WO2019111397A1 - 車両の制御方法及び制御装置 - Google Patents

車両の制御方法及び制御装置 Download PDF

Info

Publication number
WO2019111397A1
WO2019111397A1 PCT/JP2017/044092 JP2017044092W WO2019111397A1 WO 2019111397 A1 WO2019111397 A1 WO 2019111397A1 JP 2017044092 W JP2017044092 W JP 2017044092W WO 2019111397 A1 WO2019111397 A1 WO 2019111397A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control
acceleration
driver
brake
Prior art date
Application number
PCT/JP2017/044092
Other languages
English (en)
French (fr)
Inventor
武司 平田
裕介 中根
孝信 澤田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/044092 priority Critical patent/WO2019111397A1/ja
Publication of WO2019111397A1 publication Critical patent/WO2019111397A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/46Vacuum systems
    • B60T13/52Vacuum systems indirect, i.e. vacuum booster units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers

Definitions

  • the present invention controls a vehicle that performs sailing stop control that stops the drive source and releases the fastening element between the drive source and the drive wheel when a preset drive source stop condition is satisfied during traveling. About.
  • sailing stop control As a measure for improving the fuel consumption performance of the vehicle, so-called sailing stop control is known, in which the driving source (internal combustion engine) is stopped and the vehicle travels by inertia when a predetermined condition is satisfied during traveling.
  • sailing stop control is started when the vehicle speed is equal to or higher than a preset lower limit speed, and the purpose is to improve fuel consumption.
  • sailing stop control is performed to stop the drive source and release the forward fastening element. Furthermore, during sailing stop control, acceleration that is against the driver's intention is suppressed by operating the brake device that generates the braking force without using a negative pressure type booster and without the driver's operation. Do.
  • FIG. 1 is a system configuration diagram of a vehicle.
  • FIG. 2 is a block diagram of a braking system.
  • FIG. 3 is a flowchart of a control routine executed by the controller.
  • FIG. 4 is a timing chart when the control routine of FIG. 3 is executed.
  • FIG. 5 is a timing chart as a comparative example.
  • FIG. 1 is a system configuration diagram of a vehicle according to the present embodiment.
  • the vehicle includes an engine 1 as a drive source, an automatic transmission 2, a motor generator (hereinafter also referred to as MG) 4, a battery 5, a final gear device 6, a drive wheel 7, and a controller 9. It consists of
  • the vehicle is equipped with a Vehicle Dynamics Control system (hereinafter also referred to as a VDC system) that performs vehicle behavior control such as side slip prevention and stable turning etc., and a brake fluid pressure unit (hereinafter also referred to as a VDC unit) used for vehicle behavior control. Say) 10).
  • VDC system Vehicle Dynamics Control system
  • VDC unit brake fluid pressure unit
  • the engine 1 is an internal combustion engine fueled by gasoline or light oil, and its rotational speed, torque, and the like are controlled based on a command from the controller 9.
  • the automatic transmission 2 is a continuously variable transmission in this embodiment, and includes a clutch 3 as a forward engagement element.
  • the clutch 3 is disposed between the transmission mechanism of the continuously variable transmission and the engine 1. When the clutch 3 is engaged, the rotational torque of the engine 1 is transmitted to the drive wheel 7 via the automatic transmission 2, the propeller shaft 11, the final gear device 6 and the drive shaft 12.
  • the shift control and the engagement and release control of the forward coupling element are performed by the controller 9.
  • the MG 4 is a synchronous electric rotating machine connected to the output shaft of the engine 1 via a transmission mechanism (not shown) consisting of a belt and a pulley.
  • a transmission mechanism (not shown) consisting of a belt and a pulley.
  • the MG 4 receives rotational energy from the engine 1, the MG 4 functions as a generator, and the generated power is charged to the battery 5.
  • the MG 4 can also function as a generator when the engine 1 is rotated by the drive wheels 7. That is, the MG 4 can regenerate the kinetic energy of the vehicle as electric power.
  • the MG 4 can be driven by the power of the battery 5 and the torque assist of the engine 1 can be performed by the torque of the MG 4.
  • the controller 9 receives information (navigation information) acquired by an on-vehicle navigation system, information outside the vehicle acquired by inter-vehicle communication or road-vehicle communication via a network, information from an on-vehicle camera and a detection signal of an acceleration sensor. Ru.
  • information acquired by an on-vehicle navigation system
  • information outside the vehicle acquired by inter-vehicle communication or road-vehicle communication via a network
  • information from an on-vehicle camera information from an on-vehicle camera and a detection signal of an acceleration sensor. Ru.
  • signals from a crank angle sensor that detects an engine rotational speed, an accelerator opening degree sensor, a brake sensor that detects a brake depression amount, and the like are input to the controller 9.
  • the controller 9 executes torque control of the engine 1, vehicle behavior control, sailing stop control described later, and the like based on the above-mentioned signals.
  • the controller 9 is a microcomputer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 9 with a plurality of microcomputers.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the VDC unit 10 operates the braking device 8 provided on each drive wheel 7 in response to a signal from the controller 9.
  • FIG. 2 is a schematic configuration view of a brake system.
  • the brake system includes a brake fluid pressure generating device 20, a VDC unit 10, and a braking device 8.
  • the braking device 8 comprises a brake caliper 8A and a brake rotor 8B.
  • the brake fluid pressure generator 20 includes a brake pedal 21, a negative pressure booster 22 as a negative pressure type booster, a VDC unit 10, and a master cylinder 23.
  • the driver's brake depression force applied to the brake pedal 21 is boosted by the negative pressure booster 22, and the master cylinder 23 produces a brake fluid pressure.
  • the negative pressure in the negative pressure booster is generated using the engine intake negative pressure.
  • the VDC unit 10 is interposed between the brake fluid pressure generator 20 and the brake caliper 8B.
