WO2019111887A1 - Resin molded product - Google Patents

Resin molded product Download PDF

Info

Publication number
WO2019111887A1
WO2019111887A1 PCT/JP2018/044545 JP2018044545W WO2019111887A1 WO 2019111887 A1 WO2019111887 A1 WO 2019111887A1 JP 2018044545 W JP2018044545 W JP 2018044545W WO 2019111887 A1 WO2019111887 A1 WO 2019111887A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
molded body
layer side
surface layer
mold
Prior art date
Application number
PCT/JP2018/044545
Other languages
French (fr)
Japanese (ja)
Inventor
宮本 和明
裕一郎 福田
岡本 昭男
Original Assignee
宇部興産機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産機械株式会社 filed Critical 宇部興産機械株式会社
Publication of WO2019111887A1 publication Critical patent/WO2019111887A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding

Definitions

  • the present invention relates to a resin molded product having a pseudo stitch pattern formed on a design surface.
  • leather is sometimes used in interiors of moving means such as automobiles, aircrafts, trains and ships, as well as in furniture, etc. in order to create a sense of luxury.
  • stitches may be arranged by twisting yarn, leather yarn (string), and the like. This stitch (stitch) can produce a feeling of manual work, and this feeling of manual work can produce a more luxurious feeling in combination with the material feeling such as the appearance and feel of the leather itself.
  • Patent Document 1 discloses a method of molding such a resin molded product.
  • a first cavity 104 is formed between the common mold portion 100 and the first mold 102, as shown in FIG. 8A.
  • the base layer resin is injected into the first cavity 104, and in the first cavity 104, a plurality of stitch portions (grain portions) 112 formed so as to be juxtaposed on the front side are formed.
  • the base material layer side molded body 110 is molded.
  • the first mold 102 is replaced with the second mold 106 while leaving the base layer side molded body 110 in the common mold portion 100, whereby the protrusion of the stitch portion 112 is projected.
  • a second cavity 108 is formed between the end-sealed second mold 106 and the common mold portion 100.
  • the surface layer resin having a color different from that of the base layer resin is injected into the second cavity 108, and in the second cavity 108, on the front side of the base layer side molded body 110.
  • the surface-side compact 120 is molded.
  • a pseudo stitch pattern (stitch) on a design surface by a plurality of stitch portions 112 which are exposed and exposed from the surface of the surface layer side molded object 120 Is formed.
  • Patent Document 2 a method using a resin material in which a glass fiber is filled with a propylene-ethylene block copolymer having a melting peak temperature of 110 to 150 ° C. as a resin for base layer has been proposed (Patent Document 2).
  • Patent Document 2 by using a propylene-ethylene block copolymer having a relatively low melting peak temperature as the resin for the base layer, the molding shrinkage at the time of molding of the base layer side molded body is delayed, and further, Since it is possible to reduce the contraction rate itself by filling the glass fiber, the displacement between the molding surface and the projection end when sealing the projection end of the stitch portion on the molding surface of the second mold is reduced. It is said that this can make it possible to prevent the occurrence of flaws during two-color injection molding at the projecting end.
  • the surface layer resin of a much larger amount relative to the volume of the stitch portion 112 is used as the second.
  • the cavity 108 is filled.
  • resin fluidity of the molten resin injected and filled and remelting (melting loss) by resin heat (resin temperature).
  • the protruding end of the stitch portion 112 may be displaced with respect to the molding surface (cavity surface) of the sealed second mold 106. Then, as a result, the molten resin intrudes into the seal surface, and the delicate pattern (concave and convex portions simulating the twist) formed at the projecting end of the stitch portion 112 may be crushed.
  • the shrinkage rate of a stitch part is made small intentionally by making resin for base material layers be filled with glass fiber.
  • the shrinkage rate of the surface layer resin is larger than the shrinkage rate of the base layer resin (when the surface layer resin shrinks more than the base layer resin)
  • it is thin and small at the time of cooling and solidification.
  • the stitch portion may be pulled and deformed by the contraction of the surface layer side molded body, or a gap may be generated between the stitch portion and the hole portion of the surface layer side molded body.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a resin molded product in which a pseudo stitch pattern is precisely formed on a design surface.
  • the resin molded product according to the present invention comprises a surface layer side molded body having a design surface on the surface, and a stitch portion which is laminated on the back surface side of the surface layer side molded body and exposed to the design surface side through the surface layer side molded body.
  • a molded article having a base material layer side having the above-mentioned, and a pseudo stitch pattern formed on the design surface side by the stitch portion of the base material layer side molded article, wherein the surface layer side molding
  • the surface layer resin forming the body has a melting point equal to or lower than the melting point of the base layer resin forming the base layer side molded body, and / or its linear expansion coefficient forms the base layer side molded body It is characterized by being below the linear expansion coefficient of resin for base material layers.
  • the surface layer resin forming the surface layer side molded body has a melting point equal to or lower than the melting point of the base material layer resin forming the base material layer side molded body, and the wire
  • the expansion coefficient is preferably equal to or less than the linear expansion coefficient of the base layer resin forming the base layer side molded body.
  • the resin for surface layer and the resin for base layer be compatible.
  • the surface layer resin is preferably made of a resin having a heat deformation temperature lower than that of the base layer resin.
  • FIG. 1 is a perspective view schematically showing a resin molded product according to an embodiment of the present invention.
  • FIG. 2 is a cross sectional view schematically showing a cross section taken along a line AA 'of FIG. 1; It is a schematic plan view which shows an example of the shape of a stitch-like design and the design surface of the vicinity.
  • FIG. 5 is a schematic cross-sectional view taken along the line BB ′ of FIG. 3;
  • FIG. 4 is a schematic cross-sectional view taken along the line CC ′ of FIG. 3; It is a figure which shows the mold-opened state of a common metal mold and a 1st metal mold among process drawing which shows an example of the shaping
  • FIG. 1 shows the mold-opened state of the injection molding die among process drawings which show the other example of the shaping
  • FIG. 1 It is a figure which shows a primary shaping
  • FIG. It is a figure which shows a mold opening process among process drawing which shows the shaping
  • FIG. It is a figure which shows the state which switched the metal mold
  • FIG. 1 It is a figure which shows a secondary forming process among process drawing which shows the shaping
  • FIG. It is a figure which shows the molded resin molded product among process drawing which shows the molding method of the resin molded product of patent document 1.
  • FIG. 1 It is a figure which shows the molded resin molded product among process drawing which shows the molding method of the resin molded product of patent document 1.
  • the resin molded product 1 according to the present embodiment is, as shown in FIGS. 1 and 2, a surface layer side molded body 10 having a design surface on the surface, and a base material layer side laminated on the back surface side of the surface layer side molded body 10. It is a laminated molded article provided with the molded object 20.
  • the base material layer side molded body 20 is exposed from the non-design surface portion 22 laminated on the back surface side of the surface layer side molded body 10 from the non-design surface portion 22 through the surface layer side molded body 10 (through) And a stitch portion 24.
  • the front end portion (stitch-like design 26) of the stitch portion 24 is exposed to the design surface side through the surface layer side molded body 10 (that is, visible from the design surface side) And the base layer side molded body 20 is laminated and formed on the non-design surface side of the surface layer side molded body 10, so that a pseudo stitch pattern (stitched design 26) simulating a seam (yarn) is obtained. It is configured to be formed on the design surface side of the resin molded product 1.
  • the stitch-like design 26 formed on the design surface of the resin molded product 1 is a three-dimensional model that simulates a yarn thread or leather thread (string) visible from the design surface separately from the design surface that simulates the leather surface.
  • the stitch-like design 26 may include a surface design in which a three-dimensional design surface has unevenness of one twisted yarn, a cross-sectional shape of a leather yarn (string), and the like.
  • the stitched design 26 is illustrated as a simple uneven shape for easy understanding, but the shape of the stitched design 26 and the design surface in the vicinity thereof is, for example, FIG.
  • the shape shown in FIG. 5 can be obtained.
  • the shape of the design surface in the vicinity of the stitch-like design 26 is such that the portion through which these yarns penetrate the stitch-like design 26 of the yarn thread or leather yarn (string) protruding from the design surface is the yarn It has a valley shape 30 to express the sewing.
  • the valley shape 30 and the mountain shape 32 are formed smoothly and continuously.
  • the valley shape 30 and the mountain shape 32 are formed by forming a recess and a protrusion, which represent irregularities in the vicinity of the seam, around the recess for forming the stitch portion 24 formed on the mold cavity surface of the mold. can do.
  • the stitch design 26 can be more realistically expressed.
  • the stitch pattern can be a flat stitch in which the stitch design 26 is substantially flush with the design surface.
  • the stitch pattern can be a concave stitch in which the stitch design 26 recedes from the design surface.
  • the non-design surface portion 22 of the base material layer side molded body 20 is laminated on the entire back surface (surface on the non-design surface side) of the surface layer side molded body 10
  • the present invention is not limited to this, and the non-design surface portion 22 may be configured to be partially laminated on the back surface (surface on the non-design surface side) of the surface layer side molded body 10.
  • the surface layer side molded body 10 and the base material layer side molded body 20 are formed of resins different in color from each other.
  • the surface layer resin for forming the surface layer side molded body 10 has a melting point equal to or lower than the melting point of the base material layer resin for forming the base material layer side molded body 20 and / or the linear expansion coefficient thereof is the base material layer side molded body It is below the linear expansion coefficient of resin for base material layers which forms 20.
  • the melting point of the resin material is a temperature at which melting of the resin material starts to occur.
  • the linear expansion coefficient indicates the rate at which the length of the object changes due to the rise in temperature per temperature, and the rate at which the volume of the object changes due to the rise in temperature per the temperature It is a physical property associated with the thermal expansion coefficient (thermal expansion coefficient) shown. That is, at the time of resin molding, it means the degree of contraction at the time of cooling and solidification of the molten resin (the amount of contraction with respect to the reference length at the time of cooling and solidification). It means the degree of expansion and contraction.
  • the linear expansion coefficient can be adjusted (basically reduced) by mixing various linear expansion coefficient modifiers, such as inorganic fillers called fillers, into the resin material.
  • glass fiber etc. which are 1 type of fillers may be mixed in a resin material with a predetermined amount for the improvement of product strength, in this case, as a result, the linear expansion coefficient changes from the numerical value of the resin material alone. There is also a case.
  • the resin for the surface layer and the resin for the base layer have a melting point of the resin for the surface layer equal to or less than the melting point of the resin for the base layer, and / or a linear expansion coefficient of the resin for the surface layer
  • various resins can be used as long as they have a relationship of the linear expansion coefficient or less of the material for layer material.
  • the main purpose is to prevent erosion of the base material layer side molded article
  • the base layer side molded body 20 (particularly, the stitch portion 24) resulting from the flow of the surface layer resin.
  • TPS styrene-based elastomer
  • PP polypropylene
  • fusing point uses the thing of 145-165 degreeC as the former TPS (surface layer resin), and the latter PP (base layer resin) It is further preferred to use one having a melting point of 168 ° C. That is, when the melting point of the surface layer resin is higher than the melting point of the base layer resin, there is a possibility that the stitch portion 24 may be remelted by the resin heat of the resin flow of the surface layer resin.
  • the stitch portion 24 of the base layer resin is re-injected at the time of injection filling of the surface layer resin. Melting (melting loss) can be suppressed.
  • the melting point is also called melting peak temperature, and can be measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the base layer side molded body 20 (especially when used as an automobile part, etc.) is prevented from displacement of the base material layer side molded body 20 (especially the stitch portion 24) during molding and the temperature change is severe
  • an olefin-based elastomer (TPO) is employed as the surface layer resin
  • polypropylene (PP) is employed as the base layer resin. It is preferable to adopt
  • the linear expansion coefficient is 5-7 x 10 about the former TPO (resin for surface layers) by the grade selection of each resin material marketed, addition of a linear expansion coefficient regulator, etc. using those -5 / ° C.
  • the linear expansion coefficient of the latter PP (resin base material layer) uses those 8.1 ⁇ 10 ⁇ 10 -5 / °C . That is, according to the knowledge of the present inventor, when the linear expansion coefficient of the surface layer resin exceeds the linear expansion coefficient of the base layer resin, as described above, when the cooling and solidification or the temperature environment during use changes.
  • the stitch portion 24 of the base material layer side molded body 20 is pulled and deformed by the contraction of the surface layer side molded body 10, or a gap is formed in the contact surface (through hole portion 12) between the stitch portion 24 and the surface layer side molded body 10. It may occur.
  • the linear expansion coefficient (5 to 7 ⁇ 10 ⁇ 5 / ° C.) of the surface layer resin is different from the linear expansion coefficient (8.1 to 10 ⁇ 10 ⁇ of the base layer resin).
  • the degree of contraction and expansion of the surface layer side molded body 10 is the degree of contraction and expansion of the base material layer side molded body 20 at the time of temperature change during cooling solidification and use Smaller than.
  • the combination of the resin for surface layer and the resin for base layer is, in addition to the effect of suppressing deformation and peeling of the base layer side molded body 20, securing of product rigidity by the base layer side molded body 20, low specific gravity material It is also possible to expect effects such as weight reduction of the product and soft soft feeling to the surface side molded body 10 by the above.
  • the heat distortion temperature of the surface layer resin forming the surface layer side green body 10 may be lower than the heat deformation temperature of the base material layer resin forming the substrate layer side green body 20.
  • the heat distortion temperature of the resin material is also called a weighted deflection temperature, and is one of the indicators indicating the heat resistance of the resin material. Specifically, the temperature of the test piece is raised while applying a determined load to the test piece supported at both ends, and the temperature of the test piece becomes a constant value of the deflection of the test piece.
  • polyamide (PA6) is adopted as the surface layer resin. It is also possible to employ a mixture of glass fiber (GF) in a predetermined ratio with polyamide (PA6) as the base layer resin.
  • the former PA6 surface layer resin
  • the latter PA6 + GF for base layer layer
  • the grade selection of resin materials commercially available. It is preferable to use one having a heat distortion temperature of 146 to 149 ° C. for the resin). That is, according to the knowledge of the present inventor, when the heat deformation temperature of the surface layer resin exceeds the heat deformation temperature of the base layer resin, as described above, when the cooling and solidification or the temperature environment during use changes.
  • the stitch portion 24 of the base material layer side molded body 20 is pulled and deformed by the contraction of the surface layer side molded body 10, or a gap is formed in the contact surface (through hole portion 12) between the stitch portion 24 and the surface layer side molded body 10. It may occur.
  • the heat deformation temperature (68 to 85 ° C.) of the surface layer resin is lower than the heat deformation temperature (146 to 149 ° C.) of the base layer resin.
  • the degree of contraction and expansion of the surface layer side molded body 10 is smaller than the degree of contraction and expansion of the base material layer side molded body 20 when the temperature environment at the time of use changes.
  • the surface layer side molded body 10 and the base material layer side molded body 20 be formed of a resin having excellent mutual compatibility (bondability / unification).
  • the compatibility refers to the property of two or more resins being mutually soluble.
  • the compatibility in the case of combining each of these resin materials can be judged using the solubility parameter (SP value) as a standard, and the smaller the difference in the solubility parameter (SP value) of each resin material, the better the compatibility. It can be said that In general, if the difference between the SP values of the respective resin materials is, for example, within ⁇ 10%, it can be said that they have excellent compatibility.
  • the reference value of the difference in SP value of each resin material that can be judged to have excellent compatibility is such that it projects from the base material layer side molded body to the design surface side (second mold side) Since it differs depending on the size and shape of the stitch portion to be formed, and further on the relationship of the thickness of the surface layer side molded body, etc., it is determined by the molding test and the quality / strength / durability test of the molded product Is preferred.
  • polyethylene terephthalate (PET) is employ
  • PET polyethylene terephthalate
  • PC polycarbonate
  • Such a combination of the surface layer resin and the base layer resin can be applied to the effect of color development by utilizing the light source from the back surface of the base layer side molded body 20 or the like, or to the weathering of the surface side molded body 10 An effect can also be expected.
  • SP value uses a thing of 21.8 about former PET (resin for surface layers) by grade selection of each resin material etc.
  • PC resin for base material layers
  • SP value 20.2.
  • the difference between the SP values of the surface layer resin and the base layer resin is as low as about 7 to 8%, excellent compatibility can be ensured.
  • the illustration is abbreviate
  • the surface layer resin forming the surface layer side molded body has a linear expansion coefficient equal to or less than the linear expansion coefficient of the substrate layer resin forming the base layer side molded body, and / or its melting point It may be equal to or lower than the melting point of the base layer resin forming the base layer side molded body.
  • the resin molded product 1 according to the present embodiment is the same as the method for molding a resin molded product of Patent Document 1 shown in FIGS. 8A to 8G.
  • the base layer side molded body 20 having 24) is molded (see FIG. 8B).
  • the first mold is replaced with the second mold while leaving the base material layer side molded body 20 in the common mold part (see FIGS. 8C and 8D) to seal the protruding end of the stitch part 24.
  • the second cavity is formed between the second mold and the common mold portion (see FIG.
  • the surface layer resin having a color different from that of the base layer resin is injected into the second cavity.
  • the surface layer side molded body 10 is molded on the front side of the base material layer side molded body 20 (see FIG. 8F).
  • the resin molded product 1 in which the pseudo stitch pattern (stitch) is formed on the design surface can be molded by the plurality of stitch portions 24 which protrude from the surface of the surface layer side molded body 10 and are exposed (FIG. 8G) reference).
  • the resin molded product 1 which concerns on this embodiment is not limited to the molding method mentioned above, It is possible to shape
  • the surface-side compact 10 is formed between the common mold 40 and the first mold 42, and then the mold to be combined with the common mold 40 is formed.
  • a method of expanding the mold cavity by switching from the first mold 42 to the second mold 50, and laminating and molding the base layer side molded body 20 on the back surface side (non-design surface side) of the surface layer side molded body 10 is there.
  • the common mold 40 and the first mold 42 are first moved by moving the movable plate to the fixed plate side by a mold clamping mechanism not shown. And form a first mold cavity 44 between the common mold 40 and the first mold 42 by applying a predetermined clamping force.
  • the surface layer resin is injected and filled into the first mold cavity 44 from the first injection unit 46 through the first resin flow path 48 and the first gate valve 49 (primary injection filling) Process).
  • the surface layer resin is a foamable resin containing a chemical foaming agent
  • the first mold 42 is moved from the common mold 40 by a minute distance L by a mold clamping mechanism (not shown). The mold is opened only, and the surface layer resin is foamed (micro mold opening step).
  • the surface layer resin which has been foamed in the micro mold opening step is cooled and solidified, whereby the surface layer side molded body which is a foam molded body in which the foam layer is included in the surface layer (skin layer) in the first mold cavity 44. 10 is molded (primary molding step).
  • the surface layer resin is not a foamable resin containing a chemical foaming agent
  • the surface layer resin is cooled and solidified without undergoing the fine mold opening step, and the surface layer side molded body 10 is formed.
  • the surface layer side molded body 10 has a design surface formed on the surface by the inner surface of the common mold 40. Further, in the surface layer side molded body 10, a plurality of through holes 12 penetrating from the surface (design surface) to the back surface (surface on the non-design surface) are formed by the convex portions 42a of the first mold 42. ing.
  • the mold facing the common mold 40 by the mold clamping mechanism and the mold exchanging means not shown is the first mold. 42 is switched to the second mold 50.
  • This mold switching step is performed in a state where the surface layer side molded body 10 is held by the common mold 40.
  • the common mold 40 and the second mold 50 are clamped by moving the movable platen to the fixed platen side by a clamping mechanism (not shown).
  • the resin for base layer is injected and filled in the mold cavity extension 55 from the second injection unit 54 through the second resin flow path 56 and the second gate valve 57. (Second injection filling process).
  • stacked on the non-design surface side of the surface layer side molded object 10 is shape
  • the stitched design applied to the recess 40 a of the common mold 40 is transferred to the tip of the stitch portion 24 of the base layer side molded body 20.
  • the common mold 40 and the second mold 50 are opened by moving the movable disc in a direction away from the fixed disc by a mold clamping mechanism (not shown).
  • the resin molded product 1 composed of the surface layer side molded body 10 and the base material layer side molded body 20 is carried out of the injection molding machine by the product taking out means (not shown), and the molding cycle is completed.
  • simulated stitch pattern (stitch) was formed in the surface (design surface) can be manufactured continuously by repeating the above process.
  • the surface layer side molded body 10 is roughly formed between the fixed mold 60 and the movable mold 62, and then the movable portion of the movable mold 62 is formed.
  • This is a method of expanding the mold cavity by retracting 64 and laminating and molding the base layer side molded body 20 on the back surface side (non-design surface side) of the surface layer side molded body 10.
  • the movable platen is moved to the fixed platen side by a clamping mechanism (not shown), whereby the fixed mold 60 and the movable mold 62 and Is closed, and then a predetermined mold clamping force is applied to form a first mold cavity 66 between the fixed mold 60 and the movable mold 62.
  • the movable portion 64 of the movable mold 62 is maintained in the state of being closest to the fixed mold 60.
  • the surface layer resin is injected and filled in the first mold cavity 66 from the first injection unit 46 via the first resin flow path 48 and the first gate valve 49, and is solidified by cooling.
  • the surface layer side molded body 10 is molded in the first mold cavity 66 (primary molding step).
  • the surface layer side molded body 10 has a design surface formed on the surface by the inner surface of the fixed mold 60. Further, in the surface layer side molded body 10, a plurality of through holes 12 penetrating from the surface (design surface) to the back surface (surface on the non-design surface side) by the convex portions 68 of the movable portion 64 of the movable mold 62. Is formed.
  • stacked on the non-design surface side of the surface layer side molded object 10 is shape
  • the stitch-like design applied to the concave portion 60 a of the fixed mold 60 is transferred to the tip of the stitch portion 24 of the base layer side molded body 20.
  • the fixed mold 60 and the movable mold 62 are opened by moving the movable board in a direction away from the fixed board by a mold clamping mechanism not shown. .
  • the resin molded product 1 composed of the surface layer side molded body 10 and the base material layer side molded body 20 is carried out of the injection molding machine by the product taking out means (not shown), and the molding cycle is completed.
  • simulated stitch pattern (stitch) was formed in the surface (design surface) can be manufactured continuously by repeating the above process.
  • FIGS. 8A to 8G in the method for forming the base layer side molded body 20 after laminating the surface layer side molded body 10 as shown in FIGS. 6A to 6E and 7A to 7C.
  • the protruding end portion (stitch-like design 26) of the stitch portion 24 of the base layer side molded body 20 and the method of laminating and forming the surface layer side molded body 10 after molding the base material layer side molded body 20 There is no need to engage with the molding surface of the second mold 50 to form a seal that prevents the resin material from entering between them.
  • the resin for the base layer is filled in the concave portions 40a and 60a through the through holes 12 of the surface-side compact 10 formed previously, so the patent is issued.
  • the stitch portion 24 disappears due to re-melting (melting loss) by resin heat, or shape deformation or positional deviation occurs due to resin flow force.
  • the heat insulating property and heat retention property as the resin flow path of the through hole 12 formed of a resin (surface layer resin) having a thermal conductivity lower than that of the mold cavity are obtained by forming the entire stitch portion with the mold cavity Higher than one.
  • the resin filling property of the resin for the base layer to the recesses 40a and 60a where the stitch-like design 26 is formed is excellent and the resin for the base layer in the recesses 40a and 60a It is suitable for forming a detailed stitch-like design 26 because it is also excellent in the injection filling pressure and the propagation of the holding pressure.
  • the surface layer side molded body 10 and the base material layer side molded body 20 are formed of different resins, and for the surface layer forming the surface layer side molded body 10
  • the base layer of which resin has a linear expansion coefficient equal to or less than that of the base layer resin forming the base layer side molded body 20 and / or a melting point thereof forms the base layer side molded body 20 It is below the melting point of the resin.
  • the resin molded product 1 which concerns on this embodiment, when the coefficient of linear expansion of resin for surface layers is below the coefficient of linear expansion of resin for base material layers, at the time of the change of the temperature environment at the time of cooling solidification or use. Since the degree of contraction and expansion of the surface layer side molded body 10 is smaller than the degree of contraction and expansion of the base material layer side molded body 20, the stitch portion 24 of the base material layer side molded body 20 is It is possible to suppress a phenomenon in which it is pulled by contraction and deformed or a gap is generated between the stitch portion 24 and the through hole 12 of the surface layer side molded body 10.
  • the resin molded product 1 according to the present embodiment when the melting point of the surface layer resin is equal to or lower than the melting point of the base layer resin, the remelting (melting loss) of the stitch portion 24 of the base layer resin is suppressed. can do. For this reason, according to the resin molded product 1 according to the present embodiment, it is possible to accurately manufacture a resin molded product having a pseudo stitch pattern formed on a design surface.
  • the resin molded product according to the present invention is not limited to the configuration and shape of the resin molded product 1 illustrated in FIGS. 1 and 2, and has a design surface on the surface and a through hole penetrating from the surface to the back A surface-side molded body in which the portion is formed, a non-designed surface portion laminated on the back surface side of the surface-side molded body, and a stitch portion exposed from the non-designed surface portion to the design surface side through the through-hole portion of the surface-side molded body If it is a resin molded product provided with a base material layer side molded body having and the pseudo stitch pattern is formed on the design surface side by the stitch portion of the base material layer side molded body, various configurations and shapes are adopted. It is possible.
  • the resin molded product according to the present invention can be molded by various mold configurations and processes without being limited to the above-described mold configuration and molding method by the processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

This resin molded product is provided with: an outer surface-side molded body having a decorative surface on the outer surface thereof; and a substrate layer-side molded body that is stacked on the rear surface side of the outer surface-side molded body and that has a stitch section that is exposed on the decorative surface side through the outer surface-side molded body, a pseudo stitch pattern being formed on the decorative surface side by means of the stitch section of the substrate layer-side molded body, wherein the melting point of an outer surface resin that forms the outer surface-side molded body is no higher than the melting point of a substrate layer resin that forms the substrate layer-side molded body, and/or the linear expansion coefficient of the outer surface resin is no greater than the linear expansion coefficient of the substrate layer resin that forms the substrate layer-side molded body.

