WO2019111460A1 - Clutch control device - Google Patents

Clutch control device Download PDF

Info

Publication number
WO2019111460A1
WO2019111460A1 PCT/JP2018/031966 JP2018031966W WO2019111460A1 WO 2019111460 A1 WO2019111460 A1 WO 2019111460A1 JP 2018031966 W JP2018031966 W JP 2018031966W WO 2019111460 A1 WO2019111460 A1 WO 2019111460A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
sleeve
dog
gear
shaft
Prior art date
Application number
PCT/JP2018/031966
Other languages
French (fr)
Japanese (ja)
Inventor
剛太 那須
清水 亮
洋則 安部
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2019111460A1 publication Critical patent/WO2019111460A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/02Arrangements for synchronisation, also for power-operated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/04Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a clutch control device for a vehicle provided with a meshing clutch (so-called dog clutch) interposed between a first shaft to which power from at least one rotary electric machine is transmitted and a second shaft on the output side.
  • a meshing clutch so-called dog clutch
  • a dog clutch that does not have a synchro mechanism may be employed as a clutch used when shifting a vehicle or switching a power source.
  • the dog clutch includes a hub fixed to the shaft, an annular sleeve non-rotatable relative to the hub and axially slidably coupled, and an actuator for sliding the sleeve.
  • the teeth are engaged by meshing with the teeth of an adjacent engaged gear (so-called dog gear).
  • the dog clutch without the synchronization mechanism has advantages such as no need for an oil pump and good vehicle mountability, but it is necessary to synchronize rotation in order to suppress vibration and noise at the time of clutch engagement.
  • Patent Document 1 it is considered that connection (engagement) of the dog clutch can be promptly achieved even if the vehicle speed changes, by adding correction control corresponding to torque change or vehicle speed change to synchronous control. There is.
  • Dog clutches that do not have a synchro mechanism synchronize their rotation and then engage the sleeve with the dog gear, but if the time until the completion of engagement is prolonged, there is a possibility that rotational synchronization may be lost. Therefore, in order to make the sleeve and the dog gear quietly and smoothly engage, it is desirable to reduce the clutch engagement time. On the other hand, if the standby position of the sleeve when disconnecting the clutch is too close to the dog gear, the teeth of the sleeve collide with the teeth of the dog gear due to vehicle vibration or vehicle inclination during traveling, causing damage to the teeth or Noise may occur. Therefore, there is room for improvement in order to achieve both reduction in clutch engagement time and suppression of noise and damage.
  • the clutch control device of the present invention has been devised in view of such problems, and has an object to achieve both shortening of the clutch engagement time and suppression of noise and damage.
  • the present invention is not limited to this object, and it is an operation and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and it is another object of the present invention to exert an operation and effect that can not be obtained by the prior art. is there.
  • the clutch control device disclosed herein disconnects power transmission between a first shaft to which power from at least one rotary electric machine is transmitted and a second shaft to which power transmitted to the first shaft is transmitted. It is a clutch control apparatus of the vehicle provided with the clutch to contact.
  • a sleeve that is synchronously rotated with respect to one of the first shaft and the second shaft and axially movably provided, and is relative to the other of the first shaft and the second shaft A rotatably provided engaged gear is provided.
  • the clutch control device controls, in advance, a rotation control unit that performs synchronous rotation control of the rotating electrical machine such that a rotational speed difference between the rotational speed of the sleeve and the rotational speed of the engaged gear is within a predetermined rotational speed range;
  • a sleeve control unit for moving the sleeve disposed at the set neutral position in a first direction so as to engage the engaged gear, the sleeve control unit being operative during the rotation synchronization control;
  • the sleeve is moved in the first direction to stand by at the engagement preparation position shifted by a predetermined distance closer to the engaged gear than the neutral position.
  • the rotation control unit starts the rotation synchronous control when it is necessary to engage the clutch in the disconnected state, and the sleeve control unit controls the rotation speed difference to fall within the predetermined rotation speed range.
  • the sleeve is further moved in the first direction from the engagement preparation position to complete the engagement of the clutch.
  • the vehicle is provided with an accelerator opening degree detecting unit that detects an accelerator opening degree.
  • the sleeve control unit changes the predetermined distance in accordance with the accelerator opening degree. That is, it is preferable that the sleeve control unit changes the engagement preparation position according to the accelerator opening degree.
  • the sleeve control unit lengthens the predetermined distance as the accelerator opening degree is larger. That is, it is preferable that the sleeve control unit sets the engagement preparation position closer to the engaged gear as the accelerator opening degree is larger.
  • the vehicle is provided with a plurality of operation modes.
  • the sleeve control unit is configured to set the acceleration mode in which the acceleration performance is more important than the normal mode set when the vehicle is activated among the plurality of operation modes. It is preferable to make the predetermined distance longer than when the mode is set. That is, in the acceleration mode, the sleeve control unit preferably sets the engagement preparation position closer to the engaged gear than the normal mode.
  • the vehicle includes two of the rotating electrical machines and an engine, and a first power transmission path for transmitting the power of one of the rotating electrical machines to an output shaft for driving the drive wheels of the vehicle;
  • the hybrid vehicle is preferably a hybrid vehicle having a second power transmission path for transmitting power to the output shaft and a third power transmission path for transmitting power of the engine to the other rotating electric machine.
  • the clutch is interposed in each of the first power transmission path and the second power transmission path.
  • the said rotary electric machine controlled by the said rotation control part is said other rotary electric machine.
  • a high side clutch and a low side clutch independent of each other be interposed as the clutch in the second power transmission path.
  • the rotation control unit performs the rotation synchronous control when it is necessary to engage the clutch in the disconnected state of the high side clutch and the low side clutch.
  • the clutch is preferably a meshing clutch.
  • the clutch engagement time can be shortened by waiting the sleeve in the engagement preparation position during the rotation synchronization control, power performance can be improved.
  • the sleeve is disposed at the neutral position when the rotation synchronization control is not performed, it is possible to prevent a collision between the teeth of the sleeve and the teeth of the dog gear due to vibration during traveling or inclination of the vehicle body. Therefore, shortening of clutch engagement time and suppression of noise and damage due to collision of teeth can be achieved at the same time.
  • FIG. 3 is a schematic view showing a block diagram of the clutch control device of FIG. 1 together with a skeleton diagram showing a powertrain provided with the transaxle of FIG. 2; It is a schematic diagram shown changing the position of a sleeve in order to demonstrate the content of the clutch engagement control implemented with the control apparatus of FIG. 1, (a) is a neutral position, (b) is an engagement position, (c) Is the engagement preparation position. It is an example of the map used with the control apparatus of FIG. It is a flowchart example of the clutch engagement control implemented by the control apparatus of FIG.
  • a clutch control device as an embodiment will be described with reference to the drawings.
  • the embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques that are not specified in the following embodiments.
  • Each structure of this embodiment can be variously modified and implemented in the range which does not deviate from those meaning. Also, they can be selected as needed or can be combined as appropriate.
  • the clutch control device 5 (hereinafter referred to as the “control device 5”) of the present embodiment is applied to the vehicle 10 shown in FIG. 1 and controls the transaxle 1 mounted on the vehicle 10.
  • the vehicle 10 is a hybrid vehicle equipped with an engine 2, a traveling motor 3 (motor, rotating electrical machine, one rotating electrical machine), and a generator 4 (power generator, rotating electrical machine, the other rotating electrical machine) for power generation.
  • the generator 4 is connected to the engine 2 and can be operated independently of the operating state of the motor 3.
  • the vehicle 10 is provided with three types of travel modes: EV mode, series mode, and parallel mode. These traveling modes are alternatively selected by the control device 5 in accordance with the vehicle state, the traveling state, the driver's request output and the like, and the engine 2, the motor 3 and the generator 4 are properly used in accordance with the type.
  • the EV mode is a traveling mode in which the vehicle 10 is driven only by the motor 3 using the charging power of the driving battery 6 while the engine 2 and the generator 4 are stopped. The EV mode is selected when the traveling load and the vehicle speed are low or when the charge level of the battery 6 is high.
  • the series mode is a traveling mode in which the generator 2 is driven by the engine 2 to generate electric power, and the electric power is used to drive the vehicle 10 by the motor 3. The series mode is selected when the traveling load and the vehicle speed are medium or when the charge level of the battery 6 is low.
  • the parallel mode is mainly a driving mode in which the vehicle 2 is driven by the engine 2 and the driving of the vehicle 10 is assisted by the motor 3 as needed. The parallel mode is selected when the running load and the vehicle speed are high.
  • the engine 2 and the motor 3 are connected in parallel to the drive wheel 8 via the transaxle 1, and respective powers of the engine 2 and the motor 3 are individually transmitted from different power transmission paths. That is, each of the engine 2 and the motor 3 is a drive source that drives the output shaft 12 of the vehicle 10. Further, the generator 4 and the drive wheel 8 are connected in parallel to the engine 2 via the transaxle 1, and the power of the engine 2 is transmitted to the generator 4 in addition to the drive wheel 8.
  • the transaxle 1 is a power transmission device in which a final drive (final reduction gear) including a differential gear 18 (differential gear, hereinafter referred to as "differential gear 18") and a transmission (reduction gear) are integrally formed. And a plurality of mechanisms for transmitting power between the drive and the driven device.
  • the transaxle 1 of the present embodiment is configured to be capable of high / low switching (switching between high speed and low speed), and the high gear according to the traveling state, required output, etc. by the control device 5 when traveling in parallel mode. The gear and the low gear are switched.
  • the engine 2 is an internal combustion engine (gasoline engine, diesel engine) fueled by gasoline or light oil.
  • the engine 2 is a so-called horizontal engine disposed sideways so that the direction of the crankshaft 2a (rotational axis) coincides with the vehicle width direction of the vehicle 10, and is fixed to the right side of the transaxle 1 .
  • the crankshaft 2 a is disposed parallel to the drive shaft 9 of the drive wheel 8.
  • the operating state of the engine 2 is controlled by the controller 5.
  • the motor 3 and the generator 4 of the present embodiment are both a motor generator (motor generator) having a function as an electric motor and a function as a generator.
  • the motor 3 mainly functions as an electric motor to drive the vehicle 10, and functions as a generator during regeneration.
  • the generator 4 functions as a motor (starter) when starting the engine 2 and performs power generation with engine power when the engine 2 is operating.
  • An inverter (not shown) that converts a direct current and an alternating current is provided around (or inside) each of the motor 3 and the generator 4.
  • the rotational speeds of the motor 3 and the generator 4 are controlled by controlling an inverter.
  • the operating states of the motor 3, the generator 4 and the respective inverters are controlled by the control device 5.
  • the motor 3 according to the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 3a, and is fixed to the left side surface of the transaxle 1 with its bottom surface facing the transaxle 1 side.
  • the generator 4 of the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 4a, and, like the motor 3, the left side of the transaxle 1 is oriented with its bottom surface facing the transaxle 1 side. It is fixed to the face.
  • FIG. 2 is a side view of the power train 7 as viewed from the left side.
  • the power train 7 includes an engine 2, a motor 3, a generator 4, and a transaxle 1.
  • the engine 2 is omitted in FIG.
  • the vehicle 10 is provided with a control device 5 that integrally controls various devices mounted on the vehicle 10.
  • the vehicle 10 also includes an accelerator opening sensor 41 (accelerator opening detection unit) that detects the amount of depression of the accelerator pedal (accelerator opening AP), a wheel speed sensor 42 that detects the number of rotations of the wheel, and a motor A motor rotational speed sensor 43 for detecting the rotational speed of 3 and a generator rotational speed sensor 44 for detecting the rotational speed of the generator 4 are provided.
  • the information detected by each of the sensors 41 to 44 is transmitted to the control device 5.
  • the vehicle 10 of the present embodiment is provided with a plurality of operation modes, and is provided with a mode setting switch 46 for setting the operation mode.
  • the driving mode is a control mode different from the driving mode (EV mode, series mode, parallel mode), and the power performances are different from each other.
  • an eco mode energy suppression mode
  • a sport mode acceleration mode
  • the normal mode mentioned here is an operation mode which is usually set when the start switch of the vehicle 10 is turned on.
  • the acceleration mode is a driving mode set so that the acceleration of the vehicle 10 per predetermined accelerator opening degree is larger than that in the normal mode. In the present embodiment, these operation modes are switched by the driver's manual operation.
  • the operation mode may be automatically set by the vehicle 10.
  • the mode information set by the mode setting switch 46 is transmitted to the control device 5.
  • the control device 5 is, for example, an electronic control device configured as an LSI device in which a microprocessor, a ROM, a RAM, and the like are integrated and a built-in electronic device, and integrally controls various devices mounted on the vehicle 10.
  • the control device 5 of this embodiment selects the traveling mode in accordance with the driver's request output, etc., and controls various devices (for example, the engine 2 and the motor 3) in accordance with the selected traveling mode. It controls the connection and disconnection of the clutches 20 and 30. This control will be described later.
  • FIG. 3 is a skeleton diagram of a powertrain 7 provided with the transaxle 1 of the present embodiment. As shown in FIGS. 2 and 3, the transaxle 1 is provided with six axes 11 to 16 arranged parallel to one another. Hereinafter, a rotary shaft coaxially connected with the crankshaft 2 a will be referred to as an input shaft 11.
  • rotation shafts coaxially connected with the drive shaft 9, the rotation shaft 3 a of the motor 3, and the rotation shaft 4 a of the generator 4 are referred to as an output shaft 12, a motor shaft 13, and a generator shaft 14.
  • a rotary shaft disposed on the power transmission path between the input shaft 11 and the output shaft 12 is referred to as a first countershaft 15, and is disposed on the power transmission path between the motor shaft 13 and the output shaft 12
  • the rotating shaft is called a second counter shaft 16.
  • Each of the six shafts 11 to 16 is pivotally supported by the casing 1C via bearings (not shown) at both ends.
  • An opening is formed in the side surface of the casing 1C located on each of the input shaft 11, the output shaft 12, the motor shaft 13 and the generator shaft 14, and the crankshaft 2a located outside the casing 1C and the drive shaft 9 , Rotary shaft 3a and rotary shaft 4a.
  • first path 51 a power transmission path from the motor 3 to the output shaft 12 via the motor shaft 13, and from the engine 2
  • second path 52 A power transmission path leading to the output shaft 12 through the input shaft 11
  • third path a power transmission path leading from the engine 2 to the generator shaft 14 through the input shaft 11 53
  • first path 51 and the second path 52 are drive power transmission paths
  • third path 53 is a power generation power transmission path.
  • the first path 51 (first power transmission path) is a path related to power transmission from the motor 3 to the drive wheel 8 and is responsible for power transmission of the motor 3.
  • a motor shaft 13 (first shaft) to which power is transmitted by rotating in synchronization with the motor 3 and a second counter shaft 16 (second shaft) to which power of the motor shaft 13 is transmitted on the first path 51
  • the first dog clutch 20 (meshing clutch, clutch) described later is connected to the middle of the first path 51 to connect and disconnect the power transmission.
  • the power of the input shaft 11 (first shaft) to which power is transmitted by rotating in synchronization with the generator 4 and the power of the input shaft 11 are transmitted to the second path 52 (second power transmission path)
  • a counter shaft 15 (second shaft) is provided, and a second dog clutch 30 (meshing clutch, clutch) described later that performs connection / disconnection of power transmission and high / low switching is interposed in the middle of the second path 52 .
  • the third path 53 (third power transmission path) is a path related to power transmission from the engine 2 to the generator 4 and is responsible for power transmission at engine start and power transmission at the time of power generation by the engine 2.
  • fixed gear means a gear provided integrally with the shaft and synchronously rotating (non-rotatable) with respect to the shaft.
  • free running gear means a gear that is rotatably supported relative to the shaft.
  • the input shaft 11 includes, in order from the side closer to the engine 2, the fixed gear 11a, the second dog clutch 30 on the high side (hereinafter referred to as “high side dog clutch 30H”), the idle gear 11H, and the fixed gear 11L. Is provided.
  • the first countershaft 15 includes, in order from the side closer to the engine 2, the fixed gear 15a, the fixed gear 15H, the idle gear 15L, and the low-side second dog clutch 30 (hereinafter referred to as "low-side dog clutch 30L" And are provided.
  • the fixed gear 11 a of the input shaft 11 always meshes with the fixed gear 14 a provided on the generator shaft 14. That is, the input shaft 11 and the generator shaft 14 are connected via the two fixed gears 11 a and 14 a, and power can be transmitted between the engine 2 and the generator 4.
  • the fixed gear 15 a of the first countershaft 15 is always meshed with the ring gear 18 a of the differential 18 provided on the output shaft 12.
  • the idler gear 11H and the fixed gear 11L provided on the input shaft 11 have different numbers of teeth, and are constantly meshed with the stationary gear 15H and the idler gear 15L provided on the first countershaft 15.
  • the fixed gear 15H and the idle gear 15L of the first countershaft 15 also have different numbers of teeth.
  • the free rotation gear 11H has more teeth than the fixed gear 11L.
  • the idle gear 11H meshes with the fixed gear 15H having a small number of teeth to form a high gear.
  • the fixed gear 11L having a small number of teeth meshes with the idle gear 15L having a large number of teeth to form a low gear.
  • the idle gear 11H coaxially disposed adjacent to the high side dog clutch 30H has a dog gear 11d (engaged gear) integrally provided on the right side of the tooth surface portion meshing with the fixed gear 15H of the first countershaft 15.
  • the idle gear 15L coaxially disposed adjacent to the low-side dog clutch 30L has a dog gear 15d (engaged gear) integrally provided on the left side of the tooth surface portion meshing with the fixed gear 11L of the input shaft 11.
  • a dog tooth 11t is provided at a tip end (a radial outer end) of the dog gear 11d.
  • a dog tooth (not shown) similar to the dog tooth 11t is provided at the tip of the dog gear 15d.
  • the high-side dog clutch 30H and the low-side dog clutch 30L are both provided on the second path 52 to control the connection / disconnection state of the power of the engine 2 and to switch between the high gear and the low gear and do not have a synchro mechanism. It is a meshing clutch.
  • the traveling mode is the parallel mode
  • one of the high-side dog clutch 30H and the low-side dog clutch 30L is engaged and the other is disconnected. Note that which clutch 30H, 30L is engaged is determined based on the traveling state of the vehicle 10, the required output, and the like.
  • the high-side dog clutch 30H has a hub 31H fixed to the input shaft 11, and an annular sleeve 32H which can not rotate relative to the hub 31H (input shaft 11) and is axially slidably coupled. .
  • the sleeve 32 ⁇ / b> H slides in the axial direction when an actuator (for example, a servomotor, not shown) is controlled by the controller 5.
  • an actuator for example, a servomotor, not shown
  • a stroke sensor 45a that detects the amount of movement (stroke amount) is provided.
  • spline teeth 32t that mesh with the dog teeth 11t of the dog gear 11d are provided on the inner side in the radial direction of the sleeve 32H.
  • the low-side dog clutch 30L is non-relatively rotatable with respect to the hub 31L fixed to the first counter shaft 15, and the hub 31L (first counter shaft 15), and is axially slidably coupled.