  • the VDC unit 10 has a hydraulic pressure pump 26 driven by an electric motor (not shown), a reservoir tank 25, and a solenoid valve 24 for switching a hydraulic pressure path.
  • the controller 9 controls the solenoid valve 24 so that the master cylinder 23 and the brake caliper 8B communicate with each other.
  • the hydraulic pressure generated by the master cylinder 23 is supplied to the brake calipers 8B of the drive wheels 7.
  • the controller 9 controls the solenoid valve 24 to shut off the communication between the master cylinder 23 and the brake caliper 8B. Then, the controller 9 operates the hydraulic pressure pump 26 to supply the hydraulic pressure to the brake caliper 8B.
  • the sailing stop control is control for traveling by inertia by automatically stopping the engine 1 and releasing the forward clutch 3 when a predetermined sailing stop condition is satisfied during traveling.
  • sailing stop traveling a state in which the sailing stop control is performed to travel.
  • sailing stop control may be described as SS control.
  • the sailing stop conditions include, for example, that the vehicle speed is equal to or higher than a preset lower limit vehicle speed, that the accelerator pedal and the brake pedal are not depressed, and that the forward range is selected in the automatic transmission 2.
  • the lower limit vehicle speed is medium to high speed when the vehicle speed range is divided into low speed, medium speed, and high speed, and is preset by an experiment or the like.
  • the sailing stop control ends when the sailing stop release condition is satisfied during sailing stop traveling.
  • the sailing stop release condition includes that the vehicle speed is less than the lower limit vehicle speed, that the accelerator pedal has been depressed, or that the brake pedal has been depressed.
  • sailing idle control control for traveling with inertia by bringing the forward clutch 3 into the released state while driving the engine 1 at idle rotation speed
  • sailing idle control control for traveling with inertia by bringing the forward clutch 3 into the released state while driving the engine 1 at idle rotation speed
  • sailing stop control control for traveling with inertia by bringing the forward clutch 3 into the released state while driving the engine 1 at idle rotation speed
  • the forward clutch 3 is released to travel by inertia, so the so-called engine brake does not work.
  • the acceleration becomes larger than when engine braking is applied, and depending on the acceleration situation, it may be against the driver's intention.
  • the driver is likely to step on the brake pedal to suppress the vehicle speed.
  • the sailing stop release condition is satisfied, and the sailing stop control is ended. That is, if the driver enters the downward slope during sailing stop traveling, the sailing stop control is terminated by the driver's brake operation, and there is a high possibility that the fuel consumption improvement effect by the sailing stop control can not be sufficiently obtained.
  • the controller 9 pre-reads whether or not there is a section where sailing stop control can be performed on the route, and prevents the driver from depressing the brake pedal when entering a downhill road. Execute control. Hereinafter, this control will be described in detail.
  • FIG. 3 is a flowchart showing a control routine executed by the controller 9.
  • step S10 the controller 9 determines whether or not sailing stop control is being performed. If the above-described sailing stop condition is satisfied, it is determined that the operation is in progress.
  • the controller 9 When the sailing stop control is being performed, the controller 9 performs the prefetching of the road condition in the traveling direction in step S20. Specifically, the road gradient in the traveling direction is acquired from the map information of the navigation system.
  • the controller 9 can calculate the road grade, the estimated value of the vehicle weight of the vehicle, the traveling history of the vehicle when traveling on the current traveling route, and information acquired from the traveling history of other vehicles, and It reads information obtained by communication and data from acceleration sensors and camera sensors.
  • the travel history of other vehicles is acquired by inter-vehicle communication.
  • the controller 9 pre-reads the current traveling state and the traveling state (for example, acceleration) on the road ahead.
  • the weight of the vehicle can be estimated using the distance traveled since the last fueling and the number of occupants. Since the vehicle accelerates by gravity on the downhill road under sailing stop control, if the vehicle weight and the slope are known, the acceleration on the downhill slope can be estimated.
  • step S30 the controller 9 determines whether the acceleration estimated in step S20 is the "acceleration contrary to the driver's intention" described above.
  • the controller 9 executes the processing of step S40 if the acceleration is against the driver's intention, and otherwise executes the processing of step S60.
  • the acceleration is against the driver's intention. If the vehicle speed at the start of the sailing stop control is higher than, for example, 10 km / h, it may be determined that the acceleration is against the driver's intention.
  • step S40 the controller 9 determines the amount of brake operation by the VDC unit 10 so as not to become an acceleration contrary to the driver's intention on the downhill to enter from here.
  • the necessary braking force is calculated using the slope of the downhill road and the estimated value of the vehicle weight of the vehicle, and the operation amount of the VDC unit 10 for generating the braking force is determined.
  • the "required braking force” is a braking force for preventing the acceleration against the driver's intention, for example, a braking force for suppressing the acceleration to a degree that does not exceed the speed limit.
  • the operating amount of the VDC unit 10 means the operating amount of the hydraulic pump 26.
  • the relationship between the operation amount of the VDC unit 10 and the braking force differs depending on the VDC unit 10 used. Therefore, the amount of operation of the VDC unit 10 is determined by, for example, examining the table in advance by experiment etc. and searching the table with the calculated braking force.
  • step S50 the controller 9 operates the VDC unit 10 based on the operation amount determined in step S40 when entering the downhill road. That is, the controller 9 determines the operation amount of the VDC unit 10 when entering the downhill road by feedforward control, and immediately generates the braking force when entering the downhill road.
