其应用
CN105908220A (zh) * 2016-05-06 2016-08-31 上海应用技术学院 一种液相电沉积制备微纳米银枝晶的方法
CN108226248A (zh) * 2017-12-11 2018-06-29 东莞理工学院城市学院 枝干状Ag纳米结构、修饰电极及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252756A (zh) * 2020-02-12 2021-08-13 福建医科大学 基于牛血清白蛋白-二氧化钌纳米粒子构建的电化学分析方法检测细胞内过氧化氢

Also Published As

Publication number Publication date
CN108226248B (zh) 2019-09-17
CN108226248A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
Asadian et al. Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite
Dou et al. Trimetallic hybrid nanoflower-decorated MoS2 nanosheet sensor for direct in situ monitoring of H2O2 secreted from live cancer cells
Sheng et al. M-Nx (M= Fe, Co, Ni, Cu) doped graphitic nanocages with High specific surface Area for non-enzymatic electrochemical detection of H2O2
Liu et al. A novel nitrite biosensor based on the direct electrochemistry of horseradish peroxidase immobilized on porous Co3O4 nanosheets and reduced graphene oxide composite modified electrode
Babaei et al. Nafion/Ni (OH) 2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid
Song et al. Ag nanoparticles coated NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing
Fazio et al. Molybdenum oxide nanoparticles for the sensitive and selective detection of dopamine
Guo et al. Electrochemical fabrication of stalactite-like copper micropillar arrays via surface rebuilding for ultrasensitive nonenzymatic sensing of glucose
Zhang et al. Seed‐mediated synthesis of Au nanocages and their electrocatalytic activity towards glucose oxidation
Baek et al. Novel peptides functionalized gold nanoparticles decorated tungsten disulfide nanoflowers as the electrochemical sensing platforms for the norovirus in an oyster
Hu et al. Real-time photoelectrochemical quantification of hydrogen peroxide produced by living cells
WO2019114259A1 (zh) 枝干状Ag纳米结构、修饰电极及其及制备方法和应用
Gupta et al. Metal nanoparticles-grafted functionalized graphene coated with nanostructured polyaniline ‘hybrid’nanocomposites as high-performance biosensors
CN113406170B (zh) 一种用于非酶葡萄糖检测的Ni(OH)2纳米片传感器及其制备方法与应用
Ferrer-Vilanova et al. Sonochemical coating of Prussian Blue for the production of smart bacterial-sensing hospital textiles
Zhao et al. Flexible nickel–cobalt double hydroxides micro-nano arrays for cellular secreted hydrogen peroxide in-situ electrochemical detection
Ma et al. Enzyme-MXene nanosheets: fabrication and application in electrochemical detection of H2O2
Ou et al. A cathodic luminol-based electrochemiluminescence biosensor for detecting cholesterol using 3D-MoS 2–PANI nanoflowers and Ag nanocubes for signal enhancement
Soomro et al. Controlled synthesis and electrochemical application of skein-shaped NiO nanostructures
Fu et al. Highly sensitive nonenzymatic glucose sensor based on reduced graphene oxide/ultrasmall Pt nanowire nanocomposites
Gan et al. Facile synthesis of monodisperse Ag@ C@ Ag core–double shell spheres for application in the simultaneous sensing of thymol and phenol
Guo et al. 2D/3D Copper-based metal-organic frameworks for electrochemical detection of hydrogen peroxide
Rodrigues et al. Development and surface characterization of a glucose biosensor based on a nanocolumnar ZnO film
CN109911940A (zh) 一种金-二硫化钼-石墨烯复合物及其制备方法和应用
Zhang et al. Highly sensitive electrochemical sensing platform: Carbon cloth enhanced performance of Co 3 O 4/rGO nanocomposite for detection of H 2 O 2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889476

Country of ref document: EP

Kind code of ref document: A1