WO2016058393A1 - 声像方位感处理方法和装置 - Google Patents

声像方位感处理方法和装置 Download PDF

Info

Publication number
WO2016058393A1
WO2016058393A1 PCT/CN2015/080888 CN2015080888W WO2016058393A1 WO 2016058393 A1 WO2016058393 A1 WO 2016058393A1 CN 2015080888 W CN2015080888 W CN 2015080888W WO 2016058393 A1 WO2016058393 A1 WO 2016058393A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel signal
ear channel
signal
left ear
sound source
Prior art date
Application number
PCT/CN2015/080888
Other languages
English (en)
French (fr)
Inventor
齐娜
仝欣
范书成
张琦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15850882.0A priority Critical patent/EP3209028A4/en
Publication of WO2016058393A1 publication Critical patent/WO2016058393A1/zh
Priority to US15/487,914 priority patent/US9866983B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/8083Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems determining direction of source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • H04S1/005For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • H04S7/304For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/13Aspects of volume control, not necessarily automatic, in stereophonic sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/07Synergistic effects of band splitting and sub-band processing

Definitions

  • Embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and apparatus for processing a sound image orientation.
  • the playback device is limited to headphones, the most appropriate method is to use binaural recording playback technology. Since the binaural sound pressure contains the main spatial information of the sound, a pair of micro-microphones placed at the ears of the artificial head mold (or the real human subject) can be used for picking up. After the obtained binaural sound signal is amplified, transmitted, recorded, and the like, the pair of earphones are used for reproduction, thereby generating main spatial information consistent with the original sound field at the ears of the listener, thereby realizing the reproduction of the sound space information. This is how the binaural recording and playback system works. The spatial auditory effect produced by the virtual auditory playback system based on binaural signals is more realistic and natural.
  • the cognitive information for judging the front and rear direction is lost, and a certain front and back sound image confusion problem may occur, which may cause the listener to The sound image from the front direction is misjudged to the rear direction.
  • Embodiments of the present invention provide a method and apparatus for processing sound image orientation, which are used to improve the accuracy of sound source orientation determination.
  • an embodiment of the present invention provides a method for processing a sound image orientation, including: obtaining Taking a left ear channel signal, a right ear channel signal, and a center channel signal, the left ear channel signal is a signal transmitted by the sound source signal to the left ear channel, and the right ear channel signal is the sound source signal transmitted to the right ear channel a signal in which the center channel signal is a signal transmitted to the center channel, and the center channel is located on a mid-plane between the left ear channel and the right ear channel; Determining, according to the left ear channel signal, the right ear channel information, and the center channel signal, whether the orientation of the sound source is a front orientation, and the front orientation is an orientation facing the center channel; When the orientation of the sound source is the front orientation, the left ear channel signal and the right ear channel signal are respectively subjected to at least one of the following processes: front azimuth enhancement processing and rear azimuth attenuation processing.
  • the determining, according to the left ear channel signal, the right ear channel signal, and the center channel signal, whether the orientation of the sound source is a front orientation includes: obtaining, according to the left ear channel signal, the right ear channel signal, and the center channel signal, a delay difference between the left ear channel signal and the right ear channel signal, and the left ear channel a delay difference between the signal and the center channel signal and a delay difference between the right ear channel signal and the center channel signal; according to the left ear channel signal and the right ear channel signal Determining the difference between the delay difference, the delay difference between the left ear channel signal and the center channel signal, and the delay difference between the right ear channel signal and the center channel signal Whether the orientation of the source is the front orientation.
  • the according to the left ear channel signal, the right ear channel signal, and the center channel a signal obtaining a delay difference between the left ear channel signal and the right ear channel signal, a delay difference between the left ear channel signal and the center channel signal, and the right ear channel signal and a delay difference between the center channel signals, comprising: obtaining a Fourier coefficient H L (f) of the left ear channel signal according to the left ear channel signal; obtaining, according to the left ear channel signal a Fourier coefficient H R (f) of the right ear channel signal; obtaining a Fourier coefficient H C (f) of the center channel signal according to the left ear channel signal;
  • the signal according to the left ear channel a delay difference between the right ear channel signals, a delay difference between the left ear channel signal and the center channel signal, and a delay between the right ear channel signal and the center channel signal Poor, determining whether the orientation of the sound source is a front orientation, including:
  • the ITD LR is a delay difference between the left ear channel signal and the right ear channel signal
  • the ITD RC is a delay between the right ear channel signal and the center channel signal.
  • the ITD LC is a delay difference between the left ear channel signal and the center channel signal
  • the c represents a speed of sound
  • the a represents between the left ear channel and the right ear channel Half of the distance;
  • the orientation of the sound source as a front orientation according to the incident angle of the sound source signal being greater than or equal to 0° and less than or equal to 90°, or greater than or equal to 270° and less than or equal to 360°;
  • the incident angle of the source signal is greater than 90° and less than 270°, and the orientation of the sound source is determined to be a rear orientation, and the rear orientation is an orientation of the center channel facing away.
  • the performing the at least one of the left ear channel signal and the right ear channel signal respectively: front
  • the orientation enhancement processing and the rear azimuth reduction processing include: when an incident angle of the sound source signal is greater than or equal to 0° and less than or equal to a first preset angle, or an incident angle of the sound source signal is greater than or equal to a second
  • the preset angle is less than or equal to 360°
  • the left ear channel signal and the right ear channel signal are respectively subjected to at least one of the following processes: a front azimuth enhancement process and a rear azimuth weakening process; wherein the first preset angle is Less than 90°, the second predetermined angle is greater than 270°.
  • Performing forward azimuth enhancement processing on the right ear channel signal comprising: respectively multiplying a signal of the left ear channel signal and the right ear channel signal whose frequency belongs to the first preset frequency band by a first gain coefficient to obtain a front a left ear channel signal and a right ear channel signal for azimuth enhancement processing; the first gain coefficient is a value greater than 1, wherein a front-to-head correlation transfer function corresponding to the first preset frequency band (English: Head Related Transfer)
  • the amplitude spectrum of the Function abbreviated as: HRTF is larger than the amplitude spectrum of the rear HRTF corresponding to the first preset frequency band;
  • Performing a rear azimuth reduction process on the left ear channel signal and the right ear channel signal respectively including: respectively, the frequency in the left ear channel signal and the right ear channel signal belongs to a second preset frequency band
  • the signal is multiplied by the second gain coefficient to obtain a left ear channel signal and a right ear channel signal for the rear azimuth reduction process;
  • the second gain coefficient is a positive value less than or equal to 1
  • the second preset frequency band is a division A frequency band other than the first preset frequency band is described.
  • the performing the at least one processing on the left ear channel signal and the right ear channel signal respectively before the azimuth enhancement processing and the rear azimuth reduction processing, Included: obtaining an average amplitude spectrum of the HRTF in the front horizontal plane of the head mold, and an average amplitude spectrum of the HRTF in the rear horizontal plane of the head mold, wherein the head mold is a head mold to which the method is applied;
  • the mean value of the amplitude spectrum of the inner HRTF is subtracted from the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane, and the difference between the mean value of the amplitude spectrum of the HRTF in the front horizontal plane and the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane is obtained; according to the front horizontal plane The difference between the mean value of the amplitude spectrum of the inner HRTF and the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane, and obtaining the
  • an embodiment of the present invention provides a sound image orientation sensing device, including: an acquiring unit, configured to acquire a left ear channel signal, a right ear channel signal, and a center channel signal, wherein the left ear channel signal is a sound source The signal is transmitted to a signal in the left ear channel, and the right ear channel signal is a signal transmitted by the sound source signal to the right ear channel, and the center channel signal is a signal transmitted by the sound source signal to the center channel,
  • the central channel is located on a mid-plane between the left ear channel and the right ear channel; and the determining unit is configured to use the left ear channel signal and the right ear channel information acquired by the acquiring unit And determining, by the central channel signal, whether the orientation of the sound source is a front orientation, the front orientation is an orientation facing the center channel; and the processing unit, configured to: when the determining unit determines the sound source When the orientation is the forward orientation, the left ear channel signal and the right ear channel signal are respectively
  • the determining unit is configured to obtain the left ear channel according to the left ear channel signal, the right ear channel signal, and the center channel signal a delay difference between the signal and the right ear channel signal, a delay difference between the left ear channel signal and the center channel signal, and between the right ear channel signal and the center channel signal a delay difference; and a delay difference between the left ear channel signal and the right ear channel signal, a delay difference between the left ear channel signal and the center channel signal, and the right A delay difference between the ear channel signal and the center channel signal determines whether the orientation of the sound source is a front orientation.
  • the determining unit is configured to perform, according to the left ear channel signal, the right ear channel signal, and The center channel signal obtains a delay difference between the left ear channel signal and the right ear channel signal, a delay difference between the left ear channel signal and the center channel signal, and the a delay difference between the right ear channel signal and the center channel signal, the determining unit configured to obtain a Fourier coefficient H L (f) of the left ear channel signal according to the left ear channel signal Obtaining a Fourier coefficient H R (f) of the right ear channel signal according to the left ear channel signal; obtaining a Fourier coefficient H C of the center channel signal according to the left ear channel signal (f); and
  • the determining unit is configured to use the left ear a delay difference between the channel signal and the right ear channel signal, a delay difference between the left ear channel signal and the center channel signal, and the right ear channel signal and the center channel signal
  • the difference between the delays and the determination of whether the orientation of the sound source is the front orientation comprises: the determining unit is configured to:
  • the ITD LR is a delay difference between the left ear channel signal and the right ear channel signal
  • the ITD RC is a delay between the right ear channel signal and the center channel signal.
  • the ITD LC is a delay difference between the left ear channel signal and the center channel signal
  • the c represents a speed of sound
  • the a represents between the left ear channel and the right ear channel Half of the distance;
  • the incident angle of the sound source signal is greater than 90° and less than 270°, and the orientation of the sound source is determined to be a rear orientation, and the rear orientation is an orientation of the center channel facing away.
  • the processing unit is specifically configured to: when the determining unit determines that an incident angle of the sound source signal is greater than Or equal to 0° and less than or equal to the first preset angle, or when the incident angle of the sound source signal is greater than or equal to the second preset angle and less than or equal to 360°, respectively, the left ear channel signal and the right
  • the ear channel signal performs at least one of the following: a front azimuth enhancement process, a rear azimuth attenuating process; wherein the first preset angle is less than 90° and the second preset angle is greater than 270°.
  • the front azimuth enhancement processing is performed on the left ear channel signal and the right ear channel signal, and the processing unit is configured to: respectively, the frequency of the left ear channel signal and the right ear channel signal belong to the first
  • the signal of the preset frequency band is multiplied by the first gain coefficient to obtain a left ear channel signal and a right ear channel signal of the front azimuth enhancement process;
  • the first gain coefficient is a value greater than 1, wherein the first preset frequency band
  • the amplitude spectrum of the corresponding front HRTF is greater than the amplitude spectrum of the rear HRTF corresponding to the first preset frequency band;
  • the processing unit is configured to perform rearward azimuth reduction on the left ear channel signal and the right ear channel signal respectively
  • the processing includes: the processing unit is configured to respectively multiply a signal of the left ear channel signal and the right ear channel signal belonging to the second preset frequency band by a
  • the acquiring unit is further configured to perform, on the processing unit, the left ear channel signal and the The right ear channel signal performs at least one of the following: before the front azimuth enhancement processing and the rear azimuth weakening processing, obtaining an average amplitude spectrum of the HRTF in the front horizontal plane of the head mold, and an average amplitude spectrum of the HRTF in the rear horizontal plane of the head mold, wherein the head mode is a head mode to which the device is applied; the mean value of the amplitude spectrum of the HRTF in the front horizontal plane is subtracted from the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane, and an amplitude spectrum of the HRTF in the front horizontal plane is obtained.
  • the method and device for processing a sound image orientation determines whether the orientation of the sound source is a front orientation by acquiring a left ear channel signal, a right ear channel signal, and a center channel signal of the sound source; When the orientation of the sound source is the front orientation, the left ear channel signal and the right ear channel signal are respectively subjected to at least one of the following processing: a front azimuth enhancement processing and a rear azimuth weakening processing. Thereby increasing the difference between the front orientation and the rear orientation of the sound image The distance can further improve the accuracy of the sound source orientation.
  • Embodiment 1 is a flow chart of Embodiment 1 of a method for processing a sound image orientation of the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of a method for processing a sound image orientation of the present invention
  • FIG. 3 is a schematic diagram of an incident angle division of a sound source signal according to an embodiment of the present invention.
  • Embodiment 4 is a schematic structural view of Embodiment 1 of a sound image orientation sensing device according to the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a sound image orientation sensing apparatus according to the present invention.
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for processing a sound image orientation of the present invention. As shown in FIG. 1, the method of this embodiment may include:
  • the left ear channel signal is a signal transmitted by the sound source signal to the left ear channel
  • the right ear channel signal is a signal that the sound source signal is transmitted to the right ear channel
  • the center channel signal is the sound.
  • the source signal is transmitted to a signal in the center channel, the center channel being located on a mid-plane of the left ear channel and the right ear channel.
  • a sound source sends a signal, which is called a sound source signal, and then can obtain a left ear channel signal, a right ear channel signal, and a center channel signal.
  • a microphone can be used to obtain sound by setting a microphone in the left ear.
  • the signal from the source, the obtained signal is called the left ear channel signal; on the right
  • the ear sets a microphone to obtain the signal from the sound source, and the obtained signal is called the right ear channel signal;
  • a microphone is arranged on the middle vertical plane between the left ear and the right ear for acquiring the signal from the sound source, and the obtained signal is obtained.
  • the signal is called a center channel signal, and the microphone disposed on the mid-plane between the left and right ears can be placed, for example, on the forehead or the bridge of the nose.
  • the right ear channel signal, the right ear channel signal, and the newly added center channel signal may be used to determine whether the orientation of the sound source is a front orientation, and the front orientation is an orientation of the center channel.
  • the front orientation is the orientation of the face of the user who applies the sound image orientation processing method of the present invention.
  • orientation of the sound source is a front orientation
  • the left azimuth channel signal when determining the orientation of the sound source as the front orientation, may be subjected to a front azimuth enhancement process, and the right ear channel signal may be forwardly azimuth enhanced; or the left ear channel may be The signal is subjected to a rear azimuth weakening process, and the right azimuth channel signal is subjected to a rear azimuth weakening process; or the left azimuth channel signal may be subjected to a front azimuth enhancement process and a rear azimuth weakening process, and the right ear channel signal is forwardly azimuth enhanced. And rear azimuth reduction processing.
  • the listener receives the left-hand channel signal and the right-ear channel signal after the above processing to generate a feeling of the sound source, and this feeling is called a sound image.
  • this feeling is called a sound image.
  • the method for processing a sound image orientation sense is to obtain a left ear channel signal, a right ear channel signal, and a center channel signal of the sound source, wherein the center channel is located in the left ear channel and the right ear channel Determining whether the orientation of the sound source is a front orientation according to the left ear channel signal, the right ear channel information, and the center channel signal, and the front orientation is the middle Positioning the channel facing; when the orientation of the sound source is the front orientation, performing at least one of the following processing on the left ear channel signal and the right ear channel signal respectively: front azimuth enhancement processing, Square azimuth reduction processing. Therefore, the difference between the front orientation sense and the rear orientation sense of the sound image can be increased, and the listener can accurately recognize that the sound source is from the front, and the judgment accuracy of the sound source orientation is improved.
  • Embodiment 2 is a flowchart of Embodiment 2 of a method for processing a sound image orientation of the present invention. As shown in FIG. 2, the method of this embodiment may include:
  • the specific implementation process of the S201 is similar to the specific implementation process of the S101 in the method embodiment of the present invention, and details are not described herein again.
  • the delay difference between the left ear channel signal and the right ear channel signal can be obtained according to the obtained left ear channel signal and the right ear channel signal; according to the acquired left ear channel signal and the center channel signal, Obtaining a delay difference between the left ear channel signal and the center channel signal; obtaining a delay difference between the right ear channel signal and the center channel signal according to the obtained right ear channel signal and the center channel signal.
  • the foregoing S202 may include: obtaining, according to the acquired left ear channel signal, a Fourier coefficient H L (f) of the left ear channel signal, where H L (f) is Regarding the function of f, f is the frequency of the left ear channel signal; according to the obtained right ear channel signal, the Fourier coefficient H R (f) of the right ear channel signal is obtained, and H R (f) is related to f a function, f is a frequency; according to the obtained center channel signal, obtaining a Fourier coefficient H C (f) of the center channel signal, H C (f) is a function with respect to f, f is a frequency; according to the formula (a) obtaining a time delay difference, in particular the maximum, according to the formula (a) obtaining ⁇ LR ( ⁇ ) is maximum and ⁇ LR ( ⁇ ) between the left channel signal and the right ear channel signal The corresponding value of ⁇ is used as a delay difference between the left ear channel signal and the
  • Formula (1) is:
  • said Conjugated with said H R (f) said j represents a complex number, [0, x] represents a low frequency range, and -1 ms ⁇ ⁇ ⁇ 1 ms.
  • said Conjugated with said H C (f) said j represents a complex number, [0, x] represents a frequency range, and -1 ms ⁇ ⁇ ⁇ 1 ms.
  • said Conjugated with said H C (f) said j represents a complex number, [0, x] represents a low frequency range, and -1 ms ⁇ ⁇ ⁇ 1 ms.
  • S203 can include the following.
  • the ITD LR is a delay difference between the left ear channel signal and the right ear channel signal
  • c is a speed of sound
  • a is a distance between the left ear channel and the right ear channel
  • the incident angle of the sound source signal is Then determining whether the delay difference ITD LC between the left ear channel signal and the center channel signal is greater than or equal to the delay difference ITD RC between the right ear channel and the center channel signal, if it is determined
  • the incident angle of the sound source signal when Determine the incident angle of the sound source signal as Then, it is determined whether the ITD LC is greater than or equal to the ITD RC . If it is determined that
  • the incident angle belongs to the angle range [315°, 360°]; if
  • the orientation of the sound source may be determined according to the incident angle of the sound source signal being greater than or equal to 0° and less than or equal to 90°, or greater than or equal to 270° and less than or equal to 360°. Or the orientation of the front direction; or, according to the incident angle of the sound source signal being greater than 90° and less than 270°, determining that the orientation of the sound source is a rear orientation, and the rear orientation is an orientation of the center channel facing away, for example
  • the rear orientation is the orientation of the face of the user who applies the method of processing the sound image orientation of the present invention. As shown in FIG. 3, in this embodiment, the angle at which the sound source is incident parallel to the center channel is 0°.
  • S204 may be specifically: when determining that the orientation of the sound source is the front orientation, and determining that the incident angle of the sound source signal is greater than or equal to 0° and less than or equal to the first preset angle, or When the incident angle of the sound source signal is greater than or equal to the second preset angle and less than or equal to 360°, the left ear channel signal and the right ear channel signal are respectively subjected to at least one of the following processes: The orientation enhancement processing and the rear azimuth reduction processing; wherein the first preset angle is less than 90° and the second preset angle is greater than 270°.
  • the first predetermined angle may be 60° or 45°
  • the second preset angle may be 300° or 315°.
  • performing the forward azimuth enhancement process on the left ear channel signal may include: multiplying a signal of the left ear channel signal whose frequency belongs to the first preset frequency band by a first gain coefficient, and obtaining a left ear of the front azimuth enhancement process.
  • a channel signal, and the first gain coefficient is a value greater than 1, wherein a front-to-head correlation transfer function (English: Head Related Transfer Function, HRTF) corresponding to the first preset frequency band is larger than the An amplitude spectrum of the rear HRTF corresponding to the first preset frequency band.
  • HRTF Head Related Transfer Function
  • the amplitude spectrum of the front HRTF corresponding to the first preset frequency band is subtracted from the amplitude of the rear HRTF corresponding to the first preset frequency band.
  • the spectrum is greater than the preset value, which is a value greater than zero. Accordingly, the forward azimuth enhancement processing of the right ear channel signal can be similarly processed.
  • performing a rear azimuth reduction process on the left ear channel signal may include: multiplying a signal of the left ear channel signal whose frequency belongs to the second preset frequency band by a second gain coefficient, and obtaining a left ear of the rear azimuth weakening process a channel signal, and the second gain coefficient is a value less than 1, wherein the second preset frequency band is a frequency band other than the first preset frequency band. Accordingly, the rear azimuth reduction processing of the right ear channel signal can be similarly processed.
  • the foregoing first preset frequency band needs to be determined; as follows.
  • the expression of HRTF is Where ⁇ is the azimuth angle; Is the elevation angle; f is the frequency; therefore it can pass
  • the value of ⁇ is with The value of 0° is calculated to obtain the mean value of the amplitude spectrum of the HRTF in the front horizontal plane.
  • the average amplitude spectrum of the HRTF in the front horizontal plane is a function related to f.
  • the value of ⁇ is The value of the HRTF in the rear horizontal plane of the headform is obtained by the value of 0°.
  • the average amplitude spectrum of the HRTF in the rear horizontal plane is a function related to f.
  • the mean value of the amplitude spectrum of the HRTF in the front horizontal plane is subtracted from the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane, and the difference between the mean value of the amplitude spectrum of the front horizontal plane HRTF and the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane is obtained;
  • the difference between the mean value of the amplitude spectrum of the inner HRTF and the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane, and the amplitude of the HRTF in the front horizontal plane is obtained.
  • the mean value of the difference between the average of the amplitude spectrum and the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane is the mean value in the frequency range, that is, the difference between the mean value of the HRTF in the front horizontal plane corresponding to each frequency and the mean value of the HRTF in the rear horizontal plane is averaged to obtain a The specific value; the difference between the mean value of the amplitude spectrum of the HRTF in the front horizontal plane and the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane and the difference between the mean value of the amplitude spectrum of the HRTF in the front horizontal plane and the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane at the frequency Comparing the mean values in the range, the mean value of the amplitude spectrum of the HRTF in the front horizontal plane and the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane are greater than the difference between the mean value of the amplitude spectrum of the HRTF in the front horizontal plane and the mean value of the amplitude spectrum
  • the first preset frequency band may include at least one of the following frequency bands: [3 kHz, 8 kHz], [10 kHz, 12 kHz], [17 kHz, 20 kHz];
  • the second preset frequency band may include at least one of the following frequency bands: [ 0 kHz, 3 kHz), (8 kHz, 10 kHz), (12 kHz, 17 kHz); or, the first preset frequency band may include at least one of the following bands: [3 kHz, 8.1 kHz], [10 kHz, 12.5 kHz], [17 kHz, 20 kHz
  • the second preset frequency band may include at least one of the following frequency bands: [0 kHz, 3 kHz), (8.1 kHz, 10 kHz), (12.5 kHz, 17 kHz), and the embodiment of the present invention is not limited thereto.
  • the first preset frequency band may include [3 kHz, 8 kHz], [10 kHz, 12 kHz. ], [17 kHz, 20 kHz], the second preset frequency band may include: [0 kHz, 3 kHz), (8 kHz, 10 kHz), (12 kHz, 17 kHz).
  • a band pass filter having a range of a first preset frequency band, a gain coefficient of the band pass filter being a value greater than 1, and then passing the band pass filter and the left channel signal or the right channel signal may be performed.
  • the band pass filter having the range of the second preset frequency band, the gain coefficient of the band pass filter being less than or equal to 1
  • the value is then convoluted with the left channel signal or the right channel signal to attenuate the rearward orientation of the signal having a frequency within the second predetermined frequency band.
  • the left channel signal and the right channel signal can be processed by the sound image orientation by the following formulas.
  • the left channel signal is subjected to the processing described in the formula (4), and the formula (4) is, for example:
  • L ' is a left channel signal for the processed sound image orientation sense
  • L is a signal for the left channel sound image orientation feeling before treatment
  • H low indicates a cutoff frequency of the low pass filter F 1
  • M 1 is turned off
  • H bandi represents a band-pass filter, [F i , F i+1 ]
  • M i is the gain coefficient of the band-pass filter.
  • the right channel signal is subjected to the processing described in the formula (5), and the formula (5) is, for example:
  • R' is the right channel signal after the sound image orientation processing
  • R is the right channel signal before the sound image orientation processing
  • one low pass filter and five band pass filters may be employed, K being five.
  • F 1 3 kHz
  • F 2 8 kHz
  • F 3 10 kHz
  • F 4 12 kHz
  • F 5 17 kHz
  • F 6 20 kHz
  • M 6 2.
  • the signal in the first preset frequency band [3 kHz, 8 kHz], [10 kHz, 12 kHz], [17 kHz, 20 kHz] can be enhanced, that is, the amplitude gain of the signal in the first preset frequency band can be 6 dB;
  • the signal in the second preset frequency band (8 kHz, 10 kHz), (12 kHz, 17 kHz) is attenuated, that is, the amplitude of the signal in the second preset frequency band can be attenuated by 3 dB.
  • one low pass filter and seven band pass filters may be employed, K being seven.
  • F 1 3 kHz
  • F 2 5 kHz
  • F 3 8 kHz
  • F 4 10 kHz
  • F 5 12 kHz
  • F 6 15 kHz
  • F 7 17 kHz
  • F 8 20 kHz
  • M 3 2
  • M 4 0.5
  • M 5 2
  • M 6 0.8
  • the signals in the first preset frequency band [3 kHz, 8 kHz], [10 kHz, 12 kHz], [17 kHz, 20 kHz] can be enhanced; for the second preset frequency band (8 kHz, 10 kHz), (12 kHz, 17 kHz)
  • the signal inside is weakened.
  • the incident angle of the sound source signal is greater than or equal to 0° and less than or equal to 45°, or the incident angle of the sound source signal is greater than or equal to 315° and less than or equal to 360°, one may be used.
  • Low pass filter and 5 band pass filters, K is 5.
  • F 1 3 kHz
  • F 2 8 kHz
  • F 3 10 kHz
  • F 4 12 kHz
  • F 5 17 kHz
  • F 6 20 kHz
  • M 3 0.5
  • M 4 1.4
  • M 5 0.5
  • M 6 2.
  • the signal in the first preset frequency band [3 kHz, 8 kHz], [10 kHz, 12 kHz], [17 kHz, 20 kHz] can be enhanced, that is, the amplitude gain of the signal in the [3 kHz, 8 kHz] band can be 9 dB.
  • the amplitude gain of the signal in the [10kHz, 12kHz] band can be 9dB, and the amplitude gain of the signal in the [17kHz, 20kHz] band can be 9dB; for the second preset band (8kHz, 10kHz), (12kHz, 17kHz)
  • the signal inside is attenuated, that is, the amplitude of the signal in the second predetermined frequency band can be attenuated by 3 dB.
  • a low pass filter may be used.
  • 5 bandpass filters, K is 5.
  • the amplitude gain of the signal in the [10 kHz, 12 kHz] band can be 6 dB, and the amplitude gain of the signal in the [17 kHz, 20 kHz] band can be 9 dB; for the second preset band (8 kHz, 10 kHz), (12 kHz, 17 kHz)
  • the signal inside is attenuated, that is, the amplitude of the signal in the (8 kHz, 10 kHz) band can be attenuated by 3 dB, and the amplitude of the signal in the (12 kHz, 17 kHz) band can be attenuated by 6 dB.
  • the first preset frequency band may include [3 kHz, 8.1 kHz], [10 kHz, 12.5. kHz], [17 kHz, 20 kHz], the second preset frequency band may include: [0 kHz, 3 kHz), (8.1 kHz, 10 kHz), (12.5 kHz, 17 kHz).
  • a band pass filter having a range of a first preset frequency band, a gain coefficient of the band pass filter being a value greater than 1, and then passing the band pass filter and the left channel signal or the right channel signal may be performed.
  • the band pass filter having the second preset frequency band can be passed, and the gain coefficient of the band pass filter is less than or equal to 1
  • the value is then convoluted with the left channel signal or the right channel signal to attenuate the rearward orientation of the signal within the second predetermined frequency band.
  • one low pass filter and five band pass filters may be employed, K being five.
  • Attenuating the signal in the second preset frequency band (8.1 kHz, 10 kHz), (12.5 kHz, 17 kHz), that is, the amplitude of the signal in the second preset frequency band can be attenuated by 3 dB.
  • the method for processing a sound image orientation by obtaining a left ear channel signal, a right ear channel signal, and a center channel signal of the sound source, according to the left ear channel signal and the right ear channel signal a delay difference, a delay difference between the left ear channel signal and the center channel signal, and a delay difference between the right ear channel signal and the center channel signal, determining the sound source Whether the orientation is a front orientation, and when the orientation of the sound source is a front orientation, respectively, the left ear channel
  • the signal and the right ear channel signal perform at least one of the following processing: front azimuth enhancement processing, rear azimuth weakening processing. Therefore, the difference between the front orientation sense and the rear orientation sense of the sound image can be increased, and the listener can accurately recognize that the sound source is from the front, and the judgment accuracy of the sound source orientation is improved.
  • the apparatus of this embodiment may include: an obtaining unit 11, a determining unit 12, and a processing unit 13, wherein the obtaining unit 11, For acquiring a left ear channel signal, a right ear channel signal, and a center channel signal, wherein the left ear channel signal is a signal that the sound source signal is transmitted to the left ear channel, and the right ear channel signal is that the sound source signal is transmitted to the right a signal in the ear channel, the center channel signal is a signal transmitted by the sound source signal to a center channel, and the center channel is located in a midplane between the left ear channel and the right ear channel a determining unit 12, configured to determine, according to the left ear channel signal, the right ear channel information, and the center channel signal acquired by the obtaining unit 11, whether the orientation of the sound source is a front orientation, the front The orientation is the orientation of the center channel; the processing unit 13 is
  • the determining unit 12 is configured to obtain, between the left ear channel signal and the right ear channel signal, according to the left ear channel signal, the right ear channel signal, and the center channel signal. a delay difference, a delay difference between the left ear channel signal and the center channel signal, and a delay difference between the right ear channel signal and the center channel signal; and according to the left ear a delay difference between the channel signal and the right ear channel signal, a delay difference between the left ear channel signal and the center channel signal, and the right ear channel signal and the center channel signal.
  • the difference in delay between the two determines whether the orientation of the sound source is the forward orientation.
  • the determining unit 12 is configured to obtain, between the left ear channel signal and the right ear channel signal, according to the left ear channel signal, the right ear channel signal, and the center channel signal. a delay difference, a delay difference between the left ear channel signal and the center channel signal, and a delay difference between the right ear channel signal and the center channel signal, including: determining unit 12 Obtaining a Fourier coefficient H L (f) of the left ear channel signal according to the left ear channel signal; obtaining a Fourier coefficient H R of the right ear channel signal according to the left ear channel signal ( f) obtaining a Fourier coefficient H C (f) of the center channel signal according to the left ear channel signal;
  • said Conjugated with said H R (f), said Conjugated with said H C (f), said j represents a complex number, [0, x] represents a frequency range, and -1 ms ⁇ ⁇ ⁇ 1 ms.
  • the determining unit 12 is configured to: according to a delay difference between the left ear channel signal and the right ear channel signal, a delay difference between the left ear channel signal and the center channel signal, and a delay difference between the right ear channel signal and the center channel signal, determining whether the orientation of the sound source is a front orientation, and the determining unit 12 is configured to:
  • the ITD LR is a delay difference between the left ear channel signal and the right ear channel signal
  • the ITD RC is a delay between the right ear channel signal and the center channel signal.
  • the ITD LC is a delay difference between the left ear channel signal and the center channel signal
  • the c represents a speed of sound
  • the a represents between the left ear channel and the right ear channel Half of the distance;
  • the incident angle of the sound source signal is greater than 90° and less than 270°, and the orientation of the sound source is determined to be a rear orientation, and the rear orientation is an orientation of the center channel facing away.
  • the processing unit 13 is specifically configured to: when the determining unit 12 determines that the incident angle of the sound source signal is greater than or equal to 0° and less than or equal to the first preset angle, or the incident angle of the sound source signal is greater than Or at least a second preset angle and less than or equal to 360°, performing at least one of the following processes on the left ear channel signal and the right ear channel signal: a front azimuth enhancement process and a rear azimuth attenuating process; wherein the A predetermined angle is less than 90° and the second predetermined angle is greater than 270°.
  • the processing unit 13 is configured to perform forward azimuth enhancement processing on the left ear channel signal and the right ear channel signal, respectively, including: the processing unit 13 is configured to separately use the left ear channel signal and the right
  • the signal of the ear channel signal having the frequency belonging to the first preset frequency band is multiplied by the first gain coefficient to obtain the left ear channel signal and the right ear channel signal of the front azimuth enhancement process; wherein the first gain coefficient is a value greater than 1, wherein the first gain coefficient is a value greater than 1.
  • the amplitude spectrum of the front-to-head correlation transfer function HRTF corresponding to the first preset frequency band is greater than the amplitude spectrum of the rear HRTF corresponding to the first preset frequency band;
  • the processing unit 13 is configured to perform a rear azimuth reduction process on the left ear channel signal and the right ear channel signal, respectively, including: the processing unit 13 is configured to separately use the left ear channel signal and the right ear channel signal
  • the signal whose frequency belongs to the second preset frequency band is multiplied by the second gain coefficient to obtain the left ear channel signal and the right ear channel signal of the rear azimuth weakening process; and the second gain coefficient is a positive value less than or equal to 1
  • the second preset frequency band is a frequency band other than the first preset frequency band.
  • the obtaining unit 11 is further configured to perform at least one of the following processing on the left ear channel signal and the right ear channel signal in the processing unit 13 respectively: front azimuth enhancement processing, rear orientation reduction Before the weak processing, obtaining an average amplitude spectrum of the HRTF in the front horizontal plane of the head mold, and an average amplitude spectrum of the HRTF in the rear horizontal plane of the head mold, wherein the head mold is a head mold to which the device is applied;
  • the mean value of the amplitude spectrum of the HRTF in the front horizontal plane is subtracted from the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane, and the difference between the mean value of the amplitude spectrum of the HRTF in the front horizontal plane and the mean value of the amplitude spectrum of the HRTF in the rear horizontal plane is obtained;
  • the device in this embodiment may be used to implement the technical solutions of the foregoing method embodiments of the present invention, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • the apparatus of this embodiment may include: a first sensor 21, a second sensor 22, a third sensor 23, and a processor 24. And a memory 25 for storing code for performing a sound image orientation processing method; the memory 25 may include a non-volatile memory.
  • the processor 24 may be a central processing unit (English: Central Processing Unit, CPU for short), or an application specific integrated circuit (ASIC), or configured to implement the embodiments of the present invention. One or more integrated circuits.
  • the first sensor 21, the second sensor 22, and the third sensor 23 are respectively sensors for collecting sound, such as a microphone, wherein the first sensor 21 can be placed, for example, in the left ear of the user, and the second sensor 22 can be placed, for example. In the user's right ear, the third sensor 23 can be placed on the nose bridge of the user; the processor 24 is used to invoke the code to perform the following operations:
  • a first sensor 21 configured to acquire a left ear channel signal, where the left ear channel signal is a signal that is transmitted by the sound source signal to the left ear channel;
  • a second sensor 22 configured to acquire a right ear channel signal, where the right ear channel signal is a signal that is transmitted by the sound source signal to the right ear channel;
  • a third sensor 23 configured to acquire a center channel signal, wherein the center channel signal is a signal transmitted by the sound source signal to a center channel, and the center channel is located at the left ear channel and the right ear The mid-surface between the channels;
  • the processor 24 is configured to determine the sound according to the left ear channel signal acquired by the first sensor 21, the right ear channel information acquired by the second sensor 22, and the center channel signal acquired by the third sensor 23 Whether the orientation of the source is a front orientation, the front orientation is an orientation facing the center channel; and when determining that the orientation of the sound source is a front orientation, respectively, the left ear channel signal and the right ear channel signal At least one of the following processes is performed: front azimuth enhancement processing, rear azimuth weakening processing.
  • the processor 24 is configured to determine, according to the left ear channel signal acquired by the first sensor 21, the right ear channel information acquired by the second sensor 22, and the center channel signal acquired by the third sensor 23, Whether the orientation of the sound source is a front orientation, the processor 24 is configured to obtain the left ear channel signal and the sound according to the left ear channel signal, the right ear channel signal, and the center channel signal a delay difference between the right ear channel signals, a delay difference between the left ear channel signal and the center channel signal, and a delay between the right ear channel signal and the center channel signal And a delay difference between the left ear channel signal and the right ear channel signal, a delay difference between the left ear channel signal and the center channel signal, and the right ear channel signal And a delay difference between the center channel signal and determining whether the orientation of the sound source is a front orientation.
  • the processor 24 is configured to obtain, between the left ear channel signal and the right ear channel signal, according to the left ear channel signal, the right ear channel signal, and the center channel signal. a delay difference, a delay difference between the left ear channel signal and the center channel signal, and a delay difference between the right ear channel signal and the center channel signal, including: Obtaining a Fourier coefficient H L (f) of the left ear channel signal according to the left ear channel signal; obtaining a Fourier coefficient H R of the right ear channel signal according to the left ear channel signal ( f) obtaining a Fourier coefficient H C (f) of the center channel signal according to the left ear channel signal;
  • said Conjugated with said H R (f), said Conjugated with said H C (f), said j represents a complex number, [0, x] represents a frequency range, and -1 ms ⁇ ⁇ ⁇ 1 ms.
  • the processor 24 is configured to: according to a delay difference between the left ear channel signal and the right ear channel signal, a delay difference between the left ear channel signal and the center channel signal, and The delay difference between the right ear channel signal and the center channel signal determines whether the orientation of the sound source is a front orientation, and the processor 24 is configured to:
  • the ITD LR is a delay difference between the left ear channel signal and the right ear channel signal
  • the ITD RC is a delay between the right ear channel signal and the center channel signal.
  • the ITD LC is a delay difference between the left ear channel signal and the center channel signal
  • the c represents a speed of sound
  • the a represents between the left ear channel and the right ear channel Half of the distance;
  • an incident angle according to the sound source signal is greater than or equal to 0° and less than or equal to 90°, or The greater than or equal to 270° and less than or equal to 360°, determining that the orientation of the sound source is a front orientation; determining an orientation of the sound source according to an incident angle of the sound source signal being greater than 90° and less than 270°
  • the rear orientation is an orientation in which the center channel is facing away.
  • the processor 24 is configured to perform at least one of the following processes on the left ear channel signal and the right ear channel signal respectively: a front azimuth enhancement process and a rear azimuth attenuating process, including: when determining the incident of the sound source signal When the angle is greater than or equal to 0° and less than or equal to the first preset angle, or the incident angle of the sound source signal is greater than or equal to the second predetermined angle and less than or equal to 360°, respectively, the left ear channel signal And the right ear channel signal performs at least one of the following: a front azimuth enhancement process, a rear azimuth attenuating process; wherein the first preset angle is less than 90°, and the second preset angle is greater than 270°.
  • the processor 24 is configured to perform forward azimuth enhancement processing on the left ear channel signal and the right ear channel signal, respectively, including: the processor 24 is configured to separately use the left ear channel signal and the right
  • the signal of the ear channel signal having the frequency belonging to the first preset frequency band is multiplied by the first gain coefficient to obtain the left ear channel signal and the right ear channel signal of the front azimuth enhancement process; wherein the first gain coefficient is a value greater than 1, wherein the first gain coefficient is a value greater than 1.
  • the amplitude spectrum of the front HRTF corresponding to the first preset frequency band is greater than the amplitude spectrum of the rear HRTF corresponding to the first preset frequency band;
  • the processor 24 is configured to perform a rear azimuth reduction process on the left ear channel signal and the right ear channel signal, respectively, including: the processor 24 is configured to separately use the left ear channel signal and the right ear channel signal
  • the signal whose frequency belongs to the second preset frequency band is multiplied by the second gain coefficient to obtain the left ear channel signal and the right ear channel signal of the rear azimuth weakening process; and the second gain coefficient is a positive value less than or equal to 1
  • the second preset frequency band is a frequency band other than the first preset frequency band.
  • the processor 24 is further configured to: acquire the front horizontal plane of the head mold before performing at least one of the following processes on the left ear channel signal and the right ear channel signal respectively: front azimuth enhancement processing and rear azimuth weakening processing
  • the device in this embodiment may be used to implement the technical solutions of the foregoing method embodiments of the present invention, and the implementation principles and technical effects thereof are similar, and details are not described herein again.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the steps of the foregoing method embodiments are performed; and the foregoing storage medium includes: read-only memory (English: Read-Only Memory, ROM for short), random access memory (English: Random Access Memory, Abbreviation: RAM), disk or CD-ROM, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • CD-ROM Compact Disc-ROM

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明实施例提供一种声像方位感处理方法和装置,通过获取声源的左耳通道信号、右耳通道信号和中置通道信号,所述中置通道位于所述左耳通道与所述右耳通道之间的中垂面上;根据所述左耳通道信号、所述右耳通道信息和所述中置通道信号,确定所述声源的方位是否为前方方位,所述前方方位为所述中置通道所面向的方位;当所述声源的方位为前方方位时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。从而可以增大声像的前方方位感与后方方位感的差距,进而可以提高声源方位的判断准确率。

Description

声像方位感处理方法和装置
本申请要求于2014年10月16日提交中国专利局、申请号为201410549266.1、发明名称为“声像方位感处理方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种声像方位感处理方法和装置。
背景技术
随着音视频技术的蓬勃发展,人们在追求3D视觉体验的同时也对声音的空间属性有越来越高的要求。在可穿戴设备中将视频与音频结合,可以产生更加真实的浸入式体验效果。由于重放设备仅限于耳机,因此最合适的方法是采用双耳录音重放技术。由于双耳声压包含了声音的主要空间信息,因而可采用放置在人工头模(或真人受试者)双耳处的一对微缩传声器进行捡拾。所得的双耳声信号经放大、传输、记录等过程后,再用一对耳机进行重放,从而在倾听者双耳处产生和原声场一致的主要空间信息,实现声音空间信息的重放。这是双耳录音和重放***的工作原理。采用基于双耳信号的虚拟听觉重放***产生的空间听觉效果更为真实、自然。
然而,在采用耳机重放双耳信号的时候,由于耳机放音方式与原始声场的不同,会丢失了用于判断前后方位的认知信息,出现一定的前后声像混淆问题,可能使得听者将来自前方方位的声像误判成来至后方方位。
发明内容
本发明实施例提供一种声像方位感处理方法和装置,用于提高声源方位的判断准确率。
第一方面,本发明实施例提供一种声像方位感处理方法,包括:获 取左耳通道信号、右耳通道信号和中置通道信号,所述左耳通道信号为声源信号传输至左耳通道中的信号,右耳通道信号为所述声源信号传输至右耳通道中的信号,所述中置通道信号为所述声源信号传输至中置通道中的信号,所述中置通道位于所述左耳通道与所述右耳通道之间的中垂面上;根据所述左耳通道信号、所述右耳通道信息和所述中置通道信号,确定声源的方位是否为前方方位,所述前方方位为所述中置通道所面向的方位;当所述声源的方位为前方方位时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。
在第一方面的第一种可能的实现方式中,所述根据所述左耳通道信号、所述右耳通道信号和所述中置通道信号,确定所述声源的方位是否为前方方位,包括:根据所述左耳通道信号、所述右耳通道信号和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差;根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述根据所述左耳通道信号、所述右耳通道信号和和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,包括:根据所述左耳通道信号,获得所述左耳通道信号的傅里叶系数HL(f);根据所述左耳通道信号,获得所述右耳通道信号的傅里叶系数HR(f);根据所述左耳通道信号,获得所述中置通道信号的傅里叶系数HC(f);
根据
Figure PCTCN2015080888-appb-000001
获得φLR(τ)的最大值,并将φLR(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述右耳通道信号之间的时延差;
根据
Figure PCTCN2015080888-appb-000002
获得φLC(τ)的最大值,并将φLC(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述中置通道信号之间的时延差;
根据
Figure PCTCN2015080888-appb-000003
获得φRC(τ)的最大值,并将φRC(τ)的最大值所对应的τ的取值作为所述右耳通道信号与所述中置通道信号之间的时延差;其中,所述
Figure PCTCN2015080888-appb-000004
与所述HR(f)共轭,所述
Figure PCTCN2015080888-appb-000005
与所述HC(f)共轭,所述j表示复数,[0,x]表示频率范围,-1ms≤τ≤1ms。
结合第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位,包括:
Figure PCTCN2015080888-appb-000006
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000007
其中,若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于0° 并且小于或等于45°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于135°并且小于或等于180°;
Figure PCTCN2015080888-appb-000008
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000009
若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于315°并且小于或等于360°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于180°并且小于或等于225°;
Figure PCTCN2015080888-appb-000010
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000011
Figure PCTCN2015080888-appb-000012
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000013
其中,所述ITDLR为所述左耳通道信号与所述右耳通道信号之间的时延差,所述ITDRC为所述右耳通道信号与所述中置通道信号之间的时延差,所述ITDLC为所述左耳通道信号与所述中置通道信号之 间的时延差,所述c表示声速,所述a表示所述左耳通道与所述右耳通道之间距离的一半;
根据所述声源信号的入射角大于或等于0°并且小于或等于90°,或者,大于或等于270°并且小于或等于360°,确定所述声源的方位为前方方位;根据所述声源信号的入射角大于90°并且小于270°,确定所述声源的方位为后方方位,所述后方方位为所述中置通道所背向的方位。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理,包括:当所述声源信号的入射角大于或等于0°并且小于或等于第一预设角度,或者,所述声源信号的入射角大于或等于第二预设角度并且小于或等于360°时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理;其中,所述第一预设角度小于90°,所述第二预设角度大于270°。
结合第一方面或第一方面的第一种至第四种可能的实现方式中的任意一种,在第一方面的第五种可能的实现方式中,所述分别对所述左耳通道信号和所述右耳通道信号进行前方方位增强处理,包括:分别将所述左耳通道信号和所述右耳通道信号中频率属于第一预设频带的信号与第一增益系数做乘积,获得前方方位增强处理的左耳通道信号和右耳通道信号;所述第一增益系数为大于1的数值,其中,所述第一预设频带所对应的前方与头相关传递函数(英文:Head Related Transfer Function,简称:HRTF)的幅度谱大于所述第一预设频带所对应的后方HRTF的幅度谱;
所述分别对所述左耳通道信号和所述右耳通道信号进行后方方位减弱处理,包括:分别将所述左耳通道信号和所述右耳通道信号中的频率属于第二预设频带的信号与第二增益系数做乘积,获得后方方位减弱处理的左耳通道信号和右耳通道信号;所述第二增益系数为小于或等于1的正数值,所述第二预设频带为除所述第一预设频带之外的频带。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述分别对所述左耳通道信号和所述右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理之前,还包 括:获取头模的前方水平面内HRTF的幅度谱均值,以及所述头模的后方水平面内HRTF的幅度谱均值,其中,所述头模为应用所述方法的头模;将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值相减,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差;根据所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值;将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差大于所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值所对应的频带作为所述第一预设频带。
第二方面,本发明实施例提供一种声像方位感处理装置,包括:获取单元,用于获取左耳通道信号、右耳通道信号和中置通道信号,所述左耳通道信号为声源信号传输至左耳通道中的信号,右耳通道信号为所述声源信号传输至右耳通道中的信号,所述中置通道信号为所述声源信号传输至中置通道中的信号,所述中置通道位于所述左耳通道与所述右耳通道之间的中垂面上;确定单元,用于根据所述获取单元获取的所述左耳通道信号、所述右耳通道信息和所述中置通道信号,确定所述声源的方位是否为前方方位,所述前方方位为所述中置通道所面向的方位;处理单元,用于当所述确定单元确定所述声源的方位为前方方位时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。
在第二方面的第一种可能的实现方式中,所述确定单元具体用于,根据所述左耳通道信号、所述右耳通道信号和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差;以及根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述确定单元,用于根据所述左耳通道信号、所述右耳通道信号和和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,包括:所述确定单元用于根据所述左耳通道信号,获得所述左耳通道信号的傅里叶系数HL(f);根据所述左耳通道信号,获得所述右耳通道信号的傅里叶系数HR(f);根据所述左耳通道信号,获得所述中置通道信号的傅里叶系数HC(f);以及
根据
Figure PCTCN2015080888-appb-000014
获得φLR(τ)的最大值,并将φLR(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述右耳通道信号之间的时延差;
根据
Figure PCTCN2015080888-appb-000015
获得φLC(τ)的最大值,并将φLC(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述中置通道信号之间的时延差;
根据
Figure PCTCN2015080888-appb-000016
获得φRC(τ)的最大值,并将φRC(τ)的最大值所对应的τ的取值作为所述右耳通道信号与所述中置通道信号之间的时延差;其中,所述
Figure PCTCN2015080888-appb-000017
与所述HR(f)共轭,所述
Figure PCTCN2015080888-appb-000018
与所述HC(f)共轭,所述j表示复数,[0,x]表示频率范围,-1ms≤τ≤1ms。
结合第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述确定单元用于根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位,包括:所述确定单元用于:
当确定
Figure PCTCN2015080888-appb-000019
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000020
其中,若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于0°并且小于或等于45°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于135°并且小于或等于180°;
当确定
Figure PCTCN2015080888-appb-000021
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000022
若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于315°并且小于或等于360°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于180°并且小于或等于225°;
当确定
Figure PCTCN2015080888-appb-000023
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000024
当确定
Figure PCTCN2015080888-appb-000025
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000026
其中,所述ITDLR为所述左耳通道信号与所述右耳通道信号之间的时延差,所述ITDRC为所述右耳通道信号与所述中置通道信号之间的时延差,所述ITDLC为所述左耳通道信号与所述中置通道信号之间的时延差,所述c表示声速,所述a表示所述左耳通道与所述右耳通道之间距离的一半;
以及根据所述声源信号的入射角大于或等于0°并且小于或等于90°,或者,大于或等于270°并且小于或等于360°,确定所述声源的方位为前方方位;根据所述声源信号的入射角大于90°并且小于270°,确定所述声源的方位为后方方位,所述后方方位为所述中置通道所背向的方位。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述处理单元具体用于,当所述确定单元确定所述声源信号的入射角大于或等于0°并且小于或等于第一预设角度,或者,所述声源信号的入射角大于或等于第二预设角度并且小于或等于360°时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理;其中,所述第一预设角度小于90°,所述第二预设角度大于270°。
结合第二方面或第二方面的第一种至第四种可能的实现方式中的任意一种,在第二方面的第五种可能的实现方式中,所述处理单元用于分 别对所述左耳通道信号和所述右耳通道信号进行前方方位增强处理,包括:所述处理单元用于,分别将所述左耳通道信号和所述右耳通道信号中频率属于第一预设频带的信号与第一增益系数做乘积,获得前方方位增强处理的左耳通道信号和右耳通道信号;所述第一增益系数为大于1的数值,其中,所述第一预设频带所对应的前方HRTF的幅度谱大于所述第一预设频带所对应的后方HRTF的幅度谱;所述处理单元用于分别对所述左耳通道信号和所述右耳通道信号进行后方方位减弱处理,包括:所述处理单元用于,分别将所述左耳通道信号和所述右耳通道信号中的频率属于第二预设频带的信号与第二增益系数做乘积,获得后方方位减弱处理的左耳通道信号和右耳通道信号;所述第二增益系数为小于或等于1的正数值,所述第二预设频带为除所述第一预设频带之外的频带。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述获取单元还用于在所述处理单元分别对所述左耳通道信号和所述右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理之前,获取头模的前方水平面内HRTF的幅度谱均值,以及所述头模的后方水平面内HRTF的幅度谱均值,其中,所述头模为应用所述装置的头模;将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值相减,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差;根据所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值;将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差大于所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值所对应的频带作为所述第一预设频带。
本发明实施例提供的声像方位感处理方法和装置,通过获取的声源的左耳通道信号、右耳通道信号和中置通道信号,来确定所述声源的方位是否为前方方位;当所述声源的方位为前方方位时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。从而可以增大声像的前方方位感与后方方位感的差 距,进而可以提高声源方位的判断准确率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明声像方位感处理方法实施例一的流程图;
图2为本发明声像方位感处理方法实施例二的流程图;
图3为本发明实施例提供的声源信号的入射角划分的一种示意图;
图4为本发明声像方位感处理装置实施例一的结构示意图;
图5为本发明声像方位感处理装置实施例二的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明声像方位感处理方法实施例一的流程图,如图1所示,本实施例的方法可以包括:
S101、获取左耳通道信号、右耳通道信号和中置通道信号。
其中,所述左耳通道信号为声源信号传输至左耳通道中的信号,右耳通道信号为所述声源信号传输至右耳通道中的信号,所述中置通道信号为所述声源信号传输至中置通道中的信号,所述中置通道位于所述左耳通道与所述右耳通道的中垂面上。
本实施例中,有一声源发出信号,该信号称为声源信号,然后可以获取左耳通道信号、右耳通道信号和中置通道信号,具体地,可以通过在左耳设置一个传声器获取声源发出的信号,获取到的信号称为左耳通道信号;在右 耳设置一个传声器获取声源发出的信号,获取到的信号称为右耳通道信号;在左耳与右耳之间的中垂面上设置一个传声器用于获取声源发出的信号,获取到的信号称为中置通道信号,在左耳与右耳之间的中垂面上设置的传声器可以设置在例如人头的额头或者鼻梁上。
S102、根据所述左耳通道信号、所述右耳通道信息和所述中置通道信号,确定所述声源的方位是否为前方方位。
本实施例中,可以根据右耳通道信号、右耳通道信号、以及新增的中置通道信号,来确定该声源的方位是否为前方方位,该前方方位为该中置通道所面向的方位,例如前方方位为应用本发明声像方位感处理方法的用户的人脸所面向的方位。与现有技术相比,通过另外获取一个中置通道信号,然后根据所述左耳通道信号、所述右耳通道信息和增加的所述中置通道信号,可以确定声源的方位是否为前方方位。
S103、当所述声源的方位为前方方位时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。
本实施例中,当确定该声源的方位为前方方位时,可以对该左耳通道信号进行前方方位增强处理,对该右耳通道信号进行前方方位增强处理;或者,可以对该左耳通道信号进行后方方位减弱处理,对该右耳通道信号进行后方方位减弱处理;或者,可以对该左耳通道信号进行前方方位增强处理和后方方位减弱处理,对该右耳通道信号进行前方方位增强处理和后方方位减弱处理。听者接收到上述处理后的左耳通道信号和右耳通道信号会产生一种对声源的感觉,这种感觉称为声像。通过上述的任一种方式处理,均可以增大声像的前方方位感与后方方位感之间的差距,从而可以使得听者准确地识别出声源来自前方。
本发明实施例提供的声像方位感处理方法,通过获取声源的左耳通道信号、右耳通道信号和中置通道信号,所述中置通道位于所述左耳通道与所述右耳通道之间的中垂面上;根据所述左耳通道信号、所述右耳通道信息和所述中置通道信号,确定所述声源的方位是否为前方方位,所述前方方位为所述中置通道所面向的方位;当所述声源的方位为前方方位时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后 方方位减弱处理。从而可以增大声像的前方方位感与后方方位感之间的差距,进而使得听者准确地识别出声源来自前方,提高了声源方位的判断准确率。
图2为本发明声像方位感处理方法实施例二的流程图,如图2所示,本实施例的方法可以包括:
S201、获取左耳通道信号、右耳通道信号和中置通道信号。
本实施例中,S201的具体实现过程可以参见本发明方法实施例一中S101的具体实现过程类似,此处不再赘述。
S202、根据所述左耳通道信号、所述右耳通道信号和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差。
本实施例中,可以根据获取的左耳通道信号和右耳通道信号,获得该左耳通道信号与右耳通道信号之间的时延差;根据获取的左耳通道信号和中置通道信号,获得该左耳通道信号与中置通道信号之间的时延差;根据获取的右耳通道信号和中置通道信号,获得该右耳通道信号与中置通道信号之间的时延差。
在一种具体的实现方式中,上述的S202可以包括如下所述:根据该获取的左耳通道信号,获得该左耳通道信号的傅里叶系数HL(f),HL(f)是有关于f的函数,f为左耳通道信号的频率;根据该获取的右耳通道信号,获得该右耳通道信号的傅里叶系数HR(f),HR(f)是有关于f的函数,f为频率;根据该获取的中置通道信号,获得该中置通道信号的傅里叶系数HC(f),HC(f)是有关于f的函数,f为频率;然后根据公式(一)获得左耳通道信号与右耳通道信号之间的时延差,具体地,根据公式(一)获得φLR(τ)的最大值,并将φLR(τ)的最大值所对应的τ的取值作为该左耳通道信号与该右耳通道信号之间的时延差;
公式(一)为:
Figure PCTCN2015080888-appb-000027
其中,所述
Figure PCTCN2015080888-appb-000028
与所述HR(f)共轭,所述j表示复数,[0,x]表示低频范围,-1ms≤τ≤1ms。
还可以根据公式(二)获得左耳通道信号与中置通道信号之间的时延差,具体地,根据公式(二)获得φLC(τ)的最大值,并将φLC(τ)的最大值所对应的τ的取值作为该左耳通道信号与该中置通道信号之间的时延差;
公式(二)为:
Figure PCTCN2015080888-appb-000029
其中,所述
Figure PCTCN2015080888-appb-000030
与所述HC(f)共轭,所述j表示复数,[0,x]表示频率范围,-1ms≤τ≤1ms。
还可以根据公式(三)获得右耳通道信号与中置通道信号之间的时延差,具体地,根据公式(三)获得φRC(τ)的最大值,并将φRC(τ)的最大值所对应的τ的取值作为该右耳通道信号与该中置通道信号之间的时延差;
公式(三)为:
Figure PCTCN2015080888-appb-000031
其中,所述
Figure PCTCN2015080888-appb-000032
与所述HC(f)共轭,所述j表示复数,[0,x]表示低频范围,-1ms≤τ≤1ms。
S203、根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位。
在一种具体的实现方式中,S203可以包括如下所述。
可以根据该左耳通道信号与该右耳通道信号之间的时延差,获取
Figure PCTCN2015080888-appb-000033
其中,ITDLR为该左耳通道信号与该右耳通道信号之间的时延差,c为声速,a为该左耳通道与该右耳通道之间距离的一半;
在第一种情况下,当
Figure PCTCN2015080888-appb-000034
时,可以确定该声源信号的入射角为
Figure PCTCN2015080888-appb-000035
然后判断该左耳通道信号与该中置通道信号之间的时延差ITDLC是否大于或等于该右耳通道与该中置通道信号之间时延差ITDRC,若确定|ITDLC|≥|ITDRC|,则确定所述声源信号的入射角大于或等于0°并且小于或等于45°,即确定该声源信号的入射角属于[0°,45°]这一角度范围;若确定|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于135°并且小于或等于180°,即确定该声源信号的入射角属于[135°,180°]这一角度范围。
在第二种情况下,当
Figure PCTCN2015080888-appb-000036
时,确定该声源信号的入射角为
Figure PCTCN2015080888-appb-000037
然后判断ITDLC是否大于或等于ITDRC,若确定|ITDLC|≥|ITDRC|,则确定该声源信号的入射角大于或等于315°并且小于或等于360°,即确定该声源信号的入射角属于[315°,360°]这一角度范围;若确定|ITDLC|<|ITDRC|,则确定该声源信号的入射角的角度大于或等于180°并且小于或等于225°,即确定该声源信号的入射角属于[180°,225°]这一角度范围。
在第三种情况下,当
Figure PCTCN2015080888-appb-000038
时,确定该声源信号的入射角为
Figure PCTCN2015080888-appb-000039
在第四种情况下,当
Figure PCTCN2015080888-appb-000040
时,确定声源信号的入射角为
Figure PCTCN2015080888-appb-000041
在确定声源信号的入射角之后,根据声源信号的入射角大于或等于0°并且小于或等于90°,或者,大于或等于270°并且小于或等于360°,可以确定该声源的方位为前方方位;或者,根据该声源信号的入射角大于90°并且小于270°,确定所述声源的方位为后方方位,所述后方方位为所述中置通道所背向的方位,例如后方方位为应用本发明声像方位感处理方法的用户的人脸所背向的方位。如图3所示,本实施例中,以声源平行该中置通道入射的角度为0°。
S204、当所述声源的方位为前方方位时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。
本实施例中,在通过上述方式确定该声源的方位为前方方位时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理,具体实现过程可以参见本发明方法实施例一中S103的相关记载,此处不再赘述。
可选地,S204具体可以为:在确定该声源的方位为前方方位时,而且还要确定该声源信号的入射角大于或等于0°并且小于或等于第一预设角度,或者,所述声源信号的入射角大于或等于第二预设角度并且小于或等于360°时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方 方位增强处理、后方方位减弱处理;其中,所述第一预设角度小于90°,所述第二预设角度大于270°。例如,该第一预设角度可以为60°或者45°,第二预设角度可以为300°或者315°。
可选地,对该左耳通道信号进行前方方位增强处理可以包括:将该左耳通道信号中频率属于第一预设频带的信号与第一增益系数做乘积,获得前方方位增强处理的左耳通道信号,并且该第一增益系数为大于1的数值,其中,该第一预设频带所对应的前方与头相关传递函数(英文:Head Related Transfer Function,简称:HRTF)的幅度谱大于该所述第一预设频带所对应的后方HRTF的幅度谱,可选地,该第一预设频带所对应的前方HRTF的幅度谱减去该所述第一预设频带所对应的后方HRTF的幅度谱大于预设值,该预设值为大于0的数值。相应地,对该右耳通道信号进行前方方位增强处理可以类似处理。
可选地,对该左耳通道信号进行后方方位减弱处理可以包括:将该左耳通道信号中频率属于第二预设频带的信号与第二增益系数做乘积,获得后方方位减弱处理的左耳通道信号,并且该第二增益系数为小于1的数值,其中,该第二预设频带为除上述第一预设频带之外的频带。相应地,对该右耳通道信号进行后方方位减弱处理可以类似处理。
可选地,在分别对该左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理之前,需要确定上述的第一预设频带;具体如下所述。
获取头模的前方水平面内HRTF的幅度谱均值,以及所述头模的后方水平面内HRTF的幅度谱均值,该头模为应用本发明实施例提供的声像方位感处理方法的头模,其中,HRTF的表达式为
Figure PCTCN2015080888-appb-000042
其中,θ为方位角;
Figure PCTCN2015080888-appb-000043
为仰角;f为频率;因此可以通过
Figure PCTCN2015080888-appb-000044
θ的取值为
Figure PCTCN2015080888-appb-000045
Figure PCTCN2015080888-appb-000046
的取值为0°计算获得前方水平面内HRTF的幅度谱均值,该前方水平面内HRTF的幅度谱均值是与f有关的函数。还可以通过
Figure PCTCN2015080888-appb-000047
θ的取值为
Figure PCTCN2015080888-appb-000048
的取值为0°计算获得该头模的后方水平面内HRTF均值,该后方水平面内HRTF的幅度谱均值是与f有关的函数。
然后将该前方水平面内HRTF的幅度谱均值与后方水平面内HRTF的幅度谱均值相减,获取该前方水平面HRTF的幅度谱均值与该后方水平面内HRTF的幅度谱均值之差;再将根据前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差,获取该前方水平面内HRTF的幅 度谱均值与该后方水平面内HRTF的幅度谱均值之差在频率范围内的均值,即将每个频率所对应的前方水平面内HRTF均值与所述后方水平面内HRTF均值之差求平均值,得到一个具体值;再将该前方水平面内HRTF的幅度谱均值与该后方水平面内HRTF的幅度谱均值之差与该前方水平面内HRTF的幅度谱均值与该后方水平面内HRTF的幅度谱均值之差在频率范围内的均值进行比较,将该前方水平面内HRTF的幅度谱均值与该后方水平面内HRTF的幅度谱均值大于该前方水平面内HRTF的幅度谱均值与该后方水平面内HRTF的幅度谱均值之差在频率范围内的均值所对应的频带作为所述第一预设频带。
在具体实现时,第一预设频带可以包括以下至少一种频带:[3kHz,8kHz]、[10kHz,12kHz]、[17kHz,20kHz];第二预设频带可以包括以下至少一种频带:[0kHz,3kHz)、(8kHz,10kHz)、(12kHz,17kHz);或者,第一预设频带可以包括以下至少一种频带:[3kHz,8.1kHz]、[10kHz,12.5kHz]、[17kHz,20kHz];第二预设频带可以包括以下至少一种频带:[0kHz,3kHz)、(8.1kHz,10kHz)、(12.5kHz,17kHz),本发明实施例并不以此为限。
在第一种应用场景中,若应用本发明实施例提供的声像方位感处理方法的头模为中国人声头模,则第一预设频带可以包括[3kHz,8kHz]、[10kHz,12kHz]、[17kHz,20kHz],第二预设频带可以包括:[0kHz,3kHz)、(8kHz,10kHz)、(12kHz,17kHz)。具体地,可以将通过范围为第一预设频带的带通滤波器,该带通滤波器的增益系数为大于1的数值,然后将该带通滤波器与左通道信号或右通道信号进行卷积,从而可以增强频率属于第一预设频带内的信号的前方方位;可以将通过范围为第二预设频带的带通滤波器,该带通滤波器的增益系数为小于或等于1的正数值,然后将该带通滤波器与左通道信号或右通道信号进行卷积,从而可以减弱频率属于第二预设频带内的信号的后方方位。
例如:可以通过下述各公式对左通道信号和右通道信号进行声像方位感处理。
将左通道信号进行公式(四)所述的处理,公式(四)例如为:
Figure PCTCN2015080888-appb-000049
其中,L'为进行声像方位感处理后的左通道信号,L为进行声像方位感处理前的左通道信号,Hlow表示一个截止 频率为F1的低通滤波器,M1为截止频率为F1的低通滤波器的增益系数,Hbandi表示一个带通滤波器,该带通滤带为[Fi,Fi+1],Mi为该带通滤波器的增益系数。
将右通道信号进行公式(五)所述的处理,公式(五)例如为:
Figure PCTCN2015080888-appb-000050
其中,R'为进行声像方位感处理后的右通道信号,R为进行声像方位感处理前的右通道信号。
可选地,例如,可以采用1个低通滤波器和5个带通滤波器,K为5。其中,F1=3kHz、F2=8kHz、F3=10kHz、F4=12kHz、F5=17kHz、F6=20kHz;相应地,M1=1、M2=2、M3=0.5、M4=2、M5=0.5、M6=2。因此,可以对第一预设频带为[3kHz,8kHz]、[10kHz,12kHz]、[17kHz,20kHz]内的信号进行增强,即可以对第一预设频带内的信号的幅度增益6dB;对第二预设频带为(8kHz,10kHz)、(12kHz,17kHz)内的信号进行减弱,即可以对第二预设频带内的信号的幅度衰减3dB。
可选地,例如,可以采用1个低通滤波器和7个带通滤波器,K为7。其中,F1=3kHz、F2=5kHz、F3=8kHz、F4=10kHz、F5=12kHz、F6=15kHz、F7=17kHz、F8=20kHz;相应地,M1=1、M2=1.8、M3=2、M4=0.5、M5=2、M6=0.8、M7=0.5、M8=2。因此,可以对第一预设频带为[3kHz,8kHz]、[10kHz,12kHz]、[17kHz,20kHz]内的信号进行增强;对第二预设频带为(8kHz,10kHz)、(12kHz,17kHz)内的信号进行减弱。
可选地,当声源信号的入射角大于或等于0°并且小于或等于45°,或者,所述声源信号的入射角大于或等于315°并且小于或等于360°时,可以采用1个低通滤波器和5个带通滤波器,K为5。其中,F1=3kHz、F2=8kHz、F3=10kHz、F4=12kHz、F5=17kHz、F6=20kHz;相应地,M1=1、M2=2.8、M3=0.5、M4=1.4、M5=0.5、M6=2。因此,可以对第一预设频带为[3kHz,8kHz]、[10kHz,12kHz]、[17kHz,20kHz]内的信号进行增强,即可以对[3kHz,8kHz]频带内的信号的幅度增益9dB,可以对[10kHz,12kHz]频带内的信号的幅度增益9dB,可以对[17kHz,20kHz]频带内的信号的幅度增益9dB;对第二预设频带为(8kHz,10kHz)、(12kHz,17kHz)内的信号进行减弱,即可以对第二预设频带内的信号的幅度衰减3dB。当声源信号的入射角大于或等于45°并且小于或等于90°,或者,所述声源信号的入射角大于或等于270°并且小于或等于315°时,可以采用1个低通滤波器和5个带通滤波器,K为5。其中, F1=3kHz、F2=8kHz、F3=10kHz、F4=12kHz、F5=17kHz、F6=20kHz;相应地,M1=1、M2=2.8、M3=0.71、M4=2、M5=0.5、M6=2.8。因此,可以对第一预设频带为[3kHz,8kHz]、[10kHz,12kHz]、[17kHz,20kHz]内的信号进行增强,即可以对[3kHz,8kHz]频带内的信号的幅度增益9dB,可以对[10kHz,12kHz]频带内的信号的幅度增益6dB,可以对[17kHz,20kHz]频带内的信号的幅度增益9dB;对第二预设频带为(8kHz,10kHz)、(12kHz,17kHz)内的信号进行减弱,即可以对(8kHz,10kHz)频带内的信号的幅度衰减3dB,可以对(12kHz,17kHz)频带内的信号的幅度衰减6dB。
在第二种应用场景中,若应用本发明实施例提供的声像方位感处理方法的头模为KEMAR人工头模,则第一预设频带可以包括[3kHz,8.1kHz]、[10kHz,12.5kHz]、[17kHz,20kHz],第二预设频带可以包括:[0kHz,3kHz)、(8.1kHz,10kHz)、(12.5kHz,17kHz)。具体地,可以将通过范围为第一预设频带的带通滤波器,该带通滤波器的增益系数为大于1的数值,然后将该带通滤波器与左通道信号或右通道信号进行卷积,从而可以增强频率为第一预设频带内的信号的前方方位;可以将通过范围为第二预设频带的带通滤波器,该带通滤波器的增益系数为小于或等于1的正数值,然后将该带通滤波器与左通道信号或右通道信号进行卷积,从而可以减弱频率为第二预设频带内的信号的后方方位。
可选地,例如,可以采用1个低通滤波器和5个带通滤波器,K为5。其中,F1=3kHz、F2=8.1kHz、F3=10kHz、F4=12.5kHz、F5=17kHz、F6=20kHz;相应地,M1=1、M2=2、M3=0.5、M4=2、M5=0.5、M6=2。因此,可以对第一预设频带为[3kHz,8.1kHz]、[10kHz,12.5kHz]、[17kHz,20kHz]内的信号进行增强,即可以对第一预设频带内的信号的幅度增益6dB;对第二预设频带为(8.1kHz,10kHz)、(12.5kHz,17kHz)内的信号进行减弱,即可以对第二预设频带内的信号的幅度衰减3dB。
本发明实施例提供的声像方位感处理方法,通过获取声源的左耳通道信号、右耳通道信号和中置通道信号,根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位,当所述声源的方位为前方方位时,分别对所述左耳通道 信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。从而可以增大声像的前方方位感与后方方位感之间的差距,进而使得听者准确地识别出声源来自前方,提高了声源方位的判断准确率。
图4为本发明声像方位感处理装置实施例一的结构示意图,如图4所示,本实施例的装置可以包括:获取单元11、确定单元12和处理单元13,其中,获取单元11,用于获取左耳通道信号、右耳通道信号和中置通道信号,所述左耳通道信号为声源信号传输至左耳通道中的信号,右耳通道信号为所述声源信号传输至右耳通道中的信号,所述中置通道信号为所述声源信号传输至中置通道中的信号,所述中置通道位于所述左耳通道与所述右耳通道之间的中垂面上;确定单元12,用于根据获取单元11获取的所述左耳通道信号、所述右耳通道信息和所述中置通道信号,确定所述声源的方位是否为前方方位,所述前方方位为所述中置通道所面向的方位;处理单元13,用于当确定单元12确定所述声源的方位为前方方位时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。
可选地,确定单元12具体用于,根据所述左耳通道信号、所述右耳通道信号和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差;以及根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位。
可选地,确定单元12,用于根据所述左耳通道信号、所述右耳通道信号和和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,包括:确定单元12用于根据所述左耳通道信号,获得所述左耳通道信号的傅里叶系数HL(f);根据所述左耳通道信号,获得所述右耳通道信号的傅里叶系数HR(f);根据所述左耳通道信号,获得所述中置通道信号的傅里叶系数HC(f);以及
根据
Figure PCTCN2015080888-appb-000051
获得φLR(τ)的最大值,并将φLR(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述右耳通道信号之间的时延差;
根据
Figure PCTCN2015080888-appb-000052
获得φLC(τ)的最大值,并将φLC(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述中置通道信号之间的时延差;
根据
Figure PCTCN2015080888-appb-000053
获得φRC(τ)的最大值,并将φRC(τ)的最大值所对应的τ的取值作为所述右耳通道信号与所述中置通道信号之间的时延差;
其中,所述
Figure PCTCN2015080888-appb-000054
与所述HR(f)共轭,所述
Figure PCTCN2015080888-appb-000055
与所述HC(f)共轭,所述j表示复数,[0,x]表示频率范围,-1ms≤τ≤1ms。
可选地,确定单元12用于根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位,包括:确定单元12用于:
当确定
Figure PCTCN2015080888-appb-000056
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000057
其中,若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于0°并且小于或等于45°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于135°并且小于或等于180°;
当确定
Figure PCTCN2015080888-appb-000058
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000059
若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于315°并且小于或等于360°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于180°并且小于或等于225°;
当确定
Figure PCTCN2015080888-appb-000060
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000061
当确定
Figure PCTCN2015080888-appb-000062
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000063
其中,所述ITDLR为所述左耳通道信号与所述右耳通道信号之间的时延差,所述ITDRC为所述右耳通道信号与所述中置通道信号之间的时延差,所述ITDLC为所述左耳通道信号与所述中置通道信号之间的时延差,所述c表示声速,所述a表示所述左耳通道与所述右耳通道之间距离的一半;
以及根据所述声源信号的入射角大于或等于0°并且小于或等于90°,或者,大于或等于270°并且小于或等于360°,确定所述声源的方位为前方方位;根据所述声源信号的入射角大于90°并且小于270°,确定所述声源的方位为后方方位,所述后方方位为所述中置通道所背向的方位。
可选地,处理单元13具体用于,当确定单元12确定所述声源信号的入射角大于或等于0°并且小于或等于第一预设角度,或者,所述声源信号的入射角大于或等于第二预设角度并且小于或等于360°时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理;其中,所述第一预设角度小于90°,所述第二预设角度大于270°。
可选地,处理单元13用于分别对所述左耳通道信号和所述右耳通道信号进行前方方位增强处理,包括:处理单元13用于,分别将所述左耳通道信号和所述右耳通道信号中频率属于第一预设频带的信号与第一增益系数做乘积,获得前方方位增强处理的左耳通道信号和右耳通道信号;所述第一增益系数为大于1的数值,其中,所述第一预设频带所对应的前方与头相关传递函数HRTF的幅度谱大于所述第一预设频带所对应的后方HRTF的幅度谱;
处理单元13用于分别对所述左耳通道信号和所述右耳通道信号进行后方方位减弱处理,包括:处理单元13用于,分别将所述左耳通道信号和所述右耳通道信号中的频率属于第二预设频带的信号与第二增益系数做乘积,获得后方方位减弱处理的左耳通道信号和右耳通道信号;所述第二增益系数为小于或等于1的正数值,所述第二预设频带为除所述第一预设频带之外的频带。
可选地,获取单元11还用于在处理单元13分别对所述左耳通道信号和所述右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减 弱处理之前,获取头模的前方水平面内HRTF的幅度谱均值,以及所述头模的后方水平面内HRTF的幅度谱均值,其中,所述头模为应用所述装置的头模;将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值相减,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差;根据所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值;将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差大于所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值所对应的频带作为所述第一预设频带。
本实施例的装置,可以用于执行本发明上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图5为本发明声像方位感处理装置实施例二的结构示意图,如图5所示,本实施例的装置可以包括:第一传感器21、第二传感器22、第三传感器23、处理器24和存储器25,其中,存储器25用于存储执行声像方位感处理方法的代码;存储器25可以包括非易失性存储器(Non-volatile Memory)。处理器24可以是一个中央处理器(英文:Central Processing Unit,简称:CPU),或者是特定集成电路(英文:Application Specific Integrated Circuit,简称:ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。第一传感器21、第二传感器22、第三传感器23分别为用于采集声音的传感器,例如麦克风,其中,该第一传感器21例如可以放置在用户的左耳中,第二传感器22例如可以放置在用户的右耳中,第三传感器23可以放置在用户的鼻梁上;处理器24用于调用所述代码,执行如下操作:
第一传感器21,用于获取左耳通道信号,所述左耳通道信号为声源信号传输至左耳通道中的信号;
第二传感器22,用于获取右耳通道信号,右耳通道信号为所述声源信号传输至右耳通道中的信号;
第三传感器23,用于获取中置通道信号,所述中置通道信号为所述声源信号传输至中置通道中的信号,所述中置通道位于所述左耳通道与所述右耳 通道之间的中垂面上;
处理器24,用于根据第一传感器21获取的所述左耳通道信号、第二传感器22获取的所述右耳通道信息和第三传感器23获取的所述中置通道信号,确定所述声源的方位是否为前方方位,所述前方方位为所述中置通道所面向的方位;以及当确定所述声源的方位为前方方位时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。
可选地,处理器24用于根据第一传感器21获取的所述左耳通道信号、第二传感器22获取的所述右耳通道信息和第三传感器23获取的所述中置通道信号,确定所述声源的方位是否为前方方位,包括:处理器24用于,根据所述左耳通道信号、所述右耳通道信号和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差;以及根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位。
可选地,处理器24,用于根据所述左耳通道信号、所述右耳通道信号和和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,包括:处理器24用于根据所述左耳通道信号,获得所述左耳通道信号的傅里叶系数HL(f);根据所述左耳通道信号,获得所述右耳通道信号的傅里叶系数HR(f);根据所述左耳通道信号,获得所述中置通道信号的傅里叶系数HC(f);以及
根据
Figure PCTCN2015080888-appb-000064
获得φLR(τ)的最大值,并将φLR(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述右耳通道信号之间的时延差;
根据
Figure PCTCN2015080888-appb-000065
获得φLC(τ)的最大值,并将φLC(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述中置通道信号 之间的时延差;
根据
Figure PCTCN2015080888-appb-000066
获得φRC(τ)的最大值,并将φRC(τ)的最大值所对应的τ的取值作为所述右耳通道信号与所述中置通道信号之间的时延差;
其中,所述
Figure PCTCN2015080888-appb-000067
与所述HR(f)共轭,所述
Figure PCTCN2015080888-appb-000068
与所述HC(f)共轭,所述j表示复数,[0,x]表示频率范围,-1ms≤τ≤1ms。
可选地,处理器24用于根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位,包括:处理器24用于:
当确定
Figure PCTCN2015080888-appb-000069
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000070
其中,若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于0°并且小于或等于45°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于135°并且小于或等于180°;
当确定
Figure PCTCN2015080888-appb-000071
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000072
若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于315°并且小于或等于360°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于180°并且小于或等于225°;
当确定
Figure PCTCN2015080888-appb-000073
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000074
当确定
Figure PCTCN2015080888-appb-000075
时,确定所述声源信号的入射角为
Figure PCTCN2015080888-appb-000076
其中,所述ITDLR为所述左耳通道信号与所述右耳通道信号之间的时延差,所述ITDRC为所述右耳通道信号与所述中置通道信号之间的时延差,所述ITDLC为所述左耳通道信号与所述中置通道信号之间的时延差,所述c表示声速,所述a表示所述左耳通道与所述右耳通道之间距离的一半;
以及根据所述声源信号的入射角大于或等于0°并且小于或等于90°,或 者,大于或等于270°并且小于或等于360°,确定所述声源的方位为前方方位;根据所述声源信号的入射角大于90°并且小于270°,确定所述声源的方位为后方方位,所述后方方位为所述中置通道所背向的方位。
可选地,处理器24用于分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理,包括:当确定所述声源信号的入射角大于或等于0°并且小于或等于第一预设角度,或者,所述声源信号的入射角大于或等于第二预设角度并且小于或等于360°时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理;其中,所述第一预设角度小于90°,所述第二预设角度大于270°。
可选地,处理器24用于分别对所述左耳通道信号和所述右耳通道信号进行前方方位增强处理,包括:处理器24用于,分别将所述左耳通道信号和所述右耳通道信号中频率属于第一预设频带的信号与第一增益系数做乘积,获得前方方位增强处理的左耳通道信号和右耳通道信号;所述第一增益系数为大于1的数值,其中,所述第一预设频带所对应的前方HRTF的幅度谱大于所述第一预设频带所对应的后方HRTF的幅度谱;
处理器24用于分别对所述左耳通道信号和所述右耳通道信号进行后方方位减弱处理,包括:处理器24用于,分别将所述左耳通道信号和所述右耳通道信号中的频率属于第二预设频带的信号与第二增益系数做乘积,获得后方方位减弱处理的左耳通道信号和右耳通道信号;所述第二增益系数为小于或等于1的正数值,所述第二预设频带为除所述第一预设频带之外的频带。
可选地,处理器24还用于在分别对所述左耳通道信号和所述右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理之前,获取头模的前方水平面内HRTF的幅度谱均值,以及所述头模的后方水平面内HRTF的幅度谱均值,其中,所述头模为应用所述装置的头模;将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值相减,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差;根据所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差,获取所述前方水平面内HRTF的幅度谱 均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值;将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差大于所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值所对应的频带作为所述第一预设频带。
本实施例的装置,可以用于执行本发明上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:只读内存(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种声像方位感处理方法,其特征在于,包括:
    获取左耳通道信号、右耳通道信号和中置通道信号,所述左耳通道信号为声源信号传输至左耳通道中的信号,右耳通道信号为所述声源信号传输至右耳通道中的信号,所述中置通道信号为所述声源信号传输至中置通道中的信号,所述中置通道位于所述左耳通道与所述右耳通道之间的中垂面上;
    根据所述左耳通道信号、所述右耳通道信息和所述中置通道信号,确定声源的方位是否为前方方位,所述前方方位为所述中置通道所面向的方位;
    当所述声源的方位为前方方位时,分别对所述左耳通道信号和所述右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述左耳通道信号、所述右耳通道信号和所述中置通道信号,确定所述声源的方位是否为前方方位,包括:
    根据所述左耳通道信号、所述右耳通道信号和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差;
    根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述左耳通道信号、所述右耳通道信号和和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,包括:
    根据所述左耳通道信号,获得所述左耳通道信号的傅里叶系数 HL(f);
    根据所述左耳通道信号,获得所述右耳通道信号的傅里叶系数HR(f);
    根据所述左耳通道信号,获得所述中置通道信号的傅里叶系数HC(f);
    根据
    Figure PCTCN2015080888-appb-100001
    获得φLR(τ)的最大值,并将φLR(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述右耳通道信号之间的时延差;
    根据
    Figure PCTCN2015080888-appb-100002
    获得φLC(τ)的最大值,并将φLC(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述中置通道信号之间的时延差;
    根据
    Figure PCTCN2015080888-appb-100003
    获得φRC(τ)的最大值,并将φRC(τ)的最大值所对应的τ的取值作为所述右耳通道信号与所述中置通道信号之间的时延差;
    其中,所述
    Figure PCTCN2015080888-appb-100004
    与所述HR(f)共轭,所述
    Figure PCTCN2015080888-appb-100005
    与所述HC(f)共轭,所述j表示复数,[0,x]表示频率范围,-1ms≤τ≤1ms。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位,包括:
    Figure PCTCN2015080888-appb-100006
    时,确定所述声源信号的入射角为
    Figure PCTCN2015080888-appb-100007
    其中,若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于0°并且小于或等于45°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于135°并且小于或等于180°;
    Figure PCTCN2015080888-appb-100008
    时,确定所述声源信号的入射角为
    Figure PCTCN2015080888-appb-100009
    若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于315°并且小于或等于360°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入 射角大于或等于180°并且小于或等于225°;
    Figure PCTCN2015080888-appb-100010
    时,确定所述声源信号的入射角为
    Figure PCTCN2015080888-appb-100011
    Figure PCTCN2015080888-appb-100012
    时,确定所述声源信号的入射角为
    Figure PCTCN2015080888-appb-100013
    其中,所述ITDLR为所述左耳通道信号与所述右耳通道信号之间的时延差,所述ITDRC为所述右耳通道信号与所述中置通道信号之间的时延差,所述ITDLC为所述左耳通道信号与所述中置通道信号之间的时延差,所述c表示声速,所述a表示所述左耳通道与所述右耳通道之间距离的一半;
    根据所述声源信号的入射角大于或等于0°并且小于或等于90°,或者,大于或等于270°并且小于或等于360°,确定所述声源的方位为前方方位;
    根据所述声源信号的入射角大于90°并且小于270°,确定所述声源的方位为后方方位,所述后方方位为所述中置通道所背向的方位。
  5. 根据权利要求4所述的方法,其特征在于,所述分别对所述左耳通道信号和所述右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理,包括:
    当所述声源信号的入射角大于或等于0°并且小于或等于第一预设角度,或者,所述声源信号的入射角大于或等于第二预设角度并且小于或等于360°时,分别对所述左耳通道信号和所述右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理;其中,所述第一预设角度小于90°,所述第二预设角度大于270°。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,所述分别对所述左耳通道信号和所述右耳通道信号进行前方方位增强处理,包括:
    分别将所述左耳通道信号和所述右耳通道信号中频率属于第一预设频带的信号与第一增益系数做乘积,获得前方方位增强处理的左耳通道信号和右耳通道信号;所述第一增益系数为大于1的数值,其中,所述第 一预设频带所对应的前方与头相关传递函数HRTF的幅度谱大于所述第一预设频带所对应的后方HRTF的幅度谱;
    所述分别对所述左耳通道信号和所述右耳通道信号进行后方方位减弱处理,包括:
    分别将所述左耳通道信号和所述右耳通道信号中的频率属于第二预设频带的信号与第二增益系数做乘积,获得后方方位减弱处理的左耳通道信号和右耳通道信号;所述第二增益系数为小于或等于1的正数值,所述第二预设频带为除所述第一预设频带之外的频带。
  7. 根据权利要求6所述的方法,其特征在于,所述分别对所述左耳通道信号和所述右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理之前,还包括:
    获取头模的前方水平面内HRTF的幅度谱均值,以及所述头模的后方水平面内HRTF的幅度谱均值,其中,所述头模为应用所述方法的头模;
    将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值相减,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差;
    根据所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值;
    将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差大于所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值所对应的频带作为所述第一预设频带。
  8. 一种声像方位感处理装置,其特征在于,包括:
    获取单元,用于获取左耳通道信号、右耳通道信号和中置通道信号,所述左耳通道信号为声源信号传输至左耳通道中的信号,右耳通道信号为所述声源信号传输至右耳通道中的信号,所述中置通道信号为所述声源信号传输至中置通道中的信号,所述中置通道位于所述左耳通道与所述右耳通道之间的中垂面上;
    确定单元,用于根据所述获取单元获取的所述左耳通道信号、所述 右耳通道信息和所述中置通道信号,确定所述声源的方位是否为前方方位,所述前方方位为所述中置通道所面向的方位;
    处理单元,用于当所述确定单元确定所述声源的方位为前方方位时,分别对所述左耳通道信号和所述右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理。
  9. 根据权利要求8所述的装置,其特征在于,所述确定单元具体用于,根据所述左耳通道信号、所述右耳通道信号和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差;以及根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位。
  10. 根据权利要求9所述的装置,其特征在于,所述确定单元,用于根据所述左耳通道信号、所述右耳通道信号和和所述中置通道信号,获得所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,包括:所述确定单元用于根据所述左耳通道信号,获得所述左耳通道信号的傅里叶系数HL(f);根据所述左耳通道信号,获得所述右耳通道信号的傅里叶系数HR(f);根据所述左耳通道信号,获得所述中置通道信号的傅里叶系数HC(f);以及
    根据
    Figure PCTCN2015080888-appb-100014
    获得φLR(τ)的最大值,并将φLR(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述右耳通道信号之间的时延差;
    根据
    Figure PCTCN2015080888-appb-100015
    获得φLC(τ)的最大值,并将φLC(τ)的最大值所对应的τ的取值作为所述左耳通道信号与所述中置通道信号之间的时延差;
    根据
    Figure PCTCN2015080888-appb-100016
    获得φRC(τ)的最大值,并将φRC(τ)的最大值所对应的τ的取值作为所述右耳通道信号与所述中置通道信号之间的时延差;
    其中,所述
    Figure PCTCN2015080888-appb-100017
    与所述HR(f)共轭,所述
    Figure PCTCN2015080888-appb-100018
    与所述HC(f)共轭,所述j表示复数,[0,x]表示频率范围,-1ms≤τ≤1ms。
  11. 根据权利要求9或10所述的装置,其特征在于,所述确定单元用于根据所述左耳通道信号与所述右耳通道信号之间的时延差、所述左耳通道信号与所述中置通道信号之间的时延差以及所述右耳通道信号与所述中置通道信号之间的时延差,确定所述声源的方位是否为前方方位,包括:所述确定单元用于:
    当确定时,确定所述声源信号的入射角为
    Figure PCTCN2015080888-appb-100020
    其中,若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于0°并且小于或等于45°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于135°并且小于或等于180°;
    当确定
    Figure PCTCN2015080888-appb-100021
    时,确定所述声源信号的入射角为
    Figure PCTCN2015080888-appb-100022
    若|ITDLC|>|ITDRC|,则确定所述声源信号的入射角大于或等于315°并且小于或等于360°;若|ITDLC|<|ITDRC|,则确定所述声源信号的入射角大于或等于180°并且小于或等于225°;
    当确定
    Figure PCTCN2015080888-appb-100023
    时,确定所述声源信号的入射角为
    Figure PCTCN2015080888-appb-100024
    当确定
    Figure PCTCN2015080888-appb-100025
    时,确定所述声源信号的入射角为
    Figure PCTCN2015080888-appb-100026
    其中,所述ITDLR为所述左耳通道信号与所述右耳通道信号之间的时延差,所述ITDRC为所述右耳通道信号与所述中置通道信号之间的时延差,所述ITDLC为所述左耳通道信号与所述中置通道信号之间的时延差,所述c表示声速,所述a表示所述左耳通道与所述右耳通道之间距离的一 半;
    以及根据所述声源信号的入射角大于或等于0°并且小于或等于90°,或者,大于或等于270°并且小于或等于360°,确定所述声源的方位为前方方位;根据所述声源信号的入射角大于90°并且小于270°,确定所述声源的方位为后方方位,所述后方方位为所述中置通道所背向的方位。
  12. 根据权利要求11所述的装置,其特征在于,所述处理单元具体用于,当所述确定单元确定所述声源信号的入射角大于或等于0°并且小于或等于第一预设角度,或者,所述声源信号的入射角大于或等于第二预设角度并且小于或等于360°时,分别对所述左耳通道信号和右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理;其中,所述第一预设角度小于90°,所述第二预设角度大于270°。
  13. 根据权利要求8-12任意一项所述的装置,其特征在于,所述处理单元用于分别对所述左耳通道信号和所述右耳通道信号进行前方方位增强处理,包括:所述处理单元用于,分别将所述左耳通道信号和所述右耳通道信号中频率属于第一预设频带的信号与第一增益系数做乘积,获得前方方位增强处理的左耳通道信号和右耳通道信号;所述第一增益系数为大于1的数值,其中,所述第一预设频带所对应的前方与头相关传递函数HRTF的幅度谱大于所述第一预设频带所对应的后方HRTF的幅度谱;
    所述处理单元用于分别对所述左耳通道信号和所述右耳通道信号进行后方方位减弱处理,包括:所述处理单元用于,分别将所述左耳通道信号和所述右耳通道信号中的频率属于第二预设频带的信号与第二增益系数做乘积,获得后方方位减弱处理的左耳通道信号和右耳通道信号;所述第二增益系数为小于或等于1的正数值,所述第二预设频带为除所述第一预设频带之外的频带。
  14. 根据权利要求13所述的装置,其特征在于,所述获取单元还用于在所述处理单元分别对所述左耳通道信号和所述右耳通道信号进行以下至少一种处理:前方方位增强处理、后方方位减弱处理之前,获取头模的前方水平面内HRTF的幅度谱均值,以及所述头模的后方水平面内HRTF的幅度谱均值,其中,所述头模为应用所述装置的头模;将所述前 方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值相减,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差;根据所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差,获取所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值;将所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差大于所述前方水平面内HRTF的幅度谱均值与所述后方水平面内HRTF的幅度谱均值之差在频率范围内的均值所对应的频带作为所述第一预设频带。
PCT/CN2015/080888 2014-10-16 2015-06-05 声像方位感处理方法和装置 WO2016058393A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15850882.0A EP3209028A4 (en) 2014-10-16 2015-06-05 Acoustic image direction sense processing method and device
US15/487,914 US9866983B2 (en) 2014-10-16 2017-04-14 Sound image direction sense processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410549266.1 2014-10-16
CN201410549266.1A CN104410939B (zh) 2014-10-16 2014-10-16 声像方位感处理方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/487,914 Continuation US9866983B2 (en) 2014-10-16 2017-04-14 Sound image direction sense processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2016058393A1 true WO2016058393A1 (zh) 2016-04-21

Family

ID=52648523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080888 WO2016058393A1 (zh) 2014-10-16 2015-06-05 声像方位感处理方法和装置

Country Status (4)

Country Link
US (1) US9866983B2 (zh)
EP (1) EP3209028A4 (zh)
CN (1) CN104410939B (zh)
WO (1) WO2016058393A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104410939B (zh) 2014-10-16 2017-12-29 华为技术有限公司 声像方位感处理方法和装置
CN106792367A (zh) * 2016-12-15 2017-05-31 北京塞宾科技有限公司 一种全息声场录音设备
CN109005496A (zh) * 2018-07-26 2018-12-14 西北工业大学 一种hrtf中垂面方位增强方法
CN110996238B (zh) * 2019-12-17 2022-02-01 杨伟锋 双耳同步信号处理助听***及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236599A (ja) * 1992-02-21 1993-09-10 Clarion Co Ltd 3スピーカの音響再生装置
CN101116374A (zh) * 2004-12-24 2008-01-30 松下电器产业株式会社 声像定位装置
CN101902679A (zh) * 2009-05-31 2010-12-01 比亚迪股份有限公司 立体声音频信号模拟5.1声道音频信号的处理方法
CN103064061A (zh) * 2013-01-05 2013-04-24 河北工业大学 三维空间声源定位方法
CN104410939A (zh) * 2014-10-16 2015-03-11 华为技术有限公司 声像方位感处理方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815661B2 (ja) * 2000-08-24 2011-11-16 ソニー株式会社 信号処理装置及び信号処理方法
JP2006203850A (ja) * 2004-12-24 2006-08-03 Matsushita Electric Ind Co Ltd 音像定位装置
JP4821250B2 (ja) * 2005-10-11 2011-11-24 ヤマハ株式会社 音像定位装置
US9351070B2 (en) * 2009-06-30 2016-05-24 Nokia Technologies Oy Positional disambiguation in spatial audio
US9313599B2 (en) * 2010-11-19 2016-04-12 Nokia Technologies Oy Apparatus and method for multi-channel signal playback
US9332349B2 (en) * 2012-05-01 2016-05-03 Sony Corporation Sound image localization apparatus
CN202998463U (zh) * 2012-12-11 2013-06-12 启通科技有限公司 一种挂颈式助听器
CN103916734B (zh) * 2013-12-31 2018-12-07 华为终端(东莞)有限公司 一种声音信号处理方法及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236599A (ja) * 1992-02-21 1993-09-10 Clarion Co Ltd 3スピーカの音響再生装置
CN101116374A (zh) * 2004-12-24 2008-01-30 松下电器产业株式会社 声像定位装置
CN101902679A (zh) * 2009-05-31 2010-12-01 比亚迪股份有限公司 立体声音频信号模拟5.1声道音频信号的处理方法
CN103064061A (zh) * 2013-01-05 2013-04-24 河北工业大学 三维空间声源定位方法
CN104410939A (zh) * 2014-10-16 2015-03-11 华为技术有限公司 声像方位感处理方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3209028A4 *

Also Published As

Publication number Publication date
US20170223475A1 (en) 2017-08-03
US9866983B2 (en) 2018-01-09
EP3209028A1 (en) 2017-08-23
EP3209028A4 (en) 2018-02-14
CN104410939B (zh) 2017-12-29
CN104410939A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
JP6121481B2 (ja) マルチマイクロフォンを用いた3次元サウンド獲得及び再生
JP6824155B2 (ja) 音声再生システム及び方法
EP2337375B1 (en) Automatic environmental acoustics identification
US11740859B2 (en) Media-compensated pass-through and mode-switching
EP3295682A1 (en) Privacy-preserving energy-efficient speakers for personal sound
WO2016058393A1 (zh) 声像方位感处理方法和装置
US9167358B2 (en) Method for the binaural left-right localization for hearing instruments
CN104581477A (zh) 具有象限声音定位的电子听力保护器
WO2016169310A1 (zh) 一种音频信号处理的方法和装置
EP3225039B1 (en) System and method for producing head-externalized 3d audio through headphones
US20190141429A1 (en) Acoustic Device
WO2019109420A1 (zh) 左右声道确定方法及耳机设备
JP2022177304A5 (zh)
WO2017045512A1 (zh) 一种语音识别的方法、装置、终端及语音识别设备
WO2024066751A1 (zh) 一种ar眼镜及其音频增强方法和装置、可读存储介质
KR100862663B1 (ko) 입력되는 신호를 공간상의 위치로 음상 정위하는 방법 및장치
EP3249948B1 (en) Method and terminal device for processing voice signal
JP2010217268A (ja) 音源方向知覚が可能な両耳信号を生成する低遅延信号処理装置
Nowak et al. 3D virtual audio with headphones: A literature review of the last ten years
US20230359430A1 (en) Media-compensated pass-through and mode-switching
WO2022178852A1 (zh) 一种辅助聆听方法及装置
Usagawa et al. Binaural speech segregation system on single board computer
TW202036539A (zh) 用於處理多個音訊空間之間的音訊之系統和方法
Jin et al. Spatial unmasking of speech based on near-field distance cues
KR20150081541A (ko) 사용자의 머리전달함수 기반 음향 조절 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015850882

Country of ref document: EP