  • an annular sleeve 32L is also slides in the axial direction when the actuator (not shown) is controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45 b.
  • spline teeth (not shown) that mesh with the dog teeth of the dog gear 15d are provided.
  • the sleeve 32L and the dog gear 15d mesh (engage) with each other.
  • the driving force from the engine 2 is transmitted to the output shaft 12 through the low gear pairs 11L and 15L.
  • the idle gear 15L is idled, and the power transmission on the low side in the second path 52 is interrupted.
  • the second countershaft 16 is provided with a first dog clutch 20, an idle gear 16M, a parking gear 19, and a fixed gear 16a in order from the side closer to the engine 2.
  • the fixed gear 16 a is in constant mesh with the ring gear 18 a of the differential 18.
  • the parking gear 19 is an element constituting the parking lock device, and when the P range is selected by the driver, the parking gear 19 engages with a parking plug (not shown) to rotate the second countershaft 16 (that is, the output shaft 12). Ban.
  • the idle gear 16M has more teeth than the fixed gear 13a provided on the motor shaft 13, and is always meshed with the fixed gear 13a.
  • the idle gear 16M has a dog gear 16d integrally provided on the right side of the tooth surface portion that meshes with the fixed gear 13a.
  • the dog gear 16d has a dog tooth (not shown) similar to the dog tooth 11t of the above-described dog gear 11d at its tip.
  • the first dog clutch 20 has an annular sleeve fixed to the second countershaft 16 and an annular sleeve which can not rotate relative to the hub 21 (second countershaft 16) and is axially slidably coupled. And 22.
  • the sleeve 22 also slides in the axial direction by an actuator (not shown) being controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45c.
  • the sleeve 22 and the dog gear 16 d of the free rotation gear 16 M mesh with each other
  • the sleeve 22 and the dog gear 16 d mesh (engage) with each other.
  • the traveling mode is the parallel mode and the assist by the motor 3 is unnecessary, the spline teeth of the sleeve 22 and the dog gear 16d of the idle gear 16M are separated, and the idle gear 16M is idle.
  • the power transmission of the first path 51 is cut off.
  • the traveling mode is the EV mode or the series mode, or when the parallel mode requires motor assist, the sleeve 22 and the dog gear 16d are engaged (engaged), and the driving force from the motor 3 Is transmitted to the output shaft 12.
  • the sleeve 22 is engaged with the dog gear 16d when the motor 3 is operating (on) and is controlled to the neutral position Pn (neutral position) when the motor 3 is stopped (off).
  • the "neutral position Pn" mentioned here is a position separated from the dog gear to such an extent that the spline teeth and the dog teeth do not collide even if the vehicle body vibrates or tilts during traveling, and is set in advance. ing.
  • the neutral position Pn is set to, for example, a reference position (0 point position) when the sleeve is moved by the actuator.
  • connection / disconnection state of the three dog clutches 20, 30H, 30L is controlled in accordance with the selected travel mode.
  • the control device 5 controls the selection of the traveling mode, the connection / disconnection states of the dog clutches 20, 30H, and 30L, and the operation states of the engine 2, the motor 3 and the like.
  • clutch engagement control control for engaging the dog clutches 20, 30H, and 30L
  • the clutch engagement control is control that is performed on at least one of the three dog clutches 20, 30H, and 30L while the vehicle 10 is traveling. In the present embodiment, the same control is performed on all the dog clutches 20, 30H, and 30L.
  • FIGS. 4A to 4C illustrate a state in which the sleeve 32H of the high side dog clutch 30H is disposed at each of the neutral position Pn, the engagement position Pe, and the engagement preparation position Pep.
  • the first dog clutch 20 and the low side dog clutch 30L are also controlled in the same manner as the high side dog clutch 30H.
  • the engagement position Pe is a position at which each of the sleeves 22, 32H, 32L and each of the dog gears 16d, 11d, 15d adjacent thereto engage with each other.
  • the engagement preparation position Pep is a position shifted by a predetermined distance X from the neutral position Pn to the engagement position Pe side (dog gear side), and as shown in FIG. 4C, for example, spline teeth 32t of the sleeve 32H.
  • the dog teeth 11t of the dog gear 11d are at such positions as to form a slight gap that does not collide with the dog teeth 11t.
  • the engagement preparation position Pep is a position at which the sleeves 22, 32H, 32L of the dog clutches 20, 30H, 30L, which are under synchronous rotation control, stand by.
  • the predetermined distance X is provided as a variable value that is changed according to the accelerator opening degree AP. Specifically, the predetermined distance X is set longer as the accelerator opening degree AP is larger. That is, since the engagement preparation position Pep is set closer to the dog gear to be engaged as the accelerator opening degree AP is larger (the request output of the driver is larger), the clutch engagement time is further shortened.
  • the predetermined distance X in the present embodiment is also changed depending on the operation mode of the vehicle 10. Specifically, when the sport mode is set, the predetermined distance X is set longer than in the driving mode other than the sport mode (normal mode, eco mode). As a result, when the driver emphasizes the acceleration performance (when it is desired to output the output), the engagement preparation position Pep is set closer to the dog gear to be engaged than in the other operation modes. Clutch engagement time is further reduced.
  • the control unit 5 is provided with a selection unit 5A, a rotation control unit 5B, and a sleeve control unit 5C as elements for performing the above-described clutch engagement control. These elements indicate some functions of the program executed by the control device 5, and are realized by software. However, part or all of each function may be realized by hardware (electronic circuit) or may be realized by using software and hardware in combination.
  • the selection unit 5A selects one traveling mode from the EV mode, the series mode, and the parallel mode, based on the driving state of the vehicle 10, the driver's request output, the charging state of the battery 6, and the like.
  • the selection unit 5A of the present embodiment determines the necessity of the motor assist based on, for example, the required output, the vehicle speed, and the like while selecting the parallel mode.
  • Selection unit 5A determines that it is necessary to switch the connection / disconnection state of each dog clutch 20, 30H, 30L when changing the traveling mode and when switching the necessity of motor assist.
  • the rotation control unit 5B performs rotation synchronization control to synchronize the rotation of the dog clutches 20, 30H, and 30L determined to be “engaged” by the selection unit 5A while the vehicle 10 is traveling. That is, the rotation control unit 5B starts the rotation synchronization control when it is necessary to engage the dog clutches 20, 30H, and 30L in the disconnected state.
  • the rotation synchronization unit 5B controls (adjusts) the torque of the motor 3 so that the rotation of the dog gear 16d matches the rotation of the sleeve 22.
  • the torque of the generator 4 is controlled (adjusted) such that the rotation of the sleeve 32H matches the rotation of the dog gear 11d.
  • the torque of the generator 4 is controlled (adjusted) so that the rotation of the dog gear 15d matches the rotation of the sleeve 32L.
  • “match” means not only perfect coincidence (ie, synchronization) but also bringing the number of rotations close to each other so that the difference between the two numbers of rotations falls within a predetermined number of rotations. That is, the rotation control unit 5B determines the difference between the rotational speeds of the sleeves 22, 32H, 32L of the dog clutches 20, 30H, 30L and the rotational speeds of the dog gears 16d, 11d, 15d to be engaged.
  • the rotary electric machine (motor 3, generator 4) is controlled so that the difference is within a predetermined rotational speed range.
  • the above-described rotational speed range is set to a value that can prevent a prolonged time required for rotational synchronization while suppressing noise and tooth damage that may occur when the dog clutches 20, 30H, and 30L are engaged. It is a range of rotational speed difference.
  • the rotational speed range is, for example, a range having an upper limit value which is a positive value and a lower limit value which is a negative value, centering around 0. In this case, the absolute values of the upper limit value and the lower limit value are the same.
  • the rotational speed range may be a fixed value set in advance, or may be a variable value according to the vehicle speed (wheel speed), for example.
  • the sleeve control unit 5C changes the positions of the sleeves 22, 32H, 32L by controlling the actuators of the dog clutches 20, 30H, 30L, and switches the connection / disconnection state of the dog clutches 20, 30H, 30L.
  • the sleeve control unit 5C disconnects the dog clutches 20, 30H, and 30L determined by the selection unit 5A to be "must be disconnected", and engages the dog clutches 20, 30H, and 30L that are rotationally synchronized by the rotation control unit 5B. Match.
  • clutch engagement will be described.
  • the sleeve control unit 5C controls the actuator to slide the sleeves 22, 32H, 32L in the direction toward the dog gears 16d, 11d, 15d and in the direction away from the dog gears 16d, 11d, 15d.
  • first direction the direction in which the clutch is engaged
  • second direction the direction opposite to the first direction (i.e., direction in which the clutch is disconnected)
  • first direction the direction in which the clutch is engaged
  • second direction the direction opposite to the first direction
  • the sleeve control unit 5C moves the sleeve disposed in the neutral position Pn in the first direction when the clutch is engaged, and shifts the sleeve disposed in the engagement position Pe in the second direction when the clutch is disengaged. Move to
  • the sleeve control unit 5C shifts the sleeve of the dog clutch rotationally synchronized by the rotation control unit 5B in the first direction during the rotation synchronization control, and shifts the dog gear side by a predetermined distance X from the neutral position Pn. It waits for the engagement preparation position Pep.
  • the sleeve control unit 5C moves the sleeve 32H in the first direction during the rotation synchronization control, as shown in FIG. It waits for the engagement preparation position Pep shown in (c).
  • the sleeve control unit 5C causes the sleeve 32H to stand by at the engagement preparation position Pep immediately before the completion of the rotation synchronization at the time of engaging the high-side dog clutch 30H. That is, the sleeve control unit 5C places the sleeve 32H in the neutral position Pn or the engagement position Pe in a state where the rotation synchronization control is not performed.
  • the sleeves 22 and 32L are made to stand by at the engagement preparation position Pep during the control by the rotation control unit 5B, and the rotation synchronous control is not performed.
  • the sleeves 22 and 32L are disposed at the neutral position Pn or the engagement position Pe.
  • the sleeve control unit 5C of the present embodiment changes the predetermined distance X in accordance with the accelerator opening degree AP, and sets the engagement preparation position Pep.
  • the sleeve control unit 5C sets the engagement preparation position Pep closer to the dog gear by lengthening the predetermined distance X as the accelerator opening AP is larger. Further, when the sport mode is set among the plurality of operation modes, the sleeve control unit 5C of the present embodiment makes the predetermined distance X longer than when the operation mode other than the sport mode is set. .
  • the sleeve control unit 5C may obtain (change) the predetermined distance X using, for example, a map as shown in FIG.
  • the map is set such that the predetermined distance X is longer as the accelerator opening AP is larger, and is stored in the control device 5 in advance. Further, in this map, the relationship of the predetermined distance X with respect to the accelerator opening degree AP is set for each driving mode. In this map, the predetermined distance X with respect to the accelerator opening AP is set to be longer in the sport mode than in the other driving modes (normal mode, eco mode). In this map, in the eco mode, the predetermined distance X is set to 0 regardless of the accelerator opening AP.
  • the sleeve control unit 5C 32L is further moved in the first direction from the engagement preparation position Pep to the engagement position Pe to complete the engagement of the dog clutches 20, 30H, 30L.
  • the sleeve control unit 5C determines that the rotational speed difference between the sleeve 32H and the dog gear 11d falls within the above rotational speed range.
  • the actuator is controlled to further move the sleeve 32H in the first direction, and the engagement of the high side dog clutch 30H is completed.
  • FIG. 6 is an example of a flowchart for explaining the contents of the above-described clutch engagement control.
  • the flowchart is performed in a predetermined calculation cycle in the control device 5 while the vehicle 10 is traveling. Note that this flowchart is performed when the dog clutches 20, 30H, and 30L in the disconnected state are engaged, and the description will be made by omitting the reference numerals of the dog clutch, the sleeve, and the dog gear. That is, at the start of this flow, the sleeve is in a state of being separated from the dog gear.
  • step S1 information from each of the sensors 41 to 45 and the mode setting switch 46 is transmitted.
  • step S2 it is determined whether or not the rotation synchronization control by the rotation control unit 5B is performed. If the control is not in progress, the process proceeds to step S3.
  • step S3 it is determined by the selection unit 5A whether or not it is determined that the connection / disconnection state of the dog clutch needs to be switched. If it is not necessary to switch the connection / disconnection state, this flow is returned, and if it is necessary to proceed to step S4.
  • step S4 rotation synchronous control of the dog clutch to be engaged is started by the rotation control unit 5B.
  • step S5 the predetermined distance X is acquired based on the accelerator opening AP acquired in step S1 and the operation mode, and the engagement preparation position Pep is set.
  • step S6 the actuator is controlled so that the sleeve to be engaged moves in the first direction, and the sleeve is made to stand by at the engagement preparation position Pep set at step S5. Then, it is determined whether or not the rotations have been synchronized (step S7), and if the rotation synchronization has not been completed, this flow is returned.
  • step S1 various information is acquired again (step S1), and it is determined whether or not rotation synchronization control is in progress (step S2).
  • step S2 since the rotation synchronization control is being performed, the process proceeds from step S2 to step S7, and the determination of step S7 is performed.
  • step S8 the actuator is controlled so that the sleeve waiting at the engagement preparation position Pep moves in the first direction, and the engagement of the dog clutch is completed. Return this flow.
  • the engagement preparation position Pep is set to a position shifted to the dog gear side by the predetermined distance X relative to the neutral position Pn.
  • the standby position that is, the engagement preparation position Pep
  • the predetermined distance X is made longer as the accelerator opening degree AP is larger. That is, since the engagement preparation position Pep is set closer to the dog gear as the driver's required output increases, the clutch engagement time can be further shortened, and the power performance can be further improved.
  • the predetermined distance X is made longer than when another driving mode is set. That is, when the driver emphasizes the acceleration performance, the engagement preparation position Pep is set closer to the dog gear as compared to the eco mode or the normal mode, so the clutch engagement time can be further shortened. Power performance can be further improved.
  • the vehicle 10 described above is a hybrid vehicle including the engine 2 and the motor 3. Further, in the vehicle 10, the first dog clutch 20 is interposed on the first path 51 for transmitting the motive power from the motor 3, and the second dog clutch 30 is interposed on the second path 52 for transmitting the motive power from the engine 2. Be disguised. As described above, by applying the above-described control device 5 to the vehicle 10 to which power of different drive sources is individually transmitted from different power transmission paths, switching of the power transmission path during traveling can be performed promptly. . Therefore, the motive power performance of the vehicle 10 can be improved.
  • the high-side dog clutch 30H and the low-side dog clutch 30L which are independent of each other are provided on the second path 52 for transmitting the motive power from the engine 2.
  • the control device 5 described above to the vehicle 10 capable of switching between the high gear and the low gear, it is possible to suppress a shift shock and to perform high-low switching promptly.
  • the dog clutches 20, 30H, and 30L described above are meshing clutches having no synchro mechanism. For this reason, compared with the case where the clutch operated using oil pressure is applied, since the oil pump is not required, the transaxle 1 can be miniaturized, and space saving can be realized.
  • the second dog clutch 30 is provided on the second path 52, and when traveling in the parallel mode, the high gear and the low gear are switched according to the traveling state, the required output, and the like. That is, in the parallel mode, the power of the engine 2 can be switched in two steps and transmitted (output), so that the traveling pattern can be increased, and the effects such as the improvement of the drive feeling and the improvement of the fuel efficiency can be obtained. It is possible to improve the quality.
  • the second dog clutch 30 described above is configured of the high side dog clutch 30H and the low side dog clutch 30L, and the dog clutches 30H and 30L are provided with the sleeves 32H and 32L, there is no restriction on the gear ratio. That is, each gear ratio of the high gear stage and the low gear stage can be freely set. Furthermore, in the vehicle 10 described above, since the power of the engine 2 and the motor 3 can be output individually, it is possible to cover the torque dropout at the time of high / low switching with the power of the motor 3. As a result, it is possible to suppress the shift shock and to reduce the need to perform high / low switching quickly, so the configuration of the second dog clutch 30 can be simplified.
  • the predetermined distance X may be changed only by the accelerator opening AP without depending on the operation mode, and conversely, it may be changed only by the operation mode regardless of the accelerator opening AP.
  • the predetermined distance X may be set in advance as a fixed value. At least during rotation control for clutch engagement, the sleeve of the clutch is moved in the first direction, and is kept on standby at the engagement preparation position Pep shifted by the predetermined distance X closer to the dog gear than the neutral position Pn. Thus, the clutch engagement time can be shortened.
  • the above-mentioned three operation modes are an example.
  • Transaxle 1 mentioned above is an example, and the composition is not restricted to what was mentioned above.
  • the second dog clutch 30 is provided on each of the input shaft 11 and the first counter shaft 15, but one second dog clutch may be provided on one of the shafts 11 and 15 Good.
  • a high-side dog gear is disposed on one side in the axial direction of the second dog clutch provided on the input shaft 11, and a low-side dog gear is disposed on the other side, and the sleeve of the second dog clutch engages with both dog gears. It may be provided.
  • the clutch engagement control described above is applicable even to the transaxle having such a configuration.
  • the relative positions of the engine 2, the motor 3 and the generator 4 with respect to the transaxle 1 are not limited to those described above.
  • the arrangement of the six axes 11 to 16 in the transaxle 1 may be set according to these relative positions.
  • the arrangement of the gears provided on each of the shafts in the transaxle 1 is also an example, and is not limited to that described above.
  • transaxle 1 has a high gear stage and a low gear stage, and these are switched by the 2nd dog clutch 30, it is mentioned above with respect to the clutch used for transmissions other than a two-stage switching type transaxle.
  • clutch engagement control may be applied.
  • the above-described clutch engagement control connects and disconnects a clutch for connecting and disconnecting power transmission between a first shaft to which power from at least one rotary electric machine is transmitted and a second shaft to which power transmitted to the first shaft is transmitted. It is applicable to the equipped vehicle.
  • the clutch has a sleeve that is synchronously rotated with respect to one of the first shaft and the second shaft and axially movable, and capable of relative rotation with respect to the other of the first shaft and the second shaft.
  • the present invention is not limited to the dog clutch described above as long as the provided engaged gear is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Sleeves (22, 32H, 32L) and engagement gears (16d, 11d, 15d) are provided to clutches (20, 30H, 30L) positioned between first shafts (11, 13), to which power is transmitted from rotating electric machines (3, 4), and second shafts (15, 16), to which the power transmitted to the first shafts (11, 13) is transmitted. A clutch control device (5) comprises a rotation control unit (5B) which performs a rotation synchronization control on the rotating electric machines (3, 4) such that the difference in rotational speed between the rotational speed of the sleeves and the rotational speed of the engagement gears is within a prescribed rotational speed range, and a sleeve control unit (5C) which moves, in a first direction, the sleeves that are positioned in a pre-set neutral position Pn to engage the sleeves with the engagement gears. During the rotation synchronization control, the sleeve control unit (5C) moves the sleeves in the first direction and causes the sleeves to wait in an engagement preparation position Pep which is shifted, only by a prescribed distance X, closer to the engagement gear side than the neutral position Pn.