Description

樹脂成形品Resin molding
 本発明は、意匠面に擬似的なステッチ(縫い目)模様が形成された樹脂成形品に関するものである。 The present invention relates to a resin molded product having a pseudo stitch pattern formed on a design surface.
 従来、自動車、航空機、列車及び船舶等の移動手段の内装や、家具等には、高級感を演出するために、皮革が用いられることがある。また、皮革表面には、撚り糸や皮革糸(紐)等による縫い目(ステッチ)が配されることがある。この縫い目(ステッチ)は、手作業感を醸し出すことができ、この手作業感は、皮革自体の外観や感触等の素材感と相俟って、より一層の高級感を演出することができる。 2. Description of the Related Art Conventionally, leather is sometimes used in interiors of moving means such as automobiles, aircrafts, trains and ships, as well as in furniture, etc. in order to create a sense of luxury. In addition, on the surface of the leather, stitches (stitches) may be arranged by twisting yarn, leather yarn (string), and the like. This stitch (stitch) can produce a feeling of manual work, and this feeling of manual work can produce a more luxurious feeling in combination with the material feeling such as the appearance and feel of the leather itself.
 このような皮革を用いた製品は、一般的な工業製品と異なり、熟練者の手作業により製造されるため、大量生産が難しく、高コストである。このため、皮革は、高級品や、移動手段の特別な内装及びシート等の一部にのみ採用されるのが現状である。 Products using such leather are different from general industrial products and are manufactured manually by skilled workers, making mass production difficult and expensive. For this reason, leather is currently employed only for high-class goods, and for special interiors and seats of moving means.
 一方、近年の消費者嗜好の多様化によって、家具や移動手段の内装等においても様々な差別化が求められている。このような状況に応じて、近年では、安価であるにも関わらず高級感を演出することができる擬似皮革部材として、表面(意匠面)に擬似的なステッチ模様(縫い目)が形成された樹脂成形品の開発が行われている。 On the other hand, with the diversification of consumer preferences in recent years, various differentiations are also required in interiors of furniture and transportation means. According to such a situation, in recent years, a resin having a pseudo stitch pattern (seam) formed on the surface (design surface) as a pseudo leather member capable of producing a high-class feeling despite being inexpensive Development of molded articles is underway.
 このような樹脂成形品を成形する方法が、特許文献1に開示されている。特許文献1に開示された樹脂成形品の成形方法は、図8Aに示すように、まず、共通型部100と第1金型102との間において、第1のキャビティ104を形成する。次に、図8Bに示すように、第1のキャビティ104に基材層用樹脂を注入し、該第1のキャビティ104において、表側に並べて突出形成された複数のステッチ部(糸目部)112を有する基材層側成形体110を成形する。次に、図8C~図8Eに示すように、共通型部100に基材層側成形体110を残したまま第1金型102を第2金型106に入れ替えることで、ステッチ部112の突出端部をシールした第2金型106と、共通型部100との間において、第2のキャビティ108を形成する。最後に、図8Fに示すように、基材層用樹脂と異なる色の表層用樹脂を第2のキャビティ108に注入し、該第2のキャビティ108において、基材層側成形体110の表側に表層側成形体120を成形する。以上の方法により製造された樹脂成形品には、図8Gに示すように、表層側成形体120の表面から突出して露出する複数のステッチ部112によって、意匠面に疑似的なステッチ模様(縫い目)が形成される。 Patent Document 1 discloses a method of molding such a resin molded product. In the method of molding a resin molded product disclosed in Patent Document 1, first, a first cavity 104 is formed between the common mold portion 100 and the first mold 102, as shown in FIG. 8A. Next, as shown in FIG. 8B, the base layer resin is injected into the first cavity 104, and in the first cavity 104, a plurality of stitch portions (grain portions) 112 formed so as to be juxtaposed on the front side are formed. The base material layer side molded body 110 is molded. Next, as shown in FIGS. 8C to 8E, the first mold 102 is replaced with the second mold 106 while leaving the base layer side molded body 110 in the common mold portion 100, whereby the protrusion of the stitch portion 112 is projected. A second cavity 108 is formed between the end-sealed second mold 106 and the common mold portion 100. Finally, as shown in FIG. 8F, the surface layer resin having a color different from that of the base layer resin is injected into the second cavity 108, and in the second cavity 108, on the front side of the base layer side molded body 110. The surface-side compact 120 is molded. In the resin molded product manufactured by the above method, as shown in FIG. 8G, a pseudo stitch pattern (stitch) on a design surface by a plurality of stitch portions 112 which are exposed and exposed from the surface of the surface layer side molded object 120 Is formed.
 しかしながら、特許文献1の樹脂成形品の成形方法では、第2金型106の成形面(キャビティ面)でステッチ部112の突出端部をシールする際に、ステッチ部112の突出端部に形成された繊細な模様(撚り目を模した凹凸)が潰れてしまうおそれがある。 However, in the method of forming a resin molded product according to Patent Document 1, when the protruding end of the stitch portion 112 is sealed with the molding surface (cavity surface) of the second mold 106, the second end is formed at the protruding end of the stitch portion 112. There is a possibility that the delicate pattern (concave and convex that imitates the twist eye) may be crushed.
 そこで、このような問題を解決するために、近年、基材層用樹脂として、融解ピーク温度が110~150℃であるプロピレン-エチレンブロック共重合体にガラス繊維が充填された樹脂材料を用いる方法が提案されている(特許文献2)。特許文献2の記載によれば、融解ピーク温度が比較的低いプロピレン-エチレンブロック共重合体を基材層用樹脂として用いることにより、基材層側成形体の成形時の成形収縮を遅らせ、さらにガラス繊維を充填させることによって収縮率自体を小さくすることが可能となるため、第2金型の成形面でステッチ部の突出端部をシールする際における成形面と突出端部とのずれを少なくすることができ、これにより、突出端部に二色射出成形時のキズを生じにくくできるとされている。 Therefore, in order to solve such problems, in recent years, a method using a resin material in which a glass fiber is filled with a propylene-ethylene block copolymer having a melting peak temperature of 110 to 150 ° C. as a resin for base layer Has been proposed (Patent Document 2). According to Patent Document 2, by using a propylene-ethylene block copolymer having a relatively low melting peak temperature as the resin for the base layer, the molding shrinkage at the time of molding of the base layer side molded body is delayed, and further, Since it is possible to reduce the contraction rate itself by filling the glass fiber, the displacement between the molding surface and the projection end when sealing the projection end of the stitch portion on the molding surface of the second mold is reduced. It is said that this can make it possible to prevent the occurrence of flaws during two-color injection molding at the projecting end.
特開2014-008707号公報JP, 2014-008707, A 特開2014-133357号公報JP 2014-133357 A
 しかしながら、特許文献2の方法では、基材層側成形体の成形時の成形収縮を遅らせ、また、収縮率を小さくすることが可能であっても、融解ピーク温度が比較的低いプロピレン-エチレンブロック共重合体を基材層用樹脂として用いているため、基材層用樹脂の射出充填よりも後に射出充填される表層用樹脂の樹脂流動の樹脂熱により、ステッチ部が再溶融(溶損)されるおそれがある。特に、ステッチ部112は、ステッチ(糸目)を模すものであるため、その突出方向に直交する断面積に制約があり、大きな断面積を確保することができない。また、特許文献1及び2の製造方法では、細くて小さいステッチ部112を第2のキャビティ108内に配置した状態で、ステッチ部112の体積に対して遥かに大量の表層用樹脂を第2のキャビティ108に充填する。このため、成形条件にもよるが、表層側成形体120の成形時に、射出充填される溶融樹脂の樹脂流動力及び樹脂熱(樹脂温度)による再溶融(溶損)に抗することができず、ステッチ部112の突出端部が、シールされた第2金型106の成形面(キャビティ面)に対して位置ズレするおそれがある。そして、その結果、シール面に溶融樹脂が侵入し、ステッチ部112の突出端部に形成された繊細な模様(撚り目を模した凹凸)が潰れてしまうおそれがある。 However, according to the method of Patent Document 2, even if it is possible to delay the molding shrinkage at the time of molding of the base material side molding and to reduce the shrinkage rate, a propylene-ethylene block having a relatively low melting peak temperature Since the copolymer is used as the base layer resin, the stitch portion is remelted (melted) by the resin heat of the resin flow of the surface layer resin that is injected and filled after injection filling of the base layer resin. There is a risk of In particular, since the stitch portion 112 simulates a stitch (grain), the cross-sectional area orthogonal to the projecting direction is restricted, and a large cross-sectional area can not be secured. Further, in the manufacturing methods of Patent Documents 1 and 2, with the thin and small stitch portion 112 disposed in the second cavity 108, the surface layer resin of a much larger amount relative to the volume of the stitch portion 112 is used as the second. The cavity 108 is filled. For this reason, depending on the molding conditions, at the time of molding of the surface layer side molded body 120, it is not possible to withstand the resin fluidity of the molten resin injected and filled and remelting (melting loss) by resin heat (resin temperature). The protruding end of the stitch portion 112 may be displaced with respect to the molding surface (cavity surface) of the sealed second mold 106. Then, as a result, the molten resin intrudes into the seal surface, and the delicate pattern (concave and convex portions simulating the twist) formed at the projecting end of the stitch portion 112 may be crushed.
 また、特許文献2の方法では、基材層用樹脂にガラス繊維を充填させることで、ステッチ部の収縮率を意図的に小さくさせている。このため、表層用樹脂の収縮率が基材層用樹脂の収縮率よりも大きい場合(表層用樹脂の方が基材層用樹脂よりも収縮する場合)には、冷却固化時に、細くて小さいステッチ部が表層側成形体の収縮に引っ張られて変形したり、ステッチ部と表層側成形体の孔部との間に隙間が生じたりするおそれがある。また、このようなステッチ部の変形や、ステッチ部と表層側成形体の孔部との間の隙間は、このような樹脂成形品が部品として、工業製品に取り付けられた場合においても、使用時の温度環境の変化により表層側成形体や基材層側成形体に膨張や収縮が生じた際に生じるおそれがある。例えば、自動車内装部品の場合、130℃近い温度差環境(最高温度100℃以上、最低温度0℃以下)での耐久性が求められる場合がある。 Moreover, in the method of patent document 2, the shrinkage rate of a stitch part is made small intentionally by making resin for base material layers be filled with glass fiber. For this reason, when the shrinkage rate of the surface layer resin is larger than the shrinkage rate of the base layer resin (when the surface layer resin shrinks more than the base layer resin), it is thin and small at the time of cooling and solidification. There is a possibility that the stitch portion may be pulled and deformed by the contraction of the surface layer side molded body, or a gap may be generated between the stitch portion and the hole portion of the surface layer side molded body. In addition, even when such a resin molded product is attached as a part to an industrial product, such deformation of the stitch part and the gap between the stitch part and the hole of the surface layer side molded product are used at the time of use. This may occur when expansion or contraction occurs in the surface-side compact or the base-material-side compact due to the change in the temperature environment. For example, in the case of automobile interior parts, durability in a temperature difference environment close to 130 ° C. (maximum temperature 100 ° C. or more, minimum temperature 0 ° C. or less) may be required.
 本発明は、上記したような問題点に鑑みてなされたものであり、その目的は、意匠面に擬似的なステッチ模様が精度良く形成された樹脂成形品を提供することである。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a resin molded product in which a pseudo stitch pattern is precisely formed on a design surface.
 本発明に係る樹脂成形品は、表面に意匠面を有する表層側成形体と、該表層側成形体の裏面側に積層され、該表層側成形体を介して前記意匠面側に露出するステッチ部を有する基材層側成形体とを備え、該基材層側成形体の前記ステッチ部により、前記意匠面側に擬似的なステッチ模様が形成された樹脂成形品であって、前記表層側成形体を形成する表層用樹脂は、その融点が前記基材層側成形体を形成する基材層用樹脂の融点以下、及び/又は、その線膨張係数が前記基材層側成形体を形成する基材層用樹脂の線膨張係数以下であることを特徴とする。 The resin molded product according to the present invention comprises a surface layer side molded body having a design surface on the surface, and a stitch portion which is laminated on the back surface side of the surface layer side molded body and exposed to the design surface side through the surface layer side molded body. A molded article having a base material layer side having the above-mentioned, and a pseudo stitch pattern formed on the design surface side by the stitch portion of the base material layer side molded article, wherein the surface layer side molding The surface layer resin forming the body has a melting point equal to or lower than the melting point of the base layer resin forming the base layer side molded body, and / or its linear expansion coefficient forms the base layer side molded body It is characterized by being below the linear expansion coefficient of resin for base material layers.
 本発明に係る樹脂成形品において、前記表層側成形体を形成する表層用樹脂は、その融点が前記基材層側成形体を形成する基材層用樹脂の融点以下であり、かつ、その線膨張係数が前記基材層側成形体を形成する基材層用樹脂の線膨張係数以下であることが好ましい。 In the resin molded product according to the present invention, the surface layer resin forming the surface layer side molded body has a melting point equal to or lower than the melting point of the base material layer resin forming the base material layer side molded body, and the wire The expansion coefficient is preferably equal to or less than the linear expansion coefficient of the base layer resin forming the base layer side molded body.
 また、本発明に係る樹脂成形品は、前記表層用樹脂と前記基材層用樹脂とに相溶性があることが好ましい。 Further, in the resin molded product according to the present invention, it is preferable that the resin for surface layer and the resin for base layer be compatible.
 さらに、本発明に係る樹脂成形品において、前記表層用樹脂は、前記基材層用樹脂よりも熱変形温度が低い樹脂からなることが好ましい。 Furthermore, in the resin molded product according to the present invention, the surface layer resin is preferably made of a resin having a heat deformation temperature lower than that of the base layer resin.
 本発明によれば、意匠面に擬似的なステッチ模様が精度良く形成された樹脂成形品を提供することができる。 According to the present invention, it is possible to provide a resin molded product in which a pseudo stitch pattern is precisely formed on a design surface.
