WO2019111457A1 - Clutch control device - Google Patents

Clutch control device Download PDF

Info

Publication number
WO2019111457A1
WO2019111457A1 PCT/JP2018/031963 JP2018031963W WO2019111457A1 WO 2019111457 A1 WO2019111457 A1 WO 2019111457A1 JP 2018031963 W JP2018031963 W JP 2018031963W WO 2019111457 A1 WO2019111457 A1 WO 2019111457A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
clutch
rotation
gear
control unit
Prior art date
Application number
PCT/JP2018/031963
Other languages
French (fr)
Japanese (ja)
Inventor
剛太 那須
清水 亮
洋則 安部
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2019558001A priority Critical patent/JP6958634B2/en
Priority to CN201880077909.3A priority patent/CN111433066A/en
Publication of WO2019111457A1 publication Critical patent/WO2019111457A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/04Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a clutch control device for a vehicle provided with a meshing clutch (so-called dog clutch) interposed between a first shaft to which power from at least one rotary electric machine is transmitted and a second shaft on the output side.
  • a meshing clutch so-called dog clutch
  • a dog clutch that does not have a synchro mechanism may be employed as a clutch used when shifting a vehicle or switching a power source.
  • the dog clutch includes a hub fixed to the shaft, an annular sleeve non-rotatable relative to the hub and axially slidably coupled, and an actuator for sliding the sleeve.
  • the teeth are engaged by meshing with the teeth of an adjacent engaged gear (so-called dog gear).
  • the dog clutch without the synchronization mechanism has advantages such as no need for an oil pump and good vehicle mountability, but it is necessary to synchronize rotation in order to suppress vibration and noise at the time of clutch engagement.
  • Patent Document 1 it is considered that connection (engagement) of the dog clutch can be promptly achieved even if the vehicle speed changes, by adding correction control corresponding to torque change or vehicle speed change to synchronous control. There is.
  • gear blocks may occur in which the teeth of the sleeve and the teeth of the dog gear collide, even when the rotation is synchronized. Sliding the sleeve in a direction to engage the sleeve without engaging these teeth causes vibration and noise, and may damage the sleeve teeth and dog gear teeth.
  • the clutch control device of the present invention has been devised in view of such problems, and has an object to suppress damage to a dog clutch due to a gear block.
  • the present invention is not limited to this object, and it is an operation and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and it is another object of the present invention to exert an operation and effect that can not be obtained by the prior art. is there.
  • the clutch control device disclosed herein comprises a first shaft to which power is transmitted by rotating in synchronization with at least one rotating electric machine, and a second shaft to which the power of the first shaft is transmitted.
  • a clutch control device for a vehicle including a meshing clutch for connecting and disconnecting a transmission, wherein the meshing clutch is provided so as to be synchronously rotated with respect to one of the first shaft and the second shaft and axially movable. And an engaged gear provided rotatably relative to the other of the first shaft and the second shaft.
  • the clutch control device controls the rotating electrical machine to match the rotation of the sleeve and the rotation of the engaged gear while the vehicle is traveling with the meshing clutch disconnected.
  • a sleeve control unit that moves the sleeve in a first direction to engage the engaged gear during control by the rotation control unit; a movement detection unit that detects a movement amount of the sleeve; and And a determination unit that determines that a gear block in which the sleeve and the engaged gear collide with each other without meshing is generated when the amount is less than the set predetermined amount.
  • the determination unit determines that the sleeve and the dog engaged gear are engaged when the movement amount is equal to or more than the predetermined amount.
  • the sleeve control unit moves the sleeve in a second direction opposite to the first direction when the determination unit determines that the gear block is generated, and then the sleeve is moved again It is preferable to move in the first direction.
  • the rotation control unit performs the rotation so that the difference between the number of rotations of the sleeve and the number of rotations of the engaged gear is increased when the sleeve is moved in the second direction by the sleeve control unit. After controlling the electric machine, it is preferable to control the rotating electric machine so that the rotation of the sleeve and the rotation of the engaged gear are matched again.
  • the vehicle is provided with an accelerator opening degree detecting unit that detects an accelerator opening degree.
  • the rotation control unit execute the control to be synchronized by synchronizing the rotation of the sleeve and the rotation of the engaged gear if the accelerator opening degree is smaller than a predetermined opening degree.
  • the rotation control unit is configured such that the difference between the rotational speed of the sleeve and the rotational speed of the engaged gear falls within a predetermined rotational speed range if the accelerator opening degree is equal to or greater than the predetermined opening degree.
  • the control is performed by controlling the rotating electrical machine.
  • the rotation control unit preferably sets the rotation speed range wider as the vehicle speed is higher.
  • the clutch control device includes an acquisition unit that acquires an accelerator opening speed, and a drive control unit that controls a drive source of the vehicle based on an accelerator operation, and the drive control unit is the sleeve control unit. If the accelerator opening speed is equal to or greater than a predetermined value during control according to the above, it is preferable to stand by for control of the drive source until the sleeve and the engaged gear mesh with each other.
  • the vehicle includes two of the rotating electrical machines and an engine, and a first power transmission path for transmitting the power of one of the rotating electrical machines to an output shaft for driving the drive wheels of the vehicle;
  • the hybrid vehicle is preferably a hybrid vehicle having a second power transmission path for transmitting power to the output shaft and a third power transmission path for transmitting power of the engine to the other rotating electric machine.
  • the meshing clutch is interposed in each of the first power transmission path and the second power transmission path.
  • the rotary electric machine controlled by the rotation control unit is the other rotary electric machine, and a high side clutch and a low side clutch independent of each other are interposed as the meshing clutch in the second power transmission path. It is preferable that the high-side clutch and the low-side clutch be synchronized by the other rotating electric machine.
  • the disclosed clutch control device when the meshing clutch is switched from disconnection to contact while the vehicle is traveling, collision between the teeth of the sleeve and the teeth of the engaged gear (so-called gear block) based on the movement amount of the sleeve Can detect Therefore, damage to these teeth can be avoided, and damage to the meshing clutch due to the gear block can be suppressed.
  • FIG. 3 is a schematic view showing a block diagram of the clutch control device of FIG. 1 together with a skeleton diagram showing a powertrain provided with the transaxle of FIG. 2; It is a schematic diagram for demonstrating the content of the clutch engagement control implemented with the control apparatus of FIG. 1, (a) is a neutral state, (b) is an engagement state, (c) is a gear block state, (d) Shows the state of avoiding the gear block. It is a flowchart example of the clutch engagement control implemented by the control apparatus of FIG.
  • a clutch control device as an embodiment will be described with reference to the drawings.
  • the embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques that are not specified in the following embodiments.
  • Each structure of this embodiment can be variously modified and implemented in the range which does not deviate from those meaning. Also, they can be selected as needed or can be combined as appropriate.
  • the clutch control device 5 (hereinafter referred to as the “control device 5”) of the present embodiment is applied to the vehicle 10 shown in FIG. 1 and controls the transaxle 1 mounted on the vehicle 10.
  • the vehicle 10 is a hybrid vehicle equipped with an engine 2, a traveling motor 3 (motor, one rotating electric machine), and a generator 4 for power generation (generator, the other rotating electric machine).
  • the generator 4 is connected to the engine 2 and can be operated independently of the operating state of the motor 3.
  • the vehicle 10 is provided with three types of travel modes: EV mode, series mode, and parallel mode. These traveling modes are alternatively selected by the control device 5 in accordance with the vehicle state, the traveling state, the driver's request output and the like, and the engine 2, the motor 3 and the generator 4 are properly used in accordance with the type.
  • the EV mode is a traveling mode in which the vehicle 10 is driven only by the motor 3 using charging power of a driving battery (not shown) while the engine 2 and the generator 4 are stopped.
  • the EV mode is selected when the traveling load and the vehicle speed are low or when the charge level of the battery is high.
  • the series mode is a traveling mode in which the generator 2 is driven by the engine 2 to generate electric power, and the electric power is used to drive the vehicle 10 by the motor 3.
  • the series mode is selected when the traveling load and the vehicle speed are medium or when the charge level of the battery is low.
  • the parallel mode is mainly a driving mode in which the vehicle 2 is driven by the engine 2 and the driving of the vehicle 10 is assisted by the motor 3 as needed.
  • the parallel mode is selected when the running load and the vehicle speed are high.
  • the engine 2 and the motor 3 are connected in parallel to the drive wheel 8 via the transaxle 1, and respective powers of the engine 2 and the motor 3 are individually transmitted from different power transmission paths. That is, each of the engine 2 and the motor 3 is a drive source that drives the output shaft 12 of the vehicle 10. Further, the generator 4 and the drive wheel 8 are connected in parallel to the engine 2 via the transaxle 1, and the power of the engine 2 is transmitted to the generator 4 in addition to the drive wheel 8.
  • the transaxle 1 is a power transmission device in which a final drive (final reduction gear) including a differential gear 18 (differential gear, hereinafter referred to as "differential gear 18") and a transmission (reduction gear) are integrally formed. And a plurality of mechanisms for transmitting power between the drive and the driven device.
  • the transaxle 1 of the present embodiment is configured to be capable of high / low switching (switching between high speed and low speed), and the high gear according to the traveling state, required output, etc. by the control device 5 when traveling in parallel mode. The gear and the low gear are switched.
  • the engine 2 is an internal combustion engine (gasoline engine, diesel engine) fueled by gasoline or light oil.
  • the engine 2 is a so-called horizontal engine disposed sideways so that the direction of the crankshaft 2a (rotational axis) coincides with the vehicle width direction of the vehicle 10, and is fixed to the right side of the transaxle 1 .
  • the crankshaft 2 a is disposed parallel to the drive shaft 9 of the drive wheel 8.
  • the operating state of the engine 2 is controlled by the controller 5.
  • the motor 3 and the generator 4 of the present embodiment are both a motor generator (motor generator) having a function as an electric motor and a function as a generator.
  • the motor 3 mainly functions as an electric motor to drive the vehicle 10, and functions as a generator during regeneration.
  • the generator 4 functions as a motor (starter) when starting the engine 2 and performs power generation with engine power when the engine 2 is operating.
  • An inverter (not shown) that converts a direct current and an alternating current is provided around (or inside) each of the motor 3 and the generator 4.
  • the rotational speeds of the motor 3 and the generator 4 are controlled by controlling an inverter.
  • the operating states of the motor 3, the generator 4 and the respective inverters are controlled by the control device 5.
  • the motor 3 according to the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 3a, and is fixed to the left side surface of the transaxle 1 with its bottom surface facing the transaxle 1 side.
  • the generator 4 of the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 4a, and, like the motor 3, the left side of the transaxle 1 is oriented with its bottom surface facing the transaxle 1 side. It is fixed to the face.
  • FIG. 2 is a side view of the power train 7 as viewed from the left side.
  • the power train 7 includes an engine 2, a motor 3, a generator 4, and a transaxle 1.
  • the engine 2 is omitted in FIG.
  • the vehicle 10 is provided with a control device 5 that integrally controls various devices mounted on the vehicle 10.
  • the vehicle 10 also includes an accelerator opening sensor 41 (accelerator opening detection unit) that detects the amount of depression of the accelerator pedal (accelerator opening), a wheel speed sensor 42 that detects the number of rotations of the wheel, and a motor 3.
  • a motor rotational speed sensor 43 for detecting the rotational speed of the motor 4 and a generator rotational speed sensor 44 for detecting the rotational speed of the generator 4 are provided. The information detected by each of the sensors 41 to 44 is transmitted to the control device 5.
  • the control device 5 is, for example, an electronic control device configured as an LSI device in which a microprocessor, a ROM, a RAM, and the like are integrated and a built-in electronic device, and integrally controls various devices mounted on the vehicle 10.
  • the control device 5 of this embodiment selects the traveling mode in accordance with the driver's request output, etc., and controls various devices (for example, the engine 2 and the motor 3) in accordance with the selected traveling mode. It controls the connection and disconnection of the clutches 20 and 30. This control will be described later.
  • FIG. 3 is a skeleton diagram of a powertrain 7 provided with the transaxle 1 of the present embodiment. As shown in FIGS. 2 and 3, the transaxle 1 is provided with six axes 11 to 16 arranged parallel to one another. Hereinafter, a rotary shaft coaxially connected with the crankshaft 2 a will be referred to as an input shaft 11.
  • rotation shafts coaxially connected with the drive shaft 9, the rotation shaft 3 a of the motor 3, and the rotation shaft 4 a of the generator 4 are referred to as an output shaft 12, a motor shaft 13, and a generator shaft 14.
  • a rotary shaft disposed on the power transmission path between the input shaft 11 and the output shaft 12 is referred to as a first countershaft 15, and is disposed on the power transmission path between the motor shaft 13 and the output shaft 12
  • the rotating shaft is called a second counter shaft 16.
  • Each of the six shafts 11 to 16 is pivotally supported by the casing 1C via bearings (not shown) at both ends.
  • An opening is formed in the side surface of the casing 1C located on each of the input shaft 11, the output shaft 12, the motor shaft 13 and the generator shaft 14, and the crankshaft 2a located outside the casing 1C and the drive shaft 9 , Rotary shaft 3a and rotary shaft 4a.
  • first path 51 a power transmission path from the motor 3 to the output shaft 12 via the motor shaft 13, and from the engine 2
  • second path 52 A power transmission path leading to the output shaft 12 through the input shaft 11
  • third path a power transmission path leading from the engine 2 to the generator shaft 14 through the input shaft 11 53
  • first path 51 and the second path 52 are drive power transmission paths
  • third path 53 is a power generation power transmission path.
  • the first path 51 (first power transmission path) is a path related to power transmission from the motor 3 to the drive wheel 8 and is responsible for power transmission of the motor 3.
  • a motor shaft 13 (first shaft) to which power is transmitted by rotating in synchronization with the motor 3 and a second counter shaft 16 (second shaft) to which power of the motor shaft 13 is transmitted on the first path 51
  • the first dog clutch 20 (meshing clutch) described later is connected to the middle of the first path 51 to connect and disconnect the power transmission.
  • the second path 52 (second power transmission path) is a path relating to power transmission from the engine 2 to the drive wheels 8 and is responsible for power transmission at the time of operation of the engine 2.
  • An input shaft 11 (first shaft) to which power is transmitted by rotating in synchronization with the generator 4 and a first counter shaft 15 (second shaft) to which power of the input shaft 11 is transmitted on the second path 52
  • a second dog clutch 30 (meshing clutch) described later that performs connection / disconnection of the power transmission and high / low switching in the middle of the second path 52.
  • the third path 53 (third power transmission path) is a path related to power transmission from the engine 2 to the generator 4 and is responsible for power transmission at engine start and power transmission at the time of power generation by the engine 2.
  • fixed gear means a gear provided integrally with the shaft and synchronously rotating (non-rotatable) with respect to the shaft.
  • free running gear means a gear that is rotatably supported relative to the shaft.
  • the input shaft 11 includes, in order from the side closer to the engine 2, the fixed gear 11a, the second dog clutch 30 on the high side (hereinafter referred to as “high side dog clutch 30H”), the idle gear 11H, and the fixed gear 11L. Is provided.
  • the first countershaft 15 includes, in order from the side closer to the engine 2, the fixed gear 15a, the fixed gear 15H, the idle gear 15L, and the low-side second dog clutch 30 (hereinafter referred to as "low-side dog clutch 30L" And are provided. That is, the high-side dog clutch 30H and the low-side dog clutch 30L which are independent of each other are interposed in the second path 52 as the second dog clutch 30.
  • the fixed gear 11 a of the input shaft 11 always meshes with the fixed gear 14 a provided on the generator shaft 14. That is, the input shaft 11 and the generator shaft 14 are connected via the two fixed gears 11 a and 14 a, and power can be transmitted between the engine 2 and the generator 4.
  • the fixed gear 15 a of the first countershaft 15 is always meshed with the ring gear 18 a of the differential 18 provided on the output shaft 12.
  • the idler gear 11H and the fixed gear 11L provided on the input shaft 11 have different numbers of teeth, and are constantly meshed with the stationary gear 15H and the idler gear 15L provided on the first countershaft 15.
  • the fixed gear 15H and the idle gear 15L of the first countershaft 15 also have different numbers of teeth.
  • the free rotation gear 11H has more teeth than the fixed gear 11L.
  • the idle gear 11H meshes with the fixed gear 15H having a small number of teeth to form a high gear.
  • the fixed gear 11L having a small number of teeth meshes with the idle gear 15L having a large number of teeth to form a low gear.
  • the idle gear 11H coaxially disposed adjacent to the high side dog clutch 30H has a dog gear 11d (engaged gear) integrally provided on the right side of the tooth surface portion meshing with the fixed gear 15H of the first countershaft 15.
  • the idle gear 15L coaxially disposed adjacent to the low-side dog clutch 30L has a dog gear 15d (engaged gear) integrally provided on the left side of the tooth surface portion meshing with the fixed gear 11L of the input shaft 11.
  • a dog tooth 11t is provided at a tip end (a radial outer end) of the dog gear 11d.
  • a dog tooth (not shown) similar to the dog tooth 11t is provided at the tip of the dog gear 15d.
  • the high-side dog clutch 30H and the low-side dog clutch 30L are both provided on the second path 52 to control the connection / disconnection state of the power of the engine 2 and to switch between the high gear and the low gear and do not have a synchro mechanism. It is a meshing clutch.
  • the traveling mode is the parallel mode
  • one of the high-side dog clutch 30H and the low-side dog clutch 30L is engaged and the other is disconnected. Note that which clutch 30H, 30L is engaged is determined based on the traveling state of the vehicle 10, the required output, and the like.
  • the high-side dog clutch 30H has a hub 31H fixed to the input shaft 11, and an annular sleeve 32H which can not rotate relative to the hub 31H (input shaft 11) and is axially slidably coupled. .
  • the sleeve 32 ⁇ / b> H slides in the axial direction when an actuator (for example, a servomotor, not shown) is controlled by the controller 5.
  • an actuator for example, a servomotor, not shown
  • a stroke sensor 45a movement detection unit
  • spline teeth 32t that mesh with the dog teeth 11t of the dog gear 11d are provided on the inner side in the radial direction of the sleeve 32H.