Description

クラッチ制御装置Clutch controller
 本発明は、少なくとも一つの回転電機からの動力が伝達される第一軸と出力側の第二軸との間に介装された噛み合いクラッチ(いわゆるドグクラッチ)を備えた車両のクラッチ制御装置に関する。 The present invention relates to a clutch control device for a vehicle provided with a meshing clutch (so-called dog clutch) interposed between a first shaft to which power from at least one rotary electric machine is transmitted and a second shaft on the output side.
 従来、車両の変速時や動力源の切り換え時に用いられるクラッチとして、シンクロ機構を持たないドグクラッチが採用されることがある。このドグクラッチは、シャフトに固定されたハブと、ハブに対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブと、スリーブをスライド移動させるアクチュエータとを有し、スリーブの歯が隣接する被係合ギヤ(いわゆるドグギヤ)の歯と噛み合うことで係合する。 Conventionally, a dog clutch that does not have a synchro mechanism may be employed as a clutch used when shifting a vehicle or switching a power source. The dog clutch includes a hub fixed to the shaft, an annular sleeve non-rotatable relative to the hub and axially slidably coupled, and an actuator for sliding the sleeve. The teeth are engaged by meshing with the teeth of an adjacent engaged gear (so-called dog gear).
 シンクロ機構のないドグクラッチは、オイルポンプが不要であることや車両搭載性が良いなどのメリットがある一方で、クラッチ係合時の振動や騒音を抑制するために、回転を同期させる必要がある。これに対し、例えば特許文献1では、トルク変化又は車速変化に応じた補正制御を同期制御に加えることで、車両速度が変化してもドグクラッチの接続(係合)を速やかに達成できるとされている。 The dog clutch without the synchronization mechanism has advantages such as no need for an oil pump and good vehicle mountability, but it is necessary to synchronize rotation in order to suppress vibration and noise at the time of clutch engagement. On the other hand, in Patent Document 1, for example, it is considered that connection (engagement) of the dog clutch can be promptly achieved even if the vehicle speed changes, by adding correction control corresponding to torque change or vehicle speed change to synchronous control. There is.
特開2011-105024号公報JP 2011-105024 A
 シンクロ機構を持たないドグクラッチは、回転を同期させてからスリーブをドグギヤに係合させるが、係合完了までの時間が長引くと、回転同期がずれる可能性がある。そのため、スリーブとドグギヤとを静かにスムーズに係合させるためには、クラッチ係合時間を短縮することが望ましい。一方で、クラッチを切断しているときのスリーブの待機位置がドグギヤに近すぎると、走行中の車体振動や車体傾斜等によってスリーブの歯とドグギヤの歯とが衝突し、歯にダメージを与えたり騒音が発生したりするおそれがある。したがって、クラッチ係合時間の短縮と騒音,損傷の抑制とを両立させるためには改善の余地がある。 Dog clutches that do not have a synchro mechanism synchronize their rotation and then engage the sleeve with the dog gear, but if the time until the completion of engagement is prolonged, there is a possibility that rotational synchronization may be lost. Therefore, in order to make the sleeve and the dog gear quietly and smoothly engage, it is desirable to reduce the clutch engagement time. On the other hand, if the standby position of the sleeve when disconnecting the clutch is too close to the dog gear, the teeth of the sleeve collide with the teeth of the dog gear due to vehicle vibration or vehicle inclination during traveling, causing damage to the teeth or Noise may occur. Therefore, there is room for improvement in order to achieve both reduction in clutch engagement time and suppression of noise and damage.
 本件のクラッチ制御装置は、このような課題に鑑み案出されたもので、クラッチ係合時間の短縮と騒音,損傷の抑制とを両立することを目的の一つとする。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。 The clutch control device of the present invention has been devised in view of such problems, and has an object to achieve both shortening of the clutch engagement time and suppression of noise and damage. The present invention is not limited to this object, and it is an operation and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and it is another object of the present invention to exert an operation and effect that can not be obtained by the prior art. is there.
 (1)ここで開示するクラッチ制御装置は、少なくとも一つの回転電機からの動力が伝達される第一軸と前記第一軸に伝達された動力が伝達される第二軸との動力伝達を断接するクラッチを備えた車両のクラッチ制御装置である。前記クラッチには、前記第一軸及び前記第二軸の一方に対して同期回転しかつ軸方向へ移動可能に設けられたスリーブと、前記第一軸及び前記第二軸の他方に対して相対回転可能に設けられた被係合ギヤと、が設けられる。前記クラッチ制御装置は、前記スリーブの回転数と前記被係合ギヤの回転数との回転数差が所定の回転数範囲内となるように前記回転電機を回転同期制御する回転制御部と、予め設定された中立位置に配置されている前記スリーブを前記被係合ギヤに係合させるよう第一方向へ移動させるスリーブ制御部と、を備え、前記スリーブ制御部は、前記回転同期制御中に、前記スリーブを前記第一方向へ移動させて前記中立位置よりも前記被係合ギヤ側に所定距離だけシフトした係合準備位置に待機させる。 (1) The clutch control device disclosed herein disconnects power transmission between a first shaft to which power from at least one rotary electric machine is transmitted and a second shaft to which power transmitted to the first shaft is transmitted. It is a clutch control apparatus of the vehicle provided with the clutch to contact. In the clutch, a sleeve that is synchronously rotated with respect to one of the first shaft and the second shaft and axially movably provided, and is relative to the other of the first shaft and the second shaft A rotatably provided engaged gear is provided. The clutch control device controls, in advance, a rotation control unit that performs synchronous rotation control of the rotating electrical machine such that a rotational speed difference between the rotational speed of the sleeve and the rotational speed of the engaged gear is within a predetermined rotational speed range; A sleeve control unit for moving the sleeve disposed at the set neutral position in a first direction so as to engage the engaged gear, the sleeve control unit being operative during the rotation synchronization control; The sleeve is moved in the first direction to stand by at the engagement preparation position shifted by a predetermined distance closer to the engaged gear than the neutral position.
 (2)前記回転制御部は、切断状態にある前記クラッチを係合させる必要がある場合に前記回転同期制御を開始し、前記スリーブ制御部は、前記回転数差が前記所定の回転数範囲内になると前記スリーブを前記係合準備位置から前記第一方向に更に移動させて前記クラッチの係合を完了させることが好ましい。 (2) The rotation control unit starts the rotation synchronous control when it is necessary to engage the clutch in the disconnected state, and the sleeve control unit controls the rotation speed difference to fall within the predetermined rotation speed range. Preferably, the sleeve is further moved in the first direction from the engagement preparation position to complete the engagement of the clutch.
 (3)前記車両には、アクセル開度を検出するアクセル開度検出部が設けられることが好ましい。この場合、前記スリーブ制御部は、前記アクセル開度に応じて前記所定距離を変更することが好ましい。すなわち、前記スリーブ制御部は、前記アクセル開度に応じて前記係合準備位置を変更することが好ましい。
 (4)前記スリーブ制御部は、前記アクセル開度が大きいほど前記所定距離を長くすることが好ましい。すなわち、前記スリーブ制御部は、前記アクセル開度が大きいほど前記係合準備位置を前記被係合ギヤ寄りに設定することが好ましい。
(3) It is preferable that the vehicle is provided with an accelerator opening degree detecting unit that detects an accelerator opening degree. In this case, it is preferable that the sleeve control unit changes the predetermined distance in accordance with the accelerator opening degree. That is, it is preferable that the sleeve control unit changes the engagement preparation position according to the accelerator opening degree.
(4) It is preferable that the sleeve control unit lengthens the predetermined distance as the accelerator opening degree is larger. That is, it is preferable that the sleeve control unit sets the engagement preparation position closer to the engaged gear as the accelerator opening degree is larger.
 (5)前記車両には複数の運転モードが設けられることが好ましい。この場合、前記スリーブ制御部は、前記複数の運転モードのうち、前記車両が起動された際に設定されるノーマルモードよりも加速性能を重視した加速モードが設定されている場合には、前記ノーマルモードが設定されている場合よりも、前記所定距離を長くすることが好ましい。すなわち、前記スリーブ制御部は、前記加速モードでは、前記ノーマルモードよりも前記係合準備位置を前記被係合ギヤ寄りに設定することが好ましい。 (5) Preferably, the vehicle is provided with a plurality of operation modes. In this case, the sleeve control unit is configured to set the acceleration mode in which the acceleration performance is more important than the normal mode set when the vehicle is activated among the plurality of operation modes. It is preferable to make the predetermined distance longer than when the mode is set. That is, in the acceleration mode, the sleeve control unit preferably sets the engagement preparation position closer to the engaged gear than the normal mode.
 (6)前記車両は、二つの前記回転電機とエンジンとを具備し、一方の前記回転電機の動力を前記車両の駆動輪を駆動する出力軸に伝達する第一動力伝達経路と、前記エンジンの動力を前記出力軸に伝達する第二動力伝達経路と、前記エンジンの動力を他方の前記回転電機に伝達する第三動力伝達経路と、を有するハイブリッド車両であることが好ましい。この場合、前記クラッチは、前記第一動力伝達経路及び前記第二動力伝達経路のそれぞれに介装されることが好ましい。 (6) The vehicle includes two of the rotating electrical machines and an engine, and a first power transmission path for transmitting the power of one of the rotating electrical machines to an output shaft for driving the drive wheels of the vehicle; The hybrid vehicle is preferably a hybrid vehicle having a second power transmission path for transmitting power to the output shaft and a third power transmission path for transmitting power of the engine to the other rotating electric machine. In this case, preferably, the clutch is interposed in each of the first power transmission path and the second power transmission path.
 (7)前記回転制御部により制御される前記回転電機は、前記他方の回転電機であることが好ましい。この場合、前記第二動力伝達経路には、前記クラッチとして、互いに独立したハイ側クラッチ及びロー側クラッチが介装されることが好ましい。また、前記回転制御部は、前記ハイ側クラッチ及び前記ロー側クラッチのうちの切断状態にある前記クラッチを係合させる必要がある場合に前記回転同期制御を実施することが好ましい。
 (8)前記クラッチは、噛み合いクラッチであることが好ましい。
(7) It is preferable that the said rotary electric machine controlled by the said rotation control part is said other rotary electric machine. In this case, it is preferable that a high side clutch and a low side clutch independent of each other be interposed as the clutch in the second power transmission path. Further, it is preferable that the rotation control unit performs the rotation synchronous control when it is necessary to engage the clutch in the disconnected state of the high side clutch and the low side clutch.
(8) The clutch is preferably a meshing clutch.
 開示したクラッチ制御装置によれば、回転同期制御中に、スリーブを係合準備位置に待機させることでクラッチ係合時間を短縮できるため、動力性能を向上させることができる。また、回転同期制御を実施していないときにはスリーブが中立位置に配置されるため、走行時の振動や車体の傾斜等によってスリーブの歯とドグギヤの歯との衝突を防ぐことができる。したがって、クラッチ係合時間の短縮と、歯同士がぶつかることによる騒音や損傷の抑制とを両立できる。 According to the disclosed clutch control device, since the clutch engagement time can be shortened by waiting the sleeve in the engagement preparation position during the rotation synchronization control, power performance can be improved. In addition, since the sleeve is disposed at the neutral position when the rotation synchronization control is not performed, it is possible to prevent a collision between the teeth of the sleeve and the teeth of the dog gear due to vibration during traveling or inclination of the vehicle body. Therefore, shortening of clutch engagement time and suppression of noise and damage due to collision of teeth can be achieved at the same time.
実施形態に係るクラッチ制御装置を搭載した車両の内部構成を例示する上面図である。It is a top view which illustrates an internal configuration of a vehicle carrying a clutch control device concerning an embodiment. 図1のクラッチ制御装置の制御対象であるトランスアクスルを備えたパワートレインの模式的な側面図である。It is a typical side view of a powertrain provided with the transaxle which is a control object of the clutch control apparatus of FIG. 図2のトランスアクスルを備えたパワートレインを示すスケルトン図に、図1のクラッチ制御装置のブロック図を併せて示した模式図である。FIG. 3 is a schematic view showing a block diagram of the clutch control device of FIG. 1 together with a skeleton diagram showing a powertrain provided with the transaxle of FIG. 2; 図1の制御装置で実施されるクラッチ係合制御の内容を説明するためにスリーブの位置を変えて示す模式図であり、(a)はニュートラル位置、(b)は係合位置、(c)は係合準備位置である。It is a schematic diagram shown changing the position of a sleeve in order to demonstrate the content of the clutch engagement control implemented with the control apparatus of FIG. 1, (a) is a neutral position, (b) is an engagement position, (c) Is the engagement preparation position. 図1の制御装置で用いられるマップの一例である。It is an example of the map used with the control apparatus of FIG. 図1の制御装置で実施されるクラッチ係合制御のフローチャート例である。It is a flowchart example of the clutch engagement control implemented by the control apparatus of FIG.
 図面を参照して、実施形態としてのクラッチ制御装置について説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。 A clutch control device as an embodiment will be described with reference to the drawings. The embodiments shown below are merely illustrative, and there is no intention to exclude the application of various modifications and techniques that are not specified in the following embodiments. Each structure of this embodiment can be variously modified and implemented in the range which does not deviate from those meaning. Also, they can be selected as needed or can be combined as appropriate.
[1.全体構成]
 本実施形態のクラッチ制御装置5(以下「制御装置5」という)は、図1に示す車両10に適用され、この車両10に搭載されるトランスアクスル1を制御する。車両10は、エンジン2と走行用のモータ3(電動機,回転電機,一方の回転電機)と発電用のジェネレータ4(発電機,回転電機,他方の回転電機)とを装備したハイブリッド車両である。ジェネレータ4はエンジン2に連結され、モータ3の作動状態とは独立して作動可能である。また、車両10にはEVモード,シリーズモード,パラレルモードの三種類の走行モードが用意される。これらの走行モードは、制御装置5によって、車両状態や走行状態,運転者の要求出力等に応じて択一的に選択され、その種類に応じてエンジン2,モータ3,ジェネレータ4が使い分けられる。
[1. overall structure]
The clutch control device 5 (hereinafter referred to as the “control device 5”) of the present embodiment is applied to the vehicle 10 shown in FIG. 1 and controls the transaxle 1 mounted on the vehicle 10. The vehicle 10 is a hybrid vehicle equipped with an engine 2, a traveling motor 3 (motor, rotating electrical machine, one rotating electrical machine), and a generator 4 (power generator, rotating electrical machine, the other rotating electrical machine) for power generation. The generator 4 is connected to the engine 2 and can be operated independently of the operating state of the motor 3. Further, the vehicle 10 is provided with three types of travel modes: EV mode, series mode, and parallel mode. These traveling modes are alternatively selected by the control device 5 in accordance with the vehicle state, the traveling state, the driver's request output and the like, and the engine 2, the motor 3 and the generator 4 are properly used in accordance with the type.
 EVモードは、エンジン2及びジェネレータ4を停止させたまま、駆動用のバッテリ6の充電電力を用いてモータ3のみで車両10を駆動する走行モードである。EVモードは、走行負荷,車速が低い場合やバッテリ6の充電レベルが高い場合に選択される。シリーズモードは、エンジン2でジェネレータ4を駆動して発電しつつ、その電力を利用してモータ3で車両10を駆動する走行モードである。シリーズモードは、走行負荷,車速が中程度の場合やバッテリ6の充電レベルが低い場合に選択される。パラレルモードは、おもにエンジン2で車両10を駆動し、必要に応じてモータ3で車両10の駆動をアシストする走行モードであり、走行負荷,車速が高い場合に選択される。 The EV mode is a traveling mode in which the vehicle 10 is driven only by the motor 3 using the charging power of the driving battery 6 while the engine 2 and the generator 4 are stopped. The EV mode is selected when the traveling load and the vehicle speed are low or when the charge level of the battery 6 is high. The series mode is a traveling mode in which the generator 2 is driven by the engine 2 to generate electric power, and the electric power is used to drive the vehicle 10 by the motor 3. The series mode is selected when the traveling load and the vehicle speed are medium or when the charge level of the battery 6 is low. The parallel mode is mainly a driving mode in which the vehicle 2 is driven by the engine 2 and the driving of the vehicle 10 is assisted by the motor 3 as needed. The parallel mode is selected when the running load and the vehicle speed are high.
 駆動輪8には、トランスアクスル1を介してエンジン2及びモータ3が並列に接続され、エンジン2及びモータ3のそれぞれの動力が互いに異なる動力伝達経路から個別に伝達される。すなわち、エンジン2及びモータ3のそれぞれは、車両10の出力軸12を駆動する駆動源である。また、エンジン2には、トランスアクスル1を介してジェネレータ4及び駆動輪8が並列に接続され、エンジン2の動力が、駆動輪8に加えてジェネレータ4にも伝達される。 The engine 2 and the motor 3 are connected in parallel to the drive wheel 8 via the transaxle 1, and respective powers of the engine 2 and the motor 3 are individually transmitted from different power transmission paths. That is, each of the engine 2 and the motor 3 is a drive source that drives the output shaft 12 of the vehicle 10. Further, the generator 4 and the drive wheel 8 are connected in parallel to the engine 2 via the transaxle 1, and the power of the engine 2 is transmitted to the generator 4 in addition to the drive wheel 8.
 トランスアクスル1は、デファレンシャルギヤ18(差動装置、以下「デフ18」と呼ぶ)を含むファイナルドライブ(終減速機)とトランスミッション(減速機)とを一体に形成した動力伝達装置であり、駆動源と被駆動装置との間の動力伝達を担う複数の機構を内蔵する。本実施形態のトランスアクスル1は、ハイロー切替(高速段,低速段の切替)が可能に構成されており、パラレルモードでの走行時において、制御装置5によって走行状態や要求出力等に応じてハイギヤ段とローギヤ段とが切り替えられる。 The transaxle 1 is a power transmission device in which a final drive (final reduction gear) including a differential gear 18 (differential gear, hereinafter referred to as "differential gear 18") and a transmission (reduction gear) are integrally formed. And a plurality of mechanisms for transmitting power between the drive and the driven device. The transaxle 1 of the present embodiment is configured to be capable of high / low switching (switching between high speed and low speed), and the high gear according to the traveling state, required output, etc. by the control device 5 when traveling in parallel mode. The gear and the low gear are switched.
 エンジン2は、ガソリンや軽油を燃料とする内燃機関(ガソリンエンジン,ディーゼルエンジン)である。このエンジン2は、クランクシャフト2a(回転軸)の向きが車両10の車幅方向に一致するように横向きに配置されたいわゆる横置きエンジンであり、トランスアクスル1の右側面に対して固定される。クランクシャフト2aは、駆動輪8のドライブシャフト9に対して平行に配置される。エンジン2の作動状態は、制御装置5で制御される。 The engine 2 is an internal combustion engine (gasoline engine, diesel engine) fueled by gasoline or light oil. The engine 2 is a so-called horizontal engine disposed sideways so that the direction of the crankshaft 2a (rotational axis) coincides with the vehicle width direction of the vehicle 10, and is fixed to the right side of the transaxle 1 . The crankshaft 2 a is disposed parallel to the drive shaft 9 of the drive wheel 8. The operating state of the engine 2 is controlled by the controller 5.
 本実施形態のモータ3及びジェネレータ4はいずれも、電動機としての機能と発電機としての機能とを兼ね備えた電動発電機(モータ・ジェネレータ)である。モータ3は、おもに電動機として機能して車両10を駆動し、回生時には発電機として機能する。ジェネレータ4は、エンジン2を始動させる際に電動機(スターター)として機能し、エンジン2の作動時にはエンジン動力で発電を実施する。モータ3及びジェネレータ4の各周囲(又は各内部)には、直流電流と交流電流とを変換するインバータ(図示略)が設けられる。モータ3及びジェネレータ4の各回転速度は、インバータを制御することで制御される。なお、モータ3,ジェネレータ4,各インバータの作動状態は、制御装置5で制御される。 The motor 3 and the generator 4 of the present embodiment are both a motor generator (motor generator) having a function as an electric motor and a function as a generator. The motor 3 mainly functions as an electric motor to drive the vehicle 10, and functions as a generator during regeneration. The generator 4 functions as a motor (starter) when starting the engine 2 and performs power generation with engine power when the engine 2 is operating. An inverter (not shown) that converts a direct current and an alternating current is provided around (or inside) each of the motor 3 and the generator 4. The rotational speeds of the motor 3 and the generator 4 are controlled by controlling an inverter. The operating states of the motor 3, the generator 4 and the respective inverters are controlled by the control device 5.