本発明の一実施形態に係る樹脂成形品を概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing a resin molded product according to an embodiment of the present invention. 図1のA-A´線に沿った断面を概略的に示す断面図である。FIG. 2 is a cross sectional view schematically showing a cross section taken along a line AA 'of FIG. 1; ステッチ状意匠及びその近傍の意匠面の形状の一例を示す概略平面図である。It is a schematic plan view which shows an example of the shape of a stitch-like design and the design surface of the vicinity. 図3のB-B´線に沿った概略断面図である。FIG. 5 is a schematic cross-sectional view taken along the line BB ′ of FIG. 3; 図3のC-C´線に沿った概略断面図である。FIG. 4 is a schematic cross-sectional view taken along the line CC ′ of FIG. 3; 本実施形態に係る樹脂成形品の成形方法の一例を示す工程図のうち、共通金型及び第1金型の型開き状態を示す図である。It is a figure which shows the mold-opened state of a common metal mold and a 1st metal mold among process drawing which shows an example of the shaping | molding method of the resin molded product which concerns on this embodiment. 本実施形態に係る樹脂成形品の成形方法の一例を示す工程図のうち、一次射出充填工程を示す図である。It is a figure which shows a primary injection filling process among process drawing which shows an example of the shaping | molding method of the resin molded product which concerns on this embodiment. 本実施形態に係る樹脂成形品の成形方法の一例を示す工程図のうち、微小型開き工程を示す図である。It is a figure which shows a micro-mold opening process among process drawing which shows an example of the shaping | molding method of the resin molded product which concerns on this embodiment. 本実施形態に係る樹脂成形品の成形方法の一例を示す工程図のうち、共通金型と対向する金型を第1金型から第2金型に切り替えた状態を示す図である。It is a figure which shows the state which switched the metal mold | die facing a common metal mold | die from the 1st metal mold to the 2nd metal mold | die among process drawings which show an example of the molding method of the resin molded product which concerns on this embodiment. 本実施形態に係る樹脂成形品の成形方法の一例を示す工程図のうち、二次成形工程を示す図である。It is a figure which shows a secondary shaping | molding process among process drawing which shows an example of the shaping | molding method of the resin molded product which concerns on this embodiment. 本実施形態に係る樹脂成形品の成形方法の他の例を示す工程図のうち、射出成形用金型の型開き状態を示す図である。It is a figure which shows the mold-opened state of the injection molding die among process drawings which show the other example of the shaping | molding method of the resin molded product which concerns on this embodiment. 本実施形態に係る樹脂成形品の成形方法の他の例を示す工程図のうち、一次成形工程を示す図である。It is a figure which shows a primary shaping | molding process among process drawing which shows the other example of the shaping | molding method of the resin molded product which concerns on this embodiment. 本実施形態に係る樹脂成形品の成形方法の他の例を示す工程図のうち、二次成形工程を示す図である。It is a figure which shows a secondary shaping | molding process among process drawing which shows the other example of the shaping | molding method of the resin molded product which concerns on this embodiment. 特許文献1の樹脂成形品の成形方法を示す工程図のうち、共通金型及び第1金型の型締め状態を示す図である。It is a figure which shows the mold clamp state of a common metal mold and a 1st metal mold among process drawing which shows the shaping | molding method of the resin molded product of patent document 1. FIG. 特許文献1の樹脂成形品の成形方法を示す工程図のうち、一次成形工程を示す図である。It is a figure which shows a primary shaping | molding process among process drawing which shows the shaping | molding method of the resin molded product of patent document 1. FIG. 特許文献1の樹脂成形品の成形方法を示す工程図のうち、型開き工程を示す図である。It is a figure which shows a mold opening process among process drawing which shows the shaping | molding method of the resin molded product of patent document 1. FIG. 特許文献1の樹脂成形品の成形方法を示す工程図のうち、共通金型と対向する金型を第1金型から第2金型に切り替えた状態を示す図である。It is a figure which shows the state which switched the metal mold | die facing a common metal mold from the 1st metal mold to the 2nd metal mold among process drawing which shows the shaping | molding method of the resin molded product of patent document 1. 特許文献1の樹脂成形品の成形方法を示す工程図のうち、共通金型及び第2金型の型締め状態を示す図である。It is a figure which shows the clamp condition of a common metal mold and a 2nd metal mold among process drawing which shows the shaping | molding method of the resin molded product of patent document 1. FIG. 特許文献1の樹脂成形品の成形方法を示す工程図のうち、二次成形工程を示す図である。It is a figure which shows a secondary forming process among process drawing which shows the shaping | molding method of the resin molded product of patent document 1. FIG. 特許文献1の樹脂成形品の成形方法を示す工程図のうち、成形された樹脂成形品を示す図である。It is a figure which shows the molded resin molded product among process drawing which shows the molding method of the resin molded product of patent document 1. FIG.
 以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, preferred embodiments for carrying out the present invention will be described using the drawings. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. .
 本実施形態に係る樹脂成形品1は、図1及び図2に示すように、表面に意匠面を有する表層側成形体10と、表層側成形体10の裏面側に積層された基材層側成形体20とを備える積層成形品である。基材層側成形体20は、表層側成形体10の裏面側に積層される非意匠面部22と、非意匠面部22から表層側成形体10を介して(貫通して)意匠面側に露出するステッチ部24とを有している。本実施形態に係る樹脂成形品1は、ステッチ部24の先端部(ステッチ状意匠26)が表層側成形体10を介して意匠面側に露出されるよう(すなわち、意匠面側から視認可能となるように)、基材層側成形体20が表層側成形体10の非意匠面側に積層成形されることにより、縫い目(糸目)を模した擬似的なステッチ模様(ステッチ状意匠26)が樹脂成形品1の意匠面側に形成されるよう構成されている。 The resin molded product 1 according to the present embodiment is, as shown in FIGS. 1 and 2, a surface layer side molded body 10 having a design surface on the surface, and a base material layer side laminated on the back surface side of the surface layer side molded body 10. It is a laminated molded article provided with the molded object 20. The base material layer side molded body 20 is exposed from the non-design surface portion 22 laminated on the back surface side of the surface layer side molded body 10 from the non-design surface portion 22 through the surface layer side molded body 10 (through) And a stitch portion 24. In the resin molded product 1 according to the present embodiment, the front end portion (stitch-like design 26) of the stitch portion 24 is exposed to the design surface side through the surface layer side molded body 10 (that is, visible from the design surface side) And the base layer side molded body 20 is laminated and formed on the non-design surface side of the surface layer side molded body 10, so that a pseudo stitch pattern (stitched design 26) simulating a seam (yarn) is obtained. It is configured to be formed on the design surface side of the resin molded product 1.
 ここで、樹脂成形品1の意匠面に形成されるステッチ状意匠26とは、皮革面を模した意匠面とは別に、意匠面から視認可能な撚り糸や皮革糸(紐)を模した立体的(凸状)な意匠をいうものとする。このステッチ状意匠26には、立体的な意匠の表面に、撚り糸一本一本の凹凸や、皮革糸(紐)の断面形状等が表現された表面意匠が含まれても良い。 Here, the stitch-like design 26 formed on the design surface of the resin molded product 1 is a three-dimensional model that simulates a yarn thread or leather thread (string) visible from the design surface separately from the design surface that simulates the leather surface. Designate a (convex) design. The stitch-like design 26 may include a surface design in which a three-dimensional design surface has unevenness of one twisted yarn, a cross-sectional shape of a leather yarn (string), and the like.
 また、図1及び図2では、理解を容易にするために、ステッチ状意匠26を単純な凹凸形状として図示しているが、ステッチ状意匠26及びその近傍の意匠面の形状は、例えば図3~図5に示すような形状とすることができる。具体的には、ステッチ状意匠26の近傍の意匠面の形状は、意匠面から突出している撚り糸や皮革糸(紐)のステッチ状意匠26に対して、これら糸が貫通する部位が、糸の縫込みを表現するために、谷形状30となっている。また、これら隣り合う谷形状30の間、すなわち、意匠面から突出している撚り糸や皮革糸(紐)の長手方向中央部は、山形状32となっている。そして、これら谷形状30と山形状32とが滑らかに連続して形成されている。これら谷形状30及び山形状32は、金型の金型キャビティ面に形成されたステッチ部24形成用の凹部の周辺に、縫い目近傍の凹凸を表現する凹部及び凸部を形成することにより、形成することができる。このように、ステッチ状意匠26の近傍に谷形状30及び山形状32が形成されることにより、ステッチ状意匠26をより本物らしく表現することができる。 1 and 2, the stitched design 26 is illustrated as a simple uneven shape for easy understanding, but the shape of the stitched design 26 and the design surface in the vicinity thereof is, for example, FIG. The shape shown in FIG. 5 can be obtained. Specifically, the shape of the design surface in the vicinity of the stitch-like design 26 is such that the portion through which these yarns penetrate the stitch-like design 26 of the yarn thread or leather yarn (string) protruding from the design surface is the yarn It has a valley shape 30 to express the sewing. Further, between the adjacent valley shapes 30, that is, the longitudinal direction central portion of the twisted yarn or leather yarn (string) protruding from the design surface has a mountain shape 32. Then, the valley shape 30 and the mountain shape 32 are formed smoothly and continuously. The valley shape 30 and the mountain shape 32 are formed by forming a recess and a protrusion, which represent irregularities in the vicinity of the seam, around the recess for forming the stitch portion 24 formed on the mold cavity surface of the mold. can do. Thus, by forming the valley shape 30 and the mountain shape 32 in the vicinity of the stitch design 26, the stitch design 26 can be more realistically expressed.
 なお、図4及び図5では、山形状32の頂点が意匠面と略一致し、ステッチ状意匠26が意匠面より若干(高さHだけ)突出している例を示しているが、これに限定されるものではない。例えば、山形状32が意匠面より突出しても良いし、ステッチ状意匠26が意匠面と面一となる高さや、意匠面から没入(後退)するような高さに形成されても良い。また、山形状32が、ステッチ部24(ステッチ状意匠26)の突出高さと略同じ高さに突出するよう形成されても良い(図4においてH=0)。この場合には、見かけ上ではあるが、ステッチ模様を、ステッチ状意匠26が意匠面と略面一になる平面型ステッチとすることができる。また、山形状32が、ステッチ部24(ステッチ状意匠26)の突出高さより高く突出するよう形成されても良い(図4においてH=マイナス値。但し、ステッチ状意匠が意匠面から突出する高さをプラス値とする。)。この場合には、見かけ上ではあるが、ステッチ模様を、ステッチ状意匠26が意匠面から後退する凹型ステッチとすることができる。 4 and 5 show an example in which the apex of the mountain shape 32 substantially coincides with the design surface, and the stitch design 26 slightly protrudes (only by the height H) from the design surface, but this is a limitation. It is not something to be done. For example, the mountain shape 32 may protrude from the design surface, or the stitch-like design 26 may be formed at a height at which it is flush with the design surface or a height at which it sinks (retracts) from the design surface. Further, the mountain shape 32 may be formed so as to protrude substantially at the same height as the protruding height of the stitch portion 24 (stitch-like design 26) (H = 0 in FIG. 4). In this case, although it is apparent, the stitch pattern can be a flat stitch in which the stitch design 26 is substantially flush with the design surface. In addition, the mountain shape 32 may be formed to protrude higher than the protrusion height of the stitch portion 24 (stitch-like design 26) (H = minus value in FIG. 4. However, the height at which the stitch-like design protrudes from the design surface) Is a positive value.). In this case, although apparently, the stitch pattern can be a concave stitch in which the stitch design 26 recedes from the design surface.
 また、図1に例示した樹脂成形品1では、表層側成形体10の裏面(非意匠面側の面)の全体に基材層側成形体20の非意匠面部22が積層されているが、これに限定されず、非意匠面部22が表層側成形体10の裏面(非意匠面側の面)に部分的に積層されるよう構成されても良い。 Further, in the resin molded product 1 illustrated in FIG. 1, the non-design surface portion 22 of the base material layer side molded body 20 is laminated on the entire back surface (surface on the non-design surface side) of the surface layer side molded body 10 The present invention is not limited to this, and the non-design surface portion 22 may be configured to be partially laminated on the back surface (surface on the non-design surface side) of the surface layer side molded body 10.
 表層側成形体10及び基材層側成形体20は、互いに色が異なる樹脂から形成されている。表層側成形体10を形成する表層用樹脂は、その融点が基材層側成形体20を形成する基材層用樹脂の融点以下、及び/又は、その線膨張係数が基材層側成形体20を形成する基材層用樹脂の線膨張係数以下である。 The surface layer side molded body 10 and the base material layer side molded body 20 are formed of resins different in color from each other. The surface layer resin for forming the surface layer side molded body 10 has a melting point equal to or lower than the melting point of the base material layer resin for forming the base material layer side molded body 20 and / or the linear expansion coefficient thereof is the base material layer side molded body It is below the linear expansion coefficient of resin for base material layers which forms 20.
 ここで、樹脂材料の融点とは、樹脂材料の融解の起こり始める温度である。また、線膨張係数(線膨張率)とは、温度の上昇によって物体の長さが変化する割合を温度当たりで示したものであり、温度の上昇によって物体の体積が変化する割合を温度当たりで示した熱膨張係数(熱膨張率)と関連する物性である。すなわち、樹脂成形時においては、溶融樹脂の冷却固化時の収縮の程度(冷却固化時における、基準長さに対する収縮量)を意味し、樹脂成形後においては、使用時の温度環境の変化により生じる膨張や収縮の程度を意味している。また、線膨張係数は、フィラーと呼称される無機充填剤等、各種線膨張係数調整剤を樹脂材料に混入させることにより、調整(基本的には小さく)することが可能である。なお、フィラーの一種であるガラス繊維等を、製品強度向上のために所定量、樹脂材料に混入させる場合があるが、この場合、結果的に、線膨張係数が樹脂材料単体の数値から変化している場合もある。 Here, the melting point of the resin material is a temperature at which melting of the resin material starts to occur. Also, the linear expansion coefficient (linear expansion coefficient) indicates the rate at which the length of the object changes due to the rise in temperature per temperature, and the rate at which the volume of the object changes due to the rise in temperature per the temperature It is a physical property associated with the thermal expansion coefficient (thermal expansion coefficient) shown. That is, at the time of resin molding, it means the degree of contraction at the time of cooling and solidification of the molten resin (the amount of contraction with respect to the reference length at the time of cooling and solidification). It means the degree of expansion and contraction. The linear expansion coefficient can be adjusted (basically reduced) by mixing various linear expansion coefficient modifiers, such as inorganic fillers called fillers, into the resin material. In addition, although glass fiber etc. which are 1 type of fillers may be mixed in a resin material with a predetermined amount for the improvement of product strength, in this case, as a result, the linear expansion coefficient changes from the numerical value of the resin material alone. There is also a case.
 本実施形態に係る樹脂成形品1において、表層用樹脂及び基材層用樹脂は、表層用樹脂の融点が基材層用樹脂の融点以下、及び/又は、表層用樹脂の線膨張係数が基材層用樹脂の線膨張係数以下の関係を有するものであれば、目的に応じて種々の樹脂を用いることが可能である。 In the resin molded product 1 according to the present embodiment, the resin for the surface layer and the resin for the base layer have a melting point of the resin for the surface layer equal to or less than the melting point of the resin for the base layer, and / or a linear expansion coefficient of the resin for the surface layer Depending on the purpose, various resins can be used as long as they have a relationship of the linear expansion coefficient or less of the material for layer material.
 [基材層側成形体の溶損防止を主目的とする場合の例]
 例えば、基材層側成形体20の成形後に表層用樹脂を射出充填させる樹脂成形方法を採用する場合において、表層用樹脂の流動に起因する基材層側成形体20(特にステッチ部24)の溶損防止を主な目的とする場合には、例えば、表層用樹脂としてスチレン系エラストマー(TPS)を採用し、基材層用樹脂としてポリプロピレン(PP)を採用することが好ましい。なお、ポリプロピレンには、添加材としてタルクを所定の割合で混入させても良い。
[Example in which the main purpose is to prevent erosion of the base material layer side molded article]
For example, in the case of adopting a resin molding method in which the surface layer resin is injected and filled after molding of the base layer side molded body 20, the base layer side molded body 20 (particularly, the stitch portion 24) resulting from the flow of the surface layer resin. When the main purpose is to prevent erosion, for example, it is preferable to use a styrene-based elastomer (TPS) as the surface layer resin and polypropylene (PP) as the base layer resin. In addition, you may mix a talc with a predetermined ratio as an additive to polypropylene.
 当該樹脂の組み合わせにおいて、例えば、それぞれの樹脂材料のグレード選択等により、前者TPS(表層用樹脂)については融点が145~165℃のものを使用し、後者PP(基材層用樹脂)については融点が168℃のものを使用することが更に好ましい。すなわち、表層用樹脂の融点が基材層用樹脂の融点よりも高いと、表層用樹脂の樹脂流動の樹脂熱により、ステッチ部24が再溶融されるおそれがある。この点、上述の樹脂の組み合わせによれば、表層用樹脂の融点が基材層用樹脂の融点よりも低いため、表層用樹脂の射出充填時における、基材層用樹脂のステッチ部24の再溶融(溶損)を抑制することができる。なお、融点は、融解ピーク温度とも称呼され、示差走査熱量計(DSC)により測定することが可能である。また、上記表層用樹脂及び基材層用樹脂の組み合わせは、ステッチ部24の溶損抑制効果に加え、基材層側成形体20による製品剛性の確保、ステッチ部24の本物感の演出及び表層側成形体10へのソフト触感の演出等の効果も期待できる。 In the combination of the said resin, for example, according to the grade selection of each resin material etc., melting | fusing point uses the thing of 145-165 degreeC as the former TPS (surface layer resin), and the latter PP (base layer resin) It is further preferred to use one having a melting point of 168 ° C. That is, when the melting point of the surface layer resin is higher than the melting point of the base layer resin, there is a possibility that the stitch portion 24 may be remelted by the resin heat of the resin flow of the surface layer resin. In this respect, according to the combination of the above-described resins, since the melting point of the surface layer resin is lower than the melting point of the base layer resin, the stitch portion 24 of the base layer resin is re-injected at the time of injection filling of the surface layer resin. Melting (melting loss) can be suppressed. The melting point is also called melting peak temperature, and can be measured by a differential scanning calorimeter (DSC). Further, the combination of the resin for surface layer and the resin for base layer is, in addition to the effect of suppressing erosion of the stitch portion 24, securing of product rigidity by the base layer side molded body 20, rendering of real feeling of the stitch portion 24 and surface layer An effect such as an effect of soft touch on the side molded body 10 can also be expected.
 [基材層側成形体の変形抑制効果や剥離抑制効果を主目的とする場合の例]
 また、成形時における基材層側成形体20(特にステッチ部24)の位置ずれ防止や、温度変化が激しい環境下(例えば自動車用部品として用いる場合等)における基材層側成形体20(特にステッチ部24)と表層側成形体10との剥離防止を主な目的とする場合には、例えば、表層用樹脂としてオレフィン系エラストマー(TPO)を採用し、基材層用樹脂としてポリプロピレン(PP)を採用することが好ましい。
[Example in which the deformation suppression effect and the peeling suppression effect of the base material layer side molded body are mainly intended]
In addition, the base layer side molded body 20 (especially when used as an automobile part, etc.) is prevented from displacement of the base material layer side molded body 20 (especially the stitch portion 24) during molding and the temperature change is severe When the main purpose is to prevent peeling between the stitch portion 24) and the surface layer side molded body 10, for example, an olefin-based elastomer (TPO) is employed as the surface layer resin, and polypropylene (PP) as the base layer resin. It is preferable to adopt
 当該樹脂の組み合わせにおいて、例えば、市販されている、それぞれの樹脂材料のグレード選択や、線膨張係数調整剤の添加等により、前者TPO(表層用樹脂)については線膨張係数が5~7×10-5/℃のものを使用し、後者PP(基材層用樹脂)については線膨張係数が8.1~10×10-5/℃のものを使用することが更に好ましい。すなわち、本発明者の知見によれば、表層用樹脂の線膨張係数が基材層用樹脂の線膨張係数を超えると、既述のとおり、冷却固化時や使用時の温度環境の変化時において、基材層側成形体20のステッチ部24が表層側成形体10の収縮に引っ張られて変形したり、ステッチ部24と表層側成形体10との接触面(貫通孔部12)に隙間が生じたりするおそれがある。この点、上述の樹脂の組み合わせによれば、表層用樹脂の線膨張係数(5~7×10-5/℃)が、基材層用樹脂の線膨張係数(8.1~10×10-5/℃)よりも小さいことにより、冷却固化時や使用時の温度環境の変化時において、表層側成形体10の収縮や膨張の程度が、基材層側成形体20の収縮や膨張の程度に比べて小さい。このため、基材層側成形体20のステッチ部24が表層側成形体10の収縮に引っ張られて変形したり、ステッチ部24と表層側成形体10との接触面に隙間が生じたりする現象を抑制することが可能となる。また、上記表層用樹脂及び基材層用樹脂の組み合わせは、基材層側成形体20の変形抑制効果や剥離抑制効果に加え、基材層側成形体20による製品剛性の確保、低比重材による製品軽量化及び表層側成形体10へのソフト触感の演出等の効果も期待できる。 In the combination of the said resin, for example, the linear expansion coefficient is 5-7 x 10 about the former TPO (resin for surface layers) by the grade selection of each resin material marketed, addition of a linear expansion coefficient regulator, etc. using those -5 / ° C., it is more preferable that the linear expansion coefficient of the latter PP (resin base material layer) uses those 8.1 ~ 10 × 10 -5 / ℃ . That is, according to the knowledge of the present inventor, when the linear expansion coefficient of the surface layer resin exceeds the linear expansion coefficient of the base layer resin, as described above, when the cooling and solidification or the temperature environment during use changes. The stitch portion 24 of the base material layer side molded body 20 is pulled and deformed by the contraction of the surface layer side molded body 10, or a gap is formed in the contact surface (through hole portion 12) between the stitch portion 24 and the surface layer side molded body 10. It may occur. In this respect, according to the combination of the above-mentioned resins, the linear expansion coefficient (5 to 7 × 10 −5 / ° C.) of the surface layer resin is different from the linear expansion coefficient (8.1 to 10 × 10 − of the base layer resin). When it is smaller than 5 / ° C., the degree of contraction and expansion of the surface layer side molded body 10 is the degree of contraction and expansion of the base material layer side molded body 20 at the time of temperature change during cooling solidification and use Smaller than. For this reason, a phenomenon in which the stitch portion 24 of the base material layer side molded body 20 is pulled by shrinkage of the surface layer side molded body 10 and deformed, or a gap is generated on the contact surface between the stitch portion 24 and the surface layer side molded body 10 Can be suppressed. Moreover, the combination of the resin for surface layer and the resin for base layer is, in addition to the effect of suppressing deformation and peeling of the base layer side molded body 20, securing of product rigidity by the base layer side molded body 20, low specific gravity material It is also possible to expect effects such as weight reduction of the product and soft soft feeling to the surface side molded body 10 by the above.
 ここで、表層側成形体10を形成する表層用樹脂は、その熱変形温度が基材層側成形体20を形成する基材層用樹脂の熱変形温度より低くても良い。樹脂材料の熱変形温度とは、加重たわみ温度とも呼称され、樹脂材料の耐熱性を示す指標の1つである。具体的には、両端を支持した試験片に決められた荷重を与えた状態で、該試験片の温度を上げていき、試験片のたわみが一定の値になる試験片の温度である。 Here, the heat distortion temperature of the surface layer resin forming the surface layer side green body 10 may be lower than the heat deformation temperature of the base material layer resin forming the substrate layer side green body 20. The heat distortion temperature of the resin material is also called a weighted deflection temperature, and is one of the indicators indicating the heat resistance of the resin material. Specifically, the temperature of the test piece is raised while applying a determined load to the test piece supported at both ends, and the temperature of the test piece becomes a constant value of the deflection of the test piece.
 本実施形態に係る樹脂成形品1において、上述した基材層側成形体20の変形抑制効果や剥離抑制効果を主な目的とする場合には、例えば、表層用樹脂としてポリアミド(PA6)を採用し、基材層用樹脂としてポリアミド(PA6)に所定の割合でグラスファイバー(GF)を混入させたものを採用することも可能である。 In the resin molded product 1 according to the present embodiment, in the case where the above-described deformation suppression effect and peeling suppression effect of the base material layer side molded body 20 are mainly intended, for example, polyamide (PA6) is adopted as the surface layer resin. It is also possible to employ a mixture of glass fiber (GF) in a predetermined ratio with polyamide (PA6) as the base layer resin.
 当該樹脂の組み合わせにおいて、例えば、市販されている樹脂材料のグレード選択等により、前者PA6(表層用樹脂)については熱変形温度が68~85℃のものを使用し、後者PA6+GF(基材層用樹脂)については熱変形温度が146~149℃のものを使用することが好ましい。すなわち、本発明者の知見によれば、表層用樹脂の熱変形温度が基材層用樹脂の熱変形温度を超えると、既述のとおり、冷却固化時や使用時の温度環境の変化時において、基材層側成形体20のステッチ部24が表層側成形体10の収縮に引っ張られて変形したり、ステッチ部24と表層側成形体10との接触面(貫通孔部12)に隙間が生じたりするおそれがある。この点、上述の樹脂の組み合わせによれば、表層用樹脂の熱変形温度(68~85℃)が基材層用樹脂の熱変形温度(146~149℃)よりも低いことにより、冷却固化時や使用時の温度環境の変化時において、表層側成形体10の収縮や膨張の程度が、基材層側成形体20の収縮や膨張の程度に比べて小さい。このため、基材層側成形体20のステッチ部24が表層側成形体10の収縮に引っ張られて変形したり、ステッチ部24と表層側成形体10との接触面に隙間が生じたりする現象を抑制することが可能となる。また、上記表層用樹脂及び基材層用樹脂の組み合わせは、樹脂種類が同じため融着性に優れ、また、高温部に取り付けられる基材層の耐熱性確保等の効果も期待できる。 For the combination of the resins concerned, for example, the former PA6 (surface layer resin) has a heat deformation temperature of 68 to 85 ° C., and the latter PA6 + GF (for base layer layer) by the grade selection of resin materials commercially available. It is preferable to use one having a heat distortion temperature of 146 to 149 ° C. for the resin). That is, according to the knowledge of the present inventor, when the heat deformation temperature of the surface layer resin exceeds the heat deformation temperature of the base layer resin, as described above, when the cooling and solidification or the temperature environment during use changes. The stitch portion 24 of the base material layer side molded body 20 is pulled and deformed by the contraction of the surface layer side molded body 10, or a gap is formed in the contact surface (through hole portion 12) between the stitch portion 24 and the surface layer side molded body 10. It may occur. In this respect, according to the combination of the above-mentioned resins, the heat deformation temperature (68 to 85 ° C.) of the surface layer resin is lower than the heat deformation temperature (146 to 149 ° C.) of the base layer resin. The degree of contraction and expansion of the surface layer side molded body 10 is smaller than the degree of contraction and expansion of the base material layer side molded body 20 when the temperature environment at the time of use changes. For this reason, a phenomenon in which the stitch portion 24 of the base material layer side molded body 20 is pulled by shrinkage of the surface layer side molded body 10 and deformed, or a gap is generated on the contact surface between the stitch portion 24 and the surface layer side molded body 10 Can be suppressed. Further, since the combination of the surface layer resin and the base layer resin is the same as the resin type, the combination is excellent in the fusion property, and the effect of securing the heat resistance of the base layer attached to the high temperature part can be expected.
 [両樹脂の相溶性確保を主目的とする場合の例]
 ここで、表層側成形体10及び基材層側成形体20は、互いに優れた相溶性(結合性/一体化)がある樹脂から形成されていることが更に好ましい。なお、本実施形態において、相溶性とは、2以上の樹脂が互いに溶解し合う性質のことをいう。これら樹脂材料それぞれを組み合わせる場合の相溶性は、溶解パラメータ(SP値)を目安として判断することができ、それぞれの樹脂材料の溶解パラメータ(SP値)の差が小さい程、優れた相溶性を有しているといえる。一般的には、それぞれの樹脂材料のSP値の差が例えば±10%以内程度であれば、優れた相溶性を有しているといえる。ただし、優れた相溶性を有していると判断できるそれぞれの樹脂材料のSP値の差の基準値は、基材層側成形体から意匠面側(第2金型側)に突出するように形成されるステッチ部のサイズや形状、さらには、表層側成形体の厚み等の関係により異なると考えられるため、成形試験や成形試験により得られた成形品の品質・強度・耐久性検査により求めることが好適である。
[Example in which the main purpose is to ensure compatibility between both resins]
Here, it is more preferable that the surface layer side molded body 10 and the base material layer side molded body 20 be formed of a resin having excellent mutual compatibility (bondability / unification). In the present embodiment, the compatibility refers to the property of two or more resins being mutually soluble. The compatibility in the case of combining each of these resin materials can be judged using the solubility parameter (SP value) as a standard, and the smaller the difference in the solubility parameter (SP value) of each resin material, the better the compatibility. It can be said that In general, if the difference between the SP values of the respective resin materials is, for example, within ± 10%, it can be said that they have excellent compatibility. However, the reference value of the difference in SP value of each resin material that can be judged to have excellent compatibility is such that it projects from the base material layer side molded body to the design surface side (second mold side) Since it differs depending on the size and shape of the stitch portion to be formed, and further on the relationship of the thickness of the surface layer side molded body, etc., it is determined by the molding test and the quality / strength / durability test of the molded product Is preferred.
 そして、本実施形態に係る樹脂成形品1において、優れた相溶性(結合性/一体化)を目的とする場合には、例えば、表層用樹脂としてポリエチレンテレフタレート(PET)を採用し、基材層用樹脂としてポリカーボネイト(PC/透過性有り)を採用することが好ましい。このような表層用樹脂及び基材層用樹脂の組み合わせは、基材層側成形体20の背面等からの光源利用による発色加飾の演出や、表層側成形体10への対候性付与の効果も期待できる。 And in the resin molded product 1 which concerns on this embodiment, when aiming at the outstanding compatibility (bond property / unification), polyethylene terephthalate (PET) is employ | adopted as resin for surface layers, for example, and a base material layer It is preferable to use polycarbonate (PC / with permeability) as a resin for the purpose. Such a combination of the surface layer resin and the base layer resin can be applied to the effect of color development by utilizing the light source from the back surface of the base layer side molded body 20 or the like, or to the weathering of the surface side molded body 10 An effect can also be expected.
 当該樹脂の組み合わせにおいて、例えば、それぞれの樹脂材料のグレード選択等により、前者PET(表層用樹脂)についてはSP値が21.8のものを使用し、後者PC(基材層用樹脂)についてはSP値が20.2のものを使用することが更に好ましい。このような樹脂の組み合わせによれば、表層用樹脂及び基材層用樹脂それぞれのSP値の差が7~8%程度と低いため、優れた相溶性を確保することができる。なお、相溶性が良いとされる異種の樹脂材料の組み合わせについては、公知であるため、他の組み合わせについてはその例示を省略する。 In the combination of the said resin, for example, SP value uses a thing of 21.8 about former PET (resin for surface layers) by grade selection of each resin material etc. About the latter PC (resin for base material layers) It is further preferred to use an SP value of 20.2. According to such a combination of resins, since the difference between the SP values of the surface layer resin and the base layer resin is as low as about 7 to 8%, excellent compatibility can be ensured. In addition, about the combination of the different resin material considered to be compatible, since it is well-known, the illustration is abbreviate | omitted about another combination.
 以上のように、条件を満たす表層用樹脂及び基材層用樹脂の様々な組み合わせが可能であるがこれに限定されるものではない。すなわち、既述のとおり、表層側成形体を形成する表層用樹脂は、その線膨張係数が基材層側成形体を形成する基材層用樹脂の線膨張係数以下、及び/又は、その融点が基材層側成形体を形成する基材層用樹脂の融点以下であれば良い。 As described above, various combinations of the surface layer resin and the base layer resin that satisfy the conditions are possible, but are not limited thereto. That is, as described above, the surface layer resin forming the surface layer side molded body has a linear expansion coefficient equal to or less than the linear expansion coefficient of the substrate layer resin forming the base layer side molded body, and / or its melting point It may be equal to or lower than the melting point of the base layer resin forming the base layer side molded body.
 本実施形態に係る樹脂成形品1は、図8A~図8Gに示した特許文献1の樹脂成形品の成形方法と同様に、まず、共通型部と第1金型との間において、第1のキャビティを形成し(図8A参照)、次に、第1のキャビティに基材層用樹脂を注入することで、第1のキャビティにおいて、表側に並べて突出形成された複数のステッチ部(糸目部)24を有する基材層側成形体20を成形する(図8B参照)。次に、共通型部に基材層側成形体20を残したまま第1金型を第2金型入れ替えることで(図8C及び図8D参照)、ステッチ部24の突出端部をシールした第2金型と共通型部との間において第2のキャビティを形成し(図8E参照)、基材層用樹脂と異なる色の表層用樹脂を第2のキャビティに注入することで、第2のキャビティにおいて、基材層側成形体20の表側に表層側成形体10を成形する(図8F参照)。これにより、表層側成形体10の表面から突出して露出する複数のステッチ部24によって、意匠面に疑似的なステッチ模様(縫い目)が形成された樹脂成形品1を成形することができる(図8G参照)。 The resin molded product 1 according to the present embodiment is the same as the method for molding a resin molded product of Patent Document 1 shown in FIGS. 8A to 8G. First, between the common mold portion and the first mold, (See FIG. 8A), and then injecting a base layer resin into the first cavity to form a plurality of stitches (line portions) projecting side by side in the first cavity. The base layer side molded body 20 having 24) is molded (see FIG. 8B). Next, the first mold is replaced with the second mold while leaving the base material layer side molded body 20 in the common mold part (see FIGS. 8C and 8D) to seal the protruding end of the stitch part 24. The second cavity is formed between the second mold and the common mold portion (see FIG. 8E), and the surface layer resin having a color different from that of the base layer resin is injected into the second cavity. In the cavity, the surface layer side molded body 10 is molded on the front side of the base material layer side molded body 20 (see FIG. 8F). Thereby, the resin molded product 1 in which the pseudo stitch pattern (stitch) is formed on the design surface can be molded by the plurality of stitch portions 24 which protrude from the surface of the surface layer side molded body 10 and are exposed (FIG. 8G) reference).
 なお、本実施形態に係る樹脂成形品1は、上述した成形方法に限定されず、種々の成形方法により成形することが可能である。例えば、特開2012-139967号公報に記載されているような、固定金型と可動金型との間で基材層側成形体20を成形してから、可動金型の可動部を後退させることで金型キャビティを拡張させ、基材層側成形体20の表面側(意匠面側)に表層側成形体10を積層成形させる方法により成形することも可能である。また、基材層側成形体20を成形してから表層側成形体10を積層成形させる方法に限定されず、例えば図6A~図6E及び図7A~図7Cに示すような、表層側成形体10を成形してから基材層側成形体20を積層成形させる方法を採用することも可能である。 In addition, the resin molded product 1 which concerns on this embodiment is not limited to the molding method mentioned above, It is possible to shape | mold by various molding methods. For example, after molding the base material layer side molded body 20 between the fixed mold and the movable mold as described in JP 2012-139967 A, the movable part of the movable mold is retracted. It is also possible to mold by a method in which the mold cavity is expanded and the surface layer side molded body 10 is laminated and formed on the surface side (the design surface side) of the base material layer side molded body 20. Further, the method is not limited to the method of laminating and molding the surface layer side molded body 10 after molding the base material layer side molded body 20, for example, the surface layer side molded body as shown in FIGS. 6A to 6E and 7A to 7C. It is also possible to adopt a method of laminating and molding the base material layer side molded body 20 after molding 10.
 図6A~図6Eに示す成形方法は、概略的には、共通金型40と第1金型42との間で表層側成形体10を成形してから、共通金型40と組み合わせる金型を第1金型42から第2金型50に切り替えることで金型キャビティを拡張させ、表層側成形体10の裏面側(非意匠面側)に基材層側成形体20を積層成形させる方法である。 In the forming method shown in FIGS. 6A to 6E, generally, the surface-side compact 10 is formed between the common mold 40 and the first mold 42, and then the mold to be combined with the common mold 40 is formed. A method of expanding the mold cavity by switching from the first mold 42 to the second mold 50, and laminating and molding the base layer side molded body 20 on the back surface side (non-design surface side) of the surface layer side molded body 10 is there.
 具体的には、まず、図6Aの型開き状態から、図6Bに示すように、図示しない型締機構によって可動盤を固定盤側に移動させることにより、共通金型40と第1金型42とを型閉じさせ、その後、所定の型締力を付与させることにより、共通金型40と第1金型42との間に第1金型キャビティ44を形成する。次に、図6Bに示すように、第1射出ユニット46から、第1樹脂流路48及び第1ゲートバルブ49を介して表層用樹脂を第1金型キャビティ44に射出充填させる(一次射出充填工程)。また、表層用樹脂が化学発泡剤を含む発泡性の樹脂である場合には、図6Cに示すように、図示しない型締機構により第1金型42を共通金型40に対して微小距離Lだけ型開きさせ、表層用樹脂を発泡させる(微小型開き工程)。 Specifically, as shown in FIG. 6B from the mold open state of FIG. 6A, the common mold 40 and the first mold 42 are first moved by moving the movable plate to the fixed plate side by a mold clamping mechanism not shown. And form a first mold cavity 44 between the common mold 40 and the first mold 42 by applying a predetermined clamping force. Next, as shown in FIG. 6B, the surface layer resin is injected and filled into the first mold cavity 44 from the first injection unit 46 through the first resin flow path 48 and the first gate valve 49 (primary injection filling) Process). When the surface layer resin is a foamable resin containing a chemical foaming agent, as shown in FIG. 6C, the first mold 42 is moved from the common mold 40 by a minute distance L by a mold clamping mechanism (not shown). The mold is opened only, and the surface layer resin is foamed (micro mold opening step).
 そして、微小型開き工程によって発泡した表層用樹脂が冷却固化することにより、第1金型キャビティ44内に、表層(スキン層)内に発泡層が内包された発泡成形体である表層側成形体10が成形される(一次成形工程)。なお、表層用樹脂が化学発泡剤を含む発泡性の樹脂ではない場合には、微小型開き工程を経ることなく、表層用樹脂が冷却固化され、表層側成形体10が成形される。この表層側成形体10は、共通金型40の内面により、表面に意匠面が形成されている。また、表層側成形体10には、第1金型42の凸部42aにより、表面(意匠面)から裏面(非意匠面側の面)に亘って貫通する複数の貫通孔部12が形成されている。 Then, the surface layer resin which has been foamed in the micro mold opening step is cooled and solidified, whereby the surface layer side molded body which is a foam molded body in which the foam layer is included in the surface layer (skin layer) in the first mold cavity 44. 10 is molded (primary molding step). When the surface layer resin is not a foamable resin containing a chemical foaming agent, the surface layer resin is cooled and solidified without undergoing the fine mold opening step, and the surface layer side molded body 10 is formed. The surface layer side molded body 10 has a design surface formed on the surface by the inner surface of the common mold 40. Further, in the surface layer side molded body 10, a plurality of through holes 12 penetrating from the surface (design surface) to the back surface (surface on the non-design surface) are formed by the convex portions 42a of the first mold 42. ing.
 表層側成形体10の成形後、図6Cの状態から、図6Dに示すように、図示しない型締機構と金型交換手段とにより、共通金型40と対向する金型が、第1金型42から第2金型50に切り替えられる。なお、この金型切り替え工程は、共通金型40に表層側成形体10が保持された状態で行われる。その後、図6Dの型開き状態から、図6Eに示すように、図示しない型締機構によって可動盤を固定盤側に移動させることにより、共通金型40と第2金型50とを型締めさせ、共通金型40の複数の凹部40aにより形成された空間と、表層側成形体10の複数の貫通孔部12により形成された空間と、表層側成形体10の裏面(非意匠面側の面)と第2金型50の内面との間に形成された非意匠面側空間52とから構成される金型キャビティ拡張部55を形成させる(二次成形準備工程)。 After molding of the surface layer side molded body 10, from the state of FIG. 6C, as shown in FIG. 6D, the mold facing the common mold 40 by the mold clamping mechanism and the mold exchanging means not shown is the first mold. 42 is switched to the second mold 50. This mold switching step is performed in a state where the surface layer side molded body 10 is held by the common mold 40. Thereafter, as shown in FIG. 6E from the mold open state of FIG. 6D, the common mold 40 and the second mold 50 are clamped by moving the movable platen to the fixed platen side by a clamping mechanism (not shown). A space formed by the plurality of recesses 40 a of the common mold 40, a space formed by the plurality of through holes 12 of the surface-side compact 10, and the back surface of the surface-side compact 10 And a non-design surface side space 52 formed between the second mold 50 and the inner surface of the second mold 50 to form a mold cavity extension 55 (secondary forming preparation step).
 そして、この状態において、図6Eに示すように、第2射出ユニット54から第2樹脂流路56及び第2ゲートバルブ57を介して、基材層用樹脂を金型キャビティ拡張部55に射出充填させる(二次射出充填工程)。これにより表層側成形体10の非意匠面側に積層された基材層側成形体20が成形される(二次成形工程)。基材層側成形体20のステッチ部24の先端部には、共通金型40の凹部40aに施されたステッチ状意匠が転写されている。 Then, in this state, as shown in FIG. 6E, the resin for base layer is injected and filled in the mold cavity extension 55 from the second injection unit 54 through the second resin flow path 56 and the second gate valve 57. (Second injection filling process). Thereby, the base material layer side molded object 20 laminated | stacked on the non-design surface side of the surface layer side molded object 10 is shape | molded (secondary forming process). The stitched design applied to the recess 40 a of the common mold 40 is transferred to the tip of the stitch portion 24 of the base layer side molded body 20.
 基材層側成形体20の冷却固化が完了した後、図示しない型締機構によって可動盤を固定盤から離間する方向に移動させることにより、共通金型40と第2金型50とを型開きさせる。その後、図示しない製品取出手段により、表層側成形体10及び基材層側成形体20からなる樹脂成形品1を射出成形機外へ搬出させ、成形サイクルが終了する。そして、以上の工程を繰り返すことにより、表面(意匠面)に擬似的なステッチ模様(縫い目)が形成された樹脂成形品1を連続して製造することができる。 After cooling and solidification of the base material layer side molded body 20 is completed, the common mold 40 and the second mold 50 are opened by moving the movable disc in a direction away from the fixed disc by a mold clamping mechanism (not shown). Let Thereafter, the resin molded product 1 composed of the surface layer side molded body 10 and the base material layer side molded body 20 is carried out of the injection molding machine by the product taking out means (not shown), and the molding cycle is completed. And the resin molded product 1 in which the pseudo | simulated stitch pattern (stitch) was formed in the surface (design surface) can be manufactured continuously by repeating the above process.
 次に、図7A~図7Cに示す成形方法は、概略的には、固定金型60と可動金型62との間で表層側成形体10を成形してから、可動金型62の可動部64を後退させることで金型キャビティを拡張させ、表層側成形体10の裏面側(非意匠面側)に基材層側成形体20を積層成形させる方法である。 Next, according to the molding method shown in FIGS. 7A to 7C, the surface layer side molded body 10 is roughly formed between the fixed mold 60 and the movable mold 62, and then the movable portion of the movable mold 62 is formed. This is a method of expanding the mold cavity by retracting 64 and laminating and molding the base layer side molded body 20 on the back surface side (non-design surface side) of the surface layer side molded body 10.
 具体的には、まず、図7Aの型開き状態から、図7Bに示すように、図示しない型締機構によって可動盤を固定盤側に移動させることにより、固定金型60と可動金型62とを型閉じさせ、その後、所定の型締力を付与させることにより、固定金型60と可動金型62との間に第1金型キャビティ66を形成する。この際、可動金型62の可動部64は、固定金型60に対して最接近した状態で維持されている。次に、図7Bに示すように、第1射出ユニット46から、第1樹脂流路48及び第1ゲートバルブ49を介して表層用樹脂を第1金型キャビティ66に射出充填させ、冷却固化させることで、第1金型キャビティ66に表層側成形体10が成形される(一次成形工程)。この表層側成形体10は、固定金型60の内面により、表面に意匠面が形成されている。また、表層側成形体10には、可動金型62の可動部64の凸部68により、表面(意匠面)から裏面(非意匠面側の面)に亘って貫通する複数の貫通孔部12が形成されている。 Specifically, as shown in FIG. 7B from the mold open state of FIG. 7A, the movable platen is moved to the fixed platen side by a clamping mechanism (not shown), whereby the fixed mold 60 and the movable mold 62 and Is closed, and then a predetermined mold clamping force is applied to form a first mold cavity 66 between the fixed mold 60 and the movable mold 62. At this time, the movable portion 64 of the movable mold 62 is maintained in the state of being closest to the fixed mold 60. Next, as shown in FIG. 7B, the surface layer resin is injected and filled in the first mold cavity 66 from the first injection unit 46 via the first resin flow path 48 and the first gate valve 49, and is solidified by cooling. Thus, the surface layer side molded body 10 is molded in the first mold cavity 66 (primary molding step). The surface layer side molded body 10 has a design surface formed on the surface by the inner surface of the fixed mold 60. Further, in the surface layer side molded body 10, a plurality of through holes 12 penetrating from the surface (design surface) to the back surface (surface on the non-design surface side) by the convex portions 68 of the movable portion 64 of the movable mold 62. Is formed.
 表層側成形体10の成形後、図7Bの状態から、図7Cに示すように、図示しない駆動手段により可動部64を後退させることで、固定金型60の複数の凹部60aにより形成された空間と、表層側成形体10の複数の貫通孔部12により形成された空間と、表層側成形体10の裏面と可動金型62の可動部64の内面との間に形成された非意匠面側空間70とから構成される金型キャビティ拡張部72を形成させる(二次成形準備工程)。そして、この状態において、第2射出ユニット54から第2樹脂流路56及び第2ゲートバルブ57を介して、基材層用樹脂を金型キャビティ拡張部72に射出充填させる(二次射出充填工程)。これにより表層側成形体10の非意匠面側に積層された基材層側成形体20が成形される(二次成形工程)。基材層側成形体20のステッチ部24の先端部には、固定金型60の凹部60aに施されたステッチ状意匠が転写されている。 After molding of the surface layer side molded body 10, as shown in FIG. 7C from the state of FIG. 7B, the space formed by the plurality of concave portions 60a of the fixed mold 60 by retracting the movable portion 64 by driving means not shown. And the non-design surface formed between the space formed by the plurality of through holes 12 of the surface-side compact 10 and the back surface of the surface-side compact 10 and the inner surface of the movable portion 64 of the movable mold 62 A mold cavity extension 72 composed of the space 70 is formed (secondary molding preparation step). Then, in this state, the resin for the base layer is injected from the second injection unit 54 through the second resin flow path 56 and the second gate valve 57 into the mold cavity extension portion 72 (secondary injection filling step) ). Thereby, the base material layer side molded object 20 laminated | stacked on the non-design surface side of the surface layer side molded object 10 is shape | molded (secondary forming process). The stitch-like design applied to the concave portion 60 a of the fixed mold 60 is transferred to the tip of the stitch portion 24 of the base layer side molded body 20.
 基材層側成形体20の冷却固化が完了した後、図示しない型締機構によって可動盤を固定盤から離間する方向に移動させることにより、固定金型60と可動金型62とを型開きさせる。その後、図示しない製品取出手段により、表層側成形体10及び基材層側成形体20からなる樹脂成形品1を射出成形機外へ搬出させ、成形サイクルが終了する。そして、以上の工程を繰り返すことにより、表面(意匠面)に擬似的なステッチ模様(縫い目)が形成された樹脂成形品1を連続して製造することができる。 After cooling and solidification of the base material layer side molded body 20 is completed, the fixed mold 60 and the movable mold 62 are opened by moving the movable board in a direction away from the fixed board by a mold clamping mechanism not shown. . Thereafter, the resin molded product 1 composed of the surface layer side molded body 10 and the base material layer side molded body 20 is carried out of the injection molding machine by the product taking out means (not shown), and the molding cycle is completed. And the resin molded product 1 in which the pseudo | simulated stitch pattern (stitch) was formed in the surface (design surface) can be manufactured continuously by repeating the above process.
 図6A~図6E及び図7A~図7Cに示したような、表層側成形体10を成形してから基材層側成形体20を積層成形させる方法では、図8A~図8Gに示したような、基材層側成形体20を成形してから表層側成形体10を積層成形させる方法のように、基材層側成形体20のステッチ部24の突出端部(ステッチ状意匠26)と第2金型50の成形面とを噛み合わせて、その間に樹脂材料を浸入させないようなシールを構成する必要はない。また、ステッチ部24が細く小さい場合であっても、先に形成された表層側成形体10の貫通孔部12を介して、凹部40a,60aに基材層用樹脂が充填されるため、特許文献1の成形方法のように、ステッチ部24が樹脂熱による再溶融(溶損)で消失したり、樹脂流動力による形状変形や位置ズレが生じたりするおそれがない。さらに、金型キャビティより熱伝導率が低い樹脂(表層用樹脂)で形成される貫通孔部12の樹脂流路としての断熱性や保温性は、ステッチ部全体を金型キャビティで形成させる特許文献1に対して高い。そのため、二次成形工程での射出充填において、ステッチ状意匠26が成形される凹部40a,60aへの基材層用樹脂の樹脂充填性に優れると共に、凹部40a,60a内の基材層用樹脂への射出充填圧力及び保圧力の伝播性にも優れるため、詳細なステッチ状意匠26の成形に好適である。 As shown in FIGS. 8A to 8G, in the method for forming the base layer side molded body 20 after laminating the surface layer side molded body 10 as shown in FIGS. 6A to 6E and 7A to 7C. The protruding end portion (stitch-like design 26) of the stitch portion 24 of the base layer side molded body 20 and the method of laminating and forming the surface layer side molded body 10 after molding the base material layer side molded body 20 There is no need to engage with the molding surface of the second mold 50 to form a seal that prevents the resin material from entering between them. In addition, even when the stitch portion 24 is thin and small, the resin for the base layer is filled in the concave portions 40a and 60a through the through holes 12 of the surface-side compact 10 formed previously, so the patent is issued. As in the molding method of Document 1, there is no possibility that the stitch portion 24 disappears due to re-melting (melting loss) by resin heat, or shape deformation or positional deviation occurs due to resin flow force. Furthermore, the heat insulating property and heat retention property as the resin flow path of the through hole 12 formed of a resin (surface layer resin) having a thermal conductivity lower than that of the mold cavity are obtained by forming the entire stitch portion with the mold cavity Higher than one. Therefore, in the injection molding in the secondary molding step, the resin filling property of the resin for the base layer to the recesses 40a and 60a where the stitch-like design 26 is formed is excellent and the resin for the base layer in the recesses 40a and 60a It is suitable for forming a detailed stitch-like design 26 because it is also excellent in the injection filling pressure and the propagation of the holding pressure.
 以上説明したとおり、本実施形態に係る樹脂成形品1は、表層側成形体10及び基材層側成形体20が、互いに異なる樹脂から形成されており、表層側成形体10を形成する表層用樹脂が、その線膨張係数が基材層側成形体20を形成する基材層用樹脂の線膨張係数以下、及び/又は、その融点が基材層側成形体20を形成する基材層用樹脂の融点以下である。 As described above, in the resin molded product 1 according to the present embodiment, the surface layer side molded body 10 and the base material layer side molded body 20 are formed of different resins, and for the surface layer forming the surface layer side molded body 10 For the base layer of which resin has a linear expansion coefficient equal to or less than that of the base layer resin forming the base layer side molded body 20 and / or a melting point thereof forms the base layer side molded body 20 It is below the melting point of the resin.
 そして、本実施形態に係る樹脂成形品1では、表層用樹脂の線膨張係数が基材層用樹脂の線膨張係数以下であることにより、冷却固化時や使用時の温度環境の変化時において、表層側成形体10の収縮や膨張の程度が、基材層側成形体20の収縮や膨張の程度に比べて小さいため、基材層側成形体20のステッチ部24が表層側成形体10の収縮に引っ張られて変形したり、ステッチ部24と表層側成形体10の貫通孔部12との間に隙間が生じたりする現象を抑制することが可能となる。また、本実施形態に係る樹脂成形品1では、表層用樹脂の融点が基材層用樹脂の融点以下であることにより、基材層用樹脂のステッチ部24の再溶融(溶損)を抑制することができる。このため、本実施形態に係る樹脂成形品1によれば、意匠面に擬似的なステッチ模様が形成された樹脂成形品を精度良く製造することが可能である。 And in the resin molded product 1 which concerns on this embodiment, when the coefficient of linear expansion of resin for surface layers is below the coefficient of linear expansion of resin for base material layers, at the time of the change of the temperature environment at the time of cooling solidification or use. Since the degree of contraction and expansion of the surface layer side molded body 10 is smaller than the degree of contraction and expansion of the base material layer side molded body 20, the stitch portion 24 of the base material layer side molded body 20 is It is possible to suppress a phenomenon in which it is pulled by contraction and deformed or a gap is generated between the stitch portion 24 and the through hole 12 of the surface layer side molded body 10. Further, in the resin molded product 1 according to the present embodiment, when the melting point of the surface layer resin is equal to or lower than the melting point of the base layer resin, the remelting (melting loss) of the stitch portion 24 of the base layer resin is suppressed. can do. For this reason, according to the resin molded product 1 according to the present embodiment, it is possible to accurately manufacture a resin molded product having a pseudo stitch pattern formed on a design surface.
 以上、本発明の好適な実施形態について説明したが、本発明の技術的範囲は、上述した実施形態に記載の範囲には限定されない。上記各実施形態には、多様な変更又は改良を加えることが可能である。 The preferred embodiment of the present invention has been described above, but the technical scope of the present invention is not limited to the scope described in the above-described embodiment. It is possible to add various change or improvement to each above-mentioned embodiment.
 例えば、本発明に係る樹脂成形品は、図1及び図2において例示した樹脂成形品1の構成及び形状に限定されず、表面に意匠面を有すると共に、表面から裏面に亘って貫通する貫通孔部が形成された表層側成形体と、表層側成形体の裏面側に積層される非意匠面部及び非意匠面部から表層側成形体の貫通孔部を介して意匠面側に露出するステッチ部を有する基材層側成形体とを備え、基材層側成形体のステッチ部により、意匠面側に擬似的なステッチ模様が形成された樹脂成形品であれば、種々の構成及び形状を採用することが可能である。 For example, the resin molded product according to the present invention is not limited to the configuration and shape of the resin molded product 1 illustrated in FIGS. 1 and 2, and has a design surface on the surface and a through hole penetrating from the surface to the back A surface-side molded body in which the portion is formed, a non-designed surface portion laminated on the back surface side of the surface-side molded body, and a stitch portion exposed from the non-designed surface portion to the design surface side through the through-hole portion of the surface-side molded body If it is a resin molded product provided with a base material layer side molded body having and the pseudo stitch pattern is formed on the design surface side by the stitch portion of the base material layer side molded body, various configurations and shapes are adopted. It is possible.
 さらに、本発明に係る樹脂成形品は、上述した金型構成や工程による成形方法に限定されずに、種々の金型構成や工程により成形することが可能である。 Furthermore, the resin molded product according to the present invention can be molded by various mold configurations and processes without being limited to the above-described mold configuration and molding method by the processes.
 上記のような変形例が本発明の範囲に含まれることは、特許請求の範囲の記載から明らかである。 It is apparent from the description of the claims that the above-mentioned modifications fall within the scope of the present invention.
 1 樹脂成形品、10 表層側成形体、12 貫通孔部、20 基材層側成形体、22 非意匠面部、24 ステッチ部 Reference Signs List 1 resin molded product, 10 surface side molded body, 12 through hole portion, 20 base material layer side molded body, 22 non-design surface portion, 24 stitch portion

Claims (8)

  1.  表面に意匠面を有する表層側成形体と、該表層側成形体の裏面側に積層され、該表層側成形体を介して前記意匠面側に露出するステッチ部を有する基材層側成形体とを備え、該基材層側成形体の前記ステッチ部により、前記意匠面側に擬似的なステッチ模様が形成された樹脂成形品であって、
     前記表層側成形体を形成する表層用樹脂は、その融点が前記基材層側成形体を形成する基材層用樹脂の融点以下、及び/又は、その線膨張係数が前記基材層側成形体を形成する基材層用樹脂の線膨張係数以下である
     ことを特徴とする樹脂成形品。
    A surface layer side molded body having a design surface on the surface, and a base material layer side molded body having a stitch portion laminated on the back surface side of the surface layer side molded body and exposed to the design surface side via the surface layer side molded body A resin molded article having a pseudo stitch pattern formed on the design surface side by the stitch portion of the base material layer side molded body,
    The surface layer resin forming the surface layer side molded body has a melting point equal to or lower than the melting point of the base material layer resin forming the base layer side molded body, and / or the linear expansion coefficient thereof is the base layer side molding It is below the linear expansion coefficient of resin for base material layers which form a body. The resin molded product characterized by the above-mentioned.
  2.  前記表層側成形体を形成する表層用樹脂は、その融点が前記基材層側成形体を形成する基材層用樹脂の融点以下であり、かつ、その線膨張係数が前記基材層側成形体を形成する基材層用樹脂の線膨張係数以下である
     ことを特徴とする請求項1に記載の樹脂成形品。
    The surface layer resin forming the surface layer side molded body has a melting point equal to or lower than the melting point of the base material layer resin forming the base layer side molded body, and the linear expansion coefficient thereof is the base layer side molding It is below the linear expansion coefficient of resin for base material layers which forms a body. The resin molded product of Claim 1 characterized by the above-mentioned.
  3.  前記表層用樹脂と前記基材層用樹脂とに相溶性があることを特徴とする請求項1に記載の樹脂成形品。 The resin molded article according to claim 1, wherein the surface layer resin and the base layer resin are compatible with each other.
  4.  前記表層用樹脂と前記基材層用樹脂とに相溶性があることを特徴とする請求項2に記載の樹脂成形品。 The resin molded article according to claim 2, wherein the surface layer resin and the base layer resin are compatible with each other.
  5.  前記表層用樹脂は、前記基材層用樹脂よりも熱変形温度が低い樹脂からなる
     ことを特徴とする請求項1に記載の樹脂成形品。
    The resin molded article according to claim 1, wherein the surface layer resin is made of a resin having a heat deformation temperature lower than that of the base layer resin.
  6.  前記表層用樹脂は、前記基材層用樹脂よりも熱変形温度が低い樹脂からなる
     ことを特徴とする請求項2に記載の樹脂成形品。
    The resin molded article according to claim 2, wherein the surface layer resin is made of a resin having a heat deformation temperature lower than that of the base layer resin.
  7.  前記表層用樹脂は、前記基材層用樹脂よりも熱変形温度が低い樹脂からなる
     ことを特徴とする請求項3に記載の樹脂成形品。
    The resin molded article according to claim 3, wherein the surface layer resin is made of a resin having a heat deformation temperature lower than that of the base layer resin.
  8.  前記表層用樹脂は、前記基材層用樹脂よりも熱変形温度が低い樹脂からなる
     ことを特徴とする請求項4に記載の樹脂成形品。
    The resin for a surface layer is made of a resin having a thermal deformation temperature lower than that of the resin for a base layer.
PCT/JP2018/044545 2017-12-07 2018-12-04 Resin molded product WO2019111887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017234881A JP2019098691A (en) 2017-12-07 2017-12-07 Resin molded article
JP2017-234881 2017-12-07

Publications (1)

Publication Number Publication Date
WO2019111887A1 true WO2019111887A1 (en) 2019-06-13

Family

ID=66751601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044545 WO2019111887A1 (en) 2017-12-07 2018-12-04 Resin molded product

Country Status (2)

Country Link
JP (1) JP2019098691A (en)
WO (1) WO2019111887A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464818A (en) * 1987-09-07 1989-03-10 Nishikawa Kasei Kk Synthetic resin molded item and its production
JPH0999522A (en) * 1995-10-04 1997-04-15 Japan Synthetic Rubber Co Ltd Double-layered molded product
JP2001150480A (en) * 1999-11-30 2001-06-05 Hitachi Ltd Molding with transparent pattern
JP2012139967A (en) * 2011-01-05 2012-07-26 Inoac Corp Manufacturing method of bilayer member
JP2014008707A (en) * 2012-06-29 2014-01-20 Inoac Corp Method for producing resin molding
JP2014133357A (en) * 2013-01-10 2014-07-24 Inoac Corp Vehicle interior member
JP2016094005A (en) * 2014-05-30 2016-05-26 宇部興産機械株式会社 Resin molding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305747A (en) * 2002-04-18 2003-10-28 Idemitsu Petrochem Co Ltd Bathroom counter and production method therefor
JP2012250509A (en) * 2011-06-06 2012-12-20 Seiko Epson Corp Injection molding method, injection-molded article and injection mold

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464818A (en) * 1987-09-07 1989-03-10 Nishikawa Kasei Kk Synthetic resin molded item and its production
JPH0999522A (en) * 1995-10-04 1997-04-15 Japan Synthetic Rubber Co Ltd Double-layered molded product
JP2001150480A (en) * 1999-11-30 2001-06-05 Hitachi Ltd Molding with transparent pattern
JP2012139967A (en) * 2011-01-05 2012-07-26 Inoac Corp Manufacturing method of bilayer member
JP2014008707A (en) * 2012-06-29 2014-01-20 Inoac Corp Method for producing resin molding
JP2014133357A (en) * 2013-01-10 2014-07-24 Inoac Corp Vehicle interior member
JP2016094005A (en) * 2014-05-30 2016-05-26 宇部興産機械株式会社 Resin molding

Also Published As

Publication number Publication date
JP2019098691A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6617527B2 (en) Plastic molded product
CN103101151B (en) resin molded article and production method thereof
US6977110B2 (en) Foamed thermoplastic resin molding for automotive interior and production method thereof
JP5824691B2 (en) Manufacturing method of resin molded products
US20020136861A1 (en) Thermoplastic resin foam molding
KR20170061178A (en) Sandwich molded article
WO2019111887A1 (en) Resin molded product
JP6048827B2 (en) Injection molding method and injection molding machine
JP2011194701A (en) Mold for molding, molding method, and molding molded using the method,
JP5190778B2 (en) Multilayer molding apparatus and multilayer molding method
JP2001334549A (en) Method for manufacturing composite molded article, and composite molded article
JP2017094671A (en) Method and apparatus for molding resin molding
JP5634040B2 (en) Composite product, injection mold and composite product manufacturing method
JP2011126121A (en) Injection molding method and panel
JP2013035149A (en) Injection molding method of synthetic resin
JP5083652B2 (en) Method for molding laminated molded product and mold for molding
CN207955425U (en) Car carpeting
JP6048815B2 (en) Injection molding method
WO2019239611A1 (en) Hanger for clothing, and method for manufacturing hanger for clothing
JP2013107328A (en) Method of manufacturing multi-colored molded product, molding die and multi-colored molded product
JP2014004698A (en) Resin molded article
JP5071855B2 (en) Molding apparatus and molding method
JP2012232508A (en) Method of manufacturing multicolor molded article, and molding die
KR20080062179A (en) Multilayer injection molding method
JP2016147496A (en) Resin molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885919

Country of ref document: EP

Kind code of ref document: A1