  • step S30 when it is determined in step S30 that the acceleration is not against the driver's intention, the controller 9 limits the operation of the VDC unit 10 in step S60.
  • step S70 the controller 9 determines whether or not the accelerator pedal is expected to be depressed. For example, based on the result pre-read in step S20, when there is an upward slope road ahead of the downward slope road, it is predicted that the accelerator pedal is depressed. When the depression of the accelerator pedal is predicted, the controller 9 executes the processing of step S80, and otherwise ends this routine.
  • step S80 the controller 9 starts the engine 1 before the accelerator pedal is depressed.
  • the time required from the start of cranking to the start of engine 1 (hereinafter also referred to as the time required for engine start) and the time from when the driver enters the upward slope to when the driver depresses the accelerator pedal It is stored in the controller 9 in advance. Then, the controller 9 starts the cranking at a timing that goes back by the time required to start the engine from the timing when the driver depresses the accelerator pedal.
  • the controller 9 may perform feedback control of the operation amount of the VDC unit 10 based on the actual vehicle speed.
  • the braking force by the VDC unit 10, the friction of each part of the vehicle, and the running resistance of the drive wheel 7 have variations due to individual differences and aging, so if feedback control based on the actual vehicle speed is performed, acceleration suppression is insufficient. And to suppress the acceleration more than necessary.
  • FIG. 4 is a timing chart when the control routine described above is executed.
  • FIG. 5 is a timing chart when the above-described control routine is not executed for comparison. The control represented by the timing chart of FIG. 5 is not included in the scope of the present invention.
  • the controller 9 predicts that it will be a downward slope road from timing T1 to timing T3 and will become an upward slope road after timing T3 by performing pre-reading of the road condition during this time. Furthermore, the controller 9 also determines the amount of operation of the VDC unit 10 when entering the downhill. Then, when the vehicle enters the downhill road at timing T1, the controller 9 operates the VDC unit 10 to suppress the increase in the vehicle speed. As a result, the driver does not operate the brake and sailing stop control is continued.
  • controller 9 also pre-reads that it is an upward slope path after timing T3. Then, the controller 9 controls the sailing stop in the middle of the downhill road (timing T2.5) so that the engine 1 is started at the time (T4) when the driver enters the uphill road and the driver depresses the accelerator pedal. End and start the engine 1. Thereby, it is possible to suppress an acceleration delay when the accelerator pedal is depressed upon entering the ascending road.
  • sailing stop control can be continued only up to timing T2 in FIG. 5
  • sailing stop control can be continued up to timing T2.5 in FIG. 4, so FIG. 4 corresponds to FIG. Compared with it, the fuel consumption improvement effect by sailing stop control is large.
  • a control method of a vehicle including a negative pressure booster (negative pressure type booster) 22 for assisting is provided.
  • sailing stop satisfaction condition drive source stop condition
  • sailing stop control is performed to stop the engine 1 and release the forward clutch 3.
  • the brake device that generates the braking force without using the negative pressure booster 22 and by the driver's operation, that is, by operating the VDC unit 10, Suppress the contrary acceleration.
  • the opportunity for the sailing stop control to end due to the driver's depression of the brake pedal can be reduced, and the fuel consumption improvement effect by the sailing stop control can be further enhanced.
  • acceleration contrary to the driver's intention is, for example, acceleration by entering a downhill road during execution of sailing stop control.
  • the acceleration of the vehicle on the downward slope is estimated based on the pre-read downward slope.
  • the operation amount of the VDC unit 10 is determined in accordance with the obtained acceleration. As described above, since the operation amount of the VDC unit 10 is determined before the vehicle accelerates, unnecessary acceleration can be prevented when entering a downhill road. Further, since the operation amount of the VDC unit 10 is determined so as to suppress the acceleration on the down slope road, the vehicle behavior is close to the state in which the engine brake is in effect, which makes it difficult for the driver to feel discomfort.
  • the VDC unit 10 when entering the downhill road during execution of sailing stop control, the VDC unit 10 is operated, and feedback control of the operation amount of the VDC unit 10 is performed based on the actual acceleration. As a result, it is possible to absorb the variations due to the individual difference and the secular change of the VDC unit 10 and each part of the vehicle, and to further reduce the sense of discomfort to the driver.
  • the acceleration of the vehicle in the road condition read ahead and down slope is obtained by the map information of the navigation system, the estimated value of the vehicle weight of the vehicle, the previous travel history of the vehicle, and other vehicles On the basis of at least one of travel history, information obtained by road-vehicle communication, data of an acceleration sensor, or data of an on-vehicle camera.
  • the engine 1 when an accelerator depression operation by the driver is predicted during execution of the sailing stop control, the engine 1 is restarted before the accelerator depression operation is performed. If the engine 1 is started after an accelerator depression operation, acceleration can not be performed until the engine 1 starts. However, according to the present embodiment, such an acceleration delay can be prevented, and drivability during sailing stop control is improved.
  • the VDC unit 10 is described as "the brake device that generates the braking force without using the negative pressure booster 22 and not by the driver's operation", but is limited to this. is not. Those that perform the same function, such as a regenerative brake system or a brake-by-wire system, may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

