WO2019109659A1 - 一种半导体封装模具的型腔加工工艺 - Google Patents

一种半导体封装模具的型腔加工工艺 Download PDF

Info

Publication number
WO2019109659A1
WO2019109659A1 PCT/CN2018/099964 CN2018099964W WO2019109659A1 WO 2019109659 A1 WO2019109659 A1 WO 2019109659A1 CN 2018099964 W CN2018099964 W CN 2018099964W WO 2019109659 A1 WO2019109659 A1 WO 2019109659A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
mold
finishing
milling
cnc
Prior art date
Application number
PCT/CN2018/099964
Other languages
English (en)
French (fr)
Inventor
王德霄
贲春香
刘鹏
Original Assignee
南通斯迈尔精密设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通斯迈尔精密设备有限公司 filed Critical 南通斯迈尔精密设备有限公司
Publication of WO2019109659A1 publication Critical patent/WO2019109659A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/24Making specific metal objects by operations not covered by a single other subclass or a group in this subclass dies

Definitions

  • the invention relates to a cavity machining process, in particular to a cavity machining process of a semiconductor packaging mold.
  • the requirements for packaging of modern semiconductor products are becoming more and more complex, and the requirements for semiconductor packaging molds are also increasing.
  • the cavity of the semiconductor package mold is the most important part of the mold, which directly affects the size, appearance and yield of the packaged product. Therefore, the existing mold processing technology is put forward higher requirements, not only to ensure higher manufacturing precision, but also to achieve the required surface quality.
  • the cavity processing process of the traditional semiconductor package mold is: mold steel ⁇ milling roughing ⁇ CNC roughing ⁇ heat treatment ⁇ grinding roughing ⁇ electrode machining ⁇ Discharge roughing ⁇ discharge semi-finishing ⁇ grinding semi-finishing ⁇ electrode machining ⁇ discharge finishing ⁇ grinding finishing ⁇ deburring ⁇ electroplating (or PVD coating) and other complicated and lengthy processes, not only low processing efficiency, The cost is high and the manufacturing cycle is long.
  • the two processing steps of electrode processing and electric discharge machining are the most prominent.
  • the surface roughness of the cavity for electrical discharge machining can only reach Ra0.4um, and the processing time is long (about 50 hours).
  • the surface is easy to form due to long-term electrical discharge machining.
  • Carbon deposit, the coating (coating) on the surface of the cavity is not strong, easy to fall off, resulting in shortened life of the cavity.
  • the mold is cleaned and the mold is frequently increased during use, which reduces the production efficiency and greatly increases the production cost.
  • the object of the present invention is to overcome the defects of the prior art and provide a cavity processing process for a semiconductor package mold, which can effectively improve processing efficiency, processing precision, and reduce processing cost of the mold.
  • the present invention proposes the following technical solutions:
  • a cavity processing process for a semiconductor package mold includes the following steps:
  • step a roughing is installed in the CNC machining center, the CNC rough machining is performed on the cavity, and the drilling speed when controlling the rough machining drilling is 10 ⁇ 12m/min, and the feed rate is 0.05. ⁇ 0.1mm/r; milling speed of milling is 130 ⁇ 160m/min, feed rate is 0.2 ⁇ 0.4mm/tooth;
  • step b heat treatment, the mold completed in step b is first quenched, and then cryogenic treatment and tempering alternately, so that the hardness reaches HRC63-65 degrees;
  • step c grinding roughing, the mold after heat treatment in step c is placed on the grinding machine to grind several faces of the cavity, so that the parallelism, verticality and flatness of each face are within 0.02 mm;
  • step f CNC semi-finishing, the cavity after the processing of step e is mounted to a high-speed high-precision CNC machining center with a rotational speed of 18000 ⁇ 42000r / min, position accuracy of 0.005mm, semi-finishing the cavity, controlling the spindle of finishing
  • the speed is 18000 ⁇ 42000r/min
  • the feed rate is 0.02 ⁇ 0.1mm/r
  • the flat head type and spherical milling cutter with diameter of 0.2 ⁇ 2mm are used for M609 tungsten carbide.
  • the lower cutting amount of the cavity is 0.01 ⁇ 0.05mm.
  • Stratified cavity milling, the final machining allowance of 0.01 ⁇ 0.03mm is reserved for the single cavity;
  • step f CNC finishing
  • the cavity after the processing of step f is still placed in the CNC machining center for the precision machining of the cavity
  • the spindle speed for controlling the finishing is 25000 ⁇ 42000r / min
  • the feed amount is 0.02 ⁇ 0.1mm / r
  • custom taper milling cutter made of M609 tungsten carbide material
  • the cutter tip diameter is 0.2 ⁇ 2mm
  • the single side angle is 3 ⁇ 15°
  • the depth contour of the cavity is finely milled to the required size of the drawing
  • step h grinding machine finishing, further grinding the cavity after processing in step g, so that the size meets the specified requirements
  • the mold steel in the step a is selected from ASP23 powder metallurgy high speed steel.
  • the quenching step is: placing the mold in a vacuum furnace, quenching in a protective gas, preheating at 500-550 ° C and 850-900 ° C in 2 portions, and maintaining at 1145 ° C for 18 minutes. Under the environment, the Austrian body is slowly cooled to 40-50 ° C, and the hardness of HRC 63-65 degrees is obtained.
  • the tempering step in the step c is: placing the mold in a vacuum furnace, tempering three times in the shielding gas, each tempering temperature is 560 ° C, holding time for at least 1 hour, and then cooling to room temperature, so that The residual mass of the workpiece is less than 1%.
  • the cryogenic treatment step in the step c is that the mold is placed in an environment of -150 ° C to -196 ° C for 1-3 hours for cryogenic treatment to obtain a stable size.
  • the cavity processing process of a semiconductor package mold disclosed by the invention replaces the original electrode processing and electric discharge machining by a CNC finishing process, and adopts a customized tool tip diameter of 0.2 to 2 mm and a single side angle of 3 to 15 degrees.
  • the milling cutter controls the direction and feed rate of the milling cutter during milling, so as to realize the fine machining of the cavity.
  • the CNC finishing is compared with the original multiple electrode machining, the discharge rough machining, the discharge semi-finishing step, and the processing time. It can be reduced by about 30 hours, and the surface roughness of the cavity can reach Ra0.15, so that the subsequent surface coating (PVD coating) is firm and does not fall off, and the final mold processing product is easy to demold.
  • the cavity processing process of a semiconductor package mold disclosed in the present invention has the following advantages:
  • the processing step of the cavity is obviously reduced, the number of clamping in the repeated processing is reduced, the processing precision of the cavity of the semiconductor packaging mold is improved, the processing time is greatly shortened, the surface roughness is improved, and the processing cost of the entire mold is reduced.
  • the manufacturing cycle is shortened, and the mold release is easy when the product is prepared, thereby reducing the frequency of mold cleaning and mold reduction during the use of the mold, improving production efficiency and reducing production cost.
  • Figure 1 is a side cross-sectional view of a cavity of a package mold of the present invention.
  • the cavity processing process of a semiconductor package mold disclosed in the present invention realizes processing of the cavity of FIG. 1 , and specifically includes the following steps:
  • the mold steel selects APS23 powder metallurgy high speed steel, and the milling speed is controlled to be 100-130 m/min. The amount is 0.2-0.3mm/tooth. After milling, the hexagonal square is used for dimension measurement. It is required to have a margin of 0.2-0.3mm for each processing surface.
  • step a roughing is installed in the CNC machining center, and the rough machining of the hexahedral cavity is performed.
  • the specific roughing operations include drilling, tapping, milling and other operations.
  • the steps can refer to the existing CNC roughing control;
  • step b Heat treatment, the mold completed in step b is first quenched, and then the cryogenic treatment and the tempering are alternately performed to achieve a hardness of HRC 63-65 degrees.
  • the specific steps are as follows:
  • cryogenic treatment the mold should be quenched immediately after quenching, and placed in the environment of -150 ° C to -196 ° C for 1-3 hours for cryogenic treatment to obtain a stable size;
  • the mold is placed in a vacuum furnace, tempered three times in the shielding gas, each tempering temperature is 560 ° C, the holding time is at least 1 hour, and then cooled to room temperature, so that the residual volume of the workpiece is less than 1% ;
  • step c grinding roughing, the mold after heat treatment in step c is placed on the grinding machine to grind the six faces of the cavity, so that the parallelism, verticality and flatness of each face are within 0.02 mm;
  • step f CNC semi-finishing, the cavity after the processing of step e is mounted to a high-speed high-precision CNC machining center with a rotational speed of 18000 ⁇ 42000r / min, position accuracy of 0.005mm, semi-finishing the cavity, controlling the spindle of finishing
  • the speed is 18000 ⁇ 42000r/min
  • the feed rate is 0.02 ⁇ 0.1mm/r
  • the flat head type and spherical milling cutter with diameter of 0.2 ⁇ 2mm are used for M609 tungsten carbide.
  • the lower cutting amount of the cavity is 0.01 ⁇ 0.05mm.
  • Stratified cavity milling, the final machining allowance of 0.01 ⁇ 0.03mm is reserved for the single cavity;
  • step f CNC finishing
  • the cavity after the processing of step f is still placed in the CNC machining center for the precision machining of the cavity
  • the spindle speed for controlling the finishing is 25000 ⁇ 42000r / min
  • the feed amount is 0.02 ⁇ 0.1mm / r
  • custom taper milling cutter made of M609 tungsten carbide material
  • the cutter tip diameter is 0.2 ⁇ 2mm
  • the single side angle is 3 ⁇ 15°
  • the depth contour of the cavity is finely milled to the required size of the drawing
  • step h grinding machine finishing, further grinding the cavity after processing in step g, so that the size meets the specified requirements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种半导体封装模具的型腔加工工艺,具体包括:铣削粗加工,CNC粗加工,热处理,磨削粗加工,磨削半精加工,CNC半精加工,CNC精加工,磨床精加工及后处理。

Description

一种半导体封装模具的型腔加工工艺 技术领域
本发明涉及一种型腔加工工艺,尤其涉及一种半导体封装模具的型腔加工工艺。
背景技术
现代半导体产品封装的要求日渐复杂,其对半导体封装模具的要求也随之增高。半导体封装模具的型腔作为模具中最重要的组成部分,直接影响到封装产品的尺寸,外观,成品率等问题。因此,对现有模具加工技术提出了更高的要求,不仅需要保证更高的制造精度,还要达到要求的表面质量。
由于半导体封装模具型腔加工工序中热处理硬度要达到HRC63-65度,所以传统半导体封装模具的型腔加工工艺为:模具钢材→铣削粗加工→CNC粗加工→热处理→磨削粗加工→电极加工→放电粗加工→放电半精加工→磨削半精加工→电极加工→放电精加工→磨削精加工→去除毛刺→电镀(或PVD涂层)等复杂冗长的工艺流程,不仅加工效率低,成本高昂,而且制造周期很长。
其中,电极加工和放电加工两个加工步骤问题最为突出,放电加工的型腔表面粗糙度只能达到Ra0.4um左右,且加工时间长(约50小时左右),表面因长时间放电加工容易形成积碳,型腔表面的镀层(涂层)不牢固,易脱落,造成型腔的寿命缩短,模具在使用过程中清模、润模频次增加,降低了生产效率,生产成本大大增加。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种半导体封装模具的型腔加工工艺,可以有效提高加工效率,加工精度,同时降低模具的加工成本。
为实现上述目的,本发明提出如下技术方案:
一种半导体封装模具的型腔加工工艺,包括如下步骤:
a、铣削粗加工,将待加工的模具钢材固定到铣床上,进行型腔几个面的加工,控制车削速度为100~130m/min,进给量为0.2~0.3mm/tooth,铣削时每个加工面留有0.2~0.3mm的余量;
b、CNC粗加工,对步骤a粗加工完成的模具安装到CNC加工中心,对型腔进行CNC粗加工,控制粗加工钻孔时的钻孔速度为10~12m/min,进给量为0.05~0.1mm/r;铣削加工的铣削速度为130~160m/min,进给量为0.2~0.4mm/tooth;
c、热处理,将步骤b完成的模具先淬火,再深冷处理和回火交替进行,使硬度达到HRC63-65度;
d、磨削粗加工,将步骤c热处理后的模具放置到磨床上对型腔的几个面进行磨削加工,使得每个面的平行度,垂直度以及平面度在0.02mm以内;
e、磨削半精加工,对模具的型腔进行再一次加工,去除铣削加工留下的余量;
f、CNC半精加工,将步骤e加工后的型腔安装到转速达18000~42000r/min,位置精度0.005mm的高速高精度数控加工中心内对型腔进行半精加工,控制精加工的主轴转速为18000~42000r/min,进给量为0.02~0.1mm/r,采用M609碳化钨材质直径为0.2~2mm的平头型和球形铣刀,对型腔进行下刀量为0.01~0.05mm的分层型腔铣削,最终型腔单边预留0.01~0.03mm的加工余量;
g、CNC精加工,将步骤f加工后的型腔仍安置于数控加工中心内对型腔进行精加工,控制精加工的主轴转速为25000~42000r/min,进给量为0.02~0.1mm/r,采用M609碳化钨材质的定制锥形铣刀,铣刀的刀尖直径为0.2~2mm,单侧角度为3~15°,对型腔进行深度轮廓精铣削至图纸要求尺寸;
h、磨床精加工,进一步对步骤g加工后的型腔进行磨削加工,使得尺寸达到规定要求;
i、后处理,对型腔内进行去毛刺操作,并进行单面2~3μm电镀或PVD涂层处理。
作为优选,所述步骤a中模具钢材选用ASP23粉末冶金高速钢。
作为优选,所述步骤c中淬火步骤为,将模具置于真空炉内,在保护气体内淬火,在500-550℃和850-900℃分2部分预热,在1145℃下,保温18分钟环境下奥式体化,并缓冷至40-50℃,得到HRC63-65度的硬度。
作为优选,所述步骤c中回火步骤为,将模具置于真空炉内,在保护气体内分三次回火,每次回火温度为560℃,保温时间至少1小时,然后冷却至室温,使工件残余奥式体量小于1%。
作为优选,所述步骤c中深冷处理步骤为,将模具置于-150℃至-196℃的环境内保温1-3小时进行深冷处理,以获得稳定的尺寸。
本发明所揭示的一种半导体封装模具的型腔加工工艺,采用CNC精加工工序替代原先的电极加工及放电加工,采用定制的刀尖直径为0.2~2mm,单侧角度为3~15°的铣刀,控制铣刀铣削加工时的走向以及进给量,从而实现对型腔的精细加工,CNC精加工相比原先的多次电极加工,放电粗加工,放电半精加工步骤,其加工时间可以减少30小时左右,而型腔的表面粗糙度可以达到Ra0.15左右,使得后续的表面镀层(PVD涂层)牢固,不会脱落,而且最终的模具加工的产品脱模容易。
与现有技术相比,本发明揭示的一种半导体封装模具的型腔加工工艺,具有如下有益之处:
明显减少了型腔的加工步骤,减少了重复加工过程中装夹次数,提高了半导体封装模具型腔的加工精度,同时极大的缩短了加工时间,提升表面粗糙度;整个模具加工成本降低,制造周期缩短,制备产品时脱模容易,从而减少模具使用过程中清模和润模的频次,提高生产效率,降低生产成本。
附图说明
图1为本发明封装模具的型腔侧面剖视图。
具体实施方式
下面将结合本发明的内容,对本发明实施例的技术方案进行清楚、完整的描述。
本发明所揭示的一种半导体封装模具的型腔加工工艺,实现对图1的型腔的加工,具体包括如下步骤:
a、铣削粗加工,将待加工的模具钢材固定到铣床上,进行型腔六个面的加工,该模具钢材选择APS23粉末冶金高速钢,在铣削是控制车削速度为100~130m/min,进给量为0.2~0.3mm/tooth,铣削后采用六面角尺进行尺寸测量,要求每个加工面都留有0.2~0.3mm的余量;
b、CNC粗加工,对步骤a粗加工完成的模具安装到CNC加工中心,对六面体型腔进行CNC粗加工,具体的粗加工内容包括钻孔,攻牙,铣槽等操作,这些操作的具体步骤可以参照现有的CNC粗加工控制;
c、热处理,将步骤b完成的模具先淬火,再深冷处理和回火交替进行,使硬度达到HRC63-65度,具体步骤如下:
c1、淬火,将模具置于真空炉内,在保护气体内淬火,在500-550℃和850-900℃分2部分预热,在1145℃,保温18分钟环境下奥式体化,并缓冷至40-50℃,得到HRC63-64度的硬度;
c2、深冷处理,模具淬火后应立即进行深冷处理,将其置于-150℃至-196℃的环境内保温1-3小时进行深冷处理,以获得稳定的尺寸;
c3、回火,模具置于真空炉内,在保护气体内分三次回火,每次回火温度为560℃,保温时间至少1小时,然后冷却至室温,使工件残余奥式体量小于1%;
d、磨削粗加工,将步骤c热处理后的模具放置到磨床上对型腔的六个面进行磨削加工,使得每个面的平行度,垂直度以及平面度在0.02mm以内;
e、磨削半精加工,对模具的型腔进行再一次加工,去除铣削加工留下的余量;
f、CNC半精加工,将步骤e加工后的型腔安装到转速达18000~42000r/min,位置精度0.005mm的高速高精度数控加工中心内对型腔进行半精加工,控制精加工的主轴转速为18000~42000r/min,进给量为0.02~0.1mm/r,采用M609碳化钨材质直径为0.2~2mm的平头型和球形铣刀,对型腔进行下刀量为0.01~0.05mm的分层型腔铣削,最终型腔单边预留0.01~0.03mm的加工余量;
g、CNC精加工,将步骤f加工后的型腔仍安置于数控加工中心内对型腔进行精加工,控制精加工的主轴转速为25000~42000r/min,进给量为0.02~0.1mm/r,采用M609碳化钨材质的定制锥形铣刀,铣刀的刀尖直径为0.2~2mm,单侧角度为3~15°,对型腔进行深度轮廓精铣削至图纸要求尺寸;
h、磨床精加工,进一步对步骤g加工后的型腔进行磨削加工,使得尺寸达到规定要求;
i、后处理,对型腔内进行去毛刺操作,并进行单面2~3μm电镀或PVD涂层处理。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此, 本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (5)

  1. 一种半导体封装模具的型腔加工工艺,其特征在于包括如下步骤:
    a、铣削粗加工,将待加工的模具钢材固定到铣床上,进行型腔几个面的加工,控制切削速度为100~130m/min,进给量为0.2~0.3mm/tooth,铣削时每个加工面留有0.2~0.3mm的余量;
    b、CNC粗加工,对步骤a粗加工完成的模具安装到CNC加工中心,对型腔进行CNC粗加工,控制粗加工钻孔时的钻孔速度为10~12m/min,进给量为0.05~0.1mm/r;铣削加工的铣削速度为130~160m/min,进给量为0.2~0.4mm/tooth;
    c、热处理,将步骤b完成的模具先淬火,再深冷处理和回火交替进行,使硬度达到HRC63-65度;
    d、磨削粗加工,将步骤c热处理后的模具放置到磨床上对型腔的几个面进行磨削加工,使得每个面的平行度,垂直度以及平面度在0.02mm以内;
    e、磨削半精加工,对模具的型腔进行再一次加工,去除铣削加工留下的余量;
    f、CNC半精加工,将步骤e加工后的型腔安装到转速达18000~42000r/min,位置精度0.005mm的高速高精度数控加工中心内对型腔进行半精加工,控制精加工的主轴转速为18000~42000r/min,进给量为0.02~0.1mm/r,采用M609碳化钨材质直径为0.2~2mm的平头型和球形铣刀,对型腔进行下刀量为0.01~0.05mm的分层型腔铣削,最终型腔单边预留0.01~0.03mm的加工余量;
    g、CNC精加工,将步骤f加工后的型腔仍安置于数控加工中心内对型腔进行精加工,控制精加工的主轴转速为25000~42000r/min,进给量为0.02~0.1mm/r,采用M609碳化钨材质的定制锥形铣刀,铣刀的刀尖直径为0.2~2mm,单侧角度为3~15°,对型腔进行深度轮廓精铣削至图纸要求尺寸;
    h、磨床精加工,进一步对步骤g加工后的型腔各表面进行磨削加工,使得尺寸达到规定要求;
    i、后处理,对型腔内进行去毛刺操作,并进行单面2~3μm电镀或PVD涂层处理。
  2. 根据权利要求1所述的半导体封装模具的型腔加工工艺,其特征在于:所述步骤a中模具钢材选用ASP23粉末冶金高速钢。
  3. 根据权利要求1所述的半导体封装模具的型腔加工工艺,其特征在于:所述步骤c中淬火步骤为,将模具置于真空炉内,在保护气体内淬火,在500-550℃和850-900℃分2部分预热,在1145℃下,保温18分钟环境下奥式体化,并缓冷至40-50℃,得到HRC63-65度的硬度。
  4. 根据权利要求1所述的半导体封装模具的型腔加工工艺,其特征在于:所述步骤c中回火步骤为,将模具置于真空炉内,在保护气体内分三次回火,每次回火温度为560℃,保温时间至少1小时,然后冷却至室温,使工件残余奥式体量小于1%。
  5. 根据权利要求1所述的半导体封装模具的型腔加工工艺,其特征在于:所述步骤c中深冷处理步骤为,将模具置于-150℃至-196℃的环境内保温1-3小时进行深冷处理,以获得稳定的尺寸。
PCT/CN2018/099964 2017-12-04 2018-08-10 一种半导体封装模具的型腔加工工艺 WO2019109659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711258344.2A CN108161380A (zh) 2017-12-04 2017-12-04 一种半导体封装模具的型腔加工工艺
CN201711258344.2 2017-12-04

Publications (1)

Publication Number Publication Date
WO2019109659A1 true WO2019109659A1 (zh) 2019-06-13

Family

ID=62524293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099964 WO2019109659A1 (zh) 2017-12-04 2018-08-10 一种半导体封装模具的型腔加工工艺

Country Status (2)

Country Link
CN (1) CN108161380A (zh)
WO (1) WO2019109659A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108161380A (zh) * 2017-12-04 2018-06-15 南通斯迈尔精密设备有限公司 一种半导体封装模具的型腔加工工艺
CN108994555A (zh) * 2018-08-02 2018-12-14 苏州钜升精密模具有限公司 一种能够使钢模型腔尺寸稳定的处理方法
CN109108581B (zh) * 2018-09-28 2023-06-16 江苏数字鹰科技股份有限公司 一种无人机用载物组件机身连接部制造方法
CN109108582A (zh) * 2018-09-28 2019-01-01 江苏数字鹰科技股份有限公司 一种无人机用载物组件铰接连接部制造方法
CN110202192A (zh) * 2019-05-28 2019-09-06 闻泰通讯股份有限公司 提高表面粗糙度的铣削加工方法
CN110125625A (zh) * 2019-06-11 2019-08-16 天津磊峰实业有限公司 一种汽车配件加工用模具的加工方法
CN110270799B (zh) * 2019-07-02 2021-06-15 东莞盛翔精密金属有限公司 激光检测治具板制造工艺
CN110480288B (zh) * 2019-08-07 2021-06-29 无锡航亚科技股份有限公司 一种胫骨平台人工关节的精锻模具的加工方法
CN113369833B (zh) * 2021-06-28 2023-04-21 宁波江丰复合材料科技有限公司 一种热压模具的加工方法
CN114193092B (zh) * 2021-12-03 2023-01-24 深圳市玉沣科技有限公司 一种半导体设备核心零件精密加工方法
CN115341073A (zh) * 2022-08-01 2022-11-15 江苏天工工具新材料股份有限公司 一种基于粉末高速钢的热处理工艺
CN115301433A (zh) * 2022-08-09 2022-11-08 深圳市速博精微科技有限公司 一种精密半导体零件加工工艺
CN117381340A (zh) * 2023-08-18 2024-01-12 宁波锦辉光学科技有限公司 一种激光面罩光学面模具的加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109248A1 (en) * 2001-02-14 2002-08-15 Ying-Chung Chen Fast mold manufacturing method with less quantity /more varieties
CN105215644A (zh) * 2015-11-02 2016-01-06 鲁一军 一种模仁的加工工艺
CN106141590A (zh) * 2016-08-08 2016-11-23 成都四威高科技产业园有限公司 一种大长宽比薄壁滤波器腔体加工工艺
CN108161380A (zh) * 2017-12-04 2018-06-15 南通斯迈尔精密设备有限公司 一种半导体封装模具的型腔加工工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239368B2 (ja) * 1981-07-08 1990-09-05 Mitsubishi Electric Corp Jushifushigatahandotaisochiseikeiyomoorudokanagata
CN101992384B (zh) * 2010-10-26 2013-02-06 昆山华风风电科技有限公司 剪切肋模具制造工艺
CN102303221B (zh) * 2011-08-29 2013-06-05 西南铝业(集团)有限责任公司 一种大方孔凹模的加工方法
JP2016150348A (ja) * 2015-02-16 2016-08-22 杉浦工業株式会社 金型の製造方法および再生加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109248A1 (en) * 2001-02-14 2002-08-15 Ying-Chung Chen Fast mold manufacturing method with less quantity /more varieties
CN105215644A (zh) * 2015-11-02 2016-01-06 鲁一军 一种模仁的加工工艺
CN106141590A (zh) * 2016-08-08 2016-11-23 成都四威高科技产业园有限公司 一种大长宽比薄壁滤波器腔体加工工艺
CN108161380A (zh) * 2017-12-04 2018-06-15 南通斯迈尔精密设备有限公司 一种半导体封装模具的型腔加工工艺

Also Published As

Publication number Publication date
CN108161380A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2019109659A1 (zh) 一种半导体封装模具的型腔加工工艺
JP5370896B2 (ja) 鍛造用金型の製造方法
CN101856784B (zh) 一种列车车体型材模具的加工工艺
CN102922244A (zh) 钛合金叶轮表面完整性加工方法
CN105834702B (zh) 原位自生型TiB2颗粒增强铝基复合材料叶片切削加工方法
CN105499924A (zh) 一种易拉罐拉环模具成型下模的加工方法
CN110480288B (zh) 一种胫骨平台人工关节的精锻模具的加工方法
CN106425346A (zh) 一种牙刷模具的加工工艺
CN106312152A (zh) 薄壁零件的加工方法
CN110125629B (zh) 一种高平面度的滚剪刀片加工工艺
CN108941636B (zh) 一种车刀及使用它的模唇车削加工方法
CN101327533A (zh) 电火花加工硬质合金螺纹孔的方法
CN104057501B (zh) 一种加工橱柜门框的套装铣刀的制造方法
CN111185731A (zh) 一种面齿轮的加工方法
CN106392495A (zh) 带凸缘方形引伸封接环的加工方法
CN114131516B (zh) 一种加工粗糙度可控的砂轮及磨削工艺
JP5610124B2 (ja) 成形工具の加工方法
CN109128324B (zh) 一种铣刀及使用它的模唇铣削加工方法
CN218362314U (zh) 一种用于内齿轮铣削加工的精铣刀片
CN111267189A (zh) 一种木工铣刀及其加工方法
CN110293378A (zh) 一种超精密衬套加工方法
CN204892708U (zh) 一种二下冲模
JP4819352B2 (ja) 鍛造用金型の製造方法、鍛造用金型および鍛造成形品
CN114161089B (zh) 一种薄壁铝制连接件的加工方法
CN110340626A (zh) 一种模腔的加工工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18886182

Country of ref document: EP

Kind code of ref document: A1