  • the low-side dog clutch 30L is non-relatively rotatable with respect to the hub 31L fixed to the first counter shaft 15, and the hub 31L (first counter shaft 15), and is axially slidably coupled.
  • an annular sleeve 32L is also slides in the axial direction when the actuator (not shown) is controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45 b (movement detection unit).
  • spline teeth (not shown) that mesh with the dog teeth of the dog gear 15d are provided.
  • the sleeve 32L and the dog gear 15d mesh (engage) with each other.
  • the driving force from the engine 2 is transmitted to the output shaft 12 through the low gear pairs 11L and 15L.
  • the idle gear 15L is idled, and the power transmission on the low side in the second path 52 is interrupted.
  • the second countershaft 16 is provided with a first dog clutch 20, an idle gear 16M, a parking gear 19, and a fixed gear 16a in order from the side closer to the engine 2.
  • the fixed gear 16 a is in constant mesh with the ring gear 18 a of the differential 18.
  • the parking gear 19 is an element constituting the parking lock device, and when the P range is selected by the driver, the parking gear 19 engages with a parking plug (not shown) to rotate the second countershaft 16 (that is, the output shaft 12). Ban.
  • the idle gear 16M has more teeth than the fixed gear 13a provided on the motor shaft 13, and is always meshed with the fixed gear 13a.
  • the idle gear 16M has a dog gear 16d integrally provided on the right side of the tooth surface portion that meshes with the fixed gear 13a.
  • the dog gear 16d has a dog tooth (not shown) similar to the dog tooth 11t of the above-described dog gear 11d at its tip.
  • the first dog clutch 20 has an annular sleeve fixed to the second countershaft 16 and an annular sleeve which can not rotate relative to the hub 21 (second countershaft 16) and is axially slidably coupled. And 22.
  • the sleeve 22 also slides in the axial direction by an actuator (not shown) being controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45c (movement detection unit).
  • spline teeth (not shown) similar to the spline teeth 32t of the sleeve 32H described above are provided.
  • the sleeve 22 and the dog gear 16 d of the free rotation gear 16 M mesh with each other
  • the sleeve 22 and the dog gear 16 d mesh (engage) with each other.
  • the traveling mode is the parallel mode and the assist by the motor 3 is unnecessary, the spline teeth of the sleeve 22 and the dog gear 16d of the idle gear 16M are separated, and the idle gear 16M is idle.
  • the power transmission of the first path 51 is cut off.
  • the traveling mode is the EV mode or the series mode, or when the parallel mode requires motor assist, the sleeve 22 and the dog gear 16d are engaged (engaged), and the driving force from the motor 3 Is transmitted to the output shaft 12.
  • the sleeve 22 engages with the dog gear 16d when the motor 3 is operating (on), and the sleeve 22 is controlled to the neutral position when the motor 3 is stopped (off).
  • the "neutral position” means a position at which the sleeve is separated from the dog gear, and is, for example, a predetermined range including a position (0 point position) which becomes a reference when the sleeve is moved by the actuator.
  • connection / disconnection state of the three dog clutches 20, 30H, 30L is controlled in accordance with the selected travel mode.
  • the control device 5 controls the selection of the traveling mode, the connection / disconnection states of the dog clutches 20, 30H, and 30L, and the operation states of the engine 2, the motor 3 and the like.
  • control for engaging the dog clutches 20, 30H, and 30L hereinafter, referred to as "clutch engagement control" will be described in detail.
  • the clutch engagement control is control that is performed on at least one of the three dog clutches 20, 30H, and 30L while the vehicle 10 is traveling. In the present embodiment, the same control is performed on all the dog clutches 20, 30H, and 30L. Therefore, in the following description, as shown in FIGS. 4A to 4D, the high-side dog clutch 30H is exemplified. Listed. When the high side dog clutch 30H is disconnected, as shown in FIG. 4A, the sleeve 32H is in the neutral position (neutral state).
  • the control device 5 is provided with a rotation control unit 5A, a sleeve control unit 5B, a determination unit 5C, an acquisition unit 5D, and a drive control unit 5E as elements for performing clutch engagement control.
  • These elements indicate some functions of the program executed by the control device 5, and are realized by software. However, part or all of each function may be realized by hardware (electronic circuit) or may be realized by using software and hardware in combination.
  • the rotation control unit 5A controls the generator 4 to match the rotation of the sleeve 32H with the rotation of the dog gear 11d.
  • “combine” means not only perfect match (ie, synchronization) but also bringing the rotations of the two into close proximity to each other within a predetermined rotation speed range ⁇ Np.
  • the rotation control unit 5A according to the present embodiment synchronizes the rotations of each other according to the accelerator opening degree AP detected by the accelerator opening degree sensor 41, or does the rotation control unit 5A fall within the rotational speed range ⁇ Np (the rotational speed deviation is predetermined Determine if it is less than or equal to the value.
  • the control device 5 synchronizes the rotation of the sleeve 32H with the rotation of the dog gear 11d. This achieves quiet clutch engagement when the required output is small.
  • the controller 5 controls the rotational speed of the sleeve 32H (hereinafter referred to as "sleeve rotational speed Ns") and the rotational speed of the dog gear 11d (hereinafter referred to as "dog gear rotational speed
  • the rotational speed range ⁇ Np is a range centered on 0, and the absolute values of the upper limit (positive value) and the lower limit (negative value) are the same.
  • the rotation speed range ⁇ Np may be a fixed value set in advance, or may be a variable value according to the vehicle speed (wheel speed), for example.
  • the rotation control unit 5A may set the rotation speed range ⁇ Np wider as the vehicle speed is higher. The higher the vehicle speed, the easier it is for the teeth to mesh with each other. Therefore, the clutch engagement is completed earlier by widening the rotation speed range ⁇ Np as the vehicle speed is higher.
  • the predetermined opening degree APp is a value set in advance, and serves as a threshold value that determines which of quietness and responsiveness should be prioritized in clutch engagement.
  • the control device 5 determines whether or not it is necessary to engage the dog clutches 20, 30H, 30L based on the traveling state of the vehicle 10, the required torque, etc., and determines that the dog clutch 20 is "necessary". , 30H and 30L are transmitted to the rotation control unit 5A.
  • the rotation control unit 5A controls (adjusts) the torque of the generator 4 so that the rotation of the sleeve 32H matches the rotation of the dog gear 11d.
  • the torque of the generator 4 is controlled (adjusted) such that the rotation of the dog gear 15d matches the rotation of the sleeve 32L (the rotation of the two is matched).
  • the torque of the motor 3 is controlled (adjusted) such that the rotation of the dog gear 16d matches the rotation of the sleeve 22 (the rotation of the two is matched).
  • the sleeve control unit 5B moves the sleeve 32H toward the dog gear 11d and The actuator is controlled to slide in a direction away from the dog gear 11d.
  • first direction the direction in which the clutch is engaged
  • second direction the direction opposite to the first direction (i.e., direction in which the clutch is disconnected)
  • first direction the direction in which the clutch is engaged
  • second direction the direction opposite to the first direction
  • the determination unit 5C determines (detects) the presence or absence of the gear block based on the movement amount D of the sleeve 32H.
  • the predetermined amount Dp is set to a value capable of determining the engagement of the sleeve 32H and the gear block. If the determination unit 5C determines that the gear block is generated, the determination unit 5C transmits the determination result to the rotation control unit 5A and the sleeve control unit 5B.
  • the sleeve control unit 5B When the determination result is transmitted from the determination unit 5C, that is, when the gear block shown in FIG. 4C is generated, the sleeve control unit 5B performs the second process on the sleeve 32H as shown in FIG. 4D. After moving in the direction to avoid contact between the sleeve 32H and the dog gear 11d, the sleeve 32H is moved in the first direction again. In this way, by avoiding the contact once, the teeth (spline teeth 32t and dog teeth 11t) of each other are not injured.
  • the generator 4 may be driven to positively change the rotation of the input shaft 11 in order to reliably avoid the gear block without depending on the possibility of the rotation on the output shaft 12 side changing.
  • the rotation control unit 5A controls the generator 4 so that the difference ⁇ N between the sleeve rotation number Ns and the dog gear rotation number Nd becomes large. After that, the generator 4 is controlled so that these rotations match again.
  • the rotation control unit 5A shifts the phase between the sleeve 32H and the dog gear 11d by, for example, applying torque to the generator 4 to increase the rotation of the sleeve 32H that rotates integrally with the input shaft 11 more than the dog gear 11d.
  • the gear block is positively avoided by controlling the torque of the generator 4 again to unite the rotation of the sleeve 32H and the rotation of the dog gear 11d.
  • the sleeve rotation number Ns of the sleeve 32H and the dog gear rotation number Nd of the dog gear 15d are obtained based on the rotation number of the generator 4 detected by the generator rotation number sensor 44. Further, the dog gear rotational speed Nd of the dog gear 11 d and the sleeve rotational speed Ns of the sleeve 32 L are obtained based on the rotational speed of the wheel (output shaft 12) detected by the wheel speed sensor 42.
  • the sleeve rotational speed Ns of the sleeve 22 of the first dog clutch 20 is determined based on the rotational speed of the wheel (output shaft 12), and the dog gear rotational speed Nd of the dog gear 16d is detected by the motor rotational speed sensor 43 of the motor 3 It is calculated based on the number of revolutions.
  • the acquiring unit 5D acquires (calculates) an accelerator opening speed which is a change rate of the accelerator opening degree AP detected by the accelerator opening degree sensor 41, and the drive control unit 5E is based on an accelerator operation.
  • the drive source in the present embodiment, the engine 2 and the motor 3) is controlled.
  • the acquiring unit 5D and the drive control unit 5E give priority to the shift (clutch switching) to the acceleration request.
  • the accelerator opening speed acquired by the acquisition unit 5D is greater than or equal to a predetermined value while the drive control unit 5E is under control of the sleeve control unit 5B, the spline teeth 32t of the sleeve 32 and the dog teeth of the dog gear 11d are controlled. The control of the drive source is awaited until 11t is engaged.
  • FIG. 5 is an example of a flowchart for explaining the contents of the above-described clutch engagement control. This flowchart is implemented by the control device 5 when the vehicle 10 is traveling and it is necessary to switch the clutch. In addition, since this flowchart is implemented also when any dog clutch 20, 30H, 30L is engaged, the code
  • step S1 the accelerator opening AP is acquired from the accelerator opening sensor 41.
  • step S2 it is determined whether the accelerator opening AP is equal to or greater than a predetermined opening APp.
  • AP ⁇ APp that is, when the required output is small
  • the process proceeds to step S3 where the torque of the rotary electric machine is controlled to match the rotation of the sleeve and the rotation of the dog gear, and the sleeve rotation number Ns and the dog gear rotation number Nd Are acquired (step S4).
  • step S5 it is determined whether or not the rotational speed difference ⁇ N is 0. If the rotational speed difference ⁇ N is not 0, the process returns to step S3 and the processing of steps S3 to S5 is repeated.
  • step S6 If it is determined in step S5 that the rotational speed difference ⁇ N is 0, that is, if the rotations are synchronized, the sleeve is moved in the first direction (step S6), and then it is determined whether there is a sudden accelerator operation (step S6) S7). Specifically, in step S7, the accelerator opening speed is acquired and compared with a predetermined value, and if the accelerator opening speed is equal to or more than a predetermined value, it is determined that "a sudden accelerator operation is performed". In this case, in step S8, the increase in torque of the drive source is in a standby state. On the other hand, if there is no sudden accelerator operation, step S8 is skipped and the process proceeds to step S9.
  • step S9 the movement amount D of the sleeve in the first direction is acquired, and it is determined whether the movement amount D is equal to or greater than a predetermined amount Dp (step S10). If D ⁇ Dp, this flow is ended because the sleeve and dog gear are engaged. On the other hand, if D ⁇ Dp, the gear block is generated, so the sleeve is moved in the second direction (step S11), and the rotary electric machine is controlled so as to make the rotational speed difference ⁇ N (step S12). That is, when the gear block is generated, the sleeve is once released from the dog gear, and the rotation is desynchronized. Then, the process returns to step S3, and the rotating electrical machine is controlled so that the rotations are synchronized again.
  • step S2 If AP ⁇ APp in step S2, that is, if the required output is large, the process proceeds to step S13, and the torque of the rotating electrical machine is controlled such that the rotation of the sleeve matches the rotation of the dog gear.
  • step S14 the sleeve rotational speed Ns and the dog gear rotational speed Nd are acquired, and in step S15, it is determined whether or not the rotational speed difference ⁇ N falls within the rotational speed range ⁇ Np. If ⁇ N ⁇ ⁇ Np, the process returns to step S13, and the processes of steps S13 to S15 are repeated.
  • step S15 If it is determined in step S15 that .DELTA.N ⁇ .DELTA.Np holds, that is, if the rotations approach each other to some extent, the sleeves are moved in the first direction (step S16), and then, as in step S7, the sudden acceleration operation is performed. The presence or absence is judged (step S17), and if there is a sudden accelerator operation, the torque increase of the drive source is put in a standby state in step S18. On the other hand, if there is no sudden accelerator operation, step S18 is skipped and this flow is ended.
  • step S2 when the sleeve is engaged with the rotational speed difference ⁇ N, it is basically determined that no gear block will occur, and the flow is ended without detecting the movement amount D. Do.
  • step S13 the same process as the process of steps S9 to S12 described above may be performed. Further, when the process proceeds from step S2 to step S13, steps S17 and S18 may be omitted.
  • the control device 5 described above performs clutch engagement control on each of the first dog clutch 20 provided on the first path 51 and the second dog clutch 30 provided on the second path 52.
  • a dog clutch that does not have a synchro mechanism, traveling (EV mode, series mode) using only the power of the motor 3 and traveling (parallel mode) mainly using the engine 2 and using the power of the motor 3 as an assist Since switching is performed by 20 and 30, miniaturization can be achieved and space saving can be realized.
  • it is not a clutch mechanism using oil pressure an oil pump is unnecessary, and further, since drag loss can be reduced, high efficiency can be expected.
  • the first dog clutch 20 is provided on the first path 51, and the first dog clutch 20 is released when the assist by the motor 3 is unnecessary when traveling in the parallel mode.
  • the motor 3 can be disconnected from the output shaft 12 by the As a result, corotation of the motor 3 can be avoided, power consumption can be suppressed, and loss can be reduced.
  • the second dog clutch 30 is provided on the second path 52, and when traveling in the parallel mode, the high gear and the low gear are switched according to the traveling state, required output, etc. Be That is, in the parallel mode, the power of the engine 2 can be switched in two steps and transmitted (output), so that the traveling pattern can be increased, and the effects such as the improvement of the drive feeling and the improvement of the fuel efficiency can be obtained. It is possible to improve the quality. Furthermore, in the transaxle 1 described above, the high-side dog clutch 30H and the low-side dog clutch 30L provided independently of each other as the second dog clutch 30 can be adjusted in rotation by one rotating electric machine (that is, the generator 4).
  • the second dog clutch 30 described above is configured of the high side dog clutch 30H and the low side dog clutch 30L, and the dog clutches 30H and 30L are provided with the sleeves 32H and 32L, there is no restriction on the gear ratio. That is, each gear ratio of the high gear stage and the low gear stage can be freely set. Furthermore, in the vehicle 10 described above, since the power of the engine 2 and the motor 3 can be output individually, it is possible to cover the torque dropout at the time of high / low switching with the power of the motor 3. As a result, it is possible to suppress the shift shock and to reduce the need to perform high / low switching quickly, so the configuration of the second dog clutch 30 can be simplified.
  • the content of the above-described clutch engagement control is an example, and is not limited to the above.
  • the sleeve rotation speed Ns and the dog gear rotation speed Nd may always be synchronized regardless of the accelerator opening degree AP.
  • the rotational speed difference ⁇ N may always be within the rotational speed range ⁇ Np.
  • the driver's request may be prioritized. That is, after the clutch engagement is temporarily interrupted to increase the output, control may be performed to adjust the rotation again. With such a configuration, the drive feeling can be improved because the driver's request can be promptly responded.
  • the sleeves 22, 32H, 32L are moved to such an extent that a slight gap is formed between the sleeves 22, 32H, 32L and the dog gears 16d, 11d, 15d when it is determined that a gear block is generated. It may be. That is, a configuration in which the rotational frequency is intentionally shifted by the rotating electrical machine by moving in the second direction is not essential, as long as at least a gear block can be determined (detected).
  • Transaxle 1 mentioned above is an example, and the composition is not restricted to what was mentioned above.
  • the second dog clutch 30 is provided on each of the input shaft 11 and the first counter shaft 15, but one second dog clutch may be provided on one of the shafts 11 and 15 Good.
  • a dog gear on the high side is disposed on one side in the axial direction of the second dog clutch provided on the input shaft 11, and a dog gear on the low side is disposed on the other side, and the sleeve of the second dog clutch is selected as both dog gears. It may be provided to engage with each other.
  • the clutch engagement control described above is applicable even to the transaxle having such a configuration.
  • the relative positions of the engine 2, the motor 3 and the generator 4 with respect to the transaxle 1 are not limited to those described above.
  • the arrangement of the six axes 11 to 16 in the transaxle 1 may be set according to these relative positions.
  • the arrangement of the gears provided on each of the shafts in the transaxle 1 is also an example, and is not limited to that described above.
  • the transaxle 1 described above has high gear stages and low gear stages, and these are switched by the second dog clutch 30.
  • the clutch engagement control described above may be applied. That is, the above-described clutch engagement control is not limited to the transaxle, and is applicable to any meshing clutch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Sleeves (22, 32H, 32L) and engagement gears (16d, 11d, 15d) are provided to positive clutches (20, 30H, 30L) positioned between first shafts (11, 13), to which power is transmitted by rotating in synch with rotating electric machines (3, 4), and second shafts (15, 16), to which the power from the first shafts (11, 13) is transmitted. A control device (5) comprises: a rotation control unit (5A) which, while a vehicle is travelling with the clutches (20, 30H, 30L) disengaged, controls the rotating electric machines (3, 4) so as to match the rotation of the sleeves with the rotation of the engagement gears; a sleeve control unit (5B) which, during the control performed by the rotation control unit (5A), moves the sleeves in a first direction to engage the sleeves with the engagement gears; movement detection units (45a-45c) which detect the movement amount D of the sleeves; and a determination unit (5C) which, if the movement amount D is below a pre-set prescribed amount Dp, determines that gear blocking, wherein the sleeves and the engagement gears collide without meshing together, has occurred.

Description

クラッチ制御装置Clutch controller
 本発明は、少なくとも一つの回転電機からの動力が伝達される第一軸と出力側の第二軸との間に介装された噛み合いクラッチ(いわゆるドグクラッチ)を備えた車両のクラッチ制御装置に関する。 The present invention relates to a clutch control device for a vehicle provided with a meshing clutch (so-called dog clutch) interposed between a first shaft to which power from at least one rotary electric machine is transmitted and a second shaft on the output side.
 従来、車両の変速時や動力源の切り換え時に用いられるクラッチとして、シンクロ機構を持たないドグクラッチが採用されることがある。このドグクラッチは、シャフトに固定されたハブと、ハブに対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブと、スリーブをスライド移動させるアクチュエータとを有し、スリーブの歯が隣接する被係合ギヤ(いわゆるドグギヤ)の歯と噛み合うことで係合する。 Conventionally, a dog clutch that does not have a synchro mechanism may be employed as a clutch used when shifting a vehicle or switching a power source. The dog clutch includes a hub fixed to the shaft, an annular sleeve non-rotatable relative to the hub and axially slidably coupled, and an actuator for sliding the sleeve. The teeth are engaged by meshing with the teeth of an adjacent engaged gear (so-called dog gear).
 シンクロ機構のないドグクラッチは、オイルポンプが不要であることや車両搭載性が良いなどのメリットがある一方で、クラッチ係合時の振動や騒音を抑制するために、回転を同期させる必要がある。これに対し、例えば特許文献1では、トルク変化又は車速変化に応じた補正制御を同期制御に加えることで、車両速度が変化してもドグクラッチの接続(係合)を速やかに達成できるとされている。 The dog clutch without the synchronization mechanism has advantages such as no need for an oil pump and good vehicle mountability, but it is necessary to synchronize rotation in order to suppress vibration and noise at the time of clutch engagement. On the other hand, in Patent Document 1, for example, it is considered that connection (engagement) of the dog clutch can be promptly achieved even if the vehicle speed changes, by adding correction control corresponding to torque change or vehicle speed change to synchronous control. There is.
特開2011-105024号公報JP 2011-105024 A
 しかしながら、シンクロ機構を持たないドグクラッチは、回転を同期させたとしても、スリーブの歯とドグギヤの歯とが衝突する、いわゆるギヤブロックが生じることがある。これらの歯が噛み合わないままスリーブを係合させる方向にスライド移動させると、振動や騒音の原因になるほか、スリーブの歯とドグギヤの歯とにダメージを与えかねない。 However, in a dog clutch that does not have a synchro mechanism, so-called gear blocks may occur in which the teeth of the sleeve and the teeth of the dog gear collide, even when the rotation is synchronized. Sliding the sleeve in a direction to engage the sleeve without engaging these teeth causes vibration and noise, and may damage the sleeve teeth and dog gear teeth.
 本件のクラッチ制御装置は、このような課題に鑑み案出されたもので、ギヤブロックによるドグクラッチの損傷を抑制することを目的の一つとする。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。 The clutch control device of the present invention has been devised in view of such problems, and has an object to suppress damage to a dog clutch due to a gear block. The present invention is not limited to this object, and it is an operation and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and it is another object of the present invention to exert an operation and effect that can not be obtained by the prior art. is there.
 (1)ここで開示するクラッチ制御装置は、少なくとも一つの回転電機と同期して回転することで動力が伝達される第一軸と前記第一軸の動力が伝達される第二軸との動力伝達を断接する噛み合いクラッチを備えた車両のクラッチ制御装置であって、前記噛み合いクラッチには、前記第一軸及び前記第二軸の一方に対して同期回転しかつ軸方向へ移動可能に設けられたスリーブと、前記第一軸及び前記第二軸の他方に対して相対回転可能に設けられた被係合ギヤと、が設けられている。 (1) The clutch control device disclosed herein comprises a first shaft to which power is transmitted by rotating in synchronization with at least one rotating electric machine, and a second shaft to which the power of the first shaft is transmitted. A clutch control device for a vehicle including a meshing clutch for connecting and disconnecting a transmission, wherein the meshing clutch is provided so as to be synchronously rotated with respect to one of the first shaft and the second shaft and axially movable. And an engaged gear provided rotatably relative to the other of the first shaft and the second shaft.
 前記クラッチ制御装置は、前記噛み合いクラッチが断状態での前記車両の走行中に、前記スリーブの回転と前記被係合ギヤの回転とを合わせるように前記回転電機を制御する回転制御部と、前記回転制御部による制御中に、前記スリーブを前記被係合ギヤに係合させるよう第一方向に移動させるスリーブ制御部と、前記スリーブの移動量を検出する移動検出部と、前記移動量が予め設定された所定量未満である場合に、前記スリーブと前記被係合ギヤとが噛み合わずに衝突するギヤブロックが生じたと判定する判定部と、を備えている。なお、前記判定部は、前記移動量が前記所定量以上である場合には、前記スリーブと前記ドグ被係合ギヤとが噛み合ったと判定することが好ましい。 The clutch control device controls the rotating electrical machine to match the rotation of the sleeve and the rotation of the engaged gear while the vehicle is traveling with the meshing clutch disconnected. A sleeve control unit that moves the sleeve in a first direction to engage the engaged gear during control by the rotation control unit; a movement detection unit that detects a movement amount of the sleeve; and And a determination unit that determines that a gear block in which the sleeve and the engaged gear collide with each other without meshing is generated when the amount is less than the set predetermined amount. Preferably, the determination unit determines that the sleeve and the dog engaged gear are engaged when the movement amount is equal to or more than the predetermined amount.
 (2)前記スリーブ制御部は、前記判定部により前記ギヤブロックが生じたと判定された場合に、前記スリーブを前記第一方向とは逆の第二方向に移動させたのち、前記スリーブを再び前記第一方向に移動させることが好ましい。
 (3)前記回転制御部は、前記スリーブ制御部により前記スリーブが前記第二方向に移動した場合に、前記スリーブの回転数と前記被係合ギヤの回転数との差が大きくなるよう前記回転電機を制御したのち、再び前記スリーブの回転と前記被係合ギヤの回転とを合わせるように前記回転電機を制御することが好ましい。
(2) The sleeve control unit moves the sleeve in a second direction opposite to the first direction when the determination unit determines that the gear block is generated, and then the sleeve is moved again It is preferable to move in the first direction.
(3) The rotation control unit performs the rotation so that the difference between the number of rotations of the sleeve and the number of rotations of the engaged gear is increased when the sleeve is moved in the second direction by the sleeve control unit. After controlling the electric machine, it is preferable to control the rotating electric machine so that the rotation of the sleeve and the rotation of the engaged gear are matched again.
 (4)前記車両には、アクセル開度を検出するアクセル開度検出部が設けられることが好ましい。この場合、前記回転制御部は、前記アクセル開度が所定開度未満であれば、前記スリーブの回転と前記被係合ギヤの回転とを同期させることで前記合わせる制御を実行することが好ましい。
 (5)前記回転制御部は、前記アクセル開度が前記所定開度以上であれば、前記スリーブの回転数と前記被係合ギヤの回転数との差が所定の回転数範囲内に収まるように前記回転電機を制御することで前記合わせる制御を実行することが好ましい。
(4) It is preferable that the vehicle is provided with an accelerator opening degree detecting unit that detects an accelerator opening degree. In this case, it is preferable that the rotation control unit execute the control to be synchronized by synchronizing the rotation of the sleeve and the rotation of the engaged gear if the accelerator opening degree is smaller than a predetermined opening degree.
(5) The rotation control unit is configured such that the difference between the rotational speed of the sleeve and the rotational speed of the engaged gear falls within a predetermined rotational speed range if the accelerator opening degree is equal to or greater than the predetermined opening degree. Preferably, the control is performed by controlling the rotating electrical machine.
 (6)前記回転制御部は、車速が高いほど前記回転数範囲を広く設定することが好ましい。
 (7)前記クラッチ制御装置は、アクセル開速度を取得する取得部と、アクセル操作に基づいて前記車両の駆動源を制御する駆動制御部と、を備え、前記駆動制御部は、前記スリーブ制御部による制御中に前記アクセル開速度が所定値以上であれば、前記スリーブと前記被係合ギヤとが噛み合うまで前記駆動源の制御を待機することが好ましい。
(6) The rotation control unit preferably sets the rotation speed range wider as the vehicle speed is higher.
(7) The clutch control device includes an acquisition unit that acquires an accelerator opening speed, and a drive control unit that controls a drive source of the vehicle based on an accelerator operation, and the drive control unit is the sleeve control unit. If the accelerator opening speed is equal to or greater than a predetermined value during control according to the above, it is preferable to stand by for control of the drive source until the sleeve and the engaged gear mesh with each other.
 (8)前記車両は、二つの前記回転電機とエンジンとを具備し、一方の前記回転電機の動力を前記車両の駆動輪を駆動する出力軸に伝達する第一動力伝達経路と、前記エンジンの動力を前記出力軸に伝達する第二動力伝達経路と、前記エンジンの動力を他方の前記回転電機に伝達する第三動力伝達経路と、を有するハイブリッド車両であることが好ましい。この場合、前記噛み合いクラッチは、前記第一動力伝達経路及び前記第二動力伝達経路のそれぞれに介装されることが好ましい。
 (9)前記回転制御部により制御される前記回転電機は、前記他方の回転電機であり、前記第二動力伝達経路には、前記噛み合いクラッチとして、互いに独立したハイ側クラッチ及びロー側クラッチが介装され、前記他方の前記回転電機により、前記ハイ側クラッチ及び前記ロー側クラッチを同期させることが好ましい。
(8) The vehicle includes two of the rotating electrical machines and an engine, and a first power transmission path for transmitting the power of one of the rotating electrical machines to an output shaft for driving the drive wheels of the vehicle; The hybrid vehicle is preferably a hybrid vehicle having a second power transmission path for transmitting power to the output shaft and a third power transmission path for transmitting power of the engine to the other rotating electric machine. In this case, preferably, the meshing clutch is interposed in each of the first power transmission path and the second power transmission path.
(9) The rotary electric machine controlled by the rotation control unit is the other rotary electric machine, and a high side clutch and a low side clutch independent of each other are interposed as the meshing clutch in the second power transmission path. It is preferable that the high-side clutch and the low-side clutch be synchronized by the other rotating electric machine.
 開示したクラッチ制御装置によれば、車両の走行中に噛み合いクラッチを断から接に切り替える場合、スリーブの移動量に基づいて、スリーブの歯と被係合ギヤの歯との衝突(いわゆるギヤブロック)を検知できる。このため、これらの歯にダメージが加わることを回避でき、ギヤブロックによる噛み合いクラッチの損傷を抑制できる。 According to the disclosed clutch control device, when the meshing clutch is switched from disconnection to contact while the vehicle is traveling, collision between the teeth of the sleeve and the teeth of the engaged gear (so-called gear block) based on the movement amount of the sleeve Can detect Therefore, damage to these teeth can be avoided, and damage to the meshing clutch due to the gear block can be suppressed.
実施形態に係るクラッチ制御装置を搭載した車両の内部構成を例示する上面図である。It is a top view which illustrates an internal configuration of a vehicle carrying a clutch control device concerning an embodiment. 図1のクラッチ制御装置の制御対象であるトランスアクスルを備えたパワートレインの模式的な側面図である。It is a typical side view of a powertrain provided with the transaxle which is a control object of the clutch control apparatus of FIG. 図2のトランスアクスルを備えたパワートレインを示すスケルトン図に、図1のクラッチ制御装置のブロック図を併せて示した模式図である。FIG. 3 is a schematic view showing a block diagram of the clutch control device of FIG. 1 together with a skeleton diagram showing a powertrain provided with the transaxle of FIG. 2; 図1の制御装置で実施されるクラッチ係合制御の内容を説明するための模式図であり、(a)はニュートラル状態、(b)は係合状態、(c)はギヤブロック状態、(d)はギヤブロックを回避する状態を示す。It is a schematic diagram for demonstrating the content of the clutch engagement control implemented with the control apparatus of FIG. 1, (a) is a neutral state, (b) is an engagement state, (c) is a gear block state, (d) Shows the state of avoiding the gear block. 図1の制御装置で実施されるクラッチ係合制御のフローチャート例である。It is a flowchart example of the clutch engagement control implemented by the control apparatus of FIG.
 図面を参照して、実施形態としてのクラッチ制御装置について説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。 A clutch control device as an embodiment will be described with reference to the drawings. The embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques that are not specified in the following embodiments. Each structure of this embodiment can be variously modified and implemented in the range which does not deviate from those meaning. Also, they can be selected as needed or can be combined as appropriate.
[1.全体構成]
 本実施形態のクラッチ制御装置5(以下「制御装置5」という)は、図1に示す車両10に適用され、この車両10に搭載されるトランスアクスル1を制御する。車両10は、エンジン2と走行用のモータ3(電動機,一方の回転電機)と発電用のジェネレータ4(発電機,他方の回転電機)とを装備したハイブリッド車両である。ジェネレータ4はエンジン2に連結され、モータ3の作動状態とは独立して作動可能である。また、車両10にはEVモード,シリーズモード,パラレルモードの三種類の走行モードが用意される。これらの走行モードは、制御装置5によって、車両状態や走行状態,運転者の要求出力等に応じて択一的に選択され、その種類に応じてエンジン2,モータ3,ジェネレータ4が使い分けられる。
[1. overall structure]
The clutch control device 5 (hereinafter referred to as the “control device 5”) of the present embodiment is applied to the vehicle 10 shown in FIG. 1 and controls the transaxle 1 mounted on the vehicle 10. The vehicle 10 is a hybrid vehicle equipped with an engine 2, a traveling motor 3 (motor, one rotating electric machine), and a generator 4 for power generation (generator, the other rotating electric machine). The generator 4 is connected to the engine 2 and can be operated independently of the operating state of the motor 3. Further, the vehicle 10 is provided with three types of travel modes: EV mode, series mode, and parallel mode. These traveling modes are alternatively selected by the control device 5 in accordance with the vehicle state, the traveling state, the driver's request output and the like, and the engine 2, the motor 3 and the generator 4 are properly used in accordance with the type.
 EVモードは、エンジン2及びジェネレータ4を停止させたまま、図示しない駆動用のバッテリの充電電力を用いてモータ3のみで車両10を駆動する走行モードである。EVモードは、走行負荷,車速が低い場合やバッテリの充電レベルが高い場合に選択される。シリーズモードは、エンジン2でジェネレータ4を駆動して発電しつつ、その電力を利用してモータ3で車両10を駆動する走行モードである。シリーズモードは、走行負荷,車速が中程度の場合やバッテリの充電レベルが低い場合に選択される。パラレルモードは、おもにエンジン2で車両10を駆動し、必要に応じてモータ3で車両10の駆動をアシストする走行モードであり、走行負荷,車速が高い場合に選択される。 The EV mode is a traveling mode in which the vehicle 10 is driven only by the motor 3 using charging power of a driving battery (not shown) while the engine 2 and the generator 4 are stopped. The EV mode is selected when the traveling load and the vehicle speed are low or when the charge level of the battery is high. The series mode is a traveling mode in which the generator 2 is driven by the engine 2 to generate electric power, and the electric power is used to drive the vehicle 10 by the motor 3. The series mode is selected when the traveling load and the vehicle speed are medium or when the charge level of the battery is low. The parallel mode is mainly a driving mode in which the vehicle 2 is driven by the engine 2 and the driving of the vehicle 10 is assisted by the motor 3 as needed. The parallel mode is selected when the running load and the vehicle speed are high.
 駆動輪8には、トランスアクスル1を介してエンジン2及びモータ3が並列に接続され、エンジン2及びモータ3のそれぞれの動力が互いに異なる動力伝達経路から個別に伝達される。すなわち、エンジン2及びモータ3のそれぞれは、車両10の出力軸12を駆動する駆動源である。また、エンジン2には、トランスアクスル1を介してジェネレータ4及び駆動輪8が並列に接続され、エンジン2の動力が、駆動輪8に加えてジェネレータ4にも伝達される。 The engine 2 and the motor 3 are connected in parallel to the drive wheel 8 via the transaxle 1, and respective powers of the engine 2 and the motor 3 are individually transmitted from different power transmission paths. That is, each of the engine 2 and the motor 3 is a drive source that drives the output shaft 12 of the vehicle 10. Further, the generator 4 and the drive wheel 8 are connected in parallel to the engine 2 via the transaxle 1, and the power of the engine 2 is transmitted to the generator 4 in addition to the drive wheel 8.
 トランスアクスル1は、デファレンシャルギヤ18(差動装置、以下「デフ18」と呼ぶ)を含むファイナルドライブ(終減速機)とトランスミッション(減速機)とを一体に形成した動力伝達装置であり、駆動源と被駆動装置との間の動力伝達を担う複数の機構を内蔵する。本実施形態のトランスアクスル1は、ハイロー切替(高速段,低速段の切替)が可能に構成されており、パラレルモードでの走行時において、制御装置5によって走行状態や要求出力等に応じてハイギヤ段とローギヤ段とが切り替えられる。 The transaxle 1 is a power transmission device in which a final drive (final reduction gear) including a differential gear 18 (differential gear, hereinafter referred to as "differential gear 18") and a transmission (reduction gear) are integrally formed. And a plurality of mechanisms for transmitting power between the drive and the driven device. The transaxle 1 of the present embodiment is configured to be capable of high / low switching (switching between high speed and low speed), and the high gear according to the traveling state, required output, etc. by the control device 5 when traveling in parallel mode. The gear and the low gear are switched.
 エンジン2は、ガソリンや軽油を燃料とする内燃機関(ガソリンエンジン,ディーゼルエンジン)である。このエンジン2は、クランクシャフト2a(回転軸)の向きが車両10の車幅方向に一致するように横向きに配置されたいわゆる横置きエンジンであり、トランスアクスル1の右側面に対して固定される。クランクシャフト2aは、駆動輪8のドライブシャフト9に対して平行に配置される。エンジン2の作動状態は、制御装置5で制御される。 The engine 2 is an internal combustion engine (gasoline engine, diesel engine) fueled by gasoline or light oil. The engine 2 is a so-called horizontal engine disposed sideways so that the direction of the crankshaft 2a (rotational axis) coincides with the vehicle width direction of the vehicle 10, and is fixed to the right side of the transaxle 1 . The crankshaft 2 a is disposed parallel to the drive shaft 9 of the drive wheel 8. The operating state of the engine 2 is controlled by the controller 5.
 本実施形態のモータ3及びジェネレータ4はいずれも、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機(モータ・ジェネレータ)である。モータ3は、おもに電動機として機能して車両10を駆動し、回生時には発電機として機能する。ジェネレータ4は、エンジン2を始動させる際に電動機(スターター)として機能し、エンジン2の作動時にはエンジン動力で発電を実施する。モータ3及びジェネレータ4の各周囲(又は各内部)には、直流電流と交流電流とを変換するインバータ(図示略)が設けられる。モータ3及びジェネレータ4の各回転速度は、インバータを制御することで制御される。なお、モータ3,ジェネレータ4,各インバータの作動状態は、制御装置5で制御される。 The motor 3 and the generator 4 of the present embodiment are both a motor generator (motor generator) having a function as an electric motor and a function as a generator. The motor 3 mainly functions as an electric motor to drive the vehicle 10, and functions as a generator during regeneration. The generator 4 functions as a motor (starter) when starting the engine 2 and performs power generation with engine power when the engine 2 is operating. An inverter (not shown) that converts a direct current and an alternating current is provided around (or inside) each of the motor 3 and the generator 4. The rotational speeds of the motor 3 and the generator 4 are controlled by controlling an inverter. The operating states of the motor 3, the generator 4 and the respective inverters are controlled by the control device 5.
 本実施形態のモータ3は、その外形が回転軸3aを中心軸とした円筒状に形成され、その底面をトランスアクスル1側に向けた姿勢でトランスアクスル1の左側面に対して固定される。また、本実施形態のジェネレータ4は、その外形が回転軸4aを中心軸とした円筒状に形成され、モータ3と同様に、その底面をトランスアクスル1側に向けた姿勢でトランスアクスル1の左側面に対して固定される。なお、図2はパワートレイン7を左側から見た側面図である。パワートレイン7は、エンジン2,モータ3,ジェネレータ4,トランスアクスル1を含んで構成される。なお、図2ではエンジン2は省略している。 The motor 3 according to the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 3a, and is fixed to the left side surface of the transaxle 1 with its bottom surface facing the transaxle 1 side. Further, the generator 4 of the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 4a, and, like the motor 3, the left side of the transaxle 1 is oriented with its bottom surface facing the transaxle 1 side. It is fixed to the face. FIG. 2 is a side view of the power train 7 as viewed from the left side. The power train 7 includes an engine 2, a motor 3, a generator 4, and a transaxle 1. The engine 2 is omitted in FIG.
 車両10には、車両10に搭載される各種装置を統合制御する制御装置5が設けられる。また、車両10には、アクセルペダルの踏み込み操作量(アクセル開度)を検出するアクセル開度センサ41(アクセル開度検出部)と、車輪の回転数を検出する車輪速センサ42と、モータ3の回転数を検出するモータ回転数センサ43と、ジェネレータ4の回転数を検出するジェネレータ回転数センサ44とが設けられる。各センサ41~44で検出された情報は、制御装置5に伝達される。 The vehicle 10 is provided with a control device 5 that integrally controls various devices mounted on the vehicle 10. The vehicle 10 also includes an accelerator opening sensor 41 (accelerator opening detection unit) that detects the amount of depression of the accelerator pedal (accelerator opening), a wheel speed sensor 42 that detects the number of rotations of the wheel, and a motor 3. A motor rotational speed sensor 43 for detecting the rotational speed of the motor 4 and a generator rotational speed sensor 44 for detecting the rotational speed of the generator 4 are provided. The information detected by each of the sensors 41 to 44 is transmitted to the control device 5.
 制御装置5は、例えばマイクロプロセッサやROM,RAM等を集積したLSIデバイスや組み込み電子デバイスとして構成された電子制御装置であり、車両10に搭載される各種装置を統合制御する。本実施形態の制御装置5は、運転者の要求出力等に応じて走行モードを選択し、選択した走行モードに応じて各種機器(例えばエンジン2やモータ3)を制御するとともにトランスアクスル1内のクラッチ20,30の断接状態を制御する。この制御については後述する。 The control device 5 is, for example, an electronic control device configured as an LSI device in which a microprocessor, a ROM, a RAM, and the like are integrated and a built-in electronic device, and integrally controls various devices mounted on the vehicle 10. The control device 5 of this embodiment selects the traveling mode in accordance with the driver's request output, etc., and controls various devices (for example, the engine 2 and the motor 3) in accordance with the selected traveling mode. It controls the connection and disconnection of the clutches 20 and 30. This control will be described later.
[2.トランスアクスル]
 図3は、本実施形態のトランスアクスル1を備えたパワートレイン7のスケルトン図である。図2及び図3に示すように、トランスアクスル1には、互いに平行に配列された六つの軸11~16が設けられる。以下、クランクシャフト2aと同軸上に接続される回転軸を入力軸11と呼ぶ。
[2. Transaxle]
FIG. 3 is a skeleton diagram of a powertrain 7 provided with the transaxle 1 of the present embodiment. As shown in FIGS. 2 and 3, the transaxle 1 is provided with six axes 11 to 16 arranged parallel to one another. Hereinafter, a rotary shaft coaxially connected with the crankshaft 2 a will be referred to as an input shaft 11.
 同様に、ドライブシャフト9,モータ3の回転軸3a,ジェネレータ4の回転軸4aのそれぞれと同軸上に接続される回転軸を、出力軸12,モータ軸13,ジェネレータ軸14と呼ぶ。また、入力軸11と出力軸12との間の動力伝達経路上に配置された回転軸を第一カウンタ軸15と呼び、モータ軸13と出力軸12との間の動力伝達経路上に配置された回転軸を第二カウンタ軸16と呼ぶ。六つの軸11~16はいずれも、両端部が図示しない軸受を介してケーシング1Cに軸支される。なお、入力軸11,出力軸12,モータ軸13,ジェネレータ軸14のそれぞれの軸上に位置するケーシング1Cの側面には開口が形成され、ケーシング1Cの外側に位置するクランクシャフト2a,ドライブシャフト9,回転軸3a,回転軸4aと接続される。 Similarly, rotation shafts coaxially connected with the drive shaft 9, the rotation shaft 3 a of the motor 3, and the rotation shaft 4 a of the generator 4 are referred to as an output shaft 12, a motor shaft 13, and a generator shaft 14. In addition, a rotary shaft disposed on the power transmission path between the input shaft 11 and the output shaft 12 is referred to as a first countershaft 15, and is disposed on the power transmission path between the motor shaft 13 and the output shaft 12 The rotating shaft is called a second counter shaft 16. Each of the six shafts 11 to 16 is pivotally supported by the casing 1C via bearings (not shown) at both ends. An opening is formed in the side surface of the casing 1C located on each of the input shaft 11, the output shaft 12, the motor shaft 13 and the generator shaft 14, and the crankshaft 2a located outside the casing 1C and the drive shaft 9 , Rotary shaft 3a and rotary shaft 4a.
 トランスアクスル1の内部には、三つの動力伝達経路が形成される。具体的には、図2中に二点鎖線で示すように、モータ3からモータ軸13を介して出力軸12に至る動力伝達経路(以下「第一経路51」と呼ぶ)と、エンジン2から入力軸11を介して出力軸12に至る動力伝達経路(以下「第二経路52」と呼ぶ)と、エンジン2から入力軸11を介してジェネレータ軸14に至る動力伝達経路(以下「第三経路53」と呼ぶ)とが形成される。ここで、第一経路51及び第二経路52は駆動用動力伝達経路であり、第三経路53は発電用動力伝達経路である。 Inside the transaxle 1, three power transmission paths are formed. Specifically, as shown by a two-dot chain line in FIG. 2, a power transmission path (hereinafter referred to as “first path 51”) from the motor 3 to the output shaft 12 via the motor shaft 13, and from the engine 2 A power transmission path (hereinafter referred to as “second path 52”) leading to the output shaft 12 through the input shaft 11 and a power transmission path (hereinafter referred to as “third path”) leading from the engine 2 to the generator shaft 14 through the input shaft 11 53) are formed. Here, the first path 51 and the second path 52 are drive power transmission paths, and the third path 53 is a power generation power transmission path.
 第一経路51(第一動力伝達経路)は、モータ3から駆動輪8への動力伝達に係る経路であり、モータ3の動力伝達を担うものである。第一経路51上には、モータ3と同期して回転することで動力が伝達されるモータ軸13(第一軸)及びモータ軸13の動力が伝達される第二カウンタ軸16(第二軸)が設けられ、第一経路51の中途にはその動力伝達を断接する後述の第一ドグクラッチ20(噛み合いクラッチ)が介装される。 The first path 51 (first power transmission path) is a path related to power transmission from the motor 3 to the drive wheel 8 and is responsible for power transmission of the motor 3. A motor shaft 13 (first shaft) to which power is transmitted by rotating in synchronization with the motor 3 and a second counter shaft 16 (second shaft) to which power of the motor shaft 13 is transmitted on the first path 51 The first dog clutch 20 (meshing clutch) described later is connected to the middle of the first path 51 to connect and disconnect the power transmission.
 第二経路52(第二動力伝達経路)は、エンジン2から駆動輪8への動力伝達に係る経路であり、エンジン2の作動時における動力の伝達を担うものである。第二経路52上には、ジェネレータ4と同期して回転することで動力が伝達される入力軸11(第一軸)及び入力軸11の動力が伝達される第一カウンタ軸15(第二軸)が設けられ、第二経路52の中途にはその動力伝達の断接とハイロー切替とを実施する後述の第二ドグクラッチ30(噛み合いクラッチ)が介装される。 The second path 52 (second power transmission path) is a path relating to power transmission from the engine 2 to the drive wheels 8 and is responsible for power transmission at the time of operation of the engine 2. An input shaft 11 (first shaft) to which power is transmitted by rotating in synchronization with the generator 4 and a first counter shaft 15 (second shaft) to which power of the input shaft 11 is transmitted on the second path 52 And a second dog clutch 30 (meshing clutch) described later that performs connection / disconnection of the power transmission and high / low switching in the middle of the second path 52.
 第三経路53(第三動力伝達経路)は、エンジン2からジェネレータ4への動力伝達に係る経路であり、エンジン始動時の動力伝達及びエンジン2による発電時の動力伝達を担うものである。 The third path 53 (third power transmission path) is a path related to power transmission from the engine 2 to the generator 4 and is responsible for power transmission at engine start and power transmission at the time of power generation by the engine 2.
 次に、図3を用いてトランスアクスル1の構成を詳述する。なお、以下の説明において、「固定ギヤ」とは、軸と一体に設けられ、軸に対して同期回転する(相対回転不能な)歯車を意味する。また、「遊転ギヤ」とは、軸に対して相対回転可能に枢支された歯車を意味する。 Next, the configuration of the transaxle 1 will be described in detail with reference to FIG. In the following description, the term "fixed gear" means a gear provided integrally with the shaft and synchronously rotating (non-rotatable) with respect to the shaft. Also, "free running gear" means a gear that is rotatably supported relative to the shaft.
 入力軸11には、エンジン2に近い側から順に、固定ギヤ11aと、ハイ側の第二ドグクラッチ30(以下、「ハイ側ドグクラッチ30H」と呼ぶ)と、遊転ギヤ11Hと、固定ギヤ11Lとが設けられる。また、第一カウンタ軸15には、エンジン2の近い側から順に、固定ギヤ15aと、固定ギヤ15Hと、遊転ギヤ15Lと、ロー側の第二ドグクラッチ30(以下、「ロー側ドグクラッチ30L」と呼ぶ)とが設けられる。すなわち、第二経路52には、第二ドグクラッチ30として、互いに独立したハイ側ドグクラッチ30H及びロー側ドグクラッチ30Lが介装される。 The input shaft 11 includes, in order from the side closer to the engine 2, the fixed gear 11a, the second dog clutch 30 on the high side (hereinafter referred to as "high side dog clutch 30H"), the idle gear 11H, and the fixed gear 11L. Is provided. The first countershaft 15 includes, in order from the side closer to the engine 2, the fixed gear 15a, the fixed gear 15H, the idle gear 15L, and the low-side second dog clutch 30 (hereinafter referred to as "low-side dog clutch 30L" And are provided. That is, the high-side dog clutch 30H and the low-side dog clutch 30L which are independent of each other are interposed in the second path 52 as the second dog clutch 30.
 入力軸11の固定ギヤ11aは、ジェネレータ軸14に設けられた固定ギヤ14aと常時噛合している。つまり、入力軸11とジェネレータ軸14とは、二つの固定ギヤ11a,14aを介して連結されており、エンジン2とジェネレータ4との間で動力伝達可能とされる。また、第一カウンタ軸15の固定ギヤ15aは、出力軸12に設けられたデフ18のリングギヤ18aと常時噛合している。 The fixed gear 11 a of the input shaft 11 always meshes with the fixed gear 14 a provided on the generator shaft 14. That is, the input shaft 11 and the generator shaft 14 are connected via the two fixed gears 11 a and 14 a, and power can be transmitted between the engine 2 and the generator 4. The fixed gear 15 a of the first countershaft 15 is always meshed with the ring gear 18 a of the differential 18 provided on the output shaft 12.
 入力軸11に設けられた遊転ギヤ11H及び固定ギヤ11Lは互いに異なる歯数を持ち、第一カウンタ軸15に設けられた固定ギヤ15H及び遊転ギヤ15Lのそれぞれと常時噛合している。なお、第一カウンタ軸15の固定ギヤ15H及び遊転ギヤ15Lも互いに異なる歯数を持つ。本実施形態では、遊転ギヤ11Hの方が固定ギヤ11Lよりも歯数が多い。この遊転ギヤ11Hは、歯数が少ない固定ギヤ15Hと噛み合ってハイギヤ段を形成する。反対に、歯数が少ない固定ギヤ11Lは、歯数が多い遊転ギヤ15Lと噛み合ってローギヤ段を形成する。 The idler gear 11H and the fixed gear 11L provided on the input shaft 11 have different numbers of teeth, and are constantly meshed with the stationary gear 15H and the idler gear 15L provided on the first countershaft 15. The fixed gear 15H and the idle gear 15L of the first countershaft 15 also have different numbers of teeth. In the present embodiment, the free rotation gear 11H has more teeth than the fixed gear 11L. The idle gear 11H meshes with the fixed gear 15H having a small number of teeth to form a high gear. On the other hand, the fixed gear 11L having a small number of teeth meshes with the idle gear 15L having a large number of teeth to form a low gear.
 ハイ側ドグクラッチ30Hと同軸上に隣接配置された遊転ギヤ11Hは、第一カウンタ軸15の固定ギヤ15Hと噛み合う歯面部の右側に一体で設けられたドグギヤ11d(被係合ギヤ)を有する。また、ロー側ドグクラッチ30Lと同軸上に隣接配置された遊転ギヤ15Lは、入力軸11の固定ギヤ11Lと噛み合う歯面部の左側に一体で設けられたドグギヤ15d(被係合ギヤ)を有する。ドグギヤ11dの先端部(径方向外側の端部)には、ドグ歯11tが設けられる。また、ドグギヤ15dの先端部にも、ドグ歯11tと同様のドグ歯(図示略)が設けられる。 The idle gear 11H coaxially disposed adjacent to the high side dog clutch 30H has a dog gear 11d (engaged gear) integrally provided on the right side of the tooth surface portion meshing with the fixed gear 15H of the first countershaft 15. The idle gear 15L coaxially disposed adjacent to the low-side dog clutch 30L has a dog gear 15d (engaged gear) integrally provided on the left side of the tooth surface portion meshing with the fixed gear 11L of the input shaft 11. A dog tooth 11t is provided at a tip end (a radial outer end) of the dog gear 11d. In addition, a dog tooth (not shown) similar to the dog tooth 11t is provided at the tip of the dog gear 15d.
 ハイ側ドグクラッチ30H及びロー側ドグクラッチ30Lはいずれも第二経路52上に設けられ、エンジン2の動力の断接状態を制御するとともにハイギヤ段とローギヤ段とを切り替えるものであり、シンクロ機構を持たない噛み合いクラッチである。本実施形態では、走行モードがパラレルモードである場合に、ハイ側ドグクラッチ30H及びロー側ドグクラッチ30Lの一方が係合されて他方が切断される。なお、どちらのクラッチ30H,30Lが係合するかは、車両10の走行状態や要求出力等に基づいて決定される。 The high-side dog clutch 30H and the low-side dog clutch 30L are both provided on the second path 52 to control the connection / disconnection state of the power of the engine 2 and to switch between the high gear and the low gear and do not have a synchro mechanism. It is a meshing clutch. In the present embodiment, when the traveling mode is the parallel mode, one of the high-side dog clutch 30H and the low-side dog clutch 30L is engaged and the other is disconnected. Note that which clutch 30H, 30L is engaged is determined based on the traveling state of the vehicle 10, the required output, and the like.
 ハイ側ドグクラッチ30Hは、入力軸11に固定されたハブ31Hと、ハブ31H(入力軸11)に対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブ32Hとを有する。スリーブ32Hは、図示しないアクチュエータ(例えばサーボモータ)が制御装置5によって制御されることで軸方向にスライド移動する。スリーブ32Hの近傍には、その移動量(ストローク量)を検出するストロークセンサ45a(移動検出部)が設けられる。また、スリーブ32Hの径方向内側には、ドグギヤ11dのドグ歯11tと噛合するスプライン歯32tが設けられる。 The high-side dog clutch 30H has a hub 31H fixed to the input shaft 11, and an annular sleeve 32H which can not rotate relative to the hub 31H (input shaft 11) and is axially slidably coupled. . The sleeve 32 </ b> H slides in the axial direction when an actuator (for example, a servomotor, not shown) is controlled by the controller 5. In the vicinity of the sleeve 32H, a stroke sensor 45a (movement detection unit) for detecting the movement amount (stroke amount) is provided. Further, spline teeth 32t that mesh with the dog teeth 11t of the dog gear 11d are provided on the inner side in the radial direction of the sleeve 32H.
 スプライン歯32tとドグ歯11tとが噛み合うことで、スリーブ32Hとドグギヤ11dとが噛合(係合)する。この状態では、エンジン2からの駆動力がハイ側のギヤ対11H,15Hを通じて出力軸12へと伝達される。反対に、スリーブ32Hのスプライン歯32tとドグギヤ11dのドグ歯11tとが離隔している場合には遊転ギヤ11Hが空転状態となり、第二経路52におけるハイ側の動力伝達が遮断された状態となる。 As the spline teeth 32t and the dog teeth 11t mesh with each other, the sleeve 32H and the dog gear 11d mesh (engage) with each other. In this state, the driving force from the engine 2 is transmitted to the output shaft 12 through the high gear pairs 11H and 15H. On the other hand, when the spline teeth 32t of the sleeve 32H and the dog teeth 11t of the dog gear 11d are separated, the idle gear 11H is idled and the high side power transmission in the second path 52 is interrupted. Become.
 同様に、ロー側ドグクラッチ30Lは、第一カウンタ軸15に固定されたハブ31Lと、ハブ31L(第一カウンタ軸15)に対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブ32Lとを有する。スリーブ32Lも、図示しないアクチュエータが制御装置5によって制御されることで軸方向にスライド移動するものであり、ストロークセンサ45b(移動検出部)によってその移動量(ストローク量)が検出される。スリーブ32Lの径方向内側には、ドグギヤ15dのドグ歯と噛合するスプライン歯(図示略)が設けられる。スプライン歯とドグ歯とが噛み合うことで、スリーブ32Lとドグギヤ15dとが噛合(係合)する。この状態では、エンジン2からの駆動力がロー側のギヤ対11L,15Lを通じて出力軸12へと伝達される。反対に、スリーブ32Lのスプライン歯とドグギヤ15dのドグ歯とが離隔している場合には遊転ギヤ15Lが空転状態となり、第二経路52におけるロー側の動力伝達が遮断された状態となる。 Similarly, the low-side dog clutch 30L is non-relatively rotatable with respect to the hub 31L fixed to the first counter shaft 15, and the hub 31L (first counter shaft 15), and is axially slidably coupled. And an annular sleeve 32L. The sleeve 32 </ b> L also slides in the axial direction when the actuator (not shown) is controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45 b (movement detection unit). On the radially inner side of the sleeve 32L, spline teeth (not shown) that mesh with the dog teeth of the dog gear 15d are provided. As the spline teeth and the dog teeth mesh, the sleeve 32L and the dog gear 15d mesh (engage) with each other. In this state, the driving force from the engine 2 is transmitted to the output shaft 12 through the low gear pairs 11L and 15L. On the contrary, when the spline teeth of the sleeve 32L and the dog teeth of the dog gear 15d are separated from each other, the idle gear 15L is idled, and the power transmission on the low side in the second path 52 is interrupted.
 第二カウンタ軸16には、エンジン2に近い側から順に、第一ドグクラッチ20と、遊転ギヤ16Mと、パーキングギヤ19と、固定ギヤ16aとが設けられる。固定ギヤ16aは、デフ18のリングギヤ18aと常時噛合している。パーキングギヤ19は、パーキングロック装置を構成する要素であり、運転者によりPレンジが選択されると、図示しないパーキングスプラグと係合して、第二カウンタ軸16(すなわち出力軸12)の回転を禁止する。 The second countershaft 16 is provided with a first dog clutch 20, an idle gear 16M, a parking gear 19, and a fixed gear 16a in order from the side closer to the engine 2. The fixed gear 16 a is in constant mesh with the ring gear 18 a of the differential 18. The parking gear 19 is an element constituting the parking lock device, and when the P range is selected by the driver, the parking gear 19 engages with a parking plug (not shown) to rotate the second countershaft 16 (that is, the output shaft 12). Ban.
 遊転ギヤ16Mは、モータ軸13に設けられた固定ギヤ13aよりも歯数が多く、この固定ギヤ13aと常時噛合している。遊転ギヤ16Mは、固定ギヤ13aと噛み合う歯面部の右側に一体で設けられたドグギヤ16dを有する。なお、このドグギヤ16dは、上述したドグギヤ11dのドグ歯11tと同様のドグ歯(図示略)をその先端部に有する。 The idle gear 16M has more teeth than the fixed gear 13a provided on the motor shaft 13, and is always meshed with the fixed gear 13a. The idle gear 16M has a dog gear 16d integrally provided on the right side of the tooth surface portion that meshes with the fixed gear 13a. The dog gear 16d has a dog tooth (not shown) similar to the dog tooth 11t of the above-described dog gear 11d at its tip.
 第一ドグクラッチ20は、第二カウンタ軸16に固定されたハブ21と、ハブ21(第二カウンタ軸16)に対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブ22とを有する。スリーブ22も、図示しないアクチュエータが制御装置5によって制御されることで軸方向にスライド移動するものであり、ストロークセンサ45c(移動検出部)によってその移動量(ストローク量)が検出される。スリーブ22の径方向内側には、上述したスリーブ32Hのスプライン歯32tと同様のスプライン歯(図示略)が設けられる。スリーブ22のスプライン歯と遊転ギヤ16Mのドグギヤ16dとが噛み合うことで、スリーブ22とドグギヤ16dとが噛合(係合)する。 The first dog clutch 20 has an annular sleeve fixed to the second countershaft 16 and an annular sleeve which can not rotate relative to the hub 21 (second countershaft 16) and is axially slidably coupled. And 22. The sleeve 22 also slides in the axial direction by an actuator (not shown) being controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45c (movement detection unit). On the radially inner side of the sleeve 22, spline teeth (not shown) similar to the spline teeth 32t of the sleeve 32H described above are provided. As the spline teeth of the sleeve 22 and the dog gear 16 d of the free rotation gear 16 M mesh with each other, the sleeve 22 and the dog gear 16 d mesh (engage) with each other.
 本実施形態では、走行モードがパラレルモードであってモータ3によるアシストが不要な場合に、スリーブ22のスプライン歯と遊転ギヤ16Mのドグギヤ16dとが離隔され、遊転ギヤ16Mが空転状態となり、第一経路51の動力伝達が遮断された状態となる。反対に、走行モードがEVモード又はシリーズモードである場合、又はパラレルモードであってモータアシストが必要な場合には、スリーブ22とドグギヤ16dとが噛合(係合)され、モータ3からの駆動力が出力軸12へと伝達される。本実施形態では、モータ3の作動時に(オン状態で)スリーブ22がドグギヤ16dと係合し、モータ3の停止時に(オフ状態で)スリーブ22がニュートラル位置に制御される。なお、ここでいう「ニュートラル位置」とは、スリーブがドグギヤから離隔した位置を意味し、例えば、スリーブがアクチュエータによって移動させられる際に基準となる位置(0点位置)を含む所定範囲である。 In this embodiment, when the traveling mode is the parallel mode and the assist by the motor 3 is unnecessary, the spline teeth of the sleeve 22 and the dog gear 16d of the idle gear 16M are separated, and the idle gear 16M is idle. The power transmission of the first path 51 is cut off. On the other hand, when the traveling mode is the EV mode or the series mode, or when the parallel mode requires motor assist, the sleeve 22 and the dog gear 16d are engaged (engaged), and the driving force from the motor 3 Is transmitted to the output shaft 12. In the present embodiment, the sleeve 22 engages with the dog gear 16d when the motor 3 is operating (on), and the sleeve 22 is controlled to the neutral position when the motor 3 is stopped (off). Here, the "neutral position" means a position at which the sleeve is separated from the dog gear, and is, for example, a predetermined range including a position (0 point position) which becomes a reference when the sleeve is moved by the actuator.
[3.制御構成]
 上述したトランスアクスル1では、選択されている走行モードに応じて、三つのドグクラッチ20,30H,30Lの断接状態が制御される。上記した通り、本実施形態では、走行モードの選択、ドグクラッチ20,30H,30Lの断接状態、エンジン2やモータ3等の作動状態を、すべて制御装置5が制御する。以下、これらの制御のうち、ドグクラッチ20,30H,30Lを係合させるときの制御(以下「クラッチ係合制御」と呼ぶ)について詳述する。
[3. Control configuration]
In the transaxle 1 described above, the connection / disconnection state of the three dog clutches 20, 30H, 30L is controlled in accordance with the selected travel mode. As described above, in the present embodiment, the control device 5 controls the selection of the traveling mode, the connection / disconnection states of the dog clutches 20, 30H, and 30L, and the operation states of the engine 2, the motor 3 and the like. Hereinafter, among these controls, control for engaging the dog clutches 20, 30H, and 30L (hereinafter, referred to as "clutch engagement control") will be described in detail.
 クラッチ係合制御は、車両10の走行中に、三つのドグクラッチ20,30H,30Lのうち少なくとも一つに対して実施される制御である。本実施形態では、全てのドグクラッチ20,30H,30Lに対して同様の制御が実施されるため、以下の説明では、図4(a)~(d)に示すように、ハイ側ドグクラッチ30Hを例に挙げる。ハイ側ドグクラッチ30Hが切断されている場合には、図4(a)に示すように、スリーブ32Hはニュートラル位置にいる状態(ニュートラル状態)とされる。 The clutch engagement control is control that is performed on at least one of the three dog clutches 20, 30H, and 30L while the vehicle 10 is traveling. In the present embodiment, the same control is performed on all the dog clutches 20, 30H, and 30L. Therefore, in the following description, as shown in FIGS. 4A to 4D, the high-side dog clutch 30H is exemplified. Listed. When the high side dog clutch 30H is disconnected, as shown in FIG. 4A, the sleeve 32H is in the neutral position (neutral state).
 制御装置5には、クラッチ係合制御を実施するための要素として、回転制御部5A,スリーブ制御部5B,判定部5C,取得部5Dおよび駆動制御部5Eが設けられる。これらの要素は、制御装置5で実行されるプログラムの一部の機能を示すものであり、ソフトウェアで実現されるものとする。ただし、各機能の一部又は全部をハードウェア(電子回路)で実現してもよく、あるいはソフトウェアとハードウェアとを併用して実現してもよい。 The control device 5 is provided with a rotation control unit 5A, a sleeve control unit 5B, a determination unit 5C, an acquisition unit 5D, and a drive control unit 5E as elements for performing clutch engagement control. These elements indicate some functions of the program executed by the control device 5, and are realized by software. However, part or all of each function may be realized by hardware (electronic circuit) or may be realized by using software and hardware in combination.
 回転制御部5Aは、車両10の走行中に、ハイ側ドグクラッチ30Hを係合する必要があれば、スリーブ32Hの回転とドグギヤ11dの回転とを合わせるようにジェネレータ4を制御する。なお、ここでいう「合わせる」とは、完全な一致(すなわち同期)だけでなく、互いの回転を近づけて所定の回転数範囲ΔNp内に収めることを意味する。本実施形態の回転制御部5Aは、アクセル開度センサ41で検出されたアクセル開度APに応じて、互いの回転を同期させるか、あるいは回転数範囲ΔNp内に収めるか(回転数偏差を所定値以下にするか)を決定する。 If it is necessary to engage the high-side dog clutch 30H while the vehicle 10 is traveling, the rotation control unit 5A controls the generator 4 to match the rotation of the sleeve 32H with the rotation of the dog gear 11d. Here, “combine” means not only perfect match (ie, synchronization) but also bringing the rotations of the two into close proximity to each other within a predetermined rotation speed range ΔNp. The rotation control unit 5A according to the present embodiment synchronizes the rotations of each other according to the accelerator opening degree AP detected by the accelerator opening degree sensor 41, or does the rotation control unit 5A fall within the rotational speed range ΔNp (the rotational speed deviation is predetermined Determine if it is less than or equal to the value.
 具体的には、制御装置5は、アクセル開度APが所定開度APp未満の場合には、スリーブ32Hの回転とドグギヤ11dの回転とを同期させる。これにより、要求出力が小さい場合には静かなクラッチ係合が実現される。一方、制御装置5は、アクセル開度APが所定開度APp以上の場合には、スリーブ32Hの回転数(以下、「スリーブ回転数Ns」という)とドグギヤ11dの回転数(以下「ドグギヤ回転数Nd」という)との差ΔN(ΔN=Ns-Nd)を所定の回転数範囲ΔNp内に収める。これにより、要求出力が大きい場合には速やかなクラッチ係合が実現される。 Specifically, when the accelerator opening AP is less than the predetermined opening APp, the control device 5 synchronizes the rotation of the sleeve 32H with the rotation of the dog gear 11d. This achieves quiet clutch engagement when the required output is small. On the other hand, when the accelerator opening AP is equal to or greater than the predetermined opening APp, the controller 5 controls the rotational speed of the sleeve 32H (hereinafter referred to as "sleeve rotational speed Ns") and the rotational speed of the dog gear 11d (hereinafter referred to as "dog gear rotational speed The difference .DELTA.N (.DELTA.N = Ns-Nd) with Nd ") is contained within a predetermined rotational speed range .DELTA.Np. Thereby, quick clutch engagement is realized when the required output is large.
 回転数範囲ΔNpは、0を中心とする範囲であり、上限値(正の値)及び下限値(負の値)の絶対値は同一とされる。回転数範囲ΔNpは予め設定された固定値であってもよいし、例えば車速(車輪速)に応じた可変値としてもよい。回転数範囲ΔNpを可変値とする場合には、例えば回転制御部5Aが、車速が高いほど回転数範囲ΔNpを広く設定する構成が考えられる。高車速であるほど歯と歯が噛み合いやすくなるため、高車速であるほど回転数範囲ΔNpを広げることでより早期にクラッチ係合が完了する。 The rotational speed range ΔNp is a range centered on 0, and the absolute values of the upper limit (positive value) and the lower limit (negative value) are the same. The rotation speed range ΔNp may be a fixed value set in advance, or may be a variable value according to the vehicle speed (wheel speed), for example. In the case where the rotation speed range ΔNp is variable, for example, the rotation control unit 5A may set the rotation speed range ΔNp wider as the vehicle speed is higher. The higher the vehicle speed, the easier it is for the teeth to mesh with each other. Therefore, the clutch engagement is completed earlier by widening the rotation speed range ΔNp as the vehicle speed is higher.
 所定開度APpは予め設定された値であり、クラッチ係合において静粛性と応答性とのどちらを優先させるかを決める閾値となる。なお、制御装置5は、各ドグクラッチ20,30H,30Lを係合する必要があるか否かを、車両10の走行状態や要求トルク等に基づき判断し、「必要がある」と判断したドグクラッチ20,30H,30Lの種類を回転制御部5Aに伝達する。 The predetermined opening degree APp is a value set in advance, and serves as a threshold value that determines which of quietness and responsiveness should be prioritized in clutch engagement. The control device 5 determines whether or not it is necessary to engage the dog clutches 20, 30H, 30L based on the traveling state of the vehicle 10, the required torque, etc., and determines that the dog clutch 20 is "necessary". , 30H and 30L are transmitted to the rotation control unit 5A.
 また、回転制御部5Aは、ハイ側ドグクラッチ30Hを係合させる場合には、スリーブ32Hの回転がドグギヤ11dの回転に合うように、ジェネレータ4のトルクを制御(調整)する。反対に、ロー側ドグクラッチ30Lを係合させる場合には、ドグギヤ15dの回転がスリーブ32Lの回転に合うように(両者の回転を合わせるように)、ジェネレータ4のトルクを制御(調整)する。また、第一ドグクラッチ20を係合させる場合には、ドグギヤ16dの回転がスリーブ22の回転に合うように(両者の回転を合わせるように)、モータ3のトルクを制御(調整)する。 Further, when the high side dog clutch 30H is engaged, the rotation control unit 5A controls (adjusts) the torque of the generator 4 so that the rotation of the sleeve 32H matches the rotation of the dog gear 11d. On the other hand, when the low-side dog clutch 30L is engaged, the torque of the generator 4 is controlled (adjusted) such that the rotation of the dog gear 15d matches the rotation of the sleeve 32L (the rotation of the two is matched). When the first dog clutch 20 is engaged, the torque of the motor 3 is controlled (adjusted) such that the rotation of the dog gear 16d matches the rotation of the sleeve 22 (the rotation of the two is matched).
 スリーブ制御部5Bは、回転制御部5Aによる制御中、すなわちスリーブ32Hの回転とドグギヤ11dの回転とを合わせるようにジェネレータ4のトルクを調整している際に、スリーブ32Hをドグギヤ11dに向かう方向及びドグギヤ11dから離れる方向にスライド移動するようアクチュエータを制御する。以下、クラッチを係合させる方向(例えばスリーブ32Hがドグギヤ11dに向かう方向)を「第一方向」と呼び、第一方向とは逆方向(すなわちクラッチを切断する方向)を「第二方向」と呼ぶ。スリーブ制御部5Bによりスリーブ32Hが移動すると、ストロークセンサ45aにより移動量Dが検出され、検出された情報(移動量D)が制御装置5に伝達される。 During control by the rotation control unit 5A, that is, while adjusting the torque of the generator 4 to match the rotation of the sleeve 32H and the rotation of the dog gear 11d, the sleeve control unit 5B moves the sleeve 32H toward the dog gear 11d and The actuator is controlled to slide in a direction away from the dog gear 11d. Hereinafter, the direction in which the clutch is engaged (for example, the direction in which the sleeve 32H moves toward the dog gear 11d) is referred to as "first direction", and the direction opposite to the first direction (i.e., direction in which the clutch is disconnected) is referred to as "second direction". Call. When the sleeve 32H is moved by the sleeve control unit 5B, the movement amount D is detected by the stroke sensor 45a, and the detected information (movement amount D) is transmitted to the control device 5.
 判定部5Cは、図4(c)に示すように、移動量Dが予め設定された所定量Dp未満である場合に、スリーブ32Hのスプライン歯32tとドグギヤ11dのドグ歯11tとが噛合せずに衝突するギヤブロックが生じたと判定する。反対に、図4(b)に示すように、移動量Dが所定量Dp以上である場合には、スリーブ32Hのスプライン歯32tとドグギヤ11dのドグ歯11tとが噛合したと判定する。つまり、判定部5Cは、スリーブ32Hの移動量Dに基づいてギヤブロックの有無を判定(検知)する。所定量Dpは、スリーブ32Hの係合とギヤブロックとを判別可能な値に設定される。判定部5Cは、ギヤブロックが生じたと判定した場合には、その判定結果を回転制御部5A及びスリーブ制御部5Bに伝達する。 As shown in FIG. 4C, when the movement amount D is less than the predetermined amount Dp, the determination unit 5C does not mesh the spline teeth 32t of the sleeve 32H with the dog teeth 11t of the dog gear 11d. It is determined that there is a gear block that collides with the Conversely, as shown in FIG. 4B, when the movement amount D is equal to or greater than the predetermined amount Dp, it is determined that the spline teeth 32t of the sleeve 32H and the dog teeth 11t of the dog gear 11d mesh with each other. That is, the determination unit 5C determines (detects) the presence or absence of the gear block based on the movement amount D of the sleeve 32H. The predetermined amount Dp is set to a value capable of determining the engagement of the sleeve 32H and the gear block. If the determination unit 5C determines that the gear block is generated, the determination unit 5C transmits the determination result to the rotation control unit 5A and the sleeve control unit 5B.
 スリーブ制御部5Bは、判定部5Cから判定結果が伝達された場合、すなわち図4(c)に示すギヤブロックが生じた場合には、図4(d)に示すように、スリーブ32Hを第二方向に移動させて、スリーブ32Hとドグギヤ11dとの接触を回避したのち、スリーブ32Hを再び第一方向に移動させる。このように、一旦接触を回避することで、互いの歯(スプライン歯32t及びドグ歯11t)が傷つけ合わないようにする。また、スリーブ32Hをドグギヤ11dから一旦離すことで、この間に出力軸12側(ドグギヤ11d)の回転が変化する可能性があり、再度スリーブ32Hを噛み合わせにいくことでギヤブロックせずに係合しうる。 When the determination result is transmitted from the determination unit 5C, that is, when the gear block shown in FIG. 4C is generated, the sleeve control unit 5B performs the second process on the sleeve 32H as shown in FIG. 4D. After moving in the direction to avoid contact between the sleeve 32H and the dog gear 11d, the sleeve 32H is moved in the first direction again. In this way, by avoiding the contact once, the teeth (spline teeth 32t and dog teeth 11t) of each other are not injured. In addition, once the sleeve 32H is released from the dog gear 11d, the rotation on the output shaft 12 side (dog gear 11d) may change during this time, and the sleeve 32H is engaged again without engaging the gear block by engaging the sleeve 32H. It can.
 なお、出力軸12側の回転が変化する可能性に頼らず、確実にギヤブロックを回避するために、ジェネレータ4を駆動して入力軸11の回転を積極的に変化させてもよい。具体的には、回転制御部5Aが、スリーブ制御部5Bによりスリーブ32Hが第二方向に移動した場合に、スリーブ回転数Nsとドグギヤ回転数Ndとの差ΔNが大きくなるようにジェネレータ4を制御したのち、再びこれらの回転が合うようにジェネレータ4を制御する。回転制御部5Aは、例えばジェネレータ4にトルクを印加することで、入力軸11と一体回転するスリーブ32Hの回転をドグギヤ11dの回転よりも高めることで、スリーブ32Hとドグギヤ11dとの位相をずらし、再度、ジェネレータ4のトルクを制御してスリーブ32Hの回転とドグギヤ11dの回転とを合わせることで、ギヤブロックを積極的に回避する。 The generator 4 may be driven to positively change the rotation of the input shaft 11 in order to reliably avoid the gear block without depending on the possibility of the rotation on the output shaft 12 side changing. Specifically, when the sleeve control unit 5B moves the sleeve 32H in the second direction, the rotation control unit 5A controls the generator 4 so that the difference ΔN between the sleeve rotation number Ns and the dog gear rotation number Nd becomes large. After that, the generator 4 is controlled so that these rotations match again. The rotation control unit 5A shifts the phase between the sleeve 32H and the dog gear 11d by, for example, applying torque to the generator 4 to increase the rotation of the sleeve 32H that rotates integrally with the input shaft 11 more than the dog gear 11d. The gear block is positively avoided by controlling the torque of the generator 4 again to unite the rotation of the sleeve 32H and the rotation of the dog gear 11d.
 スリーブ32Hのスリーブ回転数Ns及びドグギヤ15dのドグギヤ回転数Ndは、ジェネレータ回転数センサ44で検出されたジェネレータ4の回転数に基づいて求められる。また、ドグギヤ11dのドグギヤ回転数Nd及びスリーブ32Lのスリーブ回転数Nsは、車輪速センサ42で検出された車輪(出力軸12)の回転数に基づいて求められる。また、第一ドグクラッチ20のスリーブ22のスリーブ回転数Nsは車輪(出力軸12)の回転数に基づいて求められ、ドグギヤ16dのドグギヤ回転数Ndはモータ回転数センサ43で検出されたモータ3の回転数に基づいて求められる。 The sleeve rotation number Ns of the sleeve 32H and the dog gear rotation number Nd of the dog gear 15d are obtained based on the rotation number of the generator 4 detected by the generator rotation number sensor 44. Further, the dog gear rotational speed Nd of the dog gear 11 d and the sleeve rotational speed Ns of the sleeve 32 L are obtained based on the rotational speed of the wheel (output shaft 12) detected by the wheel speed sensor 42. The sleeve rotational speed Ns of the sleeve 22 of the first dog clutch 20 is determined based on the rotational speed of the wheel (output shaft 12), and the dog gear rotational speed Nd of the dog gear 16d is detected by the motor rotational speed sensor 43 of the motor 3 It is calculated based on the number of revolutions.
 取得部5Dは、アクセル開度センサ41で検出されたアクセル開度APの変化率であるアクセル開速度を取得(算出)するものであり、駆動制御部5Eは、アクセル操作に基づいて車両10の駆動源(本実施形態では、エンジン2及びモータ3)を制御するものである。これら取得部5D及び駆動制御部5Eは、クラッチ係合制御の実施中にドライバの強い加速要求が検出された場合には、その加速要求よりも変速(クラッチの切替)を優先させる。具体的には、駆動制御部5Eが、スリーブ制御部5Bによる制御中に、取得部5Dで取得されたアクセル開速度が所定値以上であれば、スリーブ32のスプライン歯32tとドグギヤ11dのドグ歯11tとが噛合するまで駆動源の制御を待機する。 The acquiring unit 5D acquires (calculates) an accelerator opening speed which is a change rate of the accelerator opening degree AP detected by the accelerator opening degree sensor 41, and the drive control unit 5E is based on an accelerator operation. The drive source (in the present embodiment, the engine 2 and the motor 3) is controlled. When the driver's strong acceleration request is detected during execution of the clutch engagement control, the acquiring unit 5D and the drive control unit 5E give priority to the shift (clutch switching) to the acceleration request. Specifically, if the accelerator opening speed acquired by the acquisition unit 5D is greater than or equal to a predetermined value while the drive control unit 5E is under control of the sleeve control unit 5B, the spline teeth 32t of the sleeve 32 and the dog teeth of the dog gear 11d are controlled. The control of the drive source is awaited until 11t is engaged.
 つまり、回転制御部5Aによる合わせる制御が実行され、スリーブ32Hの移動が実施されている最中にアクセルペダルが強く踏み込まれたとしても、クラッチ係合が完了するまでは、車両10を加速させるための駆動源(エンジン2,モータ3)の制御を待機する。これにより、出力軸12側(ドグギヤ11d)の回転と入力軸11側(スリーブ32H)との回転とが大きくずれることによる、振動や騒音の発生を防止する。 That is, in order to accelerate the vehicle 10 until the clutch engagement is completed, even if the acceleration control is performed while the movement control of the sleeve 32H is being performed while the adjustment control by the rotation control unit 5A is executed. Waits for control of the drive source (engine 2, motor 3) of As a result, the generation of vibration and noise caused by a large deviation between the rotation on the output shaft 12 side (dog gear 11 d) and the rotation on the input shaft 11 side (sleeve 32H) is prevented.
[4.フローチャート]
 図5は、上述したクラッチ係合制御の内容を説明するためのフローチャート例である。このフローチャートは、車両10の走行中であってクラッチを切り替える必要がある場合に制御装置5で実施される。なお、このフローチャートは、いずれのドグクラッチ20,30H,30Lが係合されるときにも実施されるため、スリーブ及びドグギヤの符号を省略して説明する。また、回転を調整するために用いるモータ3及びジェネレータ4を総称して回転電機と呼ぶ。
[4. flowchart]
FIG. 5 is an example of a flowchart for explaining the contents of the above-described clutch engagement control. This flowchart is implemented by the control device 5 when the vehicle 10 is traveling and it is necessary to switch the clutch. In addition, since this flowchart is implemented also when any dog clutch 20, 30H, 30L is engaged, the code | symbol of a sleeve and dog gear is abbreviate | omitted and demonstrated. Further, the motor 3 and the generator 4 used to adjust the rotation are generically called a rotating electric machine.
 ステップS1では、アクセル開度センサ41からアクセル開度APが取得され、ステップS2では、アクセル開度APが所定開度APp以上であるか否かが判定される。AP<APpのとき、すなわち要求出力が小さい場合には、ステップS3に進み、スリーブの回転とドグギヤの回転とを合わせるように回転電機のトルクが制御され、スリーブ回転数Nsとドグギヤ回転数Ndとが取得される(ステップS4)。ステップS5では、回転数差ΔNが0であるか否かが判定され、回転数差ΔNが0でなければステップS3に戻り、ステップS3~S5の処理が繰り返される。 In step S1, the accelerator opening AP is acquired from the accelerator opening sensor 41. In step S2, it is determined whether the accelerator opening AP is equal to or greater than a predetermined opening APp. When AP <APp, that is, when the required output is small, the process proceeds to step S3 where the torque of the rotary electric machine is controlled to match the rotation of the sleeve and the rotation of the dog gear, and the sleeve rotation number Ns and the dog gear rotation number Nd Are acquired (step S4). In step S5, it is determined whether or not the rotational speed difference ΔN is 0. If the rotational speed difference ΔN is not 0, the process returns to step S3 and the processing of steps S3 to S5 is repeated.
 ステップS5において回転数差ΔNが0であると判定された場合、すなわち回転が同期したら、スリーブを第一方向に移動させ(ステップS6)、次いで、急なアクセル操作の有無が判定される(ステップS7)。具体的には、ステップS7において、アクセル開速度が取得されるとともに所定値と比較され、アクセル開速度が所定値以上であれば「急なアクセル操作あり」と判定される。この場合、ステップS8において駆動源のトルク増大が待機状態とされる。一方、急なアクセル操作がなければ、ステップS8をスキップしてステップS9に進む。 If it is determined in step S5 that the rotational speed difference ΔN is 0, that is, if the rotations are synchronized, the sleeve is moved in the first direction (step S6), and then it is determined whether there is a sudden accelerator operation (step S6) S7). Specifically, in step S7, the accelerator opening speed is acquired and compared with a predetermined value, and if the accelerator opening speed is equal to or more than a predetermined value, it is determined that "a sudden accelerator operation is performed". In this case, in step S8, the increase in torque of the drive source is in a standby state. On the other hand, if there is no sudden accelerator operation, step S8 is skipped and the process proceeds to step S9.
 ステップS9では、スリーブの第一方向への移動量Dが取得され、その移動量Dが所定量Dp以上であるか否かが判定される(ステップS10)。D≧Dpであればスリーブとドグギヤとが係合状態になっているため、このフローを終了する。一方、D<Dpであればギヤブロックが生じているため、スリーブを第二方向へと移動させ(ステップS11)、回転数差ΔNができるように回転電機が制御される(ステップS12)。つまり、ギヤブロックが生じたときは、一旦スリーブがドグギヤから離され、回転が非同期にされる。そして、ステップS3に戻り、再び回転が同期するように回転電機が制御される。 In step S9, the movement amount D of the sleeve in the first direction is acquired, and it is determined whether the movement amount D is equal to or greater than a predetermined amount Dp (step S10). If D ≧ Dp, this flow is ended because the sleeve and dog gear are engaged. On the other hand, if D <Dp, the gear block is generated, so the sleeve is moved in the second direction (step S11), and the rotary electric machine is controlled so as to make the rotational speed difference ΔN (step S12). That is, when the gear block is generated, the sleeve is once released from the dog gear, and the rotation is desynchronized. Then, the process returns to step S3, and the rotating electrical machine is controlled so that the rotations are synchronized again.
 また、ステップS2においてAP≧APpの場合、すなわち要求出力が大きい場合には、ステップS13に進み、スリーブの回転とドグギヤの回転とが合うように回転電機のトルクが制御される。ステップS14では、スリーブ回転数Nsとドグギヤ回転数Ndとが取得され、ステップS15では、回転数差ΔNが回転数範囲ΔNp内に収まったか否かが判定される。ΔN≧ΔNpであればステップS13に戻り、ステップS13~S15の処理が繰り返される。 If AP ≧ APp in step S2, that is, if the required output is large, the process proceeds to step S13, and the torque of the rotating electrical machine is controlled such that the rotation of the sleeve matches the rotation of the dog gear. In step S14, the sleeve rotational speed Ns and the dog gear rotational speed Nd are acquired, and in step S15, it is determined whether or not the rotational speed difference ΔN falls within the rotational speed range ΔNp. If ΔN ≧ ΔNp, the process returns to step S13, and the processes of steps S13 to S15 are repeated.
 ステップS15において、ΔN<ΔNpであると判定された場合、すなわち互いの回転がある程度近づいたら、スリーブを第一方向に移動させ(ステップS16)、次いで、ステップS7と同様に、急なアクセル操作の有無が判定され(ステップS17)、急なアクセル操作があれば、ステップS18において駆動源のトルク増大が待機状態とされる。一方、急なアクセル操作がなければ、ステップS18をスキップして、このフローを終了する。 If it is determined in step S15 that .DELTA.N <.DELTA.Np holds, that is, if the rotations approach each other to some extent, the sleeves are moved in the first direction (step S16), and then, as in step S7, the sudden acceleration operation is performed. The presence or absence is judged (step S17), and if there is a sudden accelerator operation, the torque increase of the drive source is put in a standby state in step S18. On the other hand, if there is no sudden accelerator operation, step S18 is skipped and this flow is ended.
 すなわち、このフローチャートでは、回転数差ΔNがある状態でスリーブを係合させた場合には、基本的にはギヤブロックは生じないものと判断して、移動量Dを検出することなくフローを終了する。なお、ステップS2からステップS13に進んだ場合にも、上述したステップS9~S12の処理と同様の処理を実施してもよい。また、ステップS2からステップS13に進んだ場合に、ステップS17及びS18を省略してもよい。 That is, in this flowchart, when the sleeve is engaged with the rotational speed difference ΔN, it is basically determined that no gear block will occur, and the flow is ended without detecting the movement amount D. Do. When the process proceeds from step S2 to step S13, the same process as the process of steps S9 to S12 described above may be performed. Further, when the process proceeds from step S2 to step S13, steps S17 and S18 may be omitted.
[5.作用,効果]
 (1)上述した制御装置5では、車両10の走行中にドグクラッチ20,30を断から接に切り替える場合、スリーブ22,32H,32Lの移動量Dに基づいて、スリーブ22,32H,32Lの歯とドグギヤ16d,11d,15dの歯との衝突(いわゆるギヤブロック)を検知できる。このため、これらの歯にダメージが加わることを回避でき、ギヤブロックによるドグクラッチ20,30の損傷を抑制できる。例えば、ギヤブロックを検知したらクラッチ係合を一旦中断し、再度トライするように構成すれば、スリーブ22,32H,32Lと、これらと噛み合うドグギヤ16d,11d,15dとにダメージを与えずにクラッチ係合を完了させることができる。
[5. Action, effect]
(1) In the control device 5 described above, when switching the dog clutch 20, 30 from disconnection to contact while the vehicle 10 is traveling, the teeth of the sleeve 22, 32H, 32L are based on the movement amount D of the sleeve 22, 32H, 32L. Collisions with the teeth of the dog gears 16d, 11d, 15d (so-called gear blocks) can be detected. Therefore, damage to these teeth can be avoided, and damage to the dog clutches 20 and 30 due to the gear block can be suppressed. For example, when the gear block is detected, the clutch engagement is temporarily interrupted and then retried, the sleeves 22, 32H, 32L and the dog gears 16d, 11d, 15d meshing with these are not damaged but the clutch engaged You can complete the
 (2)上述した制御装置5では、ギヤブロックが生じた場合には、一旦スリーブ22,32H,32Lをドグギヤ16d,11d,15dから離してから再び第一方向に移動させることで、ギヤブロックを回避しつつ、クラッチ係合を完了させることができる。
 (3)特に、スリーブ22,32H,32Lを第二方向に移動させる際に回転数差ΔNを大きくする場合には、出力軸12側の回転の変化に頼ることなく確実にギヤブロックを回避できる。すなわち、一度合わせた回転を意図的にずらすことでスリーブ22,32H,32Lとドグギヤ16d,11d,15dとの位相をずらすことができる。そして、再び回転を合わせる制御を実行しつつスリーブ22,32H,32Lを第一方向に移動させることで静かにクラッチ係合を完了させることができる。
(2) In the control device 5 described above, when the gear block is generated, the gear block is moved in the first direction again by once separating the sleeves 22, 32H, 32L from the dog gears 16d, 11d, 15d. While avoiding, the clutch engagement can be completed.
(3) In particular, when the sleeves 22, 32H, 32L are moved in the second direction, when the rotational speed difference ΔN is increased, the gear block can be reliably avoided without relying on the change in the rotation on the output shaft 12 side. . That is, it is possible to shift the phases of the sleeves 22, 32H, 32L and the dog gears 16d, 11d, 15d by intentionally shifting the rotation once combined. Then, the clutch engagement can be quietly completed by moving the sleeves 22, 32H, 32L in the first direction while executing the control to adjust the rotation again.
 (4)上述した制御装置5では、アクセル開度APが小さいときには回転を同期させてからスリーブ22,32H,32Lをドグギヤ16d,11d,15dに係合させる。このため、要求出力が小さい場合には静かな変速を実現できる。
 (5)一方、アクセル開度APが大きいときには回転数差ΔNが所定の回転数範囲ΔNp内に収まるように制御され、回転数差ΔNがある状態でスリーブ22,32H,32Lをドグギヤ16d,11d,15dに係合させる。このため、要求出力が大きい場合には、ギヤブロックを回避しつつ動力性能を確保できる。
 (6)また、回転数範囲ΔNpが、車速が高いほど広く設定される場合には、より早期にクラッチ係合を完了させることができる。
(4) In the control device 5 described above, when the accelerator opening AP is small, the rotations are synchronized and then the sleeves 22, 32H, 32L are engaged with the dog gears 16d, 11d, 15d. Therefore, when the required output is small, a quiet shift can be realized.
(5) On the other hand, when the accelerator opening AP is large, the rotational speed difference .DELTA.N is controlled to fall within the predetermined rotational speed range .DELTA.Np, and the sleeves 22, 32H, 32L are engaged with the dog gears 16d, 11d with the rotational speed difference .DELTA.N. , 15d. For this reason, when the required output is large, power performance can be ensured while avoiding the gear block.
(6) Further, when the rotation speed range ΔNp is set wider as the vehicle speed is higher, the clutch engagement can be completed earlier.
 (7)上述した制御装置5では、スリーブ22,32H,32Lを第一方向に移動させている最中に急なアクセル操作がされた場合には、そのアクセル操作に基づく加速を待機し、クラッチ係合を優先させる。このため、スリーブ22,32H,32Lの第一方向への移動中に回転が大きくずれることがなく、速やかにクラッチ係合を完了させることができるとともに、振動や騒音の発生を抑制できる。 (7) In the control device 5 described above, when a sudden accelerator operation is performed while moving the sleeves 22, 32H, 32L in the first direction, the acceleration based on the accelerator operation is awaited, and the clutch Prioritize engagement. Therefore, the rotation does not largely shift during movement of the sleeves 22, 32H, 32L in the first direction, and clutch engagement can be completed promptly, and generation of vibration and noise can be suppressed.
 (8)上述した制御装置5は、第一経路51上に設けられた第一ドグクラッチ20と、第二経路52上に設けられた第二ドグクラッチ30とのそれぞれに対してクラッチ係合制御を実施する。言い換えると、モータ3の動力のみを用いた走行(EVモード,シリーズモード)と、エンジン2を主体とし、モータ3の動力をアシストとして利用する走行(パラレルモード)とを、シンクロ機構を持たないドグクラッチ20,30によって切り替えるため、小型化を図ることができ、省スペース化を実現できる。また、油圧を利用したクラッチ機構ではないためオイルポンプが不要であり、さらに引き摺り損失を低減できるため高効率化が期待できる。 (8) The control device 5 described above performs clutch engagement control on each of the first dog clutch 20 provided on the first path 51 and the second dog clutch 30 provided on the second path 52. Do. In other words, a dog clutch that does not have a synchro mechanism, traveling (EV mode, series mode) using only the power of the motor 3 and traveling (parallel mode) mainly using the engine 2 and using the power of the motor 3 as an assist Since switching is performed by 20 and 30, miniaturization can be achieved and space saving can be realized. Moreover, since it is not a clutch mechanism using oil pressure, an oil pump is unnecessary, and further, since drag loss can be reduced, high efficiency can be expected.
 また、上述したトランスアクスル1では、第一経路51上に第一ドグクラッチ20が設けられており、パラレルモードでの走行時に、モータ3によるアシストが不要な場合には第一ドグクラッチ20を開放することでモータ3を出力軸12から切り離すことができる。これにより、モータ3の連れ回りを回避でき、電力消費を抑えられ、損失低減を図ることができる。 Further, in the transaxle 1 described above, the first dog clutch 20 is provided on the first path 51, and the first dog clutch 20 is released when the assist by the motor 3 is unnecessary when traveling in the parallel mode. The motor 3 can be disconnected from the output shaft 12 by the As a result, corotation of the motor 3 can be avoided, power consumption can be suppressed, and loss can be reduced.
 (9)なお、上述したトランスアクスル1では、第二経路52上に第二ドグクラッチ30が設けられ、パラレルモードでの走行時に、走行状態や要求出力等に応じてハイギヤ段とローギヤ段とが切り替えられる。つまり、パラレルモードにおいて、エンジン2の動力を二段階に切り替えて伝達(出力)することができるため、走行パターンを増やすことができ、ドライブフィーリングの向上や燃費改善といった効果が得られ、車両商品性を向上させることができる。さらに、上述したトランスアクスル1では、第二ドグクラッチ30として互いに独立して設けられたハイ側ドグクラッチ30H及びロー側ドグクラッチ30Lが、一つの回転電機(すなわちジェネレータ4)によって回転調整することができる。 (9) In the transaxle 1 described above, the second dog clutch 30 is provided on the second path 52, and when traveling in the parallel mode, the high gear and the low gear are switched according to the traveling state, required output, etc. Be That is, in the parallel mode, the power of the engine 2 can be switched in two steps and transmitted (output), so that the traveling pattern can be increased, and the effects such as the improvement of the drive feeling and the improvement of the fuel efficiency can be obtained. It is possible to improve the quality. Furthermore, in the transaxle 1 described above, the high-side dog clutch 30H and the low-side dog clutch 30L provided independently of each other as the second dog clutch 30 can be adjusted in rotation by one rotating electric machine (that is, the generator 4).
 また、上述した第二ドグクラッチ30は、ハイ側ドグクラッチ30Hとロー側ドグクラッチ30Lとから構成され、各ドグクラッチ30H,30Lにはスリーブ32H,32Lが設けられるため、ギヤ比の制約がない。すなわち、ハイギヤ段,ローギヤ段の各ギヤ比を自由に設定することができる。さらに、上述した車両10では、エンジン2及びモータ3の動力を個別に出力可能であるため、ハイロー切替時におけるトルク抜けをモータ3の動力でカバーすることができる。これにより、変速ショックを抑制することができるとともに、ハイロー切替を早急に行う必要性が低くなることから第二ドグクラッチ30の構成を簡素化することができる。 Further, since the second dog clutch 30 described above is configured of the high side dog clutch 30H and the low side dog clutch 30L, and the dog clutches 30H and 30L are provided with the sleeves 32H and 32L, there is no restriction on the gear ratio. That is, each gear ratio of the high gear stage and the low gear stage can be freely set. Furthermore, in the vehicle 10 described above, since the power of the engine 2 and the motor 3 can be output individually, it is possible to cover the torque dropout at the time of high / low switching with the power of the motor 3. As a result, it is possible to suppress the shift shock and to reduce the need to perform high / low switching quickly, so the configuration of the second dog clutch 30 can be simplified.
[6.その他]
 上述したクラッチ係合制御の内容は一例であって、上述したものに限られない。例えば、アクセル開度APによらず、常にスリーブ回転数Nsとドグギヤ回転数Ndとを同期させてもよい。あるいは、アクセル開度APによらず、常に回転数差ΔNが回転数範囲ΔNpに収まるようにしてもよい。前者の構成にすれば、静かなクラッチ係合を実現でき、後者の構成にすれば、早期にクラッチ係合を完了させることができる。
[6. Other]
The content of the above-described clutch engagement control is an example, and is not limited to the above. For example, the sleeve rotation speed Ns and the dog gear rotation speed Nd may always be synchronized regardless of the accelerator opening degree AP. Alternatively, regardless of the accelerator opening AP, the rotational speed difference ΔN may always be within the rotational speed range ΔNp. With the former configuration, a quiet clutch engagement can be realized, and with the latter configuration, the clutch engagement can be completed early.
 また、クラッチ係合途中にアクセルペダルが急に踏み込まれた場合に、ドライバの要求を優先させてもよい。すなわち、クラッチ係合を一旦中断して出力を高めてから、再度回転を合わせる制御を実行してもよい。このような構成であれば、ドライバの要求に速やかに応答できるため、ドライブフィーリングを向上させることができる。 Also, if the accelerator pedal is suddenly depressed during clutch engagement, the driver's request may be prioritized. That is, after the clutch engagement is temporarily interrupted to increase the output, control may be performed to adjust the rotation again. With such a configuration, the drive feeling can be improved because the driver's request can be promptly responded.
 なお、ギヤブロックが生じたと判定された場合に、スリーブ22,32H,32Lとドグギヤ16d,11d,15dとの間に僅かな隙間が形成される程度にスリーブ22,32H,32Lを移動させる構成であってもよい。すなわち、第二方向へと移動させ、回転電機によって回転数を意図的にずらす構成は必須ではなく、少なくともギヤブロックを判定(検知)できる構成であればよい。 The sleeves 22, 32H, 32L are moved to such an extent that a slight gap is formed between the sleeves 22, 32H, 32L and the dog gears 16d, 11d, 15d when it is determined that a gear block is generated. It may be. That is, a configuration in which the rotational frequency is intentionally shifted by the rotating electrical machine by moving in the second direction is not essential, as long as at least a gear block can be determined (detected).
 上述したトランスアクスル1は一例であって、その構成は上述したものに限られない。例えば、上述したトランスアクスル1では、第二ドグクラッチ30が入力軸11及び第一カウンタ軸15のそれぞれに設けられているが、一方の軸11,15に一つの第二ドグクラッチが設けられていてもよい。例えば、入力軸11に設けられた第二ドグクラッチの軸方向の一側にハイ側のドグギヤを配置し、他側にロー側のドグギヤを配置して、第二ドグクラッチのスリーブが両方のドグギヤと選択的に噛み合うように設けられていてもよい。このような構成のトランスアクスルであっても、上述したクラッチ係合制御を適用可能である。なお、トランスアクスル1に対するエンジン2,モータ3,ジェネレータ4の相対位置は上述したものに限らない。これらの相対位置に応じて、トランスアクスル1内の六つの軸11~16の配置を設定すればよい。また、トランスアクスル1内の各軸に設けられるギヤの配置も一例であって、上述したものに限られない。 Transaxle 1 mentioned above is an example, and the composition is not restricted to what was mentioned above. For example, in the transaxle 1 described above, the second dog clutch 30 is provided on each of the input shaft 11 and the first counter shaft 15, but one second dog clutch may be provided on one of the shafts 11 and 15 Good. For example, a dog gear on the high side is disposed on one side in the axial direction of the second dog clutch provided on the input shaft 11, and a dog gear on the low side is disposed on the other side, and the sleeve of the second dog clutch is selected as both dog gears. It may be provided to engage with each other. The clutch engagement control described above is applicable even to the transaxle having such a configuration. The relative positions of the engine 2, the motor 3 and the generator 4 with respect to the transaxle 1 are not limited to those described above. The arrangement of the six axes 11 to 16 in the transaxle 1 may be set according to these relative positions. Further, the arrangement of the gears provided on each of the shafts in the transaxle 1 is also an example, and is not limited to that described above.
 また、上述したトランスアクスル1は、ハイギヤ段とローギヤ段とを有し、これらが第二ドグクラッチ30により切り替えられるが、2段切り替え式のトランスアクスル以外の変速機に用いられる噛み合いクラッチに対して、上述したクラッチ係合制御を適用してもよい。すなわち、上述したクラッチ係合制御は、トランスアクスルに限られず、あらゆる噛み合いクラッチに対して適用可能である。 Further, the transaxle 1 described above has high gear stages and low gear stages, and these are switched by the second dog clutch 30. However, with respect to the meshing clutch used for transmissions other than the two-stage switching transaxle, The clutch engagement control described above may be applied. That is, the above-described clutch engagement control is not limited to the transaxle, and is applicable to any meshing clutch.
 1 トランスアクスル
 2 エンジン
 3 モータ(電動機,一方の回転電機)
 4 ジェネレータ(発電機,他方の回転電機)
 5 制御装置(クラッチ制御装置)
 5A 回転制御部
 5B スリーブ制御部
 5C 判定部
 5D 取得部
 5E 駆動制御部
 8 駆動輪
 10 車両
 11 入力軸(第一軸)
 11d ドグギヤ(被係合ギヤ)
 13 モータ軸(第一軸)
 15 第一カウンタ軸(第二軸)
 15d ドグギヤ(被係合ギヤ)
 16 第二カウンタ軸(第二軸)
 16d ドグギヤ(被係合ギヤ)
 20 第一ドグクラッチ(噛み合いクラッチ)
 22 スリーブ
 30 第二ドグクラッチ(噛み合いクラッチ)
 30H ハイ側ドグクラッチ(噛み合いクラッチ)
 30L ロー側ドグクラッチ(噛み合いクラッチ)
 32H,32L スリーブ
 41 アクセル開度センサ(アクセル開度検出部)
 45a,45b,45c ストロークセンサ(移動検出部)
 51 第一経路(第一動力伝達経路)
 52 第二経路(第二動力伝達経路)
 53 第三経路(第三動力伝達経路)
 AP アクセル開度
 APp 所定開度
 D 移動量(ストローク量)
 Dp 所定量
 Nd ドグギヤ回転数
 Ns スリーブ回転数
 ΔN 回転数差
 ΔNp 回転数範囲
1 Transaxle 2 Engine 3 Motor (Motor, One Rotating Electric Machine)
4 Generator (generator, other rotating electrical machine)
5 Control device (clutch control device)
5A rotation control unit 5B sleeve control unit 5C determination unit 5D acquisition unit 5E drive control unit 8 drive wheel 10 vehicle 11 input shaft (first axis)
11d dog gear (engaged gear)
13 Motor shaft (first shaft)
15 First counter axis (second axis)
15d Dog gear (engaged gear)
16 Second counter axis (second axis)
16d dog gear (engaged gear)
20 1st dog clutch (meshing clutch)
22 sleeve 30 second dog clutch (meshing clutch)
30H high side dog clutch (meshing clutch)
30L low side dog clutch (meshing clutch)
32H, 32L sleeve 41 accelerator opening sensor (accelerator opening detector)
45a, 45b, 45c Stroke sensor (movement detection unit)
51 first path (first power transmission path)
52 Second path (second power transmission path)
53 third path (third power transmission path)
AP accelerator opening APp predetermined opening D movement amount (stroke amount)
Dp Specified amount Nd Dog gear speed Ns Sleeve speed ΔN Speed difference ΔNp Speed range

Claims (9)

  1.  少なくとも一つの回転電機と同期して回転することで動力が伝達される第一軸と前記第一軸の動力が伝達される第二軸との動力伝達を断接する噛み合いクラッチを備えた車両のクラッチ制御装置であって、
     前記噛み合いクラッチには、前記第一軸及び前記第二軸の一方に対して同期回転しかつ軸方向へ移動可能に設けられたスリーブと、前記第一軸及び前記第二軸の他方に対して相対回転可能に設けられた被係合ギヤと、が設けられ、
     前記クラッチ制御装置は、
     前記噛み合いクラッチが断状態での前記車両の走行中に、前記スリーブの回転と前記被係合ギヤの回転とを合わせるように前記回転電機を制御する回転制御部と、
     前記回転制御部による制御中に、前記スリーブを前記被係合ギヤに係合させるよう第一方向に移動させるスリーブ制御部と、
     前記スリーブの移動量を検出する移動検出部と、
     前記移動量が予め設定された所定量未満である場合に、前記スリーブと前記被係合ギヤとが噛み合わずに衝突するギヤブロックが生じたと判定する判定部と、を備えた
    ことを特徴とする、クラッチ制御装置。
    A clutch of a vehicle provided with a meshing clutch for interrupting power transmission between a first shaft to which power is transmitted by rotating in synchronization with at least one rotating electric machine and a second shaft to which power of the first shaft is transmitted A control device,
    In the meshing clutch, a sleeve that is synchronously rotated with respect to one of the first shaft and the second shaft and axially movably provided, and with respect to the other of the first shaft and the second shaft And an engaged gear rotatably provided.
    The clutch control device
    A rotation control unit configured to control the rotating electrical machine to match the rotation of the sleeve and the rotation of the engaged gear during traveling of the vehicle with the meshing clutch disconnected;
    A sleeve control unit that moves the sleeve in a first direction to engage the engaged gear during control by the rotation control unit;
    A movement detection unit that detects the movement amount of the sleeve;
    And a determination unit that determines that a gear block in which the sleeve and the engaged gear collide with each other without meshing is generated when the amount of movement is less than a predetermined amount set in advance. , Clutch control device.
  2.  前記スリーブ制御部は、前記判定部により前記ギヤブロックが生じたと判定された場合に、前記スリーブを前記第一方向とは逆の第二方向に移動させたのち、前記スリーブを再び前記第一方向に移動させる
    ことを特徴とする、請求項1記載のクラッチ制御装置。
    The sleeve control unit moves the sleeve in a second direction opposite to the first direction when the determination unit determines that the gear block is generated, and then the sleeve is again moved in the first direction. The clutch control device according to claim 1, wherein the clutch control device is moved.
  3.  前記回転制御部は、前記スリーブ制御部により前記スリーブが前記第二方向に移動した場合に、前記スリーブの回転数と前記被係合ギヤの回転数との差が大きくなるよう前記回転電機を制御したのち、再び前記スリーブの回転と前記被係合ギヤの回転とを合わせるように前記回転電機を制御する
    ことを特徴とする、請求項2記載のクラッチ制御装置。
    The rotation control unit controls the rotating electrical machine such that the difference between the number of rotations of the sleeve and the number of rotations of the engaged gear is increased when the sleeve is moved in the second direction by the sleeve control unit. 3. The clutch control device according to claim 2, further comprising: controlling the rotating electrical machine to match the rotation of the sleeve and the rotation of the engaged gear again.
  4.  前記車両には、アクセル開度を検出するアクセル開度検出部が設けられ、
     前記回転制御部は、前記アクセル開度が所定開度未満であれば、前記スリーブの回転と前記被係合ギヤの回転とを同期させることで前記合わせる制御を実行する
    ことを特徴とする、請求項1~3のいずれか1項に記載のクラッチ制御装置。
    The vehicle is provided with an accelerator opening detection unit that detects an accelerator opening,
    The rotation control unit is characterized in that, if the accelerator opening degree is smaller than a predetermined opening degree, the control for matching is performed by synchronizing the rotation of the sleeve and the rotation of the engaged gear. The clutch control device according to any one of Items 1 to 3.
  5.  前記回転制御部は、前記アクセル開度が前記所定開度以上であれば、前記スリーブの回転数と前記被係合ギヤの回転数との差が所定の回転数範囲内に収まるように前記回転電機を制御することで前記合わせる制御を実行する
    ことを特徴とする、請求項4記載のクラッチ制御装置。
    If the accelerator opening degree is equal to or more than the predetermined opening degree, the rotation control unit may rotate the rotation of the sleeve and the engaged gear so that the difference between the rotation speed of the sleeve and the engaged gear falls within a predetermined rotation speed range. 5. The clutch control device according to claim 4, wherein the control is performed by controlling an electric machine.
  6.  前記回転制御部は、車速が高いほど前記回転数範囲を広く設定する
    ことを特徴とする、請求項5記載のクラッチ制御装置。
    The clutch control device according to claim 5, wherein the rotation control unit sets the rotation speed range wider as the vehicle speed is higher.
  7.  アクセル開速度を取得する取得部と、
     アクセル操作に基づいて前記車両の駆動源を制御する駆動制御部と、を備え、
     前記駆動制御部は、前記スリーブ制御部による制御中に前記アクセル開速度が所定値以上であれば、前記スリーブと前記被係合ギヤとが噛み合うまで前記駆動源の制御を待機する
    ことを特徴とする、請求項1~6のいずれか1項に記載のクラッチ制御装置。
    An acquisition unit for acquiring an accelerator opening speed;
    And a drive control unit that controls a drive source of the vehicle based on an accelerator operation.
    The drive control unit waits for control of the drive source until the sleeve and the engaged gear mesh with each other if the accelerator opening speed is equal to or greater than a predetermined value during control by the sleeve control unit. The clutch control device according to any one of claims 1 to 6, wherein
  8.  前記車両は、二つの前記回転電機とエンジンとを具備し、一方の前記回転電機の動力を前記車両の駆動輪を駆動する出力軸に伝達する第一動力伝達経路と、前記エンジンの動力を前記出力軸に伝達する第二動力伝達経路と、前記エンジンの動力を他方の前記回転電機に伝達する第三動力伝達経路と、を有するハイブリッド車両であり、
     前記噛み合いクラッチは、前記第一動力伝達経路及び前記第二動力伝達経路のそれぞれに介装される
    ことを特徴とする、請求項7記載のクラッチ制御装置。
    The vehicle comprises two of the rotating electrical machines and an engine, and a first power transmission path for transmitting the power of one of the rotating electrical machines to an output shaft for driving the drive wheels of the vehicle, and the power of the engine A hybrid vehicle comprising: a second power transmission path transmitting to an output shaft; and a third power transmission path transmitting the power of the engine to the other rotating electric machine
    The clutch control device according to claim 7, wherein the meshing clutch is interposed in each of the first power transmission path and the second power transmission path.
  9.  前記回転制御部により制御される前記回転電機は、前記他方の回転電機であり、
     前記第二動力伝達経路には、前記噛み合いクラッチとして、互いに独立したハイ側クラッチ及びロー側クラッチが介装され、
     前記他方の前記回転電機により、前記ハイ側クラッチ及び前記ロー側クラッチを同期させる
    ことを特徴とする、請求項8記載のクラッチ制御装置。
    The rotating electric machine controlled by the rotation control unit is the other rotating electric machine,
    A high side clutch and a low side clutch independent of each other are interposed as the meshing clutch in the second power transmission path,
    9. The clutch control device according to claim 8, wherein the high side clutch and the low side clutch are synchronized by the other one of the rotating electrical machines.
PCT/JP2018/031963 2017-12-04 2018-08-29 Clutch control device WO2019111457A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019558001A JP6958634B2 (en) 2017-12-04 2018-08-29 Clutch control device
CN201880077909.3A CN111433066A (en) 2017-12-04 2018-08-29 Clutch control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-232750 2017-12-04
JP2017232750 2017-12-04

Publications (1)

Publication Number Publication Date
WO2019111457A1 true WO2019111457A1 (en) 2019-06-13

Family

ID=66750122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031963 WO2019111457A1 (en) 2017-12-04 2018-08-29 Clutch control device

Country Status (3)

Country Link
JP (1) JP6958634B2 (en)
CN (1) CN111433066A (en)
WO (1) WO2019111457A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111577781A (en) * 2020-04-02 2020-08-25 义乌吉利自动变速器有限公司 Dog tooth clutch and control device
CN111577889A (en) * 2020-04-07 2020-08-25 义乌吉利自动变速器有限公司 Clutch and shared parking control device
CN113108050A (en) * 2020-01-10 2021-07-13 丰田自动车株式会社 Vehicle-mounted control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299884A (en) * 1997-04-25 1998-11-13 Toyota Motor Corp Controller for twin clutch type gear transmission
JP2002364745A (en) * 2001-06-07 2002-12-18 Hitachi Ltd Control method and device for automobile
JP2003322253A (en) * 2002-05-08 2003-11-14 Hitachi Ltd Method and device for controlling car
JP2011105024A (en) * 2009-11-12 2011-06-02 Mitsubishi Fuso Truck & Bus Corp Shift control device for hybrid vehicle
JP2017013752A (en) * 2015-07-06 2017-01-19 日産自動車株式会社 Hybrid-vehicular control apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003776A (en) * 1999-06-22 2001-01-09 Mitsubishi Electric Corp Automatic transmission control device
JP2002221274A (en) * 2001-01-25 2002-08-09 Fujitsu Ten Ltd Control device for automatic transmission
JP4715235B2 (en) * 2005-02-28 2011-07-06 日産自動車株式会社 Clutch engagement control device for electric vehicle
JP5132409B2 (en) * 2008-04-25 2013-01-30 ヤマハ発動機株式会社 Control device for transmission mechanism, control method, and control method for vehicle with motor
DE102009002205A1 (en) * 2009-04-06 2010-10-14 Zf Friedrichshafen Ag Method for operating a transmission with at least one positive-locking switching element
JP5462101B2 (en) * 2010-07-30 2014-04-02 いすゞ自動車株式会社 Coasting control device
JP6102457B2 (en) * 2012-09-20 2017-03-29 アイシン精機株式会社 Automatic transmission for automatic transmission for vehicle
JP6394272B2 (en) * 2014-10-17 2018-09-26 トヨタ自動車株式会社 Power transmission control device
JP6396942B2 (en) * 2016-04-26 2018-09-26 本田技研工業株式会社 Transmission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299884A (en) * 1997-04-25 1998-11-13 Toyota Motor Corp Controller for twin clutch type gear transmission
JP2002364745A (en) * 2001-06-07 2002-12-18 Hitachi Ltd Control method and device for automobile
JP2003322253A (en) * 2002-05-08 2003-11-14 Hitachi Ltd Method and device for controlling car
JP2011105024A (en) * 2009-11-12 2011-06-02 Mitsubishi Fuso Truck & Bus Corp Shift control device for hybrid vehicle
JP2017013752A (en) * 2015-07-06 2017-01-19 日産自動車株式会社 Hybrid-vehicular control apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113108050A (en) * 2020-01-10 2021-07-13 丰田自动车株式会社 Vehicle-mounted control device
CN113108050B (en) * 2020-01-10 2022-03-29 丰田自动车株式会社 Vehicle-mounted control device
CN111577781A (en) * 2020-04-02 2020-08-25 义乌吉利自动变速器有限公司 Dog tooth clutch and control device
CN111577781B (en) * 2020-04-02 2022-05-31 义乌吉利自动变速器有限公司 Dog tooth clutch and control device
CN111577889A (en) * 2020-04-07 2020-08-25 义乌吉利自动变速器有限公司 Clutch and shared parking control device

Also Published As

Publication number Publication date
CN111433066A (en) 2020-07-17
JP6958634B2 (en) 2021-11-02
JPWO2019111457A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP5138803B2 (en) Power transmission device
JP6919719B2 (en) Vehicle control device
EP2636566A1 (en) Hybrid drive device for vehicle
WO2019111457A1 (en) Clutch control device
WO2012127655A1 (en) Vehicle drive apparatus
JPWO2013186924A1 (en) Hybrid vehicle drive device
JP2012187962A (en) Vehicle control device
KR101907339B1 (en) An oscillation control device of an electric vehicle
JP2013095260A (en) Hybrid drive device
CN111976462A (en) Drive device for hybrid vehicle
JP5930541B2 (en) Shift control device for electric vehicle
WO2013137100A1 (en) Power transmisssion device for vehicle
JP2011178280A (en) Power transmission device for hybrid vehicle and control method for the same
WO2013038446A1 (en) Power transmission/interruption device
JP2013230745A (en) Vehicle control system
JP2012228923A (en) Motor assist control device and method
WO2019111460A1 (en) Clutch control device
JP6011515B2 (en) Control device for hybrid vehicle
WO2019031278A1 (en) Vehicle control device and control method
JP5634967B2 (en) Hybrid vehicle and control method thereof
WO2019111456A1 (en) Transaxle control device
JP2021130426A (en) Driving device
JP5821492B2 (en) Vehicle transmission
JP2014121914A (en) Control system of hybrid vehicle
JP2013035404A (en) Hybrid vehicle and method for controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558001

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885687

Country of ref document: EP

Kind code of ref document: A1