走行用の駆動源と、駆動源に接続され前進用締結要素を有する自動変速機と、運転者のブレーキペダル踏力をアシストする負圧式倍力装置と、を備える車両の制御方法において、走行中に予め設定した駆動源停止条件が成立すると、駆動源を停止するとともに前進用締結要素を解放するセーリングストップ制御を行う。さらに、セーリングストップ制御の実行中は、負圧式倍力装置を使わず、かつ運転者の操作によらずに制動力を発生させるブレーキ装置を作動させることにより、運転者の意図に反する加速を抑制する。

Description

車両の制御方法及び制御装置
 本発明は、走行中に予め設定した駆動源停止条件が成立したときに、駆動源を停止し、かつ駆動源と駆動輪との間の締結要素を解放するセーリングストップ制御を実行する車両の制御に関する。
 車両の燃費性能を向上させるための方策として、走行中に所定の条件が成立した場合には駆動源(内燃機関)を停止して惰性により走行する、いわゆるセーリングストップ制御が知られている。JP2012-47148Aには、車速が予め設定した下限速度以上である場合にセーリングストップ制御を開始し、燃費向上を目的とするものである。
 しかしながら、セーリングストップ制御の実行中は所謂エンジンブレーキが効かないので、下り勾配路に進入すると車両は重力により加速する場合がある。そして、運転者が加速を抑制するためにブレーキペダルを踏み込むと、セーリングストップ制御が解除される。すなわち、上記文献の制御では、惰性で走行するのに適している下り勾配路においてセーリングストップ制御が解除されてしまうため、セーリングストップ制御による燃費向上効果が小さくなる。
 そこで本発明では、セーリングストップ制御による燃費向上効果をより大きくすることを目的とする。
 本発明のある態様によれば、走行中に予め設定した駆動源停止条件が成立すると、駆動源を停止するとともに前進用締結要素を解放するセーリングストップ制御を行う。さらに、セーリングストップ制御の実行中は、負圧式倍力装置を使わず、かつ運転者の操作によらずに制動力を発生させるブレーキ装置を作動させることにより、運転者の意図に反する加速を抑制する。
図1は、車両のシステム構成図である。 図2は、制動システムの構成図である。 図3は、コントローラが実行する制御ルーチンのフローチャートである。 図4は、図3の制御ルーチンを実行した場合のタイミングチャートである。 図5は、比較例としてのタイミングチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、本実施形態に係る車両のシステム構成図である。車両は、駆動源としてのエンジン1と、自動変速機2と、モータジェネレータ(以下、MGともいう)4と、バッテリ5と、ファイナルギヤ装置6と、駆動輪7と、コントローラ9と、を含んで構成される。
 また、車両は横滑り防止や安定した旋回等といった車両挙動制御を行うVehicle Dynamics Controlシステム(以下、VDCシステムともいう)を搭載しており、車両挙動制御に用いるブレーキ液圧ユニット(以下、VDCユニットともいう)10を備える。
 エンジン1は、ガソリン又は軽油を燃料とする内燃機関であり、コントローラ9からの指令に基づいて回転速度、トルク等が制御される。
 自動変速機2は、本実施形態においては無段変速機であり、前進用締結要素としてのクラッチ3を備える。クラッチ3は、無段変速機の変速機構とエンジン1との間に配置される。クラッチ3が締結されると、エンジン1の回転トルクが自動変速機2、プロペラシャフト11、ファイナルギヤ装置6及びドライブシャフト12を介して駆動輪7に伝達される。変速制御及び前進用締結要素の締結解放制御は、コントローラ9により行われる。
 MG4は、ベルト及びプーリからなる伝達機構(図示せず)を介してエンジン1の出力軸に接続されている、同期型回転電機である。MG4は、エンジン1から回転エネルギを受けると発電機として機能し、発電された電力はバッテリ5に充電される。また、MG4は、エンジン1が駆動輪7に連れ回されて回転する場合も発電機として機能できる。つまり、MG4は車両の運動エネルギを電力として回生することができる。なお、バッテリ5の電力によりMG4を駆動して、MG4のトルクでエンジン1のトルクアシストを行うこともできる。
 コントローラ9には、車載されたナビゲーションシステムで取得した情報(ナビ情報)、ネットワークを介した車車間通信や路車間通信により取得する車外情報、車載カメラからの情報及び加速度センサの検出信号が入力される。また、コントローラ9には、上記の他に、エンジン回転速度を検出するクランク角センサや、アクセル開度センサや、ブレーキ踏み込み量を検出するブレーキセンサ等からの信号が入力される。コントローラ9は、上記各信号に基づいて、エンジン1のトルク制御、車両挙動制御、及び後述するセーリングストップ制御等を実行する。
 なお、コントローラ9は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ9を複数のマイクロコンピュータで構成することも可能である。
 VDCユニット10は、コントローラ9からの信号に応じて各駆動輪7に設けた制動装置8を作動させる。
 図2は、ブレーキシステムの概略構成図である。
 ブレーキシステムは、ブレーキ液圧発生装置20と、VDCユニット10と、制動装置8とを含んで構成される。制動装置8は、ブレーキキャリパ8Aとブレーキロータ8Bとからなる。
 ブレーキ液圧発生装置20は、ブレーキペダル21と、負圧式倍力装置としての負圧ブースタ22と、VDCユニット10と、マスターシリンダ23とを含んで構成される。ブレーキペダル21に加えられた運転者のブレーキ踏力を、負圧ブースタ22により倍力し、マスターシリンダ23でブレーキ液圧を作り出す。負圧ブースタ内の負圧は、エンジン吸気負圧を利用して生成される。
 VDCユニット10は、ブレーキ液圧発生装置20とブレーキキャリパ8Bとの間に介装される。VDCユニット10は、図示しない電動モータにより駆動する液圧ポンプ26と、リザーバータンク25と、液圧経路を切り換えるソレノイドバルブ24とを有する。
 運転者のブレーキ踏み込みに応じて減速する場合には、マスターシリンダ23とブレーキキャリパ8Bとが連通するようにコントローラ9がソレノイドバルブ24を制御する。これにより、マスターシリンダ23で作り出された液圧が各駆動輪7のブレーキキャリパ8Bに供給される。一方、車両の挙動制御のために制動装置8を用いる場合には、マスターシリンダ23とブレーキキャリパ8Bとの連通を遮断するようにコントローラ9がソレノイドバルブ24を制御する。そして、コントローラ9は液圧ポンプ26を作動させてブレーキキャリパ8Bに液圧を供給する。
 次に、コントローラ9が実行するセーリングストップ制御について説明する。
 セーリングストップ制御とは、走行中に所定のセーリングストップ条件が成立した場合に、エンジン1を自動停止させ、かつ前進用クラッチ3を解放状態にすることで、惰性により走行する制御である。以下、セーリングストップ制御を実行して走行する状態を、セーリングストップ走行と称する。また、セーリングストップ制御をSS制御と記すこともある。
 セーリングストップ条件は、例えば、車速が予め設定した下限車速以上であること、アクセルペダル及びブレーキペダルが踏み込まれていないこと、自動変速機2で前進レンジが選択されていること、を含む。下限車速は、車速域を低速、中速、高速に分けた場合の中高速であり、実験等により予め設定する。
 セーリングストップ制御は、セーリングストップ走行中にセーリングストップ解除条件が成立したら終了する。セーリングストップ解除条件は、車速が下限車速未満であること、アクセルペダルが踏み込まれたこと、又はブレーキペダルが踏み込まれたこと、を含む。
 なお、エンジン1をアイドル回転速度で運転しつつ、前進用クラッチ3を解放状態にして惰性により走行する制御をセーリングアイドル制御と称し、上述したセーリングストップ制御とは区別する。
 ところで、セーリングストップ制御中は前進用クラッチ3を解放状態にして惰性により走行しているため、いわゆるエンジンブレーキが効かない。このため、セーリングストップ走行中に下り勾配路に進入すると、エンジンブレーキが効く場合に比べて加速度が大きくなり、加速状況によっては運転者にとって意図に反するものとなる。この時、運転者は車速を抑制するためにブレーキペダルを踏む可能性が高い。そして、ブレーキペダルが踏み込まれると、セーリングストップ解除条件が成立してセーリングストップ制御が終了する。すなわち、セーリングストップ走行中に下り勾配路に進入すると、運転者のブレーキ操作によってセーリングストップ制御が終了してしまうことにより、セーリングストップ制御による燃費向上効果が十分に得られない可能性が高い。
 そこで本実施形態では、コントローラ9は進路上にセーリングストップ制御を実行可能な区間があるか否かを先読みし、下り勾配路に進入したときに運転者がブレーキペダルを踏み込むことを防止するための制御を実行する。以下、この制御について詳細に説明する。
 図3は、コントローラ9が実行する制御ルーチンを示すフローチャートである。
 ステップS10において、コントローラ9はセーリングストップ制御を実行中であるか否かを判定する。上述したセーリングストップ条件が成立している場合に実行中であると判定する。
 セーリングストップ制御を実行中の場合は、コントローラ9はステップS20にて進行方向の道路状況の先読みを行う。具体的には、ナビゲーションシステムの地図情報から進行方向の道路勾配を取得する。
 さらに、コントローラ9は、道路勾配と、自車の車重の推定値と、今回の走行ルートを以前走行した際の自車の走行履歴と、他車の走行履歴から取得した情報と、路車間通信で取得した情報と、加速度センサやカメラセンサからのデータ等を読み込む。なお、他車の走行履歴は、車車間通信により取得する。そして、コントローラ9は、現在の走行状態や、この先の道路での走行状態(例えば加速度)の先読みを行う。自車の車重は、前回の給油時からの走行距離や乗員人数等を用いて推定できる。セーリングストップ制御中の下り勾配路では、車両は重力によって加速するので、車重と勾配がわかれば、下り勾配での加速度を推定できる。
 一方、セーリングストップ制御を実行していない場合は、コントローラ9は本ルーチンを終了する。
 ステップS30においてコントローラ9は、ステップS20で推定した加速度が、上述した「運転者の意図に反する加速」であるか否かを判定する。コントローラ9は、運転者の意図に反する加速であればステップS40の処理を実行し、そうでない場合はステップS60の処理を実行する。図示していないが、当該実施例では、セーリングストップ制御開始時の車速より現在の車速が大きくなった場合、運転者の意図に反する加速であると判断する。なお、セーリングストップ制御開始時の車速に例えば10km/hを足した車速より大きくなった場合に、運転者の意図に反する加速であると判断するようにしてもよい。
 ステップS40においてコントローラ9は、これから進入する下り勾配路において運転者の意図に反する加速度にならないようにするための、VDCユニット10によるブレーキ作動量を決定する。具体的には、下り勾配路の勾配及び自車の車重の推定値を用いて必要な制動力を算出し、この制動力を発生させるためのVDCユニット10の作動量を決定する。ここでの「必要な制動力」とは、運転者の意図に反する加速度にならないようにするための制動力、例えば、制限速度を超えない程度の加速度に抑えるための制動力である。
 VDCユニット10の作動量とは、液圧ポンプ26の作動量を意味する。VDCユニット10の作動量と制動力との関係は、使用するVDCユニット10毎に異なる。そこで、例えば実験等により予め調べてテーブル化しておき、算出された制動力でテーブルを検索することでVDCユニット10の作動量を決定する。
 ステップS50においてコントローラ9は、下り勾配路に進入したらステップS40で決定した作動量に基づいてVDCユニット10を作動させる。すなわち、コントローラ9は下り勾配路に進入した場合のVDCユニット10の作動量をフィードフォワード制御により決定し、下り勾配路に進入したら直ちに制動力を発生させる。
 一方、ステップS30で運転者の意図に反する加速ではないと判定された場合、コントローラ9はステップS60において、VDCユニット10の作動を制限する。
 ステップS70においてコントローラ9は、この先でアクセルペダルが踏み込まれることが予測されるか否かを判定する。例えば、ステップS20で先読みした結果に基づいて、下り勾配路の先に上り勾配路がある場合には、アクセルペダルが踏み込まれると予測する。コントローラ9は、アクセルペダルの踏み込みが予測される場合には、ステップS80の処理を実行し、そうでない場合には本ルーチンを終了する。
