WO2019109420A1 - 左右声道确定方法及耳机设备 - Google Patents

左右声道确定方法及耳机设备 Download PDF

Info

Publication number
WO2019109420A1
WO2019109420A1 PCT/CN2017/119782 CN2017119782W WO2019109420A1 WO 2019109420 A1 WO2019109420 A1 WO 2019109420A1 CN 2017119782 W CN2017119782 W CN 2017119782W WO 2019109420 A1 WO2019109420 A1 WO 2019109420A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
earphone
time
sound source
correlation
Prior art date
Application number
PCT/CN2017/119782
Other languages
English (en)
French (fr)
Inventor
张晓红
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Publication of WO2019109420A1 publication Critical patent/WO2019109420A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups

Definitions

  • the present application relates to the field of terminal technologies, and in particular, to a left and right channel determining method and a headphone device.
  • the earphone As an important accessory for mobile phones, computers, walkmans and other terminal devices, earphones bring great convenience to people's lives and work.
  • the earphone generally includes two left and right earphones, which are respectively worn on the left and right ears of the user. This can form two left and right channels, thereby improving the stereoscopic effect of the sound.
  • a left and right mark is added to the earphone to distinguish the left and right channels.
  • the left earphone needs to be worn on the left ear of the user to output the left channel signal
  • the right earphone is worn on the right ear of the user to output the right channel signal. If the user wears the left and right headphones because they cannot distinguish the left and right headphones, the signal quality will be degraded due to different channel processing methods.
  • aspects of the present application provide a method and apparatus for determining left and right channels for automatically identifying left and right channels corresponding to earphones, so that the headphones can process signals of left and right channels in an appropriate manner, improve sound signal quality, and enhance users.
  • Experience friendship
  • the embodiment of the present application provides a method for determining a left and right channel, which is applicable to any earphone in the earphone device.
  • the first microphone and the second microphone are disposed on both sides of the reference line of the earphone, and the method includes:
  • a channel corresponding to the earphone is determined according to a relative position of the earphone and an actual sound source.
  • the embodiment of the present application further provides a method for determining a left and right channel, which is applicable to any earphone in the earphone device.
  • the first microphone and the second microphone are disposed on both sides of the reference line of the earphone, and the method includes:
  • a channel corresponding to the earphone is determined according to a relative position of the earphone and an actual sound source.
  • the embodiment of the present application further provides a headphone device, including: two earphones and a processing unit; a first microphone and a second microphone are disposed on two sides of a reference line of any one of the two earphones;
  • the processing unit is used to:
  • a channel corresponding to the earphone is determined according to a relative position of the earphone and an actual sound source.
  • the embodiment of the present application further provides a headphone device, including: two earphones and a processing unit; a first microphone and a second microphone are disposed on two sides of a reference line of any one of the two earphones;
  • the processing unit is used to:
  • a channel corresponding to the earphone is determined according to a relative position of the earphone and an actual sound source.
  • two microphones are disposed on both sides of the reference line of any earphone device, and the time delay T of the same reference sound source signal reaches the two microphones, and the two microphones are acquired at time t and time t+T, respectively.
  • the embodiment of the present application can automatically match the left and right channel signals with the left and right ears of the user according to the position of the earphone relative to the actual sound source, and the user does not need to manually distinguish the left and right earphones when using the device, and can automatically determine the corresponding channel of the earphone, which is convenient for the earphone.
  • the corresponding processing method processes the left and right channel signals to improve the quality of the sound signal and has a high user experience.
  • FIG. 1 is a schematic flowchart of a method for determining left and right channels according to an embodiment of the present disclosure
  • FIG. 1b is a schematic structural diagram of any earphone in a headset device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining left and right channels according to another embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for determining left and right channels according to another embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of a method for determining left and right channels according to another embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a headphone device according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another earphone device according to another embodiment of the present disclosure.
  • the basic principle is: two microphones are arranged on both sides of the reference line of the earphone, and two microphones are obtained based on the delay T of the same reference sound source signal reaching the two microphones.
  • the sound signals collected at time t and t+T, respectively, and the correlation of the sound signals collected by the two microphones at the two moments are calculated, and the earphone and the actual sound source are determined according to the relationship between the two correlation degrees.
  • the user does not need to manually distinguish the left and right earphones during use, and can automatically recognize the corresponding channel of the earphone, so that the earphone adopts corresponding processing manner to process the left and right channel signals, thereby improving the quality of the sound signal.
  • the user does not need to manually distinguish the left and right earphones during use, and can automatically recognize the corresponding channel of the earphone, so that the earphone adopts corresponding processing manner to process the left and right channel signals, thereby improving the quality of the sound signal.
  • FIG. 1 is a schematic flowchart of a method for determining left and right channels according to an embodiment of the present disclosure.
  • the method is applicable to any earphone in the earphone device, and the first microphone and the second microphone are disposed on both sides of the reference line of the earphone.
  • the earphone device may include two earphones, but is not limited thereto.
  • the left and right channel determining methods include:
  • the earphone device generally includes two earphones that are respectively worn on the left and right ears of the user.
  • two microphones are disposed on both sides of the reference line of any of the two earphones for identifying the position of the earphone relative to the actual sound source.
  • the two microphones are disposed on the housing of the earphone or in the housing.
  • the two microphones are respectively labeled as a first microphone and a second microphone.
  • the first microphone and the second microphone are disposed on both sides of the headphone reference line to ensure that the two microphones have a certain delay T when acquiring the same sound source signal, so as to determine the relative position of the earphone and the actual sound source based on the delay T.
  • the delay T also reflects the positional relationship between the first microphone and the second microphone to a certain extent.
  • the first microphone and the second microphone are symmetrically arranged on both sides of the reference line of the earphone.
  • the reference line of the earphone refers to any straight line that passes through the earphone and is parallel to the longitudinal direction of the user's head when the earphone is in a normal wearing state.
  • the reference line of the earphone may be a straight line that passes through the geometric center of the earphone and is longitudinally parallel to the user's head when the earphone is in a normal wearing state, and the straight line may be referred to as a vertical center line of the earphone.
  • the geometry center of the headset varies depending on the shape of the headset. In general, once the shape of the earphone is determined, its geometric center is determined.
  • the process of determining the relative position of the earphone and the actual sound source based on the delay T of the first reference signal and the second microphone receiving the same reference sound source signal includes:
  • the first microphone and the second microphone Acquiring the first microphone and the second microphone to collect the sound signal at time t and the first microphone and the second microphone collecting the sound signal at time t+T, and then calculating the sound signal collected by the first microphone at time t and the second microphone
  • the correlation of the sound signal collected at time t+T and the correlation between the sound signal collected by the first microphone at time t+T and the sound signal collected by the second microphone at time t is recorded as the first correlation
  • the first microphone is at time t+T.
  • the correlation between the acquired sound signal and the sound signal collected by the second microphone at time t is recorded as a second correlation.
  • the relative position of the earphone and the actual sound source may be determined according to the first correlation and the second correlation.
  • the correlation is the amount of correlation between the two variables, and the greater the correlation, the closer the two variables corresponding to the correlation are.
  • the transmission delay T of the same reference sound source signal to the first microphone and the second microphone the signals collected by the first microphone and the second microphone at two time points with a difference of T are theoretically the same signal, and the correlation thereof is related. Close to 1.
  • the first microphone may acquire the signal at time t, and the second microphone is at t+ The signal is acquired at time T, or it may be that the second microphone acquires the signal at time t, and the first microphone acquires the signal at time t+T.
  • the relative positional relationship between the two microphones and the actual sound source cannot be known in advance, that is, the microphones closer to the actual sound source in the two microphones cannot be determined, so it is necessary to calculate the sound signal collected by the first microphone at time t and the second
  • the first correlation of the sound signal collected by the microphone at time t+T and the second correlation of the sound signal collected by the first microphone at time t+T and the sound signal collected by the second microphone at time t The magnitude relationship of the two correlations is used to identify which of the above two cases. Once it is determined which of the above two cases, it is equivalent to determining the relative positional relationship between the two microphones and the actual sound source, that is, which microphone is closer to the actual sound source and which microphone is farther from the actual sound source.
  • the first correlation is greater than the second correlation
  • the sound signal collected by the first microphone at time t is closer to the sound signal collected by the second microphone at time t+T;
  • the correlation is greater than the first correlation, indicating that the sound signal collected by the first microphone at time t+T is closer to the sound signal collected by the second microphone at time t. Therefore, it can be determined that the time points when the first microphone and the second microphone collect the same sound signal from the actual sound source should be two time points corresponding to the greater correlation.
  • the microphones of the first microphone and the second microphone that are closer to the actual sound source may be determined according to the time point when the first microphone and the second microphone collect the same sound signal from the actual sound source. Further, combining the positions of the two microphones on the earphones and the microphones that are closer to the actual sound source, the relative position of the earphones to the actual sound source can be determined.
  • the corresponding channel of the earphone can be determined. For example, if the earphone is on the left side of the actual sound source, it can be determined that the earphone corresponds to the left channel; if the earphone is on the right side of the actual sound source, it can be determined that the earphone corresponds to the right channel.
  • the position of the two microphones on the earphone and the time delay T of the same reference sound source signal reaching the two microphones can be combined to determine the relative position of the earphone and the actual sound source, thereby determining the channel corresponding to the earphone.
  • the corresponding channel of the earphone can be automatically determined, so that the earphone adopts a corresponding processing manner to process the left and right channel signals, thereby improving the quality of the sound signal and having a high user experience.
  • an implementation manner of step 103 is: determining, according to a greater correlation between the first correlation and the second correlation, a primary microphone of the first microphone and the second microphone that is closer to the actual sound source; In conjunction with the relative position of the main microphone on the earphone, the relative position of the earphone to the actual sound source is determined.
  • FIG. 1b is a schematic structural view of the earphone when facing any earphone.
  • the earphone 10 includes a first microphone 11 and a second microphone 12, and the first microphone 11 and the second microphone 12 are disposed on both sides of the reference line of the earphone, and the two microphones have certain when collecting the same sound source signal. Delay.
  • the first microphone 11 and the second microphone 12 are shown symmetrically disposed on both sides of the reference line of the earphone in FIG. 1b, but are not limited thereto.
  • the dashed line in Figure 1b represents the baseline of the headset.
  • first microphone 11 and the second microphone 12 collect the same reference sound source signal with a delay T, that is, if the first microphone 11 collects the reference sound source signal at t, and the second microphone 12 collects the reference sound source.
  • the moment of the signal is t+T.
  • the sound signals collected by the first microphone 11 and the second microphone 12 at time t are denoted as S 1 (t) and S 2 (t), respectively, and the first microphone 11 and the second microphone 12 are collected at time t+T.
  • the sound signals are denoted as S 1 (t+T) and S 2 (t+T), respectively, and the sound signal collected by the first microphone 11 at time t and the sound signal collected by the second microphone 12 at time t+T
  • Due to the difference in the relative position setting of the first microphone 11 and the second microphone 12 on the earphone 10 or the delay T of the preset two reference microphones collecting the same reference sound source signal may be a positive number, and may also be a negative number.
  • the preset delay T>0 if the first correlation is greater than the second correlation, the first microphone 11 receives the signal at time t for the same actual sound source signal, and the second microphone 12 is acquired at a time t+T, which is later than the time T of the first microphone 11, and the first microphone 11 is closer to the actual sound source, that is, the first microphone 11 is the main microphone; if the first correlation is smaller than the second correlation For the same actual sound source signal, the second microphone 12 receives the signal at time t, and the first microphone 11 collects the signal at a time t+T later than the second microphone 12 time T, the second microphone 12 is closer to the actual sound source, ie the second microphone 12 is the main microphone.
  • the preset delay T ⁇ 0 if the first correlation is greater than the second correlation, the first microphone 11 receives the signal at time t for the same actual sound source signal, and the second microphone The signal is already acquired at the time t+T before the time
  • the implementation of determining the primary microphone of the first microphone and the second microphone that is close to the actual sound source may be summarized as: if T>0, it is determined that the correlation between the first correlation and the second correlation is greater. a microphone corresponding to time t as the main microphone; or if T ⁇ 0, determining a microphone corresponding to t+T time when calculating a large correlation between the first correlation and the second correlation as the main microphone .
  • FIG. 1b may be a left side view of a schematic diagram of the headset structure.
  • the first correlation coefficient is greater than the second correlation coefficient according to the calculation, and is determined.
  • the first microphone 11 is close to the actual sound source. In combination with the position of the first microphone 11 on the earphone 10 in FIG. 1b, the actual sound source can be determined on the right side of the earphone 10. Therefore, it can be determined that the earphone 10 is worn on the left ear of the user.
  • the earphone corresponds to the input left channel signal; accordingly, the right channel signal can be input to the other earphone of the earphone device.
  • the user removes the earphone and then re-wears it according to a certain situation, it is possible to wear the earphone 10 to the right ear.
  • it can be calculated that the first correlation coefficient is smaller than the second correlation coefficient, and the second microphone 12 is determined to be close to the actual sound.
  • the source in conjunction with the position of the second microphone 12 on the earphone 10 in FIG.
  • the left channel signal can be input to another earphone of the headphone device.
  • FIG. 2 is a schematic flowchart diagram of a method for determining left and right channels according to another embodiment of the present disclosure.
  • the method is applicable to any of the earphone devices, and the first microphone and the second microphone are disposed on both sides of the reference line of the earphone.
  • the reference line refer to the foregoing embodiment, and details are not described herein again.
  • the method includes:
  • the third microphone 13 is disposed on the reference line of any of the earphone devices.
  • the third microphone 13 is disposed on or in the housing of the earphone.
  • the third microphone 13 may be disposed at any position on the earphone housing that intersects the reference line, or at any position within the housing that intersects the reference line.
  • the third microphone 13 has a plurality of set positions, but the set position of the third microphone 13 can be appropriately selected in accordance with the ergonomics and in conjunction with the set positions of the first microphone 11 and the second microphone 12.
  • the sound signal collected by the third microphone 13 can be beamformed with the main microphone to enhance the sound pickup effect of the earphone and improve the quality of the sound signal.
  • the beamforming of the main microphone and the third microphone 13 can achieve the effect of speech enhancement, on the one hand because the two microphones of the beamforming can be more sensitive to sound from a particular direction, and on the other hand, the difference between the two microphone positions is mainly utilized.
  • the resulting difference in signal strength, phase, and time separates the noise and the actual sound source signal to achieve a speech enhancement effect, improve the pickup effect of the earphone, and improve the quality of the sound signal.
  • the beamforming algorithm includes, but is not limited to, an adaptive algorithm based on direction estimation, a method based on a training signal or a reference signal, a beamforming method based on a signal configuration, and the like.
  • the direction in which the main microphone and the third microphone 13 are beamformed should point to the position of the actual sound source.
  • the user may remove the headset midway and then reuse the headset device.
  • the previous recognition of the left and right channels of the earphone device is invalid, and the left and right channel recognition needs to be performed again.
  • the first microphone or the second microphone is determined as the main microphone, the other microphone is still in the path state, but the sound signal it collects is not processed.
  • step 205 and step 206 is not limited. The operations of step 205 and step 206 may be performed in the order shown in FIG. 2, or may be performed in the order of performing step 206 and then performing step 205, and steps 205 and 206 may also be performed in parallel.
  • FIG. 3 is a schematic flowchart of a method for determining left and right channels according to another embodiment of the present disclosure.
  • the method is applicable to any earphone in the earphone device, and the first microphone and the second microphone are disposed on both sides of the reference line of the earphone.
  • the reference line refer to the foregoing embodiment, and details are not described herein again.
  • the method includes:
  • a channel corresponding to the earphone send a channel signal corresponding to the earphone in an audio signal provided by another application to the earphone, and send another channel signal in the audio signal to another earphone output for providing The user listens.
  • the user when the user wears the headset to watch video, listen to the radio, or listen to music, the user first needs to send a sound signal for the first microphone and the second microphone to acquire the first correlation and the second.
  • the calculation of the correlation degree further determines the channel corresponding to the earphone, and the determining method is as described in steps 301-304.
  • the earphones are determined according to the first correlation and the second correlation, and the descriptions of the channels corresponding to the earphones can be referred to the foregoing embodiments, and details are not described herein again.
  • the audio signal that needs to be output may also be output processed according to the determined correspondence between the earphone and the channel. For example, according to the channel corresponding to the earphone, the channel signal corresponding to the earphone provided with the microphone among the audio signals provided by other applications may be sent to the earphone, and another channel signal in the audio signal is sent to another earphone. Output for the user to listen to.
  • other applications may be audio and video playback applications, such as music players, video players, and the like.
  • the left and right headphones of the headphone device output audio corresponding left and right channel signals to achieve high quality listening effects.
  • FIG. 4 is a schematic flowchart diagram of a method for determining a left and right channel according to another embodiment of the present disclosure.
  • the method is applicable to any earphone in the earphone device, and the first microphone and the second microphone are disposed on both sides of the reference line of the earphone.
  • the first microphone and the second microphone are symmetrically arranged on both sides of the reference line of the earphone.
  • the left and right channel determination methods include:
  • the first microphone and the second microphone collect the reference sound source signal
  • the first sound signal collected by the first microphone at time t and the second sound signal collected by the second microphone at time t+T are collected. It is the same signal from the reference source. Since the first microphone and the second microphone are disposed on both sides of the reference line of the earphone, when the user wears the earphone, the distance between the first microphone and the second microphone is different from the actual sound source, and therefore, the amplitude of the same sound source signal is collected. Differently, the amplitude of the sound signal collected by the microphone closer to the actual sound source is larger.
  • the relative position of the earphone and the actual sound source can be determined according to the magnitude of the amplitude of the first sound signal and the second sound signal. Then, according to the relative position of the earphone and the actual sound source, the corresponding channel of the earphone is determined to process the corresponding channel signal, thereby realizing the automatic recognition of the left and right channels by the earphone device, and improving the quality of the sound signal.
  • step 402 may be: determining a sound signal having a larger amplitude in the first sound signal and the second sound signal; and using a microphone corresponding to the sound signal having a larger amplitude as the main microphone near the actual sound source.
  • the relative position of the earphone to the actual sound source is determined in combination with the relative position of the main microphone on the earphone.
  • the method for determining the left and right channels of the earphone device obtains two delays T based on the same reference sound source signal reaching the two microphones by setting two microphones on both sides of the reference line of any earphone device.
  • the sound signal collected by the microphone at time t and t+T respectively; the relative position of the earphone and the actual sound source is determined by comparing the magnitude of the actual sound source signal collected by the two microphones, and then the earphone and the actual sound can be determined according to the earphone and the actual sound
  • the relative position of the source determines the channel corresponding to the earphone, and the user does not need to manually distinguish the left and right earphones during use, and can automatically determine the corresponding channel of the earphone, so that the earphone adopts a corresponding processing manner to process the left and right channel signals, thereby improving the sound.
  • the quality of the signal has a high user experience.
  • the delays T of the same reference signal are collected by the first microphone and the second microphone disposed on both sides of the reference line of any earphone of the earphone device in the process of recognizing the left and right channels.
  • the time delay T at which the first microphone and the second microphone acquire the same reference sound source signal may be calculated in advance, and the time delay T is preset into the earphone device. Based on this, when T is required, T can be read directly from the headphone device.
  • the distance difference between the first microphone and the second microphone to the reference sound source may be calculated in advance, and the distance difference is preset into the earphone device.
  • the time delay T may be obtained according to the distance difference between the preset first microphone and the second microphone to the reference sound source divided by the sound propagation speed. Further, the steps of performing left and right channel recognition in the respective embodiments are performed based on the delay T.
  • the distance between the first microphone and the second microphone to the reference sound source may also be calculated in advance, and the distance is preset into the earphone device.
  • the delay is the time difference when the reference sound signal propagates at different distances.
  • the distance between the first microphone and the second microphone to the reference sound source may be preset, and the distance difference is divided by the propagation speed of the sound to obtain the delay T. Further, the steps of performing left and right channel recognition in the respective embodiments are performed based on the delay T.
  • FIG. 5 is a schematic structural diagram of a headphone device according to another embodiment of the present disclosure.
  • the earphone device 50 includes an earphone 501 and an earphone 502 and a processing unit 503; both sides of the reference line of the earphone 501 are provided with a first microphone 504 and a second microphone 505.
  • the first microphone and the second microphone are symmetrically arranged on both sides of the reference line of the earphone.
  • the reference line refer to the foregoing embodiment, and details are not described herein again.
  • the processing unit 503 is configured to:
  • T represents the first microphone 504 and the second microphone 505.
  • the channel corresponding to the earphone 501 is determined according to the relative position of the earphone 501 and the actual sound source.
  • the processing unit 503 when determining the relative position of the earphone 501 and the actual sound source, is specifically configured to:
  • the relative position of the earphone 501 to the actual sound source is determined in conjunction with the relative position of the main microphone on the earphone.
  • the processing unit 503 is specifically configured to perform:
  • T ⁇ 0 it is determined that the microphone corresponding to the time t+T when calculating the greater correlation among the first correlation degree and the second correlation degree is used as the main microphone.
  • a third microphone 506 is disposed on the reference line of the headset 501.
  • the processing unit 503 is further configured to:
  • the sound signal collected by the main microphone is beamformed with the sound signal collected by the third microphone 506 disposed on the reference line of the earphone, and the direction of beamforming is directed to the actual sound source.
  • FIG. 5 is a schematic structural view of the earphone device seen when facing the entire earphone device.
  • the earphone 501 or the earphone 502 it is equivalent to looking from the side, so that the side view of the earphone 501 or the earphone 502 is actually shown in FIG. 5, so the first microphone 504 and the second microphone are shown in FIG. 5.
  • the 505 and the third microphone 506 are on the same side.
  • the microphone in the above embodiment may be disposed not only on the earphone 501 but also on the earphone 502, and the setting position of the processing unit 503 on the earphone device 50 is not limited.
  • the earphone device provided by the embodiment of the present application can automatically identify and match the left and right channels.
  • the user does not need to manually distinguish the left and right earphones during use, and can automatically determine the corresponding channel of the earphone, so that the earphone adopts corresponding processing manner to process the left and right channel signals, and improves the sound signal. Quality, with a high user experience.
  • FIG. 6 is a schematic structural diagram of another earphone device according to another embodiment of the present disclosure.
  • the earphone device 60 includes: two earphones 601 and 602 and a processing unit 603; both sides of the reference line of any of the two earphones 601 and 602 are provided with a first microphone 604 and a second microphone 605 .
  • the first microphone and the second microphone are symmetrically arranged on both sides of the reference line of any of the earphones.
  • the first microphone 604 and the second microphone 605 are provided on the earphone 601 as an example.
  • processing unit 603 is configured to:
  • the channel corresponding to the earphone is determined according to the relative position of the earphone 601 and the actual sound source.
  • the processing unit 603 when determining the relative position of the earphone 601 or 602 and the actual sound source, is specifically configured to:
  • a microphone corresponding to the sound signal having a larger amplitude is used as a main microphone close to the actual sound source;
  • the relative position of the earphone to the actual sound source is determined in conjunction with the relative position of the main microphone on the earphone 601 or 602.
  • a third microphone 606 is disposed on the reference line of the headset 601.
  • the processing unit 603 is further configured to:
  • the sound signal collected by the main microphone is beamformed with the sound signal collected by the third microphone 606 disposed on the reference line of the earphone, and the direction of beamforming is directed to the actual sound source.
  • FIG. 6 is a schematic structural view of the earphone device seen when facing the entire earphone device.
  • the earphone 601 or the earphone 602 it is equivalent to looking from the side, so that actually shown in FIG. 6 is a side view of the earphone 601 or the earphone 602, so the first microphone 604 and the second microphone are shown in FIG. 605 and third microphone 606 are on the same side.
  • the microphone in the above embodiment may be disposed not only on the earphone 601 but also on the earphone 602, and the processing unit 603 is not limited in the setting position of the earphone device 60.
  • the earphone device provided by the embodiment of the present application can automatically identify and match the left and right channels.
  • the magnitude of the sound signal of the actual sound source collected at time t and time t+T determines the relative position of the earphone and the actual sound source, thereby determining the channel corresponding to the earphone, and the user does not need to manually distinguish the left and right earphones during use.
  • the corresponding channel of the earphone can be automatically determined, so that the earphone adopts a corresponding processing manner to process the left and right channel signals, thereby improving the quality of the sound signal and having a high user experience.
  • processing units in FIG. 5 and FIG. 6 may include, but are not limited to, a digital signal processor (DSP)-based processing unit, an ARM processor-based processing unit, and a microcontroller-based processing.
  • DSP digital signal processor
  • ARM ARM processor-based processing unit
  • microcontroller-based processing e.g., a microcontroller-based processing.
  • FPDA Field-Programmable Gate Array
  • the earphone device in the foregoing embodiments and embodiments may be, but not limited to, a wired earphone and a Bluetooth earphone.
  • the wearing manner of the earphone device includes but is not limited to a head-mounted type, an ear canal type, and an earphone type. , ear-hook, earmuffs.
  • the structure of the earphone device in the above embodiments and embodiments, the number, shape and structure of the earphones in the earphone device, and the position, implementation form and the like of the processing unit on the earphone device are all exemplary and not limiting.
  • embodiments of the present invention can be provided as a method, apparatus, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory.
  • RAM random access memory
  • ROM read only memory
  • Memory is an example of a computer readable medium.
  • Computer readable media includes both permanent and non-persistent, removable and non-removable media.
  • Information storage can be implemented by any method or technology.
  • the information can be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory. (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other memory technology, compact disk read only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transportable media can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary storage of computer readable media, such as modulated data signals and carrier waves.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Headphones And Earphones (AREA)

Abstract

本发明实施例提供一种左右声道确定方法及耳机设备。其中,耳机设备的任一耳机的基准线两侧设置两个麦克风,基于同一基准声源信号到达两个麦克风的时延T,获取两个麦克风分别在t时刻和t+T时刻采集到的声音信号,并计算两个麦克风在不同时刻采集到的声音信号的相关度,根据相应的相关度确定耳机与实际声源的相对位置,进而确定耳机对应的通道,用户在使用时无需人为区分左右耳机,可自动确定出耳机对应的声道,便于耳机采用相应的处理方式对左右声道信号进行处理,提高声音信号的质量,具有较高的用户体验。

Description

左右声道确定方法及耳机设备
交叉引用
本申请引用于2017年12月07日递交的名称为“左右声道确定方法及耳机设备”的第2017112856149号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及终端技术领域,尤其涉及一种左右声道确定方法及耳机设备。
背景技术
耳机作为手机、电脑、随身听等终端设备的重要配件为人们的生活、工作带来很大的方便。耳机一般包括左右两个耳机,分别佩戴在用户左耳和右耳。这样可以形成左右两个声道,从而提高声音的立体效果。
在现有技术中,主要是在耳机上增设左右标记来区分左右声道。用户使用时,需要将左耳机佩戴于用户左耳以输出左声道信号,将右耳机佩戴于用户右耳以输出右声道信号。若用户因无法区分左、右耳机而将左右耳机戴反时,由于不同声道处理方式不同,会降低信号质量。
发明内容
本申请的多个方面提供一种左右声道确定方法及装置,用以自动识别耳机对应的左右声道,便于耳机采用适合的方式对左右声道的信号进行处理,提高声音信号质量,增强用户体验友好性。
本申请实施例提供一种左右声道确定方法,适用于耳机设备中的任一耳机,所述耳机的基准线的两侧设有第一麦克风和第二麦克风,所述方法包括:
获取所述第一麦克风和所述第二麦克风在t时刻采集到的声音信号以及在t+T时刻采集到的声音信号,T表示所述第一麦克风和所述第二麦克风之间的传输时延;
计算所述第一麦克风在所述t时刻采集到的声音信号与所述第二麦克风在所述t+T时刻采集到的声音信号的第一相关度以及所述第一麦克风在所述t+T时刻采集到的声音信号与所述第二麦克风在所述t时刻采集到的声音信号的第二相关度;
根据所述第一相关度和所述第二相关度,确定所述耳机与实际声源的相对位置;
根据所述耳机与实际声源的相对位置,确定所述耳机定对应的声道。
本申请实施例还提供一种左右声道确定方法,适用于耳机设备中的任一耳机,所述耳机的基准线的两侧设有第一麦克风和第二麦克风,所述方法包括:
获取所述第一麦克风在t时刻采集到的第一声音信号以及所述第二麦克风在t+T时刻采集到的第二声音信号,T表示所述第一麦克风和所述第二麦克风之间的传输时延;
根据所述第一声音信号与所述第二声音信号的幅度大小,确定所述耳机与实际声源的相对位置;
根据所述耳机与实际声源的相对位置,确定所述耳机定对应的声道。
在本申请实施例还提供一种耳机设备,包括:两个耳机以及处理单元;两个耳机中的任一耳机的基准线的两侧设有第一麦克风和第二麦克风;
所述处理单元用于:
获取所述第一麦克风和所述第二麦克风在t时刻采集到的声音信号以及在t+T时刻采集到的声音信号,T表示所述第一麦克风和所述第二麦克风之间的传输时延;
计算所述第一麦克风在所述t时刻采集到的声音信号与所述第二麦克风在所述t+T时刻采集到的声音信号的第一相关度以及所述第一麦克风在所述t+T时刻采集到的声音信号与所述第二麦克风在所述t时刻采集到的声音信号的第二相关度;
根据所述第一相关度和所述第二相关度,确定所述耳机与实际声源的相对位置;
根据所述耳机与实际声源的相对位置,确定所述耳机定对应的声道。
本申请实施例还提供一种耳机设备,包括:两个耳机以及处理单元;两个耳机中的任一耳机的基准线的两侧设有第一麦克风和第二麦克风;
所述处理单元用于:
获取所述第一麦克风在t时刻采集到的第一声音信号以及所述第二麦克风在t+T时刻采集到的第二声音信号,T表示第一麦克风和第二麦克风接收到同一基准声源信号的时延;
根据所述第一声音信号与所述第二声音信号的幅度大小,确定所述耳机与实际声源的相对位置;
根据所述耳机与实际声源的相对位置,确定所述耳机定对应的声道。
本申请实施例中,耳机设备的任一耳机的基准线两侧设置两个麦克风,基于同一基准声源信号到达两个麦克风的时延T,获取两个麦克风分别在t时刻和t+T时刻采集到的声音信号,并计算两个麦克风在这两个时刻采集到的声音信号的相关度;基于两个相关度的大小关系确定该耳机与实际声源的相对位置,进而可根据该耳机与实际声源的相对位置,确定该耳机对应的声道。本申请实施例可根据耳机相对实际声源的位置自动将左右声道信号与用户的左右耳对应匹配,用户在使用时无需人为区分左右耳机,可自动确定出耳机对应的声道,便于耳机采用相应的处理方式对左右声道信号进行处理,提高声音信号的质量,具有较高的用户体验。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1a为本申请一实施例提供的一种左右声道确定方法的流程示意图;
图1b为本申请一实施例提供的耳机设备中任一耳机的结构示意图;
图2为本申请另一实施例提供的一种左右声道确定方法的流程示意图;
图3为本申请另一实施例提供的一种左右声道确定方法的流程示意图;
图4为本申请又一实施例提供的一种左右声道确定方法的流程示意图;
图5为本申请又一实施例提供的一种耳机设备的结构示意图;
图6为本申请又一实施例提供的另一种耳机设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在现有耳机设备中,需要根据左右标记区分左右声道,这种方式的便利性较差。针对该技术问题,本申请实施例提高一种解决方案,基本原理是:在耳机的基准线两侧设置两个麦克风,基于同一基准声源信号到达两个麦克风的时延T,获取两个麦克风分别在t时刻和t+T时刻采集到的声音信号,并计算两个麦克风在这两个时刻采集到的声音信号的相关度,根据这两个相关度的大小关系确定耳机与实际声源的相对位置,进而确定耳机对应的通道,用户在使用时无需人为区分左右耳机,可自动识别耳机对应的声道,便于耳 机采用相应的处理方式对左右声道信号进行处理,提高了声音信号的质量,具有较高的用户体验。
以下结合附图,详细说明本申请各实施例提供的技术方案。
图1a为本申请一实施例提供的一种左右声道确定方法的流程示意图。该方法适用于耳机设备中的任一耳机,且该耳机的基准线的两侧设有第一麦克风和第二麦克风。可选地,该耳机设备可以包含两个耳机,但不限于此。如图1a所示,该左右声道确定方法包括:
101、获取第一麦克风和第二麦克风在t时刻采集到的声音信号以及该第一麦克风和第二麦克风在t+T时刻采集到的声音信号,T表示第一麦克风和第二麦克风接收到同一基准声源信号的时延。
102、计算第一麦克风在t时刻采集到的声音信号与第二麦克风在t+T时刻采集到的声音信号的第一相关度以及该第一麦克风在t+T时刻采集到的声音信号与第二麦克风在t时刻采集到的声音信号的第二相关度。
103、根据第一相关度和第二相关度,确定耳机与实际声源的相对位置。
104、根据耳机与实际声源的相对位置,确定该耳机对应的声道。
耳机设备一般包括两个耳机,分别佩戴于用户的左右耳。本申请实施例在两个耳机的任一耳机的基准线的两侧设置两个麦克风,用来识别该耳机相对于实际声源的位置。这两个麦克风设置于耳机的壳体上或壳体内。为便于描述,将两个麦克风分别标记为第一麦克风和第二麦克风。第一麦克风和第二麦克风在耳机基准线两侧设置,可保证两个麦克风采集同一声源信号时具有一定的时延T,以便基于该时延T来确定该耳机与实际声源的相对位置。该时延T一定程度上也反映了第一麦克风和第二麦克风的位置关系。优选地,第一麦克风和第二麦克风可在耳机的基准线的两侧对称设置。
值得说明的是,耳机的基准线是指耳机处于正常佩戴状态时,任何一条穿过该耳机且与用户头部纵向平行的直线。优选地,耳机的基准线可以是耳机处于正常佩戴状态时,穿过耳机的几何中心并与用户头部纵向平行的一条直线,该条直线可以称为耳机的垂直中心线。根据耳机形状的不同,耳机的 几何中心会有所不同。一般来说,耳机的形状一旦确定,其几何中心也就跟着确定了。
其中,基于第一麦克风和第二麦克风接收到同一基准声源信号的时延T确定该耳机与实际声源的相对位置的过程包括:
获取第一麦克风和第二麦克风在t时刻采集到声音信号以及第一麦克风和第二麦克风在t+T时刻采集到声音信号,之后计算第一麦克风在t时刻采集到的声音信号与第二麦克风在t+T时刻采集到的声音信号的相关度和第一麦克风在t+T时刻采集到的声音信号与第二麦克风在t时刻采集到的声音信号的相关度。为便于描述,将上述第一麦克风在t时刻采集到的声音信号与第二麦克风在t+T时刻采集到的声音信号的相关度记为第一相关度,将第一麦克风在t+T时刻采集到的声音信号与第二麦克风在t时刻采集到的声音信号的相关度记为第二相关度。进而,可以根据第一相关度和第二相关度,确定耳机与实际声源的相对位置。
其中,相关度是研究两个变量之间相关程度的量,相关度越大表示相关度对应的两个变量越接近。结合同一基准声源信号到达第一麦克风和第二麦克风的传输时延T可知,第一麦克风和第二麦克风在相差为T的两个时间点采集到的信号理论上是同一信号,其相关度接近于1。
在本实施例中,在用户实际佩戴耳机设备时,预先无法得知设置有两个麦克风的耳机是佩戴于左耳还是右耳,两个麦克风相距实际声源的远近也就无法确定。结合同一基准声源信号到达第一麦克风和第二麦克风的传输时延T可知,对于实际声源发出的同一声音信号,可能是第一麦克风在t时刻采集到该信号,第二麦克风在t+T时刻采集到该信号,或者可能是第二麦克风在t时刻采集到该信号,则第一麦克风在t+T时刻采集到该信号。因为无法预先得知两个麦克风与实际声源的相对位置关系,即不能确定两个麦克风中与实际声源更靠近的麦克风,所以需要计算第一麦克风在t时刻采集到的声音信号与第二麦克风在t+T时刻采集到的声音信号的第一相关度和第一麦克风在t+T时刻采集到的声音信号与第二麦克风在t时刻采集到的声音信号的第二相关 度,通过这两个相关度的大小关系来识别是上述两种情况中的哪种情况。一旦确定是上述两种情况中的哪种情况,相当于确定了两个麦克风与实际声源的相对位置关系,即哪个麦克风与实际声源较近,哪个麦克风与实际声源较远。
在本实施例中,若第一相关度大于第二相关度,说明第一麦克风在t时刻采集到的声音信号与第二麦克风在t+T时刻采集到的声音信号更为接近;若第二相关度大于第一相关度,说明第一麦克风在t+T时刻采集到的声音信号与第二麦克风在t时刻采集到的声音信号更为接近。由此,可以确定第一麦克风和第二麦克风在采集到实际声源发出的同一声音信号时的时间点应该是较大相关度对应的两个时间点。进而,可以根据第一麦克风和第二麦克风在采集到实际声源发出的同一声音信号时的时间点的早晚,判断出第一麦克风和第二麦克风中与实际声源相距较近的麦克风。进一步,结合两个麦克风在耳机上的设置位置以及距离实际声源相距较近的麦克风,可以确定出耳机与实际声源的相对位置。
在确定出耳机与实际声源的相对位置之后,可以确定耳机对应的声道。例如,若耳机在实际声源左侧,则可以确定耳机对应左声道;若耳机在实际声源右侧,则可以确定耳机对应右声道。
由此可见,本实施例可以结合两个麦克风在耳机上的设置位置以及同一基准声源信号到达两个麦克风的时延T,确定耳机与实际声源的相对位置,进而确定耳机对应的通道,用户在使用时无需人为区分左右耳机,可自动确定出耳机对应的声道,便于耳机采用相应的处理方式对左右声道信号进行处理,提高了声音信号的质量,具有较高的用户体验。
在一可选实施方式中,步骤103的一种实施方式为:根据第一相关度和第二相关度中较大相关度,确定第一麦克风和第二麦克风中靠近实际声源的主麦克风;结合该主麦克风在耳机上的相对设置位置,确定该耳机与实际声源的相对位置。
为便于更好的理解上述确定耳机与实际声源的相对位置的实施方式,结 合图1b所示的任一耳机的结构示意图来加以描述。图1b是正视任一耳机时该耳机的结构示意图。如图1b所示,耳机10包括第一麦克风11和第二麦克风12,且第一麦克风11和第二麦克风12在耳机的基准线两侧设置,两个麦克风采集同一声源信号时具有一定的时延。在图1b中示出第一麦克风11和第二麦克风12在耳机的基准线两侧对称设置,但并不限于此。图1b中的虚线表示耳机的基准线。
假设第一麦克风11和第二麦克风12采集到同一基准声源信号的时延为T,即若第一麦克风11在t时采集到基准声源信号,而第二麦克风12采集到该基准声源信号的时刻为t+T。将第一麦克风11和第二麦克风12在t时刻采集到的声音信号分别表示为S 1(t)和S 2(t),第一麦克风11和第二麦克风12在t+T时刻采集到的声音信号分别表示为S 1(t+T)和S 2(t+T),则第一麦克风11在t时刻采集到的声音信号与第二麦克风12在t+T时刻采集到的声音信号的第一相关系数可表示为:X 1=corr(S 1(t),S 2(t+T)),第一麦克风11在t+T时刻采集到的声音信号与第二麦克风在t时刻采集到的声音信号的第二相关系数可表示为:X 2=corr(S 1(t+T),S 2(t))。相关系数越大表明第一麦克风11与第二麦克风12采集到的声音信号越相近,其相关度越高。
由于第一麦克风11和第二麦克风12在耳机10上的相对位置设置的不同或者预设的两个麦克风采集到同一基准声源信号的时延T可能为正数,也可能为负数。
在一可选实施例中,预设时延T>0,若第一相关度大于第二相关度,则对于同一实际声源信号,第一麦克风11在t时刻接收到该信号,第二麦克风12在迟于第一麦克风11时间T的时刻即t+T时刻采集到该信号,第一麦克风11更靠近实际声源,即第一麦克风11为主麦克风;若第一相关度小于第二相关度,则对于同一实际声源信号,第二麦克风12在t时刻接收到该信号,第一麦克风11在迟于第二麦克风12时间T的时刻即t+T时刻采集到该信号,第二麦克风12更靠近实际声源,即第二麦克风12为主麦克风。
在一可选实施例中,预设时延T<0,若第一相关度大于第二相关度,则对于同一实际声源信号,第一麦克风11在t时刻接收到该信号,第二麦克风12在先于第一麦克风11时间|T|的时刻即t+T时刻已采集到该信号,第二麦克风12更靠近实际声源,即第二麦克风12为主麦克风;若第一相关度小于第二相关度,则对于同一实际声源信号,第二麦克风12在t时刻接收到该信号,第一麦克风11在先于第二麦克风12时间|T|的时刻即t+T时刻已采集到该信号,第一麦克风11更靠近实际声源,即第一麦克风11为主麦克风。
由上述描述可知,确定第一麦克风和第二麦克风中靠近实际声源的主麦克风的实施方式可以概括为:若T>0,则确定在计算第一相关度和第二相关度中较大相关度时对应t时刻的麦克风,作为所述主麦克风;或若T<0,则确定在计算第一相关度和第二相关度中较大相关度时对应t+T时刻的麦克风,作为主麦克风。
在一可选应用场景中,图1b可以为耳机结构示意图的左视图。以用户佩戴耳机设备进行通话或者视频聊天为例,假设预设时延T>0,当用户将该耳机10佩戴于用户左耳时,则根据计算得到第一相关系数大于第二相关系数,确定第一麦克风11靠近实际声源,结合图1b中第一麦克风11在耳机10上的位置可以确定实际声源在耳机10的右侧,因此可以确定耳机10佩戴于用户的左耳,可向该耳机对应输入左声道信号;相应地,可以向耳机设备的另一耳机输入右声道信号。当用户因某种情况将耳机摘下后再重新佩戴时,有可能将耳机10佩戴于右耳,此时,可计算得到第一相关系数小于第二相关系数,确定第二麦克风12靠近实际声源,结合图1b中第二麦克风12在耳机10上的位置可以确定实际声源在耳机10的左侧,因此可以确定耳机10佩戴于用户的右耳,可向该耳机对应输入右声道信号;相应地,可向耳机设备的另一耳机输入左声道信号。
图2为本申请另一实施例提供的左右声道确定方法的流程示意图。该方法适用于包含耳机设备中的任一耳机,且该耳机的基准线的两侧设有第一麦 克风和第二麦克风。关于基准线的解释可参见前述实施例,在此不再赘述。如图2所示,该方法包括:
201、获取第一麦克风和第二麦克风在t时刻采集到的声音信号以及该第一麦克风和第二麦克风在t+T时刻采集到的声音信号,T表示第一麦克风和第二麦克风接收到同一基准声源信号的时延。
202、计算第一麦克风在t时刻采集到的声音信号与第二麦克风在t+T时刻采集到的声音信号的第一相关度以及该第一麦克风在t+T时刻采集到的声音信号与第二麦克风在t时刻采集到的声音信号的第二相关度。
203、根据第一相关度和第二相关度中较大相关度,确定第一麦克风和第二麦克风中靠近实际声源的主麦克风。
204、结合主麦克风在耳机上的相对设置位置,确定耳机与实际声源的相对位置。
205、将主麦克风采集到的声音信号与设置于耳机的基准线上的第三麦克风采集到的声音信号进行波束形成,且波束形成的方向指向实际声源。
206、根据耳机与实际声源的相对位置,确定该耳机对应的声道。
关于步骤201-204中关于耳机根据第一相关度和第二相关度确定耳机与实际声源的相对位置的描述可参见前述实施例,在此不再赘述。
在本实施例中,为了进一步提高耳机设备使用时的信号质量,如图1b所示,在耳机设备的任一耳机的基准线上设置第三麦克风13。第三麦克风13设置于耳机的壳体上或壳体内。详细来说,第三麦克风13可设置于耳机壳体上与基准线相交的任一位置,或者设置于壳体内与基准线相交的任一位置。第三麦克风13有多个设置位置,但可根据人体工学,并结合第一麦克风11和第二麦克风12的设置位置合理选择第三麦克风13的设置位置。当该耳机确定了主麦克风时,可将第三麦克风13采集到的声音信号与主麦克风进行波束形成,以增强该耳机的拾音效果,提高声音信号的质量。主麦克风和第三麦克风13进行波束形成可以实现语音增强的效果,一方面是因为波束成形的两个麦克风可以对来自一个特定方向的声音更敏感,另一方面主要是利用这两 个麦克风位置差异造成的信号强度、相位以及时间上的差异分离噪声和实际声源信号,以达到语音增强的效果,提高该耳机拾音效果,提高声音信号的质量。其中波束形成算法包括但不局限于:基于方向估计的自适应算法、基于训练信号或参考信号的方法、基于信号构造的波束形成方法等。
进一步,为了使该耳机能够更好地拾取实际声源信号,主麦克风与第三麦克风13进行波束形成的方向应指向实际声源的位置。
在一应用场景中,用户在使用耳机设备的过程中,有可能中途摘下耳机,之后再重新使用该耳机设备。这样,就会造成之前对耳机设备左右声道的识别无效,需要重新进行左右声道识别。基于此,当确定了第一麦克风或第二麦克风作为主麦克风时,另一个麦克风仍处于通路状态,但其采集的声音信号不做处理。
需要说明的是,在处理过程中,步骤205和步骤206的执行顺序不做限定。步骤205和步骤206的操作可以按照图2中所示的顺序来执行,也可按照先执行步骤206再执行步骤205的顺序来执行,还可并行执行步骤205和206。
图3为本申请另一实施例提供的左右声道确定方法的流程示意图。该方法适用于耳机设备中的任一耳机,该耳机的基准线的两侧设有第一麦克风和第二麦克风。关于基准线的解释可参见前述实施例,在此不再赘述。如图3所示,该方法包括:
301、获取第一麦克风和第二麦克风在t时刻采集到的声音信号以及该第一麦克风和第二麦克风在t+T时刻采集到的声音信号,T表示第一麦克风和第二麦克风接收到同一基准声源信号的时延。
302、计算第一麦克风在t时刻采集到的声音信号与第二麦克风在t+T时刻采集到的声音信号的第一相关度以及该第一麦克风在t+T时刻采集到的声音信号与第二麦克风在t时刻采集到的声音信号的第二相关度。
303、根据第一相关度和第二相关度,确定耳机与实际声源的相对位置。
304、根据耳机与实际声源的相对位置,确定该耳机对应的声道。
305、根据耳机对应的声道,将其它应用提供的音频信号中与该耳机对应的声道信号送入该耳机,并将该音频信号中另一声道信号送入另一耳机输出,以供用户收听。
在一可选应用场景中,当用户佩戴该耳机进行观看视频、收听广播或聆听音乐的时候,首先需要用户发出声音信号,以供第一麦克风和第二麦克风采集进行第一相关度和第二相关度的计算,进而确定出该耳机对应的通道,确定方法如步骤301-304所述。关于步骤301-304中耳机根据第一相关度和第二相关度确定耳机对应的声道的描述可参见前述实施例,在此不再赘述。在确定耳机对应的声道之后,还可以根据确定的耳机与声道之间的对应关系,对需要输出的音频信号进行输出处理。例如,可以根据耳机对应的声道,将其它应用提供的音频信号中与设置有麦克风的耳机对应的声道信号送入该耳机,并将该音频信号中另一声道信号送入另一耳机输出,以供用户收听。其中,其它应用可以是音视频播放类应用,例如音乐播放器、视频播放器等。耳机设备的左右耳机输出音频相应的左右声道信号,达到高质量的聆听效果。
图4为本申请又一实施例提供的左右声道确定方法的流程示意图。该方法适用于耳机设备中的任一耳机,该耳机的基准线的两侧设有第一麦克风和第二麦克风。优选地,第一麦克风和第二麦克风可在耳机的基准线的两侧对称设置。关于基准线的解释可参见前述实施例,在此不再赘述。该左右声道确定方法包括:
401、获取第一麦克风在t时刻采集到的第一声音信号以及第二麦克风在t+T时刻采集到的第二声音信号,T表示第一麦克风和第二麦克风接收到同一基准声源信号的时延。
402、根据第一声音信号与第二声音信号的幅度大小,确定耳机与实际声源的相对位置。
403、根据耳机与实际声源的相对位置,确定该耳机对应的声道。
在理想情况下,第一麦克风和第二麦克风在采集基准声源信号时,第一麦克风在t时刻采集到的第一声音信号和第二麦克风在t+T时刻采集到的第二 声音信号采集到的是基准声源发出的同一信号。由于第一麦克风与第二麦克风设置在耳机的基准线的两侧,当用户佩戴耳机时,第一麦克风和第二麦克风与实际声源的距离不同,因此,采集到同一声源信号的幅度大小不同,距离实际声源较近的麦克风采集到的声音信号的幅度较大。在实际应用中,虽然第一麦克风在t时刻采集到的第一声音信号和第二麦克风采集在t+T时刻采集到的第二声音信号有可能不是实际声音发出的同一声音信号,但误差很小。基于此,可根据第一声音信号与第二声音信号的幅度大小,确定耳机与实际声源的相对位置。之后,根据耳机与实际声源的相对位置,确定该耳机定对应的声道,以对相应的声道信号进行处理,实现了耳机设备对左右声道的自动识别,提高了声音信号的质量。
在一应用场景中,由于第一麦克风和第二麦克风与实际声源的距离不同,采集到的实际声源发出的同一声音信号的强度也就不同,距离实际声源较近的麦克风采集到的声音信号的幅度较大。基于此,步骤402的一种具体实施方式可以为:确定第一声音信号与第二声音信号中幅度较大的声音信号;将幅度较大的声音信号对应的麦克风作为靠近实际声源的主麦克风;结合主麦克风在耳机上的相对设置位置,确定耳机与实际声源的相对位置。
本申请实施例提供的耳机设备左右声道确定方法,通过在耳机设备的任一耳机的基准线两侧设置两个麦克风,基于同一基准声源信号到达两个麦克风的时延T,获取两个麦克风分别在t时刻和t+T时刻采集到的声音信号;通过比较两个麦克风采集到的实际声源信号的幅度大小确定该耳机与实际声源的相对位置,进而可根据该耳机与实际声源的相对位置,确定该耳机对应的声道,用户在使用时无需人为区分左右耳机,可自动确定出耳机对应的声道,便于耳机采用相应的处理方式对左右声道信号进行处理,提高声音信号的质量,具有较高的用户体验。
在上述各实施例中,在识别左右声道的过程中均依赖于设置于耳机设备的任一耳机的基准线两侧的第一麦克风和第二麦克风采集到同一基准信号的时延T。下面提供几种与时延T相关的实施方式。
在一些实施例中,可以预先计算第一麦克风和第二麦克风采集到同一基准声源信号的时延T,并将时延T预置到耳机设备中。基于此,在需要使用T时,可以直接从耳机设备中读取T。
在另一实施例中,可以预先计算第一麦克风和第二麦克风到基准声源的距离差,将距离差预设到耳机设备中。在上述各实施例中,在使用时延T之前,可以根据预设的第一麦克风和第二麦克风到基准声源的距离差除以声音的传播速度,获得时延T。进一步,基于时延T执行各实施例中进行左右声道识别的步骤。
在又一些实施例中,还可以预先计算第一麦克风和第二麦克风分别到基准声源的距离,将距离预设到耳机设备中。时延是基准声音信号传播不同距离时的时间差。基于此,在上述各实施例中,在使用T之前,可以预设第一麦克风和第二麦克风到基准声源的距离,并用距离差除以声音的传播速度,获得时延T。进一步,基于时延T执行各实施例中进行左右声道识别的步骤。
图5为本申请又一实施例提供的一种耳机设备的结构示意图。如图5所示,耳机设备50包括:耳机501和耳机502以及处理单元503;耳机501的基准线的两侧设置有第一麦克风504和第二麦克风505。优选地,第一麦克风和第二麦克风可在耳机的基准线的两侧对称设置。关于基准线的解释可参见前述实施例,在此不再赘述。
其中,处理单元503用于:
获取第一麦克风504和第二麦克风505在t时刻采集到的声音信号以及第一麦克风504和第二麦克风505在t+T时刻采集到的声音信号,T表示第一麦克风504和第二麦克风505接收到同一基准声源信号的时延;
计算第一麦克风504在t时刻采集到的声音信号与第二麦克风505在t+T时刻采集到的声音信号的第一相关度以及第一麦克风504在t+T时刻采集到的声音信号与第二麦克风505在t时刻采集到的声音信号的第二相关度;
根据第一相关度和第二相关度,确定耳机501与实际声源的相对位置;
根据耳机501与实际声源的相对位置,确定耳机501对应的声道。
在一可选实施例中,处理单元503在确定耳机501与实际声源的相对位置时,具体用于:
根据第一相关度和第二相关度中较大相关度,确定第一麦克风504和第二麦克风505中靠近实际声源的主麦克风;
结合主麦克风在耳机上的相对设置位置,确定耳机501与实际声源的相对位置。
进一步,处理单元503在确定主麦克风时,具体用于执行:
若T>0,则确定在计算第一相关度和第二相关度中较大相关度时对应t时刻的麦克风,作为主麦克风;
若T<0,则确定在计算第一相关度和第二相关度中较大相关度时对应t+T时刻的麦克风,作为主麦克风。
在一可选实施例中,耳机501的基准线上设置有第三麦克风506。处理单元503还用于:
将主麦克风采集到的声音信号与设置于耳机的基准线上的第三麦克风506采集到的声音信号进行波束形成,且波束形成的方向指向实际声源。
值得说明的是,图5所示是正视整个耳机设备时看到的耳机设备的结构示意图。而对耳机501或耳机502来说,相当于从侧面看过去,故在图5中显示的实际上是耳机501或耳机502的侧视图,因此图5中示出第一麦克风504、第二麦克风505和第三麦克风506位于同一侧。
需要说明的是,上述实施例中的麦克风不仅可设置在耳机501上,也可设置在耳机502上,且处理单元503在耳机设备50上的设置位置不作限定。
本申请实施例提供的耳机设备,可以对左右声道进行自动识别并进行相应匹配。通过在耳机设备的任一耳机的基准线两侧设置两个麦克风,结合两个麦克风在耳机上的设置位置以及同一基准声源信号到达两个麦克风的时延T,确定耳机与实际声源的相对位置,进而确定耳机对应的通道,用户在使用时无需人为区分左右耳机,可自动确定出耳机对应的声道,便于耳机采用相应的处理方式对左右声道信号进行处理,提高了声音信号的质量,具有较高 的用户体验。
图6为本申请又一实施例提供的另一种耳机设备的结构示意图。如图5所示,耳机设备60包括:两个耳机601和602以及处理单元603;两个耳机601和602中的任一耳机的基准线的两侧设置有第一麦克风604和第二麦克风605。优选地,第一麦克风和第二麦克风可在任一耳机的基准线的两侧对称设置。关于基准线的解释可参见前述实施例,在此不再赘述。在图6中,以在耳机601上设置第一麦克风604和第二麦克风605为例进行图示。
在一可选实施例中,处理单元603用于:
获取第一麦克风604在t时刻采集到的第一声音信号以及第二麦克风605在t+T时刻采集到的第二声音信号,T表示第一麦克风604和第二麦克风605接收到同一基准声源信号的时延;
根据第一声音信号与第二声音信号的幅度大小,确定耳机601与实际声源的相对位置;
根据耳机601与实际声源的相对位置,确定该耳机对应的声道。
在一可选实施例中,处理单元603在确定耳机601或602与实际声源的相对位置时,具体用于:
确定第一声音信号与第二声音信号中幅度较大的声音信号;
将幅度较大的声音信号对应的麦克风作为靠近实际声源的主麦克风;
结合主麦克风在耳机601或602上的相对设置位置,确定该耳机与实际声源的相对位置。
在一可选实施例中,耳机601的基准线上设置有第三麦克风606。处理单元603还用于:
将主麦克风采集到的声音信号与设置于耳机的基准线上的第三麦克风606采集到的声音信号进行波束形成,且波束形成的方向指向实际声源。
值得说明的是,图6所示是正视整个耳机设备时看到的耳机设备的结构示意图。而对耳机601或耳机602来说,相当于从侧面看过去,故在图6中显示的实际上是耳机601或耳机602的侧视图,因此图6中示出第一麦克风 604、第二麦克风605和第三麦克风606位于同一侧。
需要说明的是,上述实施例中的麦克风不仅可设置在耳机601上,也可设置在耳机602上,且处理单元603在耳机设备60的设置位置不作限定。
本申请实施例提供的耳机设备,可以对左右声道进行自动识别并进行相应匹配。通过在耳机设备的任一耳机的基准线两侧设置两个麦克风,结合两个麦克风在耳机上的设置位置以及同一基准声源信号到达两个麦克风的时延T,;通过比较两个麦克风分别在t时刻和t+T时刻采集到的实际声源的声音信号的幅度大小确定该耳机与实际声源的相对位置,进而确定该耳机对应的声道,用户在使用时无需人为区分左右耳机,可使自动确定出耳机对应的声道,便于耳机采用相应的处理方式对左右声道信号进行处理,提高声音信号的质量,具有较高的用户体验。
需要说明的是,图5和图6中的处理单元可以为包括但不局限于:基于数字信号处理器(Digital Signal Processor,DSP)的处理单元、基于ARM处理器的处理单元、基于单片机的处理单元或者基于现场可编程门阵列(Field-Programmable Gate Array,FPDA)的处理单元。
还需要说明的是,上述实施例和实施例附图中的耳机设备可以为但不局限于有线耳机、蓝牙耳机,耳机设备的佩戴方式包括但不局限于头戴式、耳道式、耳塞式、耳挂式、耳罩式。上述实施例和实施例附图中耳机设备的结构、耳机设备中耳机的数量、形状和结构以及处理单元位于耳机设备上的位置、实施形式等均是示例性而非限制性的。
在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。在上述实施例及附图中的描述的一些流程中,包含了按照特定顺序出现的多个操作,但是应该清楚了解,这些操作可以不按照其在本文中出现的顺序来执行或并行执行,操作的序号如101、102等,仅仅是用于区分开各个不同的操作,序号本身不代表任何的执行顺序。另外,这些流程可以包括更多或更少的操作,并且这些操作可以按顺序执行或并行执行。需要说明的是,本文中的“第一”、“第二”等描述,是用于区分不同的消息、设备、模块等, 不代表先后顺序,也不限定“第一”和“第二”是不同的类型。
本领域内的技术人员应明白,本发明的实施例可提供为方法、设备或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash  RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种左右声道确定方法,其特征在于,适用于耳机设备中的任一耳机,所述耳机的基准线的两侧设有第一麦克风和第二麦克风,所述方法包括:
    获取所述第一麦克风和所述第二麦克风在t时刻采集到的声音信号以及在t+T时刻采集到的声音信号,T表示第一麦克风和第二麦克风接收到同一基准声源信号的时延;
    计算所述第一麦克风在所述t时刻采集到的声音信号与所述第二麦克风在所述t+T时刻采集到的声音信号的第一相关度以及所述第一麦克风在所述t+T时刻采集到的声音信号与所述第二麦克风在所述t时刻采集到的声音信号的第二相关度;
    根据所述第一相关度和所述第二相关度,确定所述耳机与实际声源的相对位置;
    根据所述耳机与实际声源的相对位置,确定所述耳机对应的声道。
  2. 根据权利要求1所述的方法,其特征在于,在获取所述第一麦克风和所述第二麦克风在t时刻采集到的声音信号之前,还包括:
    根据所述第一麦克风和所述第二麦克风到基准声源的距离差以及声速,计算所述第一麦克风和所述第二麦克风之间的传输时延T。
  3. 根据权利要求1或2所述方法,其特征在于,所述根据所述第一相关度和所述第二相关度,确定所述耳机与实际声源的相对位置,包括:
    根据所述第一相关度和所述第二相关度中较大相关度,确定所述第一麦克风和所述第二麦克风中靠近所述实际声源的主麦克风;
    结合所述主麦克风在所述耳机上的相对设置位置,确定所述耳机与所述实际声源的相对位置。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述第一相关度和所述第二相关度中较大相关度,确定所述第一麦克风和所述第二麦克 风中靠近所述实际声源的主麦克风,包括:
    若T>0,则确定在计算所述第一相关度和所述第二相关度中较大相关度时对应t时刻的麦克风,作为所述主麦克风;
    若T<0,则确定在计算所述第一相关度和所述第二相关度中较大相关度时对应t+T时刻的麦克风,作为所述主麦克风。
  5. 根据权利要求3所述方法,其特征在于,还包括:
    将所述主麦克风采集到的声音信号与设置于所述耳机的基准线上的第三麦克风采集到的声音信号进行波束形成,所述波束形成的方向指向所述实际声源。
  6. 一种左右声道确定方法,其特征在于,适用于耳机设备中的任一耳机,所述耳机的基准线的两侧设有第一麦克风和第二麦克风,所述方法包括:
    获取所述第一麦克风在t时刻采集到的第一声音信号以及所述第二麦克风在t+T时刻采集到的第二声音信号,T表示第一麦克风和第二麦克风接收到同一基准声源信号的时延;
    根据所述第一声音信号与所述第二声音信号的幅度大小,确定所述耳机与实际声源的相对位置;
    根据所述耳机与实际声源的相对位置,确定所述耳机对应的声道。
  7. 一种耳机设备,其特征在于,包括:两个耳机以及处理单元;两个耳机中的任一耳机的基准线的两侧设有第一麦克风和第二麦克风;
    所述处理单元用于:
    获取所述第一麦克风和所述第二麦克风在t时刻采集到的声音信号以及在t+T时刻采集到的声音信号,T表示第一麦克风和第二麦克风接收到同一基准声源信号的时延;
    计算所述第一麦克风在所述t时刻采集到的声音信号与所述第二麦克风在所述t+T时刻采集到的声音信号的第一相关度以及所述第一麦克风在所述t+T时刻采集到的声音信号与所述第二麦克风在所述t时刻采集到的 声音信号的第二相关度;
    根据所述第一相关度和所述第二相关度,确定所述耳机与实际声源的相对位置;
    根据所述耳机与实际声源的相对位置,确定所述耳机对应的声道。
  8. 根据权利要求7所述的耳机设备,其特征在于,所述处理单元在确定所述耳机与实际声源的相对位置时,具体用于:
    根据所述第一相关度和所述第二相关度中较大相关度,确定所述第一麦克风和所述第二麦克风中靠近所述实际声源的主麦克风;
    结合所述主麦克风在所述耳机上的相对设置位置,确定所述耳机与所述实际声源的相对位置。
  9. 根据权利要求10所述的耳机设备,其特征在于,所述处理单元在确定所述主麦克风时,具体用于:
    若T>0,则确定在计算所述第一相关度和所述第二相关度中较大相关度时对应t时刻的麦克风,作为所述主麦克风;
    若T<0,则确定在计算所述第一相关度和所述第二相关度中较大相关度时对应t+T时刻的麦克风,作为所述主麦克风。
  10. 一种耳机设备,其特征在于,包括:两个耳机以及处理单元;两个耳机中的任一耳机的基准线的两侧设有第一麦克风和第二麦克风;
    所述处理单元用于:
    获取所述第一麦克风在t时刻采集到的第一声音信号以及所述第二麦克风在t+T时刻采集到的第二声音信号,T表示第一麦克风和第二麦克风接收到同一基准声源信号的时延;
    根据所述第一声音信号与所述第二声音信号的幅度大小,确定所述耳机与实际声源的相对位置;
    根据所述耳机与实际声源的相对位置,确定所述耳机定对应的声道。
PCT/CN2017/119782 2017-12-07 2017-12-29 左右声道确定方法及耳机设备 WO2019109420A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711285614.9 2017-12-07
CN201711285614.9A CN107948792B (zh) 2017-12-07 2017-12-07 左右声道确定方法及耳机设备

Publications (1)

Publication Number Publication Date
WO2019109420A1 true WO2019109420A1 (zh) 2019-06-13

Family

ID=61946104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119782 WO2019109420A1 (zh) 2017-12-07 2017-12-29 左右声道确定方法及耳机设备

Country Status (2)

Country Link
CN (1) CN107948792B (zh)
WO (1) WO2019109420A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11343605B1 (en) * 2017-05-05 2022-05-24 Apple Inc. System and method for automatic right-left ear detection for headphones

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493678B (zh) * 2019-08-14 2021-01-12 Oppo(重庆)智能科技有限公司 耳机的控制方法、装置、耳机和存储介质
CN112188341B (zh) * 2020-09-24 2024-03-12 江苏紫米电子技术有限公司 一种耳机唤醒方法、装置、耳机及介质
CN113409811B (zh) * 2021-06-01 2023-01-20 歌尔股份有限公司 声音信号处理方法、设备和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176723A1 (zh) * 2013-04-28 2014-11-06 易力声科技(深圳)有限公司 一种可进行声道转换的头戴式耳机
CN104469624A (zh) * 2014-12-16 2015-03-25 广东欧珀移动通信有限公司 耳机声道切换方法、***、电子设备以及耳机
CN105101016A (zh) * 2015-08-07 2015-11-25 深圳市金立通信设备有限公司 一种耳机声道切换方法及终端
CN105228041A (zh) * 2015-09-24 2016-01-06 联想(北京)有限公司 一种信息处理方法及声音输出设备
CN106454588A (zh) * 2016-09-30 2017-02-22 维沃移动通信有限公司 一种耳机和耳机声道切换方法
CN106851486A (zh) * 2016-11-29 2017-06-13 维沃移动通信有限公司 一种耳机声道的切换方法及移动终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9101299B2 (en) * 2009-07-23 2015-08-11 Dean Robert Gary Anderson As Trustee Of The D/L Anderson Family Trust Hearing aids configured for directional acoustic fitting
US20130279724A1 (en) * 2012-04-19 2013-10-24 Sony Computer Entertainment Inc. Auto detection of headphone orientation
CN104424953B (zh) * 2013-09-11 2019-11-01 华为技术有限公司 语音信号处理方法与装置
WO2015137964A1 (en) * 2014-03-14 2015-09-17 Scott Technologies, Inc. System and method for measuring voice intelligibility for a communication device mounted to a respiratory protection equipment
TW201715380A (zh) * 2015-10-23 2017-05-01 圓剛科技股份有限公司 電子裝置及其聲音訊號調整方法
CN106358127A (zh) * 2016-09-30 2017-01-25 维沃移动通信有限公司 一种左右声道切换方法和移动终端
CN106303832B (zh) * 2016-09-30 2019-12-27 歌尔科技有限公司 扬声器及提高指向性的方法、头戴式设备及方法
CN107205196A (zh) * 2017-05-19 2017-09-26 歌尔科技有限公司 麦克风阵列指向的调整方法和装置
CN107241666A (zh) * 2017-08-14 2017-10-10 陆文胜 一种双话筒耳机麦克风

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014176723A1 (zh) * 2013-04-28 2014-11-06 易力声科技(深圳)有限公司 一种可进行声道转换的头戴式耳机
CN104469624A (zh) * 2014-12-16 2015-03-25 广东欧珀移动通信有限公司 耳机声道切换方法、***、电子设备以及耳机
CN105101016A (zh) * 2015-08-07 2015-11-25 深圳市金立通信设备有限公司 一种耳机声道切换方法及终端
CN105228041A (zh) * 2015-09-24 2016-01-06 联想(北京)有限公司 一种信息处理方法及声音输出设备
CN106454588A (zh) * 2016-09-30 2017-02-22 维沃移动通信有限公司 一种耳机和耳机声道切换方法
CN106851486A (zh) * 2016-11-29 2017-06-13 维沃移动通信有限公司 一种耳机声道的切换方法及移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11343605B1 (en) * 2017-05-05 2022-05-24 Apple Inc. System and method for automatic right-left ear detection for headphones

Also Published As

Publication number Publication date
CN107948792A (zh) 2018-04-20
CN107948792B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2019109420A1 (zh) 左右声道确定方法及耳机设备
US9361898B2 (en) Three-dimensional sound compression and over-the-air-transmission during a call
US10585486B2 (en) Gesture interactive wearable spatial audio system
US10134416B2 (en) Privacy-preserving energy-efficient speakers for personal sound
KR101547035B1 (ko) 다중 마이크에 의한 3차원 사운드 포착 및 재생
US8781142B2 (en) Selective acoustic enhancement of ambient sound
US8855341B2 (en) Systems, methods, apparatus, and computer-readable media for head tracking based on recorded sound signals
US8787584B2 (en) Audio metrics for head-related transfer function (HRTF) selection or adaptation
US20180261201A1 (en) Earphone active noise control
WO2018209893A1 (zh) 麦克风阵列指向的调整方法和装置
EP2920979B1 (fr) Acquisition de données sonores spatialisées
US11665499B2 (en) Location based audio signal message processing
US20240196157A1 (en) Wireless earphones and pass-through method, apparatus and system therefor
US10405114B2 (en) Automated detection of an active audio output
CN106302974B (zh) 一种信息处理的方法及电子设备
CN105246001A (zh) 双耳录音耳机重放***及方法
WO2021129197A1 (zh) 一种语音信号处理方法及装置
US20200413190A1 (en) Processing device, processing method, and program
WO2016058393A1 (zh) 声像方位感处理方法和装置
WO2022143268A1 (zh) 位置识别方法和耳机设备
US10623845B1 (en) Acoustic gesture detection for control of a hearable device
WO2022178852A1 (zh) 一种辅助聆听方法及装置
US20240236595A9 (en) Generating restored spatial audio signals for occluded microphones
US20240137720A1 (en) Generating restored spatial audio signals for occluded microphones
WO2024115062A1 (en) Apparatus, methods and computer programs for spatial audio processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934090

Country of ref document: EP

Kind code of ref document: A1