WO2019107292A1 - Sliding bearing device and pump comprising same - Google Patents

Sliding bearing device and pump comprising same Download PDF

Info

Publication number
WO2019107292A1
WO2019107292A1 PCT/JP2018/043312 JP2018043312W WO2019107292A1 WO 2019107292 A1 WO2019107292 A1 WO 2019107292A1 JP 2018043312 W JP2018043312 W JP 2018043312W WO 2019107292 A1 WO2019107292 A1 WO 2019107292A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide bearing
bearing
sliding
pump
talc
Prior art date
Application number
PCT/JP2018/043312
Other languages
French (fr)
Japanese (ja)
Inventor
成夏 金
杉山 憲一
和彦 杉山
真 小宮
西谷 要介
Original Assignee
株式会社荏原製作所
学校法人 工学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所, 学校法人 工学院大学 filed Critical 株式会社荏原製作所
Priority to CN201880076405.XA priority Critical patent/CN111406158B/en
Publication of WO2019107292A1 publication Critical patent/WO2019107292A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/14Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load specially adapted for operating in water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics

Definitions

  • the present invention relates to a slide bearing device using a resin material and a pump including the same, and more particularly to a slide bearing device suitably used as a radial bearing of a rotary machine such as a pump and a pump including the same.
  • the drainage pump installed at the drainage station to prepare for rapid drainage of a large amount of rainwater caused by such frequent torrential rains should be prepared before rainwater reaches the drainage station to prevent flooding damage caused by delayed start-up. There is a preceding standby operation to start.
  • FIG. 1 is a partial schematic view of a vertical shaft pump performing a leading standby operation.
  • the vertical pump 3 is disposed in the water tank 100 of the drainage station.
  • the vertical pump 3 includes an impeller 22 at the tip of a rotating shaft 10 disposed in the longitudinal direction, and allows the impeller 22 to suck air with water. Thereby, the vertical pump 3 can continue the operation (preceding standby operation) even if the water level of the water tank 100 is equal to or lower than the lowest operation water level LWL.
  • a through hole 5 is provided in a side surface portion of the suction bell 27 on the inlet side of the impeller 22.
  • an air pipe 6 having an opening 6a in contact with the outside air is attached. ing.
  • the vertical pump 3 the amount of supply of air supplied into the vertical pump 3 through the through hole 5 is changed according to the water level, and the displacement of the vertical pump 3 is controlled below the minimum operating water level LWL.
  • FIG. 2 is a diagram for explaining the operating state of the preceding standby operation.
  • the vertical pump is started in advance using rainfall information etc. regardless of the suction water level (A: air operation).
  • A air operation
  • the vertical pump operates from idle operation (air operation) to stir water with the impeller (B: air / water agitation operation)
  • B air / water agitation operation
  • C air-water mixing operation
  • D steady operation
  • the operation shifts to an operation (C: air-water mixing operation) in which the amount of water is gradually reduced while sucking in the air supplied through the through hole from the high water level.
  • C air-water mixing operation
  • E air lock operation
  • FIG. 3 is a cross-sectional view showing the whole of the vertical axis pump 3 performing the leading standby operation shown in FIG. The through hole 5 and the air pipe 6 shown in FIG. 2 are not shown.
  • the vertical shaft pump 3 is connected to the discharge elbow 30 installed and fixed on the pump installation floor, the casing 29 connected to the lower end of the discharge elbow 30, and the lower end of the casing 29, and the impeller 22.
  • a suction bell 27 connected to the lower end of the discharge bowl 28 for sucking in water.
  • a single rotary shaft 10 formed by the upper and lower two shafts being connected to each other by a shaft coupling 26 is substantially in the radial direction substantially central portion of the casing 29 of the vertical pump 3, the discharge bowl 28 and the suction bell 27. It is arranged.
  • the rotating shaft 10 is supported by an upper bearing 32 fixed to the casing 29 via a support member and a lower bearing 33 fixed to the discharge bowl 28 via the support member.
  • An impeller 22 for sucking water into the pump is connected to one end side (the suction bell 27 side) of the rotating shaft 10.
  • the other end side of the rotating shaft 10 extends to the outside of the vertical shaft pump 3 through a hole provided in the discharge elbow 30, and is connected to a driver such as an engine or motor (not shown) that rotates the impeller 22.
  • a shaft seal 34 such as a floating seal, a gland packing, or a mechanical seal is provided between the rotary shaft 10 and a hole provided in the discharge elbow 30, and the shaft seal 34 is a vertical shaft pump with water handled by the vertical pump 3 Prevent outflow to the outside of 3.
  • the driving machine is provided on land so that maintenance and inspection can be easily performed.
  • the rotation of the drive machine is transmitted to the rotating shaft 10 and the impeller 22 can be rotated. Water is sucked from the suction bell 27 by the rotation of the impeller 22, passes through the discharge bowl 28 and the casing 29, and is discharged from the discharge elbow 30.
  • FIG. 4 is an enlarged view of a conventional bearing device applied to the bearings 32 and 33 shown in FIG.
  • FIG. 5 is a perspective view of a slide bearing installed in the bearing device shown in FIG.
  • the conventional bearing device has a sleeve 11 made of stainless steel, ceramics, sintered metal or surface-modified metal on the outer periphery of the rotating shaft 10.
  • the sleeve 11 has a Vickers hardness (Hv) of 800 or more and 2,500 or less.
  • a slide bearing 1 made of a hollow cylindrical resin material is provided on the outer peripheral side of the sleeve 11.
  • the outer peripheral surface of the sleeve 11 faces the inner peripheral surface (sliding surface) 1 a of the slide bearing 1 via a very narrow clearance, and is configured to slide relative to the slide bearing 1.
  • the slide bearing 1 is fixed to a support member 13 connected to a pump casing 29 (see FIG. 3) or the like via a flange portion 12a by a bearing case 12 made of metal or resin.
  • the slide bearing 1 has a hollow cylindrical shape, the inner peripheral surface (sliding surface) 1 a faces the outer peripheral surface 1 b of the sleeve 11, and the outer peripheral surface 1 b fits in the bearing case 12. United.
  • the vertical axis pump 3 shown in FIG. 3 is operated in the atmosphere when the pump is started. That is, the bearings 32, 33 are operated under dry sliding conditions without liquid lubrication.
  • the dry sliding condition refers to a condition in which the atmosphere of the bearings 32 and 33 during pump operation is in the atmosphere without liquid lubrication
  • the dry operation refers to operation under the condition.
  • the bearings 32, 33 shown in FIG. 4 are also operated under drainage conditions in which the bearings flow.
  • the drainage condition means that the atmosphere of the bearings 32, 33 during pump operation is water in which foreign matter (slurry) such as earth and sand is mixed, and the drainage operation is operated under the conditions, for example, air Water mixing operation, whole quantity operation, air lock operation etc.
  • the bearings 32, 33 are used under such conditions.
  • two bearings 32 and 33 are disposed with respect to the rotating shaft 10, but if the length of the rotating shaft 10 becomes longer, more bearings will be provided accordingly. Be placed.
  • a slide bearing device having a slide bearing using a resin material is widely used in rotary machines such as turbomachines and office machines since the resin has good lubricating performance (Patent Documents 1 to 4).
  • a method of evaluating a resin bearing it is performed to evaluate the coefficient of friction and the amount of abrasion of a resin by rotating a disk-shaped resin in a state where the disk surface of the disk-shaped resin is pressed against a flat plate.
  • Some rotary machines such as turbo machines use a resin material for a slide bearing for a radial bearing that receives a load acting in a direction perpendicular to the axial direction of the rotary shaft.
  • a sliding bearing for a radial bearing used in a water pump is used without entering lubricating oil into the gap (sliding portion) between the rotating body and the sliding bearing, with pumping water introduced. For this reason, when the water pump handles contaminated water (contaminated water) such as soil, the contaminated water may intrude into the sliding surface of the sliding bearing (sliding surface of the bearing). In this case, since the centrifugal force works in the radial direction of the slide bearing, it is difficult to axially discharge the foreign matter that has entered the gap between the rotary body and the slide bearing.
  • SiO 2 which is the main component of soil (foreign matter)
  • SiO 2 which is the main component of soil (foreign matter)
  • the resin material is abraded. Therefore, in the operation of the water pump which handles the foreign matter mixed water, there is a problem that the wear amount of the slide bearing is increased and the life of the slide bearing is shortened.
  • the vertical axis pump may be operated not only when the sliding surface of the bearing is in the water but also in a state where the sliding surface of the bearing is exposed to the atmosphere, as in the case of the leading standby operation.
  • the vertical pump is operated under the dry lubrication condition in which the sliding surface of the slide bearing is exposed to the atmosphere as described above, a slide bearing device with low friction under the dry lubrication condition is required.
  • FIGS. 6A and 6B are schematic cross-sectional views showing the state of the rotary shaft 10, the sleeve 11, and the slide bearing 1 during pump operation.
  • the sliding bearing 1 used for the bearings 32 and 33 shown in FIG. 3 and the sleeve 11 attached to the rotating shaft 10 contact each other when sliding The frictional heat generated by the parts increases.
  • the hatched portions shown in FIGS. 6A and 6B are portions of the slide bearing 1, the rotation shaft 10, and the sleeve 11 which become hot.
  • the rotary shaft 10 may locally expand and the rotary shaft 10 may be slightly bent.
  • the vibration due to the interference between the rotating body (the rotating shaft 10 and the sleeve 11) of the vertical pump and the fixed body (slide bearing 1) and the increase in the bearing load are likely to occur. That is, when the rotating body and the fixed body contact each other in the unbalanced direction of the rotating body and heat is generated at the contact portion, a temperature distribution is generated in the axial cross section of the rotating shaft 10 and the rotating shaft 10 is bent .
  • the present invention has been made in view of the above-described circumstances, and in a slide bearing device for a radial bearing used in a water pump, in an operation in water containing foreign matter (slurry) such as earth and sand, wear resistance as in the prior art
  • a slide bearing device comprising a slide bearing stably maintained with a low friction coefficient even in a relatively high PV value range under dry lubrication conditions sliding in the atmosphere while maintaining the To provide a pump having the
  • the carbon fiber can increase the strength of the slide bearing and reduce the linear expansion coefficient, and as a result, the shape change of the slide bearing can be suppressed to a low level, and the positive effect of maintaining long and stable performance is desired.
  • the coefficient of friction may repeatedly rise and fall rapidly during operation, and although it is not always stable, it is effective to contain a large amount of carbon fiber in order to reduce the maximum coefficient of friction at that time.
  • Talc has the effect of lowering the coefficient of friction by containing it in the slide bearing material. However, the effect of talc alone is limited.
  • a suitable range of carbon fiber and talc is found, and their synergetic effect can stabilize the maximum friction coefficient by the effect of talc even if the content of carbon fiber is relatively low, and However, even if the amount of carbon fiber is relatively large, the range in which the wear resistance can be maintained can be defined.
  • the present inventors examined as an important factor affecting low friction and wear resistance, focusing on the area ratio of carbon fiber on the sliding surface of the bearing and the content ratio of talc to the sliding bearing. As a result, when the area ratio of carbon fiber and the content ratio of talc are respectively within predetermined numerical ranges, the sliding bearing has a low friction coefficient, a high critical PV value, and a good abrasion resistance. I found it to be.
  • a sliding bearing device is provided.
  • This slide bearing device is a slide bearing device provided with a slide bearing, and the slide bearing includes aromatic polyether ketone, talc, carbon fiber, and unavoidable impurities, and the content ratio of the talc to the slide bearing is It is 7 mass% or more and 18 mass% or less, and the area ratio of the carbon fiber in the slide surface of the slide bearing is 27% or more and 35% or less.
  • the sliding surface of the sliding bearing is configured to be operable either in contact with the atmosphere or in contact with water mixed with earth and sand.
  • the aromatic polyether ketone is PEK, PEEK, PEKK or PEEKK.
  • the carbon fiber has a diameter of 5 ⁇ m to 10 ⁇ m.
  • the talc is scaly and has a minor axis diameter of 0.1 ⁇ m or more and a major axis diameter of 15 ⁇ m or less, and the major axis diameter is smaller than the minor axis diameter. More than 1 time and 15 times or less.
  • a pump is provided.
  • This pump is provided with the above-mentioned slide bearing device.
  • a bearing for use in a slide bearing device for a radial bearing of a water pump wherein the bearing is used in any of underwater operation including slurry and dry lubrication condition sliding in the atmosphere.
  • a slide bearing device comprising a slide bearing stably maintained with a low friction coefficient without deteriorating wear resistance even in a relatively high PV value range, and a pump comprising the same be able to.
  • FIG. 6 is a partial schematic view of a vertical pump performing a leading standby operation. It is a figure explaining the driving
  • the slide bearing device according to the present embodiment has, for example, the same structure as the slide bearing device shown in FIG. That is, the slide bearing device according to the present embodiment includes the rotary shaft 10 and the sleeve 11 which are rotating bodies, and the slide bearing 1 which is a fixed body. Moreover, the slide bearing 1 used for the slide bearing apparatus which concerns on this embodiment has a structure similar to the slide bearing 1 shown in FIG.
  • the slide bearing 1 is composed of a composite material of aromatic polyether ketone, talc, carbon fiber, and unavoidable impurities.
  • the inner peripheral surface of the cylindrical slide bearing 1 constitutes an inner peripheral surface (sliding surface) 1 a of the bearing in contact with the outer peripheral surface of the sleeve 11. That is, the slide bearing 1 is made of a material having an aromatic polyether ketone, talc, and carbon fiber that provides low friction, high strength, and abrasion resistance.
  • talc reduces the coefficient of friction as a solid lubricant
  • carbon fibers provide abrasion resistance and a low coefficient of friction
  • the friction of the sliding surface after the start of sliding causes deformation of the bearing due to thermal expansion to be large, and the area of the sliding surface in contact with the sleeve as the mating material tends to be small.
  • the surface pressure applied to the contacting sliding surface increases, thereby exceeding the limit PV value of the material. If the limit PV value is exceeded, seizing of the sliding surface of the sliding bearing to the sleeve occurs, resulting in a rapid increase in the coefficient of friction and damage to the bearing.
  • carbon fibers are contained in the sliding surface of the sliding bearing, deformation due to thermal expansion of the sliding surface can be prevented, and the seizure resistance of the sliding bearing is improved.
  • the aromatic polyether ketone preferably contains at least one of PEK (polyether ketone), PEEK (polyether ether ketone), PEKK (polyether ketone ketone), and PEEKK (polyether ether ketone ketone).
  • Talc is a solid lubricant, and the larger the amount, the more effective the friction coefficient is reduced.
  • the content of talc in the slide bearing is 7% by mass to 18% by mass, preferably 10% by mass to 17% by mass, and more preferably 12% by mass to 15% by mass. Lubricity improves that the content rate of the talc with respect to a slide bearing is in the said range, and the friction coefficient of the sliding surface of a slide bearing can be reduced.
  • the area ratio of carbon fibers in the slide surface of the slide bearing is 27% or more and 35% or less, preferably 30% or more and 34% or less, and more preferably 31% or more and 33% or less.
  • the lubricity can be improved and the friction coefficient of the slide surface of the slide bearing can be reduced.
  • the content ratio of talc to the slide bearing is 7% by mass to 18% by mass, and the area ratio of carbon fiber in the slide surface of the slide bearing is 27% to 35% or less It is.
  • the content of talc is preferably 9% to 15% by mass, and the area ratio of carbon fibers is preferably 30% to 33%, and the content of talc is 10%. % Or more and 12% by mass or less, and the area ratio of the carbon fiber is more preferably 31% or more and 32% or less.
  • the content rate of talc can be measured by the following method. That is, 100 g of the molded slide bearing is measured and fired at 800 ° C. to decompose and volatilize components such as carbon fiber and aromatic polyether ketone, recover talc as ash, and measure the weight of ash. And the ratio of the weight of an ash content (talc) with respect to the weight (100 g) of a slide bearing is calculated, and it is set as the content rate of a talc.
  • the shape of talc is preferably scaly, elliptical or the like.
  • the minor axis diameter is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m to 13 ⁇ m, and most preferably 5 ⁇ m to 11 ⁇ m, and the major axis diameter 15 ⁇ m or less is preferable, 1 ⁇ m or more and 14 ⁇ m or less is more preferable, and 6 ⁇ m or more and 12 ⁇ m or less is the most preferable.
  • magnification of the major axis diameter with respect to the minor axis diameter is preferably more than 1 and preferably 15 times or less, more preferably 1 to 10 times, and most preferably 1 to 5 times.
  • magnification of the major axis diameter with respect to the minor axis diameter, major axis diameter and / or minor axis diameter of talc is within the above range, talc functions as a solid lubricant to improve lubricity, and the sliding surface of the slide bearing Coefficient of friction can be reduced.
  • the minor axis diameter and major axis diameter of talc should be secondary electron image taken using SEM (HITACHI, field of view: 95 ⁇ m ⁇ 125 ⁇ m, applied voltage: 15.0 kV, magnification: 1000 ⁇ ).
  • the image analysis of the observation portion can be performed using an image analysis program: AxioVision (manufactured by ZEISS).
  • the area ratio of carbon fiber can be measured by the following method. That is, a smooth surface is provided on a molded slide bearing, and 10 places are randomly selected on the smooth surface, and an optical microscope (50-100 times objective lens made by Keyence) is used for each place to measure 214 ⁇ m long ⁇ horizontally Shoot a 285 ⁇ m flat surface. The photographed plane of 214 ⁇ m long and 285 ⁇ m wide is used as an observation portion, and the carbon fiber portion is identified by image analysis. The ratio of the area of the carbon fiber to the entire area of the observation portion is calculated, and the average of the calculated values at ten locations is determined to be the area ratio of the carbon fiber.
  • the image analysis of the observation portion of the slide bearing surface is the same as the pixel characteristics (brightness, color) of the carbon fiber, using the same image analysis program as described above used in the image analysis of talc. By extracting the part having.
  • the carbon fibers are preferably composed of staple fibers.
  • the diameter of the carbon fiber observed on the sliding surface 1a of the bearing is preferably 5 ⁇ m to 10 ⁇ m, more preferably 5.5 ⁇ m to 9 ⁇ m, and most preferably 6 ⁇ m to 8 ⁇ m.
  • the diameter of the carbon fiber is subjected to an image analysis using the same image analysis program as described above used in the image analysis of talc using an optical microscope (manufactured by Keyence, objective lens 50 to 100 times). It can be measured.
  • the length of the carbon fiber observed on the sliding surface 1a of the bearing is preferably 5 ⁇ m to 1000 ⁇ m, more preferably 6 ⁇ m to 500 ⁇ m, and most preferably 7 ⁇ m to 200 ⁇ m.
  • talc, aromatic polyether ketone and carbon fiber are heated and mixed by a twin screw kneader to prepare a resin composition, and the resin composition is compression-molded and then subjected to surface processing.
  • Slide bearings can be manufactured.
  • a slide bearing device can be manufactured using this slide bearing, and furthermore, a pump can be manufactured using this slide bearing device.
  • Example 1 first, carbon fiber, talc, and aromatic polyether ketone are mixed using a twin-screw kneader so that each of the area ratio of carbon fiber and the content ratio of talc becomes the values shown in Table 1. To produce pellets. The obtained pellet was put in a mold, pressurized and heated, and formed into primary processing, and then a detailed shape was imparted by secondary processing machining to manufacture a slide bearing. Then, with respect to the obtained slide bearing, evaluation of slurry wear resistance, friction coefficient and limit PV value was performed.
  • the area ratio of carbon fiber and the content ratio of talc were measured by the above-mentioned method, and the image analysis conditions at the time of calculating the area ratio of carbon fiber were set as follows. ⁇ In the measurement program wizard, Set the pixel "Brightness -0.66, Contrast 2.65, Gamma 1.00” Click “Set Tolerance 3; Edge Size 1"
  • sand particles containing silica sand (main component: Sio 2 ) having an average particle size of about 5 ⁇ m and silica sand having an average particle size of about 30 ⁇ m in a ratio of 1: 1 have a concentration of 3000 mg / L.
  • the mixture was poured into water to prepare water containing a slurry.
  • the bearing device including the above-mentioned slide bearing is immersed in water containing the obtained slurry, and WC-based cemented carbide under the condition of PV value 0.6 MPa ⁇ m / s in water maintained at 25 ° C.
  • the initial surface roughness (Ra) of WC base cemented carbide is 2 hours at a PV value of 1.0 MPa ⁇ m / s using a device shown in FIG.
  • the friction coefficient was measured continuously at intervals of 0.5 seconds for 2 hours while sliding on the surface of 3.2 without using lubricating oil.
  • the average value of the friction coefficient in 1 hour of the second half in 2 hours of operation was computed, and it was set as the friction coefficient of the slide bearing.
  • the friction coefficient of the slide bearing is 0.1 or less, the friction is small and good, and when it exceeds 0.1, the friction is large and defective.
  • the maximum friction coefficient of the slide bearing When the maximum friction coefficient of the slide bearing is 0.1 or less, the friction coefficient can be maintained low throughout the entire operation period, which is good ( ⁇ ). On the other hand, when it exceeds 0.1, the friction during operation The coefficient may be high, which is considered to be a defect (x).
  • Invention Example No. 1 The sliding bearings 1 to 6 had a wear rate of 30 ⁇ m / h or less and were excellent in the slurry wear resistance.
  • Comparative Example No. Although the sliding bearings of Nos. 3, 4 and 6 to 9 have a wear rate of 30 ⁇ m / h or less and are excellent in the resistance to slurry abrasion, Comparative Examples No. 1 and No. 2 have the following characteristics.
  • the sliding bearings of 1, 2 and 5 had a wear rate exceeding 30 ⁇ m / h and had poor resistance to slurry wear.
  • the slurry abrasion resistance tended to deteriorate as the area ratio of carbon fibers and / or the content of talc increased.
  • the sliding bearings 1 to 6 had good coefficients of friction of 0.1 or less.
  • Comparative Example No. Although the sliding bearings 1 to 7 have a coefficient of friction of 0.1 or less, which is a good result, Comparative Example No. 1 has a good result.
  • the sliding bearings of 8 and 9 had a coefficient of friction exceeding 0.1, which was inferior to the results.
  • the coefficient of friction fluctuates with the area ratio of carbon fibers, the coefficient of friction increases as the area ratio of carbon fibers decreases, and the coefficient of friction decreases as the area ratio of carbon fibers increases. there were.
  • the sliding bearings 1 to 6 had a maximum coefficient of friction of 0.1 or less, which was a good result.
  • Comparative Example No. Although the sliding bearings of No. 1 and No. 2 have a maximum friction coefficient of 0.1 or less, which is a good result, Comparative Example No.
  • the sliding bearings of 3 to 9 had a maximum coefficient of friction exceeding 0.1 and were inferior in results.
  • the maximum friction coefficient varies depending on the area ratio of carbon fibers and the content ratio of talc, and the area ratio of carbon fibers is 27% or more and / or the content ratio of talc is 7% by mass or more In this case, the maximum coefficient of friction was 0.1 or less, and good results were obtained.
  • the invention example no. 1 to 6 and Comparative Example No. 1 In the slide bearings of 1 to 4, the temperature at a position 5 mm deep from the slide surface of the slide bearing was 120 ° C. or less, and the evaluation of the critical PV value was good. On the other hand, Comparative Example No. In all of the slide bearings 5 to 9, the temperature at a position 5 mm deep from the slide surface of the slide bearing exceeded 120 ° C., and the evaluation of the critical PV value became poor. As can be seen from the results in Table 1, the evaluation of the critical PV value fluctuates depending on the area ratio of the carbon fiber, and deteriorates as the area ratio of the carbon fiber decreases, and tends to improve as the area ratio of the carbon fiber increases.
  • the area ratio of carbon fiber is 27% or more and 35% or less
  • the content ratio of talc is 7% by mass or more and 18% by mass or less according to the invention example No.
  • the comparative bearings No. 1 to 6 of Comparative Examples No. 1 to No. 6 have good overall evaluation, while at least one of the area ratio of carbon fiber and the content ratio of talc does not satisfy the above-mentioned numerical range.
  • the slide bearings of 1 to 9 were poor in overall evaluation.
  • Example No. 1 of Example 1 The slide bearings of No. 3 and the slide bearings of the comparative example (sliding bearings composed of PEEK resin and carbon fiber of continuous fiber and containing no talc) are each radial bearings of the vertical mixed flow pump shown in FIG. It used as a certain bearing 32 and 33, and the drainage operation and dry operation of water containing actual foreign matter (earth and sand) were repeated.
  • Invention Example No. 1 of Example 1 was obtained.
  • the wear rate of the slide bearing of No. 3 is 25.3 ⁇ m / h
  • a rapid rise in bearing temperature occurs in a short time during dry operation, and it is necessary to stop the operation of the pump.
  • example No. 1 of Example 1 In the case of No. 3 sliding bearing, no sudden temperature rise occurred and the pump could be operated stably. That is, by using the slide bearing of the present invention for the bearings 32, 33 used under severe conditions where drainage operation and dry operation are repeatedly performed, excellent bearing characteristics both in the atmosphere and in the water containing foreign matter can be obtained. I was able to demonstrate.
  • FIG. 7A compared with FIG. 7B, almost no pulse-like rapid rise / drop was seen in any of the coefficient of friction and temperature, and the range of rise / drop was very small even in the case of rapid rise / drop. From this result, it was found that the operating condition of the slide bearing was very stable.
  • No. 1 of the example of this invention of Table 1 is.
  • No. 5 and No. 5 of the comparative example Each of the seven plain bearings was attached to the device shown in FIG. 4 and operated for 2 hours under the respective operating conditions of PV value: 0.4, 0.5, 0.75, or 1.0 m / s ⁇ MPa.
  • the maximum friction coefficient of the slide bearing is determined as the largest friction coefficient among the friction coefficients measured continuously at intervals of 0.5 seconds, and the largest among the friction coefficients measured during two hours of operation.
  • No. 5 and No. 5 of the comparative example A graph (FIG. 8) was made showing the time variation of the maximum friction coefficient and bearing temperature for No.7.
  • the sliding bearing of No. 5 had a lower maximum coefficient of friction, and its value was stable without any significant change within the PV value range of 0.4 to 1.0 m / s ⁇ MPa. From the results, it was found that the sliding bearing of the present invention was able to maintain a low coefficient of friction for the entire period of operation under various conditions of PV values, and was able to perform stable operation.
  • No. 1 of the comparative example In the slide bearing of No. 7, the maximum friction coefficient exhibited a relatively large value within the PV value range of 0.4 to 1.0 m / s ⁇ MPa, and the value largely fluctuated depending on the PV value. From this result, it was found that the sliding bearing of the comparative example may have a high coefficient of friction during operation, and the maximum coefficient of friction fluctuates depending on the PV value, resulting in unstable operation.
  • the slide bearing device according to the present embodiment can be used for a slide bearing device as a radial bearing operating in atmospheric operation and a slide bearing device as a radial bearing operating in water in which foreign matter is mixed.
  • the slide bearing device according to the present embodiment can also be used for a slide bearing device as a radial bearing in which the operation in water containing foreign matter and the operation in the atmosphere are repeated.

Abstract

Provided are: a sliding bearing device for a radial bearing used in a water pump, wherein the sliding bearing device comprises a sliding bearing in which, while wear resistance equivalent to that achieved in the past is maintained during operation under water that contains foreign objects such as sand (slurry), the wear resistance is stably maintained at a low friction coefficient even in a comparatively high PV value range in a dry lubrication condition when sliding in air; and a pump comprising the sliding bearing device. A sliding bearing device comprising a sliding bearing, wherein the sliding bearing includes an aromatic polyether ketone, talc, carbon fibers, and unavoidable impurities, the talc content in the sliding bearing being 7-18% by mass, and the surface ratio of the carbon fibers in the sliding surface of the sliding bearing being 27-35%.

Description

すべり軸受装置及びこれを備えたポンプSliding bearing device and pump provided with the same
 本発明は、樹脂材料を用いたすべり軸受装置及びこれを備えたポンプに係り、特にポンプ等の回転機械のラジアル軸受として好適に使用されるすべり軸受装置及びこれを備えたポンプに関する。 The present invention relates to a slide bearing device using a resin material and a pump including the same, and more particularly to a slide bearing device suitably used as a radial bearing of a rotary machine such as a pump and a pump including the same.
 近年、都市化の進展により、緑地の減少及び路面のコンクリート化、アスファルト化の拡大が進むことでヒートアイランド現象が発生し、いわゆるゲリラ豪雨と呼ばれる局所的な集中豪雨が都市部で頻発している。局所的な大量の降雨は、コンクリート化、アスファルト化した路面では、地中に吸収されることなくそのまま水路に導かれる。その結果、大量の雨水が、短時間のうちに排水機場に流入する。 2. Description of the Related Art In recent years, with the progress of urbanization, the heat island phenomenon occurs due to the decrease of green spaces and the increase of concreteization and asphaltification of road surfaces, and local heavy rain called so-called guerrilla heavy rain frequently occurs in urban areas. Local heavy rainfall is led to the water channel without being absorbed into the ground on concreted and asphalted road surfaces. As a result, a large amount of rainwater flows into the drainage station in a short time.
 頻発するこのような集中豪雨によってもたらされる大量の雨水の速やかな排水に備えるために排水機場に設置する排水ポンプでは、始動遅れによる浸水被害が生じないよう、雨水が排水機場に到達する前に予め始動させておく先行待機運転が行われている。 The drainage pump installed at the drainage station to prepare for rapid drainage of a large amount of rainwater caused by such frequent torrential rains should be prepared before rainwater reaches the drainage station to prevent flooding damage caused by delayed start-up. There is a preceding standby operation to start.
 図1は、先行待機運転を行う立軸ポンプの部分概略図である。排水機場の水槽100には、立軸ポンプ3が配置される。立軸ポンプ3は、縦方向に配置された回転軸10の先端にインペラ22を備え、インペラ22に水と共に空気を吸い込ませる。これにより、立軸ポンプ3は、水槽100の水位が最低運転水位LWL以下であっても運転(先行待機運転)を継続することができる。この立軸ポンプ3には、インペラ22の入口側の吸い込みベル27の側面部に貫通孔5が設けられており、この貫通孔5には、外気に接する開口6aを備えた空気管6が取付けられている。これにより、この立軸ポンプ3では貫通孔5を介して立軸ポンプ3内に供給する空気の供給量を水位に応じて変化させ、最低運転水位LWL以下で立軸ポンプ3の排水量がコントロールされる。 FIG. 1 is a partial schematic view of a vertical shaft pump performing a leading standby operation. The vertical pump 3 is disposed in the water tank 100 of the drainage station. The vertical pump 3 includes an impeller 22 at the tip of a rotating shaft 10 disposed in the longitudinal direction, and allows the impeller 22 to suck air with water. Thereby, the vertical pump 3 can continue the operation (preceding standby operation) even if the water level of the water tank 100 is equal to or lower than the lowest operation water level LWL. In the vertical shaft pump 3, a through hole 5 is provided in a side surface portion of the suction bell 27 on the inlet side of the impeller 22. In the through hole 5, an air pipe 6 having an opening 6a in contact with the outside air is attached. ing. Thus, in the vertical pump 3, the amount of supply of air supplied into the vertical pump 3 through the through hole 5 is changed according to the water level, and the displacement of the vertical pump 3 is controlled below the minimum operating water level LWL.
 図2は、先行待機運転の運転状態を説明する図である。例えば大都市の雨水排水用として、吸込水位に関係なく降雨情報等により予め立軸ポンプを始動しておく(A:気中運転)。低水位の状態から水位が上昇するに従って、インペラの位置まで水位が達し、立軸ポンプは空運転(気中運転)からインペラで水を撹拌する運転(B:気水撹拌運転)、さらに貫通孔を経て供給される空気を水と共に吸い込ませつつ水量を徐々に増やす運転(C:気水混合運転)を経て100%水の排出を行う全量運転(D:定常運転)へ移行する。また、高水位から水位が低下するときは、全量運転から貫通孔を経て供給する空気を水と共に吸い込ませつつ水量を徐々に減らす運転(C:気水混合運転)へ移行する。水位がLLWL近くに至ると、水を吸い込まず排水もしない運転(E:エアロック運転)へ移行する。これら5つの特徴ある運転を総称して先行待機運転という。なお、ポンプ始動は、ケーシング下端よりも低い水位LLLWLから開始する。 FIG. 2 is a diagram for explaining the operating state of the preceding standby operation. For example, for rainwater drainage in a large city, the vertical pump is started in advance using rainfall information etc. regardless of the suction water level (A: air operation). As the water level rises from a low water level, the water level reaches the position of the impeller, and the vertical pump operates from idle operation (air operation) to stir water with the impeller (B: air / water agitation operation) After the operation to gradually increase the amount of water while sucking in the air supplied through with the water (C: air-water mixing operation), the operation shifts to the total operation (D: steady operation) in which 100% water is discharged. Further, when the water level drops from the high water level, the operation shifts to an operation (C: air-water mixing operation) in which the amount of water is gradually reduced while sucking in the air supplied through the through hole from the high water level. When the water level reaches near LLWL, the operation shifts to an operation (E: air lock operation) that neither sucks in water nor discharges water. These five characteristic operations are collectively referred to as "preceding standby operation". The pump start is started from the water level LLLWL lower than the lower end of the casing.
 図3は、図1に示した先行待機運転を行う立軸ポンプ3の全体を示す断面図である。なお、図2に示した貫通孔5及び空気管6は図示省略されている。図3に示すように、立軸ポンプ3は、ポンプ設置床に設置固定される吐出エルボ30と、この吐出エルボ30の下端に接続されるケーシング29と、ケーシング29の下端に接続されるとともにインペラ22を内部に格納する吐出ボウル28と、吐出ボウル28の下端に接続されるとともに水を吸い込むための吸い込みベル27とを備えている。 FIG. 3 is a cross-sectional view showing the whole of the vertical axis pump 3 performing the leading standby operation shown in FIG. The through hole 5 and the air pipe 6 shown in FIG. 2 are not shown. As shown in FIG. 3, the vertical shaft pump 3 is connected to the discharge elbow 30 installed and fixed on the pump installation floor, the casing 29 connected to the lower end of the discharge elbow 30, and the lower end of the casing 29, and the impeller 22. And a suction bell 27 connected to the lower end of the discharge bowl 28 for sucking in water.
 立軸ポンプ3のケーシング29、吐出ボウル28、及び吸い込みベル27の径方向略中心部には、上下二本の軸が軸継手26によって互いに接続されることにより形成された一本の回転軸10が配置されている。回転軸10は、支持部材を介してケーシング29に固定されている上部軸受32と、支持部材を介して吐出ボウル28に固定されている下部軸受33によって支持されている。回転軸10の一端側(吸い込みベル27側)には、水をポンプ内に吸い込むためのインペラ22が接続されている。回転軸10の他端側は、吐出エルボ30に設けられた孔を通って立軸ポンプ3の外部へ延び、インペラ22を回転させる図示しないエンジンやモータ等の駆動機へ接続される。回転軸10と吐出エルボ30に設けられた孔との間には、フローティングシール、グランドパッキンまたはメカニカルシール等の軸シール34が設けられており、軸シール34により立軸ポンプ3が扱う水が立軸ポンプ3の外部に流出することを防止する。 A single rotary shaft 10 formed by the upper and lower two shafts being connected to each other by a shaft coupling 26 is substantially in the radial direction substantially central portion of the casing 29 of the vertical pump 3, the discharge bowl 28 and the suction bell 27. It is arranged. The rotating shaft 10 is supported by an upper bearing 32 fixed to the casing 29 via a support member and a lower bearing 33 fixed to the discharge bowl 28 via the support member. An impeller 22 for sucking water into the pump is connected to one end side (the suction bell 27 side) of the rotating shaft 10. The other end side of the rotating shaft 10 extends to the outside of the vertical shaft pump 3 through a hole provided in the discharge elbow 30, and is connected to a driver such as an engine or motor (not shown) that rotates the impeller 22. A shaft seal 34 such as a floating seal, a gland packing, or a mechanical seal is provided between the rotary shaft 10 and a hole provided in the discharge elbow 30, and the shaft seal 34 is a vertical shaft pump with water handled by the vertical pump 3 Prevent outflow to the outside of 3.
 駆動機は、保守点検を容易に行うことができるように陸上に設けられる。駆動機の回転は回転軸10に伝達され、インペラ22を回転させることができる。インペラ22の回転によって水は吸込みベル27から吸い込まれ、吐出ボウル28、ケーシング29を通過して吐出エルボ30から吐出される。 The driving machine is provided on land so that maintenance and inspection can be easily performed. The rotation of the drive machine is transmitted to the rotating shaft 10 and the impeller 22 can be rotated. Water is sucked from the suction bell 27 by the rotation of the impeller 22, passes through the discharge bowl 28 and the casing 29, and is discharged from the discharge elbow 30.
 図4は、図3に示した軸受32,33に適用される従来の軸受装置の拡大図である。図5は、図4に示す軸受装置に設置されたすべり軸受の斜視図である。図4に示すように、従来の軸受装置は、回転軸10の外周に、ステンレス鋼、セラミックス、焼結金属又は表面改質された金属からなるスリーブ11を有している。スリーブ11は、ビッカース硬さ(Hv)が800以上2500以下である。スリーブ11の外周側には、中空円筒の樹脂材料からなるすべり軸受1が設けられている。スリーブ11の外周面は、すべり軸受1の内周面(すべり面)1aと非常に狭いクリアランスを介して対面し、すべり軸受1に対して摺動するように構成されている。すべり軸受1は、金属又は樹脂からなる軸受ケース12によりつば部12aを介してポンプのケーシング29(図3参照)等へ繋がる支持部材13に固定されている。図5に示すように、すべり軸受1は中空円筒状の形状を有しており、内周面(すべり面)1aがスリーブ11の外周面1bと対面し、外周面1bが軸受ケース12に嵌合される。 FIG. 4 is an enlarged view of a conventional bearing device applied to the bearings 32 and 33 shown in FIG. FIG. 5 is a perspective view of a slide bearing installed in the bearing device shown in FIG. As shown in FIG. 4, the conventional bearing device has a sleeve 11 made of stainless steel, ceramics, sintered metal or surface-modified metal on the outer periphery of the rotating shaft 10. The sleeve 11 has a Vickers hardness (Hv) of 800 or more and 2,500 or less. A slide bearing 1 made of a hollow cylindrical resin material is provided on the outer peripheral side of the sleeve 11. The outer peripheral surface of the sleeve 11 faces the inner peripheral surface (sliding surface) 1 a of the slide bearing 1 via a very narrow clearance, and is configured to slide relative to the slide bearing 1. The slide bearing 1 is fixed to a support member 13 connected to a pump casing 29 (see FIG. 3) or the like via a flange portion 12a by a bearing case 12 made of metal or resin. As shown in FIG. 5, the slide bearing 1 has a hollow cylindrical shape, the inner peripheral surface (sliding surface) 1 a faces the outer peripheral surface 1 b of the sleeve 11, and the outer peripheral surface 1 b fits in the bearing case 12. United.
 図3に示した立軸ポンプ3は、ポンプ起動時には大気中で運転される。すなわち、軸受 32,33は液体の潤滑のないドライ摺動条件で運転される。ここでドライ摺動条件とは、ポンプ運転中の軸受32,33の雰囲気が、液体の潤滑がない大気中である条件をいい、ドライ運転とはその条件で運転することをいう。また、図4に示した軸受32,33は軸受に通水した排水条件でも運転される。ここで、排水条件とは、ポンプ運転中の軸受32,33の雰囲気が、土砂等の異物(スラリー)が混入した水中である条件をいい、排水運転とはその条件で運転すること、例えば気水混合運転、全量運転、エアロック運転等をいう。このような条件で軸受32,33が使用される。尚、図3に示した立軸ポンプ3では、回転軸10に対して2つの軸受32,33が配置されているが、回転軸10の長さが長くなれば、それに応じてより多くの軸受が配置される。 The vertical axis pump 3 shown in FIG. 3 is operated in the atmosphere when the pump is started. That is, the bearings 32, 33 are operated under dry sliding conditions without liquid lubrication. Here, the dry sliding condition refers to a condition in which the atmosphere of the bearings 32 and 33 during pump operation is in the atmosphere without liquid lubrication, and the dry operation refers to operation under the condition. Further, the bearings 32, 33 shown in FIG. 4 are also operated under drainage conditions in which the bearings flow. Here, the drainage condition means that the atmosphere of the bearings 32, 33 during pump operation is water in which foreign matter (slurry) such as earth and sand is mixed, and the drainage operation is operated under the conditions, for example, air Water mixing operation, whole quantity operation, air lock operation etc. The bearings 32, 33 are used under such conditions. In the vertical pump 3 shown in FIG. 3, two bearings 32 and 33 are disposed with respect to the rotating shaft 10, but if the length of the rotating shaft 10 becomes longer, more bearings will be provided accordingly. Be placed.
 樹脂材料を用いたすべり軸受を有するすべり軸受装置は、樹脂が良好な潤滑性能を有するので、ターボ機械等の回転機械や事務機械に広く使用されている(特許文献1~4)。 A slide bearing device having a slide bearing using a resin material is widely used in rotary machines such as turbomachines and office machines since the resin has good lubricating performance (Patent Documents 1 to 4).
 樹脂軸受の評価方法として、円盤状に成形した樹脂の円盤面を平板に押し付けた状態で円盤状の樹脂を回転させることで、樹脂の摩擦係数や摩耗量を評価することが行われている。また、シール部分に樹脂を用いたピストンをシリンダ内で往復させて、シール部分とシリンダとを摺動させることで、樹脂の摩擦係数や摩耗量を評価することも行われている。このような評価方法においては、具体的な使用条件を反映させたものは少なく、例えば、軸受の摺動中に異物が混入することを想定したものはあまり見られない。 As a method of evaluating a resin bearing, it is performed to evaluate the coefficient of friction and the amount of abrasion of a resin by rotating a disk-shaped resin in a state where the disk surface of the disk-shaped resin is pressed against a flat plate. In addition, it is also performed to evaluate the coefficient of friction and the amount of abrasion of resin by reciprocating a piston using resin in the seal portion in the cylinder and sliding the seal portion and the cylinder. In such an evaluation method, there are few that reflect specific use conditions, and for example, there are not many that assume that foreign matter is mixed during sliding of a bearing.
 ターボ機械等の回転機械では、回転軸の軸方向に直角な方向に作用する荷重を受けるラジアル軸受用のすべり軸受に樹脂材料を用いたものがある。水ポンプに使用されるラジアル軸受用のすべり軸受は、回転体とすべり軸受との隙間(摺動部)に、潤滑油は用いず、ポンプ揚水を侵入させて使用される。このため、水ポンプが土砂等の異物混入水(異物混入水)を扱う場合、異物混入水がすべり軸受の摺動面(軸受のすべり面)に侵入してくることがある。この場合、遠心力がすべり軸受の径方向に向かって働くので、回転体とすべり軸受の隙間に侵入した異物を軸方向へ排出することは困難である。 Some rotary machines such as turbo machines use a resin material for a slide bearing for a radial bearing that receives a load acting in a direction perpendicular to the axial direction of the rotary shaft. A sliding bearing for a radial bearing used in a water pump is used without entering lubricating oil into the gap (sliding portion) between the rotating body and the sliding bearing, with pumping water introduced. For this reason, when the water pump handles contaminated water (contaminated water) such as soil, the contaminated water may intrude into the sliding surface of the sliding bearing (sliding surface of the bearing). In this case, since the centrifugal force works in the radial direction of the slide bearing, it is difficult to axially discharge the foreign matter that has entered the gap between the rotary body and the slide bearing.
 土砂(異物)の主成分であるSiO2は、樹脂材料と比較して硬度が高いので、回転体とすべり軸受の隙間に異物が侵入すると、樹脂材料が摩耗する。従って、異物混入水を扱う水ポンプの運転においては、すべり軸受の摩耗量が増大し、すべり軸受の寿命が短くなるという問題がある。 Since SiO 2 , which is the main component of soil (foreign matter), has a hardness higher than that of the resin material, when the foreign matter intrudes into the gap between the rotating body and the slide bearing, the resin material is abraded. Therefore, in the operation of the water pump which handles the foreign matter mixed water, there is a problem that the wear amount of the slide bearing is increased and the life of the slide bearing is shortened.
 したがって、これまでの多くの樹脂軸受の評価方法では、実条件における耐摩耗性の評価は不十分である。また、これまでの多くの樹脂軸受の評価方法において、仮に異物の混入を想定した条件を採用しても、これらの評価方法はラジアル軸受としてのすべり軸受を評価するものではない。したがって、これらの評価方法では、異物が摺動面から外部に放出されやすく、異物の摺動面での滞留の影響は少ないと考えられる。このため、これらの評価方法は、ラジアル軸受としてのすべり軸受の耐摩耗性能の評価に適さない。 Therefore, the evaluation methods of abrasion resistance under actual conditions are insufficient with many evaluation methods of resin bearings so far. Moreover, even if the conditions which assumed mixture of a foreign material were temporarily adopted in the evaluation method of many resin bearings until now, these evaluation methods do not evaluate the slide bearing as a radial bearing. Therefore, in these evaluation methods, it is considered that foreign matter is easily released from the sliding surface to the outside, and the influence of retention of the foreign matter on the sliding surface is small. For this reason, these evaluation methods are not suitable for evaluation of the wear resistance performance of the sliding bearing as a radial bearing.
 また、立軸ポンプは、先行待機運転のように、軸受のすべり面が水中にある状態で運転される場合だけでなく、軸受のすべり面が大気中に露出した状態で運転される場合もある。このようにすべり軸受のすべり面が大気中に露出するドライ潤滑条件で立軸ポンプが運転される場合には、ドライ潤滑条件で低摩擦なすべり軸受装置が求められる。 In addition, the vertical axis pump may be operated not only when the sliding surface of the bearing is in the water but also in a state where the sliding surface of the bearing is exposed to the atmosphere, as in the case of the leading standby operation. When the vertical pump is operated under the dry lubrication condition in which the sliding surface of the slide bearing is exposed to the atmosphere as described above, a slide bearing device with low friction under the dry lubrication condition is required.
 一方、従来の樹脂材料からなるすべり軸受を用いた立軸ポンプにおいて、ドライ運転時に軸受温度が急上昇し運転不能になる場合があり、この軸受温度の上昇が問題となっている。図6A及び図6Bは、ポンプ運転時における回転軸10、スリーブ11、及びすべり軸受1の状態を示す模式的断面図である。ドライ運転においては、回転数または軸受荷重が高いほど、図3に示した軸受32,33に使用されるすべり軸受1と、回転軸10に取り付けたスリーブ11とが摺動する際に、その接触部で発生する摩擦熱が大きくなる。その摩擦力により、すべり軸受1、回転軸10、及びスリーブ11が局所的に高温となる虞がある。図6A及び図6Bに示される斜線部は、すべり軸受1、回転軸10、及びスリーブ11の高温になる部分である。 On the other hand, in a vertical shaft pump using a slide bearing made of a conventional resin material, the temperature of the bearing may rapidly rise during the dry operation and the operation may become impossible. This rise in the temperature of the bearing is a problem. 6A and 6B are schematic cross-sectional views showing the state of the rotary shaft 10, the sleeve 11, and the slide bearing 1 during pump operation. In dry operation, when the rotational bearing or bearing load is higher, the sliding bearing 1 used for the bearings 32 and 33 shown in FIG. 3 and the sleeve 11 attached to the rotating shaft 10 contact each other when sliding The frictional heat generated by the parts increases. There is a possibility that the sliding bearing 1, the rotating shaft 10, and the sleeve 11 may locally become hot due to the frictional force. The hatched portions shown in FIGS. 6A and 6B are portions of the slide bearing 1, the rotation shaft 10, and the sleeve 11 which become hot.
 回転軸10に取り付けたスリーブ11の局所的な高温化により、図6Aに示すように、回転軸10が局所的に膨張し、回転軸10がわずかに曲がる虞がある。それにより、立軸ポンプの回転体(回転軸10及びスリーブ11)と固定体(すべり軸受1)との干渉による振動や、軸受荷重の増加が起こりやすくなる。即ち、回転体のアンバランス方向において回転体と固定体とが接触し、この接触部分が発熱することにより回転軸10の軸断面に温度分布が生じ、部分的な熱膨張により回転軸10が曲がる。この際、回転軸10の曲がりにより回転体の重心がずれるので、回転体全体のアンバランスが徐々に大きくなっていく。また、回転軸10の曲がりにより、回転体とすべり軸受1との接触態様が変化し、すべり軸受1の温度勾配が変化する場合もある。 Due to the local temperature increase of the sleeve 11 attached to the rotary shaft 10, as shown in FIG. 6A, the rotary shaft 10 may locally expand and the rotary shaft 10 may be slightly bent. As a result, the vibration due to the interference between the rotating body (the rotating shaft 10 and the sleeve 11) of the vertical pump and the fixed body (slide bearing 1) and the increase in the bearing load are likely to occur. That is, when the rotating body and the fixed body contact each other in the unbalanced direction of the rotating body and heat is generated at the contact portion, a temperature distribution is generated in the axial cross section of the rotating shaft 10 and the rotating shaft 10 is bent . Under the present circumstances, since the gravity center of a rotary body shifts | deviates by the curve of the rotating shaft 10, the unbalance of the whole rotary body becomes large gradually. Moreover, the contact aspect of a rotary body and the slide bearing 1 changes with the bending of the rotating shaft 10, and the temperature gradient of the slide bearing 1 may change.
 さらに、回転軸10の曲がりによる変位が、スリーブ11とすべり軸受1との隙間より大きくなると、図6Bに示すように、スリーブ11とすべり軸受1とが逆位相の2点において接触する状態となり、曲げ変位が拘束される。この状態で回転軸10が回転し続けると、さらに熱膨張が続き、すべり軸受1に対する押付荷重が上昇する。すべり軸受1に加わる押付荷重が上昇すると、発熱量が増加する。発熱量の増加により回転軸10の熱曲がりが加速し、その結果すべり軸受1に加わる押付荷重がさらに上昇する。このような悪循環に陥り、加速度的に回転軸10、スリーブ11、及びすべり軸受1の温度が上昇する。 Furthermore, when the displacement due to the bending of the rotary shaft 10 becomes larger than the gap between the sleeve 11 and the slide bearing 1, as shown in FIG. 6B, the sleeve 11 and the slide bearing 1 come into contact at two points of opposite phase. Bending displacement is constrained. When the rotating shaft 10 continues to rotate in this state, thermal expansion continues further, and the pressing load on the slide bearing 1 rises. When the pressing load applied to the slide bearing 1 is increased, the amount of heat generation is increased. The increase in the amount of heat generation accelerates the thermal bending of the rotary shaft 10, and as a result, the pressing load applied to the slide bearing 1 further increases. Such a vicious circle falls, and the temperatures of the rotating shaft 10, the sleeve 11, and the slide bearing 1 rise at an accelerated pace.
 回転体のアンバランス量が許容値内であっても、それが大きい場合には、すべり軸受1の面圧が大きくなり、すべり軸受1の回転体との接触部の発熱が大きくなる。そのため、回転軸10の曲がりが促進され、加速度的にすべり軸受1の温度が上昇する場合がある。発熱を小さくするには、すべり軸受1の摩擦係数を低減させることが有効である。このため、従来より、低摩擦係数で耐摩耗性を実現できるすべり軸受用の樹脂材料として、炭素繊維やタルクを含有するPEEK系プラスチックを基材が開発されてきた。 Even if the unbalance amount of the rotating body is within the allowable value, if it is large, the surface pressure of the slide bearing 1 becomes large, and the heat generation of the contact portion of the slide bearing 1 with the rotating body becomes large. Therefore, the bending of the rotating shaft 10 may be promoted, and the temperature of the slide bearing 1 may be accelerated. In order to reduce the heat generation, it is effective to reduce the friction coefficient of the slide bearing 1. For this reason, conventionally, as a resin material for a slide bearing capable of realizing wear resistance with a low friction coefficient, a base material of PEEK plastic containing carbon fiber and talc has been developed.
 ところで、近年、ドライ運転を行うポンプは多種に及んでおり、すべり軸受が支える回転軸の回転速度(V)や、摺動面圧(P)の条件の範囲、およびPV値(回転軸の回転速度×摺動面圧)の範囲がより高い値の方に広がっている。一方で、PEEK系の樹脂材料は高価であり、また、これまでは、要求されるPV値に応じて樹脂材料を設計する必要があったため、管理が煩雑であった。また、平均的な摩擦係数を低く抑えることはできても、運転中にはパルス的に高い摩擦係数となることがあり、それが頻繁におこる場合もあった。 By the way, in recent years, there are many types of pumps that perform dry operation, and the rotational speed (V) of the rotary shaft supported by the slide bearing, the range of conditions of sliding surface pressure (P), and the PV value (rotation of rotary shaft The range of velocity x sliding contact pressure) extends to higher values. On the other hand, PEEK resin materials are expensive, and until now, it was necessary to design the resin materials according to the required PV value, so management was complicated. In addition, although the average friction coefficient can be kept low, it may sometimes become a pulse high friction coefficient during operation, which may occur frequently.
特開平09-264327JP 09-264327 特開2013-194769JP-A-2013-194769 特開2015-21551Japanese Patent Laid-Open No. 2015-21551 特開2016-205545JP 2016-205545
 本発明は、上述の事情に鑑みなされたもので、水ポンプに使用されるラジアル軸受用のすべり軸受装置において、土砂等の異物(スラリー)を含む水中での運転では、従来の通り耐摩耗性を維持しつつ、大気中で摺動するドライ潤滑条件では、比較的高いPV値の範囲であっても摩擦係数が低い状態で安定的に維持されるすべり軸受を備えたすべり軸受装置、およびこれを備えたポンプを提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and in a slide bearing device for a radial bearing used in a water pump, in an operation in water containing foreign matter (slurry) such as earth and sand, wear resistance as in the prior art A slide bearing device comprising a slide bearing stably maintained with a low friction coefficient even in a relatively high PV value range under dry lubrication conditions sliding in the atmosphere while maintaining the To provide a pump having the
 炭素繊維はすべり軸受の強度を上げ、線膨張係数を小さくでき、結果としてすべり軸受の形状変化を低く抑えることになり、長く安定した性能を維持するというプラスの効果が望まれる。 The carbon fiber can increase the strength of the slide bearing and reduce the linear expansion coefficient, and as a result, the shape change of the slide bearing can be suppressed to a low level, and the positive effect of maintaining long and stable performance is desired.
 炭素繊維をより多く含有することにより、摩擦係数をより低く抑えることが可能である。特に、運転中に摩擦係数は急激に上昇下降を繰り返すことがあり、必ずしも安定しないが、その時の最大摩擦係数を小さく抑えるには、炭素繊維を多量に含有させることが有効である。 By containing more carbon fibers, it is possible to keep the coefficient of friction lower. In particular, the coefficient of friction may repeatedly rise and fall rapidly during operation, and although it is not always stable, it is effective to contain a large amount of carbon fiber in order to reduce the maximum coefficient of friction at that time.
 しかし、一方で炭素繊維を多量に含有させると、スラリー中で摩耗による炭素繊維の排出の機会が増え、排出された炭素繊維自体による摩耗が促進されやすくなるので、耐スラリー摩耗性にはマイナス効果となる。このため、炭素繊維の含有量にある一定の上限値を設ける必要がある。すなわち、最大摩擦係数を小さく抑え、かつ良好な耐スラリー摩耗性を得るためには、炭素繊維の含有量は特定の狭い数値範囲内とする必要があった。 However, if a large amount of carbon fiber is contained, the opportunity for discharge of carbon fiber by abrasion increases in the slurry, and abrasion by the discharged carbon fiber itself is likely to be promoted. It becomes. For this reason, it is necessary to set a certain upper limit to the carbon fiber content. That is, in order to keep the maximum friction coefficient small and to obtain good slurry abrasion resistance, the content of carbon fiber had to be within a specific narrow numerical range.
 また、タルクは、すべり軸受材料に含有させることにより、摩擦係数を下げる効果がある。しかし、タルク単体での効果は限定的である。 Talc has the effect of lowering the coefficient of friction by containing it in the slide bearing material. However, the effect of talc alone is limited.
 本発明では、適切な炭素繊維とタルクの範囲を見出し、それらの相乗効果により、炭素繊維の含有量が比較的少なくても、タルクの効果により、最大摩擦係数を安定化させることができ、また、炭素繊維の量が比較的多くても、耐摩耗性を維持できる範囲を定めることができた。 In the present invention, a suitable range of carbon fiber and talc is found, and their synergetic effect can stabilize the maximum friction coefficient by the effect of talc even if the content of carbon fiber is relatively low, and However, even if the amount of carbon fiber is relatively large, the range in which the wear resistance can be maintained can be defined.
 本発明者らは、低摩擦性と耐摩耗性に影響を与える重要な要素として、軸受のすべり面における炭素繊維の面積率、及びすべり軸受に対するタルクの含有率に着目し、検討を行った。その結果、本発明者らは、炭素繊維の面積率とタルクの含有率がそれぞれ所定の数値範囲内であるときに、すべり軸受は摩擦係数が低く、限界PV値が高く、耐摩耗性が良好であることを見出した。 The present inventors examined as an important factor affecting low friction and wear resistance, focusing on the area ratio of carbon fiber on the sliding surface of the bearing and the content ratio of talc to the sliding bearing. As a result, when the area ratio of carbon fiber and the content ratio of talc are respectively within predetermined numerical ranges, the sliding bearing has a low friction coefficient, a high critical PV value, and a good abrasion resistance. I found it to be.
 本発明の一形態によれば、すべり軸受装置が提供される。このすべり軸受装置は、すべり軸受を備えたすべり軸受装置であって、前記すべり軸受は、芳香族ポリエーテルケトン、タルク、炭素繊維、及び不可避不純物を含み、前記すべり軸受に対する前記タルクの含有率は7質量%以上18質量%以下であり、前記すべり軸受のすべり面における前記炭素繊維の面積率は27%以上35%以下である。 According to one aspect of the present invention, a sliding bearing device is provided. This slide bearing device is a slide bearing device provided with a slide bearing, and the slide bearing includes aromatic polyether ketone, talc, carbon fiber, and unavoidable impurities, and the content ratio of the talc to the slide bearing is It is 7 mass% or more and 18 mass% or less, and the area ratio of the carbon fiber in the slide surface of the slide bearing is 27% or more and 35% or less.
 本発明の他の一形態によれば、前記すべり軸受のすべり面が、大気と接触した状態及び土砂が混入した水と接触した状態のいずれでも運転可能に構成されている。 According to another aspect of the present invention, the sliding surface of the sliding bearing is configured to be operable either in contact with the atmosphere or in contact with water mixed with earth and sand.
 本発明の他の一形態によれば、前記芳香族ポリエーテルケトンは、PEK、PEEK、PEKKまたはPEEKKである。 According to another aspect of the invention, the aromatic polyether ketone is PEK, PEEK, PEKK or PEEKK.
 本発明の他の一形態によれば、前記炭素繊維は、直径が5μm以上10μm以下である。 According to another aspect of the present invention, the carbon fiber has a diameter of 5 μm to 10 μm.
 本発明の他の一形態によれば、前記タルクは、鱗片状であり、短軸径が0.1μm以上、長軸径が15μm以下であり、前記短軸径に対して前記長軸径が1倍より大きく15倍以下である。 According to another aspect of the present invention, the talc is scaly and has a minor axis diameter of 0.1 μm or more and a major axis diameter of 15 μm or less, and the major axis diameter is smaller than the minor axis diameter. More than 1 time and 15 times or less.
 本発明の他の一形態によれば、ポンプが提供される。このポンプは、上記すべり軸受装置を備える。 According to another aspect of the present invention, a pump is provided. This pump is provided with the above-mentioned slide bearing device.
 上述した本発明の各形態は、任意の二種以上を組み合わせることができる。 Each form of the present invention mentioned above can combine arbitrary two or more sorts.
 本発明によれば、水ポンプのラジアル軸受用のすべり軸受装置で使用される軸受であって、スラリーを含む水中運転、及び大気中で摺動するドライ潤滑条件のいずれにおいても使用される場合に、比較的高いPV値の範囲であっても耐摩耗性を損なわず、かつ摩擦係数が低い状態で安定的に維持されるすべり軸受を備えたすべり軸受装置、およびこれを備えたポンプを提供することができる。 According to the present invention, a bearing for use in a slide bearing device for a radial bearing of a water pump, wherein the bearing is used in any of underwater operation including slurry and dry lubrication condition sliding in the atmosphere. , A slide bearing device comprising a slide bearing stably maintained with a low friction coefficient without deteriorating wear resistance even in a relatively high PV value range, and a pump comprising the same be able to.
先行待機運転を行う立軸ポンプの部分概略図である。FIG. 6 is a partial schematic view of a vertical pump performing a leading standby operation. 先行待機運転の運転状態を説明する図である。It is a figure explaining the driving | running state of a prior | preceding standby operation. 図1に示した先行待機運転を行う立軸ポンプの全体を示す断面図である。It is sectional drawing which shows the whole of the vertical axis pump which performs advance | preceding standby operation shown in FIG. 図3に示した軸受に適用される従来の軸受装置の拡大図である。It is an enlarged view of the conventional bearing apparatus applied to the bearing shown in FIG. 図4に示す軸受装置に設置されたすべり軸受の斜視図である。It is a perspective view of the slide bearing installed in the bearing apparatus shown in FIG. ポンプ運転時における回転軸、スリーブ、及びすべり軸受の状態を示す模式的断面図であるIt is a typical sectional view showing the state of a rotating shaft, a sleeve, and a slide bearing at the time of pump operation. ポンプ運転時における回転軸、スリーブ、及びすべり軸受の状態を示す模式的断面図であるIt is a typical sectional view showing the state of a rotating shaft, a sleeve, and a slide bearing at the time of pump operation. 本発明例のNo.5のすべり軸受についてのドライ試験における軸受温度と摩擦係数の時間変化を示す図である。In the example of the present invention, No. It is a figure which shows the time change of the bearing temperature in the dry test about the slide bearing of 5, and a friction coefficient. 比較例のNo.7のすべり軸受についてのドライ試験における軸受温度と摩擦係数の時間変化を示す図である。No. of the comparative example. It is a figure which shows the time change of the bearing temperature in the dry test about the slide bearing of 7, and a friction coefficient. 本発明及び比較例のすべり軸受についてのPV値と最大摩擦係数との関係を示す図である。It is a figure which shows the relationship of PV value and the maximum friction coefficient about the slide bearing of this invention and a comparative example.
 本実施形態に係るすべり軸受装置は、例えば、図4に示したすべり軸受装置と同様の構造を有する。即ち、本実施形態に係るすべり軸受装置は、回転体である回転軸10及びスリーブ11と、固定体であるすべり軸受1とを有する。また、本実施形態に係るすべり軸受装置に用いられるすべり軸受1は、図5に示したすべり軸受1と同様の構造を有する。 The slide bearing device according to the present embodiment has, for example, the same structure as the slide bearing device shown in FIG. That is, the slide bearing device according to the present embodiment includes the rotary shaft 10 and the sleeve 11 which are rotating bodies, and the slide bearing 1 which is a fixed body. Moreover, the slide bearing 1 used for the slide bearing apparatus which concerns on this embodiment has a structure similar to the slide bearing 1 shown in FIG.
 本実施形態に係るすべり軸受1は、芳香族ポリエーテルケトン、タルク、炭素繊維、及び不可避不純物の複合材料から構成される。円筒形状のすべり軸受1の内周面は、スリーブ11の外周面と接触する軸受の内周面(すべり面)1aを構成している。即ち、すべり軸受1は、低摩擦性、高強度、耐摩耗性を与える芳香族ポリエーテルケトン、タルク、及び炭素繊維を有する材料から構成される。 The slide bearing 1 according to the present embodiment is composed of a composite material of aromatic polyether ketone, talc, carbon fiber, and unavoidable impurities. The inner peripheral surface of the cylindrical slide bearing 1 constitutes an inner peripheral surface (sliding surface) 1 a of the bearing in contact with the outer peripheral surface of the sleeve 11. That is, the slide bearing 1 is made of a material having an aromatic polyether ketone, talc, and carbon fiber that provides low friction, high strength, and abrasion resistance.
 本発明において、タルクが固体潤滑材として摩擦係数を下げ、また、炭素繊維が耐摩耗性及び低い摩擦係数をもたらす。 In the present invention, talc reduces the coefficient of friction as a solid lubricant, and carbon fibers provide abrasion resistance and a low coefficient of friction.
 すべり軸受が炭素繊維を含まない場合、摺動開始後にすべり面の摩擦により軸受部の熱膨張による変形が多くなり、相手材であるスリーブに接触するすべり面の面積が小さくなりやすい。このようにスリーブに接触するすべり面の面積が小さくなると、接触したすべり面の部分にかかる面圧が増加し、これにより材料の限界PV値を超えてしまう。限界PV値を超えると、すべり軸受のすべり面のスリーブへの焼き付きが発生し、摩擦係数の急上昇、軸受の破損が起こってしまう。一方、本発明においては、すべり軸受のすべり面に炭素繊維が含まれるため、すべり面の熱膨張による変形を防ぐことができ、すべり軸受の耐焼き付き性が向上する。 When the slide bearing does not contain carbon fiber, the friction of the sliding surface after the start of sliding causes deformation of the bearing due to thermal expansion to be large, and the area of the sliding surface in contact with the sleeve as the mating material tends to be small. When the area of the sliding surface in contact with the sleeve decreases in this manner, the surface pressure applied to the contacting sliding surface increases, thereby exceeding the limit PV value of the material. If the limit PV value is exceeded, seizing of the sliding surface of the sliding bearing to the sleeve occurs, resulting in a rapid increase in the coefficient of friction and damage to the bearing. On the other hand, in the present invention, since carbon fibers are contained in the sliding surface of the sliding bearing, deformation due to thermal expansion of the sliding surface can be prevented, and the seizure resistance of the sliding bearing is improved.
 芳香族ポリエーテルケトンは、PEK(ポリエーテルケトン)、PEEK(ポリエーテルエーテルケトン)、PEKK(ポリエーテルケトンケトン)、PEEKK(ポリエーテルエーテルケトンケトン)、のうち少なくとも1種類を含むことが好ましい。 The aromatic polyether ketone preferably contains at least one of PEK (polyether ketone), PEEK (polyether ether ketone), PEKK (polyether ketone ketone), and PEEKK (polyether ether ketone ketone).
 タルクは固体潤滑剤であり、多量である程、摩擦係数低減の効果がある。すべり軸受に対するタルクの含有率は、7質量%以上18質量%以下であり、10質量%以上17質量%以下が好ましく、12質量%以上15質量%以下がより好ましい。すべり軸受に対するタルクの含有率が上記範囲内であると、潤滑性が向上し、すべり軸受のすべり面の摩擦係数を低減させることができる。 Talc is a solid lubricant, and the larger the amount, the more effective the friction coefficient is reduced. The content of talc in the slide bearing is 7% by mass to 18% by mass, preferably 10% by mass to 17% by mass, and more preferably 12% by mass to 15% by mass. Lubricity improves that the content rate of the talc with respect to a slide bearing is in the said range, and the friction coefficient of the sliding surface of a slide bearing can be reduced.
 すべり軸受のすべり面における炭素繊維の面積率は、27%以上35%以下であり、30%以上34%以下が好ましく、31%以上33%以下がより好ましい。すべり軸受のすべり面における炭素繊維の面積率が上記範囲内であると、潤滑性が向上し、すべり軸受のすべり面の摩擦係数を低減させることができる。 The area ratio of carbon fibers in the slide surface of the slide bearing is 27% or more and 35% or less, preferably 30% or more and 34% or less, and more preferably 31% or more and 33% or less. When the area ratio of carbon fibers in the slide surface of the slide bearing is within the above range, the lubricity can be improved and the friction coefficient of the slide surface of the slide bearing can be reduced.
 タルクと炭素繊維の両者を含む場合、すべり軸受に対するタルクの含有率は、7質量%以上18質量%以下であり、かつすべり軸受のすべり面における炭素繊維の面積率は、27%以上35%以下である。また、上記タルクの含有率は、9質量%以上15質量%以下であり、かつ上記炭素繊維の面積率は、30%以上33%以下であることが好ましく、上記タルクの含有率は、10質量%以上12質量%以下であり、かつ上記炭素繊維の面積率は、31%以上32%以下であることがより好ましい。上記タルクの含有率及び上記炭素繊維の面積率が上記範囲内であると、水中での運転時に耐摩耗性に優れ、大気中での運転時に摩擦係数が低い状態で安定的に維持される。 When both talc and carbon fiber are contained, the content ratio of talc to the slide bearing is 7% by mass to 18% by mass, and the area ratio of carbon fiber in the slide surface of the slide bearing is 27% to 35% or less It is. The content of talc is preferably 9% to 15% by mass, and the area ratio of carbon fibers is preferably 30% to 33%, and the content of talc is 10%. % Or more and 12% by mass or less, and the area ratio of the carbon fiber is more preferably 31% or more and 32% or less. When the content ratio of the talc and the area ratio of the carbon fiber are in the above range, the abrasion resistance is excellent at the time of operation in water, and the friction coefficient is stably maintained at the low state in the operation in the atmosphere.
 タルクの含有率は、以下の方法により測定することができる。すなわち、成形したすべり軸受を100g測り取り、800℃において焼成を行い、炭素繊維、芳香族ポリエーテルケトンなどの成分を分解・揮発させ、タルクを灰分として回収し、灰分の重量を測定する。そして、すべり軸受の重量(100g)に対する灰分(タルク)の重量の割合を算出し、タルクの含有率とする。 The content rate of talc can be measured by the following method. That is, 100 g of the molded slide bearing is measured and fired at 800 ° C. to decompose and volatilize components such as carbon fiber and aromatic polyether ketone, recover talc as ash, and measure the weight of ash. And the ratio of the weight of an ash content (talc) with respect to the weight (100 g) of a slide bearing is calculated, and it is set as the content rate of a talc.
 タルクの形状としては、鱗片状、楕円等が好ましい。
 軸受のすべり面1aにおいて観察されるタルクの直径について、短軸径は、0.1μm以上が好ましく、0.5μm以上13μm以下がより好ましく、5μm以上11μm以下が最も好ましく、また、長軸径は、15μm以下が好ましく、1μm以上14μm以下がより好ましく、6μm以上12μm以下が最も好ましい。また、短軸径に対する長軸径の倍率は、1倍より大きく15倍以下が好ましく、1倍以上10倍以下がより好ましく、1倍以上5倍以下が最も好ましい。タルクの短軸径、長軸径、及び/又は短軸径に対する長軸径の倍率が上記範囲内であると、タルクが固体潤滑材として機能して潤滑性が向上し、すべり軸受のすべり面の摩擦係数を低減させることができる。タルクの短軸径及び長軸径は、SEM(HITACHI社製、観察視野:縦95μm×横125μm、印加電圧:15.0kV、倍率:1000倍)を用いて、2次電子像撮影を行うことにより測定することができ、観察部分の画像解析は、画像解析プログラム:AxioVision(ZEISS社製)を用いて行うことができる。
The shape of talc is preferably scaly, elliptical or the like.
With respect to the diameter of talc observed on the sliding surface 1a of the bearing, the minor axis diameter is preferably 0.1 μm or more, more preferably 0.5 μm to 13 μm, and most preferably 5 μm to 11 μm, and the major axis diameter 15 μm or less is preferable, 1 μm or more and 14 μm or less is more preferable, and 6 μm or more and 12 μm or less is the most preferable. Further, the magnification of the major axis diameter with respect to the minor axis diameter is preferably more than 1 and preferably 15 times or less, more preferably 1 to 10 times, and most preferably 1 to 5 times. When the magnification of the major axis diameter with respect to the minor axis diameter, major axis diameter and / or minor axis diameter of talc is within the above range, talc functions as a solid lubricant to improve lubricity, and the sliding surface of the slide bearing Coefficient of friction can be reduced. The minor axis diameter and major axis diameter of talc should be secondary electron image taken using SEM (HITACHI, field of view: 95 μm × 125 μm, applied voltage: 15.0 kV, magnification: 1000 ×). The image analysis of the observation portion can be performed using an image analysis program: AxioVision (manufactured by ZEISS).
 炭素繊維の面積率は、以下の方法により測定することができる。すなわち、成形したすべり軸受に平滑な表面を設け、平滑な表面においてランダムに10箇所を選定し、それぞれの箇所について光学顕微鏡(Keyence社製、対物レンズ50~100倍)を用いて縦214μm×横285μmの平面の撮影を行う。撮影した縦214μm×横285μmの平面を観察部分とし、画像解析により炭素繊維の部分の同定を行う。観察部分の面積全体に対する炭素繊維の面積の占める割合を算出し、10箇所における算出値の平均を求め炭素繊維の面積率とする。ここで、すべり軸受表面の観察部分の画像解析は、タルクの画像解析において用いた上述の画像解析プログラムと同様のものを使用して、炭素繊維の画素特性(明るさ、色)と同じ画素特性を有する部分を抽出することにより行う。 The area ratio of carbon fiber can be measured by the following method. That is, a smooth surface is provided on a molded slide bearing, and 10 places are randomly selected on the smooth surface, and an optical microscope (50-100 times objective lens made by Keyence) is used for each place to measure 214 μm long × horizontally Shoot a 285 μm flat surface. The photographed plane of 214 μm long and 285 μm wide is used as an observation portion, and the carbon fiber portion is identified by image analysis. The ratio of the area of the carbon fiber to the entire area of the observation portion is calculated, and the average of the calculated values at ten locations is determined to be the area ratio of the carbon fiber. Here, the image analysis of the observation portion of the slide bearing surface is the same as the pixel characteristics (brightness, color) of the carbon fiber, using the same image analysis program as described above used in the image analysis of talc. By extracting the part having.
 炭素繊維は短繊維から構成されていることが好ましい。
 軸受のすべり面1aにおいて観察される炭素繊維の直径は、5μm以上10μm以下が好ましく、5.5μm以上9μm以下がより好ましく、6μm以上8μm以下が最も好ましい。炭素繊維の直径は、光学顕微鏡(Keyence社製、対物レンズ50~100倍)を用いて、タルクの画像解析において用いた上述の画像解析プログラムと同様のものを使用して画像解析を行うことより測定することができる。
The carbon fibers are preferably composed of staple fibers.
The diameter of the carbon fiber observed on the sliding surface 1a of the bearing is preferably 5 μm to 10 μm, more preferably 5.5 μm to 9 μm, and most preferably 6 μm to 8 μm. The diameter of the carbon fiber is subjected to an image analysis using the same image analysis program as described above used in the image analysis of talc using an optical microscope (manufactured by Keyence, objective lens 50 to 100 times). It can be measured.
 また、軸受のすべり面1aにおいて観察される炭素繊維の長さは、5μm以上1000μm以下が好ましく、6μm以上500μm以下がより好ましく、7μm以上200μm以下が最も好ましい。炭素繊維の長さは、光学顕微鏡(Keyence社製、対物レンズ50~100倍)を用いて、タルクの画像解析において用いた上述の画像解析プログラムと同様のものを使用して画像解析を行うことより測定することができる。 In addition, the length of the carbon fiber observed on the sliding surface 1a of the bearing is preferably 5 μm to 1000 μm, more preferably 6 μm to 500 μm, and most preferably 7 μm to 200 μm. Perform the image analysis using the same image analysis program as the above-mentioned image analysis program used in the image analysis of talc using an optical microscope (objective lens 50 to 100 times, manufactured by Keyence) for the length of the carbon fiber It can measure more.
 本発明においては、タルク、芳香族ポリエーテルケトン、及び炭素繊維を、二軸混練機により加熱混合して樹脂組成物を調製し、この樹脂組成物を圧縮成形した後、表面加工を施すことによりすべり軸受を製造することができる。また、このすべり軸受を使用してすべり軸受装置を製造することができ、さらに、このすべり軸受装置を使用してポンプを製造することができる。 In the present invention, talc, aromatic polyether ketone and carbon fiber are heated and mixed by a twin screw kneader to prepare a resin composition, and the resin composition is compression-molded and then subjected to surface processing. Slide bearings can be manufactured. In addition, a slide bearing device can be manufactured using this slide bearing, and furthermore, a pump can be manufactured using this slide bearing device.
 以下、本発明について実施例により具体的に説明するが、本発明は実施例に記載の内容に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the contents described in the examples.
 実施例1では、まず、炭素繊維の面積率及びタルクの含有率のそれぞれが表1に示す値となるように、二軸混練機を用いて炭素繊維、タルク、及び芳香族ポリエーテルケトンを混合してペレットを製造した。得られたペレットを金型に入れ、加圧、加熱し、1次加工の成形を行った後、2次加工の機械加工により詳細な形状を付与し、すべり軸受を製造した。そして、得られたすべり軸受について、耐スラリー摩耗特性、摩擦係数及び限界PV値の評価を行った。 In Example 1, first, carbon fiber, talc, and aromatic polyether ketone are mixed using a twin-screw kneader so that each of the area ratio of carbon fiber and the content ratio of talc becomes the values shown in Table 1. To produce pellets. The obtained pellet was put in a mold, pressurized and heated, and formed into primary processing, and then a detailed shape was imparted by secondary processing machining to manufacture a slide bearing. Then, with respect to the obtained slide bearing, evaluation of slurry wear resistance, friction coefficient and limit PV value was performed.
 ここで、炭素繊維の面積率及びタルクの含有率は、上述の方法により測定を行い、炭素繊維の面積率を算出する際の画像解析条件は以下のように設定した。
 ・測定プログラムウィザードにおいて、
  画素「明るさ -0.66、コントラスト 2.65、ガンマ 1.00」に設定
  クリック「許容範囲 3、エッジサイズ 1」に設定
Here, the area ratio of carbon fiber and the content ratio of talc were measured by the above-mentioned method, and the image analysis conditions at the time of calculating the area ratio of carbon fiber were set as follows.
・ In the measurement program wizard,
Set the pixel "Brightness -0.66, Contrast 2.65, Gamma 1.00" Click "Set Tolerance 3; Edge Size 1"
 なお、表1には炭素繊維の面積率と、タルクの含有率のみが記載されているが、残部は芳香族ポリエーテルケトン及び不可避不純物が占めている。
Although only the area ratio of carbon fiber and the content ratio of talc are described in Table 1, the balance is occupied by aromatic polyether ketone and unavoidable impurities.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、表1における各すべり軸受の評価は以下のように行った。
 (摩耗速度)
 まず、平均粒径が約5μmのケイ砂(主成分:Si02)と平均粒径が約30μmのケイ砂とが1:1の割合で含まれている砂粒子を3000mg/Lの濃度となるように水中に投入し、スラリーを含む水を作成した。得られたスラリーを含む水の中に上記すべり軸受を含む軸受装置を沈め、8時間にわたって25℃で維持されている水の中でPV値0.6MPa・m/sの条件においてWC基超硬合金の初期表面粗さ(Ra)が3.2の平面に対して摺動させ、すべり軸受の摩耗速度(μm/h)を算出した。そして、すべり軸受の摩耗速度が30μm/h以下である場合を耐スラリー摩耗性があり、一方、30μm/hを超える場合を耐スラリー摩耗性に劣るとした。
Here, evaluation of each slide bearing in Table 1 was performed as follows.
(Wear rate)
First, sand particles containing silica sand (main component: Sio 2 ) having an average particle size of about 5 μm and silica sand having an average particle size of about 30 μm in a ratio of 1: 1 have a concentration of 3000 mg / L. The mixture was poured into water to prepare water containing a slurry. The bearing device including the above-mentioned slide bearing is immersed in water containing the obtained slurry, and WC-based cemented carbide under the condition of PV value 0.6 MPa · m / s in water maintained at 25 ° C. for 8 hours The initial surface roughness (Ra) of the alloy was slid against a plane of 3.2, and the wear rate (μm / h) of the slide bearing was calculated. And when the wear rate of a slide bearing was 30 micrometers / h or less, it had slurry abrasion resistance, and on the other hand, the case where it exceeded 30 micrometers / h was made inferior to slurry abrasion resistance.
 (摩擦係数、最大摩擦係数)
 上記すべり軸受を含む軸受装置を、大気中において、図4に示す装置を用いて、PV値:1.0MPa・m/sで2時間、WC基超硬合金の初期表面粗さ(Ra)が3.2の面に対して潤滑油を用いずに摺動させ、2時間の間、0.5秒間隔で連続的に摩擦係数の測定を行った。
(Friction coefficient, maximum friction coefficient)
The initial surface roughness (Ra) of WC base cemented carbide is 2 hours at a PV value of 1.0 MPa · m / s using a device shown in FIG. The friction coefficient was measured continuously at intervals of 0.5 seconds for 2 hours while sliding on the surface of 3.2 without using lubricating oil.
 そして、2時間の運転中のうちの後半の1時間における摩擦係数の平均値を算出し、すべり軸受の摩擦係数とした。すべり軸受の摩擦係数が0.1以下である場合を摩擦が小さく良好であり、一方、0.1を超える場合を摩擦が大きく不良であるとした。 And the average value of the friction coefficient in 1 hour of the second half in 2 hours of operation was computed, and it was set as the friction coefficient of the slide bearing. When the friction coefficient of the slide bearing is 0.1 or less, the friction is small and good, and when it exceeds 0.1, the friction is large and defective.
 また、2時間の運転中に測定した摩擦係数のうちで最大のものを、すべり軸受の最大摩擦係数とした。すべり軸受の最大摩擦係数が0.1以下である場合を運転中の全期間において摩擦係数を低く維持できていて良好(○)であるとし、一方、0.1を超える場合を運転中において摩擦係数が高くなってしまうことがあり不良(×)であるとした。 In addition, the largest friction coefficient among the friction coefficients measured during two hours of operation was taken as the maximum friction coefficient of the slide bearing. When the maximum friction coefficient of the slide bearing is 0.1 or less, the friction coefficient can be maintained low throughout the entire operation period, which is good (○). On the other hand, when it exceeds 0.1, the friction during operation The coefficient may be high, which is considered to be a defect (x).
 (限界PV値)
 図4に示した装置を用いたドライ試験においてPV値1.5MPa・m/sで2時間運転した場合でも、すべり軸受のすべり面から深さ5mmの位置の温度が120℃以下であるものを良好(〇)とし、一方、120℃を超えるものを不良(×)とした。
(Limit PV value)
Even in a dry test using the apparatus shown in FIG. 4, even when operating at a PV value of 1.5 MPa · m / s for 2 hours, a temperature at a position 5 mm deep from the sliding surface of the sliding bearing is 120 ° C. or less It was considered as good (o), while those over 120 ° C. were regarded as defective (x).
 また、総合評価として、摩耗速度、摩擦係数、最大摩擦係数及び限界PV値の全ての評価において優れているものを良好(○)とし、それ以外のものを不良(×)とした。 Moreover, what was excellent in all evaluations of a wear rate, a friction coefficient, a maximum friction coefficient, and a limit PV value was made favorable ((circle)), and others were made defect (x) as comprehensive evaluation.
 表1に示すように、本発明例No.1~6のすべり軸受は、摩耗速度が30μm/h以下であり耐スラリー摩耗性に優れていた。一方、比較例No.3、4、及び6~9のすべり軸受は、摩耗速度が30μm/h以下であり耐スラリー摩耗性に優れているものの、比較例No.1、2、及び5のすべり軸受は、摩耗速度が30μm/hを超え耐スラリー摩耗性が劣っていた。表1の結果からわかるように、耐スラリー摩耗性は、炭素繊維の面積率、及び/又はタルクの含有量が多くなるにつれて悪化する傾向にあった。 As shown in Table 1, Invention Example No. 1 The sliding bearings 1 to 6 had a wear rate of 30 μm / h or less and were excellent in the slurry wear resistance. On the other hand, Comparative Example No. Although the sliding bearings of Nos. 3, 4 and 6 to 9 have a wear rate of 30 μm / h or less and are excellent in the resistance to slurry abrasion, Comparative Examples No. 1 and No. 2 have the following characteristics. The sliding bearings of 1, 2 and 5 had a wear rate exceeding 30 μm / h and had poor resistance to slurry wear. As seen from the results in Table 1, the slurry abrasion resistance tended to deteriorate as the area ratio of carbon fibers and / or the content of talc increased.
 また、本発明例No.1~6のすべり軸受は、摩擦係数が0.1以下であり良好な結果であった。一方、比較例No.1~7のすべり軸受は、摩擦係数が0.1以下であり良好な結果であるものの、比較例No.8及び9のすべり軸受は、摩擦係数が0.1を超えており結果に劣るものであった。表1の結果からわかるように、摩擦係数は炭素繊維の面積率により変動し、炭素繊維の面積率が小さくなると摩擦係数が増加し、炭素繊維の面積率が大きくなると摩擦係数が減少する傾向にあった。 Moreover, in the present invention example no. The sliding bearings 1 to 6 had good coefficients of friction of 0.1 or less. On the other hand, Comparative Example No. Although the sliding bearings 1 to 7 have a coefficient of friction of 0.1 or less, which is a good result, Comparative Example No. 1 has a good result. The sliding bearings of 8 and 9 had a coefficient of friction exceeding 0.1, which was inferior to the results. As can be seen from the results in Table 1, the coefficient of friction fluctuates with the area ratio of carbon fibers, the coefficient of friction increases as the area ratio of carbon fibers decreases, and the coefficient of friction decreases as the area ratio of carbon fibers increases. there were.
 さらに、本発明例No.1~6のすべり軸受は、最大摩擦係数が0.1以下であり良好な結果であった。一方、比較例No.1及び2のすべり軸受は、最大摩擦係数が0.1以下であり良好な結果であるものの、比較例No.3~9のすべり軸受は、最大摩擦係数が0.1を超えており結果に劣るものであった。表1の結果からわかるように、最大摩擦係数は炭素繊維の面積率及びタルクの含有率により変動し、炭素繊維の面積率が27%以上、及び/又はタルクの含有率が7質量%以上の場合に、最大摩擦係数が0.1以下となり良好な結果が得られた。 Furthermore, in the invention example no. The sliding bearings 1 to 6 had a maximum coefficient of friction of 0.1 or less, which was a good result. On the other hand, Comparative Example No. Although the sliding bearings of No. 1 and No. 2 have a maximum friction coefficient of 0.1 or less, which is a good result, Comparative Example No. The sliding bearings of 3 to 9 had a maximum coefficient of friction exceeding 0.1 and were inferior in results. As can be seen from the results in Table 1, the maximum friction coefficient varies depending on the area ratio of carbon fibers and the content ratio of talc, and the area ratio of carbon fibers is 27% or more and / or the content ratio of talc is 7% by mass or more In this case, the maximum coefficient of friction was 0.1 or less, and good results were obtained.
 加えて、本発明例No.1~6及び比較例No.1~4のすべり軸受は、すべり軸受のすべり面から深さ5mmの位置の温度が120℃以下であり、限界PV値の評価が良好であった。一方、比較例No.5~9のすべり軸受は、いずれもすべり軸受のすべり面から深さ5mmの位置の温度が120℃を超え、限界PV値の評価が不良となった。表1の結果からわかるように、限界PV値の評価は炭素繊維の面積率により変動し、炭素繊維の面積率が小さくなると悪化し、炭素繊維の面積率が大きくなると改善する傾向にあった。 In addition, the invention example no. 1 to 6 and Comparative Example No. 1 In the slide bearings of 1 to 4, the temperature at a position 5 mm deep from the slide surface of the slide bearing was 120 ° C. or less, and the evaluation of the critical PV value was good. On the other hand, Comparative Example No. In all of the slide bearings 5 to 9, the temperature at a position 5 mm deep from the slide surface of the slide bearing exceeded 120 ° C., and the evaluation of the critical PV value became poor. As can be seen from the results in Table 1, the evaluation of the critical PV value fluctuates depending on the area ratio of the carbon fiber, and deteriorates as the area ratio of the carbon fiber decreases, and tends to improve as the area ratio of the carbon fiber increases.
 そして、炭素繊維の面積率が27%以上35%以下であり、タルクの含有率が7質量%以上18質量%以下である本発明例No.1~6のすべり軸受は、総合評価が良好となり、一方、炭素繊維の面積率及びタルクの含有率の少なくとも一つが前記数値範囲を満たさない比較例No.1~9のすべり軸受は、総合評価が不良となった。 And, the area ratio of carbon fiber is 27% or more and 35% or less, and the content ratio of talc is 7% by mass or more and 18% by mass or less according to the invention example No. The comparative bearings No. 1 to 6 of Comparative Examples No. 1 to No. 6 have good overall evaluation, while at least one of the area ratio of carbon fiber and the content ratio of talc does not satisfy the above-mentioned numerical range. The slide bearings of 1 to 9 were poor in overall evaluation.
 実施例1の本発明例No.3のすべり軸受、及び比較例のすべり軸受(PEEK樹脂及び連続繊維の炭素繊維で構成されており、タルクを含まないすべり軸受)をそれぞれ、図3に示した立形斜流ポンプのラジアル軸受である軸受32、33として使用し、実際の異物(土砂)を含む水の排水運転及びドライ運転を繰り返した。 Invention Example No. 1 of Example 1 The slide bearings of No. 3 and the slide bearings of the comparative example (sliding bearings composed of PEEK resin and carbon fiber of continuous fiber and containing no talc) are each radial bearings of the vertical mixed flow pump shown in FIG. It used as a certain bearing 32 and 33, and the drainage operation and dry operation of water containing actual foreign matter (earth and sand) were repeated.
 排水運転及びドライ運転を繰り返した結果、実施例1の本発明例No.3のすべり軸受の摩耗速度は25.3μm/hであり、比較例の従来のPEEK樹脂を用いたすべり軸受の摩耗速度:84.8μm/hに比べて3分の1程度まで摩耗速度が低下した。比較例の従来のPEEK樹脂を用いたすべり軸受ではドライ運転時に短時間で急激な軸受温度上昇が発生し、ポンプの運転を中止する必要があった。一方で、実施例1の本発明例No.3のすべり軸受では、急激な温度上昇は発生せず、安定してポンプを運転することができた。即ち、排水運転及びドライ運転が繰り返し行われるような過酷な条件で使用される軸受32,33に本発明のすべり軸受を使用することにより、大気中と異物混入水中の両方において優れた軸受特性を発揮できた。 As a result of repeating the drainage operation and the dry operation, Invention Example No. 1 of Example 1 was obtained. The wear rate of the slide bearing of No. 3 is 25.3 μm / h, and the wear rate of the slide bearing using the conventional PEEK resin of the comparative example: the wear rate is reduced to about 1/3 compared to 84.8 μm / h did. In the slide bearing using the conventional PEEK resin of the comparative example, a rapid rise in bearing temperature occurs in a short time during dry operation, and it is necessary to stop the operation of the pump. On the other hand, in the present invention example No. 1 of Example 1, In the case of No. 3 sliding bearing, no sudden temperature rise occurred and the pump could be operated stably. That is, by using the slide bearing of the present invention for the bearings 32, 33 used under severe conditions where drainage operation and dry operation are repeatedly performed, excellent bearing characteristics both in the atmosphere and in the water containing foreign matter can be obtained. I was able to demonstrate.
 表1の本発明例のNo.5及び比較例のNo.7のすべり軸受それぞれを、図4に示す装置に装着して、PV値:0.5m/s・MPaの運転条件で2時間運転し、0.5秒間隔で連続的に測定し、摩擦係数と軸受温度の時間変化を示すグラフ(図7A及び図7B)を作成した。ここで、すべり軸受の摺動する相手面の回転軸10に装着されたスリーブ11は、WC基超硬合金で、初期面粗度(Ra):3.2の面であった。 In the example of the present invention of Table 1, No. No. 5 and No. 5 of the comparative example. Each of the 7 slide bearings was attached to the device shown in FIG. 4 and operated for 2 hours under the operating condition of PV value: 0.5 m / s · MPa, continuously measured at intervals of 0.5 seconds, the coefficient of friction And the graph (Fig. 7A and 7B) which shows the time change of bearing temperature was created. Here, the sleeve 11 mounted on the rotary shaft 10 of the mating surface on which the slide bearing slides is a WC-based cemented carbide and has a surface with an initial surface roughness (Ra) of 3.2.
 図7A及び図7Bは、それぞれ本発明例のNo.5及び比較例のNo.7に関する測定結果である。 7A and 7B respectively show No. 1 of the invention example. No. 5 and No. 5 of the comparative example. It is a measurement result regarding 7.
 図7A及び図7Bの測定結果について、摩擦係数及び温度上昇量は平均的には大差がないが、図7Bでは、摩擦係数及び温度のいずれについても、所々でパルス状の急上昇・急降下が見られ、摩擦係数の上昇に連動した温度上昇も見られた。この結果より、すべり軸受の運転状態が非常に不安定であることがわかった。 Regarding the measurement results of FIG. 7A and FIG. 7B, although the friction coefficient and the temperature rise amount do not have a large difference on average, in FIG. 7B, pulse-like rapid rise / drop is seen in some places for both friction coefficient and temperature There was also a temperature rise linked to a rise in the coefficient of friction. From this result, it was found that the operating condition of the slide bearing is very unstable.
 一方で図7Aでは、図7Bと比べて摩擦係数及び温度のいずれについても、パルス状の急上昇・急降下がほとんど見られず、急上昇・急降下がある場合でも非常に上昇・下降の幅が小さかった。この結果より、すべり軸受の運転状態が非常に安定していることがわかった。 On the other hand, in FIG. 7A, compared with FIG. 7B, almost no pulse-like rapid rise / drop was seen in any of the coefficient of friction and temperature, and the range of rise / drop was very small even in the case of rapid rise / drop. From this result, it was found that the operating condition of the slide bearing was very stable.
 また、表1の本発明例のNo.5及び比較例のNo.7のすべり軸受それぞれを、図4に示す装置に装着して、PV値:0.4、0.5、0.75、又は1.0m/s・MPaのそれぞれの運転条件で2時間運転し、0.5秒間隔で連続的に測定し、2時間の運転中に測定した摩擦係数のうちで最大のものをすべり軸受の最大摩擦係数とし、本発明例のNo.5及び比較例のNo.7についての最大摩擦係数と軸受温度の時間変化を示すグラフ(図8)を作成した。 Moreover, No. 1 of the example of this invention of Table 1 is. No. 5 and No. 5 of the comparative example. Each of the seven plain bearings was attached to the device shown in FIG. 4 and operated for 2 hours under the respective operating conditions of PV value: 0.4, 0.5, 0.75, or 1.0 m / s · MPa. The maximum friction coefficient of the slide bearing is determined as the largest friction coefficient among the friction coefficients measured continuously at intervals of 0.5 seconds, and the largest among the friction coefficients measured during two hours of operation. No. 5 and No. 5 of the comparative example. A graph (FIG. 8) was made showing the time variation of the maximum friction coefficient and bearing temperature for No.7.
 図8からわかるように、本発明例のNo.5のすべり軸受の方が、最大摩擦係数が低く、その値は、0.4~1.0m/s・MPaのPV値の範囲内において大きな変化はなく安定していた。この結果より、本発明のすべり軸受は、様々なPV値の条件下において、運転中の全期間において摩擦係数を低く維持できており安定な運転を行えているとわかった。一方、比較例のNo.7のすべり軸受は、0.4~1.0m/s・MPaのPV値の範囲内において、最大摩擦係数が比較的大きな値を示し、PV値によってその値は大きく変動していた。この結果より、比較例のすべり軸受は、運転中に摩擦係数が高くなってしまうことがあり、また、PV値によって最大摩擦係数が変動し運転が不安定であるとわかった。 As can be seen from FIG. The sliding bearing of No. 5 had a lower maximum coefficient of friction, and its value was stable without any significant change within the PV value range of 0.4 to 1.0 m / s · MPa. From the results, it was found that the sliding bearing of the present invention was able to maintain a low coefficient of friction for the entire period of operation under various conditions of PV values, and was able to perform stable operation. On the other hand, No. 1 of the comparative example. In the slide bearing of No. 7, the maximum friction coefficient exhibited a relatively large value within the PV value range of 0.4 to 1.0 m / s · MPa, and the value largely fluctuated depending on the PV value. From this result, it was found that the sliding bearing of the comparative example may have a high coefficient of friction during operation, and the maximum coefficient of friction fluctuates depending on the PV value, resulting in unstable operation.
 以上で説明したように、本実施形態に係るすべり軸受装置のすべり軸受をラジアル軸受として備えたポンプであれば、異物混入水を処理する排水機場において、水中運転と大気中運転とが繰り返されても、すべり軸受の摩耗を抑制し、且つすべり軸受の低摩擦性(潤滑性)を維持することができる。 As described above, in the case of a pump provided with the slide bearing of the slide bearing device according to the present embodiment as a radial bearing, underwater operation and atmospheric operation are repeated in the drainage station for treating foreign matter mixed water. Also, the wear of the slide bearing can be suppressed, and the low friction (lubricity) of the slide bearing can be maintained.
 本実施形態に係るすべり軸受装置は、大気運転において運転するラジアル軸受としてのすべり軸受装置や、異物の混入した水中で運転するラジアル軸受としてのすべり軸受装置に利用することができる。また、異物の混入している水中での運転と、大気中での運転とが繰り返されるラジアル軸受としてのすべり軸受装置にも、本実施形態に係るすべり軸受装置を利用することができる。 The slide bearing device according to the present embodiment can be used for a slide bearing device as a radial bearing operating in atmospheric operation and a slide bearing device as a radial bearing operating in water in which foreign matter is mixed. In addition, the slide bearing device according to the present embodiment can also be used for a slide bearing device as a radial bearing in which the operation in water containing foreign matter and the operation in the atmosphere are repeated.
 以上に本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載のない何れの形状や材質であっても、本発明の作用・効果を奏する以上、本発明の技術的思想の範囲内である。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications may be made within the scope of the claims and the technical idea described in the specification and the drawings. Is possible. In addition, even if it is any shape and material which are not directly described in the specification and the drawings, it is within the scope of the technical idea of the present invention as long as the functions and effects of the present invention are exhibited.
1…すべり軸受
1a…内周面(すべり面)
3…立軸ポンプ
10…回転軸
11…スリーブ
1 Slide bearing 1a Inner circumferential surface (sliding surface)
3 Vertical shaft pump 10 Rotary shaft 11 Sleeve

Claims (6)

  1.  すべり軸受を備えたすべり軸受装置であって、
     前記すべり軸受は、芳香族ポリエーテルケトン、タルク、炭素繊維、及び不可避不純物を含み、
     前記すべり軸受に対する前記タルクの含有率は7質量%以上18質量%以下であり、
     前記すべり軸受のすべり面における前記炭素繊維の面積率は27%以上35%以下である、すべり軸受装置。
    A slide bearing device comprising a slide bearing, wherein
    The slide bearing includes aromatic polyether ketone, talc, carbon fiber, and unavoidable impurities.
    The content ratio of the talc to the slide bearing is 7% by mass to 18% by mass,
    The slide bearing device, wherein the area ratio of the carbon fibers in the slide surface of the slide bearing is 27% or more and 35% or less.
  2.  前記すべり軸受のすべり面が、大気と接触した状態及び土砂が混入した水と接触した状態のいずれでも運転可能に構成されている、請求項1に記載されたすべり軸受装置。 The sliding bearing device according to claim 1, wherein the sliding surface of the sliding bearing is configured to be operable either in contact with the atmosphere or in contact with water mixed with earth and sand.
  3.  前記芳香族ポリエーテルケトンは、PEK、PEEK、PEKK、又はPEEKKである、請求項1又は2に記載されたすべり軸受装置。 The sliding bearing device according to claim 1, wherein the aromatic polyether ketone is PEK, PEEK, PEKK, or PEEKK.
  4.  前記炭素繊維は、直径が5μm以上10μm以下である、請求項1~3のいずれか一項に記載されたすべり軸受装置。 The slide bearing device according to any one of claims 1 to 3, wherein the carbon fiber has a diameter of 5 μm to 10 μm.
  5.  前記タルクは、鱗片状であり、短軸径が0.1μm以上、長軸径が15μm以下であり、前記短軸径に対して前記長軸径が1倍より大きく15倍以下である、請求項1~4のいずれか一項に記載されたすべり軸受装置。 The talc is scaly, has a minor axis diameter of 0.1 μm or more and a major axis diameter of 15 μm or less, and the major axis diameter is more than 1 times and 15 times or less of the minor axis diameter. The slide bearing device according to any one of Items 1 to 4.
  6.  請求項1~5のいずれか一項に記載されたすべり軸受装置を備えたポンプ。 A pump comprising the slide bearing device according to any one of claims 1 to 5.
PCT/JP2018/043312 2017-11-30 2018-11-26 Sliding bearing device and pump comprising same WO2019107292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880076405.XA CN111406158B (en) 2017-11-30 2018-11-26 Sliding bearing device and pump provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-230755 2017-11-30
JP2017230755A JP6994194B2 (en) 2017-11-30 2017-11-30 Plain bearing device and pump equipped with it

Publications (1)

Publication Number Publication Date
WO2019107292A1 true WO2019107292A1 (en) 2019-06-06

Family

ID=66665618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043312 WO2019107292A1 (en) 2017-11-30 2018-11-26 Sliding bearing device and pump comprising same

Country Status (3)

Country Link
JP (1) JP6994194B2 (en)
CN (1) CN111406158B (en)
WO (1) WO2019107292A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262976A (en) * 1991-12-25 1993-10-12 Ntn Corp Oil seal ring
JP2012251616A (en) * 2011-06-03 2012-12-20 Ntn Corp Multi-layered bearing, thrust multi-layered bearing, and thrust multi-layered bearing device
JP2015113810A (en) * 2013-12-13 2015-06-22 Ntn株式会社 Internal gear pump
JP2016205545A (en) * 2015-04-24 2016-12-08 株式会社荏原製作所 Slide bearing device and pump including the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553831B1 (en) * 1992-01-29 1998-12-02 Ebara Corporation Thermotropic liquid crystal polymer composition and insulator
JPH06228331A (en) * 1993-01-29 1994-08-16 Ntn Corp Composite sliding member
JP3708348B2 (en) * 1998-12-24 2005-10-19 三井化学株式会社 Polyimide resin composition
CN1208560C (en) * 2003-02-24 2005-06-29 济南大学 Composite material sliding bearing with base of high-temp polymer
JP4515824B2 (en) * 2004-05-27 2010-08-04 Ntn株式会社 High precision plain bearing
DE102008049747A1 (en) * 2008-09-30 2010-04-01 Saint-Gobain Performance Plastics Pampus Gmbh Vibration-damping plain bearing composite material and plain bearing bush and plain bearing arrangement
WO2010092921A1 (en) * 2009-02-10 2010-08-19 Nok株式会社 Sliding member and process for producing same
JP5262976B2 (en) 2009-05-14 2013-08-14 株式会社デンソー In-vehicle display device
CN101782073A (en) * 2010-03-16 2010-07-21 肖琼 Vertical-type wear resistant submerged pump
JP2012025149A (en) * 2010-03-26 2012-02-09 Dainippon Printing Co Ltd Fiber-reinforced composite material for automotive member and method for producing the same
WO2012137509A1 (en) * 2011-04-05 2012-10-11 株式会社 東芝 Bearing device and hydraulic machine
JP6193032B2 (en) * 2013-07-18 2017-09-06 株式会社荏原製作所 Sliding bearing device and pump equipped with the same
CN105408635B (en) * 2013-07-25 2017-10-27 株式会社荏原制作所 Vertical shaft pump
CN103410863B (en) * 2013-07-30 2016-01-27 广东工业大学 Material, the device and method of steel backing/carbon fiber knitted fabric self-lubricating lining bearing shell
CN105874230B (en) * 2013-12-27 2018-06-22 株式会社荏原制作所 Plain bearing arrangement
KR101901623B1 (en) * 2014-08-21 2018-09-27 세키스이가세이힝코교가부시키가이샤 Resin composite and method for manufacturing resin composite
JP6649108B2 (en) * 2016-02-15 2020-02-19 大同メタル工業株式会社 Sliding device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262976A (en) * 1991-12-25 1993-10-12 Ntn Corp Oil seal ring
JP2012251616A (en) * 2011-06-03 2012-12-20 Ntn Corp Multi-layered bearing, thrust multi-layered bearing, and thrust multi-layered bearing device
JP2015113810A (en) * 2013-12-13 2015-06-22 Ntn株式会社 Internal gear pump
JP2016205545A (en) * 2015-04-24 2016-12-08 株式会社荏原製作所 Slide bearing device and pump including the same

Also Published As

Publication number Publication date
JP2019100428A (en) 2019-06-24
CN111406158B (en) 2022-06-24
JP6994194B2 (en) 2022-01-14
CN111406158A (en) 2020-07-10

Similar Documents

Publication Publication Date Title
EP2565243B1 (en) Self-lubricating surface coating composition for low friction or soft substrate applications
CA2725433C (en) Self-lubricating surface coating composition
US5792717A (en) Sliding material
US20120328461A1 (en) Motor pump bearing
JP6193032B2 (en) Sliding bearing device and pump equipped with the same
JP2009222207A (en) Bearing and pump having the same
US7128523B2 (en) Drainage pump and underwater bearing unit
US7264877B2 (en) Sliding element for seals and their process of manufacturing
WO2016171241A1 (en) Sliding bearing device and pump provided with same
WO2019107292A1 (en) Sliding bearing device and pump comprising same
JPH08121361A (en) Screw rotor and screw type compressor and manufacture thereof
JP2009222208A (en) Bearing and pump having the same
JP4423803B2 (en) Horizontal shaft type pump
JP2899641B2 (en) Bearing structure and pump for drainage pump
WO2022149330A1 (en) Slide bearing, slide bearing device, and pump
WO2022149329A1 (en) Sliding bearing, sliding bearing device, and pump
JP4330235B2 (en) Vertical pump
JP2022074729A (en) Plain bearing, plain bearing device, and pump with the plain bearing device
US20230321784A1 (en) Method of manufacturing mechanical element and mechanical element
JP2006170239A (en) Combination sliding member for sliding bearing
JP2022124981A (en) Bearing slide mechanism
JP3954219B2 (en) Rolling bearing
CN112867870A (en) Multi-bearing design for shaft stabilization
JPH02153290A (en) Vacuum pump for priming
JP2017160468A (en) Sliding material, shaft sleeve and pump with shaft sleeve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882976

Country of ref document: EP

Kind code of ref document: A1