 ステップS80においてコントローラ9は、アクセルペダルが踏み込まれる前にエンジン1を始動させる。例えば、クランキング開始からエンジン1が始動するまでに要する時間(以下、エンジン始動に要する時間、ともいう)と、上り勾配路に進入してから運転者がアクセルペダルを踏み込むまでの時間と、を予めコントローラ9に記憶させておく。そして、コントローラ9は、運転者がアクセルペダルを踏み込むタイミングからエンジン始動に要する時間だけ遡ったタイミングでクランキングを開始する。
 上記の通り、本ルーチンでは、セーリングストップ走行中に下り勾配路に進入した場合には、VDCユニット10によって加速度を抑制するので、運転者がブレーキペダルを踏み込んでセーリングストップ解除条件が成立することを回避できる。その結果、セーリングストップ走行による燃費向上効果をより大きくすることができる。
 なお、S50において、コントローラ9は実車速に基づいてVDCユニット10の作動量をフィードバック制御してもよい。VDCユニット10による制動力や、車両の各部のフリクションや駆動輪7の走行抵抗には個体差や経年変化によるバラツキがあるので、実車速に基づくフィードバック制御を行えば、加速度の抑制が不十分になることや、必要以上に加速度を抑制することを防止できる。
 図4は、上述した制御ルーチンを実行した場合のタイミングチャートである。図5は比較のための、上述した制御ルーチンを実行しない場合のタイミングチャートである。なお、図5のタイミングチャートで表される制御は本発明の範囲には含まれない。
 図4、図5のいずれも、タイミング0からタイミングT1までは平坦路をセーリングストップ走行している。
 図4では、コントローラ9は、この間に道路状況の先読みを行うことで、タイミングT1からタイミングT3までは下り勾配路となり、タイミングT3以降は上り勾配路となることを予測している。さらにコントローラ9は、下り勾配路に進入した際のVDCユニット10の作動量も決定している。そして、タイミングT1で車両が下り勾配路に進入したら、コントローラ9はVDCユニット10を作動させることで、車速の上昇を抑制する。その結果、運転者がブレーキ操作をすることがなくなり、セーリングストップ制御が継続される。
 一方、図5では、下り勾配路に進入すると図4に比べて大きな加速度で車速が上昇する。その結果、タイミングT2において運転者がブレーキペダルを踏み込み、セーリングストップ制御が終了してしまう。
 また、コントローラ9は、タイミングT3以降は上り勾配路になることも先読みしている。そして、コントローラ9は、上り勾配路に進入して運転者がアクセルペダルを踏み込むタイミング(T4)においてエンジン1が始動しているように、下り勾配路の途中(タイミングT2.5)でセーリングストップ制御を終了してエンジン1を始動させる。これにより、上り勾配路に進入してアクセルペダルが踏み込まれた際の加速遅れを抑制できる。
 上記の通り、図5ではセーリングストップ制御をタイミングT2までしか継続できないのに対し、図4ではセーリングストップ制御をタイミングT2.5まで継続できるので、継続時間の差の分だけ図4は図5に比べてセーリングストップ制御による燃費向上効果が大きい。
 以上のように本実施形態では、走行用のエンジン(駆動源)1と、エンジン1に接続され前進用クラッチ3(前進用締結要素)を有する自動変速機2と、運転者のブレーキペダル踏力をアシストする負圧ブースタ(負圧式倍力装置)22と、を備える車両の制御方法が提供される。この制御方法では、走行中に予め設定したセーリングストップ成立条件(駆動源停止条件)が成立すると、エンジン1を停止するとともに前進用クラッチ3を解放するセーリングストップ制御を行う。そして、セーリングストップ制御の実行中は、負圧ブースタ22を使わず、かつ運転者の操作によらずに制動力を発生させるブレーキ装置、つまりVDCユニット10を作動させることにより、運転者の意図に反する加速を抑制する。これにより、運転者のブレーキペダル踏み込みによりセーリングストップ制御が終了する機会を低減し、セーリングストップ制御による燃費向上効果をより高めることができる。
 なお、本実施形態における「運転者の意図に反する加速」とは、例えば、セーリングストップ制御の実行中に下り勾配路に進入することによる加速である。
 本実施形態では、車両進行方向の道路状況を先読みし、下り勾配路に進入することが予測される場合には、先読みした下り勾配に基づいて下り勾配路での車両の加速度を推定し、推定した加速度に応じてVDCユニット10の作動量を決定する。このように、車両が加速する前にVDCユニット10の作動量を決定するので、下り勾配路に進入した際に不必要に加速することを防止できる。また、下り勾配路での加速を抑制するようにVDCユニット10の作動量を決定するので、エンジンブレーキが効いている状態に近い車両挙動となり、運転者に違和感を与えにくくなる。
 本実施形態では、セーリングストップ制御の実行中に下り勾配路に進入したら、VDCユニット10を作動させ、かつ、実加速度に基づいてVDCユニット10の作動量をフィードバック制御する。これにより、VDCユニット10や車両各部の個体差や経年変化によるバラツキを吸収して、運転者への違和感をより低減できる。
 本実施形態では、道路状況の先読み及び下り勾配での車両の加速度を、ナビゲーションシステムの地図情報、自車の車重の推定値、自車の以前の走行履歴、車車間通信で入手した他車の走行履歴、路車間通信で入手した情報、加速度センサのデータ、または車載カメラのデータの少なくとも一つに基づいて行う。これらの情報やデータを用いることによって、VDCユニット10の作動量をより高精度で決定することが可能となり、さらに、運転者の意図に反する加速か否かの判定精度も向上する。
 本実施形態では、セーリングストップ制御の実行中に運転者によるアクセル踏み込み操作が予測される場合には、アクセル踏み込み操作が行われる前にエンジン1を再始動させる。アクセル踏み込み操作があってからエンジン1を始動すると、エンジン1が始動するまで加速できないが、本実施形態によればこのような加速遅れを防止できるので、セーリングストップ制御中の運転性が向上する。
 なお、上述した実施形態では、「負圧ブースタ22を使わず、かつ運転者の操作によらずに制動力を発生させるブレーキ装置」としてVDCユニット10を用いて説明したが、これに限られるわけではない。同様の機能を果たすもの、例えば回生ブレーキシステムやブレーキ・バイ・ワイヤシステム等、を用いてもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (8)

  1.  走行用の駆動源と、前記駆動源に接続され前進用締結要素を有する自動変速機と、運転者のブレーキペダル踏力をアシストする負圧式倍力装置と、を備える車両の制御方法において、
     走行中に予め設定した駆動源停止条件が成立すると、前記駆動源を停止するとともに前記前進用締結要素を解放するセーリングストップ制御を行い、
     前記セーリングストップ制御の実行中は、前記負圧式倍力装置を使わず、かつ運転者の操作によらずに制動力を発生させるブレーキ装置を作動させることにより、運転者の意図に反する加速を抑制する車両の制御方法。
  2.  請求項1に記載の車両の制御方法において、
     前記運転者の意図に反する加速とは、前記セーリングストップ制御の実行中に下り勾配路に進入することによる加速である、車両の制御方法。
  3.  請求項2に記載の車両の制御方法において、
     車両進行方向の道路状況を先読みし、
     下り勾配路に進入することが予測される場合には、先読みした下り勾配に基づいて前記下り勾配路での車両の加速度を推定し、推定した加速度に応じて前記ブレーキ装置の作動量を決定する、車両の制御方法。
  4.  請求項3に記載の車両の制御方法において、
     前記セーリングストップ制御の実行中に下り勾配路に進入したら、前記ブレーキ装置を作動させ、かつ、実加速度に基づいて前記ブレーキ装置の作動量をフィードバック制御する、車両の制御方法。
  5.  請求項3または4に記載の車両の制御方法において、
     前記道路状況の先読み及び前記下り勾配での車両の加速度を、ナビゲーションシステムの地図情報、自車の車重の推定値、自車の以前の走行履歴、車車間通信で入手した他車の走行履歴、路車間通信で入手した情報、加速度センサのデータ、または車載カメラのデータの少なくとも一つに基づいて行う、車両の制御方法。
  6.  請求項1から5のいずれかに記載の車両の制御方法において、
     前記セーリングストップ制御の実行中に運転者によるアクセル踏み込み操作が予測される場合には、アクセル踏み込み操作が行われる前に前記駆動源を再始動させる、車両の制御方法。
  7.  内燃機関に接続される前進用締結要素を有する自動変速機を有し、走行中に内燃機関を停止し、且つ、前進用締結要素を解放可能な車両の制御装置において、
     運転者のブレーキペダル踏力をアシストする倍力装置と、
     該倍力装置によってブレーキ液圧を発生させると共に、前記倍力装置を使わずにアクチュエータによりブレーキ液圧を発生可能なブレーキ液圧制御装置と、 走行中に予め設定した駆動源停止条件が成立すると、前記駆動源を停止するとともに前記前進用締結要素を解放するセーリングストップ制御を行う制御部と、
    を備える車両の制御装置において、
     該ブレーキ液圧制御装置は、走行中に内燃機関を停止し、且つ、前進用締結要素を解放している時、前記倍力装置を使わずにアクチュエータによりブレーキ液圧を発生させ前記ブレーキ液圧制御装置を作動させることにより、加速を抑制する車両の制御装置。
  8.  請求項7に記載の車両の制御装置において、
     前記倍力装置は、内燃機関の吸気負圧が供給され、該負圧により転者のブレーキペダル踏力をアシストする負圧倍力装置であることを特徴とする車両の制御装置。
PCT/JP2017/044092 2017-12-07 2017-12-07 車両の制御方法及び制御装置 WO2019111397A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044092 WO2019111397A1 (ja) 2017-12-07 2017-12-07 車両の制御方法及び制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044092 WO2019111397A1 (ja) 2017-12-07 2017-12-07 車両の制御方法及び制御装置

Publications (1)

Publication Number Publication Date
WO2019111397A1 true WO2019111397A1 (ja) 2019-06-13

Family

ID=66750133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044092 WO2019111397A1 (ja) 2017-12-07 2017-12-07 車両の制御方法及び制御装置

Country Status (1)

Country Link
WO (1) WO2019111397A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257739A (ja) * 1991-02-12 1992-09-11 Toyota Motor Corp 車両用走行制御装置
JP2010149712A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd ハイブリッド車両の駆動制御装置および駆動制御方法
WO2013084624A1 (ja) * 2011-12-09 2013-06-13 本田技研工業株式会社 電動車両
JP2015134508A (ja) * 2012-03-26 2015-07-27 ジヤトコ株式会社 ハイブリッド車両の電気走行減速時変速制御装置
JP2016175496A (ja) * 2015-03-19 2016-10-06 いすゞ自動車株式会社 ハイブリッド車両及びその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257739A (ja) * 1991-02-12 1992-09-11 Toyota Motor Corp 車両用走行制御装置
JP2010149712A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd ハイブリッド車両の駆動制御装置および駆動制御方法
WO2013084624A1 (ja) * 2011-12-09 2013-06-13 本田技研工業株式会社 電動車両
JP2015134508A (ja) * 2012-03-26 2015-07-27 ジヤトコ株式会社 ハイブリッド車両の電気走行減速時変速制御装置
JP2016175496A (ja) * 2015-03-19 2016-10-06 いすゞ自動車株式会社 ハイブリッド車両及びその制御方法

Similar Documents

Publication Publication Date Title
US9682705B2 (en) Vehicle having ACC stop and go with braking auto-hold to increase engine autostop availability
JP5711256B2 (ja) ハイブリッド車両の急減速制御装置
US9731722B2 (en) Brake control for stop/start vehicle
JP5915496B2 (ja) 車両の走行制御装置
JP5019002B2 (ja) 車両の制御装置
JP5652090B2 (ja) 車両制御装置
JP4893834B2 (ja) 車両制御装置
US20150291171A1 (en) Vehicle travel controller
JP5561231B2 (ja) 車両制御システム
JP6089504B2 (ja) 車両の制御装置
JP6130367B2 (ja) 車両の制御装置
JP2012214181A (ja) 車両制御システム
WO2012056855A1 (ja) ハイブリッド車両の制御装置
WO2017183519A1 (ja) 車両制御装置
JP2011179597A (ja) 車両駆動システムの制御装置
JP4237132B2 (ja) 車両のエンジン自動停止装置
JP6551648B2 (ja) 車両の走行制御装置
JP6551647B2 (ja) 車両の走行制御装置
JP6454884B2 (ja) 車両のエンジン自動停止制御装置
JP6595091B2 (ja) 車両用制御装置
WO2019111397A1 (ja) 車両の制御方法及び制御装置
JP4180559B2 (ja) 車両のエンジン自動停止装置
JP5924242B2 (ja) アイドルストップ制御装置及びアイドルストップ制御方法
JP6041573B2 (ja) 車両用制御装置
JP6366007B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP