WO2019106942A1 - Virtual image display device - Google Patents

Virtual image display device Download PDF

Info

Publication number
WO2019106942A1
WO2019106942A1 PCT/JP2018/036681 JP2018036681W WO2019106942A1 WO 2019106942 A1 WO2019106942 A1 WO 2019106942A1 JP 2018036681 W JP2018036681 W JP 2018036681W WO 2019106942 A1 WO2019106942 A1 WO 2019106942A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
virtual image
unit
vehicle
high frequency
Prior art date
Application number
PCT/JP2018/036681
Other languages
French (fr)
Japanese (ja)
Inventor
大翔 坂野
猛 羽藤
泰三 宮戸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019106942A1 publication Critical patent/WO2019106942A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present disclosure relates to a virtual image display device that displays a virtual image.
  • Patent Document 1 specifies a change in posture that occurs in the vehicle, and changes the direction of the liquid crystal panel and the backlight by a rotation mechanism. Is disclosed.
  • the configuration disclosed in Patent Document 1 can identify an uphill, a downhill, and the like based on a change in posture of the vehicle, and move the display position of the virtual image up and down on the uphill and the downhill.
  • the head-up display device of Patent Document 1 specifies whether the vehicle is traveling on a bad road based on the frequency of posture change or the like, and if it is specified that the vehicle is traveling on a bad road, Prohibits the display of virtual images.
  • the rotation mechanism of Patent Document 1 is configured to reduce positional deviation of a virtual image caused by a change in attitude of a low frequency band which occurs on an uphill, a downhill, or the like. Therefore, even if the display of the virtual image is continued while traveling on a bad road, it is difficult for the rotation mechanism to perform the operation of causing the display position of the virtual image to follow the posture change of the high frequency band. As a result, the correction of the display position of the virtual image did not function properly, and the correct superimposed display of the virtual image could not be realized.
  • An object of the present disclosure is to provide a virtual image display device capable of continuing correct superimposed display of virtual images even when a change in attitude in a high frequency band occurs in a vehicle.
  • a virtual image display apparatus that superimposes and displays a virtual image on the foreground of the vehicle by projecting a display light image onto a projection area defined in the vehicle is a low frequency of the posture change occurring in the vehicle
  • a low frequency information acquisition unit for acquiring attitude change information of a band
  • a high frequency information acquisition unit for acquiring attitude change information of a high frequency band higher in frequency than the low frequency band among the attitude changes generated by the vehicle
  • the display An image of light image data, wherein the image data corrected for reducing positional deviation of the virtual image due to posture change in the low frequency band is rendered using posture change information in the low frequency band
  • a positional deviation of the virtual image caused by a change in posture of the high frequency band is reduced
  • a projection optical unit that projects the display light image generated from the image data onto the projection area, and a drawing unit. So that the at least a portion of the optical element included in the projection optical unit, and an optical compensation mechanism for displacing on the basis of the posture change information of the high frequency band
  • the optical correction mechanism for displacing the optical element of the projection optical unit may not substantially correct the displacement of the virtual image due to the attitude change in the low frequency band.
  • the optical correction mechanism can be a configuration suitable for reducing displacement of a virtual image caused by a change in attitude of a high frequency band. Therefore, the optical correction mechanism can effectively reduce the positional deviation of the virtual image by making the optical correction for displacing the optical element follow the posture change in the high frequency band. Therefore, even when the attitude change in the high frequency band occurs in the vehicle, the virtual image display device can continue the correct superimposed display of the virtual image.
  • a virtual image display apparatus that superimposes and displays a virtual image on the foreground of the vehicle by projecting a display light image onto a projection area defined in the vehicle is a high frequency band among the attitude changes generated by the vehicle.
  • High-frequency information acquisition unit for acquiring posture change information, and image data drawn using posture change information in a low frequency band lower in frequency than the high frequency band among posture changes generated by the vehicle,
  • An image acquisition unit for acquiring the image data corrected to reduce positional deviation of the virtual image due to posture change in a low frequency band, the display light image generated from the image data, the projection area And at least a portion of the light included in the projection optical unit such that positional deviation of the virtual image due to attitude change in the high frequency band is reduced.
  • Elements, and an optical compensation mechanism for displacing on the basis of the posture change information of the high frequency band.
  • the optical correction mechanism for displacing the optical element of the projection optical unit may not substantially correct the displacement of the virtual image due to the attitude change in the low frequency band.
  • the optical correction mechanism can be a configuration suitable for reducing displacement of a virtual image caused by a change in attitude of a high frequency band. Therefore, the optical correction mechanism can effectively reduce the positional deviation of the virtual image by making the optical correction for displacing the optical element follow the posture change in the high frequency band. Therefore, even when the attitude change in the high frequency band occurs in the vehicle, the virtual image display device can continue the correct superimposed display of the virtual image.
  • FIG. 1 is a block diagram showing an overview of a vehicle-mounted system including a virtual image display device according to a first embodiment of the present disclosure
  • FIG. 8 is a diagram showing vibration characteristics of posture change occurring in a vehicle, and a diagram showing an example of each range of a high frequency band and a low frequency band
  • FIG. 8 schematically shows an example of the correlation between the frequency and the gain for signals for measuring each frequency band
  • FIG. 12 is a diagram showing the details of the HUD, and is a diagram for explaining an optical correction process by cooperation of the optical correction mechanism and the correction optical element
  • FIG. 1 is a block diagram showing an overview of a vehicle-mounted system including a virtual image display device according to a first embodiment of the present disclosure
  • FIG. 8 is a diagram showing vibration characteristics of posture change occurring in a vehicle, and a diagram showing an example of each range of a high frequency band and a low frequency band
  • FIG. 8 schematically shows an example of the correlation between the frequency and the gain for signals for measuring each frequency band
  • FIG. 8 is a view showing an example of a virtual image display when no change in posture occurs in the vehicle, It is a figure which shows the effect of the positional offset reduction correction
  • the virtual image display device 100 presents the driver with various information related to the vehicle A by means of AR (Augmented Reality) display using a virtual image Vi displayed superimposed on the foreground of the vehicle A.
  • the virtual image display apparatus 100 can mutually communicate with other in-vehicle configurations via the communication bus 29 of the in-vehicle network.
  • An external sensor 21, a locator 22, a three-dimensional map database 23, a height sensor 24, a vehicle control unit 26 and the like are electrically connected directly or indirectly to the communication bus 29.
  • the external world sensor 21 detects moving objects such as pedestrians and other vehicles, and stationary objects such as curbs on roads, road signs, road markings, and division lines. At least a part of the moving object and the stationary object is a target of alerting by the superimposed display of the virtual image Vi.
  • the external sensor 21 includes, for example, a camera unit, a rider, a millimeter wave radar, and the like.
  • the external world sensor 21 sequentially outputs to the communication bus 29 object information indicating the relative positions and types of the detected moving object and stationary object.
  • the locator 22 can receive positioning signals from each positioning satellite of at least one satellite positioning system among satellite positioning systems such as GPS, GLONASS, Galileo, IRNSS, QZSS, and Beidou.
  • the locator 22 measures the position of the vehicle A based on the received positioning signal.
  • the locator 22 sequentially outputs the measured position information of the vehicle A to the communication bus 29.
  • the locator 22 may have an inertial sensor for correcting position information.
  • the three-dimensional map database (hereinafter, "three-dimensional map DB") 23 is configured mainly of a large-capacity storage medium storing a large number of three-dimensional map data.
  • the three-dimensional map data is, for example, highly accurate map data that enables automatic driving, and includes information indicating the latitude, longitude, and altitude of a road.
  • the three-dimensional map DB 23 can update the three-dimensional map data to the latest information through the network.
  • the three-dimensional map DB 23 can provide the virtual image display device 100 with three-dimensional map data of the periphery and the traveling direction of the vehicle A in response to a request from the virtual image display device 100.
  • the height sensor 24 is a sensor that detects the vertical displacement of the vehicle A in order to measure the height from the road surface on which the vehicle A is placed to the body.
  • the height sensor 24 is installed, for example, on either the left or right rear suspension.
  • the height sensor 24 measures the amount of sinking in the body with respect to a specific wheel that is vertically displaced by the operation of a suspension arm suspended by the body. Specifically, the height sensor 24 measures the relative distance between the body and the suspension arm, and sequentially outputs the measurement result to the communication bus 29.
  • the vehicle control unit 26 is an arithmetic device mainly composed of a microcontroller.
  • the vehicle control unit 26 controls the behavior of the vehicle A based on the object information detected by the external sensor 21 and the driver's driving operation and the like.
  • the vehicle control unit 26 is electrically connected to a pedal sensor 25 including an accelerator position sensor and a brake depression force sensor.
  • the vehicle control unit 26 controls the longitudinal acceleration generated by the vehicle A, that is, the axle torque and the braking force, based on the detection signal of the pedal sensor 25.
  • the vehicle control unit 26 feedforward controls the axle torque and the braking force so as to suppress the vibration of the vehicle A caused by the driver's acceleration / deceleration operation and disturbance such as unevenness of the road surface.
  • the vehicle control unit 26 sequentially outputs each target value of the axle torque and the braking force in the feedforward control to the communication bus 29 as control information.
  • the virtual image display device 100 is configured of a drawing ECU (Electronic Control Unit) 60, a HUD (Head-Up Display) 30, and the like.
  • the virtual image display device 100 performs display in which the virtual image Vi is superimposed on the superimposed object in the foreground by projecting the display light image Oi onto the projection area PA defined on the windshield WS of the vehicle A.
  • the virtual image display device 100 superimposes and displays a virtual image Vi indicating the range of the lane being traveled between the left and right dividing lines in the foreground (see FIG. 5).
  • the virtual image display device 100 performs display control so that the virtual image Vi is superimposed on the superimposed object on the appearance of the driver. (See Figure 6). Specifically, when posture change such as pitch, roll and heave occurs in the vehicle A, the positional relationship between the superposition target, the projection area PA, and the eye point of the driver changes. Therefore, when the projection position of the display light image Oi is maintained, the virtual image Vi is displayed shifted with respect to the superposition target on the appearance of the driver. Therefore, the virtual image display device 100 corrects the projection position of the display light image Oi so that the positional deviation of the virtual image Vi is reduced according to the change in the attitude of the vehicle A.
  • the vibration of the attitude change of the vehicle A does not necessarily occur at a constant frequency, but, as shown in FIGS. 2 and 3, mainly occurs in a frequency band up to, for example, about 2 Hz.
  • the frequency band from 0 to about 0.5 Hz is taken as the low frequency band LBA
  • the frequency band from 0.5 to 2 Hz, which is higher in frequency than the low frequency band LBA is taken as the high frequency band It is considered to be HB.
  • the drawing ECU 60 is equipped with a function to reduce the positional deviation of the virtual image Vi due to the posture change of the low frequency band LBA, and the positional deviation of the virtual image Vi due to the posture change of the high frequency band HB.
  • the HUD 30 has a function to reduce the Hereinafter, the details of the drawing ECU 60 and the HUD 30 will be described in order.
  • the drawing ECU 60 is an arithmetic device connected to a plurality of in-vehicle displays including the HUD 30.
  • the drawing ECU 60 integrally controls the display of each on-vehicle display.
  • the drawing ECU 60 individually generates the video data PS of the video displayed by each on-vehicle display and sequentially outputs the video data PS to each on-vehicle display.
  • the drawing ECU 60 is an electronic control unit mainly composed of a computer having a processing unit, a RAM, a memory device, and an input / output interface.
  • the processing unit is configured to include at least one of a central processing unit (CPU), a graphics processing unit (GPU), and a field-programmable gate array (FPGA).
  • the memory device stores various programs to be executed by the processing unit.
  • the plurality of programs stored in the memory device include a drawing program for drawing the video data PS, an attitude estimation program for estimating the attitude change of the vehicle A, and the like.
  • the drawing ECU 60 has functional blocks such as a sensor value acquisition unit 61, a target information acquisition unit 65, a low frequency correction amount calculation unit 66, and a 3D drawing unit 67 by the drawing program and the posture estimation program being executed by the processing unit.
  • the sensor value acquisition unit 61 is communicably connected to the communication bus 29, and can acquire various information output to the communication bus 29.
  • the sensor value acquisition unit 61 is an output signal output from the height sensor 24 and the vehicle control unit 26, and receives the measurement result of the vehicle height, and control information on the axle torque and the braking force.
  • the sensor value acquisition unit 61 processes these output signals as information related to attitude changes in different bands of the low frequency band LBA, and changes the attitude of the low frequency band LBA among the attitude changes that occur in the vehicle A. Information is obtained from these output signals.
  • the delay time until the output value of height sensor 24 and vehicle control unit 26 described above is acquired by sensor value acquisition unit 61 (hereinafter, “communication delay time”) depends on the communication standard adopted for communication bus 29. doing. For example, in an in-vehicle network adopting CAN (registered trademark) as a communication standard, the communication delay time is approximately several tens of milliseconds.
  • a gradient acquisition unit 62 requests the three-dimensional map DB 23 to provide three-dimensional map data around the current location based on the position information of the vehicle A acquired from the locator 22.
  • the gradient acquisition unit 62 calculates the road surface gradient of the road on which the vehicle A travels, using the three-dimensional map data acquired from the three-dimensional map DB 23.
  • the road surface slope is a value indicating the longitudinal slope of the road, and has a positive value on an upward slope and a negative value on a downward slope.
  • the gradient acquisition unit 62 acquires the road surface gradient of the slope by geometric calculation using the information of the latitude, longitude, and altitude of a plurality of locations indicated in the three-dimensional map data.
  • the DC component processing unit 63 and the AC component processing unit 64 are functional units that estimate the amount of change in posture (mainly pitch angle) of the vehicle A.
  • the DC component processing unit 63 and the AC component processing unit 64 acquire posture change information in different bands from each other in the low frequency band LBA.
  • the low frequency band LBA the low frequency band is the first band LB1
  • the high frequency band is the second band LB2.
  • the bandwidth of the first band LB1 is narrower than the bandwidth of the second band LB2.
  • the attitude change belonging to the first zone LB1 is caused by the increase and decrease of the occupant and the change of the load weight, and the substantially constant acceleration and deceleration.
  • the posture change belonging to the second band LB2 is caused by acceleration and deceleration accompanying normal driving operation (pedal operation).
  • the posture change included in the first band LB1 is referred to as a DC (Direct Current) component of vibration
  • the posture change included in the second band LB2 is referred to as an AC (Alternate Current) component of vibration.
  • the DC component processing unit 63 acquires posture change information of the first band LB1 using the measurement result of the vehicle height by the height sensor 24.
  • the DC component processing unit 63 is configured to include a low pass filter.
  • the low pass filter substantially attenuates the signal in the second band LB2 while passing the signal in the first band LB1 substantially.
  • the cutoff frequency of the low pass filter is set to be the boundary value of the first band LB1 and the second band LB2.
  • the DC component processing unit 63 attenuates the high frequency noise included in the measurement result of the height sensor 24 by the low pass filter, and estimates the vibration component (DC component) of the posture change (mainly pitch angle change etc.) belonging to the first band LB1. Do.
  • the height sensor 24 is the posture output unit 20 capable of outputting an output signal related to the posture change of the first band LB1, and DC of acceleration acting on the vehicle A It functions as a sensor for measuring components.
  • the high frequency noise is a vibration component caused by the road surface irregularity, and is a vibration component of the second band LB2 or more as described above.
  • the AC component processing unit 64 acquires posture change information of the second band LB2 using the control information of the axle torque and the braking force.
  • the AC component processing unit 64 is configured to include a band pass filter.
  • the band pass filter generally passes signals in the second band LB2 and attenuates signals in the first band LB1 and lower and signals in the high frequency band HB and higher.
  • the cutoff frequency on the high frequency side of the band pass filter is set to be the boundary value between the low frequency band LBA and the high frequency band HB.
  • the cutoff frequency on the low frequency side of the band pass filter is set to be a boundary value of the first band LB1 and the second band LB2.
  • AC component processing unit 64 estimates vibration components (AC components) of posture change (mainly pitch angle change etc.) belonging to second band LB2 by processing of passing control information of axle torque and brake force through band pass filter .
  • the vehicle control unit 26 is the posture output unit 20 capable of outputting an output signal related to the posture change of the first band LB1, and AC of acceleration acting on the vehicle A. It functions as a configuration to determine ingredients.
  • the target information acquisition unit 65 is communicably connected to the communication bus 29.
  • the target information acquisition unit 65 acquires object information output from the external sensor 21 to the communication bus 29, and selects a target on which the virtual image Vi is to be superimposed, from among the moving object and the stationary object.
  • the target information acquisition unit 65 provides the 3D drawing unit 67 with the relative position of the selected superposition target.
  • the low frequency correction amount calculation unit 66 is acquired by the road surface gradient acquired by the gradient acquisition unit 62, posture change information of the first band LB1 acquired by the DC component processing unit 63, and the AC component processing unit 64. Integrating the attitude change information of the second band LB2 to specify the attitude of the vehicle A.
  • the low frequency correction amount calculation unit 66 calculates the correction amount of the virtual image Vi (hereinafter, “low frequency correction amount”) due to the attitude change of the low frequency band LBA from the specified vehicle attitude.
  • the 3D drawing unit 67 draws the video data PS of the display light image Oi to be projected onto the projection area PA by the HUD 30.
  • a drawn object corresponding to the virtual image Vi is drawn in each frame constituting the video data PS.
  • the drawing position and drawing shape of the drawing object are controlled such that when the display light image Oi is projected onto the projection area PA, the virtual image Vi based on the drawing object is viewed correctly as being superimposed on the superposition target (FIG. 5) And Figure 6).
  • the 3D rendering unit 67 reads out each preset position of the eye point and the projection area PA from the memory device or the like. As described above, the 3D rendering unit 67 grasps the relationship between the relative position of the superimposition target provided by the target information acquisition unit 65 and the setting positions of the eye point and the projection area PA. The 3D drawing unit 67 determines the projection position of the display light image Oi within the projection area PA, in other words, the imaging position of the virtual image Vi based on the drawing object, based on the positional relationship between the superposition target, the eye point and the projection area PA. , Calculated by geometrical operation.
  • the 3D rendering unit 67 acquires the low frequency correction amount generated using the posture change information of the low frequency band LBA from the low frequency correction amount calculation unit 66.
  • the 3D drawing unit 67 sets the drawing position and drawing shape of the drawing object in each frame of the video data PS to a low frequency so that the positional deviation of the virtual image Vi due to the posture change of the low frequency band LBA is reduced (cancelled). Correction is sequentially performed based on the correction amount.
  • the 3D rendering unit 67 sequentially outputs the video data PS, for which the correction for reducing the positional deviation of the virtual image Vi is performed in advance, to the HUD 30 in a predetermined video format.
  • the HUD 30 shown in FIG. 1 and FIG. 4 is an on-vehicle indicator housed in a housing space provided in the instrument panel below the windshield WS.
  • the light of the display light image Oi emitted from the HUD 30 toward the windshield WS is reflected by the projection area PA toward the eye point and perceived by the driver.
  • the driver visually recognizes the display in which the virtual image Vi is superimposed on the superimposed object in the foreground viewed through the projection area PA.
  • the HUD 30 includes an inertial sensor 31, a filter circuit 32, a projection optical unit 50, an optical correction mechanism 55, and a laser module control board (hereinafter, "LSM control board”) 40 as a configuration for displaying a virtual image.
  • LSM control board laser module control board
  • the inertial sensor 31 is a measurement unit that measures a change in attitude of the vehicle A, and is configured by combining a gyro sensor and an acceleration sensor.
  • the inertial sensor 31 is mounted on the vehicle A separately from the height sensor 24 and the vehicle control unit 26.
  • the inertial sensor 31 measures angular velocities in the pitch direction and roll direction of the vehicle A, and acceleration in the vertical direction along the yaw axis of the vehicle A.
  • the inertial sensor 31 is provided with a low pass filter and an AD converter.
  • the low pass filter removes high frequency noise from the outputs of the gyro sensor and the acceleration sensor.
  • the AD converter converts the analog signal passed through the low pass filter into a digital signal.
  • the inertial sensor 31 can transmit a signal to the filter circuit 32 according to a communication standard such as I2C (Inter-Integrated Circuit (registered trademark)) and SPI (Serial Peripheral Interface).
  • I2C Inter-Integrated Circuit (registered trademark)
  • SPI Serial Peripheral Interface
  • the filter circuit 32 acquires the measurement signal output from the inertial sensor 31.
  • the delay time until the measurement signal is acquired by the filter circuit 32 (hereinafter, “measurement delay time”) is shorter than the communication delay time generated in the communication bus 29.
  • the filter circuit 32 is configured to include at least a high pass filter, an integration processing unit, and the like.
  • the high pass filter generally passes signals in the high frequency band HB and attenuates signals in the low frequency band LBA and below (see FIG. 3).
  • the cutoff frequency of the high pass filter is set to be the boundary value between the high frequency band HB and the low frequency band LBA. By such setting, the high pass filter attenuates the signal in the band overlapping with the low frequency band LBA among the frequency bands included in the measurement signal.
  • the passage of the high pass filter removes the drift component generated in the gyro sensor of the inertial sensor 31 from the measurement signal.
  • the integration processing unit is configured mainly of, for example, a low pass filter.
  • the integration processing unit generates a signal indicating the vehicle posture (pitch angle, roll angle, etc.) by performing signal processing on the measurement signal indicating the angular velocity of posture change by time integration.
  • the filter circuit 32 acquires a signal sequentially passing through the high pass filter and the integration processing unit as posture change information of the high frequency band HB and sequentially provides the signal to the LSM control board 40.
  • the projection optical unit 50 is an optical configuration that projects the display light image Oi generated from the video data PS onto the projection area PA.
  • the projection optical unit 50 includes a laser module 51, a screen 52, a reflection optical system 53 including a convex mirror 53a and a concave mirror 53b, a correction optical element 54, and the like. These optical elements are accommodated in the housing 30 a of the HUD 30.
  • the housing 30a defines the relative positional relationship of each optical element with high accuracy.
  • the laser module 51 is configured to include, for example, a laser light source and a MEMS (Micro Electro Mechanical Systems) scanner.
  • the laser module 51 controls the light emission of the laser light source and the scanning of the mirror portion of the MEMS scanner by the LSM control substrate 40.
  • the laser module 51 draws the original image Pi on the screen 52 by scanning the laser light emitted toward the screen 52.
  • the screen 52 is formed in a horizontally long rectangular plate shape by a colorless and transparent material such as glass.
  • the screen 52 is, for example, a micro mirror array.
  • the screen 52 is provided with a screen reflecting surface 52 a that reflects laser light.
  • On the screen reflecting surface 52a a large number of minute reflecting convex surfaces formed by vapor deposition of a metal such as aluminum are two-dimensionally arrayed.
  • An original image Pi based on the video data PS is displayed on the screen reflection surface 52 a by scanning of the laser module 51.
  • the convex mirror 53a and the concave mirror 53b are reflectors in which a metal such as aluminum is vapor-deposited on the surface of a colorless and transparent base material made of synthetic resin or glass.
  • the convex mirror 53a and the concave mirror 53b project the original image Pi displayed on the screen 52 onto the projection area PA.
  • the convex mirror 53a reflects the laser beam reflected by the screen 52 toward the concave mirror 53b.
  • the concave mirror 53b reflects the laser beam incident from the convex mirror 53a toward the projection area PA.
  • the concave mirror 53b may be, for example, a diffractive optical element (DOE) that magnifies the original image Pi by diffraction.
  • DOE diffractive optical element
  • the correction optical element 54 is a lens formed of, for example, a colorless and transparent material such as glass.
  • the correction optical element 54 is disposed in the optical path between the laser module 51 and the screen 52 while being held by the optical correction mechanism 55.
  • the correction optical element 54 changes the position and attitude with respect to the optical axis LA directed from the laser module 51 to the screen 52. According to the change in the position and orientation of the correction optical element 54, the projection position of the display light image Oi in the projection area PA, and hence the imaging position of the virtual image Vi, changes.
  • the optical correction mechanism 55 is configured to include an electromagnetic actuator configured of, for example, a yoke, a coil, a magnet, and the like.
  • the operation of the electromagnetic actuator is controlled by the LSM control board 40.
  • the optical correction mechanism 55 changes the position and attitude of the correction optical element 54 by the operation of the electromagnetic actuator. Specifically, the optical correction mechanism 55 can displace (shift) the correction optical element 54 along a plane direction orthogonal to the optical axis LA. In addition, the optical correction mechanism 55 can tilt the attitude of the correction optical element 54 with respect to the optical axis LA.
  • the LSM control substrate 40 is an electrical configuration that controls virtual image display by the projection optical unit 50.
  • a control circuit formed on the LSM control board 40 mainly includes a processing unit, a RAM, a memory device, a microcontroller having an input / output interface, and the like.
  • the LSM control board 40 is provided with an image acquisition unit 41, a laser control unit 47, a high frequency correction amount calculation unit 44 and a correction control unit 45.
  • These configurations may be a functional unit realized by software such as a program, or may be a functional unit realized by hardware (electric circuit unit) formed by combining a plurality of electric elements and the like.
  • each configuration described above may be a functional unit realized by a combination of software and hardware.
  • the video acquisition unit 41 is connected to the drawing ECU 60 via a video transmission cable or the like.
  • Video data PS for displaying a virtual image is transmitted from the 3D rendering unit 67 to the video acquisition unit 41.
  • the video data PS acquired by the video acquisition unit 41 is subjected in advance to a correction process for reducing the positional deviation of the virtual image Vi caused by the attitude change of the low frequency band LBA (see FIG. 2 etc.) There is.
  • the laser control unit 47 integrally controls emission of the laser light source in the laser module 51 and scanning of the MEMS scanner.
  • the laser control unit 47 reproduces the image of each frame of the video data PS acquired by the video acquisition unit 41, and draws the original image Pi on the screen reflection surface 52a under the control of the laser module 51.
  • the image size of the original image Pi displayed on the screen reflection surface 52 a is larger than the image size of the display light image Oi projected by the HUD 30. That is, the image size of the video data PS drawn by the 3D drawing unit 67 is larger than the image size of the display light image Oi. Therefore, even when the position of the original image Pi on the screen reflection surface 52a is moved by the shift or tilt of the correction optical element 54 by the optical correction mechanism 55, the display light image Oi having a predetermined image size is a reflection optical system.
  • the projection area PA is projected onto the projection area PA.
  • the high frequency correction amount calculation unit 44 acquires posture change information in the high frequency band HB (see FIGS. 2 and 3) from the filter circuit 32.
  • the high frequency correction amount calculation unit 44 calculates the correction amount of the virtual image Vi (hereinafter, “high frequency correction amount”) due to the posture change of the high frequency band HB based on the acquired posture change information of the high frequency band HB.
  • the correction control unit 45 controls the correction of the optical correction mechanism 55 based on the high frequency correction amount acquired from the high frequency correction amount calculation unit 44 so that the positional deviation of the virtual image Vi caused by the posture change of the high frequency band HB is reduced (cancelled). Control the operation.
  • the correction control unit 45 causes the optical correction mechanism 55 to cause at least one of shift change and tilt change of the correction optical element 54 associated with the high frequency correction amount. For example, when the vehicle A has a pitch change that causes the rear side to sink with acceleration, the drawing position of the original image Pi on the screen reflection surface 52a is substantially translated by the shift of the correction optical element 54. According to the above movement of the original image Pi, as shown in FIG.
  • the correction control unit 45 shown in FIG. 1 and FIG. 4 causes the correction optical element 54 to make different movements in accordance with the contents of the attitude change occurring in the vehicle A.
  • the correction control unit 45 displaces the correction optical element 54 so that the projection position of the display light image Oi moves in parallel along the projection area PA when the posture of the pitch or heave is changed in the vehicle A.
  • the virtual image Vi comes to follow the movement of the superposition object in appearance.
  • the correction control unit 45 displaces the correction optical element 54 so that the direction of the display light image Oi rotates along the projection area PA when the posture of the roll is changed in the vehicle A.
  • the virtual image Vi tilts so as to offset the tilt of the vehicle A, and maintains the posture with respect to the superposition target.
  • the virtual image display apparatus 100 combines the height sensor 24, the pedal sensor 25, the inertia sensor 31, etc. in a complementary manner, and realizes correction of posture change (mainly pitching) of 0 to 2 Hz. ing.
  • posture change mainly pitching
  • the positional deviation of the virtual image Vi caused by the attitude change in the low frequency band LBA is the stage of drawing the video data PS in the drawing ECU 60, It is corrected in advance. Therefore, the optical correction mechanism 55 for displacing the correction optical element 54 of the projection optical unit 50 does not have to substantially correct the positional deviation of the virtual image Vi caused by the attitude change of the low frequency band LBA.
  • the optical correction mechanism 55 can be a configuration suitable for reducing the positional deviation of the virtual image Vi caused by the posture change of the high frequency band HB.
  • the change in attitude of the high frequency band HB is smaller in amplitude and faster in movement than the change in attitude of the low frequency band LBA. Therefore, the optical correction mechanism 55 is configured to be highly responsive to vibration while sacrificing the stroke amount for correction.
  • the optical correction mechanism 55 can effectively reduce the positional deviation of the virtual image Vi by making the optical correction for displacing the correction optical element 54 follow the change in attitude of the high frequency band HB. Therefore, even when the attitude change of the high frequency band HB occurs in the vehicle A, the virtual image display device 100 can continue the correct superimposed display of the virtual image Vi.
  • the correction for the posture change of the high frequency band HB is not performed at the drawing stage by the 3D drawing unit 67.
  • the correction for the posture change in the high frequency band HB is performed at a stage immediately before the display of the virtual image Vi in the process of display processing from the acquisition of information to the display of the virtual image Vi. Therefore, with regard to the correction of the posture change in the high frequency band HB, the delay of the correction due to the calculation of the drawing process by the 3D drawing unit 67 does not substantially occur. As a result, even when the posture change in the high frequency band HB occurs, the virtual image Vi can follow the movement of the superposition target in appearance.
  • correction for the attitude change of the low frequency band LBA is performed at the drawing stage by the 3D drawing unit 67.
  • the change in attitude of the low frequency band LBA is slower than the change in attitude of the high frequency band HB, but the amplitude is large. Therefore, in the correction only by moving the correction optical element 54 by the optical correction mechanism 55, it may be difficult to correct the posture change of the low frequency band LBA.
  • the output of the gyro sensor of the inertial sensor 31 inevitably includes the drift component. Therefore, the process of generating attitude change information of the low frequency band LBA from the output of the gyro sensor becomes difficult.
  • the virtual image display device 100 can continue correct superimposed display of the virtual image Vi even if a change in attitude of the low frequency band LBA occurs in the vehicle A.
  • the virtual image display device 100 in which the correction of the low frequency band LBA is performed by the 3D drawing unit 67 and the correction of the high frequency band HB is performed by the optical correction mechanism 55.
  • the virtual image Vi continues to be superimposed on the superposition target.
  • the HUD 30 is provided with an inertial sensor 31. Therefore, the filter circuit 32 receives the measurement signal of the inertial sensor 31 substantially at a cycle close to real time without being affected by the delay caused by communication via the communication bus 29, for example, and changes the attitude change information in the high frequency band HB. You can get it.
  • the correction control unit 45 and the optical correction mechanism 55 can follow the movement of the correction optical element 54 without substantially delaying the change in posture of the high frequency band HB. Therefore, the optical correction by the optical correction mechanism 55 can properly reduce the displacement of the virtual image Vi.
  • the virtual image display device 100 causes the correction to the low frequency band LBA in the 3D drawing unit 67 and the correction to the high frequency band HB in the optical correction mechanism 55 to function properly, and correct superposition of the virtual image Vi. The display can be continued.
  • the image size in each frame of the video data PS is previously defined so as to be larger than the image size of the display light image Oi required for virtual image display.
  • the original image Pi whose margin is secured with respect to the projection area PA is drawn. Therefore, even when the drawing position of the original image Pi on the screen 52 is shifted due to the shift or tilt of the correction optical element 54, the size of the displayable virtual image Vi is substantially equal to that in the state without attitude change. (See FIGS. 5 and 6).
  • the video data PS is provided with a margin, it is possible to avoid the situation in which the virtual image Vi which is partially lost is displayed.
  • the above image size indicates the pixel size of the image data, and indicates the number of vertical and horizontal pixels in the image data.
  • the measurement delay time generated between the inertial sensor 31 and the filter circuit 32 is shorter than the communication delay time of the sensor value acquisition unit 61 that communicates via the communication bus 29.
  • the optical correction by the optical correction mechanism 55 and the correction optical element 54 can follow the posture change of the high frequency band HB substantially without delay, and the positional deviation of the virtual image Vi can be appropriately reduced.
  • the low frequency band LBA is divided into a first band LB1 corresponding to the DC component of acceleration / deceleration and a second band LB2 corresponding to the AC component of acceleration / deceleration.
  • the sensor value acquisition unit 61 can acquire the posture change information of the first band LB1 and the second band LB2 by using the existing sensor and the arithmetic device. Therefore, it is not necessary to add an on-vehicle sensor or the like that measures the attitude change in the low frequency band LBA, and thus accurate superimposed display of the virtual image Vi can be realized while avoiding complication of the configuration.
  • the optical correction mechanism 55 when the attitude of the pitch or heave changes in the vehicle A, the optical correction mechanism 55 displaces the correction optical element 54 so that the projection position of the light of the display light image Oi moves in parallel.
  • the optical correction mechanism 55 displaces the correction optical element 54 so that the direction of the display light image Oi rotates along the projection area PA.
  • the measurement delay time corresponds to the "first delay time”
  • the communication delay time corresponds to the "second delay time”.
  • the height sensor 24 corresponds to a "first output unit”
  • the vehicle control unit 26 corresponds to a "second output unit”
  • the height sensor 24 and the vehicle control unit 26 correspond to a "posture output unit”.
  • the inertial sensor 31 corresponds to the “posture measurement unit”
  • the filter circuit 32 corresponds to the “high frequency information acquisition unit”
  • the correction optical element 54 corresponds to the “optical element”
  • the sensor value acquisition unit 61 is “low”.
  • the 3D drawing unit 67 corresponds to a "video drawing unit”.
  • the second embodiment shown in FIGS. 7 and 8 is a modification of the first embodiment.
  • the HUD 230 of the second embodiment includes a DLP (Digital Light Processing (registered trademark)) control substrate 240 and a DLP projector 251.
  • DLP Digital Light Processing (registered trademark)
  • the DLP control board 240 has a configuration corresponding to the LSM control board 40 (see FIG. 1) of the first embodiment.
  • the DLP control board 240 has a DLP control unit 247 in addition to the image acquisition unit 41, the high frequency correction amount calculation unit 44, and the correction control unit 45 substantially the same as those of the first embodiment.
  • the DLP control unit 247 is electrically connected to the DLP projector 251.
  • the DLP control unit 247 controls the drawing of an image by the DLP projector 251.
  • the DLP projector 251 has a configuration corresponding to the laser module 51 (see FIG. 1) of the first embodiment.
  • the DLP projector 251 includes a DMD (Digital Micromirror Device) 251 a provided with a large number of micro mirrors, and a projection light source 251 b that projects light toward the DMD 251 a.
  • the DMD 251 a and the projection light source 251 b are electrically connected to the DLP control unit 247.
  • the scanning of light by the DMD 251 a and the light emission of the projection light source 251 b are integrally controlled by the DLP control unit 247.
  • the DLP projector 251 draws the original image Pi based on the video data PS (see FIG. 1) on the screen 52 under the control of the DLP control unit 247.
  • the light of the original image Pi displayed on the screen 52 is projected on the projection area PA as a display light image Oi by the reflection optical system 53.
  • the correction control unit 45 performs at least one of a shift change and a tilt change of the correction optical element 54 with respect to the optical axis LA based on the high frequency correction amount acquired from the high frequency correction amount calculation unit 44. It is generated by the optical correction mechanism 55. According to the operation of the optical correction mechanism 55, the same effect as that of the first embodiment is obtained, and the positional deviation of the virtual image Vi caused by the change in posture of the high frequency band HB (see FIG. 2) is reduced. In addition, the correction for the posture change of the low frequency band LBA (see FIG. 2) is performed at the drawing stage of the video data PS by the 3D drawing unit 67 as in the first embodiment. Therefore, even when each attitude change of the low frequency band LBA and the high frequency band HB occurs in the vehicle A, the correct superimposed display of the virtual image Vi is continued.
  • the third embodiment shown in FIG. 9 is another modification of the first embodiment.
  • the HUD 330 of the third embodiment includes a display control substrate 340 and a liquid crystal display 351 as a configuration corresponding to the LSM control substrate 40 and the laser module 51 (see FIG. 1 respectively) of the first embodiment.
  • the display control board 340 has an LCD (Liquid Crystal Display) control unit 347 in addition to the image acquisition unit 41, the high frequency correction amount calculation unit 44, and the correction control unit 45 substantially the same as the first embodiment.
  • the LCD control unit 347 is connected to the liquid crystal display 351.
  • the LCD control unit 347 controls the display of an image by the liquid crystal display 351.
  • the liquid crystal display 351 has a liquid crystal panel and a backlight.
  • the liquid crystal panel has a plurality of liquid crystal pixels arranged two-dimensionally along the display screen.
  • the transmittance of light in each liquid crystal pixel of the liquid crystal panel is controlled by the LCD control unit 347.
  • the original image Pi based on the video data PS (see FIG. 1) is continuously displayed on the display screen of the liquid crystal panel.
  • the backlight is disposed on the back side of the liquid crystal panel. The backlight illuminates the liquid crystal panel.
  • the liquid crystal display 351 is held by the optical correction mechanism 55.
  • the optical correction mechanism 55 can slide and displace the liquid crystal display 351 in the direction orthogonal to the optical axis LA with respect to the optical axis LA directed from the liquid crystal display 351 to the convex mirror 53a (reflection optical system 53).
  • the optical correction mechanism 55 can rotationally displace the liquid crystal display 351 in the circumferential direction around the optical axis LA. According to the above, the projection position of the display light image Oi in the projection area PA, and hence the imaging position of the virtual image Vi changes.
  • the optical correction mechanism 55 slides or rotationally displaces the liquid crystal display 351 based on the high frequency correction amount acquired from the high frequency correction amount calculation unit 44.
  • the same effect as that of the first embodiment is obtained, and the positional deviation of the virtual image Vi due to the posture change in the high frequency band HB (see FIG. 2) is reduced.
  • the correction for the posture change of the low frequency band LBA is performed at the drawing stage of the video data PS by the 3D drawing unit 67 as in the first embodiment. Therefore, even when each attitude change of the low frequency band LBA and the high frequency band HB occurs in the vehicle A, the correct superimposed display of the virtual image Vi is continued.
  • the liquid crystal display 351 corresponds to the “optical element”.
  • the positional deviation of the virtual image due to the vibration in the high frequency band is reduced by the control of the position and the attitude of the correction optical element by the optical correction mechanism.
  • the movement of the correction optical element by such an optical correction mechanism may be either shift or tilt.
  • the movement of the liquid crystal display by the optical correction mechanism may be either shift or tilt.
  • the optical element moved by the optical correction mechanism is not limited to the above-mentioned correction optical element.
  • the lens corresponding to the correction optical element is omitted.
  • the optical correction mechanism changes the postures of the convex mirror and the concave mirror which are reflection optical systems. As described above, even in the first modification in which the reflective optical system is tilted by the optical correction mechanism, it is possible to reduce the positional deviation of the virtual image caused by the attitude change in the high frequency band.
  • the optical correction mechanism according to the second modification of the first embodiment changes the posture of the housing 30a (see FIG. 1) of the HUD. That is, the optical correction mechanism of the second modification tilts all the optical elements of the HUD integrally. Even in the second modification, it is possible to reduce the positional deviation of the virtual image caused by the attitude change in the high frequency band.
  • the correction optical element is omitted.
  • the optical correction mechanism of the third modification is provided on a support that supports the DMD and shifts the DMD. According to the shift of the DMD, the original image moves on the screen reflection surface. Even in the third modification in which such optical correction is performed, it is possible to reduce the positional deviation of the virtual image caused by the attitude change in the high frequency band.
  • the backlight and the liquid crystal panel are displaced integrally.
  • the liquid crystal panel can be displaced relative to the backlight. Then, the optical correction mechanism slides and displaces only the liquid crystal panel along the display screen among the liquid crystal panel and the backlight.
  • an EL (Electro Luminescence) panel is provided as a display corresponding to a liquid crystal display.
  • Organic EL, inorganic EL, etc. are employable as an EL panel.
  • the optical correction mechanism controls slide displacement or rotational displacement of the EL panel.
  • the configuration of the projector for displaying the original image is not limited to the above embodiment and modification, and can be changed as appropriate.
  • a projector using a display such as a plasma display panel, a cathode ray tube, or an LED may be employed.
  • a projector using LCOS Liquid Crystal On Silicon
  • the cut-off frequencies of the low pass filter of the DC component processing unit, the band pass filter of the AC component processing unit, and the high pass filter of the filter circuit are mutually equal.
  • the first and second bands in the low frequency band and the high frequency band may not be strictly continuous if the correction process can be appropriately implemented.
  • the low frequency band and the high frequency band may be set to slightly separated bands.
  • the low frequency band and the high frequency band may be slightly overlapped with each other.
  • the projection area on which the display light image is projected is defined by the windshield.
  • a projection member for example, a combiner etc.
  • the virtual image may not be the display object for realizing the AR display as described above as long as the display is superimposed on the foreground.
  • the inertial sensor according to the above embodiment has a configuration in which a gyro sensor and an acceleration sensor are combined.
  • the configuration of the inertial sensor can be changed as appropriate.
  • an inertial sensor, a gyro sensor, a triaxial gyro sensor that detects angular velocities in the yaw direction, pitch direction, and roll direction, and triaxial acceleration that detects accelerations in the longitudinal direction, vertical direction, and lateral direction of the vehicle It may be a six-axis motion sensor provided with a sensor.
  • the inertial sensor may be configured to include only the acceleration sensor among the gyro sensor and the acceleration sensor, or may be configured to include only the gyro sensor.
  • the inertial sensor may not have a sensor configuration built in the HUD.
  • the inertial sensor may be an existing configuration mounted on a vehicle as long as it is a configuration directly connected to a filter circuit or an LSM control board without being connected to a communication bus.
  • the height sensor and the vehicle control unit correspond to the "posture output unit”.
  • the configuration corresponding to the "posture output unit” can be changed as appropriate.
  • an inertial sensor provided in the locator 22 may correspond to the “posture output unit”.
  • a MEMS sensor or the like that detects vibration in a low frequency band may be directly connected to, for example, the drawing ECU. With such a form, communication delay time can be substantially eliminated.
  • the “posture output unit” that outputs an output signal to the communication bus may not be configured differently from the inertial sensor 31 (see FIG. 1).
  • the measurement signal of the inertial sensor 31 may be input to the sensor value acquisition unit directly or indirectly.
  • the image size of the video data is defined to be larger than the image size (projection size) of the display light image projected onto the projection area.
  • the image size of the original image on the screen or display screen is also made larger than the projection size of the display light image. It is desirable that the margin of such video data be defined to be equal to or greater than the maximum displacement of the original image in the correction performed by the HUD. Furthermore, the setting for giving a margin to the video data may not be applied.
  • the virtual image display device of the above embodiment is configured to include the HUD and the drawing ECU.
  • the HUD for acquiring corrected image data may correspond to the "virtual image display device".
  • the HUD and the drawing ECU may be integrally provided. That is, the control circuit of the HUD may be provided with functional units corresponding to a sensor value acquisition unit, a target information acquisition unit, a low frequency correction amount calculation unit, a 3D drawing unit, and the like.
  • non-transitory tangible storage media such as a flash memory and a hard disk can be adopted as memory devices provided in the drawing ECU and the control board.
  • the storage medium for storing the program related to virtual image display is not limited to the storage medium of each configuration mounted on the vehicle, but may be an optical disc as a copy source to the storage medium, a hard disk drive of a general purpose computer, etc. It is also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Instrument Panels (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

This virtual image display device projects a display light image (Oi) onto a projection area (PA) of a vehicle (A) and displays a virtual image (Vi) superimposed thereon, and is provided with: a low-frequency information acquisition unit (61) which acquires orientation change information in a low-frequency band (LBA); a high frequency information acquisition unit (32) which acquires orientation change information in a high frequency band (HB); a video rendering unit (67) which renders video data of the aforementioned display light image, in which position shift due to orientation change in the low-frequency band has been corrected; a projection optical unit (50) which projects the display light image on the aforementioned projection area; and an optical correction mechanism (55) which displaces at least part of the optical elements (54, 351) included in the projection optical unit so as to reduce position shift caused by orientation change in the high-frequency band.

Description

虚像表示装置Virtual image display 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年11月28日に出願された日本特許出願番号2017-227851号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-227851 filed on November 28, 2017, the contents of which are incorporated herein by reference.
 本開示は、虚像を表示する虚像表示装置に関するものである。 The present disclosure relates to a virtual image display device that displays a virtual image.
 従来、車両の前景に虚像を重畳表示するヘッドアップディスプレイ装置の一種として、例えば特許文献1には、車両に生じる姿勢変化を特定し、液晶パネル及びバックライト等の向きを回転機構によって変更する構成が開示されている。特許文献1に開示の構成は、車両の姿勢変化に基づき上り坂及び下り坂等を特定し、上り坂及び下り坂にて虚像の表示位置を上下に移動させることができる。加えて、特許文献1のヘッドアップディスプレイ装置は、姿勢変化の周波数等に基づき車両が悪路を走行中か否かを特定し、車両が悪路を走行中であると特定した場合には、虚像の表示を禁止する。 Conventionally, as a type of head-up display device that displays a virtual image superimposed on the foreground of a vehicle, for example, Patent Document 1 specifies a change in posture that occurs in the vehicle, and changes the direction of the liquid crystal panel and the backlight by a rotation mechanism. Is disclosed. The configuration disclosed in Patent Document 1 can identify an uphill, a downhill, and the like based on a change in posture of the vehicle, and move the display position of the virtual image up and down on the uphill and the downhill. In addition, the head-up display device of Patent Document 1 specifies whether the vehicle is traveling on a bad road based on the frequency of posture change or the like, and if it is specified that the vehicle is traveling on a bad road, Prohibits the display of virtual images.
 上述したように、特許文献1のヘッドアップディスプレイ装置では、悪路の走行中に伴う高周波帯域の姿勢変化が車両に生じる場合に、虚像の表示の中断により、乗員へ向けた情報提示が継続されなくなる。そのため、悪路を走行中であっても、虚像表示による情報提示を継続する構成が検討された。 As described above, in the head-up display device of Patent Document 1, when the attitude change of the high frequency band accompanying the traveling of the rough road occurs in the vehicle, the display of the virtual image is interrupted to continue the information presentation for the occupant. It disappears. Therefore, even while traveling on a bad road, a configuration was considered in which information presentation by virtual image display is continued.
 しかし、特許文献1の回転機構は、上り坂及び下り坂等にて生じる低周波帯域の姿勢変化に起因する虚像の位置ずれ低減を目的とした構成である。故に、悪路を走行中に虚像の表示を継続させても、回転機構は、虚像の表示位置を高周波帯域の姿勢変化に追従させる作動を行うことが困難となる。その結果、虚像の表示位置の補正が適切に機能せず、虚像の正しい重畳表示が、実現され得なかった。 However, the rotation mechanism of Patent Document 1 is configured to reduce positional deviation of a virtual image caused by a change in attitude of a low frequency band which occurs on an uphill, a downhill, or the like. Therefore, even if the display of the virtual image is continued while traveling on a bad road, it is difficult for the rotation mechanism to perform the operation of causing the display position of the virtual image to follow the posture change of the high frequency band. As a result, the correction of the display position of the virtual image did not function properly, and the correct superimposed display of the virtual image could not be realized.
特開2015‐132352号公報JP, 2015-132352, A
 本開示は、高周波帯域の姿勢変化が車両に生じる場合でも、虚像の正しい重畳表示を継続可能な虚像表示装置を提供することを目的とする。 An object of the present disclosure is to provide a virtual image display device capable of continuing correct superimposed display of virtual images even when a change in attitude in a high frequency band occurs in a vehicle.
 本開示の第一の態様において、車両に規定された投影領域への表示光像の投影によって前記車両の前景に虚像を重畳表示する虚像表示装置は、前記車両に生じる姿勢変化のうちで低周波帯域の姿勢変化情報を取得する低周波情報取得部と、前記車両の生じる姿勢変化のうちで前記低周波帯域よりも周波数の高い高周波帯域の姿勢変化情報を取得する高周波情報取得部と、前記表示光像の映像データであり、前記低周波帯域の姿勢変化に起因する前記虚像の位置ずれを低減させる補正が施された前記映像データを、前記低周波帯域の姿勢変化情報を用いて描画する映像描画部と、前記映像データから生成された前記表示光像を、前記投影領域に投影する投影光学ユニットと、前記高周波帯域の姿勢変化に起因する前記虚像の位置ずれが低減されるように、前記投影光学ユニットに含まれる少なくとも一部の光学要素を、前記高周波帯域の姿勢変化情報に基づき変位させる光学補正機構とを備える。 In the first aspect of the present disclosure, a virtual image display apparatus that superimposes and displays a virtual image on the foreground of the vehicle by projecting a display light image onto a projection area defined in the vehicle is a low frequency of the posture change occurring in the vehicle A low frequency information acquisition unit for acquiring attitude change information of a band, a high frequency information acquisition unit for acquiring attitude change information of a high frequency band higher in frequency than the low frequency band among the attitude changes generated by the vehicle, and the display An image of light image data, wherein the image data corrected for reducing positional deviation of the virtual image due to posture change in the low frequency band is rendered using posture change information in the low frequency band A positional deviation of the virtual image caused by a change in posture of the high frequency band is reduced, and a projection optical unit that projects the display light image generated from the image data onto the projection area, and a drawing unit. So that the at least a portion of the optical element included in the projection optical unit, and an optical compensation mechanism for displacing on the basis of the posture change information of the high frequency band.
 上記の虚像表示装置において、車両に生じる姿勢変化のうちで、低周波帯域の姿勢変化に起因する虚像の位置ずれは、映像データを描画する段階において予め補正される。故に、投影光学ユニットの光学要素を変位させる光学補正機構は、低周波帯域の姿勢変化に起因する虚像の位置ずれを実質的に補正しなくてもよい。以上によれば、光学補正機構は、高周波帯域の姿勢変化に起因する虚像の位置ずれ低減に好適な構成となり得る。そのため、光学補正機構は、高周波帯域の姿勢変化に、光学要素を変位させる光学的な補正を追従させて、虚像の位置ずれを効果的に低減できる。したがって、高周波帯域の姿勢変化が車両に生じる場合でも、虚像表示装置は、虚像の正しい重畳表示を継続できる。 In the virtual image display device described above, among the attitude changes occurring in the vehicle, the positional deviation of the virtual image caused by the attitude change in the low frequency band is corrected in advance at the stage of drawing the video data. Therefore, the optical correction mechanism for displacing the optical element of the projection optical unit may not substantially correct the displacement of the virtual image due to the attitude change in the low frequency band. According to the above, the optical correction mechanism can be a configuration suitable for reducing displacement of a virtual image caused by a change in attitude of a high frequency band. Therefore, the optical correction mechanism can effectively reduce the positional deviation of the virtual image by making the optical correction for displacing the optical element follow the posture change in the high frequency band. Therefore, even when the attitude change in the high frequency band occurs in the vehicle, the virtual image display device can continue the correct superimposed display of the virtual image.
 本開示の第二の態様において、車両に規定された投影領域への表示光像の投影によって前記車両の前景に虚像を重畳表示する虚像表示装置は、前記車両の生じる姿勢変化のうちで高周波帯域の姿勢変化情報を取得する高周波情報取得部と、前記車両の生じる姿勢変化のうちで前記高周波帯域よりも周波数の低い低周波帯域の姿勢変化情報を用いて描画される映像データであって、前記低周波帯域の姿勢変化に起因する前記虚像の位置ずれを低減させる補正が施された前記映像データ、を取得する映像取得部と、前記映像データから生成された前記表示光像を、前記投影領域に投影する投影光学ユニットと、前記高周波帯域の姿勢変化に起因する前記虚像の位置ずれが低減されるように、前記投影光学ユニットに含まれる少なくとも一部の光学要素を、前記高周波帯域の姿勢変化情報に基づき変位させる光学補正機構とを備える。 In the second aspect of the present disclosure, a virtual image display apparatus that superimposes and displays a virtual image on the foreground of the vehicle by projecting a display light image onto a projection area defined in the vehicle is a high frequency band among the attitude changes generated by the vehicle. High-frequency information acquisition unit for acquiring posture change information, and image data drawn using posture change information in a low frequency band lower in frequency than the high frequency band among posture changes generated by the vehicle, An image acquisition unit for acquiring the image data corrected to reduce positional deviation of the virtual image due to posture change in a low frequency band, the display light image generated from the image data, the projection area And at least a portion of the light included in the projection optical unit such that positional deviation of the virtual image due to attitude change in the high frequency band is reduced. Elements, and an optical compensation mechanism for displacing on the basis of the posture change information of the high frequency band.
 上記の虚像表示装置において、車両に生じる姿勢変化のうちで、低周波帯域の姿勢変化に起因する虚像の位置ずれは、映像データを描画する段階において予め補正される。故に、投影光学ユニットの光学要素を変位させる光学補正機構は、低周波帯域の姿勢変化に起因する虚像の位置ずれを実質的に補正しなくてもよい。以上によれば、光学補正機構は、高周波帯域の姿勢変化に起因する虚像の位置ずれ低減に好適な構成となり得る。そのため、光学補正機構は、高周波帯域の姿勢変化に、光学要素を変位させる光学的な補正を追従させて、虚像の位置ずれを効果的に低減できる。したがって、高周波帯域の姿勢変化が車両に生じる場合でも、虚像表示装置は、虚像の正しい重畳表示を継続できる。 In the virtual image display device described above, among the attitude changes occurring in the vehicle, the positional deviation of the virtual image caused by the attitude change in the low frequency band is corrected in advance at the stage of drawing the video data. Therefore, the optical correction mechanism for displacing the optical element of the projection optical unit may not substantially correct the displacement of the virtual image due to the attitude change in the low frequency band. According to the above, the optical correction mechanism can be a configuration suitable for reducing displacement of a virtual image caused by a change in attitude of a high frequency band. Therefore, the optical correction mechanism can effectively reduce the positional deviation of the virtual image by making the optical correction for displacing the optical element follow the posture change in the high frequency band. Therefore, even when the attitude change in the high frequency band occurs in the vehicle, the virtual image display device can continue the correct superimposed display of the virtual image.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
本開示の第一実施形態による虚像表示装置を含む車載システムの全体像を示すブロック図であり、 車両に生じる姿勢変化の振動特性を示す図であって、高周波帯域及び低周波帯域の各範囲の一例を示す図であり、 各周波数帯域を計測する信号について、周波数とゲインとの相関の一例を模式的に示す図であり、 HUDの詳細を示す図であって、光学補正機構及び補正光学素子の協働による光学的な補正処理を説明する図であり、 車両に姿勢変化が生じていない場合での虚像表示の一例を示す図であり、 光学補正機構による虚像の位置ずれ低減補正の効果を示す図であり、 第二実施形態による虚像表示装置を示す図であり、 DLP制御基板及びDLPプロジェクタの詳細を示す図であり、 第三実施形態による虚像表示装置を示す図である。
The above object and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the attached drawings. The drawing is
FIG. 1 is a block diagram showing an overview of a vehicle-mounted system including a virtual image display device according to a first embodiment of the present disclosure, FIG. 8 is a diagram showing vibration characteristics of posture change occurring in a vehicle, and a diagram showing an example of each range of a high frequency band and a low frequency band, FIG. 8 schematically shows an example of the correlation between the frequency and the gain for signals for measuring each frequency band, FIG. 12 is a diagram showing the details of the HUD, and is a diagram for explaining an optical correction process by cooperation of the optical correction mechanism and the correction optical element, FIG. 8 is a view showing an example of a virtual image display when no change in posture occurs in the vehicle, It is a figure which shows the effect of the positional offset reduction correction | amendment of the virtual image by an optical correction mechanism, It is a figure which shows the virtual image display apparatus by 2nd embodiment, FIG. 5 is a diagram showing details of a DLP control board and a DLP projector, It is a figure which shows the virtual image display apparatus by 3rd embodiment.
 以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。 Hereinafter, a plurality of embodiments of the present disclosure will be described based on the drawings. In addition, the overlapping description may be abbreviate | omitted by attaching the same code | symbol to the corresponding component in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiments described above can be applied to other parts of the configuration. Further, not only the combination of the configurations explicitly described in the description of the respective embodiments but also the configurations of the plurality of embodiments can be partially combined with each other even if the combination is not specified unless any trouble occurs in the combination. And the combination which has not been specified between the configurations described in a plurality of embodiments and modifications is also disclosed by the following description.
 (第一実施形態)
 図1に示す本開示の第一実施形態による虚像表示装置100は、車両Aにおいて用いられる。虚像表示装置100は、車両Aの前景に重畳表示される虚像Viを用いたAR(Augmented Reality)表示により、車両Aに関連する種々の情報を運転者に提示する。虚像表示装置100は、車載ネットワークの通信バス29を介して、他の車載構成と相互に通信可能である。通信バス29には、外界センサ21、ロケータ22、3次元地図データベース23、ハイトセンサ24、車両制御ユニット26等が直接的又は間接的に電気接続されている。
First Embodiment
The virtual image display device 100 according to the first embodiment of the present disclosure shown in FIG. The virtual image display device 100 presents the driver with various information related to the vehicle A by means of AR (Augmented Reality) display using a virtual image Vi displayed superimposed on the foreground of the vehicle A. The virtual image display apparatus 100 can mutually communicate with other in-vehicle configurations via the communication bus 29 of the in-vehicle network. An external sensor 21, a locator 22, a three-dimensional map database 23, a height sensor 24, a vehicle control unit 26 and the like are electrically connected directly or indirectly to the communication bus 29.
 外界センサ21は、歩行者及び他の車両等の移動物体、さらに路上の縁石、道路標識、道路標示、及び区画線等の静止物体を検出する。これら移動物体及び静止物体の少なくとも一部は、虚像Viの重畳表示による注意喚起の対象とされる。外界センサ21には、例えばカメラユニット、ライダ及びミリ波レーダ等が含まれている。外界センサ21は、検出した移動物体及び静止物体の相対位置及び種別等を示す物体情報を、通信バス29に逐次出力する。 The external world sensor 21 detects moving objects such as pedestrians and other vehicles, and stationary objects such as curbs on roads, road signs, road markings, and division lines. At least a part of the moving object and the stationary object is a target of alerting by the superimposed display of the virtual image Vi. The external sensor 21 includes, for example, a camera unit, a rider, a millimeter wave radar, and the like. The external world sensor 21 sequentially outputs to the communication bus 29 object information indicating the relative positions and types of the detected moving object and stationary object.
 ロケータ22は、GPS、GLONASS、Galileo、IRNSS、QZSS、Beidou等の衛星測位システムのうちで、少なくとも一つの衛星測位システムの各測位衛星から、測位信号を受信可能である。ロケータ22は、受信した測位信号に基づき、車両Aの位置を計測する。ロケータ22は、計測した車両Aの位置情報を通信バス29へ向けて逐次出力する。尚、ロケータ22は、位置情報を補正するための慣性センサを有していてもよい。 The locator 22 can receive positioning signals from each positioning satellite of at least one satellite positioning system among satellite positioning systems such as GPS, GLONASS, Galileo, IRNSS, QZSS, and Beidou. The locator 22 measures the position of the vehicle A based on the received positioning signal. The locator 22 sequentially outputs the measured position information of the vehicle A to the communication bus 29. The locator 22 may have an inertial sensor for correcting position information.
 3次元地図データベース(以下、「3次元地図DB」)23は、多数の3次元地図データを格納した大容量の記憶媒体を主体とする構成である。3次元地図データは、例えば自動運転を可能にするような高精度な地図データであって、道路の緯度、経度、高度を示す情報を含んでいる。3次元地図DB23は、ネットワークを通じて、3次元地図データを最新の情報に更新可能である。3次元地図DB23は、虚像表示装置100からの要求に応じて、車両Aの周辺及び進行方向の3次元地図データを虚像表示装置100に提供可能である。 The three-dimensional map database (hereinafter, "three-dimensional map DB") 23 is configured mainly of a large-capacity storage medium storing a large number of three-dimensional map data. The three-dimensional map data is, for example, highly accurate map data that enables automatic driving, and includes information indicating the latitude, longitude, and altitude of a road. The three-dimensional map DB 23 can update the three-dimensional map data to the latest information through the network. The three-dimensional map DB 23 can provide the virtual image display device 100 with three-dimensional map data of the periphery and the traveling direction of the vehicle A in response to a request from the virtual image display device 100.
 ハイトセンサ24は、車両Aが置かれた路面からボディまでの高さを計測するため、車両Aに生じる上下方向の変位を検出するセンサである。ハイトセンサ24は、例えば左右いずれか一方のリヤサスペンションに設置されている。ハイトセンサ24は、ボディに懸架されたサスペンションアームの動作によって上下方向に変位する特定の車輪について、ボディに対する沈み込み量を計測する。具体的に、ハイトセンサ24は、ボディとサスペンションアームとの間の相対距離を計測し、通信バス29に計測結果を逐次出力する。 The height sensor 24 is a sensor that detects the vertical displacement of the vehicle A in order to measure the height from the road surface on which the vehicle A is placed to the body. The height sensor 24 is installed, for example, on either the left or right rear suspension. The height sensor 24 measures the amount of sinking in the body with respect to a specific wheel that is vertically displaced by the operation of a suspension arm suspended by the body. Specifically, the height sensor 24 measures the relative distance between the body and the suspension arm, and sequentially outputs the measurement result to the communication bus 29.
 車両制御ユニット26は、マイクロコントローラを主体に構成された演算装置である。車両制御ユニット26は、外界センサ21にて検出される物体情報、及び運転者の運転操作等に基づいて、車両Aの挙動を制御する。車両制御ユニット26には、アクセルポジションセンサ及びブレーキ踏力センサ等を含むペダルセンサ25が電気的に接続されている。車両制御ユニット26は、ペダルセンサ25の検出信号に基づき、車両Aに発生させる前後方向の加速度、即ち、車軸トルク及びブレーキ力を制御する。加えて車両制御ユニット26は、運転者の加減速操作及び路面の凹凸等の外乱に伴う車両Aの振動が抑制されるように、車軸トルク及びブレーキ力をフィードフォワード制御する。車両制御ユニット26は、フィードフォワード制御における車軸トルク及びブレーキ力の各目標値を、制御情報として通信バス29に逐次出力する。 The vehicle control unit 26 is an arithmetic device mainly composed of a microcontroller. The vehicle control unit 26 controls the behavior of the vehicle A based on the object information detected by the external sensor 21 and the driver's driving operation and the like. The vehicle control unit 26 is electrically connected to a pedal sensor 25 including an accelerator position sensor and a brake depression force sensor. The vehicle control unit 26 controls the longitudinal acceleration generated by the vehicle A, that is, the axle torque and the braking force, based on the detection signal of the pedal sensor 25. In addition, the vehicle control unit 26 feedforward controls the axle torque and the braking force so as to suppress the vibration of the vehicle A caused by the driver's acceleration / deceleration operation and disturbance such as unevenness of the road surface. The vehicle control unit 26 sequentially outputs each target value of the axle torque and the braking force in the feedforward control to the communication bus 29 as control information.
 虚像表示装置100は、描画ECU(Electronic Control Unit)60及びHUD(Head-Up Display)30等によって構成されている。虚像表示装置100は、車両AのウィンドシールドWSに規定された投影領域PAへの表示光像Oiの投影によって、前景中の重畳対象に虚像Viを重畳させた表示を行う。例えば虚像表示装置100は、走行中の車線の範囲を示す虚像Viを、前景中における左右の区画線の間に重畳表示する(図5参照)。 The virtual image display device 100 is configured of a drawing ECU (Electronic Control Unit) 60, a HUD (Head-Up Display) 30, and the like. The virtual image display device 100 performs display in which the virtual image Vi is superimposed on the superimposed object in the foreground by projecting the display light image Oi onto the projection area PA defined on the windshield WS of the vehicle A. For example, the virtual image display device 100 superimposes and displays a virtual image Vi indicating the range of the lane being traveled between the left and right dividing lines in the foreground (see FIG. 5).
 加えて虚像表示装置100は、車両Aの姿勢変化があった場合でも、運転者からの見た目上にて、重畳対象に虚像Viを重畳させた状態が維持されるように、表示の制御を行う(図6参照)。詳記すると、ピッチ、ロール及びヒーブ等の姿勢変化が車両Aに生じた場合、重畳対象と、投影領域PAと、運転者のアイポイントとの位置関係が変化する。故に、表示光像Oiの投影位置が維持された場合、運転者からの見た目上にて、虚像Viは、重畳対象に対してずれて表示される。そのため虚像表示装置100は、車両Aの姿勢変化に応じて、虚像Viの位置ずれが低減されるように、表示光像Oiの投影位置を補正する。 In addition, even when the attitude of the vehicle A changes, the virtual image display device 100 performs display control so that the virtual image Vi is superimposed on the superimposed object on the appearance of the driver. (See Figure 6). Specifically, when posture change such as pitch, roll and heave occurs in the vehicle A, the positional relationship between the superposition target, the projection area PA, and the eye point of the driver changes. Therefore, when the projection position of the display light image Oi is maintained, the virtual image Vi is displayed shifted with respect to the superposition target on the appearance of the driver. Therefore, the virtual image display device 100 corrects the projection position of the display light image Oi so that the positional deviation of the virtual image Vi is reduced according to the change in the attitude of the vehicle A.
 ここで、車両Aの姿勢変化の振動は、一定の周波数で生じるわけではなく、図2及び図3に示すように、例えば主に2Hz程度までの周波数帯域で生じている。虚像表示装置100では、便宜的に0から0.5Hz程度までの周波数帯域が、低周波帯域LBAとされ、低周波帯域LBAよりも周波数の高い0.5~2Hzまでの周波数帯域が、高周波帯域HBとされている。そして、図1~図3に示すように、低周波帯域LBAの姿勢変化による虚像Viの位置ずれを低減する機能が描画ECU60に搭載されており、高周波帯域HBの姿勢変化による虚像Viの位置ずれを低減する機能がHUD30に搭載されている。以下、描画ECU60及びHUD30の詳細を順に説明する。 Here, the vibration of the attitude change of the vehicle A does not necessarily occur at a constant frequency, but, as shown in FIGS. 2 and 3, mainly occurs in a frequency band up to, for example, about 2 Hz. In the virtual image display device 100, for convenience, the frequency band from 0 to about 0.5 Hz is taken as the low frequency band LBA, and the frequency band from 0.5 to 2 Hz, which is higher in frequency than the low frequency band LBA, is taken as the high frequency band It is considered to be HB. As shown in FIGS. 1 to 3, the drawing ECU 60 is equipped with a function to reduce the positional deviation of the virtual image Vi due to the posture change of the low frequency band LBA, and the positional deviation of the virtual image Vi due to the posture change of the high frequency band HB. The HUD 30 has a function to reduce the Hereinafter, the details of the drawing ECU 60 and the HUD 30 will be described in order.
 描画ECU60は、HUD30を含む複数の車載表示器と接続された演算装置である。描画ECU60は、各車載表示器の表示を統合的に制御する。描画ECU60は、各車載表示器によって表示される映像の映像データPSを個別に生成し、各車載表示器に逐次出力する。 The drawing ECU 60 is an arithmetic device connected to a plurality of in-vehicle displays including the HUD 30. The drawing ECU 60 integrally controls the display of each on-vehicle display. The drawing ECU 60 individually generates the video data PS of the video displayed by each on-vehicle display and sequentially outputs the video data PS to each on-vehicle display.
 描画ECU60は、処理部、RAM、メモリ装置及び入出力インターフェースを有するコンピュータを主体に構成された電子制御ユニットである。処理部は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)及びFPGA(Field-Programmable Gate Array)等の少なくとも一つを含む構成である。メモリ装置には、処理部によって実行される種々のプログラムが格納されている。メモリ装置に記憶された複数のプログラムには、映像データPSを描画する描画プログラム及び車両Aの姿勢変化を推定する姿勢推定プログラム等が含まれている。描画ECU60は、描画プログラム及び姿勢推定プログラムを処理部によって実行することにより、センサ値取得部61、対象情報取得部65、低周波補正量算出部66及び3D描画部67等の機能ブロックを有する。 The drawing ECU 60 is an electronic control unit mainly composed of a computer having a processing unit, a RAM, a memory device, and an input / output interface. The processing unit is configured to include at least one of a central processing unit (CPU), a graphics processing unit (GPU), and a field-programmable gate array (FPGA). The memory device stores various programs to be executed by the processing unit. The plurality of programs stored in the memory device include a drawing program for drawing the video data PS, an attitude estimation program for estimating the attitude change of the vehicle A, and the like. The drawing ECU 60 has functional blocks such as a sensor value acquisition unit 61, a target information acquisition unit 65, a low frequency correction amount calculation unit 66, and a 3D drawing unit 67 by the drawing program and the posture estimation program being executed by the processing unit.
 センサ値取得部61は、通信バス29と通信可能に接続されており、通信バス29に出力された種々の情報を取得可能である。センサ値取得部61は、ハイトセンサ24及び車両制御ユニット26から出力される出力信号であって、車高の計測結果、並びに車軸トルク及びブレーキ力についての制御情報を受信する。センサ値取得部61は、これらの出力信号を、低周波帯域LBAのうちで互いに異なる帯域の姿勢変化に関連する情報として処理し、車両Aに生じる姿勢変化のうちで低周波帯域LBAの姿勢変化情報を、これらの出力信号から取得する。以上のハイトセンサ24及び車両制御ユニット26の出力信号がセンサ値取得部61に取得されるまでの遅延時間(以下、「通信遅延時間」)は、通信バス29に採用されている通信規格に依存している。例えば、CAN(登録商標)を通信規格として採用した車載ネットワークでは、通信遅延時間は、概ね数10m秒程度となる。 The sensor value acquisition unit 61 is communicably connected to the communication bus 29, and can acquire various information output to the communication bus 29. The sensor value acquisition unit 61 is an output signal output from the height sensor 24 and the vehicle control unit 26, and receives the measurement result of the vehicle height, and control information on the axle torque and the braking force. The sensor value acquisition unit 61 processes these output signals as information related to attitude changes in different bands of the low frequency band LBA, and changes the attitude of the low frequency band LBA among the attitude changes that occur in the vehicle A. Information is obtained from these output signals. The delay time until the output value of height sensor 24 and vehicle control unit 26 described above is acquired by sensor value acquisition unit 61 (hereinafter, “communication delay time”) depends on the communication standard adopted for communication bus 29. doing. For example, in an in-vehicle network adopting CAN (registered trademark) as a communication standard, the communication delay time is approximately several tens of milliseconds.
 センサ値取得部61には、勾配取得部62、DC成分処理部63及びAC成分処理部64が、サブ機能ブロックとして設けられている。勾配取得部62は、ロケータ22から取得する車両Aの位置情報に基づき、現在地周辺の3次元地図データの提供を、3次元地図DB23に要求する。勾配取得部62は、3次元地図DB23から取得した3次元地図データを用いて、車両Aが走行する道路の路面勾配を算出する。路面勾配は、道路の縦断勾配を示す値であって、上りの坂道では正の値をとり、下りの坂道では負の値をとる。勾配取得部62は、3次元地図データに示された複数箇所の緯度、経度及び高度の各情報を用いて、幾何計算によって坂道の路面勾配を取得する。 In the sensor value acquisition unit 61, a gradient acquisition unit 62, a DC component processing unit 63, and an AC component processing unit 64 are provided as sub functional blocks. The gradient acquisition unit 62 requests the three-dimensional map DB 23 to provide three-dimensional map data around the current location based on the position information of the vehicle A acquired from the locator 22. The gradient acquisition unit 62 calculates the road surface gradient of the road on which the vehicle A travels, using the three-dimensional map data acquired from the three-dimensional map DB 23. The road surface slope is a value indicating the longitudinal slope of the road, and has a positive value on an upward slope and a negative value on a downward slope. The gradient acquisition unit 62 acquires the road surface gradient of the slope by geometric calculation using the information of the latitude, longitude, and altitude of a plurality of locations indicated in the three-dimensional map data.
 DC成分処理部63及びAC成分処理部64は、車両Aの姿勢変化量(主にピッチ角)を推定する機能部である。DC成分処理部63及びAC成分処理部64は、低周波帯域LBAのうちで、互いに異なる帯域の姿勢変化情報を取得する。具体的に、低周波帯域LBAのうちで、周波数の低い側の帯域が第一帯域LB1とされ、周波数の高い側の帯域が第二帯域LB2とされる。第一帯域LB1の帯域幅は、第二帯域LB2の帯域幅よりも狭い。第一帯域LB1に属する姿勢変化は、乗員の増減及び積載重量の変化、並びに実質的に一定の加速及び減速によって生じる。一方、第二帯域LB2に属する姿勢変化は、通常の運転操作(ペダル操作)に伴う加速及び減速によって生じる。以下の説明では、便宜的に、第一帯域LB1に含まれる姿勢変化を振動のDC(Direct Current)成分といい、第二帯域LB2に含まれる姿勢変化を振動のAC(Alternate Current)成分という。 The DC component processing unit 63 and the AC component processing unit 64 are functional units that estimate the amount of change in posture (mainly pitch angle) of the vehicle A. The DC component processing unit 63 and the AC component processing unit 64 acquire posture change information in different bands from each other in the low frequency band LBA. Specifically, of the low frequency band LBA, the low frequency band is the first band LB1, and the high frequency band is the second band LB2. The bandwidth of the first band LB1 is narrower than the bandwidth of the second band LB2. The attitude change belonging to the first zone LB1 is caused by the increase and decrease of the occupant and the change of the load weight, and the substantially constant acceleration and deceleration. On the other hand, the posture change belonging to the second band LB2 is caused by acceleration and deceleration accompanying normal driving operation (pedal operation). In the following description, for convenience, the posture change included in the first band LB1 is referred to as a DC (Direct Current) component of vibration, and the posture change included in the second band LB2 is referred to as an AC (Alternate Current) component of vibration.
 DC成分処理部63は、ハイトセンサ24による車高の計測結果を用いて、第一帯域LB1の姿勢変化情報を取得する。DC成分処理部63は、ローパスフィルタを含む構成である。ローパスフィルタは、第一帯域LB1の信号を概ね通過させる一方で、第二帯域LB2以上の信号を減衰させる。ローパスフィルタのカットオフ周波数は、第一帯域LB1及び第二帯域LB2の境界値となるように設定されている。 The DC component processing unit 63 acquires posture change information of the first band LB1 using the measurement result of the vehicle height by the height sensor 24. The DC component processing unit 63 is configured to include a low pass filter. The low pass filter substantially attenuates the signal in the second band LB2 while passing the signal in the first band LB1 substantially. The cutoff frequency of the low pass filter is set to be the boundary value of the first band LB1 and the second band LB2.
 DC成分処理部63は、ハイトセンサ24の計測結果に含まれる高周波ノイズをローパスフィルタによって減衰させ、第一帯域LB1に属する姿勢変化(主にピッチ角変化等)の振動成分(DC成分)を推定する。以上のDC成分処理部63の処理によれば、ハイトセンサ24は、第一帯域LB1の姿勢変化に関連する出力信号を出力可能な姿勢出力部20であって、車両Aに作用する加速度のDC成分を計測するためのセンサとして機能する。尚、高周波ノイズは、路面不整に起因する振動成分であって、上述したように第二帯域LB2以上の振動成分である。 The DC component processing unit 63 attenuates the high frequency noise included in the measurement result of the height sensor 24 by the low pass filter, and estimates the vibration component (DC component) of the posture change (mainly pitch angle change etc.) belonging to the first band LB1. Do. According to the processing of the DC component processing unit 63 described above, the height sensor 24 is the posture output unit 20 capable of outputting an output signal related to the posture change of the first band LB1, and DC of acceleration acting on the vehicle A It functions as a sensor for measuring components. The high frequency noise is a vibration component caused by the road surface irregularity, and is a vibration component of the second band LB2 or more as described above.
 AC成分処理部64は、車軸トルク及びブレーキ力の制御情報を用いて、第二帯域LB2の姿勢変化情報を取得する。AC成分処理部64は、バンドパスフィルタを含む構成である。バンドパスフィルタは、第二帯域LB2の信号を概ね通過させる一方で、第一帯域LB1以下の信号と、高周波帯域HB以上の信号とを減衰させる。バンドパスフィルタの高周波数側のカットオフ周波数は、低周波帯域LBA及び高周波帯域HBの境界値となるように設定されている。加えて、バンドパスフィルタの低周波数側のカットオフ周波数は、第一帯域LB1及び第二帯域LB2の境界値となるように設定されている。こうした設定により、バンドパスフィルタは、ハイトセンサ24にて検出される第一帯域LB1の信号と、後述する慣性センサ31にて検出される高周波帯域HBの信号との重複領域を除去する。 The AC component processing unit 64 acquires posture change information of the second band LB2 using the control information of the axle torque and the braking force. The AC component processing unit 64 is configured to include a band pass filter. The band pass filter generally passes signals in the second band LB2 and attenuates signals in the first band LB1 and lower and signals in the high frequency band HB and higher. The cutoff frequency on the high frequency side of the band pass filter is set to be the boundary value between the low frequency band LBA and the high frequency band HB. In addition, the cutoff frequency on the low frequency side of the band pass filter is set to be a boundary value of the first band LB1 and the second band LB2. By such setting, the band pass filter removes the overlapping region of the signal of the first band LB1 detected by the height sensor 24 and the signal of the high frequency band HB detected by the inertial sensor 31 described later.
 AC成分処理部64は、車軸トルク及びブレーキ力の制御情報をバンドパスフィルタに通す処理により、第二帯域LB2に属する姿勢変化(主にピッチ角変化等)の振動成分(AC成分)を推定する。こうしたAC成分処理部64の処理によれば、車両制御ユニット26は、第一帯域LB1の姿勢変化に関連する出力信号を出力可能な姿勢出力部20であって、車両Aに作用する加速度のAC成分を確定させる構成として機能する。 AC component processing unit 64 estimates vibration components (AC components) of posture change (mainly pitch angle change etc.) belonging to second band LB2 by processing of passing control information of axle torque and brake force through band pass filter . According to the processing of the AC component processing unit 64, the vehicle control unit 26 is the posture output unit 20 capable of outputting an output signal related to the posture change of the first band LB1, and AC of acceleration acting on the vehicle A. It functions as a configuration to determine ingredients.
 対象情報取得部65は、センサ値取得部61と同様に、通信バス29と通信可能に接続されている。対象情報取得部65は、外界センサ21から通信バス29に出力された物体情報を取得し、移動物体及び静止物体の中から、虚像Viを重畳させる対象を選別する。対象情報取得部65は、選別した重畳対象の相対位置を3D描画部67に提供する。 Similar to the sensor value acquisition unit 61, the target information acquisition unit 65 is communicably connected to the communication bus 29. The target information acquisition unit 65 acquires object information output from the external sensor 21 to the communication bus 29, and selects a target on which the virtual image Vi is to be superimposed, from among the moving object and the stationary object. The target information acquisition unit 65 provides the 3D drawing unit 67 with the relative position of the selected superposition target.
 低周波補正量算出部66は、勾配取得部62にて取得される路面勾配、DC成分処理部63にて取得される第一帯域LB1の姿勢変化情報、及びAC成分処理部64にて取得される第二帯域LB2の姿勢変化情報を統合し、車両Aの姿勢を特定する。低周波補正量算出部66は、特定した車両姿勢から、低周波帯域LBAの姿勢変化による虚像Viの補正量(以下、「低周波補正量」)を算出する。 The low frequency correction amount calculation unit 66 is acquired by the road surface gradient acquired by the gradient acquisition unit 62, posture change information of the first band LB1 acquired by the DC component processing unit 63, and the AC component processing unit 64. Integrating the attitude change information of the second band LB2 to specify the attitude of the vehicle A. The low frequency correction amount calculation unit 66 calculates the correction amount of the virtual image Vi (hereinafter, “low frequency correction amount”) due to the attitude change of the low frequency band LBA from the specified vehicle attitude.
 3D描画部67は、HUD30によって投影領域PAに投影される表示光像Oiの映像データPSを描画する。映像データPSを構成する個々のフレームには、虚像Viに対応する描画物が描画されている。描画物の描画位置及び描画形状は、表示光像Oiが投影領域PAに投影されたときに、描画物に基づく虚像Viが、重畳対象に正しく重なって視認されるように制御される(図5及び図6参照)。 The 3D drawing unit 67 draws the video data PS of the display light image Oi to be projected onto the projection area PA by the HUD 30. A drawn object corresponding to the virtual image Vi is drawn in each frame constituting the video data PS. The drawing position and drawing shape of the drawing object are controlled such that when the display light image Oi is projected onto the projection area PA, the virtual image Vi based on the drawing object is viewed correctly as being superimposed on the superposition target (FIG. 5) And Figure 6).
 詳記すると、3D描画部67は、予め設定されたアイポイント及び投影領域PAの各設定位置を、メモリ装置等から読み出す。以上により、3D描画部67は、対象情報取得部65から提供される重畳対象の相対位置、並びにアイポイント及び投影領域PAの各設定位置の関係を把握する。3D描画部67は、重畳対象、アイポイント及び投影領域PAの位置関係に基づき、表示光像Oiの投影領域PA内での投影位置、換言すれば、描画物に基づく虚像Viの結像位置を、幾何学的な演算によって算出する。 Specifically, the 3D rendering unit 67 reads out each preset position of the eye point and the projection area PA from the memory device or the like. As described above, the 3D rendering unit 67 grasps the relationship between the relative position of the superimposition target provided by the target information acquisition unit 65 and the setting positions of the eye point and the projection area PA. The 3D drawing unit 67 determines the projection position of the display light image Oi within the projection area PA, in other words, the imaging position of the virtual image Vi based on the drawing object, based on the positional relationship between the superposition target, the eye point and the projection area PA. , Calculated by geometrical operation.
 加えて3D描画部67は、低周波帯域LBAの姿勢変化情報を用いて生成された低周波補正量を、低周波補正量算出部66から取得する。3D描画部67は、低周波帯域LBAの姿勢変化に起因する虚像Viの位置ずれが低減(相殺)されるように、映像データPSの各フレームにおける描画物の描画位置及び描画形状を、低周波補正量に基づき逐次補正する。3D描画部67は、虚像Viの位置ずれを低減させる補正が予め実施された映像データPSを、予め規定された映像フォーマットにて、HUD30へ向けて逐次出力する。 In addition, the 3D rendering unit 67 acquires the low frequency correction amount generated using the posture change information of the low frequency band LBA from the low frequency correction amount calculation unit 66. The 3D drawing unit 67 sets the drawing position and drawing shape of the drawing object in each frame of the video data PS to a low frequency so that the positional deviation of the virtual image Vi due to the posture change of the low frequency band LBA is reduced (cancelled). Correction is sequentially performed based on the correction amount. The 3D rendering unit 67 sequentially outputs the video data PS, for which the correction for reducing the positional deviation of the virtual image Vi is performed in advance, to the HUD 30 in a predetermined video format.
 図1及び図4に示すHUD30は、ウィンドシールドWSの下方にて、インスツルメントパネルに設けられた収容空間に収容される車載表示器である。HUD30からウィンドシールドWSへ向けて射出された表示光像Oiの光は、投影領域PAによってアイポイント側へ向けて反射され、運転者によって知覚される。運転者は、投影領域PAを通して見える前景中の重畳対象に、虚像Viが重畳された表示を視認する。HUD30は、虚像表示のための構成として、慣性センサ31、フィルタ回路32、投影光学ユニット50、光学補正機構55、及びレーザモジュール制御基板(以下、「LSM制御基板」)40を有している。 The HUD 30 shown in FIG. 1 and FIG. 4 is an on-vehicle indicator housed in a housing space provided in the instrument panel below the windshield WS. The light of the display light image Oi emitted from the HUD 30 toward the windshield WS is reflected by the projection area PA toward the eye point and perceived by the driver. The driver visually recognizes the display in which the virtual image Vi is superimposed on the superimposed object in the foreground viewed through the projection area PA. The HUD 30 includes an inertial sensor 31, a filter circuit 32, a projection optical unit 50, an optical correction mechanism 55, and a laser module control board (hereinafter, "LSM control board") 40 as a configuration for displaying a virtual image.
 慣性センサ31は、車両Aの姿勢変化を計測する計測部であって、ジャイロセンサ及び加速度センサを組み合わせた構成である。慣性センサ31は、ハイトセンサ24及び車両制御ユニット26とは別に車両Aに搭載されている。慣性センサ31は、車両Aにおけるピッチ方向及びロール方向の各角速度と、車両Aのヨー軸に沿った上下方向の加速度とを計測する。 The inertial sensor 31 is a measurement unit that measures a change in attitude of the vehicle A, and is configured by combining a gyro sensor and an acceleration sensor. The inertial sensor 31 is mounted on the vehicle A separately from the height sensor 24 and the vehicle control unit 26. The inertial sensor 31 measures angular velocities in the pitch direction and roll direction of the vehicle A, and acceleration in the vertical direction along the yaw axis of the vehicle A.
 慣性センサ31には、ローパスフィルタ及びAD変換部が設けられている。ローパスフィルタは、ジャイロセンサ及び加速度センサの各出力から、高周波ノイズを除去する。AD変換部は、ローパスフィルタを通過したアナログ信号を、デジタル信号に変換する。慣性センサ31は、例えばI2C(Inter-Integrated Circuit:登録商標)及びSPI(Serial Peripheral Interface)等の通信規格にて、フィルタ回路32に信号を送信できる。慣性センサ31は、上記の通信規格に従うデジタル形式とされた計測信号を、フィルタ回路32に出力する。 The inertial sensor 31 is provided with a low pass filter and an AD converter. The low pass filter removes high frequency noise from the outputs of the gyro sensor and the acceleration sensor. The AD converter converts the analog signal passed through the low pass filter into a digital signal. The inertial sensor 31 can transmit a signal to the filter circuit 32 according to a communication standard such as I2C (Inter-Integrated Circuit (registered trademark)) and SPI (Serial Peripheral Interface). The inertial sensor 31 outputs a measurement signal in digital form conforming to the above communication standard to the filter circuit 32.
 フィルタ回路32は、慣性センサ31から出力される計測信号を取得する。計測信号がフィルタ回路32に取得されるまでの遅延時間(以下、「計測遅延時間」)は、通信バス29にて生じる通信遅延時間よりも短くなっている。フィルタ回路32は、ハイパスフィルタ及び積分処理部等を少なくとも含む構成である。 The filter circuit 32 acquires the measurement signal output from the inertial sensor 31. The delay time until the measurement signal is acquired by the filter circuit 32 (hereinafter, “measurement delay time”) is shorter than the communication delay time generated in the communication bus 29. The filter circuit 32 is configured to include at least a high pass filter, an integration processing unit, and the like.
 ハイパスフィルタは、高周波帯域HBの信号を概ね通過させ、低周波帯域LBA以下の信号を減衰させる(図3参照)。ハイパスフィルタのカットオフ周波数は、高周波帯域HB及び低周波帯域LBAの境界値となるように設定されている。こうした設定により、ハイパスフィルタは、計測信号に含まれる周波帯域のうちで低周波帯域LBAと重複する帯域の信号を減衰させる。加えて、ハイパスフィルタの通過により、慣性センサ31のジャイロセンサに生じるドリフト成分が計測信号から除去される。 The high pass filter generally passes signals in the high frequency band HB and attenuates signals in the low frequency band LBA and below (see FIG. 3). The cutoff frequency of the high pass filter is set to be the boundary value between the high frequency band HB and the low frequency band LBA. By such setting, the high pass filter attenuates the signal in the band overlapping with the low frequency band LBA among the frequency bands included in the measurement signal. In addition, the passage of the high pass filter removes the drift component generated in the gyro sensor of the inertial sensor 31 from the measurement signal.
 積分処理部は、例えばローパスフィルタを主体とした構成である。積分処理部は、姿勢変化の角速度を示す計測信号を時間積分する信号処理により、車両姿勢(ピッチ角,ロール角等)を示す信号を生成する。フィルタ回路32は、ハイパスフィルタ及び積分処理部を順に通過した信号を、高周波帯域HBの姿勢変化情報として取得し、LSM制御基板40に逐次提供する。 The integration processing unit is configured mainly of, for example, a low pass filter. The integration processing unit generates a signal indicating the vehicle posture (pitch angle, roll angle, etc.) by performing signal processing on the measurement signal indicating the angular velocity of posture change by time integration. The filter circuit 32 acquires a signal sequentially passing through the high pass filter and the integration processing unit as posture change information of the high frequency band HB and sequentially provides the signal to the LSM control board 40.
 投影光学ユニット50は、映像データPSから生成された表示光像Oiを、投影領域PAに投影する光学的な構成である。投影光学ユニット50は、レーザモジュール51、スクリーン52、凸面鏡53a及び凹面鏡53bを含む反射光学系53、並びに補正光学素子54等とよって構成されている。これらの光学要素は、HUD30の筐体30aに収容されている。筐体30aは、各光学要素の相対的な位置関係を高精度に規定している。 The projection optical unit 50 is an optical configuration that projects the display light image Oi generated from the video data PS onto the projection area PA. The projection optical unit 50 includes a laser module 51, a screen 52, a reflection optical system 53 including a convex mirror 53a and a concave mirror 53b, a correction optical element 54, and the like. These optical elements are accommodated in the housing 30 a of the HUD 30. The housing 30a defines the relative positional relationship of each optical element with high accuracy.
 レーザモジュール51は、例えばレーザ光源及びMEMS(Micro Electro Mechanical Systems)スキャナ等を含む構成である。レーザモジュール51は、レーザ光源の発光と、MEMSスキャナのミラー部の走査とを、LSM制御基板40によって制御される。レーザモジュール51は、スクリーン52へ向けて照射するレーザ光の走査により、スクリーン52に元画像Piを描画する。 The laser module 51 is configured to include, for example, a laser light source and a MEMS (Micro Electro Mechanical Systems) scanner. The laser module 51 controls the light emission of the laser light source and the scanning of the mirror portion of the MEMS scanner by the LSM control substrate 40. The laser module 51 draws the original image Pi on the screen 52 by scanning the laser light emitted toward the screen 52.
 スクリーン52は、例えばガラス等の無色透明な材料によって横長の矩形板状に形成されている。スクリーン52は、例えばマイクロミラーアレイである。スクリーン52には、レーザ光を反射するスクリーン反射面52aが設けられている。スクリーン反射面52aには、アルミニウム等の金属の蒸着によって形成された多数の微小な反射凸面が2次元配列されている。スクリーン反射面52aには、映像データPSに基づく元画像Piがレーザモジュール51の走査によって表示される。 The screen 52 is formed in a horizontally long rectangular plate shape by a colorless and transparent material such as glass. The screen 52 is, for example, a micro mirror array. The screen 52 is provided with a screen reflecting surface 52 a that reflects laser light. On the screen reflecting surface 52a, a large number of minute reflecting convex surfaces formed by vapor deposition of a metal such as aluminum are two-dimensionally arrayed. An original image Pi based on the video data PS is displayed on the screen reflection surface 52 a by scanning of the laser module 51.
 凸面鏡53a及び凹面鏡53bは、合成樹脂又はガラス等からなる無色透明な基材の表面に、アルミニウム等の金属を蒸着させた反射鏡である。凸面鏡53a及び凹面鏡53bは、スクリーン52に表示された元画像Piを投影領域PAに投影する。凸面鏡53aは、スクリーン52にて反射されたレーザ光を、凹面鏡53bへ向けて反射する。凹面鏡53bは、凸面鏡53aから入射するレーザ光を、投影領域PAへ向けて反射する。以上により、元画像Piを拡大してなる表示光像Oiが、投影領域PAに投影される。尚、凹面鏡53bは、例えば回折によって元画像Piを拡大する回折光学素子(Diffractive Optical Element:DOE)等であってもよい。 The convex mirror 53a and the concave mirror 53b are reflectors in which a metal such as aluminum is vapor-deposited on the surface of a colorless and transparent base material made of synthetic resin or glass. The convex mirror 53a and the concave mirror 53b project the original image Pi displayed on the screen 52 onto the projection area PA. The convex mirror 53a reflects the laser beam reflected by the screen 52 toward the concave mirror 53b. The concave mirror 53b reflects the laser beam incident from the convex mirror 53a toward the projection area PA. Thus, the display light image Oi formed by enlarging the original image Pi is projected onto the projection area PA. The concave mirror 53b may be, for example, a diffractive optical element (DOE) that magnifies the original image Pi by diffraction.
 補正光学素子54は、例えばガラス等の無色透明な材料によって形成されたレンズである。補正光学素子54は、光学補正機構55に保持された状態で、レーザモジュール51とスクリーン52との間の光路に配置されている。補正光学素子54は、レーザモジュール51からスクリーン52へ向かう光軸LAに対して、位置及び姿勢を変化させる。補正光学素子54の位置及び姿勢の変化によれば、投影領域PAにおける表示光像Oiの投影位置、ひいては虚像Viの結像位置が変化する。 The correction optical element 54 is a lens formed of, for example, a colorless and transparent material such as glass. The correction optical element 54 is disposed in the optical path between the laser module 51 and the screen 52 while being held by the optical correction mechanism 55. The correction optical element 54 changes the position and attitude with respect to the optical axis LA directed from the laser module 51 to the screen 52. According to the change in the position and orientation of the correction optical element 54, the projection position of the display light image Oi in the projection area PA, and hence the imaging position of the virtual image Vi, changes.
 光学補正機構55は、例えばヨーク、コイル、磁石等によって構成された電磁アクチュエータを含む構成である。電磁アクチュエータの作動は、LSM制御基板40によって制御される。光学補正機構55は、電磁アクチュエータの作動によって、補正光学素子54の位置及び姿勢を変化させる。具体的に光学補正機構55は、光軸LAと直交する平面方向に沿って、補正光学素子54を変位(シフト)させることができる。加えて光学補正機構55は、光軸LAに対する補正光学素子54の姿勢を傾斜(チルト)させることができる。 The optical correction mechanism 55 is configured to include an electromagnetic actuator configured of, for example, a yoke, a coil, a magnet, and the like. The operation of the electromagnetic actuator is controlled by the LSM control board 40. The optical correction mechanism 55 changes the position and attitude of the correction optical element 54 by the operation of the electromagnetic actuator. Specifically, the optical correction mechanism 55 can displace (shift) the correction optical element 54 along a plane direction orthogonal to the optical axis LA. In addition, the optical correction mechanism 55 can tilt the attitude of the correction optical element 54 with respect to the optical axis LA.
 LSM制御基板40は、投影光学ユニット50による虚像表示を制御する電気構成である。LSM制御基板40に形成された制御回路は、処理部、RAM、メモリ装置及び入出力インターフェースを有するマイクロコントローラ等を主体に構成されている。LSM制御基板40には、映像取得部41、レーザ制御部47、高周波補正量算出部44及び補正制御部45が設けられている。これらの構成は、プログラム等のソフトウェアによって実現された機能部であってもよく、或いは複数の電気素子等を組み合わせてなるハードウェア(電気回路部)によって実現された機能部であってもよい。さらに、上記の各構成は、ソフトウェア及びハードウェアの組み合わせによって実現された機能部であってもよい。 The LSM control substrate 40 is an electrical configuration that controls virtual image display by the projection optical unit 50. A control circuit formed on the LSM control board 40 mainly includes a processing unit, a RAM, a memory device, a microcontroller having an input / output interface, and the like. The LSM control board 40 is provided with an image acquisition unit 41, a laser control unit 47, a high frequency correction amount calculation unit 44 and a correction control unit 45. These configurations may be a functional unit realized by software such as a program, or may be a functional unit realized by hardware (electric circuit unit) formed by combining a plurality of electric elements and the like. Furthermore, each configuration described above may be a functional unit realized by a combination of software and hardware.
 映像取得部41は、映像伝送用のケーブル等を介して描画ECU60と接続されている。映像取得部41には、虚像表示のための映像データPSが、3D描画部67から伝送される。上述したように、映像取得部41の取得する映像データPSには、低周波帯域LBA(図2等参照)の姿勢変化に起因する虚像Viの位置ずれを低減させる補正処理が、予め施されている。 The video acquisition unit 41 is connected to the drawing ECU 60 via a video transmission cable or the like. Video data PS for displaying a virtual image is transmitted from the 3D rendering unit 67 to the video acquisition unit 41. As described above, the video data PS acquired by the video acquisition unit 41 is subjected in advance to a correction process for reducing the positional deviation of the virtual image Vi caused by the attitude change of the low frequency band LBA (see FIG. 2 etc.) There is.
 レーザ制御部47は、レーザモジュール51におけるレーザ光源の発光と、MEMSスキャナの走査を統合的に制御する。レーザ制御部47は、映像取得部41にて取得された映像データPSの各フレームの画像を再生し、レーザモジュール51の制御により、元画像Piとしてスクリーン反射面52aに描画する。 The laser control unit 47 integrally controls emission of the laser light source in the laser module 51 and scanning of the MEMS scanner. The laser control unit 47 reproduces the image of each frame of the video data PS acquired by the video acquisition unit 41, and draws the original image Pi on the screen reflection surface 52a under the control of the laser module 51.
 ここで、スクリーン反射面52aに表示される元画像Piの画像サイズは、HUD30によって投影される表示光像Oiの画像サイズよりも大きい。即ち、3D描画部67にて描画される映像データPSの画像サイズは、表示光像Oiの画像サイズよりも大きくされている。故に、光学補正機構55による補正光学素子54のシフト又はチルトにより、スクリーン反射面52aにおける元画像Piの位置が移動した場合でも、所定の画像サイズを確保された表示光像Oiが、反射光学系53によって投影領域PAに投影される。 Here, the image size of the original image Pi displayed on the screen reflection surface 52 a is larger than the image size of the display light image Oi projected by the HUD 30. That is, the image size of the video data PS drawn by the 3D drawing unit 67 is larger than the image size of the display light image Oi. Therefore, even when the position of the original image Pi on the screen reflection surface 52a is moved by the shift or tilt of the correction optical element 54 by the optical correction mechanism 55, the display light image Oi having a predetermined image size is a reflection optical system. The projection area PA is projected onto the projection area PA.
 高周波補正量算出部44は、高周波帯域HB(図2及び図3参照)の姿勢変化情報を、フィルタ回路32から取得する。高周波補正量算出部44は、取得した高周波帯域HBの姿勢変化情報に基づき、高周波帯域HBの姿勢変化による虚像Viの補正量(以下、「高周波補正量」)を算出する。 The high frequency correction amount calculation unit 44 acquires posture change information in the high frequency band HB (see FIGS. 2 and 3) from the filter circuit 32. The high frequency correction amount calculation unit 44 calculates the correction amount of the virtual image Vi (hereinafter, “high frequency correction amount”) due to the posture change of the high frequency band HB based on the acquired posture change information of the high frequency band HB.
 補正制御部45は、高周波帯域HBの姿勢変化に起因する虚像Viの位置ずれが低減(相殺)されるように、高周波補正量算出部44から取得する高周波補正量に基づき、光学補正機構55の作動を制御する。補正制御部45は、高周波補正量に関連付けられた補正光学素子54のシフト変化及びチルト変化の少なくとも一方を、光学補正機構55によって生じさせる。例えば、加速に伴いリヤ側を沈ませるピッチ変化が車両Aに生じた場合、補正光学素子54のシフトによって、スクリーン反射面52aでの元画像Piの描画位置を実質的に平行移動させる。以上の元画像Piの移動によれば、図6に示すように、運転者の見かけ上で投影領域PAと重なる前景の範囲が変化しても、元画像Piのうちで前景に対応した画像部分が反射光学系53によって投影領域PAに投影される。その結果、前景中の重畳対象に正しく重畳された虚像Viが表示される。 The correction control unit 45 controls the correction of the optical correction mechanism 55 based on the high frequency correction amount acquired from the high frequency correction amount calculation unit 44 so that the positional deviation of the virtual image Vi caused by the posture change of the high frequency band HB is reduced (cancelled). Control the operation. The correction control unit 45 causes the optical correction mechanism 55 to cause at least one of shift change and tilt change of the correction optical element 54 associated with the high frequency correction amount. For example, when the vehicle A has a pitch change that causes the rear side to sink with acceleration, the drawing position of the original image Pi on the screen reflection surface 52a is substantially translated by the shift of the correction optical element 54. According to the above movement of the original image Pi, as shown in FIG. 6, even if the range of the foreground overlapping with the projection area PA in appearance of the driver changes, an image portion corresponding to the foreground in the original image Pi Is projected onto the projection area PA by the reflective optical system 53. As a result, the virtual image Vi correctly superimposed on the superimposed object in the foreground is displayed.
 図1及び図4に示す補正制御部45は、車両Aに生じる姿勢変化の内容に応じて、補正光学素子54に異なる動きを生じさせる。例えば補正制御部45は、車両Aにピッチ又はヒーブの姿勢変化が生じている場合に、表示光像Oiの投影位置が投影領域PAに沿って平行移動するように、補正光学素子54を変位させる。以上によれば、虚像Viは、見かけ上での重畳対象の動きに追従するようになる。また補正制御部45は、車両Aにロールの姿勢変化が生じている場合に、表示光像Oiの向きが投影領域PAに沿って回転するように補正光学素子54を変位させる。以上によれば、虚像Viは、車両Aの傾きを相殺するように傾き、重畳対象に対する姿勢を維持するようになる。 The correction control unit 45 shown in FIG. 1 and FIG. 4 causes the correction optical element 54 to make different movements in accordance with the contents of the attitude change occurring in the vehicle A. For example, the correction control unit 45 displaces the correction optical element 54 so that the projection position of the display light image Oi moves in parallel along the projection area PA when the posture of the pitch or heave is changed in the vehicle A. . According to the above, the virtual image Vi comes to follow the movement of the superposition object in appearance. Further, the correction control unit 45 displaces the correction optical element 54 so that the direction of the display light image Oi rotates along the projection area PA when the posture of the roll is changed in the vehicle A. According to the above, the virtual image Vi tilts so as to offset the tilt of the vehicle A, and maintains the posture with respect to the superposition target.
 ここまで説明した第一実施形態の虚像表示装置100は、ハイトセンサ24、ペダルセンサ25及び慣性センサ31等を相補的に組みわせ、0~2Hzの姿勢変化(主にピッチング)の補正を実現している。具体的に、虚像表示装置100では、車両Aに生じる姿勢変化のうちで、低周波帯域LBAの姿勢変化に起因する虚像Viの位置ずれは、描画ECU60での映像データPSを描画する段階において、予め補正される。そのため、投影光学ユニット50の補正光学素子54を変位させる光学補正機構55は、低周波帯域LBAの姿勢変化に起因する虚像Viの位置ずれを実質的に補正しなくてもよくなる。 The virtual image display apparatus 100 according to the first embodiment described above combines the height sensor 24, the pedal sensor 25, the inertia sensor 31, etc. in a complementary manner, and realizes correction of posture change (mainly pitching) of 0 to 2 Hz. ing. Specifically, in the virtual image display device 100, among the attitude changes occurring in the vehicle A, the positional deviation of the virtual image Vi caused by the attitude change in the low frequency band LBA is the stage of drawing the video data PS in the drawing ECU 60, It is corrected in advance. Therefore, the optical correction mechanism 55 for displacing the correction optical element 54 of the projection optical unit 50 does not have to substantially correct the positional deviation of the virtual image Vi caused by the attitude change of the low frequency band LBA.
 以上によれば、光学補正機構55は、高周波帯域HBの姿勢変化に起因する虚像Viの位置ずれ低減に好適な構成となり得る。具体的に、高周波帯域HBの姿勢変化は、低周波帯域LBAの姿勢変化と比較して、振幅が小さく、且つ、動きが速い。そのため、光学補正機構55は、補正のためのストローク量を犠牲にしつつ、振動に対して高応答な構成とされる。以上によれば、光学補正機構55は、高周波帯域HBの姿勢変化に、補正光学素子54を変位させる光学的な補正を追従させて、虚像Viの位置ずれを効果的に低減できる。したがって、高周波帯域HBの姿勢変化が車両Aに生じる場合でも、虚像表示装置100は、虚像Viの正しい重畳表示を継続できる。 According to the above, the optical correction mechanism 55 can be a configuration suitable for reducing the positional deviation of the virtual image Vi caused by the posture change of the high frequency band HB. Specifically, the change in attitude of the high frequency band HB is smaller in amplitude and faster in movement than the change in attitude of the low frequency band LBA. Therefore, the optical correction mechanism 55 is configured to be highly responsive to vibration while sacrificing the stroke amount for correction. According to the above, the optical correction mechanism 55 can effectively reduce the positional deviation of the virtual image Vi by making the optical correction for displacing the correction optical element 54 follow the change in attitude of the high frequency band HB. Therefore, even when the attitude change of the high frequency band HB occurs in the vehicle A, the virtual image display device 100 can continue the correct superimposed display of the virtual image Vi.
 加えて第一実施形態では、高周波帯域HBの姿勢変化に対する補正は、3D描画部67による描画段階では実施されない。換言すると、高周波帯域HBの姿勢変化に対する補正は、情報の取得から虚像Viの表示に至るまでの表示処理の過程において、虚像Viの表示直前の段階で実施される。故に、高周波帯域HBでの姿勢変化の補正については、3D描画部67による描画処理の演算に起因する補正の遅延が実質的に生じない。その結果、高周波帯域HBでの姿勢変化が生じた場合でも、虚像Viは、見かけ上での重畳対象の動きに追従できる。 In addition, in the first embodiment, the correction for the posture change of the high frequency band HB is not performed at the drawing stage by the 3D drawing unit 67. In other words, the correction for the posture change in the high frequency band HB is performed at a stage immediately before the display of the virtual image Vi in the process of display processing from the acquisition of information to the display of the virtual image Vi. Therefore, with regard to the correction of the posture change in the high frequency band HB, the delay of the correction due to the calculation of the drawing process by the 3D drawing unit 67 does not substantially occur. As a result, even when the posture change in the high frequency band HB occurs, the virtual image Vi can follow the movement of the superposition target in appearance.
 さらに第一実施形態では、低周波帯域LBAの姿勢変化に対する補正が、3D描画部67による描画段階で実施される。低周波帯域LBAの姿勢変化は、高周波帯域HBの姿勢変化と比較して、動きが遅いものの、振幅が大きい。故に、光学補正機構55で補正光学素子54を動かすだけの補正では、低周波帯域LBAの姿勢変化分を補正し切ることが困難となり得る。加えて、慣性センサ31のジャイロセンサの出力には、不可避的にドリフト成分が含まれる。故に、低周波帯域LBAの姿勢変化情報をジャイロセンサの出力から生成する処理は、困難となる。 Furthermore, in the first embodiment, correction for the attitude change of the low frequency band LBA is performed at the drawing stage by the 3D drawing unit 67. The change in attitude of the low frequency band LBA is slower than the change in attitude of the high frequency band HB, but the amplitude is large. Therefore, in the correction only by moving the correction optical element 54 by the optical correction mechanism 55, it may be difficult to correct the posture change of the low frequency band LBA. In addition, the output of the gyro sensor of the inertial sensor 31 inevitably includes the drift component. Therefore, the process of generating attitude change information of the low frequency band LBA from the output of the gyro sensor becomes difficult.
 こうした理由により、HUD30での低周波帯域LBAの補正実施は好ましくなく、低周波帯域LBAの姿勢変化の補正は、3D描画部67で行われるのが望ましい。3D描画部67の描画段階で低周波帯域LBに対する補正が行われれば、低周波帯域LBAの姿勢変化が車両Aに生じる場合でも、虚像表示装置100は、虚像Viの正しい重畳表示を継続できる。 For these reasons, it is not preferable to perform correction of the low frequency band LBA in the HUD 30, and it is desirable that the correction of the attitude change of the low frequency band LBA be performed by the 3D rendering unit 67. If correction to the low frequency band LB is performed at the drawing stage of the 3D drawing unit 67, the virtual image display device 100 can continue correct superimposed display of the virtual image Vi even if a change in attitude of the low frequency band LBA occurs in the vehicle A.
 以上のように、低周波帯域LBAの補正を3D描画部67にて実施し、高周波帯域HBの補正を光学補正機構55にて実施する虚像表示装置100であれば、走行中の車両Aにおいて、虚像Viは、継続的に重畳対象に重畳され続ける。 As described above, in the case of the virtual image display device 100 in which the correction of the low frequency band LBA is performed by the 3D drawing unit 67 and the correction of the high frequency band HB is performed by the optical correction mechanism 55. The virtual image Vi continues to be superimposed on the superposition target.
 さらに第一実施形態では、HUD30に慣性センサ31が設けられている。故に、フィルタ回路32は、例えば通信バス29を介した通信による遅延の影響を受けることなく、実質的にリアルタイムに近い周期で慣性センサ31の計測信号を受信し、高周波帯域HBの姿勢変化情報を取得できる。以上によれば、補正制御部45及び光学補正機構55は、高周波帯域HBの姿勢変化に実質遅延することなく、補正光学素子54の動きを追従させることができる。したがって、光学補正機構55による光学的な補正は、虚像Viの位置ずれを適確に低減できる。 Furthermore, in the first embodiment, the HUD 30 is provided with an inertial sensor 31. Therefore, the filter circuit 32 receives the measurement signal of the inertial sensor 31 substantially at a cycle close to real time without being affected by the delay caused by communication via the communication bus 29, for example, and changes the attitude change information in the high frequency band HB. You can get it. According to the above, the correction control unit 45 and the optical correction mechanism 55 can follow the movement of the correction optical element 54 without substantially delaying the change in posture of the high frequency band HB. Therefore, the optical correction by the optical correction mechanism 55 can properly reduce the displacement of the virtual image Vi.
 加えて第一実施形態では、慣性センサ31の計測信号に含まれる周波数帯域のうちで、低周波帯域LBAと重複する帯域の信号が、フィルタ回路32にて減衰される。故に、光学補正機構55の光学的な補正処理にて、映像データPSの描画段階での補正と重複する補正が実施されてしまう事態は、実質的に回避される。以上によれば、虚像表示装置100は、3D描画部67での低周波帯域LBAに対する補正と、光学補正機構55での高周波帯域HBに対する補正とを、それぞれ正しく機能させて、虚像Viの正しい重畳表示を継続できる。 In addition, in the first embodiment, among the frequency bands included in the measurement signal of the inertial sensor 31, a signal of a band overlapping the low frequency band LBA is attenuated by the filter circuit 32. Therefore, in the optical correction process of the optical correction mechanism 55, a situation in which a correction that is redundant with the correction in the drawing step of the video data PS is substantially avoided. According to the above, the virtual image display device 100 causes the correction to the low frequency band LBA in the 3D drawing unit 67 and the correction to the high frequency band HB in the optical correction mechanism 55 to function properly, and correct superposition of the virtual image Vi. The display can be continued.
 また第一実施形態では、映像データPSの各フレームにおける画像サイズが、虚像表示に必要とされる表示光像Oiの画像サイズよりも大きくなるように、予め規定されている。その結果、スクリーン反射面52aには、投影領域PAに対して余裕代が確保された元画像Piが描画される。故に、補正光学素子54のシフト又はチルトにより、スクリーン52における元画像Piの描画位置がずらされた場合でも、表示可能な虚像Viの大きさは、姿勢変化をしていない状態と実質的に同等となる(図5及び図6参照)。以上のように、映像データPSに余裕代が設けられていれば、部分的に欠損したような虚像Viが表示されてしまう事態は、回避される。尚、上記の画像サイズは、画像データのピクセルサイズを示しており、画像データにおける縦横の画素数を示している。 In the first embodiment, the image size in each frame of the video data PS is previously defined so as to be larger than the image size of the display light image Oi required for virtual image display. As a result, on the screen reflection surface 52a, the original image Pi whose margin is secured with respect to the projection area PA is drawn. Therefore, even when the drawing position of the original image Pi on the screen 52 is shifted due to the shift or tilt of the correction optical element 54, the size of the displayable virtual image Vi is substantially equal to that in the state without attitude change. (See FIGS. 5 and 6). As described above, if the video data PS is provided with a margin, it is possible to avoid the situation in which the virtual image Vi which is partially lost is displayed. The above image size indicates the pixel size of the image data, and indicates the number of vertical and horizontal pixels in the image data.
 さらに第一実施形態では、慣性センサ31及びフィルタ回路32間に生じる計測遅延時間は、通信バス29を介して通信するセンサ値取得部61の通信遅延時間よりも短くされている。以上によれば、光学補正機構55及び補正光学素子54による光学的な補正は、高周波帯域HBの姿勢変化に実質的に遅延なく追従し、虚像Viの位置ずれを適確に低減できる。 Furthermore, in the first embodiment, the measurement delay time generated between the inertial sensor 31 and the filter circuit 32 is shorter than the communication delay time of the sensor value acquisition unit 61 that communicates via the communication bus 29. According to the above, the optical correction by the optical correction mechanism 55 and the correction optical element 54 can follow the posture change of the high frequency band HB substantially without delay, and the positional deviation of the virtual image Vi can be appropriately reduced.
 加えて第一実施形態では、低周波帯域LBAが、加減速のDC成分に対応する第一帯域LB1と、加減速のAC成分に対応する第二帯域LB2に切り分けられている。こうした切り分けによれば、センサ値取得部61は、第一帯域LB1及び第二帯域LB2の各姿勢変化情報を、既存のセンサ及び演算装置を活用して取得可能となる。したがって、低周波帯域LBAの姿勢変化を計測する車載センサ等の追加が不要になるため、構成の複雑化を回避しつつ、虚像Viの正確な重畳表示が実現できる。 In addition, in the first embodiment, the low frequency band LBA is divided into a first band LB1 corresponding to the DC component of acceleration / deceleration and a second band LB2 corresponding to the AC component of acceleration / deceleration. According to such separation, the sensor value acquisition unit 61 can acquire the posture change information of the first band LB1 and the second band LB2 by using the existing sensor and the arithmetic device. Therefore, it is not necessary to add an on-vehicle sensor or the like that measures the attitude change in the low frequency band LBA, and thus accurate superimposed display of the virtual image Vi can be realized while avoiding complication of the configuration.
 また第一実施形態では、車両Aにピッチ又はヒーブの姿勢変化が生じている場合に、光学補正機構55は、表示光像Oiの光の投影位置が平行移動するように補正光学素子54を変位させる。一方、車両Aにロールの姿勢変化が生じている場合に、光学補正機構55は、表示光像Oiの向きが投影領域PAに沿って回転するように補正光学素子54を変位させる。以上のように、車両Aの姿勢変化の内容に応じて補正光学素子54の動かし方を変更すれば、姿勢変化に起因する位置ずれの補正は、視認者の違和感を惹起させることなく実施可能となる。 In the first embodiment, when the attitude of the pitch or heave changes in the vehicle A, the optical correction mechanism 55 displaces the correction optical element 54 so that the projection position of the light of the display light image Oi moves in parallel. Let On the other hand, when the posture change of the roll occurs in the vehicle A, the optical correction mechanism 55 displaces the correction optical element 54 so that the direction of the display light image Oi rotates along the projection area PA. As described above, if the method of moving the correction optical element 54 is changed according to the content of the posture change of the vehicle A, the correction of the positional deviation due to the posture change can be performed without causing the viewer's discomfort. Become.
 尚、第一実施形態において、計測遅延時間が「第一遅延時間」に相当し、通信遅延時間が「第二遅延時間」に相当する。また、ハイトセンサ24が「第一出力部」に相当し、車両制御ユニット26が「第二出力部」に相当し、ハイトセンサ24及び車両制御ユニット26が「姿勢出力部」に相当する。さらに、慣性センサ31が「姿勢計測部」に相当し、フィルタ回路32が「高周波情報取得部」に相当し、補正光学素子54が「光学要素」に相当し、センサ値取得部61が「低周波情報取得部」に相当し、3D描画部67が「映像描画部」に相当する。 In the first embodiment, the measurement delay time corresponds to the "first delay time", and the communication delay time corresponds to the "second delay time". The height sensor 24 corresponds to a "first output unit", the vehicle control unit 26 corresponds to a "second output unit", and the height sensor 24 and the vehicle control unit 26 correspond to a "posture output unit". Furthermore, the inertial sensor 31 corresponds to the “posture measurement unit”, the filter circuit 32 corresponds to the “high frequency information acquisition unit”, the correction optical element 54 corresponds to the “optical element”, and the sensor value acquisition unit 61 is “low”. The 3D drawing unit 67 corresponds to a "video drawing unit".
 (第二実施形態)
 図7及び図8に示す第二実施形態は、第一実施形態の変形例である。第二実施形態のHUD230は、DLP(Digital Light Processing,登録商標)制御基板240及びDLPプロジェクタ251を備えている。
Second Embodiment
The second embodiment shown in FIGS. 7 and 8 is a modification of the first embodiment. The HUD 230 of the second embodiment includes a DLP (Digital Light Processing (registered trademark)) control substrate 240 and a DLP projector 251.
 DLP制御基板240は、第一実施形態のLSM制御基板40(図1参照)に相当する構成である。DLP制御基板240は、第一実施形態と実質同一の映像取得部41、高周波補正量算出部44及び補正制御部45に加えて、DLP制御部247を有している。DLP制御部247は、DLPプロジェクタ251と電気的に接続されている。DLP制御部247は、DLPプロジェクタ251による画像の描画を制御する。 The DLP control board 240 has a configuration corresponding to the LSM control board 40 (see FIG. 1) of the first embodiment. The DLP control board 240 has a DLP control unit 247 in addition to the image acquisition unit 41, the high frequency correction amount calculation unit 44, and the correction control unit 45 substantially the same as those of the first embodiment. The DLP control unit 247 is electrically connected to the DLP projector 251. The DLP control unit 247 controls the drawing of an image by the DLP projector 251.
 DLPプロジェクタ251は、第一実施形態のレーザモジュール51(図1参照)に相当する構成である。DLPプロジェクタ251は、多数のマイクロミラーが設けられたDMD(Digital Micromirror Device)251aと、DMD251aに向けて光を投射する投射光源251bとを有している。DMD251a及び投射光源251bは、DLP制御部247に電気的に接続されている。DMD251aによる光の走査と投射光源251bの発光とは、DLP制御部247によって統合的に制御される。DLPプロジェクタ251は、DLP制御部247の制御により、映像データPS(図1参照)に基づく元画像Piを、スクリーン52に描画する。スクリーン52に表示された元画像Piの光は、反射光学系53により表示光像Oiとして投影領域PAに投影される。 The DLP projector 251 has a configuration corresponding to the laser module 51 (see FIG. 1) of the first embodiment. The DLP projector 251 includes a DMD (Digital Micromirror Device) 251 a provided with a large number of micro mirrors, and a projection light source 251 b that projects light toward the DMD 251 a. The DMD 251 a and the projection light source 251 b are electrically connected to the DLP control unit 247. The scanning of light by the DMD 251 a and the light emission of the projection light source 251 b are integrally controlled by the DLP control unit 247. The DLP projector 251 draws the original image Pi based on the video data PS (see FIG. 1) on the screen 52 under the control of the DLP control unit 247. The light of the original image Pi displayed on the screen 52 is projected on the projection area PA as a display light image Oi by the reflection optical system 53.
 ここまで説明した第二実施形態でも、補正制御部45は、高周波補正量算出部44から取得する高周波補正量に基づき、光軸LAに対する補正光学素子54のシフト変化及びチルト変化の少なくとも一方を、光学補正機構55によって生じさせる。こうした光学補正機構55の作動によれば、第一実施形態と同様の効果を奏し、高周波帯域HB(図2参照)の姿勢変化に起因する虚像Viの位置ずれが低減される。加えて、低周波帯域LBA(図2参照)の姿勢変化に対する補正は、第一実施形態と同様に、3D描画部67による映像データPSの描画段階で実施される。したがって、低周波帯域LBA及び高周波帯域HBの各姿勢変化が車両Aに生じる場合でも、虚像Viの正しい重畳表示が継続される。 Also in the second embodiment described above, the correction control unit 45 performs at least one of a shift change and a tilt change of the correction optical element 54 with respect to the optical axis LA based on the high frequency correction amount acquired from the high frequency correction amount calculation unit 44. It is generated by the optical correction mechanism 55. According to the operation of the optical correction mechanism 55, the same effect as that of the first embodiment is obtained, and the positional deviation of the virtual image Vi caused by the change in posture of the high frequency band HB (see FIG. 2) is reduced. In addition, the correction for the posture change of the low frequency band LBA (see FIG. 2) is performed at the drawing stage of the video data PS by the 3D drawing unit 67 as in the first embodiment. Therefore, even when each attitude change of the low frequency band LBA and the high frequency band HB occurs in the vehicle A, the correct superimposed display of the virtual image Vi is continued.
 (第三実施形態)
 図9に示す第三実施形態は、第一実施形態の別の変形例である。第三実施形態のHUD330は、第一実施形態のLSM制御基板40及びレーザモジュール51(それぞれ図1参照)に相当する構成として、表示制御基板340及び液晶ディスプレイ351を備えている。
Third Embodiment
The third embodiment shown in FIG. 9 is another modification of the first embodiment. The HUD 330 of the third embodiment includes a display control substrate 340 and a liquid crystal display 351 as a configuration corresponding to the LSM control substrate 40 and the laser module 51 (see FIG. 1 respectively) of the first embodiment.
 表示制御基板340は、第一実施形態と実質同一の映像取得部41、高周波補正量算出部44及び補正制御部45に加えて、LCD(Liquid Crystal Display)制御部347を有している。LCD制御部347は、液晶ディスプレイ351と接続されている。LCD制御部347は、液晶ディスプレイ351による画像の表示を制御する。 The display control board 340 has an LCD (Liquid Crystal Display) control unit 347 in addition to the image acquisition unit 41, the high frequency correction amount calculation unit 44, and the correction control unit 45 substantially the same as the first embodiment. The LCD control unit 347 is connected to the liquid crystal display 351. The LCD control unit 347 controls the display of an image by the liquid crystal display 351.
 液晶ディスプレイ351は、液晶パネル及びバックライトを有している。液晶パネルは、表示画面に沿って2次元配列された複数の液晶画素を有している。液晶パネルの各液晶画素における光の透過率は、LCD制御部347によって制御される。各液晶画素の制御により、映像データPS(図1参照)に基づく元画像Piが、液晶パネルの表示画面に連続的に表示される。バックライトは、液晶パネルの背面側に配置されている。バックライトは、液晶パネルを透過照明する。 The liquid crystal display 351 has a liquid crystal panel and a backlight. The liquid crystal panel has a plurality of liquid crystal pixels arranged two-dimensionally along the display screen. The transmittance of light in each liquid crystal pixel of the liquid crystal panel is controlled by the LCD control unit 347. By control of each liquid crystal pixel, the original image Pi based on the video data PS (see FIG. 1) is continuously displayed on the display screen of the liquid crystal panel. The backlight is disposed on the back side of the liquid crystal panel. The backlight illuminates the liquid crystal panel.
 液晶ディスプレイ351は、光学補正機構55によって保持されている。光学補正機構55は、液晶ディスプレイ351から凸面鏡53a(反射光学系53)へ向かう光軸LAに対して、光軸LAの直交方向に液晶ディスプレイ351をスライド変位させることができる。加えて光学補正機構55は、光軸LAを中心とした周方向に液晶ディスプレイ351を回転変位させることができる。以上によれば、投影領域PAにおける表示光像Oiの投影位置、ひいては虚像Viの結像位置が変化する。 The liquid crystal display 351 is held by the optical correction mechanism 55. The optical correction mechanism 55 can slide and displace the liquid crystal display 351 in the direction orthogonal to the optical axis LA with respect to the optical axis LA directed from the liquid crystal display 351 to the convex mirror 53a (reflection optical system 53). In addition, the optical correction mechanism 55 can rotationally displace the liquid crystal display 351 in the circumferential direction around the optical axis LA. According to the above, the projection position of the display light image Oi in the projection area PA, and hence the imaging position of the virtual image Vi changes.
 ここまで説明した第三実施形態でも、光学補正機構55は、高周波補正量算出部44から取得する高周波補正量に基づき、液晶ディスプレイ351をスライド変位又は回転変位させる。その結果、第一実施形態と同様の効果を奏し、高周波帯域HB(図2参照)の姿勢変化に起因する虚像Viの位置ずれが低減される。加えて、低周波帯域LBA(図2参照)の姿勢変化に対する補正は、第一実施形態と同様に、3D描画部67による映像データPSの描画段階で実施される。したがって、低周波帯域LBA及び高周波帯域HBの各姿勢変化が車両Aに生じる場合でも、虚像Viの正しい重畳表示が継続される。尚、第三実施形態では、液晶ディスプレイ351が「光学要素」に相当する。 Also in the third embodiment described so far, the optical correction mechanism 55 slides or rotationally displaces the liquid crystal display 351 based on the high frequency correction amount acquired from the high frequency correction amount calculation unit 44. As a result, the same effect as that of the first embodiment is obtained, and the positional deviation of the virtual image Vi due to the posture change in the high frequency band HB (see FIG. 2) is reduced. In addition, the correction for the posture change of the low frequency band LBA (see FIG. 2) is performed at the drawing stage of the video data PS by the 3D drawing unit 67 as in the first embodiment. Therefore, even when each attitude change of the low frequency band LBA and the high frequency band HB occurs in the vehicle A, the correct superimposed display of the virtual image Vi is continued. In the third embodiment, the liquid crystal display 351 corresponds to the “optical element”.
 (他の実施形態)
 以上、本開示の複数の実施形態について説明したが、本開示は、上記実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
(Other embodiments)
As mentioned above, although a plurality of embodiments of this indication were described, this indication is not interpreted by limiting to the above-mentioned embodiment, and it is applied to various embodiments and combination within the range which does not deviate from the gist of this indication. can do.
 上記第一,第二実施形態では、光学補正機構による補正光学素子の位置及び姿勢制御により、高周波帯域の振動による虚像に位置ずれが低減されていた。こうした光学補正機構による補正光学素子の動きは、シフト及びチルトのいずれか一方であってもよい。同様に、光学補正機構による液晶ディスプレイの動きは、シフト及びチルトのいずれか一方であってもよい。さらに、光学補正機構によって動かされる光学要素は、上記の補正光学素子に限定されない。 In the first and second embodiments, the positional deviation of the virtual image due to the vibration in the high frequency band is reduced by the control of the position and the attitude of the correction optical element by the optical correction mechanism. The movement of the correction optical element by such an optical correction mechanism may be either shift or tilt. Similarly, the movement of the liquid crystal display by the optical correction mechanism may be either shift or tilt. Furthermore, the optical element moved by the optical correction mechanism is not limited to the above-mentioned correction optical element.
 例えば、上記第一実施形態の変形例1では、補正光学素子に相当するレンズが省略されている。光学補正機構は、反射光学系である凸面鏡及び凹面鏡の姿勢を変化させる。このように光学補正機構によって反射光学系がチルトされる変形例1でも、高周波帯域の姿勢変化の起因する虚像の位置ずれが低減可能である。 For example, in the modification 1 of the first embodiment, the lens corresponding to the correction optical element is omitted. The optical correction mechanism changes the postures of the convex mirror and the concave mirror which are reflection optical systems. As described above, even in the first modification in which the reflective optical system is tilted by the optical correction mechanism, it is possible to reduce the positional deviation of the virtual image caused by the attitude change in the high frequency band.
 また、上記第一実施形態の変形例2による光学補正機構は、HUDの筐体30a(図1参照)の姿勢を変化させる。即ち、変形例2の光学補正機構は、HUDの全ての光学要素を一体的にチルトさせる。こうした変形例2であっても、高周波帯域の姿勢変化の起因する虚像の位置ずれが低減可能となる。 Further, the optical correction mechanism according to the second modification of the first embodiment changes the posture of the housing 30a (see FIG. 1) of the HUD. That is, the optical correction mechanism of the second modification tilts all the optical elements of the HUD integrally. Even in the second modification, it is possible to reduce the positional deviation of the virtual image caused by the attitude change in the high frequency band.
 さらに、上記第二実施形態の変形例3でも、変形例1と同様に、補正光学素子が省略されている。変形例3の光学補正機構は、DMDを支持する支持部に設けられており、DMDをシフトさせる。DMDのシフトによれば、元画像は、スクリーン反射面上を移動する。このような光学的な補正を行う変形例3でも、高周波帯域の姿勢変化の起因する虚像の位置ずれが低減可能となる。 Furthermore, in the third modification of the second embodiment, as in the first modification, the correction optical element is omitted. The optical correction mechanism of the third modification is provided on a support that supports the DMD and shifts the DMD. According to the shift of the DMD, the original image moves on the screen reflection surface. Even in the third modification in which such optical correction is performed, it is possible to reduce the positional deviation of the virtual image caused by the attitude change in the high frequency band.
 また上記第三実施形態の光学補正機構は、バックライト及び液晶パネルを一体的に変位させていた。しかし、上記第三実施形態の変形例4では、液晶パネルがバックライトに対して相対変位可能である。そして、光学補正機構は、液晶パネル及びバックライトのうちで、液晶パネルだけを表示画面に沿ってスライド変位させる。 Further, in the optical correction mechanism of the third embodiment, the backlight and the liquid crystal panel are displaced integrally. However, in the modification 4 of the third embodiment, the liquid crystal panel can be displaced relative to the backlight. Then, the optical correction mechanism slides and displaces only the liquid crystal panel along the display screen among the liquid crystal panel and the backlight.
 さらに、上記第三実施形態の変形例5では、液晶ディスプレイに相当する表示器として、EL(Electro Luminescence)パネルが設けられている。ELパネルには、有機EL及び無機EL等が採用可能である。光学補正機構は、ELパネルのスライド変位又は回転変位を制御する。以上の変形例4,5でも、虚像の位置ずれを低減する効果が獲得可能となる。以上のように、元画像を表示するためのプロジェクタの構成は、上記実施形態及び変形例に限定されず、適宜変更可能である。例えば、液晶ディスプレイ及びELパネルに替えて、プラズマディスプレイパネル、ブラウン管及びLED等の表示器を用いたプロジェクタが採用可能である。加えて、LSM及びDLP等に替えて、LCOS(Liquid Crystal On Silicon)等を用いたプロジェクタが採用されてもよい。 Furthermore, in the fifth modification of the third embodiment, an EL (Electro Luminescence) panel is provided as a display corresponding to a liquid crystal display. Organic EL, inorganic EL, etc. are employable as an EL panel. The optical correction mechanism controls slide displacement or rotational displacement of the EL panel. Even in the fourth and fifth modifications described above, the effect of reducing the displacement of the virtual image can be obtained. As described above, the configuration of the projector for displaying the original image is not limited to the above embodiment and modification, and can be changed as appropriate. For example, in place of the liquid crystal display and the EL panel, a projector using a display such as a plasma display panel, a cathode ray tube, or an LED may be employed. In addition, instead of LSM and DLP, a projector using LCOS (Liquid Crystal On Silicon) or the like may be adopted.
 上記実施形態では、各周波数帯域を連続的に設定するため、DC成分処理部のローパスフィルタ、AC成分処理部のバンドパスフィルタ、及びフィルタ回路のハイパスフィルタの各カットオフ周波数が、互いに一致するように設定されていた(図3参照)。こうした設定により、複数のセンサを相補的に組み合わせて0~2Hzの姿勢変化を補正する制御が可能にされていた。しかし、補正処理が適切に実施可能であれば、低周波帯域の第一帯域及び第二帯域、並びに高周波帯域は、厳密に連続していなくてもよい。例えば、低周波数帯と高周波帯域とが、僅かに離れた帯域に設定されていてもよい。或いは、低周波数帯と高周波帯域とが、僅かに重複した設定であってもよい。 In the above embodiment, in order to set each frequency band continuously, the cut-off frequencies of the low pass filter of the DC component processing unit, the band pass filter of the AC component processing unit, and the high pass filter of the filter circuit are mutually equal. Was set to (see Figure 3). With such settings, it has been possible to control to correct a posture change of 0 to 2 Hz by combining a plurality of sensors complementarily. However, the first and second bands in the low frequency band and the high frequency band may not be strictly continuous if the correction process can be appropriately implemented. For example, the low frequency band and the high frequency band may be set to slightly separated bands. Alternatively, the low frequency band and the high frequency band may be slightly overlapped with each other.
 上記実施形態では、表示光像が投影される投影領域は、ウィンドシールドに規定されていた。しかし、表示光像を投影される投影部材(例えばコンバイナ等)が、ウィンドシールドとは別体で設けられていてもよい。さらに、虚像は、前景に重ねられる表示であれば、上記のようなAR表示を実現する表示物でなくてもよい。 In the above embodiment, the projection area on which the display light image is projected is defined by the windshield. However, a projection member (for example, a combiner etc.) on which the display light image is projected may be provided separately from the windshield. Furthermore, the virtual image may not be the display object for realizing the AR display as described above as long as the display is superimposed on the foreground.
 上記実施形態の慣性センサは、ジャイロセンサ及び加速度センサを組み合わせた構成であった。しかし、慣性センサの構成は、適宜変更可能である。例えば慣性センサは、ジャイロセンサは、ヨー方向、ピッチ方向、ロール方向の各角速度を検出する3軸のジャイロセンサと、車両の前後方向、上下方向、左右方向の各加速度を検出する3軸の加速度センサとを備えた6軸のモーションセンサであってもよい。さらに、慣性センサは、ジャイロセンサ及び加速度センサのうちで、加速度センサのみを備える構成であってもよく、又はジャイロセンサのみを備える構成であってもよい。 The inertial sensor according to the above embodiment has a configuration in which a gyro sensor and an acceleration sensor are combined. However, the configuration of the inertial sensor can be changed as appropriate. For example, an inertial sensor, a gyro sensor, a triaxial gyro sensor that detects angular velocities in the yaw direction, pitch direction, and roll direction, and triaxial acceleration that detects accelerations in the longitudinal direction, vertical direction, and lateral direction of the vehicle. It may be a six-axis motion sensor provided with a sensor. Further, the inertial sensor may be configured to include only the acceleration sensor among the gyro sensor and the acceleration sensor, or may be configured to include only the gyro sensor.
 さらに、計測遅延時間が通信遅延時間よりも短くできれば、慣性センサは、HUDに内蔵されたセンサ構成でなくてもよい。慣性センサは、通信バスに接続されずに、フィルタ回路又はLSM制御基板等に直接的に接続された構成であれば、車両に搭載された既存の構成であってもよい。 Furthermore, if the measurement delay time can be shorter than the communication delay time, the inertial sensor may not have a sensor configuration built in the HUD. The inertial sensor may be an existing configuration mounted on a vehicle as long as it is a configuration directly connected to a filter circuit or an LSM control board without being connected to a communication bus.
 上記実施形態では、ハイトセンサ及び車両制御ユニットが「姿勢出力部」に相当していた。しかし、「姿勢出力部」に相当する構成は、適宜変更可能である。例えばロケータ22(図1参照)に設けられた慣性センサが、「姿勢出力部」に相当してもよい。さらに、低周波帯域の振動を検出するMEMSセンサ等が、例えば描画ECUに直接的に接続されていてもよい。こうした形態であれば、通信遅延時間が実質的に解消可能になる。また通信バスに出力信号を出力する「姿勢出力部」は、慣性センサ31(図1参照)とは別の構成でなくてもよい。慣性センサ31の計測信号が、直接的又は間接的にセンサ値取得部に入力されてもよい。 In the above embodiment, the height sensor and the vehicle control unit correspond to the "posture output unit". However, the configuration corresponding to the "posture output unit" can be changed as appropriate. For example, an inertial sensor provided in the locator 22 (see FIG. 1) may correspond to the “posture output unit”. Furthermore, a MEMS sensor or the like that detects vibration in a low frequency band may be directly connected to, for example, the drawing ECU. With such a form, communication delay time can be substantially eliminated. Further, the “posture output unit” that outputs an output signal to the communication bus may not be configured differently from the inertial sensor 31 (see FIG. 1). The measurement signal of the inertial sensor 31 may be input to the sensor value acquisition unit directly or indirectly.
 上記実施形態では、映像データの画像サイズが、投影領域に投影される表示光像の画像サイズ(投影サイズ)よりも大きく規定されていた。また、スクリーン又は表示画面上の元画像の画像サイズも、表示光像の投影サイズより大きくされていた。こうした映像データの余裕代は、HUDにて実施される補正での元画像の最大変位量と同一か又は最大変位量を超える程度に規定されるのが望ましい。さらに、映像データに余裕代を持たせる設定は、適用されなくてもよい。 In the above embodiment, the image size of the video data is defined to be larger than the image size (projection size) of the display light image projected onto the projection area. In addition, the image size of the original image on the screen or display screen is also made larger than the projection size of the display light image. It is desirable that the margin of such video data be defined to be equal to or greater than the maximum displacement of the original image in the correction performed by the HUD. Furthermore, the setting for giving a margin to the video data may not be applied.
 上記実施形態の虚像表示装置は、HUD及び描画ECUを含む構成であった。しかし、上記実施形態のHUDであって、補正済みの映像データを取得するHUDが「虚像表示装置」に相当してもよい。さらに、HUD及び描画ECUが一体的に設けられていてもよい。即ち、HUDの制御回路に、センサ値取得部、対象情報取得部、低周波補正量算出部及び3D描画部等に相当する機能部が設けられていてもよい。 The virtual image display device of the above embodiment is configured to include the HUD and the drawing ECU. However, in the HUD of the above-described embodiment, the HUD for acquiring corrected image data may correspond to the "virtual image display device". Furthermore, the HUD and the drawing ECU may be integrally provided. That is, the control circuit of the HUD may be provided with functional units corresponding to a sensor value acquisition unit, a target information acquisition unit, a low frequency correction amount calculation unit, a 3D drawing unit, and the like.
 描画ECU及び制御基板に設けられたメモリ装置には、フラッシュメモリ及びハードディスク等の種々の非遷移的実体的記憶媒体(non-transitory tangible storage medium)が採用可能である。加えて、虚像表示に関連するプログラムを記憶する記憶媒体は、車載された各構成の記憶媒体に限定されず、当該記憶媒体へのコピー元となる光学ディスク及び汎用コンピュータのハードディスクドライブ等であってもよい。 Various non-transitory tangible storage media such as a flash memory and a hard disk can be adopted as memory devices provided in the drawing ECU and the control board. In addition, the storage medium for storing the program related to virtual image display is not limited to the storage medium of each configuration mounted on the vehicle, but may be an optical disc as a copy source to the storage medium, a hard disk drive of a general purpose computer, etc. It is also good.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and variations within the equivalent range. In addition, various combinations and forms, and further, other combinations and forms including only one element, or more or less than these elements are also within the scope and the scope of the present disclosure.

Claims (9)

  1.  車両(A)に規定された投影領域(PA)への表示光像(Oi)の投影によって前記車両の前景に虚像(Vi)を重畳表示する虚像表示装置であって、
     前記車両に生じる姿勢変化のうちで低周波帯域(LBA)の姿勢変化情報を取得する低周波情報取得部(61)と、
     前記車両の生じる姿勢変化のうちで前記低周波帯域よりも周波数の高い高周波帯域(HB)の姿勢変化情報を取得する高周波情報取得部(32)と、
     前記表示光像の映像データ(PS)であり、前記低周波帯域の姿勢変化に起因する前記虚像の位置ずれを低減させる補正が施された前記映像データを、前記低周波帯域の姿勢変化情報を用いて描画する映像描画部(67)と、
     前記映像データから生成された前記表示光像を、前記投影領域に投影する投影光学ユニット(50)と、
     前記高周波帯域の姿勢変化に起因する前記虚像の位置ずれが低減されるように、前記投影光学ユニットに含まれる少なくとも一部の光学要素(54,351)を、前記高周波帯域の姿勢変化情報に基づき変位させる光学補正機構(55)と、を備える虚像表示装置。
    A virtual image display apparatus for displaying a virtual image (Vi) superimposed on the foreground of the vehicle by projecting a display light image (Oi) onto a projection area (PA) defined in the vehicle (A).
    A low frequency information acquisition unit (61) for acquiring attitude change information in a low frequency band (LBA) among attitude changes occurring in the vehicle;
    A high frequency information acquisition unit (32) for acquiring posture change information in a high frequency band (HB) having a frequency higher than that of the low frequency band among the posture changes generated by the vehicle;
    It is video data (PS) of the display light image, and the video data subjected to correction to reduce positional deviation of the virtual image caused by posture change of the low frequency band is posture change information of the low frequency band. An image drawing unit (67) to draw using
    A projection optical unit (50) for projecting the display light image generated from the image data onto the projection area;
    At least a part of the optical elements (54, 351) included in the projection optical unit is based on posture change information of the high frequency band so that positional deviation of the virtual image caused by posture change of the high frequency band is reduced. And an optical correction mechanism (55) for displacing.
  2.  前記車両の姿勢変化を計測した計測信号を前記高周波情報取得部へ向けて出力する姿勢計測部(31)、をさらに備える請求項1に記載の虚像表示装置。 The virtual image display device according to claim 1, further comprising: an attitude measurement unit (31) that outputs a measurement signal obtained by measuring an attitude change of the vehicle toward the high frequency information acquisition unit.
  3.  前記高周波情報取得部は、前記姿勢計測部の前記計測信号に含まれる周波数帯域のうちで、前記低周波帯域と重複する帯域の信号を減衰させることで、前記高周波帯域の姿勢変化情報を取得する請求項2に記載の虚像表示装置。 The high frequency information acquisition unit acquires attitude change information of the high frequency band by attenuating a signal of a band overlapping the low frequency band among frequency bands included in the measurement signal of the attitude measurement unit. The virtual image display device according to claim 2.
  4.  前記低周波情報取得部は、前記姿勢計測部とは別に前記車両に搭載された姿勢出力部(20)から出力される姿勢変化を示した出力信号を取得する請求項2又は3に記載の虚像表示装置。 The virtual image according to claim 2 or 3, wherein the low frequency information acquisition unit acquires an output signal indicating an attitude change output from an attitude output unit (20) mounted on the vehicle separately from the attitude measurement unit. Display device.
  5.  前記姿勢計測部による計測信号が前記高周波情報取得部に取得されるまでの第一遅延時間は、前記姿勢出力部の出力信号が前記低周波情報取得部に取得されるまでの第二遅延時間よりも短い請求項4に記載の虚像表示装置。 The first delay time until the measurement signal by the posture measurement unit is acquired by the high frequency information acquisition unit is a second delay time until the output signal of the posture output unit is acquired by the low frequency information acquisition unit. 5. A virtual image display apparatus according to claim 4, which is also short.
  6.  前記姿勢出力部には、前記低周波帯域のうちで互いに異なる帯域の姿勢変化に関連する出力信号を出力可能な第一出力部(24)及び第二出力部(26)が含まれており、
     前記低周波情報取得部は、
     前記低周波帯域のうちの第一帯域(LB1)の姿勢変化情報を、前記第一出力部の出力信号を用いて取得し、
     前記低周波帯域のうちで前記第一帯域よりも周波数の高い第二帯域(LB2)の姿勢変化情報を、前記第二出力部の出力信号を用いて取得する請求項4又は5に記載の虚像表示装置。
    The attitude output unit includes a first output unit (24) and a second output unit (26) capable of outputting an output signal related to an attitude change in different bands in the low frequency band.
    The low frequency information acquisition unit
    Attitude change information of a first band (LB1) of the low frequency band is acquired using an output signal of the first output unit,
    The virtual image according to claim 4 or 5, wherein posture change information in a second band (LB2) having a frequency higher than the first band in the low frequency band is acquired using an output signal of the second output unit. Display device.
  7.  前記映像描画部にて描画される前記映像データの画像サイズは、前記投影光学ユニットによって投影される前記表示光像の画像サイズよりも大きい請求項1~6のいずれか一項に記載の虚像表示装置。 The virtual image display according to any one of claims 1 to 6, wherein an image size of the video data drawn by the video drawing unit is larger than an image size of the display light image projected by the projection optical unit. apparatus.
  8.  前記光学補正機構は、
     前記車両にピッチ又はヒーブの姿勢変化が生じている場合に、前記表示光像の投影位置が前記投影領域に沿って平行移動するように前記光学要素を変位させ、
     前記車両にロールの姿勢変化が生じている場合に、前記表示光像の向きが前記投影領域に沿って回転するように前記光学要素を変位させる請求項1~7のいずれか一項に記載の虚像表示装置。
    The optical correction mechanism is
    And displacing the optical element so that the projection position of the display light image translates along the projection area when the vehicle has a pitch or heave attitude change.
    The optical element according to any one of claims 1 to 7, wherein the optical element is displaced such that the direction of the display light image rotates along the projection area when the posture change of the roll occurs in the vehicle. Virtual image display device.
  9.  車両(A)に規定された投影領域(PA)への表示光像(Oi)の投影によって前記車両の前景に虚像(Vi)を重畳表示する虚像表示装置であって、
     前記車両の生じる姿勢変化のうちで高周波帯域(HB)の姿勢変化情報を取得する高周波情報取得部(32)と、
     前記車両の生じる姿勢変化のうちで前記高周波帯域よりも周波数の低い低周波帯域(LBA)の姿勢変化情報を用いて描画される映像データ(PS)であって、前記低周波帯域の姿勢変化に起因する前記虚像の位置ずれを低減させる補正が施された前記映像データ、を取得する映像取得部(41)と、
     前記映像データから生成された前記表示光像を、前記投影領域に投影する投影光学ユニット(50)と、
     前記高周波帯域の姿勢変化に起因する前記虚像の位置ずれが低減されるように、前記投影光学ユニットに含まれる少なくとも一部の光学要素(54,351)を、前記高周波帯域の姿勢変化情報に基づき変位させる光学補正機構(55)と、を備える虚像表示装置。
     
     
     
    A virtual image display apparatus for displaying a virtual image (Vi) superimposed on the foreground of the vehicle by projecting a display light image (Oi) onto a projection area (PA) defined in the vehicle (A).
    A high frequency information acquisition section (32) for acquiring attitude change information in a high frequency band (HB) among attitude changes produced by the vehicle;
    Image data (PS) drawn using posture change information of a low frequency band (LBA) lower in frequency than the high frequency band among posture changes generated by the vehicle, and the posture change of the low frequency band A video acquisition unit (41) for acquiring the video data that has been subjected to correction to reduce positional deviation of the virtual image resulting therefrom;
    A projection optical unit (50) for projecting the display light image generated from the image data onto the projection area;
    At least a part of the optical elements (54, 351) included in the projection optical unit is based on posture change information of the high frequency band so that positional deviation of the virtual image caused by posture change of the high frequency band is reduced. And an optical correction mechanism (55) for displacing.


PCT/JP2018/036681 2017-11-28 2018-10-01 Virtual image display device WO2019106942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-227851 2017-11-28
JP2017227851A JP6724886B2 (en) 2017-11-28 2017-11-28 Virtual image display

Publications (1)

Publication Number Publication Date
WO2019106942A1 true WO2019106942A1 (en) 2019-06-06

Family

ID=66663892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036681 WO2019106942A1 (en) 2017-11-28 2018-10-01 Virtual image display device

Country Status (2)

Country Link
JP (1) JP6724886B2 (en)
WO (1) WO2019106942A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002055A1 (en) * 2019-07-04 2021-01-07 株式会社デンソー Virtual image display device
US11247565B2 (en) 2017-11-28 2022-02-15 Denso Corporation Virtual image display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400242B2 (en) * 2019-07-25 2023-12-19 株式会社デンソー Vehicle display control device and vehicle display control method
JP7272252B2 (en) * 2019-12-05 2023-05-12 株式会社デンソー Display control device, display control program and virtual image display system
CN113129224B (en) 2019-12-31 2023-11-28 精工爱普生株式会社 Display system, electronic apparatus, moving object, and display method
EP3848781B1 (en) 2019-12-31 2023-05-10 Seiko Epson Corporation Circuit device, electronic apparatus, and mobile body
JP2022185224A (en) 2021-06-02 2022-12-14 セイコーエプソン株式会社 Circuit device, display system and electronic apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007867A (en) * 2004-06-23 2006-01-12 Matsushita Electric Ind Co Ltd In-vehicle image display device
JP2013237320A (en) * 2012-05-14 2013-11-28 Toshiba Alpine Automotive Technology Corp Discomfort reduction display device and method for controlling display thereof
JP2015202842A (en) * 2014-04-16 2015-11-16 株式会社デンソー Head-up display device
JP2017087826A (en) * 2015-11-05 2017-05-25 アルパイン株式会社 Electronic device
JP2018172088A (en) * 2017-03-31 2018-11-08 パナソニックIpマネジメント株式会社 Display device and movable body comprising display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007867A (en) * 2004-06-23 2006-01-12 Matsushita Electric Ind Co Ltd In-vehicle image display device
JP2013237320A (en) * 2012-05-14 2013-11-28 Toshiba Alpine Automotive Technology Corp Discomfort reduction display device and method for controlling display thereof
JP2015202842A (en) * 2014-04-16 2015-11-16 株式会社デンソー Head-up display device
JP2017087826A (en) * 2015-11-05 2017-05-25 アルパイン株式会社 Electronic device
JP2018172088A (en) * 2017-03-31 2018-11-08 パナソニックIpマネジメント株式会社 Display device and movable body comprising display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11247565B2 (en) 2017-11-28 2022-02-15 Denso Corporation Virtual image display device
WO2021002055A1 (en) * 2019-07-04 2021-01-07 株式会社デンソー Virtual image display device

Also Published As

Publication number Publication date
JP6724886B2 (en) 2020-07-15
JP2019098756A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6724885B2 (en) Virtual image display
WO2019106942A1 (en) Virtual image display device
US10302940B2 (en) Head-up display
US11004424B2 (en) Image display system, image display method, movable object including the image display system, and non-transitory computer-readable medium
US11999231B2 (en) Head-up display device
WO2014174575A1 (en) Vehicular head-up display device
JP2023029340A (en) Video display system, video display method and program
US11215819B2 (en) Head-up display
JP2015101311A (en) Vehicle information projection system
JP7040485B2 (en) Display control device and display control program
JP6911868B2 (en) Head-up display device
JP2014201197A (en) Head-up display apparatus
JP7396404B2 (en) Display control device and display control program
WO2021044741A1 (en) Display control device, display control program, and heads-up display
JP7211304B2 (en) Display device
WO2021020385A1 (en) Display control device
CN110816409A (en) Display device, display control method, and storage medium
JP7417907B2 (en) display system
JP7145509B2 (en) VIDEO DISPLAY SYSTEM, VIDEO DISPLAY METHOD, PROGRAM AND MOBILE BODY
JP2021041789A (en) Display device
WO2020059441A1 (en) Display control device, display control program, and computer-readable non-transitory recording medium
JP7120982B2 (en) display controller
JP7272252B2 (en) Display control device, display control program and virtual image display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882552

Country of ref document: EP

Kind code of ref document: A1