 本実施形態のモータ3は、その外形が回転軸3aを中心軸とした円筒状に形成され、その底面をトランスアクスル1側に向けた姿勢でトランスアクスル1の左側面に対して固定される。また、本実施形態のジェネレータ4は、その外形が回転軸4aを中心軸とした円筒状に形成され、モータ3と同様に、その底面をトランスアクスル1側に向けた姿勢でトランスアクスル1の左側面に対して固定される。なお、図2はパワートレイン7を左側から見た側面図である。パワートレイン7は、エンジン2,モータ3,ジェネレータ4,トランスアクスル1を含んで構成される。なお、図2ではエンジン2は省略している。 The motor 3 according to the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 3a, and is fixed to the left side surface of the transaxle 1 with its bottom surface facing the transaxle 1 side. Further, the generator 4 of the present embodiment is formed in a cylindrical shape whose outer shape is centered on the rotation axis 4a, and, like the motor 3, the left side of the transaxle 1 is oriented with its bottom surface facing the transaxle 1 side. It is fixed to the face. FIG. 2 is a side view of the power train 7 as viewed from the left side. The power train 7 includes an engine 2, a motor 3, a generator 4, and a transaxle 1. The engine 2 is omitted in FIG.
 車両10には、車両10に搭載される各種装置を統合制御する制御装置5が設けられる。また、車両10には、アクセルペダルの踏み込み操作量(アクセル開度AP)を検出するアクセル開度センサ41(アクセル開度検出部)と、車輪の回転数を検出する車輪速センサ42と、モータ3の回転数を検出するモータ回転数センサ43と、ジェネレータ4の回転数を検出するジェネレータ回転数センサ44とが設けられる。各センサ41~44で検出された情報は、制御装置5に伝達される。 The vehicle 10 is provided with a control device 5 that integrally controls various devices mounted on the vehicle 10. The vehicle 10 also includes an accelerator opening sensor 41 (accelerator opening detection unit) that detects the amount of depression of the accelerator pedal (accelerator opening AP), a wheel speed sensor 42 that detects the number of rotations of the wheel, and a motor A motor rotational speed sensor 43 for detecting the rotational speed of 3 and a generator rotational speed sensor 44 for detecting the rotational speed of the generator 4 are provided. The information detected by each of the sensors 41 to 44 is transmitted to the control device 5.
 また、本実施形態の車両10には複数の運転モードが設けられるとともに、運転モードを設定するためのモード設定スイッチ46が設けられる。運転モードは、走行モード(EVモード,シリーズモード,パラレルモード)とは別の制御上のモードであり、動力性能が互いに異なる。本実施形態の車両10には、加速性能よりも燃費,電費を重視したエコモード(エネルギー抑制モード)と、燃費,電費よりも加速性能を重視したスポーツモード(加速モード)と、加速性能と燃費,電費とを同程度に扱うノーマルモードとが設けられる。 Further, the vehicle 10 of the present embodiment is provided with a plurality of operation modes, and is provided with a mode setting switch 46 for setting the operation mode. The driving mode is a control mode different from the driving mode (EV mode, series mode, parallel mode), and the power performances are different from each other. In the vehicle 10 of the present embodiment, an eco mode (energy suppression mode) emphasizing fuel consumption and electricity cost over acceleration performance, a sport mode (acceleration mode) emphasizing acceleration performance over fuel consumption and electricity cost, acceleration performance and fuel consumption , And a normal mode that handles the same amount of power consumption.
 ここでいうノーマルモードは車両10の起動スイッチをオンにした際に通常設定される運転モードである。また、加速モードは所定アクセル開度あたりの車両10の加速度がノーマルモードよりも大きくなるよう設定した運転モードである。本実施形態では、これらの運転モードが運転者による手動操作により切り替えられる。なお、運転モードが車両10により自動的に設定されるものであってもよい。モード設定スイッチ46で設定されたモード情報は、制御装置5に伝達される。 The normal mode mentioned here is an operation mode which is usually set when the start switch of the vehicle 10 is turned on. The acceleration mode is a driving mode set so that the acceleration of the vehicle 10 per predetermined accelerator opening degree is larger than that in the normal mode. In the present embodiment, these operation modes are switched by the driver's manual operation. The operation mode may be automatically set by the vehicle 10. The mode information set by the mode setting switch 46 is transmitted to the control device 5.
 制御装置5は、例えばマイクロプロセッサやROM,RAM等を集積したLSIデバイスや組み込み電子デバイスとして構成された電子制御装置であり、車両10に搭載される各種装置を統合制御する。本実施形態の制御装置5は、運転者の要求出力等に応じて走行モードを選択し、選択した走行モードに応じて各種機器(例えばエンジン2やモータ3)を制御するとともにトランスアクスル1内のクラッチ20,30の断接状態を制御する。この制御については後述する。 The control device 5 is, for example, an electronic control device configured as an LSI device in which a microprocessor, a ROM, a RAM, and the like are integrated and a built-in electronic device, and integrally controls various devices mounted on the vehicle 10. The control device 5 of this embodiment selects the traveling mode in accordance with the driver's request output, etc., and controls various devices (for example, the engine 2 and the motor 3) in accordance with the selected traveling mode. It controls the connection and disconnection of the clutches 20 and 30. This control will be described later.
[2.トランスアクスル]
 図3は、本実施形態のトランスアクスル1を備えたパワートレイン7のスケルトン図である。図2及び図3に示すように、トランスアクスル1には、互いに平行に配列された六つの軸11~16が設けられる。以下、クランクシャフト2aと同軸上に接続される回転軸を入力軸11と呼ぶ。
[2. Transaxle]
FIG. 3 is a skeleton diagram of a powertrain 7 provided with the transaxle 1 of the present embodiment. As shown in FIGS. 2 and 3, the transaxle 1 is provided with six axes 11 to 16 arranged parallel to one another. Hereinafter, a rotary shaft coaxially connected with the crankshaft 2 a will be referred to as an input shaft 11.
 同様に、ドライブシャフト9,モータ3の回転軸3a,ジェネレータ4の回転軸4aのそれぞれと同軸上に接続される回転軸を、出力軸12,モータ軸13,ジェネレータ軸14と呼ぶ。また、入力軸11と出力軸12との間の動力伝達経路上に配置された回転軸を第一カウンタ軸15と呼び、モータ軸13と出力軸12との間の動力伝達経路上に配置された回転軸を第二カウンタ軸16と呼ぶ。六つの軸11~16はいずれも、両端部が図示しない軸受を介してケーシング1Cに軸支される。なお、入力軸11,出力軸12,モータ軸13,ジェネレータ軸14のそれぞれの軸上に位置するケーシング1Cの側面には開口が形成され、ケーシング1Cの外側に位置するクランクシャフト2a,ドライブシャフト9,回転軸3a,回転軸4aと接続される。 Similarly, rotation shafts coaxially connected with the drive shaft 9, the rotation shaft 3 a of the motor 3, and the rotation shaft 4 a of the generator 4 are referred to as an output shaft 12, a motor shaft 13, and a generator shaft 14. In addition, a rotary shaft disposed on the power transmission path between the input shaft 11 and the output shaft 12 is referred to as a first countershaft 15, and is disposed on the power transmission path between the motor shaft 13 and the output shaft 12 The rotating shaft is called a second counter shaft 16. Each of the six shafts 11 to 16 is pivotally supported by the casing 1C via bearings (not shown) at both ends. An opening is formed in the side surface of the casing 1C located on each of the input shaft 11, the output shaft 12, the motor shaft 13 and the generator shaft 14, and the crankshaft 2a located outside the casing 1C and the drive shaft 9 , Rotary shaft 3a and rotary shaft 4a.
 トランスアクスル1の内部には、三つの動力伝達経路が形成される。具体的には、図2中に二点鎖線で示すように、モータ3からモータ軸13を介して出力軸12に至る動力伝達経路(以下「第一経路51」と呼ぶ)と、エンジン2から入力軸11を介して出力軸12に至る動力伝達経路(以下「第二経路52」と呼ぶ)と、エンジン2から入力軸11を介してジェネレータ軸14に至る動力伝達経路(以下「第三経路53」と呼ぶ)とが形成される。ここで、第一経路51及び第二経路52は駆動用動力伝達経路であり、第三経路53は発電用動力伝達経路である。 Inside the transaxle 1, three power transmission paths are formed. Specifically, as shown by a two-dot chain line in FIG. 2, a power transmission path (hereinafter referred to as “first path 51”) from the motor 3 to the output shaft 12 via the motor shaft 13, and from the engine 2 A power transmission path (hereinafter referred to as “second path 52”) leading to the output shaft 12 through the input shaft 11 and a power transmission path (hereinafter referred to as “third path”) leading from the engine 2 to the generator shaft 14 through the input shaft 11 53) are formed. Here, the first path 51 and the second path 52 are drive power transmission paths, and the third path 53 is a power generation power transmission path.
 第一経路51(第一動力伝達経路)は、モータ3から駆動輪8への動力伝達に係る経路であり、モータ3の動力伝達を担うものである。第一経路51上には、モータ3と同期して回転することで動力が伝達されるモータ軸13(第一軸)及びモータ軸13の動力が伝達される第二カウンタ軸16(第二軸)が設けられ、第一経路51の中途にはその動力伝達を断接する後述の第一ドグクラッチ20(噛み合いクラッチ,クラッチ)が介装される。 The first path 51 (first power transmission path) is a path related to power transmission from the motor 3 to the drive wheel 8 and is responsible for power transmission of the motor 3. A motor shaft 13 (first shaft) to which power is transmitted by rotating in synchronization with the motor 3 and a second counter shaft 16 (second shaft) to which power of the motor shaft 13 is transmitted on the first path 51 The first dog clutch 20 (meshing clutch, clutch) described later is connected to the middle of the first path 51 to connect and disconnect the power transmission.
 第二経路52(第二動力伝達経路)上には、ジェネレータ4と同期して回転することで動力が伝達される入力軸11(第一軸)及び入力軸11の動力が伝達される第一カウンタ軸15(第二軸)が設けられ、第二経路52の中途にはその動力伝達の断接とハイロー切替とを実施する後述の第二ドグクラッチ30(噛み合いクラッチ,クラッチ)が介装される。 The power of the input shaft 11 (first shaft) to which power is transmitted by rotating in synchronization with the generator 4 and the power of the input shaft 11 are transmitted to the second path 52 (second power transmission path) A counter shaft 15 (second shaft) is provided, and a second dog clutch 30 (meshing clutch, clutch) described later that performs connection / disconnection of power transmission and high / low switching is interposed in the middle of the second path 52 .
 第三経路53(第三動力伝達経路)は、エンジン2からジェネレータ4への動力伝達に係る経路であり、エンジン始動時の動力伝達及びエンジン2による発電時の動力伝達を担うものである。 The third path 53 (third power transmission path) is a path related to power transmission from the engine 2 to the generator 4 and is responsible for power transmission at engine start and power transmission at the time of power generation by the engine 2.
 次に、図3を用いてトランスアクスル1の構成を詳述する。なお、以下の説明において、「固定ギヤ」とは、軸と一体に設けられ、軸に対して同期回転する(相対回転不能な)歯車を意味する。また、「遊転ギヤ」とは、軸に対して相対回転可能に枢支された歯車を意味する。 Next, the configuration of the transaxle 1 will be described in detail with reference to FIG. In the following description, the term "fixed gear" means a gear provided integrally with the shaft and synchronously rotating (non-rotatable) with respect to the shaft. Also, "free running gear" means a gear that is rotatably supported relative to the shaft.
 入力軸11には、エンジン2に近い側から順に、固定ギヤ11aと、ハイ側の第二ドグクラッチ30(以下、「ハイ側ドグクラッチ30H」と呼ぶ)と、遊転ギヤ11Hと、固定ギヤ11Lとが設けられる。また、第一カウンタ軸15には、エンジン2の近い側から順に、固定ギヤ15aと、固定ギヤ15Hと、遊転ギヤ15Lと、ロー側の第二ドグクラッチ30(以下、「ロー側ドグクラッチ30L」と呼ぶ)とが設けられる。 The input shaft 11 includes, in order from the side closer to the engine 2, the fixed gear 11a, the second dog clutch 30 on the high side (hereinafter referred to as "high side dog clutch 30H"), the idle gear 11H, and the fixed gear 11L. Is provided. The first countershaft 15 includes, in order from the side closer to the engine 2, the fixed gear 15a, the fixed gear 15H, the idle gear 15L, and the low-side second dog clutch 30 (hereinafter referred to as "low-side dog clutch 30L" And are provided.
 入力軸11の固定ギヤ11aは、ジェネレータ軸14に設けられた固定ギヤ14aと常時噛合している。つまり、入力軸11とジェネレータ軸14とは、二つの固定ギヤ11a,14aを介して連結されており、エンジン2とジェネレータ4との間で動力伝達可能とされる。また、第一カウンタ軸15の固定ギヤ15aは、出力軸12に設けられたデフ18のリングギヤ18aと常時噛合している。 The fixed gear 11 a of the input shaft 11 always meshes with the fixed gear 14 a provided on the generator shaft 14. That is, the input shaft 11 and the generator shaft 14 are connected via the two fixed gears 11 a and 14 a, and power can be transmitted between the engine 2 and the generator 4. The fixed gear 15 a of the first countershaft 15 is always meshed with the ring gear 18 a of the differential 18 provided on the output shaft 12.
 入力軸11に設けられた遊転ギヤ11H及び固定ギヤ11Lは互いに異なる歯数を持ち、第一カウンタ軸15に設けられた固定ギヤ15H及び遊転ギヤ15Lのそれぞれと常時噛合している。なお、第一カウンタ軸15の固定ギヤ15H及び遊転ギヤ15Lも互いに異なる歯数を持つ。本実施形態では、遊転ギヤ11Hの方が固定ギヤ11Lよりも歯数が多い。この遊転ギヤ11Hは、歯数が少ない固定ギヤ15Hと噛み合ってハイギヤ段を形成する。反対に、歯数が少ない固定ギヤ11Lは、歯数が多い遊転ギヤ15Lと噛み合ってローギヤ段を形成する。 The idler gear 11H and the fixed gear 11L provided on the input shaft 11 have different numbers of teeth, and are constantly meshed with the stationary gear 15H and the idler gear 15L provided on the first countershaft 15. The fixed gear 15H and the idle gear 15L of the first countershaft 15 also have different numbers of teeth. In the present embodiment, the free rotation gear 11H has more teeth than the fixed gear 11L. The idle gear 11H meshes with the fixed gear 15H having a small number of teeth to form a high gear. On the other hand, the fixed gear 11L having a small number of teeth meshes with the idle gear 15L having a large number of teeth to form a low gear.
 ハイ側ドグクラッチ30Hと同軸上に隣接配置された遊転ギヤ11Hは、第一カウンタ軸15の固定ギヤ15Hと噛み合う歯面部の右側に一体で設けられたドグギヤ11d(被係合ギヤ)を有する。また、ロー側ドグクラッチ30Lと同軸上に隣接配置された遊転ギヤ15Lは、入力軸11の固定ギヤ11Lと噛み合う歯面部の左側に一体で設けられたドグギヤ15d(被係合ギヤ)を有する。ドグギヤ11dの先端部(径方向外側の端部)には、ドグ歯11tが設けられる。また、ドグギヤ15dの先端部にも、ドグ歯11tと同様のドグ歯(図示略)が設けられる。 The idle gear 11H coaxially disposed adjacent to the high side dog clutch 30H has a dog gear 11d (engaged gear) integrally provided on the right side of the tooth surface portion meshing with the fixed gear 15H of the first countershaft 15. The idle gear 15L coaxially disposed adjacent to the low-side dog clutch 30L has a dog gear 15d (engaged gear) integrally provided on the left side of the tooth surface portion meshing with the fixed gear 11L of the input shaft 11. A dog tooth 11t is provided at a tip end (a radial outer end) of the dog gear 11d. In addition, a dog tooth (not shown) similar to the dog tooth 11t is provided at the tip of the dog gear 15d.
 ハイ側ドグクラッチ30H及びロー側ドグクラッチ30Lはいずれも第二経路52上に設けられ、エンジン2の動力の断接状態を制御するとともにハイギヤ段とローギヤ段とを切り替えるものであり、シンクロ機構を持たない噛み合いクラッチである。本実施形態では、走行モードがパラレルモードである場合に、ハイ側ドグクラッチ30H及びロー側ドグクラッチ30Lの一方が係合されて他方が切断される。なお、どちらのクラッチ30H,30Lが係合するかは、車両10の走行状態や要求出力等に基づいて決定される。 The high-side dog clutch 30H and the low-side dog clutch 30L are both provided on the second path 52 to control the connection / disconnection state of the power of the engine 2 and to switch between the high gear and the low gear and do not have a synchro mechanism. It is a meshing clutch. In the present embodiment, when the traveling mode is the parallel mode, one of the high-side dog clutch 30H and the low-side dog clutch 30L is engaged and the other is disconnected. Note that which clutch 30H, 30L is engaged is determined based on the traveling state of the vehicle 10, the required output, and the like.
 ハイ側ドグクラッチ30Hは、入力軸11に固定されたハブ31Hと、ハブ31H(入力軸11)に対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブ32Hとを有する。スリーブ32Hは、図示しないアクチュエータ(例えばサーボモータ)が制御装置5によって制御されることで軸方向にスライド移動する。スリーブ32Hの近傍には、その移動量(ストローク量)を検出するストロークセンサ45aが設けられる。また、スリーブ32Hの径方向内側には、ドグギヤ11dのドグ歯11tと噛合するスプライン歯32tが設けられる。 The high-side dog clutch 30H has a hub 31H fixed to the input shaft 11, and an annular sleeve 32H which can not rotate relative to the hub 31H (input shaft 11) and is axially slidably coupled. . The sleeve 32 </ b> H slides in the axial direction when an actuator (for example, a servomotor, not shown) is controlled by the controller 5. In the vicinity of the sleeve 32H, a stroke sensor 45a that detects the amount of movement (stroke amount) is provided. Further, spline teeth 32t that mesh with the dog teeth 11t of the dog gear 11d are provided on the inner side in the radial direction of the sleeve 32H.
 スプライン歯32tとドグ歯11tとが噛み合うことで、スリーブ32Hとドグギヤ11dとが噛合(係合)する。この状態では、エンジン2からの駆動力がハイ側のギヤ対11H,15Hを通じて出力軸12へと伝達される。反対に、スリーブ32Hのスプライン歯32tとドグギヤ11dのドグ歯11tとが離隔している場合には遊転ギヤ11Hが空転状態となり、第二経路52におけるハイ側の動力伝達が遮断された状態となる。 As the spline teeth 32t and the dog teeth 11t mesh with each other, the sleeve 32H and the dog gear 11d mesh (engage) with each other. In this state, the driving force from the engine 2 is transmitted to the output shaft 12 through the high gear pairs 11H and 15H. On the other hand, when the spline teeth 32t of the sleeve 32H and the dog teeth 11t of the dog gear 11d are separated, the idle gear 11H is idled and the high side power transmission in the second path 52 is interrupted. Become.
 同様に、ロー側ドグクラッチ30Lは、第一カウンタ軸15に固定されたハブ31Lと、ハブ31L(第一カウンタ軸15)に対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブ32Lとを有する。スリーブ32Lも、図示しないアクチュエータが制御装置5によって制御されることで軸方向にスライド移動するものであり、ストロークセンサ45bによってその移動量(ストローク量)が検出される。スリーブ32Lの径方向内側には、ドグギヤ15dのドグ歯と噛合するスプライン歯(図示略)が設けられる。スプライン歯とドグ歯とが噛み合うことで、スリーブ32Lとドグギヤ15dとが噛合(係合)する。この状態では、エンジン2からの駆動力がロー側のギヤ対11L,15Lを通じて出力軸12へと伝達される。反対に、スリーブ32Lのスプライン歯とドグギヤ15dのドグ歯とが離隔している場合には遊転ギヤ15Lが空転状態となり、第二経路52におけるロー側の動力伝達が遮断された状態となる。 Similarly, the low-side dog clutch 30L is non-relatively rotatable with respect to the hub 31L fixed to the first counter shaft 15, and the hub 31L (first counter shaft 15), and is axially slidably coupled. And an annular sleeve 32L. The sleeve 32 </ b> L also slides in the axial direction when the actuator (not shown) is controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45 b. On the radially inner side of the sleeve 32L, spline teeth (not shown) that mesh with the dog teeth of the dog gear 15d are provided. As the spline teeth and the dog teeth mesh, the sleeve 32L and the dog gear 15d mesh (engage) with each other. In this state, the driving force from the engine 2 is transmitted to the output shaft 12 through the low gear pairs 11L and 15L. On the contrary, when the spline teeth of the sleeve 32L and the dog teeth of the dog gear 15d are separated from each other, the idle gear 15L is idled, and the power transmission on the low side in the second path 52 is interrupted.
 第二カウンタ軸16には、エンジン2に近い側から順に、第一ドグクラッチ20と、遊転ギヤ16Mと、パーキングギヤ19と、固定ギヤ16aとが設けられる。固定ギヤ16aは、デフ18のリングギヤ18aと常時噛合している。パーキングギヤ19は、パーキングロック装置を構成する要素であり、運転者によりPレンジが選択されると、図示しないパーキングスプラグと係合して、第二カウンタ軸16(すなわち出力軸12)の回転を禁止する。 The second countershaft 16 is provided with a first dog clutch 20, an idle gear 16M, a parking gear 19, and a fixed gear 16a in order from the side closer to the engine 2. The fixed gear 16 a is in constant mesh with the ring gear 18 a of the differential 18. The parking gear 19 is an element constituting the parking lock device, and when the P range is selected by the driver, the parking gear 19 engages with a parking plug (not shown) to rotate the second countershaft 16 (that is, the output shaft 12). Ban.
 遊転ギヤ16Mは、モータ軸13に設けられた固定ギヤ13aよりも歯数が多く、この固定ギヤ13aと常時噛合している。遊転ギヤ16Mは、固定ギヤ13aと噛み合う歯面部の右側に一体で設けられたドグギヤ16dを有する。なお、このドグギヤ16dは、上述したドグギヤ11dのドグ歯11tと同様のドグ歯(図示略)をその先端部に有する。 The idle gear 16M has more teeth than the fixed gear 13a provided on the motor shaft 13, and is always meshed with the fixed gear 13a. The idle gear 16M has a dog gear 16d integrally provided on the right side of the tooth surface portion that meshes with the fixed gear 13a. The dog gear 16d has a dog tooth (not shown) similar to the dog tooth 11t of the above-described dog gear 11d at its tip.
 第一ドグクラッチ20は、第二カウンタ軸16に固定されたハブ21と、ハブ21(第二カウンタ軸16)に対して相対回転不能であって軸方向に摺動自在に結合された環状のスリーブ22とを有する。スリーブ22も、図示しないアクチュエータが制御装置5によって制御されることで軸方向にスライド移動するものであり、ストロークセンサ45cによってその移動量(ストローク量)が検出される。スリーブ22の径方向内側には、上述したスリーブ32Hのスプライン歯32tと同様のスプライン歯(図示略)が設けられる。スリーブ22のスプライン歯と遊転ギヤ16Mのドグギヤ16dとが噛み合うことで、スリーブ22とドグギヤ16dとが噛合(係合)する。 The first dog clutch 20 has an annular sleeve fixed to the second countershaft 16 and an annular sleeve which can not rotate relative to the hub 21 (second countershaft 16) and is axially slidably coupled. And 22. The sleeve 22 also slides in the axial direction by an actuator (not shown) being controlled by the control device 5, and the movement amount (stroke amount) is detected by the stroke sensor 45c. On the radially inner side of the sleeve 22, spline teeth (not shown) similar to the spline teeth 32t of the sleeve 32H described above are provided. As the spline teeth of the sleeve 22 and the dog gear 16 d of the free rotation gear 16 M mesh with each other, the sleeve 22 and the dog gear 16 d mesh (engage) with each other.
 本実施形態では、走行モードがパラレルモードであってモータ3によるアシストが不要な場合に、スリーブ22のスプライン歯と遊転ギヤ16Mのドグギヤ16dとが離隔され、遊転ギヤ16Mが空転状態となり、第一経路51の動力伝達が遮断された状態となる。反対に、走行モードがEVモード又はシリーズモードである場合、又はパラレルモードであってモータアシストが必要な場合には、スリーブ22とドグギヤ16dとが噛合(係合)され、モータ3からの駆動力が出力軸12へと伝達される。 In this embodiment, when the traveling mode is the parallel mode and the assist by the motor 3 is unnecessary, the spline teeth of the sleeve 22 and the dog gear 16d of the idle gear 16M are separated, and the idle gear 16M is idle. The power transmission of the first path 51 is cut off. On the other hand, when the traveling mode is the EV mode or the series mode, or when the parallel mode requires motor assist, the sleeve 22 and the dog gear 16d are engaged (engaged), and the driving force from the motor 3 Is transmitted to the output shaft 12.
 本実施形態では、モータ3の作動時に(オン状態で)スリーブ22がドグギヤ16dと係合し、モータ3の停止時に(オフ状態で)スリーブ22がニュートラル位置Pn(中立位置)に制御される。なお、ここでいう「ニュートラル位置Pn」とは、走行中に車体が振動したり傾いたりしても、スプライン歯とドグ歯とが衝突しない程度にドグギヤから離隔した位置であって、予め設定されている。ニュートラル位置Pnは、例えばスリーブがアクチュエータによって移動させられる際に基準となる位置(0点位置)に設定される。 In the present embodiment, the sleeve 22 is engaged with the dog gear 16d when the motor 3 is operating (on) and is controlled to the neutral position Pn (neutral position) when the motor 3 is stopped (off). The "neutral position Pn" mentioned here is a position separated from the dog gear to such an extent that the spline teeth and the dog teeth do not collide even if the vehicle body vibrates or tilts during traveling, and is set in advance. ing. The neutral position Pn is set to, for example, a reference position (0 point position) when the sleeve is moved by the actuator.
[3.制御構成]
 上述したトランスアクスル1では、選択されている走行モードに応じて、三つのドグクラッチ20,30H,30Lの断接状態が制御される。上記した通り、本実施形態では、走行モードの選択、ドグクラッチ20,30H,30Lの断接状態、エンジン2やモータ3等の作動状態を、すべて制御装置5が制御する。以下、これらの制御のうち、特に、ドグクラッチ20,30H,30Lを係合させるときの制御(以下「クラッチ係合制御」と呼ぶ)について詳述する。
[3. Control configuration]
In the transaxle 1 described above, the connection / disconnection state of the three dog clutches 20, 30H, 30L is controlled in accordance with the selected travel mode. As described above, in the present embodiment, the control device 5 controls the selection of the traveling mode, the connection / disconnection states of the dog clutches 20, 30H, and 30L, and the operation states of the engine 2, the motor 3 and the like. Hereinafter, among these controls, in particular, control for engaging the dog clutches 20, 30H, and 30L (hereinafter, referred to as "clutch engagement control") will be described in detail.
 クラッチ係合制御は、車両10の走行中に、三つのドグクラッチ20,30H,30Lのうち少なくとも一つに対して実施される制御である。本実施形態では、全てのドグクラッチ20,30H,30Lに対して同様の制御が実施される。図4(a)~(c)には、ハイ側ドグクラッチ30Hのスリーブ32Hが、ニュートラル位置Pn,係合位置Pe,係合準備位置Pepのそれぞれに配置された状態を例示している。なお、図示は省略するが、第一ドグクラッチ20及びロー側ドグクラッチ30Lも、ハイ側ドグクラッチ30Hと同様に制御される。 The clutch engagement control is control that is performed on at least one of the three dog clutches 20, 30H, and 30L while the vehicle 10 is traveling. In the present embodiment, the same control is performed on all the dog clutches 20, 30H, and 30L. FIGS. 4A to 4C illustrate a state in which the sleeve 32H of the high side dog clutch 30H is disposed at each of the neutral position Pn, the engagement position Pe, and the engagement preparation position Pep. Although not shown, the first dog clutch 20 and the low side dog clutch 30L are also controlled in the same manner as the high side dog clutch 30H.
 ここで、係合位置Peは、各スリーブ22,32H,32Lと、これに隣接する各ドグギヤ16d,11d,15dとが係合する位置であり、例えば図4(b)に示すように、スリーブ32Hのスプライン歯32tとドグギヤ11dのドグ歯11tとが噛合する位置である。一方、係合準備位置Pepは、ニュートラル位置Pnから係合位置Pe側(ドグギヤ側)へ所定距離Xだけシフトした位置であり、例えば図4(c)に示すように、スリーブ32Hのスプライン歯32tとドグギヤ11dのドグ歯11tとがぶつからない程度の僅かな隙間を形成する位置である。 Here, the engagement position Pe is a position at which each of the sleeves 22, 32H, 32L and each of the dog gears 16d, 11d, 15d adjacent thereto engage with each other. For example, as shown in FIG. 4 (b) In this position, the spline teeth 32t of 32H and the dog teeth 11t of the dog gear 11d mesh with each other. On the other hand, the engagement preparation position Pep is a position shifted by a predetermined distance X from the neutral position Pn to the engagement position Pe side (dog gear side), and as shown in FIG. 4C, for example, spline teeth 32t of the sleeve 32H. And the dog teeth 11t of the dog gear 11d are at such positions as to form a slight gap that does not collide with the dog teeth 11t.
 係合準備位置Pepは、回転同期制御中であるドグクラッチ20,30H,30Lのスリーブ22,32H,32Lを待機させる位置である。回転同期制御中にスリーブ22,32H,32Lを係合準備位置Pepに待機させることで、回転が同期してからのスリーブ22,32H,32Lの移動量が小さくなるため、ドグクラッチ20,30H,30Lの係合完了までに要する時間(クラッチ係合時間)の短縮が図られる。 The engagement preparation position Pep is a position at which the sleeves 22, 32H, 32L of the dog clutches 20, 30H, 30L, which are under synchronous rotation control, stand by. By holding the sleeves 22, 32H, 32L at the engagement preparation position Pep during the rotation synchronization control, the movement amount of the sleeves 22, 32H, 32L after the rotation synchronization is reduced, so the dog clutches 20, 30H, 30L The time required to complete the engagement of the clutch (clutch engagement time) can be shortened.
 本実施形態では、所定距離Xがアクセル開度APに応じて変更される可変値として設けられる。具体的には、アクセル開度APが大きいほど、所定距離Xが長く設定される。つまり、係合準備位置Pepは、アクセル開度APが大きいほど(運転者の要求出力が大きいほど)、係合予定のドグギヤ寄りに設定されるため、クラッチ係合時間が一層短縮される。 In the present embodiment, the predetermined distance X is provided as a variable value that is changed according to the accelerator opening degree AP. Specifically, the predetermined distance X is set longer as the accelerator opening degree AP is larger. That is, since the engagement preparation position Pep is set closer to the dog gear to be engaged as the accelerator opening degree AP is larger (the request output of the driver is larger), the clutch engagement time is further shortened.
 さらに本実施形態の所定距離Xは、車両10の運転モードによっても変更される。具体的には、スポーツモードが設定されている場合には、スポーツモード以外の運転モード(ノーマルモード,エコモード)のときと比べて所定距離Xが長く設定される。これにより、運転者が加速性能を重視している場合(出力を出したいと考えている場合)には、その他の運転モードのときよりも係合準備位置Pepが係合予定のドグギヤ寄りに設定されるため、クラッチ係合時間が一層短縮される。 Furthermore, the predetermined distance X in the present embodiment is also changed depending on the operation mode of the vehicle 10. Specifically, when the sport mode is set, the predetermined distance X is set longer than in the driving mode other than the sport mode (normal mode, eco mode). As a result, when the driver emphasizes the acceleration performance (when it is desired to output the output), the engagement preparation position Pep is set closer to the dog gear to be engaged than in the other operation modes. Clutch engagement time is further reduced.
 制御装置5には、上述したクラッチ係合制御を実施するための要素として、選択部5A,回転制御部5B,スリーブ制御部5Cが設けられる。これらの要素は、制御装置5で実行されるプログラムの一部の機能を示すものであり、ソフトウェアで実現されるものとする。ただし、各機能の一部又は全部をハードウェア(電子回路)で実現してもよく、あるいはソフトウェアとハードウェアとを併用して実現してもよい。 The control unit 5 is provided with a selection unit 5A, a rotation control unit 5B, and a sleeve control unit 5C as elements for performing the above-described clutch engagement control. These elements indicate some functions of the program executed by the control device 5, and are realized by software. However, part or all of each function may be realized by hardware (electronic circuit) or may be realized by using software and hardware in combination.
 選択部5Aは、車両10の運転状態,運転者の要求出力,バッテリ6の充電状態等に基づき、EVモード,シリーズモード,パラレルモードの中から一つの走行モードを選択するものである。また、本実施形態の選択部5Aは、パラレルモードの選択中に、例えば要求出力や車速等に基づいてモータアシストの要否を判断する。選択部5Aは、走行モードを変更する場合、及び、モータアシストの要否を切り替える場合に、各ドグクラッチ20,30H,30Lの断接状態を切り替える必要があると判断する。そして、「係合する必要がある」と判断したドグクラッチ20,30H,30Lの種類を回転制御部5Bに伝達し、「切断する必要がある」と判断したドグクラッチ20,30H,30Lの種類をスリーブ制御部5Cに伝達する。 The selection unit 5A selects one traveling mode from the EV mode, the series mode, and the parallel mode, based on the driving state of the vehicle 10, the driver's request output, the charging state of the battery 6, and the like. In addition, the selection unit 5A of the present embodiment determines the necessity of the motor assist based on, for example, the required output, the vehicle speed, and the like while selecting the parallel mode. Selection unit 5A determines that it is necessary to switch the connection / disconnection state of each dog clutch 20, 30H, 30L when changing the traveling mode and when switching the necessity of motor assist. Then, the types of dog clutches 20, 30H, and 30L determined as "necessary to be engaged" are transmitted to the rotation control unit 5B, and the types of dog clutches 20, 30H, and 30L determined as "necessary to be disconnected" are sleeves. It is transmitted to the control unit 5C.
 回転制御部5Bは、車両10の走行中に、選択部5Aによって「係合する必要がある」と判断されたドグクラッチ20,30H,30Lの回転を同期させる回転同期制御を実施するものである。すなわち、回転制御部5Bは、切断状態にあるドグクラッチ20,30H,30Lを係合させる必要がある場合に回転同期制御を開始する。 The rotation control unit 5B performs rotation synchronization control to synchronize the rotation of the dog clutches 20, 30H, and 30L determined to be “engaged” by the selection unit 5A while the vehicle 10 is traveling. That is, the rotation control unit 5B starts the rotation synchronization control when it is necessary to engage the dog clutches 20, 30H, and 30L in the disconnected state.
 具体的には、回転同期部5Bは、第一ドグクラッチ20を係合させる場合には、ドグギヤ16dの回転がスリーブ22の回転に合うように、モータ3のトルクを制御(調整)する。また、ハイ側ドグクラッチ30Hを係合させる場合には、スリーブ32Hの回転がドグギヤ11dの回転に合うようにジェネレータ4のトルクを制御(調整)する。また、ロー側ドグクラッチ30Lを係合させる場合には、ドグギヤ15dの回転がスリーブ32Lの回転に合うように、ジェネレータ4のトルクを制御(調整)する。 Specifically, when engaging the first dog clutch 20, the rotation synchronization unit 5B controls (adjusts) the torque of the motor 3 so that the rotation of the dog gear 16d matches the rotation of the sleeve 22. When the high side dog clutch 30H is engaged, the torque of the generator 4 is controlled (adjusted) such that the rotation of the sleeve 32H matches the rotation of the dog gear 11d. When the low-side dog clutch 30L is engaged, the torque of the generator 4 is controlled (adjusted) so that the rotation of the dog gear 15d matches the rotation of the sleeve 32L.
 なお、ここでいう「合う」とは、完全な一致(すなわち同期)だけでなく、互いの回転数を近づけて、二つの回転数の差を所定の回転数範囲内に収めることを意味する。すなわち、回転制御部5Bは、係合させるドグクラッチ20,30H,30Lのスリーブ22,32H,32Lの回転数とドグギヤ16d,11d,15dの回転数との回転数差を求めるとともに、求めた回転数差が所定の回転数範囲内となるように回転電機(モータ3,ジェネレータ4)を制御する。 Here, “match” means not only perfect coincidence (ie, synchronization) but also bringing the number of rotations close to each other so that the difference between the two numbers of rotations falls within a predetermined number of rotations. That is, the rotation control unit 5B determines the difference between the rotational speeds of the sleeves 22, 32H, 32L of the dog clutches 20, 30H, 30L and the rotational speeds of the dog gears 16d, 11d, 15d to be engaged. The rotary electric machine (motor 3, generator 4) is controlled so that the difference is within a predetermined rotational speed range.
 ここで、上記の回転数範囲とは、ドグクラッチ20,30H,30Lの係合時に起こりうる騒音や歯の損傷を抑えつつ、回転同期にかかる時間の長期化を防ぐことができる値に設定された回転数差の範囲である。この回転数範囲は、例えば、0を中心とし、正の値である上限値以下かつ負の値である下限値以上の範囲とされる。この場合、上限値及び下限値の絶対値は互いに同一とされる。なお、回転数範囲は予め設定された固定値であってもよいし、例えば車速(車輪速)に応じた可変値としてもよい。 Here, the above-described rotational speed range is set to a value that can prevent a prolonged time required for rotational synchronization while suppressing noise and tooth damage that may occur when the dog clutches 20, 30H, and 30L are engaged. It is a range of rotational speed difference. The rotational speed range is, for example, a range having an upper limit value which is a positive value and a lower limit value which is a negative value, centering around 0. In this case, the absolute values of the upper limit value and the lower limit value are the same. The rotational speed range may be a fixed value set in advance, or may be a variable value according to the vehicle speed (wheel speed), for example.
 なお、回転制御部5Bは、係合されるドグクラッチ20,30H,30Lのスリーブ22,32H,32Lが係合位置Peに移動されて、ドグクラッチ20,30H,30Lの係合が完了すると、回転同期制御を終了する。 In the rotation control unit 5B, when the sleeves 22, 32H, 32L of the dog clutches 20, 30H, 30L to be engaged are moved to the engagement position Pe and the engagement of the dog clutches 20, 30H, 30L is completed, the rotation synchronization is performed. End control.
 スリーブ制御部5Cは、各ドグクラッチ20,30H,30Lのアクチュエータを制御することで各スリーブ22,32H,32Lの位置を変更し、ドグクラッチ20,30H,30Lの断接状態を切り替えるものである。スリーブ制御部5Cは、選択部5Aによって「切断する必要がある」と判断されたドグクラッチ20,30H,30Lを切断するとともに、回転制御部5Bによって回転同期されているドグクラッチ20,30H,30Lを係合する。以下、クラッチ係合について説明する。 The sleeve control unit 5C changes the positions of the sleeves 22, 32H, 32L by controlling the actuators of the dog clutches 20, 30H, 30L, and switches the connection / disconnection state of the dog clutches 20, 30H, 30L. The sleeve control unit 5C disconnects the dog clutches 20, 30H, and 30L determined by the selection unit 5A to be "must be disconnected", and engages the dog clutches 20, 30H, and 30L that are rotationally synchronized by the rotation control unit 5B. Match. Hereinafter, clutch engagement will be described.
 スリーブ制御部5Cは、各スリーブ22,32H,32Lを、各ドグギヤ16d,11d,15dに向かう方向及び各ドグギヤ16d,11d,15dから離れる方向にスライド移動するようにアクチュエータを制御する。以下、クラッチを係合させる方向(例えばスリーブ32Hがドグギヤ11dに向かう方向)を「第一方向」と呼び、第一方向とは逆方向(すなわちクラッチを切断する方向)を「第二方向」と呼ぶ。スリーブ制御部5Cは、クラッチ係合時には、ニュートラル位置Pnに配置されているスリーブを第一方向へ移動させ、クラッチ切断時には、係合位置Peに配置されているスリーブを第二方向へニュートラル位置Pnまで移動させる。 The sleeve control unit 5C controls the actuator to slide the sleeves 22, 32H, 32L in the direction toward the dog gears 16d, 11d, 15d and in the direction away from the dog gears 16d, 11d, 15d. Hereinafter, the direction in which the clutch is engaged (for example, the direction in which the sleeve 32H moves toward the dog gear 11d) is referred to as "first direction", and the direction opposite to the first direction (i.e., direction in which the clutch is disconnected) is referred to as "second direction". Call. The sleeve control unit 5C moves the sleeve disposed in the neutral position Pn in the first direction when the clutch is engaged, and shifts the sleeve disposed in the engagement position Pe in the second direction when the clutch is disengaged. Move to
 また、スリーブ制御部5Cは、回転制御部5Bにより回転同期されているドグクラッチのスリーブを、その回転同期制御中に第一方向へ移動させて、ニュートラル位置Pnから所定距離Xだけドグギヤ側にシフトした係合準備位置Pepに待機させる。例えば、回転制御部5Bによりハイ側ドグクラッチ30Hに対して回転同期制御が実施されている場合には、スリーブ制御部5Cは、その回転同期制御中にスリーブ32Hを第一方向へ移動させ、図4(c)に示す係合準備位置Pepに待機させる。 Further, the sleeve control unit 5C shifts the sleeve of the dog clutch rotationally synchronized by the rotation control unit 5B in the first direction during the rotation synchronization control, and shifts the dog gear side by a predetermined distance X from the neutral position Pn. It waits for the engagement preparation position Pep. For example, when the rotation synchronization control is performed on the high-side dog clutch 30H by the rotation control unit 5B, the sleeve control unit 5C moves the sleeve 32H in the first direction during the rotation synchronization control, as shown in FIG. It waits for the engagement preparation position Pep shown in (c).
 このように、スリーブ制御部5Cがスリーブ32Hを係合準備位置Pepに待機させるのは、ハイ側ドグクラッチ30Hを係合させる際の回転同期が完了する直前である。つまり、スリーブ制御部5Cは、回転同期制御が実施されていない状態では、スリーブ32Hをニュートラル位置Pn又は係合位置Peに配置する。なお、第一ドグクラッチ20及びロー側ドグクラッチ30Lに対しても同様に、回転制御部5Bによる制御中ではスリーブ22,32Lを係合準備位置Pepに待機させ、回転同期制御が実施されていない状態では、スリーブ22,32Lをニュートラル位置Pn又は係合位置Peに配置する。 As described above, the sleeve control unit 5C causes the sleeve 32H to stand by at the engagement preparation position Pep immediately before the completion of the rotation synchronization at the time of engaging the high-side dog clutch 30H. That is, the sleeve control unit 5C places the sleeve 32H in the neutral position Pn or the engagement position Pe in a state where the rotation synchronization control is not performed. Similarly, for the first dog clutch 20 and the low-side dog clutch 30L, the sleeves 22 and 32L are made to stand by at the engagement preparation position Pep during the control by the rotation control unit 5B, and the rotation synchronous control is not performed. , And the sleeves 22 and 32L are disposed at the neutral position Pn or the engagement position Pe.
 本実施形態のスリーブ制御部5Cは、アクセル開度APに応じて所定距離Xを変更し、係合準備位置Pepを設定する。スリーブ制御部5Cは、アクセル開度APが大きいほど所定距離Xを長くすることで、係合準備位置Pepをドグギヤ寄りに設定する。また、本実施形態のスリーブ制御部5Cは、複数の運転モードのうち、スポーツモードが設定されている場合には、スポーツモード以外の運転モードが設定されている場合よりも所定距離Xを長くする。 The sleeve control unit 5C of the present embodiment changes the predetermined distance X in accordance with the accelerator opening degree AP, and sets the engagement preparation position Pep. The sleeve control unit 5C sets the engagement preparation position Pep closer to the dog gear by lengthening the predetermined distance X as the accelerator opening AP is larger. Further, when the sport mode is set among the plurality of operation modes, the sleeve control unit 5C of the present embodiment makes the predetermined distance X longer than when the operation mode other than the sport mode is set. .
 スリーブ制御部5Cは、例えば図5に示すようなマップを用いて所定距離Xを取得(変更)してもよい。このマップは、アクセル開度APが大きいほど所定距離Xが長くなるように設定されており、予め制御装置5に記憶されている。また、このマップでは、運転モードごとに、アクセル開度APに対する所定距離Xの関係が設定されている。このマップでは、スポーツモードのときに、他の運転モード(ノーマルモード,エコモード)のときよりも、アクセル開度APに対する所定距離Xが長くなるように設定されている。なお、このマップでは、エコモードのときに、アクセル開度APにかかわらず所定距離Xが0に設定されている。 The sleeve control unit 5C may obtain (change) the predetermined distance X using, for example, a map as shown in FIG. The map is set such that the predetermined distance X is longer as the accelerator opening AP is larger, and is stored in the control device 5 in advance. Further, in this map, the relationship of the predetermined distance X with respect to the accelerator opening degree AP is set for each driving mode. In this map, the predetermined distance X with respect to the accelerator opening AP is set to be longer in the sport mode than in the other driving modes (normal mode, eco mode). In this map, in the eco mode, the predetermined distance X is set to 0 regardless of the accelerator opening AP.
 スリーブ制御部5Cは、回転同期制御中のスリーブ22,32H,32Lの回転数とドグギヤ16d,11d,15dの回転数との回転数差が上記の回転数範囲内になると、スリーブ22,32H,32Lを係合準備位置Pepから係合位置Peまで第一方向へ更に移動させてドグクラッチ20,30H,30Lの係合を完了させる。例えば、回転制御部5Bによりハイ側ドグクラッチ30Hに対して回転同期制御が実施されている場合、スリーブ制御部5Cは、スリーブ32H及びドグギヤ11dの回転数差が上記の回転数範囲内になったら、スリーブ32Hを第一方向へ更に移動させるようにアクチュエータを制御し、ハイ側ドグクラッチ30Hの係合を完了させる。 When the rotational speed difference between the rotational speed of the sleeves 22, 32H, 32L and the rotational speed of the dog gears 16d, 11d, 15d under the rotation synchronous control falls within the above-mentioned rotational speed range, the sleeve control unit 5C 32L is further moved in the first direction from the engagement preparation position Pep to the engagement position Pe to complete the engagement of the dog clutches 20, 30H, 30L. For example, when the rotation synchronization control is performed on the high-side dog clutch 30H by the rotation control unit 5B, the sleeve control unit 5C determines that the rotational speed difference between the sleeve 32H and the dog gear 11d falls within the above rotational speed range. The actuator is controlled to further move the sleeve 32H in the first direction, and the engagement of the high side dog clutch 30H is completed.
[4.フローチャート]
 図6は、上述したクラッチ係合制御の内容を説明するためのフローチャート例である。このフローチャートは、車両10の走行中に制御装置5において所定の演算周期で実施される。なお、このフローチャートは、切断状態の各ドグクラッチ20,30H,30Lが係合されるときに実施されるものであり、ドグクラッチ,スリーブ及びドグギヤの各符号を省略して説明する。すなわち、このフローの開始時点において、スリーブはドグギヤから離れた状態にある。
[4. flowchart]
FIG. 6 is an example of a flowchart for explaining the contents of the above-described clutch engagement control. The flowchart is performed in a predetermined calculation cycle in the control device 5 while the vehicle 10 is traveling. Note that this flowchart is performed when the dog clutches 20, 30H, and 30L in the disconnected state are engaged, and the description will be made by omitting the reference numerals of the dog clutch, the sleeve, and the dog gear. That is, at the start of this flow, the sleeve is in a state of being separated from the dog gear.
 ステップS1では、各センサ41~45及びモード設定スイッチ46からの情報が伝達される。ステップS2では、回転制御部5Bによる回転同期制御が実施されているか否かが判定され、制御中でなければステップS3に進む。ステップS3では、選択部5Aにより、ドグクラッチの断接状態を切り替える必要があると判断されたか否かが判定される。断接状態の切替が不要な場合はこのフローをリターンし、必要がある場合にはステップS4に進む。ステップS4では、回転制御部5Bにより、係合させるドグクラッチの回転同期制御が開始される。 In step S1, information from each of the sensors 41 to 45 and the mode setting switch 46 is transmitted. In step S2, it is determined whether or not the rotation synchronization control by the rotation control unit 5B is performed. If the control is not in progress, the process proceeds to step S3. In step S3, it is determined by the selection unit 5A whether or not it is determined that the connection / disconnection state of the dog clutch needs to be switched. If it is not necessary to switch the connection / disconnection state, this flow is returned, and if it is necessary to proceed to step S4. In step S4, rotation synchronous control of the dog clutch to be engaged is started by the rotation control unit 5B.
 ステップS5では、ステップS1で取得されたアクセル開度APと運転モードとに基づいて所定距離Xが取得され、係合準備位置Pepが設定される。続くステップS6では、係合対象のスリーブが第一方向へ移動するようアクチュエータが制御され、ステップS5で設定された係合準備位置Pepにスリーブを待機させる。そして、回転が同期したか否かが判定され(ステップS7)、回転同期が完了していなければ、このフローをリターンする。 In step S5, the predetermined distance X is acquired based on the accelerator opening AP acquired in step S1 and the operation mode, and the engagement preparation position Pep is set. At the following step S6, the actuator is controlled so that the sleeve to be engaged moves in the first direction, and the sleeve is made to stand by at the engagement preparation position Pep set at step S5. Then, it is determined whether or not the rotations have been synchronized (step S7), and if the rotation synchronization has not been completed, this flow is returned.
 次の演算周期では、再び各種情報が取得され(ステップS1)、回転同期制御中であるか否かが判定される(ステップS2)。ステップS7のNoルートからフローをリターンした場合は回転同期制御中であるため、ステップS2からステップS7に進み、ステップS7の判定が実施される。そして、ステップS7において回転が同期したと判定されると、ステップS8に進み、係合準備位置Pepに待機中のスリーブが第一方向へ移動するようアクチュエータが制御され、ドグクラッチの係合が完了して、このフローをリターンする。 In the next calculation cycle, various information is acquired again (step S1), and it is determined whether or not rotation synchronization control is in progress (step S2). When the flow is returned from the No route of step S7, since the rotation synchronization control is being performed, the process proceeds from step S2 to step S7, and the determination of step S7 is performed. When it is determined in step S7 that the rotations are synchronized, the process proceeds to step S8, the actuator is controlled so that the sleeve waiting at the engagement preparation position Pep moves in the first direction, and the engagement of the dog clutch is completed. Return this flow.
[5.作用,効果]
 (1)上述した制御装置5では、回転同期制御中に、スリーブを係合準備位置Pepに待機させることでクラッチ係合時間を短縮できるため、動力性能を向上させることができる。また、回転同期制御を実施していないときにはスリーブがニュートラル位置Pnに配置されるため、走行時の振動や車体の傾斜等によってスリーブの歯とドグギヤの歯との衝突を防ぐことができる。したがって、上述した制御装置5によれば、クラッチ係合時間の短縮と、歯同士がぶつかることによる騒音や損傷の抑制とを両立できる。
[5. Action, effect]
(1) In the control device 5 described above, since the clutch engagement time can be shortened by causing the sleeve to stand by at the engagement preparation position Pep during the rotation synchronization control, the power performance can be improved. In addition, since the sleeve is disposed at the neutral position Pn when the rotation synchronization control is not performed, it is possible to prevent a collision between the teeth of the sleeve and the teeth of the dog gear due to vibration during traveling or inclination of the vehicle body. Therefore, according to the control device 5 described above, it is possible to achieve both shortening of the clutch engagement time and suppression of noise and damage due to collision of the teeth.
 (2)上述した制御装置5では、回転同期制御中のスリーブ22,32H,32Lの回転数とドグギヤ16d,11d,15dの回転数との回転数差が所定の回転数範囲内になると、スリーブ制御部5Cがスリーブ22,32H,32Lを係合準備位置Pepから第一方向へ更に移動させてドグクラッチ20,30H,30Lの係合を完了させる。このように制御することで、クラッチ係合時に生じうる騒音や歯の損傷を抑制しつつ速やかにドグクラッチ20,30H,30Lを係合させることができる。また、回転数差が所定の回転数範囲内になっていなければスリーブ22,32H,32Lが係合準備位置Pepから第一方向へと移動しないため、回転同期制御中に車速が急変した場合でも、歯同士がぶつかることなく、騒音や歯の損傷を抑制することができる。 (2) In the control device 5 described above, when the rotational speed difference between the rotational speed of the sleeves 22, 32H, 32L and the rotational speed of the dog gears 16d, 11d, 15d under the rotation synchronous control falls within a predetermined rotational speed range, The control unit 5C further moves the sleeves 22, 32H, 32L from the engagement preparation position Pep in the first direction to complete the engagement of the dog clutches 20, 30H, 30L. By performing such control, it is possible to quickly engage the dog clutches 20, 30H, and 30L while suppressing noise and tooth damage that may occur at the time of clutch engagement. In addition, since the sleeves 22, 32H, 32L do not move from the engagement preparation position Pep in the first direction unless the rotational speed difference is within the predetermined rotational speed range, even if the vehicle speed suddenly changes during the rotational synchronization control. Noise can be suppressed without damaging the teeth.
 (3)係合準備位置Pepは、ニュートラル位置Pnよりも所定距離Xだけドグギヤ側にシフトした位置に設定される。上述した制御装置5では、この所定距離Xがアクセル開度APに応じて変更されるため、回転同期制御中におけるスリーブの待機位置(すなわち、係合準備位置Pep)を適切に設定することができる。
 (4)さらに上述した制御装置5では、アクセル開度APが大きいほど所定距離Xが長くされる。すなわち、運転者による要求出力が大きいほど係合準備位置Pepがドグギヤ寄りに設定されるため、クラッチ係合時間を一層短くすることができ、動力性能をさらに向上させることができる。
(3) The engagement preparation position Pep is set to a position shifted to the dog gear side by the predetermined distance X relative to the neutral position Pn. In the control device 5 described above, since the predetermined distance X is changed according to the accelerator opening AP, the standby position (that is, the engagement preparation position Pep) of the sleeve during the rotation synchronization control can be appropriately set. .
(4) In the control device 5 described above, the predetermined distance X is made longer as the accelerator opening degree AP is larger. That is, since the engagement preparation position Pep is set closer to the dog gear as the driver's required output increases, the clutch engagement time can be further shortened, and the power performance can be further improved.
 (5)また、上述した制御装置5では、スポーツモードが設定されている場合には、他の運転モードが設定されているときよりも所定距離Xが長くされる。すなわち、運転者が加速性能を重視している場合には、エコモードやノーマルモードに比べて係合準備位置Pepがドグギヤ寄りに設定されるため、クラッチ係合時間を一層短くすることができ、動力性能をさらに向上させることができる。 (5) Further, in the control device 5 described above, when the sport mode is set, the predetermined distance X is made longer than when another driving mode is set. That is, when the driver emphasizes the acceleration performance, the engagement preparation position Pep is set closer to the dog gear as compared to the eco mode or the normal mode, so the clutch engagement time can be further shortened. Power performance can be further improved.
 (6)上述した車両10は、エンジン2とモータ3とを具備するハイブリッド車両である。また、車両10には、モータ3からの動力を伝達する第一経路51上に第一ドグクラッチ20が介装され、エンジン2からの動力を伝達する第二経路52上に第二ドグクラッチ30が介装される。このように、異なる動力伝達経路から異なる駆動源の動力が個別に伝達される車両10に、上述した制御装置5を適用することによって、走行中の動力伝達経路の切替を速やかに行うことができる。したがって、車両10の動力性能を向上させることができる。 (6) The vehicle 10 described above is a hybrid vehicle including the engine 2 and the motor 3. Further, in the vehicle 10, the first dog clutch 20 is interposed on the first path 51 for transmitting the motive power from the motor 3, and the second dog clutch 30 is interposed on the second path 52 for transmitting the motive power from the engine 2. Be disguised. As described above, by applying the above-described control device 5 to the vehicle 10 to which power of different drive sources is individually transmitted from different power transmission paths, switching of the power transmission path during traveling can be performed promptly. . Therefore, the motive power performance of the vehicle 10 can be improved.
 (7)また、上述した車両10には、エンジン2からの動力を伝達する第二経路52上に、互いに独立したハイ側ドグクラッチ30H及びロー側ドグクラッチ30Lが設けられている。このように、ハイギヤ段とローギヤ段とを切替可能な車両10に、上述した制御装置5を適用することで、変速ショックを抑制することができるとともに、ハイロー切替を速やかに行うことができる。 (7) Further, in the above-described vehicle 10, the high-side dog clutch 30H and the low-side dog clutch 30L which are independent of each other are provided on the second path 52 for transmitting the motive power from the engine 2. As described above, by applying the control device 5 described above to the vehicle 10 capable of switching between the high gear and the low gear, it is possible to suppress a shift shock and to perform high-low switching promptly.
 (8)上述したドグクラッチ20,30H,30Lはいずれもシンクロ機構を持たない噛み合いクラッチである。このため、油圧を利用して作動するクラッチを適用する場合に比べて、オイルポンプを必要としないので、トランスアクスル1の小型化を図ることができ、省スペース化を実現できる。 (8) The dog clutches 20, 30H, and 30L described above are meshing clutches having no synchro mechanism. For this reason, compared with the case where the clutch operated using oil pressure is applied, since the oil pump is not required, the transaxle 1 can be miniaturized, and space saving can be realized.
 なお、上述したトランスアクスル1では、第二経路52上に第二ドグクラッチ30が設けられ、パラレルモードでの走行時に、走行状態や要求出力等に応じてハイギヤ段とローギヤ段とが切り替えられる。つまり、パラレルモードにおいて、エンジン2の動力を二段階に切り替えて伝達(出力)することができるため、走行パターンを増やすことができ、ドライブフィーリングの向上や燃費改善といった効果が得られ、車両商品性を向上させることができる。 In the transaxle 1 described above, the second dog clutch 30 is provided on the second path 52, and when traveling in the parallel mode, the high gear and the low gear are switched according to the traveling state, the required output, and the like. That is, in the parallel mode, the power of the engine 2 can be switched in two steps and transmitted (output), so that the traveling pattern can be increased, and the effects such as the improvement of the drive feeling and the improvement of the fuel efficiency can be obtained. It is possible to improve the quality.
 また、上述した第二ドグクラッチ30は、ハイ側ドグクラッチ30Hとロー側ドグクラッチ30Lとから構成され、各ドグクラッチ30H,30Lにはスリーブ32H,32Lが設けられるため、ギヤ比の制約がない。すなわち、ハイギヤ段,ローギヤ段の各ギヤ比を自由に設定することができる。さらに、上述した車両10では、エンジン2及びモータ3の動力を個別に出力可能であるため、ハイロー切替時におけるトルク抜けをモータ3の動力でカバーすることができる。これにより、変速ショックを抑制することができるとともに、ハイロー切替を早急に行う必要性が低くなることから第二ドグクラッチ30の構成を簡素化することができる。 Further, since the second dog clutch 30 described above is configured of the high side dog clutch 30H and the low side dog clutch 30L, and the dog clutches 30H and 30L are provided with the sleeves 32H and 32L, there is no restriction on the gear ratio. That is, each gear ratio of the high gear stage and the low gear stage can be freely set. Furthermore, in the vehicle 10 described above, since the power of the engine 2 and the motor 3 can be output individually, it is possible to cover the torque dropout at the time of high / low switching with the power of the motor 3. As a result, it is possible to suppress the shift shock and to reduce the need to perform high / low switching quickly, so the configuration of the second dog clutch 30 can be simplified.
[6.その他]
 上述したクラッチ係合制御の内容は一例であって、上述したものに限られない。例えば、所定距離Xを運転モードによらず、アクセル開度APのみによって変更してもよいし、反対に、アクセル開度APによらず、運転モードのみによって変更してもよい。あるいは、所定距離Xを固定値として予め設定しておいてもよい。少なくとも、クラッチ係合するための回転制御中に、そのクラッチのスリーブを第一方向へ移動させて、ニュートラル位置Pnよりもドグギヤ側に所定距離Xだけシフトした係合準備位置Pepに待機させておくことで、クラッチ係合時間を短縮できる。なお、上述した三つの運転モード(エコモード,ノーマルモード,スポーツモード)は一例である。
[6. Other]
The content of the above-described clutch engagement control is an example, and is not limited to the above. For example, the predetermined distance X may be changed only by the accelerator opening AP without depending on the operation mode, and conversely, it may be changed only by the operation mode regardless of the accelerator opening AP. Alternatively, the predetermined distance X may be set in advance as a fixed value. At least during rotation control for clutch engagement, the sleeve of the clutch is moved in the first direction, and is kept on standby at the engagement preparation position Pep shifted by the predetermined distance X closer to the dog gear than the neutral position Pn. Thus, the clutch engagement time can be shortened. The above-mentioned three operation modes (eco mode, normal mode, sport mode) are an example.
 上述したトランスアクスル1は一例であって、その構成は上述したものに限られない。例えば、上述したトランスアクスル1では、第二ドグクラッチ30が入力軸11及び第一カウンタ軸15のそれぞれに設けられているが、一方の軸11,15に一つの第二ドグクラッチが設けられていてもよい。例えば、入力軸11に設けられた第二ドグクラッチの軸方向の一側にハイ側のドグギヤを配置し、他側にロー側のドグギヤを配置して、第二ドグクラッチのスリーブが両方のドグギヤと噛み合うように設けられていてもよい。このような構成のトランスアクスルであっても、上述したクラッチ係合制御を適用可能である。 Transaxle 1 mentioned above is an example, and the composition is not restricted to what was mentioned above. For example, in the transaxle 1 described above, the second dog clutch 30 is provided on each of the input shaft 11 and the first counter shaft 15, but one second dog clutch may be provided on one of the shafts 11 and 15 Good. For example, a high-side dog gear is disposed on one side in the axial direction of the second dog clutch provided on the input shaft 11, and a low-side dog gear is disposed on the other side, and the sleeve of the second dog clutch engages with both dog gears. It may be provided. The clutch engagement control described above is applicable even to the transaxle having such a configuration.
 なお、トランスアクスル1に対するエンジン2,モータ3,ジェネレータ4の相対位置は上述したものに限らない。これらの相対位置に応じて、トランスアクスル1内の六つの軸11~16の配置を設定すればよい。また、トランスアクスル1内の各軸に設けられるギヤの配置も一例であって、上述したものに限られない。 The relative positions of the engine 2, the motor 3 and the generator 4 with respect to the transaxle 1 are not limited to those described above. The arrangement of the six axes 11 to 16 in the transaxle 1 may be set according to these relative positions. Further, the arrangement of the gears provided on each of the shafts in the transaxle 1 is also an example, and is not limited to that described above.
 また、上述したトランスアクスル1は、ハイギヤ段とローギヤ段とを有し、これらが第二ドグクラッチ30により切り替えられるが、2段切り替え式のトランスアクスル以外の変速機に用いられるクラッチに対して、上述したクラッチ係合制御を適用してもよい。上述したクラッチ係合制御は、少なくとも一つの回転電機からの動力が伝達される第一軸と、この第一軸に伝達された動力が伝達される第二軸との動力伝達を断接するクラッチを備えた車両に対して適用可能である。なお、クラッチには、第一軸及び第二軸の一方に対して同期回転しかつ軸方向へ移動可能に設けられたスリーブと、第一軸及び第二軸の他方に対して相対回転可能に設けられた被係合ギヤとが設けられていればよく、上述したドグクラッチに限られない。 Moreover, although the transaxle 1 mentioned above has a high gear stage and a low gear stage, and these are switched by the 2nd dog clutch 30, it is mentioned above with respect to the clutch used for transmissions other than a two-stage switching type transaxle. Alternatively, clutch engagement control may be applied. The above-described clutch engagement control connects and disconnects a clutch for connecting and disconnecting power transmission between a first shaft to which power from at least one rotary electric machine is transmitted and a second shaft to which power transmitted to the first shaft is transmitted. It is applicable to the equipped vehicle. The clutch has a sleeve that is synchronously rotated with respect to one of the first shaft and the second shaft and axially movable, and capable of relative rotation with respect to the other of the first shaft and the second shaft. The present invention is not limited to the dog clutch described above as long as the provided engaged gear is provided.
 1 トランスアクスル
 2 エンジン
 3 モータ(電動機,回転電機)
 4 ジェネレータ(発電機,回転電機)
 5 制御装置(クラッチ制御装置)
 5B 回転制御部
 5C スリーブ制御部
 10 車両
 11 入力軸(第一軸)
 11d ドグギヤ(被係合ギヤ)
 13 モータ軸(第一軸)
 15 第一カウンタ軸(第二軸)
 15d ドグギヤ(被係合ギヤ)
 16 第二カウンタ軸(第二軸)
 16d ドグギヤ(被係合ギヤ)
 20 第一ドグクラッチ(クラッチ)
 22 スリーブ
 30 第二ドグクラッチ(クラッチ)
 30H ハイ側ドグクラッチ(クラッチ)
 30L ロー側ドグクラッチ(クラッチ)
 32H,32L スリーブ
 41 アクセル開度センサ(アクセル開度検出部)
 51 第一経路(第一動力伝達経路)
 52 第二経路(第二動力伝達経路)
 53 第三経路(第三動力伝達経路)
 AP アクセル開度
 Pe 係合位置
 Pep 係合準備位置
 Pn ニュートラル位置(中立位置)
 X 所定距離
1 Transaxle 2 Engine 3 Motor (Motor, Rotating Electric Machine)
4 Generator (generator, rotating electric machine)
5 Control device (clutch control device)
5B rotation control unit 5C sleeve control unit 10 vehicle 11 input shaft (first shaft)
11d dog gear (engaged gear)
13 Motor shaft (first shaft)
15 First counter axis (second axis)
15d Dog gear (engaged gear)
16 Second counter axis (second axis)
16d dog gear (engaged gear)
20 1st dog clutch (clutch)
22 sleeve 30 second dog clutch (clutch)
30H high side dog clutch (clutch)
30L low side dog clutch (clutch)
32H, 32L sleeve 41 accelerator opening sensor (accelerator opening detector)
51 first path (first power transmission path)
52 Second path (second power transmission path)
53 third path (third power transmission path)
AP accelerator opening Pe engagement position Pep engagement preparation position Pn neutral position (neutral position)
X predetermined distance

Claims (8)

  1.  少なくとも一つの回転電機からの動力が伝達される第一軸と前記第一軸に伝達された動力が伝達される第二軸との動力伝達を断接するクラッチを備えた車両のクラッチ制御装置であって、
     前記クラッチには、前記第一軸及び前記第二軸の一方に対して同期回転しかつ軸方向へ移動可能に設けられたスリーブと、前記第一軸及び前記第二軸の他方に対して相対回転可能に設けられた被係合ギヤと、が設けられ、
     前記クラッチ制御装置は、前記スリーブの回転数と前記被係合ギヤの回転数との回転数差が所定の回転数範囲内となるように前記回転電機を回転同期制御する回転制御部と、
     予め設定された中立位置に配置されている前記スリーブを前記被係合ギヤに係合させるよう第一方向へ移動させるスリーブ制御部と、を備え、
     前記スリーブ制御部は、前記回転同期制御中に、前記スリーブを前記第一方向へ移動させて前記中立位置よりも前記被係合ギヤ側に所定距離だけシフトした係合準備位置に待機させる
    ことを特徴とする、クラッチ制御装置。
    A clutch control device for a vehicle including a clutch for connecting and disconnecting power transmission between a first shaft to which power from at least one rotary electric machine is transmitted and a second shaft to which power transmitted to the first shaft is transmitted. ,
    In the clutch, a sleeve that is synchronously rotated with respect to one of the first shaft and the second shaft and axially movably provided, and is relative to the other of the first shaft and the second shaft A rotatably mounted engaged gear;
    The clutch control device controls the rotation of the rotating electrical machine in synchronization so that the rotational speed difference between the rotational speed of the sleeve and the rotational speed of the engaged gear is within a predetermined rotational speed range;
    A sleeve control unit for moving the sleeve, which is disposed at a preset neutral position, in a first direction to engage the engaged gear;
    The sleeve control unit moves the sleeve in the first direction during the rotational synchronization control to stand by at the engagement preparation position shifted by a predetermined distance from the neutral position toward the engaged gear. A clutch control device characterized by
  2.  前記回転制御部は、切断状態にある前記クラッチを係合させる必要がある場合に前記回転同期制御を開始し、
     前記スリーブ制御部は、前記回転数差が前記所定の回転数範囲内になると前記スリーブを前記係合準備位置から前記第一方向に更に移動させて前記クラッチの係合を完了させる
    ことを特徴とする、請求項1記載のクラッチ制御装置。
    The rotation control unit starts the rotation synchronization control when it is necessary to engage the clutch in a disconnected state,
    The sleeve control unit further moves the sleeve in the first direction from the engagement preparation position when the rotational speed difference is within the predetermined rotational speed range to complete the engagement of the clutch. The clutch control device according to claim 1.
  3.  前記車両には、アクセル開度を検出するアクセル開度検出部が設けられ、
     前記スリーブ制御部は、前記アクセル開度に応じて前記所定距離を変更する
    ことを特徴とする、請求項1または2記載のクラッチ制御装置。
    The vehicle is provided with an accelerator opening detection unit that detects an accelerator opening,
    The clutch control device according to claim 1 or 2, wherein the sleeve control unit changes the predetermined distance in accordance with the accelerator opening degree.
  4.  前記スリーブ制御部は、前記アクセル開度が大きいほど前記所定距離を長くする
    ことを特徴とする、請求項3記載のクラッチ制御装置。
    The clutch control device according to claim 3, wherein the sleeve control unit lengthens the predetermined distance as the accelerator opening degree increases.
  5.  前記車両には複数の運転モードが設けられており、
     前記スリーブ制御部は、前記複数の運転モードのうち、前記車両が起動された際に設定されるノーマルモードよりも加速性能を重視した加速モードが設定されている場合には、前記ノーマルモードが設定されている場合よりも、前記所定距離を長くする
    ことを特徴とする、請求項1~4のいずれか1項に記載のクラッチ制御装置。
    The vehicle is provided with a plurality of operation modes,
    The sleeve control unit sets the normal mode when an acceleration mode in which acceleration performance is more important than the normal mode set when the vehicle is started is set among the plurality of operation modes. The clutch control device according to any one of claims 1 to 4, characterized in that the predetermined distance is made longer than in the case where it is set.
  6.  前記車両は、二つの前記回転電機とエンジンとを具備し、一方の前記回転電機の動力を前記車両の駆動輪を駆動する出力軸に伝達する第一動力伝達経路と、前記エンジンの動力を前記出力軸に伝達する第二動力伝達経路と、前記エンジンの動力を他方の前記回転電機に伝達する第三動力伝達経路と、を有するハイブリッド車両であり、
     前記クラッチは、前記第一動力伝達経路及び前記第二動力伝達経路のそれぞれに介装される
    ことを特徴とする、請求項1~5のいずれか1項に記載のクラッチ制御装置。
    The vehicle comprises two of the rotating electrical machines and an engine, and a first power transmission path for transmitting the power of one of the rotating electrical machines to an output shaft for driving the drive wheels of the vehicle, and the power of the engine A hybrid vehicle comprising: a second power transmission path transmitting to an output shaft; and a third power transmission path transmitting the power of the engine to the other rotating electric machine
    The clutch control device according to any one of claims 1 to 5, wherein the clutch is interposed in each of the first power transmission path and the second power transmission path.
  7.  前記回転制御部により制御される前記回転電機は、前記他方の回転電機であり、
     前記第二動力伝達経路には、前記クラッチとして、互いに独立したハイ側クラッチ及びロー側クラッチが介装され、
     前記回転制御部は、前記ハイ側クラッチ及び前記ロー側クラッチのうちの切断状態にある前記クラッチを係合させる必要がある場合に前記回転同期制御を実施する
    ことを特徴とする、請求項6記載のクラッチ制御装置。
    The rotating electric machine controlled by the rotation control unit is the other rotating electric machine,
    A high side clutch and a low side clutch independent of each other are interposed as the clutch in the second power transmission path,
    The said rotation control part implements said rotation synchronous control, when it is necessary to engage the said clutch in the disconnection state of the said high side clutch and the said low side clutch, It is characterized by the above-mentioned. Clutch control device.
  8.  前記クラッチは噛み合いクラッチである
    ことを特徴とする、請求項1~7のいずれか1項に記載のクラッチ制御装置。
    The clutch control device according to any one of claims 1 to 7, wherein the clutch is a meshing clutch.
PCT/JP2018/031966 2017-12-04 2018-08-29 Clutch control device WO2019111460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-232753 2017-12-04
JP2017232753 2017-12-04

Publications (1)

Publication Number Publication Date
WO2019111460A1 true WO2019111460A1 (en) 2019-06-13

Family

ID=66751579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031966 WO2019111460A1 (en) 2017-12-04 2018-08-29 Clutch control device

Country Status (1)

Country Link
WO (1) WO2019111460A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10968986B1 (en) 2020-01-14 2021-04-06 Lg Electronics Inc. Electric vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105024A (en) * 2009-11-12 2011-06-02 Mitsubishi Fuso Truck & Bus Corp Shift control device for hybrid vehicle
JP2014077539A (en) * 2012-09-20 2014-05-01 Aisin Seiki Co Ltd Automatic transmission device of automatic transmission for vehicle
JP2014098459A (en) * 2012-11-15 2014-05-29 Aisin Seiki Co Ltd Dog clutch for automatic transmission
JP2014149019A (en) * 2013-01-31 2014-08-21 Aisin Seiki Co Ltd Automatic transmission device
JP2014234853A (en) * 2013-05-31 2014-12-15 アイシン精機株式会社 Dog clutch control device for automatic transmission
JP2017013752A (en) * 2015-07-06 2017-01-19 日産自動車株式会社 Hybrid-vehicular control apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105024A (en) * 2009-11-12 2011-06-02 Mitsubishi Fuso Truck & Bus Corp Shift control device for hybrid vehicle
JP2014077539A (en) * 2012-09-20 2014-05-01 Aisin Seiki Co Ltd Automatic transmission device of automatic transmission for vehicle
JP2014098459A (en) * 2012-11-15 2014-05-29 Aisin Seiki Co Ltd Dog clutch for automatic transmission
JP2014149019A (en) * 2013-01-31 2014-08-21 Aisin Seiki Co Ltd Automatic transmission device
JP2014234853A (en) * 2013-05-31 2014-12-15 アイシン精機株式会社 Dog clutch control device for automatic transmission
JP2017013752A (en) * 2015-07-06 2017-01-19 日産自動車株式会社 Hybrid-vehicular control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10968986B1 (en) 2020-01-14 2021-04-06 Lg Electronics Inc. Electric vehicle
EP3851693A1 (en) * 2020-01-14 2021-07-21 LG Electronics Inc. Electric vehicle

Similar Documents

Publication Publication Date Title
JP5138803B2 (en) Power transmission device
RU2585501C2 (en) Actuator for hybrid vehicle
JP5429400B2 (en) Hybrid drive device for vehicle
JP6075376B2 (en) Hybrid vehicle drive device
WO2011077813A1 (en) Hybrid vehicle
JP6919719B2 (en) Vehicle control device
WO2013186924A1 (en) Hybrid vehicle drive apparatus
WO2014083705A1 (en) Hybrid vehicle drive apparatus
WO2019111458A1 (en) Vehicle control device
JP2010208523A (en) Vehicular power transmission control apparatus
JP2018114922A (en) Power transmission device and vehicle having power transmission device
US10532733B2 (en) Start control device for hybrid vehicle
JP2018134937A (en) Transaxle device
JP6958634B2 (en) Clutch control device
JP2011178280A (en) Power transmission device for hybrid vehicle and control method for the same
WO2019111460A1 (en) Clutch control device
JP5929641B2 (en) Hybrid vehicle drive device
WO2020148975A1 (en) Vehicle control device
JP6969956B2 (en) Hybrid vehicle power unit
JP6969952B2 (en) Hybrid vehicle power unit
JP2021130426A (en) Driving device
WO2019111456A1 (en) Transaxle control device
JP2015025524A (en) Power transmission device
JP6052092B2 (en) Hybrid vehicle drive device
JP2014097689A (en) Power transmission device for hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP