WO2019106798A1 - Flavor inhalation article - Google Patents

Flavor inhalation article Download PDF

Info

Publication number
WO2019106798A1
WO2019106798A1 PCT/JP2017/043131 JP2017043131W WO2019106798A1 WO 2019106798 A1 WO2019106798 A1 WO 2019106798A1 JP 2017043131 W JP2017043131 W JP 2017043131W WO 2019106798 A1 WO2019106798 A1 WO 2019106798A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
carbon
flavor
filter
group
Prior art date
Application number
PCT/JP2017/043131
Other languages
French (fr)
Japanese (ja)
Inventor
正人 宮内
哲哉 吉村
祐一郎 木戸
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2017/043131 priority Critical patent/WO2019106798A1/en
Priority to JP2019556489A priority patent/JP6874152B2/en
Publication of WO2019106798A1 publication Critical patent/WO2019106798A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials

Definitions

  • the present invention relates to a flavor suction article.
  • a combustion type smoking article that provides a user with a tobacco flavor by burning a tobacco flavor source as a suction article that tastes a tobacco flavor
  • a heating that provides a user with a tobacco flavor by heating without burning a tobacco flavor source
  • Type flavored suction articles and non-heated flavored suction articles are known that provide the user with a tobacco flavor source tobacco flavor without heating or burning the tobacco flavor source.
  • suction articles for which the user tastes flavors such as tobacco flavor are collectively referred to as “flavor suction articles”.
  • Flavored suction articles generally comprise a filter for filtering components derived from a flavor source, the filter comprising activated carbon as an adsorbent (see, for example, WO 2008/146543).
  • Filters containing activated carbon are called charcoal filters and are well known in the art.
  • the amount of activated carbon is determined according to the specification of the product so as to adsorb miscellaneous components but not excessively adsorb components contributing to the flavor.
  • Activated carbon is known to increase its adsorption performance as the specific surface area and pore volume increase.
  • the strength of activated carbon decreases because pores (fine pores) increase. For this reason, the present inventors noted that it is difficult to achieve both the adsorption performance and the strength of activated carbon.
  • the production of flavor suction articles in recent years is speeding up, and the load on activated carbon in the production process is increasing.
  • the activated carbon may be fractured and the amount added to the flavor suction article may be nonuniform. Keeping the added amount of activated carbon uniform is important to keep the flavor of each article uniform.
  • the present invention aims to provide a flavor suction article containing activated carbon which is excellent in adsorption performance and is stable in shape.
  • a flavor comprising activated carbon having a BET specific surface area of 1050 m 2 / g or more and a ratio of peak intensity of G band to peak intensity of D band in Raman spectrum of 0.85 or more A suction article is provided.
  • the flavor suction article containing the activated carbon which is excellent in adsorption performance and shape-stable can be provided.
  • the present inventors carried out gas phase oxidation treatment on activated carbon having a predetermined BET specific surface area, in addition to the introduction of the oxygen-containing functional group, the BET specific surface area of the activated carbon increased. Furthermore, it has been newly found that the peak intensity of the D band in the Raman spectrum is maintained or decreased. Based on such a discovery, the present inventors have completed a flavor suction article comprising activated carbon which is excellent in adsorption performance and shape stable.
  • the BET specific surface area is 1050 m 2 / g or more, and the ratio of the peak intensity of G band to the peak intensity of D band in the Raman spectrum (hereinafter also referred to as G / D ratio) is 0.85 or more
  • a flavor suction article comprising activated carbon.
  • a flavor suction article is any suction article that includes a flavor source and that the user tastes the flavor derived from the flavor source, and in particular provides flavor to the user by burning the flavor source Burnable smoking articles, heated flavor suction articles that provide the user with flavor by heating without burning the flavor source, and unheated that provide the user with the flavor source flavor without heating or burning the flavor source Type flavor suction articles are mentioned.
  • FIG. 1 is a cross-sectional view of the combustion-type smoking article 1 according to the first embodiment.
  • the combustion type smoking article 1 shown in FIG. 1 is a cigarette.
  • the combustion type smoking article 1 shown in FIG. 1 is a cigarette.
  • the tobacco rod 10 and the tipping paper 30 wound on the filter 20 are included to connect the tobacco rod 10 and the filter 20.
  • n is an integer of 2 or more filter plugs (n-1)
  • n is 2 to 4
  • n is 2 to 3
  • more preferably n is 2.
  • the tobacco rod 10 In the combustion type smoking article shown in FIG. 1, conventionally known components can be used as the tobacco rod 10, the components of the filter 20 other than the activated carbon 23, and the tip paper 30.
  • the activated carbon 23, those described below can be used.
  • the activated carbon 23 has a BET specific surface area of 1050 m 2 / g or more, and a ratio of the peak intensity of the G band to the peak intensity of the D band in the Raman spectrum is 0.85 or more.
  • BET specific surface area means a specific surface area obtained using BET adsorption isotherm (Brunauer, Emmet and Teller's equation).
  • the BET specific surface area of the activated carbon 23 is preferably 1050 to 1600 m 2 / g, more preferably 1150 to 1600 m 2 / g, and still more preferably 1150 to 1300 m 2 / g. If the BET specific surface area is too small, it is difficult for the activated carbon 23 to exhibit excellent adsorption performance. When the BET specific surface area is too large, the adsorption performance of the activated carbon 23 is enhanced, but the shape stability may be reduced.
  • the “G band” is a peak detected in the vicinity of 1600 cm ⁇ 1 in a Raman spectrum obtained by Raman spectroscopy, and the G band is derived from a graphene structure of carbon.
  • the “D band” is a peak detected in the vicinity of 1300 cm ⁇ 1 in a Raman spectrum obtained by Raman spectroscopy, and the D band is derived from a defect of a graphene structure of carbon.
  • activated carbon having a large ratio of peak intensity of G band to peak intensity of D band in Raman spectrum (hereinafter also referred to as G / D ratio) is highly crystallized, has few structural defects, and is stable in shape
  • G / D ratio peak intensity of D band in Raman spectrum
  • the Raman spectrum can be acquired, for example, using a microscopic laser Raman Nicolet Almega XR (manufactured by Thermo Fisher Scientific Co., Ltd.).
  • the G / D ratio of the activated carbon 23 is preferably 0.85 to 1.1, and more preferably 0.9 to 1.1. If the G / D ratio is too small, it is difficult for activated carbon 23 to achieve excellent shape stability.
  • the upper limit of the G / D ratio is set by the manufacturing limit of activated carbon.
  • the activated carbon 23 has, for example, an average particle diameter of 200 ⁇ m to 1000 ⁇ m, preferably an average particle diameter of 300 ⁇ m to 700 ⁇ m, and more preferably an average particle diameter of 400 ⁇ m to 600 ⁇ m.
  • the "average particle diameter” means a particle diameter (d50) at which the volume integrated value is 50% in the particle size distribution determined by the laser diffraction / scattering method.
  • the pore volume of the activated carbon 23 is preferably 0.5 cm 3 / g or more, more preferably in the range of 0.5 to 0.8 cm 3 / g, more preferably 0.52 to 0.74 cm 3 / More preferably, it is in the range of g.
  • the pore volume is too small, it is difficult for the activated carbon 23 to exhibit excellent adsorption performance. If the pore volume is too large, the adsorption performance of the activated carbon 23 may be enhanced, but the shape stability may be reduced.
  • pore volume means the sum of the volume of pores having a pore diameter of about 40 nm or less.
  • the pore volume is a value calculated from the nitrogen adsorption amount when the relative pressure P / P 0 is 0.95, in the nitrogen adsorption isotherm measured at a temperature of 77K.
  • the nitrogen adsorption isotherm can be determined as follows. First, the nitrogen gas adsorption amount (mL / mL) of activated carbon is measured for each pressure P while gradually increasing the pressure P (mmHg) of nitrogen gas in nitrogen gas at 77 K (boiling point of nitrogen). Then, the pressure P (mmHg) divided by the saturated vapor pressure P 0 (mm Hg) of nitrogen gas is taken as the relative pressure P / P 0 , and the adsorption is plotted by plotting the nitrogen gas adsorption amount against each relative pressure P / P 0 An isotherm can be obtained. The nitrogen adsorption isotherm can be obtained, for example, using a gas adsorption amount measuring apparatus AutoSorb-1 (manufactured by Quantachrome).
  • the volume of pores with a pore diameter of less than 2 nm is preferably 0.4 cm 3 / g or more, and 0.4 to 0.7 cm 3 / It is more preferably in the range of g, and still more preferably in the range of 0.4 to 0.6 cm 3 / g. It is particularly advantageous to achieve excellent adsorption performance if the activated carbon 23 has a micropore volume of the size described above.
  • micropore volume is a value calculated by performing pore distribution analysis from a nitrogen adsorption isotherm by a rapid solid density functional theory (QSDFT) method.
  • QSDFT rapid solid density functional theory
  • activated carbon 23 maintains the adsorption performance of activated carbon (hereinafter also referred to as current charcoal) currently used as an adsorbent for flavor suction articles. While, it is desired to specifically adsorb the basic component. Therefore, among all the oxygen-containing functional groups measured by the Boehm method, it is preferable that the activated carbon 23 has an oxygen-containing functional group consisting of the following on the surface thereof.
  • the activated carbon 23 is a carboxyl group (and carboxylic anhydride group) (Group I), a lactone type carboxyl group (and lactone group) (Group II), a phenolic hydroxyl group (Group III) and a carbonyl, which are measured by the Boehm method. It is preferable to have an oxygen-containing functional group consisting of a group or a quinone group (Group IV).
  • activated carbon 23 In order for activated carbon 23 to specifically adsorb the basic component, it is desirable that the amount of all the oxygen-containing functional groups be higher while maintaining the pore structure of the current carbon, but the carboxyl group (and carboxylic anhydride group) ( Since Group I) is strongly acidic, there is a concern that undesirable acid-base reactions or catalysis occur in the filter during storage of the smoking article or at the time of smoking to generate by-products. Therefore, it is particularly preferable that the activated carbon 23 have a weakly acidic oxygen-containing functional group that contributes to the adsorption of the basic component.
  • the activated carbon 23 preferably has an amount of an oxygen-containing functional group consisting of a carboxyl group, a lactone type carboxyl group, a phenolic hydroxyl group and a carbonyl group, as measured by the Boehm method, of 0.6 mmol / g or more, preferably 0.6 to 0.6 It is more preferably 2.0 mmol / g, further preferably 1.0 to 2.0 mmol / g.
  • the amount of the oxygen-containing functional group is represented by the molar amount per 1 g of activated carbon.
  • the activated carbon 23 contains the above-mentioned amount of oxygen-containing functional groups, it is advantageous in selectively adsorbing and removing a basic component (for example, ammonia) from the fluid sucked by the user at the time of suction of the flavor suction device. .
  • a basic component for example, ammonia
  • Boehm method is a known acid-base titration method, the details of which are described in the examples below.
  • the total amount of the lactone type carboxyl group and phenolic hydroxyl group measured by the Boehm method is 0.3 mmol / g or more, and the activated carbon 23 is 0.3-2.0 mmol / g. More preferably, it is 0.4 to 2.0 mmol / g.
  • the amount of carboxyl groups measured by the Boehm method is preferably 0.12 mmol / g or less, and more preferably 0.01 to 0.12 mmol / g.
  • the activated carbon 23 can be produced by subjecting a raw material activated carbon having a predetermined BET specific surface area to a gas phase oxidation treatment, as described later.
  • the activated carbon 23 produced in this manner has a large amount of oxygen-containing functional groups on the surface of the activated carbon, but among the oxygen-containing functional groups, relatively large amounts of lactone type carboxyl group (Group II) and phenolic hydroxyl group (Group III) And has a relatively small amount of carboxyl group (Group I) among the oxygen-containing functional groups.
  • the activated carbon 23 is Carbonizing and activating an organic material to obtain a raw material activated carbon; And oxidizing the raw material activated carbon by a gas phase oxidation method.
  • organic material the well-known organic material used as a raw material of activated carbon can be used, for example, a vegetable material can be used.
  • Vegetable materials are, for example, fruit shells such as coconut shells and walnut shells, wood, charcoal, bamboo and the like, and are typically coconut shells.
  • the above-mentioned organic material is carbonized and activated to obtain a raw material activated carbon.
  • Raw material activated carbon can be produced according to a known method for producing activated carbon.
  • the raw material activated carbon is produced such that the BET specific surface area is preferably 400 to 1400 m 2 / g, more preferably 1000 to 1400 m 2 / g.
  • the produced activated carbon 23 has high adsorption performance and high shape stability.
  • Raw material activated carbon may be produced by carbonizing an organic material and then activating the carbonized organic material by a gas activation method.
  • the organic material may be activated by a chemical activation method to carbonize the organic material.
  • the activation may be performed at the same time, or the organic material may be subjected to activation treatment by microwave heating to simultaneously perform carbonization and activation.
  • the above-mentioned raw material activated carbon may use commercially available activated carbon.
  • the activated carbon 23 can be manufactured by a method including oxidizing raw material activated carbon by a gas phase oxidation method.
  • the oxidation treatment by the gas phase oxidation method can be performed, for example, by treating raw activated carbon in air or steam at, for example, a temperature of 500 ° C. or less, preferably 300 to 500 ° C., for 1 to 2 hours. .
  • the oxidation treatment may be carried out by a continuous oxidation treatment or a batch oxidation treatment as described in the following examples. If the temperature of the oxidation treatment is too high, excessive activation of the raw material activated carbon proceeds, and the strength of the activated carbon decreases, which is not preferable.
  • the activated carbon 23 is under mild conditions as compared to the conditions of the oxidation treatment by the liquid phase oxidation method, specifically, under conditions where further activation of the raw material activated carbon does not significantly progress. It can manufacture by performing a gaseous-phase oxidation process to raw material activated carbon.
  • the activated carbon 23 is Carbonizing and activating the organic material to obtain a raw material activated carbon having a BET specific surface area of 1000 to 1400 m 2 / g; And oxidizing the raw material activated carbon in air or in steam at a temperature of 500 ° C. or less, preferably 300 to 500 ° C., for 1 to 2 hours.
  • the activated carbon 23 is preferably 500 ° C. or less, preferably in the air or in steam, the raw material activated carbon having a BET specific surface area of 1000 to 1400 m 2 / g. Can be produced by a method including oxidation treatment at a temperature of 300 to 500 ° C. for 1 to 2 hours.
  • Activated carbon 23 can be incorporated into the filter 20 at the loading levels employed in conventional charcoal filters. If the filter 20 has a length of 17-31 mm and a circumference of 14.7-25.8 mm, the activated carbon 23 can be incorporated into the filter 20, for example, in an amount of 20-80 mg per filter.
  • the site where the activated carbon 23 is incorporated can be a flow path of fluid (eg, mainstream smoke, aerosol, air, etc.) to be aspirated by the user when aspirating the flavor aspirator.
  • the flavored suction article comprises a filter and the activated carbon 23 is incorporated into the filter.
  • the flavor suction article comprises a flavor source, preferably a tobacco flavor source, and a filter located downstream of the flavor source, the activated carbon 23 being incorporated into the filter.
  • the site where the activated carbon 23 is incorporated is between the flow path of the mainstream smoke generated by the combustion of the tobacco flavor source 10a, that is, between the tobacco rod 10 and the end of the filter 20 on the inlet side.
  • activated carbon 23 is incorporated into the filter 20, as shown in FIGS.
  • the flavor suction device is, in addition to the activated carbon 23, a known adsorbent, for example, particles of cellulose particles or cellulose acetate, or a known flavor modifier, for example, a perfume capsule containing a perfume in a film. It may further be included.
  • a known adsorbent for example, particles of cellulose particles or cellulose acetate
  • a known flavor modifier for example, a perfume capsule containing a perfume in a film. It may further be included.
  • the hollow portion is formed between the two filter plugs 21 and the activated carbon 23 is disposed in the hollow portion.
  • the filter is made to connect the two filter plugs
  • Activated carbon 23 can also be arranged to be embedded in one of the filter plugs.
  • the activated carbon 23 is preferably incorporated into the filter plug on the upstream side of the two filter plugs.
  • FIG. 2 Such a burning type smoking article is shown in FIG. 2 as a second embodiment.
  • FIG. 2 is a cross-sectional view of the combustion-type smoking article 1 according to the second embodiment.
  • the burning type smoking article 1 shown in FIG. 2 is a cigarette.
  • FIG. 2 the same components as in FIG. 1 are given the same reference numerals.
  • the combustion type smoking article 1 shown in FIG. A tobacco rod 10 including a tobacco flavor source 10a and a cigarette paper 10b wound around the tobacco flavor source 10a;
  • the tobacco rod 10 and the tipping paper 30 wound on the filter 20 are included to connect the tobacco rod 10 and the filter 20.
  • n is an integer of 2 or more filter plugs may be arranged to be connected.
  • n is 2 to 4, preferably n is 2 to 3, and more preferably n is 2.
  • the components of the filter 20 other than the tobacco rod 10, the activated carbon 23, and the tip paper 30 may be conventionally known ones.
  • the activated carbon 23 used in the second embodiment is the same as the activated carbon 23 described in the first embodiment.
  • the flavor suction article according to the present invention contains a flavor source and the user derives the flavor derived from the flavor source It is an optional suction article that tastes like.
  • a flavor source in addition to a tobacco flavor source such as cut tobacco, a flavor such as menthol, a plant extract or an essential oil can be used.
  • the flavor suction article may be a known burning-type smoking article other than a cigarette, such as a pipe, a xel, a cigar or a cigarillo.
  • the flavor suction article may be a heating type flavor suction article that provides the user with a flavor by heating without burning the flavor source.
  • a heating type flavor suction device for example, A carbon heat source type aspirator which heats a tobacco flavor source by the heat of combustion of a carbon heat source to generate an aerosol containing a flavor component (see, for example, WO 2006/073065);
  • An electric heating type comprising: a suction unit main body including a capsule containing a liquid flavor source; and a heating device for electrically heating the suction main body, and melting the capsule outer membrane by electric heating to release the liquid flavor source Aspirator (see, for example, WO 2010/110226); or a refill type tobacco pod containing a tobacco flavor source together with an aerosol source (propylene glycol or glycerin), and an aspirator body that generates an aerosol by heating the tobacco pod by electric heating Electrically heated suction device (see, for example, WO2013 / 025921) Can be mentioned.
  • the flavor suction article may be a non-heating flavor suction article that provides the user with the flavor of the flavor source without heating or burning the flavor source, as described above.
  • a non-heating type flavor suction article a non-heating type tobacco flavor suction device (for example, a user holds a tobacco flavor derived from a normal temperature tobacco flavor source provided with a refill type cartridge containing a tobacco flavor source in a suction holder) See WO 2010/110226).
  • the flavor suction article comprises activated carbon having the following characteristics (i) and (ii): (I) BET specific surface area is 1050 m 2 / g or more; (Ii) The G / D ratio is 0.85 or more.
  • the flavored suction article comprises activated carbon that simultaneously satisfies excellent adsorption performance and shape stability. Thanks to the excellent adsorption performance of activated carbon, the flavor suction article can provide the user with excellent flavor.
  • the flavor suction article uniformly mixes the activated carbon in each lot without causing the activated carbon to be crushed in the production process, whereby the flavor of each article is uniformed. You can keep it.
  • the flavor suction article preferably contains activated carbon having the following characteristics (iii) in addition to the characteristics (i) and (ii): (Iii)
  • the oxygen-containing functional group consisting of a carboxyl group, a lactone type carboxyl group, a phenolic hydroxyl group and a carbonyl group measured by the Boehm method is 0.6 mmol / g or more.
  • Such a flavor suction article can specifically adsorb and remove the basic component by the presence of the oxygen-containing functional group while maintaining the adsorption performance of the activated carbon not having the oxygen-containing functional group, whereby the user can Can provide an even better flavor.
  • the G / D ratio decreases when the BET specific surface area is increased by increasing the activation of the activated carbon (low activated carbon shown in FIG. 7, current charcoal shown And high activated charcoal)).
  • the conventional activated carbon can not make the above-mentioned characteristics (i) and (ii) compatible.
  • the flavor suction article has a BET specific surface area of 1050 m 2 / g or more and a ratio of peak intensity of G band to peak intensity of D band in Raman spectrum (ie, G / D Containing activated carbon with a ratio of 0.85 or more.
  • the flavor suction article further comprises a flavor source, preferably a tobacco flavor source.
  • the BET specific surface area is 1050 ⁇ 1600m 2 / g, preferably 1150 ⁇ 1600m 2 / g, more preferably 1150 ⁇ 1300 m 2 / g.
  • the G / D ratio is 0.85 to 1.1, preferably 0.9 to 1.1.
  • the activated carbon has an average particle size of 200 ⁇ m to 1000 ⁇ m, preferably an average particle size of 300 ⁇ m to 700 ⁇ m, more preferably an average particle size of 400 ⁇ m to 600 ⁇ m. .
  • the activated carbon has a pore volume of 0.5 cm 3 / g or more, preferably 0.5 to 0.8 cm 3 / g, Preferably it has a pore volume of 0.52 to 0.74 cm 3 / g.
  • the activated carbon 0.4 cm 3 / g or more micropore volume, micropore volume of preferably 0.4 ⁇ 0.7cm 3 / g, more Preferably, it has a micropore volume of 0.4 to 0.6 cm 3 / g.
  • the activated carbon has an amount of an oxygen-containing functional group consisting of a carboxyl group, a lactone type carboxyl group, a phenolic hydroxyl group and a carbonyl group as measured by Boehm method. And 0.6 mmol / g or more, preferably 0.6 to 2.0 mmol / g, and more preferably 1.0 to 2.0 mmol / g.
  • the total amount of the lactone type carboxyl group and the phenolic hydroxyl group measured by the Boehm method is 0.3 mmol / g or more, preferably, the activated carbon is preferable. Is 0.3 to 2.0 mmol / g, more preferably 0.4 to 2.0 mmol / g.
  • the amount of the carboxyl group measured by the Boehm method is 0.12 mmol / g or less, preferably 0.01 to 0.12 mmol, in the activated carbon. It is / g.
  • the activated carbon is a plant-based activated carbon derived from a vegetable material. According to a preferred embodiment, in any one of the above embodiments, the activated carbon is a coconut-shell-based activated carbon derived from coconut shells.
  • the activated carbon is Carbonizing and activating an organic material to obtain a raw material activated carbon; Oxidizing the raw material activated carbon by a gas phase oxidation method.
  • the organic material is preferably a vegetable material, more preferably a fruit shell such as coconut shell, walnut shell, etc., wood, charcoal or bamboo, and even more preferably a coconut shell.
  • the activated carbon is produced by a method including oxidizing raw material activated carbon by a gas phase oxidation method.
  • the raw material activated carbon is preferably obtained by carbonizing and activating a vegetable material, more preferably a fruit shell such as coconut shell, walnut shell, wood, charcoal, or bamboo, more preferably coconut shell. .
  • the raw activated carbon has a BET specific surface area of 400 to 1400 m 2 / g, preferably a BET specific surface area of 1000 to 1400 m 2 / g.
  • the oxidation is carried out at a temperature of 500 ° C. or less, preferably 300 to 500 ° C., for 1 to 2 hours in the air or in water vapor. It is done by processing over.
  • the activated carbon is Carbonizing and activating the organic material to obtain a raw material activated carbon having a BET specific surface area of 1000 to 1400 m 2 / g; Oxidizing the raw material activated carbon in air or steam at a temperature of 500 ° C. or less, preferably 300 to 500 ° C., for 1 to 2 hours.
  • the organic material is preferably a vegetable material, more preferably a fruit shell such as coconut shell, walnut shell, etc., wood, charcoal or bamboo, and even more preferably a coconut shell.
  • the activated carbon is a raw material activated carbon having a BET specific surface area of 1000 to 1400 m 2 / g in air or water vapor at 500 ° C. or less, preferably 300 ° C. It is manufactured by a method including oxidation treatment at a temperature of ⁇ 500 ° C. for 1 to 2 hours.
  • the raw material activated carbon is preferably obtained by carbonizing and activating a vegetable material, more preferably a fruit shell such as coconut shell, walnut shell, wood, charcoal, or bamboo, more preferably coconut shell. .
  • the flavor suction article comprises a filter and the activated carbon is included in the filter.
  • the flavor suction article comprises a flavor source, preferably a tobacco flavor source, and a filter located downstream of the flavor source, the activated carbon is the filter Incorporated into
  • the flavor suction article has n (n is an integer of 2 or more) filter plugs disposed via (n-1) hollow portions.
  • the multi-segment filter is included, and the activated carbon is included in at least one of the hollow portions.
  • n is, for example, 2 to 4, preferably 2 to 3, more preferably 2.
  • the flavor suction article includes a multi-segment filter in which n (n is an integer of 2 or more) filter plugs are connected, Activated carbon is embedded in at least one of the filter plugs.
  • n is, for example, 2 to 4, preferably 2 to 3, more preferably 2.
  • the flavor suction article is a burning smoking article, preferably a cigarette.
  • the cigarette preferably comprises a tobacco rod, a filter, and tip paper wound on the tobacco rod and the filter so as to connect the tobacco rod and the filter.
  • the flavor suction article is a heating type flavor suction article which provides flavor to a user by heating without burning a flavor source.
  • the flavor suction article is a non-heating type flavor suction article that provides the user with the flavor of the flavor source without heating or burning the flavor source.
  • Example 1 Evaluation of Pore Structure 1-1 Sample preparation (carbonized charcoal) The coconut shell activated carbon was crushed and sieved with a 30 to 60 mesh sieve to prepare carbon carbide.
  • coconut shell activated carbon (Futamura Chemical Co., Ltd., product name: CW360BL) having an average particle diameter of 0.34 mm was prepared.
  • the low activated carbon was subjected to gas phase oxidation treatment at a low oxidation degree as follows to prepare weakly oxidized carbon of the low activated carbon (hereinafter also referred to as "weakly oxidized carbon"). That is, 200 g of low activated carbon was put into a rotary kiln, and the temperature was raised to 300 ° C., and the same temperature was maintained. Air at 30 ° C. humidified to approximately 90% relative humidity was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 2 hours while maintaining 300 ° C. Thereafter, the treated activated carbon was taken out and cooled to prepare weakly oxidized carbon.
  • oxidized carbon The low activated carbon was subjected to gas phase oxidation treatment with moderate oxidation degree as follows to prepare oxidized carbon of the low activated carbon (hereinafter also referred to as "oxidized carbon"). That is, 200 g of low activated carbon was put into a rotary kiln, and the temperature was raised to 500 ° C., and the same temperature was maintained. Air at 30 ° C. humidified to approximately 90% relative humidity was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 1 hour while maintaining 500 ° C. Thereafter, the treated activated carbon was taken out and cooled to prepare oxidized carbon.
  • the low activated carbon was subjected to gas phase oxidation treatment at a high degree of oxidation as follows to prepare strong oxidized carbon of the low activated carbon (hereinafter also referred to as "strong oxidized carbon"). That is, 200 g of low activated carbon was put into a rotary kiln, and the temperature was raised to 500 ° C., and the same temperature was maintained. Air at 30 ° C. humidified to approximately 90% relative humidity was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 2 hours while maintaining 500 ° C. Thereafter, the treated activated carbon was taken out and cooled to prepare strongly oxidized carbon.
  • the current charcoal was activated with a high degree of activation as follows to prepare highly activated charcoal. That is, 200 g of the present coal was put into a rotary kiln, and the temperature was raised to 900 ° C., and the same temperature was maintained. Water was introduced into the rotary kiln at a flow rate of 0.3 mL / min and heated for 20 hours maintaining 900 ° C. Thereafter, the treated activated carbon was taken out and cooled to prepare highly activated carbon.
  • the pore volume was calculated from the nitrogen adsorption amount at a relative pressure (P / P 0 ) of 0.95 in the nitrogen adsorption isotherm measured at a temperature of 77K.
  • the pore volume represents the sum of the volume of pores having a pore diameter of about 40 nm or less.
  • the pore distribution was analyzed based on the quench solid density functional theory (QSDFT).
  • QSDFT quench solid density functional theory
  • FIGS. 3 and 4 Results The results are shown in FIGS. 3 and 4 and Table 1.
  • FIG. 3 shows pore distribution curves of carbon carbide, low activated carbon, current coal and high activated carbon.
  • FIG. 4 shows pore distribution curves of weakly oxidized carbon, oxidized carbon, strongly oxidized carbon, and current carbon.
  • Table 1 shows the BET specific surface area, pore volume and micropore volume of each sample.
  • the current oxidized carbon is the oxidized carbon obtained by subjecting the existing carbon to gas phase oxidation treatment
  • the BET specific surface area of this oxidized carbon is increased as compared to the existing carbon.
  • the pore volume and micropore volume of this oxidized carbon were both increased as compared to the current coal.
  • Example 2 Evaluation of Carbon Surface Structure 2-1 Method The Raman spectrum of the sample prepared in Example 1 was measured by the following method.
  • the ratio (G / D ratio) of the peak intensity of the G band to the peak intensity of the D band was calculated from the peak intensity of the D band and the peak intensity of the G band in the Raman spectrum.
  • FIGS. 5 to 7 Results The measurement results of the Raman spectrum are shown in FIGS. 5 to 7 and Table 2.
  • FIG. 5 is a graph showing measurement results of Raman spectra of carbon carbide, low activated carbon, current carbon, and high activated carbon.
  • FIG. 6 is a graph showing measurement results of Raman spectra of low activated carbon, current carbon, oxidized carbon of low activated carbon, and oxidized carbon of current carbon.
  • FIG. 7 is a graph showing the G / D ratio calculated from the measurement result of the Raman spectrum. Table 2 shows numerical data of G / D ratio.
  • the oxidized charcoal of current charcoal decreased the peak of D band, and the value of the G / D ratio increased accordingly.
  • the peak strength of D band of low activated carbon is maintained, and G / D ratio of low activated carbon The value of was almost maintained.
  • Example 3 Influence of heating by vapor phase oxidation treatment on activated carbon 3-1.
  • Method With respect to the current coal prepared in Example 1, the influence of heating by gas phase oxidation treatment on activated carbon was examined. Specifically, a 6 mg sample was placed in a platinum pan, and thermogravimetric-differential thermal analysis (TG-DTA) was performed under an air flow of 200 mL / min. The temperature was raised by raising the temperature to 100 ° C. at a rate of 10 ° C./min, maintaining the temperature for 30 minutes or more, and then raising the temperature to 650 ° C. at a rate of 1 ° C./min. As an apparatus, TG / DTA 6200 (manufactured by SII Nano Technology Co., Ltd.) was used.
  • FIG. 8 is a graph showing the results of thermogravimetric / differential thermal analysis.
  • FIG. 8 shows the weight change (% by weight) that occurs as the temperature rises.
  • Example 4 Evaluation of oxygenated functional group content 4-1. Method The amount of oxygen-containing functional groups was measured for the current carbon, weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon prepared in Example 1.
  • the oxygen-containing functional group is preferably H. P. It quantified according to the quantitative method (Boehm method) which Boehm proposed. That is, the oxygen-containing functional group was divided into a carboxyl group (Group I), a lactone type carboxyl group (Group II), a phenolic hydroxyl group (Group III), and a carbonyl group (Group IV) and quantified.
  • the amount of oxygen-containing functional groups of Group I is measured from the neutralization titration of sodium hydrogencarbonate. From the neutralization titration of sodium carbonate, the total amount of Group I and Group II is measured. From the neutralization titration of sodium hydroxide, the total amount of Group I, II and III is measured. From the neutralization titration of sodium ethoxide, the total amount of Group I, II, III and IV is measured.
  • the vessel containing the reaction mixture was then capped with a PTFE / silicon septum. Provided N 2 Inlet, needle so as to reach below the liquid level, provided so as not to needle N 2 Outlet on the water surface, it was passed through a nitrogen for 2 hours at a rate 1 mL / min. This removed the CO 2 dissolved in the reaction mixture.
  • reaction mixture was transferred to a beaker covered with parafilm in advance with nitrogen substitution, and 1 drop of indicator phenolphthalein / ethanol solution (10 g / L) was dropped there. Then, the burette was inserted into the beaker with the lid of the parafilm, and while stirring with a stirrer, the solution was titrated with a 0.05 M aqueous solution of NaOH.
  • a indicates the Reaction base used for the measurement. a refers to 50 mL of 0.05 M Reaction base in the above experiment.
  • B shows the separated Reaction base.
  • B refers to 10 mL of filtrate in the above experiment.
  • [] Indicates the molar concentration used for titration.
  • V shows a titration volume (volume).
  • n (B) / n (HCl) shows the valence ratio of Reaction base to hydrochloric acid.
  • the amount of oxygen-containing functional group per sample weight can be determined, and if the value of the above mol number is divided by surface area, the amount of oxygen-containing functional group per surface area can be determined Be
  • the measurement of Blank was also performed for every measurement, and the molar concentration of other Reaction base was calculated
  • FIG. 9 is a graph showing the measurement results of the amount of oxygen-containing functional groups.
  • Table 3 shows numerical data of the amount of oxygen-containing functional groups.
  • FIG. 9 and Table 3 show the amount of oxygen-containing functional groups per sample weight.
  • Example 5 Evaluation of Ammonia Adsorption Ability 5-1 Method The adsorption amount of ammonia was measured for the existing carbon, weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon prepared in Example 1, and the adsorption capacity of the basic component was evaluated.
  • the adsorption equilibrium was measured at 25 ° C. in a gas pressure range of 2 to 800 mHg using an adsorption equilibrium device Autosorb-1-c (manufactured by Quantachrome). Specifically, as a pretreatment of the sample, 3 hours at 300 ° C., was subjected to vacuum degassing at 10 -1 Pa or less. Thereafter, the amount of adsorption of ammonia was measured at 25 ° C. The adsorption amount measured here is the sum of the physical adsorption amount and the chemical adsorption amount.
  • the adsorption amount measured here is a physical adsorption amount.
  • the difference between the adsorption amount measured in the first measurement and the adsorption amount measured in the second measurement is the chemical adsorption amount.
  • FIGS. 10-12 are graph showing the ammonia adsorption amount (ie, the sum of the physical adsorption amount and the chemical adsorption amount).
  • FIG. 11 is a graph showing the physical adsorption amount of ammonia and the chemical adsorption amount of ammonia. In the adsorption isotherm of FIG. 10 and FIG. 11, the horizontal axis shows relative pressure (P / P 0 ), and the vertical axis shows equilibrium adsorption amount (q).
  • FIG. 12 is a graph showing the adsorption isotherm of FIG. 11 as a DA plot (Dubinin-Astakhov plot).
  • the weakly oxidized carbon showed an ammonia adsorption ability comparable to that of the present charcoal, and the oxidized carbon and the strongly oxidized coal showed a high ammonia adsorption ability as compared with the present charcoal.
  • the present charcoal is shown as an example of the activated carbon especially excellent in adsorption performance.
  • weakly oxidized carbon, oxidized carbon and strongly oxidized carbon mainly adsorb ammonia by physical adsorption, but as shown in FIG. The adsorption of ammonia by was confirmed.
  • the oxygen-containing functional group functions to chemically adsorb basic components such as ammonia. Indicated. Since chemical adsorption leads to specific adsorption, weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon can specifically remove basic components such as ammonia.
  • Example 6 Evaluation of removal rate of tobacco smoke component 6-1. Preparation of combustion type smoking article In this example, current charcoal, weakly oxidized carbon, oxidized carbon and strongly oxidized carbon prepared in Example 1 were used as samples. A combustion type smoking article was produced by incorporating a sample in the space (filter cavity portion) between two filter plugs as shown in FIG. 1, and the removal rate of the tobacco smoke component was evaluated.
  • the Cambridge filter was shaken in methanol used for collection of smoke components passed through the Cambridge filter to obtain an analytical sample. Collect 1 ⁇ L of the obtained analysis sample into a microsyringe and perform gas chromatography-mass spectrometry (GC-MSD manufactured by Agilent, model numbers used for analysis of particle phase and vapor phase: GC: 7890A, MS: 5975C and GC: 6890A, respectively) MS: 5973) was analyzed. The experiment was repeated three times.
  • GC-MSD gas chromatography-mass spectrometry
  • a sample represents the quantitative value of the component in the smoke obtained from the combustion type smoking article containing each activated carbon
  • a control represents the quantitative value of the component in the smoke obtained from the control cigarette prepared as a comparison target
  • S represents the quantitative value of the smoke component of the standard cigarette, which is used to calibrate the error due to the work when the smoking test is performed on different dates. For standard cigarettes, quantification of the constituents in the smoke was carried out for each smoking test.
  • FIG. 13 is a graph showing the reduction rate of ammonia in mainstream cigarette smoke.
  • FIG. 14 is a graph showing the reduction rate of the vapor component in mainstream cigarette smoke.
  • FIG. 14 shows data of current charcoal, current charcoal is an activated carbon which is particularly excellent in adsorption performance. For this reason, it can be considered in FIG. 14 that even if weakly oxidized carbon, oxidized carbon and strongly oxidized carbon show a somewhat lower removal rate than current charcoal, they show sufficient removal rates. Furthermore, in the case of oxidized carbon and strongly oxidized carbon, it was shown that the adsorption rate of basic components such as pyridines and pyrazines is higher than that of existing carbons and can be specifically removed.
  • basic components such as pyridines and pyrazines
  • the target base can be obtained by the interaction with the introduced surface oxygen-containing functional group while maintaining the adsorption amount of the existing coals. It is shown to increase the amount of adsorption of the sex component.
  • the combustion type smoking article containing any of weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon can sufficiently adsorb and remove the vapor component in the mainstream cigarette smoke and ammonia It has been shown that basic components such as can be specifically adsorbed and removed.

Abstract

The flavor inhalation article according to the present invention includes an activated carbon which has a BET specific surface area of at least 1050 m2/g, while the ratio of the G-band peak intensity to the D-band peak intensity in a Raman spectrum is at least 0.85.

Description

香味吸引物品Flavor suction article
 本発明は、香味吸引物品に関する。 The present invention relates to a flavor suction article.
 ユーザがたばこ香味を味わう吸引物品として、たばこ香味源を燃焼させることによりたばこ香味をユーザに提供する燃焼型喫煙物品、たばこ香味源を燃焼させることなく加熱することによりたばこ香味をユーザに提供する加熱型香味吸引物品、およびたばこ香味源を加熱も燃焼もしないで、たばこ香味源のたばこ香味をユーザに提供する非加熱型香味吸引物品が知られている。本明細書において、ユーザがたばこ香味等の香味を味わう吸引物品を総称して「香味吸引物品」と称する。 A combustion type smoking article that provides a user with a tobacco flavor by burning a tobacco flavor source as a suction article that tastes a tobacco flavor, a heating that provides a user with a tobacco flavor by heating without burning a tobacco flavor source Type flavored suction articles and non-heated flavored suction articles are known that provide the user with a tobacco flavor source tobacco flavor without heating or burning the tobacco flavor source. In the present specification, suction articles for which the user tastes flavors such as tobacco flavor are collectively referred to as “flavor suction articles”.
 香味吸引物品は、一般に、香味源に由来する成分を濾過するためのフィルタを備え、フィルタは、吸着剤として活性炭を含んでいる(例えば、国際公開第2008/146543号を参照)。活性炭を含むフィルタは、チャコールフィルタと呼ばれ、当該技術分野で周知である。チャコールフィルタにおいて、活性炭は、雑味成分を吸着するが、香味に寄与する成分を吸着しすぎることがないように、製品の仕様に合わせて、その添加量が決められている。 Flavored suction articles generally comprise a filter for filtering components derived from a flavor source, the filter comprising activated carbon as an adsorbent (see, for example, WO 2008/146543). Filters containing activated carbon are called charcoal filters and are well known in the art. In the charcoal filter, the amount of activated carbon is determined according to the specification of the product so as to adsorb miscellaneous components but not excessively adsorb components contributing to the flavor.
 活性炭は、比表面積や細孔容積が増大すると吸着性能が高まることが知られている。しかし、活性炭の比表面積や細孔容積が増大するにつれて、細孔(微細な空孔)が増えるため活性炭の強度は低下する。このため、活性炭の吸着性能と強度とを両立させることは難しいことに本発明者らは着目した。 Activated carbon is known to increase its adsorption performance as the specific surface area and pore volume increase. However, as the specific surface area and pore volume of activated carbon increase, the strength of activated carbon decreases because pores (fine pores) increase. For this reason, the present inventors noted that it is difficult to achieve both the adsorption performance and the strength of activated carbon.
 一方、近年の香味吸引物品の製造は高速化しており、製造過程で活性炭にかかる負荷は増加している。活性炭にかかる負荷が増加すると、活性炭の破砕が起こり、香味吸引物品に添加される量が不均一になるおそれがある。活性炭の添加量を均一に保つことは、物品毎の香味を均一に保つ上で重要である。 On the other hand, the production of flavor suction articles in recent years is speeding up, and the load on activated carbon in the production process is increasing. When the load applied to the activated carbon is increased, the activated carbon may be fractured and the amount added to the flavor suction article may be nonuniform. Keeping the added amount of activated carbon uniform is important to keep the flavor of each article uniform.
 上記事情に鑑み、本発明は、吸着性能に優れているとともに形状的に安定である活性炭を含む香味吸引物品を提供することを目的とする。 In view of the above-mentioned circumstances, the present invention aims to provide a flavor suction article containing activated carbon which is excellent in adsorption performance and is stable in shape.
 本発明の一つの側面によれば、BET比表面積が1050m/g以上であり、かつラマンスペクトルにおけるDバンドのピーク強度に対するGバンドのピーク強度の比が0.85以上である活性炭を含む香味吸引物品が提供される。 According to one aspect of the present invention, a flavor comprising activated carbon having a BET specific surface area of 1050 m 2 / g or more and a ratio of peak intensity of G band to peak intensity of D band in Raman spectrum of 0.85 or more A suction article is provided.
 本発明によれば、吸着性能に優れているとともに形状的に安定である活性炭を含む香味吸引物品を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the flavor suction article containing the activated carbon which is excellent in adsorption performance and shape-stable can be provided.
第1実施形態に係る燃焼型喫煙物品の断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing of the combustion type smoking article which concerns on 1st Embodiment. 第2実施形態に係る燃焼型喫煙物品の断面図。Sectional drawing of the combustion type smoking article which concerns on 2nd Embodiment. 細孔分布曲線を示すグラフ。Graph showing pore distribution curve. 細孔分布曲線を示すグラフ。Graph showing pore distribution curve. ラマンスペクトルの測定結果を示すグラフ。The graph which shows the measurement result of a Raman spectrum. ラマンスペクトルの測定結果を示すグラフ。The graph which shows the measurement result of a Raman spectrum. ラマンスペクトルの測定結果から算出したG/D比を示すグラフ。The graph which shows G / D ratio computed from the measurement result of a Raman spectrum. 熱重量・示差熱分析の結果を示すグラフ。The graph which shows the result of thermogravimetric and differential thermal analysis. 含酸素官能基量の測定結果を示すグラフ。The graph which shows the measurement result of the amount of oxygen-containing functional groups. アンモニア吸着量を示すグラフ。The graph which shows the amount of ammonia adsorption. アンモニアの物理吸着量およびアンモニアの化学吸着量を示すグラフ。The graph which shows the physical adsorption amount of ammonia, and the chemical adsorption amount of ammonia. 図11の吸着等温線をDAプロットで示したグラフ。The graph which showed the adsorption isotherm of FIG. 11 by DA plot. たばこ主流煙中のアンモニアの低減率を示すグラフ。A graph showing the reduction rate of ammonia in mainstream cigarette smoke. たばこ主流煙中の蒸気成分の低減率を示すグラフ。The graph which shows the reduction rate of the vapor component in cigarette mainstream smoke.
 本出願人は、活性炭に液相酸化処理を行うと、高濃度の含酸素官能基を活性炭表面に導入することができるが、活性炭のBET比表面積が減少して吸着能が低下することを報告している(日本国特開2010-193718号公報)。このように、活性炭表面に含酸素官能基を導入すると、炭素のπ電子共役結合が破壊されてSP結合の欠陥が増加するため、ラマンスペクトルにおけるDバンドのピーク強度(これは、炭素のグラフェン構造の欠陥の指標である)が増大すると考えられる。 The present applicant reports that when liquid phase oxidation treatment is performed on activated carbon, a high concentration of oxygen-containing functional groups can be introduced onto the activated carbon surface, but the BET specific surface area of the activated carbon decreases and the adsorption ability decreases. (Japanese Unexamined Patent Publication No. 2010-193718). Thus, when introducing an oxygen-containing functional group on the activated carbon surface, the π electron conjugated bond of carbon is broken and the defect of the SP 2 bond increases, so the peak intensity of D band in the Raman spectrum (this is the graphene of carbon It is considered to be an indicator of structural defects.
 このような技術常識に反し、本発明者らが、所定のBET比表面積を有する活性炭に、気相酸化処理を行ったところ、含酸素官能基の導入に加えて、活性炭のBET比表面積が増大し、更に、ラマンスペクトルにおけるDバンドのピーク強度が維持されるかまたは減少することを新たに見出した。かかる発見に基づいて、本発明者らは、吸着性能に優れているとともに形状的に安定である活性炭を含む香味吸引物品を完成させるに至った。 Contrary to such technical common sense, when the present inventors carried out gas phase oxidation treatment on activated carbon having a predetermined BET specific surface area, in addition to the introduction of the oxygen-containing functional group, the BET specific surface area of the activated carbon increased. Furthermore, it has been newly found that the peak intensity of the D band in the Raman spectrum is maintained or decreased. Based on such a discovery, the present inventors have completed a flavor suction article comprising activated carbon which is excellent in adsorption performance and shape stable.
 すなわち、本発明は、BET比表面積が1050m/g以上であり、かつラマンスペクトルにおけるDバンドのピーク強度に対するGバンドのピーク強度の比(以下、G/D比ともいう)が0.85以上である活性炭を含む香味吸引物品に関する。 That is, according to the present invention, the BET specific surface area is 1050 m 2 / g or more, and the ratio of the peak intensity of G band to the peak intensity of D band in the Raman spectrum (hereinafter also referred to as G / D ratio) is 0.85 or more And a flavor suction article comprising activated carbon.
 本明細書において、香味吸引物品は、香味源を含み、香味源に由来する香味をユーザが味わう任意の吸引物品であり、具体的には、香味源を燃焼させることにより香味をユーザに提供する燃焼型喫煙物品、香味源を燃焼させることなく加熱することにより香味をユーザに提供する加熱型香味吸引物品、および香味源を加熱も燃焼もしないで、香味源の香味をユーザに提供する非加熱型香味吸引物品が挙げられる。 As used herein, a flavor suction article is any suction article that includes a flavor source and that the user tastes the flavor derived from the flavor source, and in particular provides flavor to the user by burning the flavor source Burnable smoking articles, heated flavor suction articles that provide the user with flavor by heating without burning the flavor source, and unheated that provide the user with the flavor source flavor without heating or burning the flavor source Type flavor suction articles are mentioned.
 以下、たばこ香味源を含む燃焼型喫煙物品の代表例であるシガレットについて説明する。 Hereinafter, a cigarette which is a representative example of a combustion type smoking article containing a tobacco flavor source will be described.
 1.燃焼型喫煙物品
 燃焼型喫煙物品の一例を、図1を参照して説明する。 
 図1は、第1実施形態に係る燃焼型喫煙物品1の断面図である。図1に示す燃焼型喫煙物品1は、シガレットである。 
 図1に示す燃焼型喫煙物品1は、
 たばこ香味源10aとたばこ香味源10aの周囲を巻装するたばこ巻紙10bとを含むたばこロッド10と、
 互いに離間し中空部を介して配置された2つのフィルタプラグ21であって、各フィルタプラグ21は、濾材21aと濾材21aの周囲に巻かれたプラグ巻取紙21bとを含むフィルタプラグ21と、2つのフィルタプラグ21の間に中空部を形成するようにフィルタプラグ21の周囲に巻かれたフィルタ成形紙22と、中空部に位置する活性炭23とを含むフィルタ20と、
 たばこロッド10とフィルタ20とを接続するようにたばこロッド10とフィルタ20上に巻かれたチップペーパー30と
を含む。
1. Combustion Type Smoking Article An example of a combustion type smoking article will be described with reference to FIG.
FIG. 1 is a cross-sectional view of the combustion-type smoking article 1 according to the first embodiment. The combustion type smoking article 1 shown in FIG. 1 is a cigarette.
The combustion type smoking article 1 shown in FIG.
A tobacco rod 10 including a tobacco flavor source 10a and a cigarette paper 10b wound around the tobacco flavor source 10a;
Two filter plugs 21 spaced apart from each other and disposed via hollow parts, each filter plug 21 includes a filter plug 21 including a filter material 21a and a plug winding paper 21b wound around the filter material 21a; A filter forming paper 22 wound around the filter plug 21 so as to form a hollow portion between the filter plugs 21; and a filter 20 including activated carbon 23 located in the hollow portion.
The tobacco rod 10 and the tipping paper 30 wound on the filter 20 are included to connect the tobacco rod 10 and the filter 20.
 図1に示す燃焼型喫煙物品1では、2つのフィルタプラグ21が1つの中空部を介して配置されているが、n個(nは2以上の整数)のフィルタプラグが(n-1)個の中空部を介して配置されていてもよく、例えばnは2~4であり、好ましくはnは2~3であり、より好ましくはnは2である。 In the combustion type smoking article 1 shown in FIG. 1, although two filter plugs 21 are disposed through one hollow portion, n (n is an integer of 2 or more) filter plugs (n-1) For example, n is 2 to 4, preferably n is 2 to 3, and more preferably n is 2.
 図1に示す燃焼型喫煙物品において、たばこロッド10、活性炭23以外のフィルタ20の構成要素、およびチップペーパー30は、従来公知のものを使用することができる。活性炭23としては、以下に説明するものを使用することができる。 In the combustion type smoking article shown in FIG. 1, conventionally known components can be used as the tobacco rod 10, the components of the filter 20 other than the activated carbon 23, and the tip paper 30. As the activated carbon 23, those described below can be used.
 活性炭23は、BET比表面積が1050m/g以上であり、かつラマンスペクトルにおけるDバンドのピーク強度に対するGバンドのピーク強度の比が0.85以上である。 The activated carbon 23 has a BET specific surface area of 1050 m 2 / g or more, and a ratio of the peak intensity of the G band to the peak intensity of the D band in the Raman spectrum is 0.85 or more.
 本明細書において「BET比表面積」は、BET吸着等温式(Brunauer,Emmet and Teller’s equation)を利用して得られる比表面積を意味している。活性炭23のBET比表面積は、1050~1600m/gであることが好ましく、1150~1600m/gであることがより好ましく、1150~1300m/gであることがさらに好ましい。BET比表面積が小さすぎる場合、活性炭23は、優れた吸着性能を発揮することが困難である。また、BET比表面積が大きすぎる場合、活性炭23の吸着性能は高まるが、形状的な安定性が低下する虞がある。 As used herein, “BET specific surface area” means a specific surface area obtained using BET adsorption isotherm (Brunauer, Emmet and Teller's equation). The BET specific surface area of the activated carbon 23 is preferably 1050 to 1600 m 2 / g, more preferably 1150 to 1600 m 2 / g, and still more preferably 1150 to 1300 m 2 / g. If the BET specific surface area is too small, it is difficult for the activated carbon 23 to exhibit excellent adsorption performance. When the BET specific surface area is too large, the adsorption performance of the activated carbon 23 is enhanced, but the shape stability may be reduced.
 本明細書において「Gバンド」は、ラマン分光測定によって得られるラマンスペクトルにおいて、1600cm-1付近に検出されるピークであり、Gバンドは、炭素のグラフェン構造に由来する。また、「Dバンド」は、ラマン分光測定によって得られるラマンスペクトルにおいて、1300cm-1付近に検出されるピークであり、Dバンドは、炭素のグラフェン構造の欠陥に由来する。従って、ラマンスペクトルにおけるDバンドのピーク強度に対するGバンドのピーク強度の比(以下、G/D比ともいう)が大きい活性炭は、高度に結晶化しており、構造の欠陥が少なく、形状的に安定な傾向にある。ラマンスペクトルは、例えば、顕微レーザーラマンNicolet Almega XR(サーモフィッシャーサイエンティフィック株式会社製)を用いて取得することができる。 In the present specification, the “G band” is a peak detected in the vicinity of 1600 cm −1 in a Raman spectrum obtained by Raman spectroscopy, and the G band is derived from a graphene structure of carbon. The “D band” is a peak detected in the vicinity of 1300 cm −1 in a Raman spectrum obtained by Raman spectroscopy, and the D band is derived from a defect of a graphene structure of carbon. Therefore, activated carbon having a large ratio of peak intensity of G band to peak intensity of D band in Raman spectrum (hereinafter also referred to as G / D ratio) is highly crystallized, has few structural defects, and is stable in shape Tend to The Raman spectrum can be acquired, for example, using a microscopic laser Raman Nicolet Almega XR (manufactured by Thermo Fisher Scientific Co., Ltd.).
 活性炭23のG/D比は、0.85~1.1であることが好ましく、0.9~1.1であることがより好ましい。G/D比が小さすぎる場合、活性炭23は、優れた形状安定性を達成することは困難である。G/D比の上限は、活性炭の製造上の限界により設定される。 The G / D ratio of the activated carbon 23 is preferably 0.85 to 1.1, and more preferably 0.9 to 1.1. If the G / D ratio is too small, it is difficult for activated carbon 23 to achieve excellent shape stability. The upper limit of the G / D ratio is set by the manufacturing limit of activated carbon.
 活性炭23は、例えば、200μm~1000μmの平均粒径、好ましくは300μm~700μmの平均粒径、より好ましくは400μm~600μmの平均粒径を有する。ここで、「平均粒径」は、レーザ回折・散乱法によって求めた粒度分布において、体積積算値が50%となる粒径(d50)を意味する。 The activated carbon 23 has, for example, an average particle diameter of 200 μm to 1000 μm, preferably an average particle diameter of 300 μm to 700 μm, and more preferably an average particle diameter of 400 μm to 600 μm. Here, the "average particle diameter" means a particle diameter (d50) at which the volume integrated value is 50% in the particle size distribution determined by the laser diffraction / scattering method.
 活性炭23の細孔容積は、0.5cm3/g以上であることが好ましく、0.5~0.8cm3/gの範囲内にあることがより好ましく、0.52~0.74cm3/gの範囲内にあることがさらに好ましい。細孔容積が小さすぎる場合、活性炭23は、優れた吸着性能を発揮することが困難である。細孔容積が大きすぎる場合、活性炭23の吸着性能は高まるが、形状的な安定性が低下する虞がある。 The pore volume of the activated carbon 23 is preferably 0.5 cm 3 / g or more, more preferably in the range of 0.5 to 0.8 cm 3 / g, more preferably 0.52 to 0.74 cm 3 / More preferably, it is in the range of g. When the pore volume is too small, it is difficult for the activated carbon 23 to exhibit excellent adsorption performance. If the pore volume is too large, the adsorption performance of the activated carbon 23 may be enhanced, but the shape stability may be reduced.
 本明細書において「細孔容積」は、約40nm以下の細孔直径を有する細孔の容積の合計値を意味する。細孔容積は、温度77Kで測定した窒素吸着等温線において、相対圧P/Pが0.95のときの窒素吸着量から算出した値である。 As used herein, "pore volume" means the sum of the volume of pores having a pore diameter of about 40 nm or less. The pore volume is a value calculated from the nitrogen adsorption amount when the relative pressure P / P 0 is 0.95, in the nitrogen adsorption isotherm measured at a temperature of 77K.
 窒素吸着等温線は、以下のようにして求めることができる。まず、77K(窒素の沸点)の窒素ガス中で、窒素ガスの圧力P(mmHg)を徐々に高めながら、各圧力P毎に、活性炭の窒素ガス吸着量(mL/mL)を測定する。次いで、圧力P(mmHg)を窒素ガスの飽和蒸気圧P(mmHg)で除した値を相対圧P/Pとして、各相対圧P/Pに対する窒素ガス吸着量をプロットすることにより吸着等温線を得ることができる。窒素吸着等温線は、例えば、ガス吸着量測定装置AutoSorb-1(Quantachrome社製)を用いて取得することができる。 The nitrogen adsorption isotherm can be determined as follows. First, the nitrogen gas adsorption amount (mL / mL) of activated carbon is measured for each pressure P while gradually increasing the pressure P (mmHg) of nitrogen gas in nitrogen gas at 77 K (boiling point of nitrogen). Then, the pressure P (mmHg) divided by the saturated vapor pressure P 0 (mm Hg) of nitrogen gas is taken as the relative pressure P / P 0 , and the adsorption is plotted by plotting the nitrogen gas adsorption amount against each relative pressure P / P 0 An isotherm can be obtained. The nitrogen adsorption isotherm can be obtained, for example, using a gas adsorption amount measuring apparatus AutoSorb-1 (manufactured by Quantachrome).
 活性炭23の細孔容積のうち、細孔直径2nm未満の細孔の容積(すなわち、マイクロ孔容積)は、0.4cm3/g以上であることが好ましく、0.4~0.7cm3/gの範囲内にあることがより好ましく、0.4~0.6cm3/gの範囲内にあることがさらに好ましい。活性炭23が、上述した大きさでマイクロ孔容積を有していると、優れた吸着性能を達成する上で特に有利である。 Among the pore volumes of activated carbon 23, the volume of pores with a pore diameter of less than 2 nm (ie, the micropore volume) is preferably 0.4 cm 3 / g or more, and 0.4 to 0.7 cm 3 / It is more preferably in the range of g, and still more preferably in the range of 0.4 to 0.6 cm 3 / g. It is particularly advantageous to achieve excellent adsorption performance if the activated carbon 23 has a micropore volume of the size described above.
 本明細書において「マイクロ孔容積」は、窒素吸着等温線から、急冷固体密度汎関数理論(QSDFT)法で細孔分布解析を行い、算出した値である。 In the present specification, “micropore volume” is a value calculated by performing pore distribution analysis from a nitrogen adsorption isotherm by a rapid solid density functional theory (QSDFT) method.
 燃焼型喫煙物品等の香味吸引物品の雑味を低減するためには、活性炭23は、現在、香味吸引物品の吸着剤として使用されている活性炭(以下、現行炭ともいう)の吸着性能を維持しながら、塩基性成分を特異的に吸着することが望まれている。そこで、Boehm法により測定される全含酸素官能基のなかでも、活性炭23は、その表面に、以下からなる含酸素官能基を有していることが好ましい。すなわち、活性炭23は、Boehm法により測定される、カルボキシル基(および無水カルボン酸基)(Group I)、ラクトン型カルボキシル基(およびラクトン基)(Group II)、フェノール性水酸基(Group III)およびカルボニル基あるいはキノン基(Group IV)からなる含酸素官能基を有していることが好ましい。 In order to reduce the miscellaneous taste of flavor suction articles such as combustion type smoking articles, activated carbon 23 maintains the adsorption performance of activated carbon (hereinafter also referred to as current charcoal) currently used as an adsorbent for flavor suction articles. While, it is desired to specifically adsorb the basic component. Therefore, among all the oxygen-containing functional groups measured by the Boehm method, it is preferable that the activated carbon 23 has an oxygen-containing functional group consisting of the following on the surface thereof. That is, the activated carbon 23 is a carboxyl group (and carboxylic anhydride group) (Group I), a lactone type carboxyl group (and lactone group) (Group II), a phenolic hydroxyl group (Group III) and a carbonyl, which are measured by the Boehm method. It is preferable to have an oxygen-containing functional group consisting of a group or a quinone group (Group IV).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 活性炭23が、塩基性成分を特異的に吸着するためには、現行炭の細孔構造を維持しながら全含酸素官能基の量が多いほうが望ましいが、カルボキシル基(および無水カルボン酸基)(Group I)は強い酸性であるため、燃焼型喫煙物品の保存中や喫煙時にフィルタ内で望ましくない酸塩基反応や触媒作用が生じて副生成物が生じる懸念がある。したがって、活性炭23は、塩基性成分の吸着に寄与する弱酸性の含酸素官能基を有することが特に好ましい。 In order for activated carbon 23 to specifically adsorb the basic component, it is desirable that the amount of all the oxygen-containing functional groups be higher while maintaining the pore structure of the current carbon, but the carboxyl group (and carboxylic anhydride group) ( Since Group I) is strongly acidic, there is a concern that undesirable acid-base reactions or catalysis occur in the filter during storage of the smoking article or at the time of smoking to generate by-products. Therefore, it is particularly preferable that the activated carbon 23 have a weakly acidic oxygen-containing functional group that contributes to the adsorption of the basic component.
 活性炭23は、Boehm法により測定される、カルボキシル基、ラクトン型カルボキシル基、フェノール性水酸基およびカルボニル基からなる含酸素官能基の量が0.6mmol/g以上であることが好ましく、0.6~2.0mmol/gであることがより好ましく、1.0~2.0mmol/gであることがさらに好ましい。本明細書において含酸素官能基の量は、活性炭1gあたりのモル量により表される。活性炭23が、含酸素官能基を上述した量で含むと、香味吸引器の吸引時にユーザにより吸引される流体から塩基性成分(例えばアンモニア)を選択的に吸着して除去する上で有利である。 The activated carbon 23 preferably has an amount of an oxygen-containing functional group consisting of a carboxyl group, a lactone type carboxyl group, a phenolic hydroxyl group and a carbonyl group, as measured by the Boehm method, of 0.6 mmol / g or more, preferably 0.6 to 0.6 It is more preferably 2.0 mmol / g, further preferably 1.0 to 2.0 mmol / g. In the present specification, the amount of the oxygen-containing functional group is represented by the molar amount per 1 g of activated carbon. If the activated carbon 23 contains the above-mentioned amount of oxygen-containing functional groups, it is advantageous in selectively adsorbing and removing a basic component (for example, ammonia) from the fluid sucked by the user at the time of suction of the flavor suction device. .
 Boehm法は、公知の酸塩基滴定法であり、詳細は、後述の実施例に記載される。 The Boehm method is a known acid-base titration method, the details of which are described in the examples below.
 また、活性炭23は、Boehm法により測定される、ラクトン型カルボキシル基およびフェノール性水酸基の合計量が0.3mmol/g以上であることが好ましく、0.3~2.0mmol/gであることがより好ましく、0.4~2.0mmol/gであることがさらに好ましい。 Moreover, it is preferable that the total amount of the lactone type carboxyl group and phenolic hydroxyl group measured by the Boehm method is 0.3 mmol / g or more, and the activated carbon 23 is 0.3-2.0 mmol / g. More preferably, it is 0.4 to 2.0 mmol / g.
 さらに、活性炭23は、Boehm法により測定されるカルボキシル基の量が0.12mmol/g以下であることが好ましく、0.01~0.12mmol/gであることがより好ましい。 Furthermore, in the activated carbon 23, the amount of carboxyl groups measured by the Boehm method is preferably 0.12 mmol / g or less, and more preferably 0.01 to 0.12 mmol / g.
 活性炭23は、後述するとおり、所定のBET比表面積を有する原料活性炭に気相酸化処理を施すことにより製造することができる。このように製造された活性炭23は、活性炭の表面に多量の含酸素官能基を有するが、含酸素官能基のうちラクトン型カルボキシル基(Group II)およびフェノール性水酸基(Group III)を比較的多量に有し、含酸素官能基のうちカルボキシル基(Group I)を比較的少量しか有していないという特徴を有する。 The activated carbon 23 can be produced by subjecting a raw material activated carbon having a predetermined BET specific surface area to a gas phase oxidation treatment, as described later. The activated carbon 23 produced in this manner has a large amount of oxygen-containing functional groups on the surface of the activated carbon, but among the oxygen-containing functional groups, relatively large amounts of lactone type carboxyl group (Group II) and phenolic hydroxyl group (Group III) And has a relatively small amount of carboxyl group (Group I) among the oxygen-containing functional groups.
 活性炭23は、
 有機材料を炭化および賦活化して、原料活性炭を得ることと、
 前記原料活性炭を気相酸化法により酸化することと
を含む方法により製造することができる。
The activated carbon 23 is
Carbonizing and activating an organic material to obtain a raw material activated carbon;
And oxidizing the raw material activated carbon by a gas phase oxidation method.
 有機材料としては、活性炭の原料として使用される公知の有機材料を使用することができ、例えば、植物性材料を用いることができる。植物性材料は、例えば、ヤシ殻、クルミ殻などの果実殻、木材、木炭、竹などであり、典型的には、ヤシ殻である。 As an organic material, the well-known organic material used as a raw material of activated carbon can be used, for example, a vegetable material can be used. Vegetable materials are, for example, fruit shells such as coconut shells and walnut shells, wood, charcoal, bamboo and the like, and are typically coconut shells.
 まず、上述した有機材料を炭化および賦活化して、原料活性炭を得る。原料活性炭は、活性炭を製造するための公知の方法に従って製造することができる。具体的には、原料活性炭は、BET比表面積が、好ましくは400~1400m/g、より好ましくは1000~1400m/gとなるように製造する。原料活性炭のBET比表面積が上記範囲内にあると、製造される活性炭23が、高い吸着性能および高い形状的な安定性を有することにつながる。 First, the above-mentioned organic material is carbonized and activated to obtain a raw material activated carbon. Raw material activated carbon can be produced according to a known method for producing activated carbon. Specifically, the raw material activated carbon is produced such that the BET specific surface area is preferably 400 to 1400 m 2 / g, more preferably 1000 to 1400 m 2 / g. When the BET specific surface area of the raw material activated carbon is in the above range, the produced activated carbon 23 has high adsorption performance and high shape stability.
 原料活性炭は、有機材料に炭化処理を行った後、炭化された有機材料にガス賦活法による賦活処理を行って製造してもよいし、有機材料に薬品賦活法による賦活処理を行って、炭化と賦活を同時に行って製造してもよいし、有機材料にマイクロ波加熱法による賦活処理を行って、炭化と賦活を同時に行って製造してもよい。 Raw material activated carbon may be produced by carbonizing an organic material and then activating the carbonized organic material by a gas activation method. Alternatively, the organic material may be activated by a chemical activation method to carbonize the organic material. And the activation may be performed at the same time, or the organic material may be subjected to activation treatment by microwave heating to simultaneously perform carbonization and activation.
 あるいは、上述の原料活性炭は、商業的に入手可能な活性炭を用いてもよい。この場合、活性炭23は、原料活性炭を気相酸化法により酸化することを含む方法により製造することができる。 Alternatively, the above-mentioned raw material activated carbon may use commercially available activated carbon. In this case, the activated carbon 23 can be manufactured by a method including oxidizing raw material activated carbon by a gas phase oxidation method.
 気相酸化法による酸化処理は、例えば、原料活性炭を、空気中または水蒸気中で、例えば500℃以下、好ましくは300~500℃の温度で、1~2時間にわたって処理することにより行うことができる。酸化処理は、後述の実施例に記載されるとおり、連続式の酸化処理により行ってもよいし、あるいはバッチ式の酸化処理により行ってもよい。酸化処理の温度が高すぎると、原料活性炭の過剰な賦活が進行し、活性炭の強度が低下するため、好ましくない。 The oxidation treatment by the gas phase oxidation method can be performed, for example, by treating raw activated carbon in air or steam at, for example, a temperature of 500 ° C. or less, preferably 300 to 500 ° C., for 1 to 2 hours. . The oxidation treatment may be carried out by a continuous oxidation treatment or a batch oxidation treatment as described in the following examples. If the temperature of the oxidation treatment is too high, excessive activation of the raw material activated carbon proceeds, and the strength of the activated carbon decreases, which is not preferable.
 このように、活性炭23は、好ましくは、液相酸化法による酸化処理の条件と比べて穏やかな条件の下で、具体的には、原料活性炭の更なる賦活が顕著に進行しない条件の下で、原料活性炭に気相酸化処理を行うことにより製造することができる。 Thus, preferably, the activated carbon 23 is under mild conditions as compared to the conditions of the oxidation treatment by the liquid phase oxidation method, specifically, under conditions where further activation of the raw material activated carbon does not significantly progress. It can manufacture by performing a gaseous-phase oxidation process to raw material activated carbon.
 好ましい態様において、活性炭23は、
 有機材料を炭化および賦活化して、1000~1400m/gのBET比表面積を有する原料活性炭を得ることと、
 前記原料活性炭を、空気中または水蒸気中で、500℃以下、好ましくは300~500℃の温度で、1~2時間にわたって酸化処理することと
を含む方法により製造することができる。
In a preferred embodiment, the activated carbon 23 is
Carbonizing and activating the organic material to obtain a raw material activated carbon having a BET specific surface area of 1000 to 1400 m 2 / g;
And oxidizing the raw material activated carbon in air or in steam at a temperature of 500 ° C. or less, preferably 300 to 500 ° C., for 1 to 2 hours.
 あるいは、原料活性炭として、商業的に入手可能な活性炭を用いた場合、活性炭23は、1000~1400m/gのBET比表面積を有する原料活性炭を、空気中または水蒸気中で、500℃以下、好ましくは300~500℃の温度で、1~2時間にわたって酸化処理することを含む方法により製造することができる。 Alternatively, when commercially available activated carbon is used as the raw material activated carbon, the activated carbon 23 is preferably 500 ° C. or less, preferably in the air or in steam, the raw material activated carbon having a BET specific surface area of 1000 to 1400 m 2 / g. Can be produced by a method including oxidation treatment at a temperature of 300 to 500 ° C. for 1 to 2 hours.
 活性炭23は、従来のチャコールフィルタで採用される添加量で、フィルタ20に組み込むことができる。フィルタ20が、17~31mmの長さおよび14.7~25.8mmの円周を有する場合、活性炭23は、例えば、フィルタあたり20~80mgの量で、フィルタ20に組み込むことができる。 Activated carbon 23 can be incorporated into the filter 20 at the loading levels employed in conventional charcoal filters. If the filter 20 has a length of 17-31 mm and a circumference of 14.7-25.8 mm, the activated carbon 23 can be incorporated into the filter 20, for example, in an amount of 20-80 mg per filter.
 活性炭23が組み込まれる部位は、香味吸引器の吸引時にユーザにより吸引される流体(例えば、主流煙、エアロゾル、空気など)の流路とすることができる。好ましくは、香味吸引物品はフィルタを含み、活性炭23はフィルタに組み込まれる。より好ましくは、香味吸引物品は、香味源、好ましくはたばこ香味源と、香味源の下流に位置するフィルタとを含み、活性炭23はフィルタに組み込まれる。 The site where the activated carbon 23 is incorporated can be a flow path of fluid (eg, mainstream smoke, aerosol, air, etc.) to be aspirated by the user when aspirating the flavor aspirator. Preferably, the flavored suction article comprises a filter and the activated carbon 23 is incorporated into the filter. More preferably, the flavor suction article comprises a flavor source, preferably a tobacco flavor source, and a filter located downstream of the flavor source, the activated carbon 23 being incorporated into the filter.
 燃焼型喫煙物品1の場合、活性炭23が組み込まれる部位は、たばこ香味源10aの燃焼により発生する主流煙の流路、すなわちたばこロッド10とフィルタ20の吸口側の端部との間とすることができる。好ましくは、図1および図2に示すとおり、活性炭23はフィルタ20に組み込まれる。 In the case of the combustion type smoking article 1, the site where the activated carbon 23 is incorporated is between the flow path of the mainstream smoke generated by the combustion of the tobacco flavor source 10a, that is, between the tobacco rod 10 and the end of the filter 20 on the inlet side. Can. Preferably, activated carbon 23 is incorporated into the filter 20, as shown in FIGS.
 なお、香味吸引器は、活性炭23に加えて、公知の吸着材、例えば、セルロース粒子やセルロースアセテートの粒子など、または公知の香味改質材、例えば、香料を皮膜内に含有する香料カプセルなどを更に含んでいてもよい。 The flavor suction device is, in addition to the activated carbon 23, a known adsorbent, for example, particles of cellulose particles or cellulose acetate, or a known flavor modifier, for example, a perfume capsule containing a perfume in a film. It may further be included.
 第1実施形態に係る燃焼型喫煙物品では、2つのフィルタプラグ21の間に中空部を形成し、中空部に活性炭23を配置したが、2つのフィルタプラグを連結するようにフィルタを作成し、活性炭23を一方のフィルタプラグの中に埋め込むように配置することもできる。活性炭23は、2つのフィルタプラグのうち上流側のフィルタプラグに組み込まれることが好ましい。このような燃焼型喫煙物品を、第2実施形態として図2に示す。 In the combustion type smoking article according to the first embodiment, the hollow portion is formed between the two filter plugs 21 and the activated carbon 23 is disposed in the hollow portion. However, the filter is made to connect the two filter plugs Activated carbon 23 can also be arranged to be embedded in one of the filter plugs. The activated carbon 23 is preferably incorporated into the filter plug on the upstream side of the two filter plugs. Such a burning type smoking article is shown in FIG. 2 as a second embodiment.
 図2は、第2実施形態に係る燃焼型喫煙物品1の断面図である。図2に示す燃焼型喫煙物品1は、シガレットである。図2において、図1と同じ構成要素には同一の参照符号を付す。 FIG. 2 is a cross-sectional view of the combustion-type smoking article 1 according to the second embodiment. The burning type smoking article 1 shown in FIG. 2 is a cigarette. In FIG. 2, the same components as in FIG. 1 are given the same reference numerals.
 図2に示す燃焼型喫煙物品1は、
 たばこ香味源10aとたばこ香味源10aの周囲を巻装するたばこ巻紙10bとを含むたばこロッド10と、
 濾材21aと濾材に21aに埋め込まれた活性炭23と濾材21aの周囲に巻かれたプラグ巻取紙21bとを含む活性炭含有フィルタプラグ24と、前記活性炭含有フィルタプラグの下流側に連結され、濾材21aと濾材21aの周囲に巻かれたプラグ巻取紙21bとを含むフィルタプラグ21とを含むフィルタ20と、
 たばこロッド10とフィルタ20とを接続するようにたばこロッド10とフィルタ20上に巻かれたチップペーパー30と
を含む。
The combustion type smoking article 1 shown in FIG.
A tobacco rod 10 including a tobacco flavor source 10a and a cigarette paper 10b wound around the tobacco flavor source 10a;
An activated carbon-containing filter plug 24 including a filter medium 21a, an activated carbon 23 embedded in the filter medium 21a, and a plug winding paper 21b wound around the filter medium 21a, which is connected downstream of the activated carbon-containing filter plug, the filter medium 21a and the filter medium 21a, and a filter plug 21 including a plug winding paper 21b wound around the periphery of the filter 21a;
The tobacco rod 10 and the tipping paper 30 wound on the filter 20 are included to connect the tobacco rod 10 and the filter 20.
 図2に示す燃焼型喫煙物品1では、2つのフィルタプラグが連結するように配置されているが、n個(nは2以上の整数)のフィルタプラグが連結するように配置されていてもよく、例えばnは2~4であり、好ましくはnは2~3であり、より好ましくはnは2である。 In the combustion type smoking article 1 shown in FIG. 2, two filter plugs are arranged to be connected, but n (n is an integer of 2 or more) filter plugs may be arranged to be connected. For example, n is 2 to 4, preferably n is 2 to 3, and more preferably n is 2.
 第2実施形態においても、たばこロッド10、活性炭23以外のフィルタ20の構成要素、およびチップペーパー30は、従来公知のものを使用することができる。第2実施形態で使用される活性炭23は、第1実施形態で説明された活性炭23と同じである。 Also in the second embodiment, the components of the filter 20 other than the tobacco rod 10, the activated carbon 23, and the tip paper 30 may be conventionally known ones. The activated carbon 23 used in the second embodiment is the same as the activated carbon 23 described in the first embodiment.
 2.香味吸引物品の他の例
 以上、燃焼型喫煙物品の代表例であるシガレットについて説明したが、上述のとおり、本発明に係る香味吸引物品は、香味源を含み、香味源に由来する香味をユーザが味わう任意の吸引物品である。また、香味源としては、たばこ刻などのたばこ香味源の他に、メンソールなどの香料、植物エキスまたは精油などを使用することができる。
2. Other Examples of Flavor Suction Articles Although the cigarette, which is a representative example of the burning type smoking article, has been described above, as described above, the flavor suction article according to the present invention contains a flavor source and the user derives the flavor derived from the flavor source It is an optional suction article that tastes like. Moreover, as a flavor source, in addition to a tobacco flavor source such as cut tobacco, a flavor such as menthol, a plant extract or an essential oil can be used.
 より具体的には、香味吸引物品は、シガレット以外の公知の燃焼型喫煙物品、例えば、パイプ、キセル、葉巻、またはシガリロなどであってもよい。 More specifically, the flavor suction article may be a known burning-type smoking article other than a cigarette, such as a pipe, a xel, a cigar or a cigarillo.
 また、香味吸引物品は、上述のとおり、香味源を燃焼させることなく加熱することにより香味をユーザに提供する加熱型香味吸引物品であってもよい。 In addition, as described above, the flavor suction article may be a heating type flavor suction article that provides the user with a flavor by heating without burning the flavor source.
 加熱型香味吸引器としては、例えば、
 炭素熱源の燃焼熱でたばこ香味源を加熱して、香喫味成分を含むエアロゾルを発生させる炭素熱源型吸引器(例えば国際公開2006/073065号を参照);
 液状の香味源を含有するカプセルを含む吸引器本体と、吸引器本体を電気加熱するための加熱デバイスとを備え、電気加熱によりカプセル外皮膜を溶融して液状の香味源を放出させる電気加熱型吸引器(例えばWO2010/110226を参照);または
 たばこ香味源をエアロゾル源(プロピレングリコールまたはグリセリン)とともに収容した詰め替えタイプのたばこポッドと、たばこポッドを電気加熱により加熱してエアロゾルを発生させる吸引器本体とを備えた電気加熱型吸引器(例えばWO2013/025921を参照)
が挙げられる。
As a heating type flavor suction device, for example,
A carbon heat source type aspirator which heats a tobacco flavor source by the heat of combustion of a carbon heat source to generate an aerosol containing a flavor component (see, for example, WO 2006/073065);
An electric heating type comprising: a suction unit main body including a capsule containing a liquid flavor source; and a heating device for electrically heating the suction main body, and melting the capsule outer membrane by electric heating to release the liquid flavor source Aspirator (see, for example, WO 2010/110226); or a refill type tobacco pod containing a tobacco flavor source together with an aerosol source (propylene glycol or glycerin), and an aspirator body that generates an aerosol by heating the tobacco pod by electric heating Electrically heated suction device (see, for example, WO2013 / 025921)
Can be mentioned.
 さらに、香味吸引物品は、上述のとおり、香味源を加熱も燃焼もしないで、香味源の香味をユーザに提供する非加熱型香味吸引物品であってもよい。非加熱型香味吸引物品としては、たばこ香味源を収容した詰め替えタイプのカートリッジを吸引ホルダ内に備え、常温のたばこ香味源に由来するたばこ香味をユーザが吸引する非加熱型たばこ香味吸引器(例えばWO2010/110226を参照)が挙げられる。 Furthermore, the flavor suction article may be a non-heating flavor suction article that provides the user with the flavor of the flavor source without heating or burning the flavor source, as described above. As a non-heating type flavor suction article, a non-heating type tobacco flavor suction device (for example, a user holds a tobacco flavor derived from a normal temperature tobacco flavor source provided with a refill type cartridge containing a tobacco flavor source in a suction holder) See WO 2010/110226).
 3.効果
 以上説明したように、香味吸引物品は、下記(i)および(ii)の特性を有する活性炭を含む:
(i)BET比表面積が1050m/g以上であり;
(ii)G/D比が0.85以上である。このように、香味吸引物品は、優れた吸着性能と形状的な安定性とを同時に満足する活性炭を含む。活性炭の優れた吸着性能のおかげで、香味吸引物品は、ユーザに優れた香味を提供することができる。また、活性炭の形状的な安定性のおかげで、香味吸引物品は、その製造過程で活性炭の破砕を引き起こすことなく、ロット毎に均一に活性炭を配合し、これにより、物品毎の香味を均一に保つことができる。
3. As described above, the flavor suction article comprises activated carbon having the following characteristics (i) and (ii):
(I) BET specific surface area is 1050 m 2 / g or more;
(Ii) The G / D ratio is 0.85 or more. Thus, the flavored suction article comprises activated carbon that simultaneously satisfies excellent adsorption performance and shape stability. Thanks to the excellent adsorption performance of activated carbon, the flavor suction article can provide the user with excellent flavor. In addition, thanks to the shape stability of the activated carbon, the flavor suction article uniformly mixes the activated carbon in each lot without causing the activated carbon to be crushed in the production process, whereby the flavor of each article is uniformed. You can keep it.
 また、香味吸引物品は、好ましくは、上記(i)および(ii)の特性に加えて、下記(iii)の特性を有する活性炭を含む:
(iii)Boehm法により測定される、カルボキシル基、ラクトン型カルボキシル基、フェノール性水酸基およびカルボニル基からなる含酸素官能基が0.6mmol/g以上である。
Also, the flavor suction article preferably contains activated carbon having the following characteristics (iii) in addition to the characteristics (i) and (ii):
(Iii) The oxygen-containing functional group consisting of a carboxyl group, a lactone type carboxyl group, a phenolic hydroxyl group and a carbonyl group measured by the Boehm method is 0.6 mmol / g or more.
 かかる香味吸引物品は、含酸素官能基を有していない活性炭の吸着性能を維持しながら、含酸素官能基の存在により、塩基性成分を特異的に吸着除去することができ、これにより、ユーザに更に優れた香味を提供することができる。 Such a flavor suction article can specifically adsorb and remove the basic component by the presence of the oxygen-containing functional group while maintaining the adsorption performance of the activated carbon not having the oxygen-containing functional group, whereby the user can Can provide an even better flavor.
 なお、従来の活性炭では、後述の実施例2に示されるとおり、活性炭の賦活度を高めてBET比表面積を増大させるとG/D比が低下する(図7に示される低賦活炭、現行炭および高賦活炭を参照)。このように、従来の活性炭は、上記(i)および(ii)の特性を両立させることはできなかった。 In the conventional activated carbon, as shown in Example 2 described later, the G / D ratio decreases when the BET specific surface area is increased by increasing the activation of the activated carbon (low activated carbon shown in FIG. 7, current charcoal shown And high activated charcoal)). Thus, the conventional activated carbon can not make the above-mentioned characteristics (i) and (ii) compatible.
 4.好ましい実施形態
 以下に、本発明の好ましい実施形態をまとめて示す。 
 上述のとおり、一実施形態によると、香味吸引物品は、BET比表面積が1050m/g以上であり、かつラマンスペクトルにおけるDバンドのピーク強度に対するGバンドのピーク強度の比(すなわち、G/D比)が0.85以上である活性炭を含む。
4. Preferred Embodiments In the following, preferred embodiments of the present invention are summarized.
As described above, according to one embodiment, the flavor suction article has a BET specific surface area of 1050 m 2 / g or more and a ratio of peak intensity of G band to peak intensity of D band in Raman spectrum (ie, G / D Containing activated carbon with a ratio of 0.85 or more.
 好ましい実施形態によると、上記実施形態において、前記香味吸引物品は、香味源、好ましくはたばこ香味源を更に含む。
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記BET比表面積が、1050~1600m/gであり、好ましくは1150~1600m/gであり、より好ましくは1150~1300m/gである。
According to a preferred embodiment, in the above embodiment, the flavor suction article further comprises a flavor source, preferably a tobacco flavor source.
According to a preferred embodiment, in any one of the above embodiments, the BET specific surface area is 1050 ~ 1600m 2 / g, preferably 1150 ~ 1600m 2 / g, more preferably 1150 ~ 1300 m 2 / g.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記G/D比が、0.85~1.1であり、好ましくは0.9~1.1である。
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、200μm~1000μmの平均粒径、好ましくは300μm~700μmの平均粒径、より好ましくは400μm~600μmの平均粒径を有する。
According to a preferred embodiment, in any one of the above embodiments, the G / D ratio is 0.85 to 1.1, preferably 0.9 to 1.1.
According to a preferred embodiment, in any one of the above embodiments, the activated carbon has an average particle size of 200 μm to 1000 μm, preferably an average particle size of 300 μm to 700 μm, more preferably an average particle size of 400 μm to 600 μm. .
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、0.5cm3/g以上の細孔容積、好ましくは0.5~0.8cm3/gの細孔容積、より好ましくは0.52~0.74cm3/gの細孔容積を有する。
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、0.4cm3/g以上のマイクロ孔容積、好ましくは0.4~0.7cm3/gのマイクロ孔容積、より好ましくは0.4~0.6cm3/gのマイクロ孔容積を有する。
According to a preferred embodiment, in any one of the above embodiments, the activated carbon has a pore volume of 0.5 cm 3 / g or more, preferably 0.5 to 0.8 cm 3 / g, Preferably it has a pore volume of 0.52 to 0.74 cm 3 / g.
According to a preferred embodiment, in any one of the above embodiments, the activated carbon, 0.4 cm 3 / g or more micropore volume, micropore volume of preferably 0.4 ~ 0.7cm 3 / g, more Preferably, it has a micropore volume of 0.4 to 0.6 cm 3 / g.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、Boehm法により測定される、カルボキシル基、ラクトン型カルボキシル基、フェノール性水酸基およびカルボニル基からなる含酸素官能基の量が、0.6mmol/g以上であり、好ましくは0.6~2.0mmol/gであり、より好ましくは1.0~2.0mmol/gである。 According to a preferred embodiment, in any one of the above embodiments, the activated carbon has an amount of an oxygen-containing functional group consisting of a carboxyl group, a lactone type carboxyl group, a phenolic hydroxyl group and a carbonyl group as measured by Boehm method. And 0.6 mmol / g or more, preferably 0.6 to 2.0 mmol / g, and more preferably 1.0 to 2.0 mmol / g.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、Boehm法により測定される、ラクトン型カルボキシル基およびフェノール性水酸基の合計量が、0.3mmol/g以上であり、好ましくは0.3~2.0mmol/gであり、より好ましくは0.4~2.0mmol/gである。 According to a preferred embodiment, in any one of the above embodiments, the total amount of the lactone type carboxyl group and the phenolic hydroxyl group measured by the Boehm method is 0.3 mmol / g or more, preferably, the activated carbon is preferable. Is 0.3 to 2.0 mmol / g, more preferably 0.4 to 2.0 mmol / g.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、Boehm法により測定されるカルボキシル基の量が、0.12mmol/g以下であり、好ましくは0.01~0.12mmol/gである。 According to a preferred embodiment, in any one of the above embodiments, the amount of the carboxyl group measured by the Boehm method is 0.12 mmol / g or less, preferably 0.01 to 0.12 mmol, in the activated carbon. It is / g.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、植物性材料に由来する植物系活性炭である。
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、ヤシ殻に由来するヤシ殻系活性炭である。
According to a preferred embodiment, in any one of the above embodiments, the activated carbon is a plant-based activated carbon derived from a vegetable material.
According to a preferred embodiment, in any one of the above embodiments, the activated carbon is a coconut-shell-based activated carbon derived from coconut shells.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、
 有機材料を炭化および賦活化して、原料活性炭を得ることと、
 前記原料活性炭を気相酸化法により酸化することと
を含む方法により製造される。この実施形態において、前記有機材料は、好ましくは植物性材料であり、より好ましくは、ヤシ殻、クルミ殻などの果実殻、木材、木炭、または竹であり、更に好ましくはヤシ殻である。
According to a preferred embodiment, in any one of the above embodiments, the activated carbon is
Carbonizing and activating an organic material to obtain a raw material activated carbon;
Oxidizing the raw material activated carbon by a gas phase oxidation method. In this embodiment, the organic material is preferably a vegetable material, more preferably a fruit shell such as coconut shell, walnut shell, etc., wood, charcoal or bamboo, and even more preferably a coconut shell.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、原料活性炭を気相酸化法により酸化することを含む方法により製造される。この実施形態において、前記原料活性炭は、好ましくは植物性材料、より好ましくは、ヤシ殻、クルミ殻などの果実殻、木材、木炭、または竹、更に好ましくはヤシ殻の炭化および賦活化により得られる。 According to a preferred embodiment, in any one of the above embodiments, the activated carbon is produced by a method including oxidizing raw material activated carbon by a gas phase oxidation method. In this embodiment, the raw material activated carbon is preferably obtained by carbonizing and activating a vegetable material, more preferably a fruit shell such as coconut shell, walnut shell, wood, charcoal, or bamboo, more preferably coconut shell. .
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記原料活性炭は、400~1400m/gのBET比表面積が、好ましくは1000~1400m/gのBET比表面積を有する。
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記酸化は、前記原料活性炭を、空気中または水蒸気中で、500℃以下、好ましくは300~500℃の温度で、1~2時間にわたって処理することにより行われる。
According to a preferred embodiment, in any one of the above embodiments, the raw activated carbon has a BET specific surface area of 400 to 1400 m 2 / g, preferably a BET specific surface area of 1000 to 1400 m 2 / g.
According to a preferred embodiment, in any one of the above embodiments, the oxidation is carried out at a temperature of 500 ° C. or less, preferably 300 to 500 ° C., for 1 to 2 hours in the air or in water vapor. It is done by processing over.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、
 有機材料を炭化および賦活化して、1000~1400m/gのBET比表面積を有する原料活性炭を得ることと、
 前記原料活性炭を、空気中または水蒸気中で、500℃以下、好ましくは300~500℃の温度で、1~2時間にわたって酸化処理することと
を含む方法により製造される。この実施形態において、前記有機材料は、好ましくは植物性材料であり、より好ましくは、ヤシ殻、クルミ殻などの果実殻、木材、木炭、または竹であり、更に好ましくはヤシ殻である。
According to a preferred embodiment, in any one of the above embodiments, the activated carbon is
Carbonizing and activating the organic material to obtain a raw material activated carbon having a BET specific surface area of 1000 to 1400 m 2 / g;
Oxidizing the raw material activated carbon in air or steam at a temperature of 500 ° C. or less, preferably 300 to 500 ° C., for 1 to 2 hours. In this embodiment, the organic material is preferably a vegetable material, more preferably a fruit shell such as coconut shell, walnut shell, etc., wood, charcoal or bamboo, and even more preferably a coconut shell.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記活性炭は、1000~1400m/gのBET比表面積を有する原料活性炭を、空気中または水蒸気中で、500℃以下、好ましくは300~500℃の温度で、1~2時間にわたって酸化処理することを含む方法により製造される。この実施形態において、前記原料活性炭は、好ましくは植物性材料、より好ましくは、ヤシ殻、クルミ殻などの果実殻、木材、木炭、または竹、更に好ましくはヤシ殻の炭化および賦活化により得られる。 According to a preferred embodiment, in any one of the above embodiments, the activated carbon is a raw material activated carbon having a BET specific surface area of 1000 to 1400 m 2 / g in air or water vapor at 500 ° C. or less, preferably 300 ° C. It is manufactured by a method including oxidation treatment at a temperature of ̃500 ° C. for 1 to 2 hours. In this embodiment, the raw material activated carbon is preferably obtained by carbonizing and activating a vegetable material, more preferably a fruit shell such as coconut shell, walnut shell, wood, charcoal, or bamboo, more preferably coconut shell. .
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記香味吸引物品はフィルタを含み、前記活性炭は前記フィルタに含まれる。
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記香味吸引物品は、香味源、好ましくはたばこ香味源と、前記香味源の下流に位置するフィルタとを含み、前記活性炭は前記フィルタに組み込まれる。
According to a preferred embodiment, in any one of the above embodiments, the flavor suction article comprises a filter and the activated carbon is included in the filter.
According to a preferred embodiment, in any one of the above embodiments, the flavor suction article comprises a flavor source, preferably a tobacco flavor source, and a filter located downstream of the flavor source, the activated carbon is the filter Incorporated into
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記香味吸引物品はn個(nは2以上の整数)のフィルタプラグが(n-1)個の中空部を介して配置されたマルチセグメントフィルタを含み、前記活性炭は前記中空部の少なくとも1つに含まれる。この実施形態において、nは、例えば2~4、好ましくは2~3、より好ましくは2である。 According to a preferred embodiment, in any one of the above embodiments, the flavor suction article has n (n is an integer of 2 or more) filter plugs disposed via (n-1) hollow portions. The multi-segment filter is included, and the activated carbon is included in at least one of the hollow portions. In this embodiment, n is, for example, 2 to 4, preferably 2 to 3, more preferably 2.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記香味吸引物品は、n個(nは2以上の整数)のフィルタプラグが連結するように配置されたマルチセグメントフィルタを含み、前記活性炭は前記フィルタプラグの少なくとも1つの中に埋め込まれる。この実施形態において、nは、例えば2~4、好ましくは2~3、より好ましくは2である。 According to a preferred embodiment, in any one of the above embodiments, the flavor suction article includes a multi-segment filter in which n (n is an integer of 2 or more) filter plugs are connected, Activated carbon is embedded in at least one of the filter plugs. In this embodiment, n is, for example, 2 to 4, preferably 2 to 3, more preferably 2.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記香味吸引物品は、燃焼型喫煙物品、好ましくはシガレットである。この実施形態において、前記シガレットは、好ましくは、たばこロッドと、フィルタと、前記たばこロッドと前記フィルタとを接続するように前記たばこロッドと前記フィルタ上に巻かれたチップペーパーとを含む。 According to a preferred embodiment, in any one of the above embodiments, the flavor suction article is a burning smoking article, preferably a cigarette. In this embodiment, the cigarette preferably comprises a tobacco rod, a filter, and tip paper wound on the tobacco rod and the filter so as to connect the tobacco rod and the filter.
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記香味吸引物品は、香味源を燃焼させることなく加熱することにより香味をユーザに提供する加熱型香味吸引物品である。
 好ましい実施形態によると、上記実施形態の何れか1つにおいて、前記香味吸引物品は、香味源を加熱も燃焼もしないで、香味源の香味をユーザに提供する非加熱型香味吸引物品である。
According to a preferred embodiment, in any one of the above-mentioned embodiments, the flavor suction article is a heating type flavor suction article which provides flavor to a user by heating without burning a flavor source.
According to a preferred embodiment, in any one of the above embodiments, the flavor suction article is a non-heating type flavor suction article that provides the user with the flavor of the flavor source without heating or burning the flavor source.
 [実施例1]細孔構造の評価
 1-1.サンプルの調製
 (炭化炭)
 ヤシ殻活性炭を破砕し、30~60メッシュの篩で篩別し、炭化炭を準備した。
Example 1 Evaluation of Pore Structure 1-1. Sample preparation (carbonized charcoal)
The coconut shell activated carbon was crushed and sieved with a 30 to 60 mesh sieve to prepare carbon carbide.
 (低賦活炭)
 低賦活炭として、平均粒径0.34mmのヤシ殻活性炭(フタムラ化学株式会社製、品名:CW360BL)を準備した。
(Low activated charcoal)
As low activated carbon, coconut shell activated carbon (Futamura Chemical Co., Ltd., product name: CW360BL) having an average particle diameter of 0.34 mm was prepared.
 (弱酸化炭)
 低賦活炭に対し、以下のように低い酸化度で気相酸化処理を施して、低賦活炭の弱酸化炭(以下、「弱酸化炭」ともいう)を調製した。すなわち、ロータリーキルンに低賦活炭200gを投入し300℃まで昇温し、同温度を維持した。相対湿度をおよそ90%に加湿した30℃の空気を加圧状態としながら24L/分の流量によりロータリーキルン内に導入し、300℃を維持しながら2時間加熱した。その後、処理後の活性炭を取り出して冷却して、弱酸化炭を調製した。
(Weakly oxidized carbon)
The low activated carbon was subjected to gas phase oxidation treatment at a low oxidation degree as follows to prepare weakly oxidized carbon of the low activated carbon (hereinafter also referred to as "weakly oxidized carbon"). That is, 200 g of low activated carbon was put into a rotary kiln, and the temperature was raised to 300 ° C., and the same temperature was maintained. Air at 30 ° C. humidified to approximately 90% relative humidity was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 2 hours while maintaining 300 ° C. Thereafter, the treated activated carbon was taken out and cooled to prepare weakly oxidized carbon.
 (酸化炭)
 低賦活炭に対し、以下のように中程度の酸化度で気相酸化処理を施して、低賦活炭の酸化炭(以下、「酸化炭」ともいう)を調製した。すなわち、ロータリーキルンに低賦活炭200gを投入し500℃まで昇温し、同温度を維持した。相対湿度をおよそ90%に加湿した30℃の空気を加圧状態としながら24L/分の流量によりロータリーキルン内に導入し、500℃を維持しながら1時間加熱した。その後、処理後の活性炭を取り出して冷却して、酸化炭を調製した。
(Oxidized carbon)
The low activated carbon was subjected to gas phase oxidation treatment with moderate oxidation degree as follows to prepare oxidized carbon of the low activated carbon (hereinafter also referred to as "oxidized carbon"). That is, 200 g of low activated carbon was put into a rotary kiln, and the temperature was raised to 500 ° C., and the same temperature was maintained. Air at 30 ° C. humidified to approximately 90% relative humidity was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 1 hour while maintaining 500 ° C. Thereafter, the treated activated carbon was taken out and cooled to prepare oxidized carbon.
 (強酸化炭)
 低賦活炭に対し、以下のように高い酸化度で気相酸化処理を施して、低賦活炭の強酸化炭(以下、「強酸化炭」ともいう)を調製した。すなわち、ロータリーキルンに低賦活炭200gを投入し500℃まで昇温し、同温度を維持した。相対湿度をおよそ90%に加湿した30℃の空気を加圧状態としながら24L/分の流量によりロータリーキルン内に導入し、500℃を維持しながら2時間加熱した。その後、処理後の活性炭を取り出して冷却して、強酸化炭を調製した。
(Strongly oxidized carbon)
The low activated carbon was subjected to gas phase oxidation treatment at a high degree of oxidation as follows to prepare strong oxidized carbon of the low activated carbon (hereinafter also referred to as "strong oxidized carbon"). That is, 200 g of low activated carbon was put into a rotary kiln, and the temperature was raised to 500 ° C., and the same temperature was maintained. Air at 30 ° C. humidified to approximately 90% relative humidity was introduced into the rotary kiln at a flow rate of 24 L / min under pressure and heated for 2 hours while maintaining 500 ° C. Thereafter, the treated activated carbon was taken out and cooled to prepare strongly oxidized carbon.
 (現行炭)
 現行炭として、平均粒径0.34mmのヤシ殻活性炭(フタムラ化学株式会社製,品名:CW360Bを準備した。現行炭は、現在、燃焼型喫煙物品の吸着剤として使用されている活性炭の代表例である。
(Current coal)
A coconut shell activated carbon with an average particle diameter of 0.34 mm (Futamura Chemical Co., Ltd., product name: CW360B) was prepared as the present charcoal, and the present charcoal is a representative example of activated carbon currently used as an adsorbent for combustion type smoking articles. It is.
 (現行炭の酸化炭)
 現行炭に対し、上述の酸化炭の調製と同様の手法で気相酸化処理を施して、現行炭の酸化炭を調製した。
(Current carbon oxide charcoal)
The present coal was subjected to gas phase oxidation treatment in the same manner as the above-described preparation of oxidized carbon to prepare oxidized carbon of the present coal.
 (高賦活炭)
 現行炭に対し、以下のように高い賦活度で賦活化処理を施して、高賦活炭を調製した。すなわち、ロータリーキルンに現行炭200gを投入し900℃まで昇温し、同温度を維持した。水を0.3mL/分の流量によりロータリーキルン内に導入し、900℃を維持しながら20時間加熱した。その後、処理後の活性炭を取り出して冷却して、高賦活炭を調製した。
(High activated charcoal)
The current charcoal was activated with a high degree of activation as follows to prepare highly activated charcoal. That is, 200 g of the present coal was put into a rotary kiln, and the temperature was raised to 900 ° C., and the same temperature was maintained. Water was introduced into the rotary kiln at a flow rate of 0.3 mL / min and heated for 20 hours maintaining 900 ° C. Thereafter, the treated activated carbon was taken out and cooled to prepare highly activated carbon.
 1-2.方法
 上記のように調製したサンプルの細孔構造を、窒素ガス吸着測定を用いて評価した。具体的には、測定装置としてAutoSorb-1(Quantachrome社製)を用いて、BET比表面積、細孔容積、マイクロ孔容積、および細孔分布を評価した。
1-2. Methods The pore structure of the samples prepared above was evaluated using nitrogen gas adsorption measurements. Specifically, BET specific surface area, pore volume, micropore volume, and pore distribution were evaluated using AutoSorb-1 (manufactured by Quantachrome) as a measurement device.
 実験の詳細は以下の通りである。 
 サンプルの前処理として、300℃で3時間、10-1Pa以下で真空脱気を行った。
 BETプロットの範囲決定には、Rouqueral et al.の提案した方法を用いた。
The details of the experiment are as follows.
As a pretreatment of the sample, vacuum degassing was performed at 300 ° C. for 3 hours under 10 −1 Pa or less.
For the determination of the range of the BET plot, Rouqueral et al. The method proposed by was used.
 細孔容積は、温度77Kで測定した窒素吸着等温線において、相対圧(P/P)が0.95のときの窒素吸着量から算出した。細孔容積は、約40nm以下の細孔直径を有する細孔の容積の合計値を表す。 The pore volume was calculated from the nitrogen adsorption amount at a relative pressure (P / P 0 ) of 0.95 in the nitrogen adsorption isotherm measured at a temperature of 77K. The pore volume represents the sum of the volume of pores having a pore diameter of about 40 nm or less.
 細孔分布は、急冷固体密度汎関数理論(QSDFT)に基づいて解析した。「マイクロ孔容積」は、窒素吸着等温線から、QSDFT法で細孔分布解析を行い、算出した。 The pore distribution was analyzed based on the quench solid density functional theory (QSDFT). The “micro pore volume” was calculated from the nitrogen adsorption isotherm by performing pore distribution analysis by the QSDFT method.
 1-3.結果
 結果を図3および図4並びに表1に示す。 
 図3は、炭化炭、低賦活炭、現行炭、および高賦活炭の細孔分布曲線を示す。図4は、弱酸化炭、酸化炭、強酸化炭、および現行炭の細孔分布曲線を示す。表1は、各サンプルのBET比表面積、細孔容積およびマイクロ孔容積を示す。
1-3. Results The results are shown in FIGS. 3 and 4 and Table 1.
FIG. 3 shows pore distribution curves of carbon carbide, low activated carbon, current coal and high activated carbon. FIG. 4 shows pore distribution curves of weakly oxidized carbon, oxidized carbon, strongly oxidized carbon, and current carbon. Table 1 shows the BET specific surface area, pore volume and micropore volume of each sample.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図3および図4の細孔分布曲線から以下のことが分かる:
 弱酸化炭、酸化炭、および強酸化炭は、低賦活炭に気相酸化処理を施すことにより得られた酸化炭であるが、これらの酸化炭は、低賦活炭と同様の細孔分布曲線を示しており、気相酸化処理により低賦活炭の細孔が閉塞されることなく維持されていた。
The following can be seen from the pore distribution curves of FIG. 3 and FIG.
Weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon are oxidized carbon obtained by subjecting low activated carbon to gas phase oxidation treatment, but these oxidized carbons have the same pore distribution curve as low activated carbon. The pores of the low activated carbon were maintained without blockage by the gas phase oxidation treatment.
 また、表1の詳細な数値データから以下のことが分かる:
 弱酸化炭、酸化炭、および強酸化炭のBET比表面積は、低賦活炭と比較して増大していた。また、弱酸化炭、酸化炭、および強酸化炭の細孔容積は、低賦活炭と比較して増大していた。弱酸化炭、酸化炭、および強酸化炭のマイクロ孔容積も、低賦活炭と比較して増大していた。
Also, the following can be seen from the detailed numerical data in Table 1:
The BET specific surface areas of weakly oxidized carbon, oxidized carbon and strongly oxidized carbon were increased as compared to low activated carbon. In addition, the pore volumes of weakly oxidized carbon, oxidized carbon and strongly oxidized carbon were increased as compared with low activated carbon. The micropore volumes of weakly oxidized carbon, oxidized carbon and strongly oxidized carbon were also increased compared to low activated carbon.
 同様に、現行炭の酸化炭は、現行炭に気相酸化処理を施すことにより得られた酸化炭であるが、この酸化炭のBET比表面積は、現行炭と比較して増大していた。また、この酸化炭の細孔容積およびマイクロ孔容積は、いずれも、現行炭と比較して増大していた。 Similarly, although the current oxidized carbon is the oxidized carbon obtained by subjecting the existing carbon to gas phase oxidation treatment, the BET specific surface area of this oxidized carbon is increased as compared to the existing carbon. In addition, the pore volume and micropore volume of this oxidized carbon were both increased as compared to the current coal.
 活性炭に液相酸化処理を行うと、原料活性炭のBET比表面積が減少して吸着能が低下することが報告されているが(日本国特開2010-193718号公報)、気相酸化処理を行った場合、原料活性炭のBET比表面積、細孔容積およびマイクロ孔容積は、むしろ増大した。 It has been reported that when the activated carbon is subjected to the liquid phase oxidation treatment, the BET specific surface area of the raw material activated carbon decreases and the adsorption ability decreases (Japanese Patent Laid-Open No. 2010-193718), but the gas phase oxidation treatment is performed. In that case, the BET specific surface area, the pore volume and the micropore volume of the raw activated carbon increased rather.
 [実施例2]炭素表面構造の評価
 2-1.方法
 実施例1で調製したサンプルについて、以下の方法によりラマンスペクトルを測定した。
Example 2 Evaluation of Carbon Surface Structure 2-1. Method The Raman spectrum of the sample prepared in Example 1 was measured by the following method.
 測定装置としては、顕微レーザーラマンNicolet Almega XR(サーモフィッシャーサイエンティフィック社製)を使用した。測定条件は、以下のとおりとした。 
 レーザー:532nm、5mWの出力
 露光時間:30秒、露光回数:2回
 グレーティング:672ライン/mm
 分光器アパーチャ:100μm径のピンホール
 ピーク分離は、フォークト関数(Voigt)を使用して行った。
As a measuring apparatus, microscopic laser Raman Nicolet Almega XR (manufactured by Thermo Fisher Scientific Co., Ltd.) was used. The measurement conditions were as follows.
Laser: 532 nm, 5 mW output Exposure time: 30 seconds, number of exposures: 2 times Grating: 672 lines / mm
Spectrometer aperture: Pinhole peak separation of 100 μm diameter was performed using Voigt function (Voigt).
 ラマンスペクトルにおけるDバンドのピーク強度およびGバンドのピーク強度から、Dバンドのピーク強度に対するGバンドのピーク強度の比(G/D比)を算出した。 The ratio (G / D ratio) of the peak intensity of the G band to the peak intensity of the D band was calculated from the peak intensity of the D band and the peak intensity of the G band in the Raman spectrum.
 2-2.結果
 ラマンスペクトルの測定結果を図5乃至図7および表2に示す。 
 図5は、炭化炭、低賦活炭、現行炭、および高賦活炭のラマンスペクトルの測定結果を示すグラフである。図6は、低賦活炭、現行炭、低賦活炭の酸化炭および現行炭の酸化炭のラマンスペクトルの測定結果を示すグラフである。図7は、ラマンスペクトルの測定結果から算出したG/D比を示すグラフである。表2は、G/D比の数値データを示す。
2-2. Results The measurement results of the Raman spectrum are shown in FIGS. 5 to 7 and Table 2.
FIG. 5 is a graph showing measurement results of Raman spectra of carbon carbide, low activated carbon, current carbon, and high activated carbon. FIG. 6 is a graph showing measurement results of Raman spectra of low activated carbon, current carbon, oxidized carbon of low activated carbon, and oxidized carbon of current carbon. FIG. 7 is a graph showing the G / D ratio calculated from the measurement result of the Raman spectrum. Table 2 shows numerical data of G / D ratio.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図5および図7に示すように、賦活度が進むにつれて(すなわち、炭化炭、低賦活炭、現行炭、高賦活炭の順に)、Gバンドのピークに対してDバンドのピークは増加し、G/D比が低下した。これは、賦活度が進むにつれて、炭素構造の欠陥が増大していることを示す。 As shown in FIG. 5 and FIG. 7, as the activation progresses (ie, in the order of carbon carbide, low activated carbon, current activated carbon, high activated carbon), the peak of D band increases relative to the peak of G band, G / D ratio decreased. This indicates that as the activation progresses, defects in the carbon structure increase.
 図6および図7に示すように、現行炭の酸化炭は、現行炭と比較して、Dバンドのピークが減少し、これに伴ってG/D比の値が増加していた。また、弱酸化炭、酸化炭および強酸化炭(これらは、低賦活炭の酸化炭である)のすべてにおいて、低賦活炭のDバンドのピーク強度が維持され、低賦活炭のG/D比の値がほぼ維持されていた。これらの結果は、賦活化に伴って生じる炭素構造の欠陥が大きい場合、この欠陥が気相酸化処理によって除去されることを示唆する。 As shown in FIG. 6 and FIG. 7, compared with the current charcoal, the oxidized charcoal of current charcoal decreased the peak of D band, and the value of the G / D ratio increased accordingly. In addition, in all of weakly oxidized carbon, oxidized carbon and strongly oxidized carbon (these are oxidized carbon of low activated carbon), the peak strength of D band of low activated carbon is maintained, and G / D ratio of low activated carbon The value of was almost maintained. These results suggest that if the defects of the carbon structure resulting from activation are large, the defects are removed by the gas phase oxidation process.
 実施例1および2の結果から、以下のことが考察される。賦活度の高い高賦活炭は、吸着性能が優れているが、炭素構造の欠陥が大きく、形状的に不安定である。これに対し、高賦活炭と比べて賦活度の低い低賦活炭や現行炭に気相酸化処理を施すと、BET比表面積および細孔容積がやや増大するとともに、炭素構造の欠陥が除去され、結果として、優れた吸着性能と形状的な安定性とを同時に満足する活性炭が得られる。 From the results of Examples 1 and 2, the following is considered. Highly activated carbon with a high degree of activation has excellent adsorption performance but has large defects in the carbon structure and is unstable in shape. On the other hand, when the low activated carbon with lower activation than the high activated carbon or the current coal is subjected to gas phase oxidation treatment, the BET specific surface area and the pore volume increase slightly, and defects of the carbon structure are removed, As a result, activated carbon is obtained which simultaneously satisfies the excellent adsorption performance and the shape stability.
 [実施例3]気相酸化処理の加熱が活性炭に及ぼす影響
 3-1.方法
 実施例1で調製した現行炭について、気相酸化処理の加熱が活性炭に及ぼす影響を調べた。具体的には、6mgのサンプルをプラチナパンに入れ、200mL/分の空気流通条件下で熱重量・示差熱分析(Thermogravimetry-Differential Thermal Analysis:TG-DTA)を行った。昇温は、10℃/分の速度で100℃まで昇温し、その温度を30分以上の期間にわたって維持し、その後さらに1℃/分の速度で650℃まで昇温することにより行った。装置は、TG/DTA6200(エスアイアイ ナノテクノロジー株式会社製)を用いた。
[Example 3] Influence of heating by vapor phase oxidation treatment on activated carbon 3-1. Method With respect to the current coal prepared in Example 1, the influence of heating by gas phase oxidation treatment on activated carbon was examined. Specifically, a 6 mg sample was placed in a platinum pan, and thermogravimetric-differential thermal analysis (TG-DTA) was performed under an air flow of 200 mL / min. The temperature was raised by raising the temperature to 100 ° C. at a rate of 10 ° C./min, maintaining the temperature for 30 minutes or more, and then raising the temperature to 650 ° C. at a rate of 1 ° C./min. As an apparatus, TG / DTA 6200 (manufactured by SII Nano Technology Co., Ltd.) was used.
 3-2.結果
 結果を図8に示す。図8は、熱重量・示差熱分析の結果を示すグラフである。図8は、昇温に伴って起こる重量変化(重量%)を示す。
3-2. Results The results are shown in FIG. FIG. 8 is a graph showing the results of thermogravimetric / differential thermal analysis. FIG. 8 shows the weight change (% by weight) that occurs as the temperature rises.
 図8に示すように、現行炭を、500℃を超える温度で加熱すると、急激な重量減少が生じ、賦活が進行した。このことは、既に賦活化された活性炭に、追加の加熱処理を行うと、さらに賦活が進行することを示す。したがって、この結果は、賦活化された活性炭に気相酸化処理を施す場合は、500℃以下の加熱温度で実施することが好ましいことを示す。 As shown in FIG. 8, when the current coal was heated at a temperature above 500 ° C., a rapid weight loss occurred, and the activation progressed. This indicates that the activation proceeds further if the already activated activated carbon is subjected to additional heat treatment. Therefore, this result shows that it is preferable to carry out at a heating temperature of 500 ° C. or less when subjecting activated activated carbon to a gas phase oxidation treatment.
 [実施例4]含酸素官能基量の評価
 4-1.方法
 実施例1で調製した、現行炭、弱酸化炭、酸化炭、および強酸化炭について、含酸素官能基量の測定を行った。
[Example 4] Evaluation of oxygenated functional group content 4-1. Method The amount of oxygen-containing functional groups was measured for the current carbon, weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon prepared in Example 1.
 含酸素官能基は、H.P.Boehmが提案した定量法(Boehm法)に従って定量した。すなわち、含酸素官能基は、カルボキシル基(Group I)、ラクトン型カルボキシル基(Group II)、フェノール性水酸基(Group III)、カルボニル基(Group IV)に分けて定量した。 The oxygen-containing functional group is preferably H. P. It quantified according to the quantitative method (Boehm method) which Boehm proposed. That is, the oxygen-containing functional group was divided into a carboxyl group (Group I), a lactone type carboxyl group (Group II), a phenolic hydroxyl group (Group III), and a carbonyl group (Group IV) and quantified.
 Boehm法とは、過剰量のReaction base(炭酸水素ナトリウム、炭酸ナトリウム、水酸化ナトリウム、またはナトリウムエトキシド)と、含酸素官能基とを反応させ、反応残りの塩基に過剰量の酸(塩酸)を加え、さらに塩基(水酸化ナトリウム)で中和滴定する方法である。 In the Boehm method, an excess of Reaction base (sodium hydrogen carbonate, sodium carbonate, sodium hydroxide, or sodium ethoxide) is reacted with an oxygen-containing functional group, and an excess of acid (hydrochloric acid) is added to the base of the reaction. And neutralization titration with a base (sodium hydroxide).
 なお、炭酸水素ナトリウムの中和滴定からは、Group Iの含酸素官能基量が測定される。炭酸ナトリウムの中和滴定からは、GroupIとGroup IIとの合計量が測定される。水酸化ナトリウムの中和滴定からは、Group IとIIとIIIとの合計量が測定される。ナトリウムエトキシドの中和滴定からは、Group IとIIとIIIとIVとの合計量が測定される。 In addition, the amount of oxygen-containing functional groups of Group I is measured from the neutralization titration of sodium hydrogencarbonate. From the neutralization titration of sodium carbonate, the total amount of Group I and Group II is measured. From the neutralization titration of sodium hydroxide, the total amount of Group I, II and III is measured. From the neutralization titration of sodium ethoxide, the total amount of Group I, II, III and IV is measured.
 以下に具体的な測定方法について説明する。 
 まず、1.5gのサンプルを50mLの0.05M Reaction baseに入れて、サンプルの形状を壊さない条件で24時間振盪した。その後、サンプルを濾紙で濾過し、濾液から10mLを分液した。
The specific measurement method will be described below.
First, 1.5 g of a sample was placed in 50 mL of 0.05 M Reaction base and shaken for 24 hours under the condition that the shape of the sample was not broken. After that, the sample was filtered through filter paper, and 10 mL was separated from the filtrate.
 10mLの濾液(分液)に対し、Reaction baseとして炭酸ナトリウムを使用した場合には、30mLの0.05M HCl水溶液を加え、反応混合液を調製した。10mLの濾液(分液)に対し、Reaction baseとしてそれ以外の塩基(炭酸水素ナトリウム、水酸化ナトリウム、またはナトリウムエトキシド)を使用した場合には、20mLの0.05M HCl水溶液を加え、反応混合液を調製した。 When sodium carbonate was used as a Reaction base to 10 mL of the filtrate (liquid separation), 30 mL of 0.05 M aqueous HCl solution was added to prepare a reaction mixture. When another base (sodium hydrogen carbonate, sodium hydroxide or sodium ethoxide) is used as a Reaction base to 10 mL of the filtrate (liquid separation), add 20 mL of 0.05 M HCl aqueous solution, and mix the reaction The solution was prepared.
 その後、反応混合液の入っている容器をPTFE/シリコンセプタムで蓋をした。N inletの針を液面下まで到達するように設け、N Outletの針を水面にかからないように設け、1mL/min以下の速度で2時間窒素を流通させた。これにより、反応混合液に溶存しているCOを除去した。 The vessel containing the reaction mixture was then capped with a PTFE / silicon septum. Provided N 2 Inlet, needle so as to reach below the liquid level, provided so as not to needle N 2 Outlet on the water surface, it was passed through a nitrogen for 2 hours at a rate 1 mL / min. This removed the CO 2 dissolved in the reaction mixture.
 その後、予め窒素置換を行い、パラフィルムで蓋をしておいたビーカーに、反応混合液を移し、そこへ指示薬フェノールフタレイン/エタノール溶液(10g/L)を1滴滴下した。そして、ビーカーに、パラフィルムの蓋をしたままビュレットを差し込み、スターラーで撹拌しながら、0.05M NaOH水溶液で滴定した。 Thereafter, the reaction mixture was transferred to a beaker covered with parafilm in advance with nitrogen substitution, and 1 drop of indicator phenolphthalein / ethanol solution (10 g / L) was dropped there. Then, the burette was inserted into the beaker with the lid of the parafilm, and while stirring with a stirrer, the solution was titrated with a 0.05 M aqueous solution of NaOH.
 各Reaction baseに対応する含酸素官能基のmol数は以下のように算出することができる。 
Mol数=[n(B)/n(HCl)×[B]×V(B)-{[HCl]×V(HCl)-[NaOH]×V(NaOH)}]×V(a)/V(B)
 ここで、aは、測定に用いたReaction baseを示す。aは、上記実験では、50mLの0.05M Reaction baseを指す。Bは、分液したReaction baseを示す。Bは、上記実験では、10mLの濾液を指す。 
 [ ]は、滴定に用いたモル濃度を示す。Vは、滴定量(体積)を示す。n(B)/n(HCl)は、Reaction baseと塩酸の価数比を示す。
The number of moles of the oxygen-containing functional group corresponding to each Reaction base can be calculated as follows.
Mol number = [n (B) / n (HCl) x [B] x V (B)-{[HCl] x V (HCl)-[NaOH] x V (NaOH)}] x V (a) / V (B)
Here, a indicates the Reaction base used for the measurement. a refers to 50 mL of 0.05 M Reaction base in the above experiment. B shows the separated Reaction base. B refers to 10 mL of filtrate in the above experiment.
[] Indicates the molar concentration used for titration. V shows a titration volume (volume). n (B) / n (HCl) shows the valence ratio of Reaction base to hydrochloric acid.
 したがって、上述のmol数の値をサンプル重量で割れば、サンプル重量あたりの含酸素官能基量が求められ、上述のmol数の値を表面積で割れば、表面積あたりの含酸素官能基量が求められる。なお、測定毎にBlankの測定も行い、既知のHClとNaOHのモル濃度から、その他のReaction baseのモル濃度を求めた。 Therefore, if the value of the above mol number is divided by the sample weight, the amount of oxygen-containing functional group per sample weight can be determined, and if the value of the above mol number is divided by surface area, the amount of oxygen-containing functional group per surface area can be determined Be In addition, the measurement of Blank was also performed for every measurement, and the molar concentration of other Reaction base was calculated | required from the known molar concentration of HCl and NaOH.
 4-2.結果
 結果を図9および表3に示す。図9は、含酸素官能基量の測定結果を示すグラフである。表3は、含酸素官能基量の数値データを示す。図9および表3は、サンプル重量あたりの含酸素官能基量を示す。
4-2. Results The results are shown in FIG. 9 and Table 3. FIG. 9 is a graph showing the measurement results of the amount of oxygen-containing functional groups. Table 3 shows numerical data of the amount of oxygen-containing functional groups. FIG. 9 and Table 3 show the amount of oxygen-containing functional groups per sample weight.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図9および表3に示すように、弱酸化炭、酸化炭、および強酸化炭の全てにおいて、気相酸化処理後に、含酸素官能基量が全体的に増加していた。特に、気相酸化処理の酸化度が高くなるにつれ(すなわち、弱酸化炭、酸化炭、強酸化炭の順に)、ラクトン型カルボキシル基(Group II)とフェノール性水酸基(Group III)の増加が顕著に認められた。また、カルボキシル基(Group I)ついては、気相酸化処理の酸化度が高くなっても、増加は認められなかった。このことは、炭素材料学会、改定炭素材料入門(1984)で報告されているとおり、カルボキシル基(Group I)は、気相酸化処理により生成しても脱離することに起因すると考えられる。 As shown in FIG. 9 and Table 3, in all of the weakly oxidized carbon, oxidized carbon and strongly oxidized carbon, the amount of oxygenated functional groups was overall increased after the gas phase oxidation treatment. In particular, as the degree of oxidation in the gas phase oxidation treatment increases (that is, in the order of weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon), the increase in lactone type carboxyl group (Group II) and phenolic hydroxyl group (Group III) becomes remarkable Was recognized. Further, with respect to the carboxyl group (Group I), no increase was observed even if the degree of oxidation in the gas phase oxidation treatment increased. This is considered to be attributable to the fact that the carboxyl group (Group I) is released even if it is generated by gas phase oxidation treatment, as reported in the Carbon Materials Association, Revised Carbon Materials Primer (1984).
 [実施例5]アンモニア吸着能の評価
 5-1.方法
 実施例1で調製した、現行炭、弱酸化炭、酸化炭、および強酸化炭について、アンモニアの吸着量を測定し、塩基性成分の吸着能を評価した。
Example 5 Evaluation of Ammonia Adsorption Ability 5-1. Method The adsorption amount of ammonia was measured for the existing carbon, weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon prepared in Example 1, and the adsorption capacity of the basic component was evaluated.
 吸着平衡装置Autosorb-1-c(Quantachrome社製)を用いて、ガス圧2~800mHgの範囲内において25℃で吸着平衡を測定した。具体的には、サンプルの前処理として、300℃で3時間、10-1Pa以下で真空脱気を行った。その後、25℃でアンモニアの吸着量を測定した。ここで測定される吸着量は、物理吸着量および化学吸着量の合計である。 The adsorption equilibrium was measured at 25 ° C. in a gas pressure range of 2 to 800 mHg using an adsorption equilibrium device Autosorb-1-c (manufactured by Quantachrome). Specifically, as a pretreatment of the sample, 3 hours at 300 ° C., was subjected to vacuum degassing at 10 -1 Pa or less. Thereafter, the amount of adsorption of ammonia was measured at 25 ° C. The adsorption amount measured here is the sum of the physical adsorption amount and the chemical adsorption amount.
 その後、25℃で、ターボ分子ポンプにより、圧力が一定となるまで(2~3時間かけて)真空脱気を行い、再びアンモニアの吸着量を測定した。ここで測定される吸着量は、物理吸着量である。1回目の測定で測定された吸着量と2回目の測定で測定された吸着量との差分が化学吸着量である。 Thereafter, vacuum degassing was performed at 25 ° C. with a turbo molecular pump until the pressure became constant (over 2 to 3 hours), and the adsorption amount of ammonia was measured again. The adsorption amount measured here is a physical adsorption amount. The difference between the adsorption amount measured in the first measurement and the adsorption amount measured in the second measurement is the chemical adsorption amount.
 5-2.結果
 結果を図10乃至図12に示す。図10はアンモニア吸着量(すなわち、物理吸着量および化学吸着量の合計)を示すグラフである。図11は、アンモニアの物理吸着量およびアンモニアの化学吸着量を示すグラフである。図10および図11の吸着等温線において、横軸は相対圧(P/P)を示し、縦軸は平衡吸着量(q)を示す。図12は、図11の吸着等温線をDAプロット(Dubinin-Astakhov plot)で示したグラフである。
5-2. Results The results are shown in FIGS. 10-12. FIG. 10 is a graph showing the ammonia adsorption amount (ie, the sum of the physical adsorption amount and the chemical adsorption amount). FIG. 11 is a graph showing the physical adsorption amount of ammonia and the chemical adsorption amount of ammonia. In the adsorption isotherm of FIG. 10 and FIG. 11, the horizontal axis shows relative pressure (P / P 0 ), and the vertical axis shows equilibrium adsorption amount (q). FIG. 12 is a graph showing the adsorption isotherm of FIG. 11 as a DA plot (Dubinin-Astakhov plot).
 図10に示すように、弱酸化炭は、現行炭と同程度のアンモニア吸着能を示し、酸化炭および強酸化炭は、現行炭と比べて、高いアンモニア吸着能を示した。なお、図10において、現行炭は、吸着性能に特に優れた活性炭の例として示す。また、図11に示すように、弱酸化炭、酸化炭および強酸化炭は、主に物理吸着によりアンモニアを吸着しているが、図12に示すように、アンモニアの低濃度領域では、化学吸着によるアンモニアの吸着が確認された。 As shown in FIG. 10, the weakly oxidized carbon showed an ammonia adsorption ability comparable to that of the present charcoal, and the oxidized carbon and the strongly oxidized coal showed a high ammonia adsorption ability as compared with the present charcoal. In addition, in FIG. 10, the present charcoal is shown as an example of the activated carbon especially excellent in adsorption performance. In addition, as shown in FIG. 11, weakly oxidized carbon, oxidized carbon and strongly oxidized carbon mainly adsorb ammonia by physical adsorption, but as shown in FIG. The adsorption of ammonia by was confirmed.
 実施例4および実施例5の結果から、弱酸化炭、酸化炭、および強酸化炭では、含酸素官能基が、アンモニア等の塩基性成分を化学的に吸着するために機能していることが示された。化学的な吸着は、特異的な吸着につながるため、弱酸化炭、酸化炭、および強酸化炭は、アンモニア等の塩基性成分を特異的に除去することが可能である。 From the results of Example 4 and Example 5, in the weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon, the oxygen-containing functional group functions to chemically adsorb basic components such as ammonia. Indicated. Since chemical adsorption leads to specific adsorption, weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon can specifically remove basic components such as ammonia.
 [実施例6]たばこ煙成分の除去率の評価
 6-1.燃焼型喫煙物品の作製
 本実施例では、実施例1で調製した、現行炭、弱酸化炭、酸化炭、および強酸化炭をサンプルとして使用した。サンプルを、図1に示すとおり、2つのフィルタプラグの間のスペース(フィルタキャビティー部)に組み込むことにより燃焼型喫煙物品を作製し、たばこ煙成分の除去率を評価した。
[Example 6] Evaluation of removal rate of tobacco smoke component 6-1. Preparation of combustion type smoking article In this example, current charcoal, weakly oxidized carbon, oxidized carbon and strongly oxidized carbon prepared in Example 1 were used as samples. A combustion type smoking article was produced by incorporating a sample in the space (filter cavity portion) between two filter plugs as shown in FIG. 1, and the removal rate of the tobacco smoke component was evaluated.
 具体的には、紙管(外径7.7mm)に、5mmのアセテートフィルタプラグ(5.5Y31000、可塑剤6%)を挿入した後、サンプル30mgを加え、さらに同様のアセテートフィルタプラグを挿入することでフィルタを作製した。コントロールシガレット用として、紙管(外径7.7mm)に、5mmのアセテートフィルタプラグ(5.5Y31000、可塑剤6%)2個を充填したフィルタを作製した。得られたフィルタと市場品のシガレット(セブンスター:タール14mg、ニコチン1.2mg)のたばこロッドとを接合し、燃焼型喫煙物品を作製した。 Specifically, insert a 5 mm acetate filter plug (5.5Y31000, 6% plasticizer) into a paper tube (outside diameter 7.7 mm), add 30 mg of sample, and insert a similar acetate filter plug. To make a filter. As a control cigarette, a filter was prepared in which two 5 mm acetate filter plugs (5.5Y31000, 6% plasticizer) were filled in a paper tube (outside diameter: 7.7 mm). The obtained filter and a cigarette rod (seven star: 14 mg of tar, 1.2 mg of nicotine) of a marketed product were joined to prepare a burning type smoking article.
 6-2.方法
 (1)喫煙試験
 自動喫煙器(CERULEAN、CERULEANSM450RH)を用いて、3本の同じ燃焼型喫煙物品を吸煙容量17.5ml/秒、吸煙時間2秒/パフ、吸煙頻度1パフ/分、燃焼長49mmの条件で自動喫煙し、たばこ煙中粒状物質をケンブリッジフィルター(Borgwaldt KC Inc.製、CM-133)で捕集し、またケンブリッジフィルターを通過した煙を、ドライアイス‐イソプロパノールからなる冷媒で-70℃に冷却したメタノール(和光純薬工業株式会社製、試薬特級)10mLに捕集した。
6-2. Method (1) Smoking test Three same burning type smoking articles with 1 automatic smoking device (CERULEAN, CERULEAN SM 450 RH) smoking capacity 17.5ml / sec, smoking time 2 seconds / puff, smoking frequency 1 puff / min, burning The smoke was smoked under conditions of 49 mm in length, and the particulate matter in the tobacco smoke was collected by a Cambridge filter (Borgwaldt KC Inc., CM-133), and the smoke passing through the Cambridge filter was a refrigerant consisting of dry ice-isopropanol. It was collected in 10 mL of methanol (Wako Pure Chemical Industries, Ltd., reagent special grade) cooled to −70 ° C.
 喫煙試験後のケンブリッジフィルターを、ケンブリッジフィルターを通過した煙成分の捕集に利用したメタノール中で振盪して分析試料を得た。得られた分析試料1μLをマイクロシリンジに採取し、ガスクロマトグラフ質量分析(Agilent製GC-MSD、粒子相および蒸気相の分析に用いた型番はそれぞれ、GC:7890A、MS:5975CとGC:6890A、MS:5973)にて分析した。実験は3回繰り返した。 After the smoking test, the Cambridge filter was shaken in methanol used for collection of smoke components passed through the Cambridge filter to obtain an analytical sample. Collect 1 μL of the obtained analysis sample into a microsyringe and perform gas chromatography-mass spectrometry (GC-MSD manufactured by Agilent, model numbers used for analysis of particle phase and vapor phase: GC: 7890A, MS: 5975C and GC: 6890A, respectively) MS: 5973) was analyzed. The experiment was repeated three times.
 アンモニアの分析は、CORESTA Recommended Method、No. 83、DETERMINATION OF AMMONIA IN MAINSTREAM CIGARETTE SMOKE BY ION CHROMATOGRAPHY May 2017に記載されるとおり行った。実験では、燃焼型喫煙物品を吸煙容量27.5ml/秒、吸煙時間2秒/パフ、吸煙頻度1パフ/30秒、燃焼長49mmの条件で自動喫煙し、2本のインピンジャーで0.1N硫酸に捕集し、イオンクロマトグラフで分析した。 The analysis of ammonia was performed as described in CORESTA Recommended Method, No. 83, DETERMINATION OF AMMONIA IN MAINSTREAM CIGARETTE SMOKE BY ION CHROMATOGRAPHY May 2017. In the experiment, a smoking type smoking article was smoked under the conditions of a smoke absorbing capacity of 27.5 ml / sec, a smoke absorbing time of 2 sec / puff, a smoke smoking frequency of 1 puff / 30 sec, a burning length of 49 mm, and two impingers of 0.1 N It was collected in sulfuric acid and analyzed by ion chromatograph.
 (2)除去率の算出
 各燃焼型喫煙物品のコントロールシガレットに対する煙中成分除去率を、以下の式から算出した。
(I)A’control =Acontrol /S、A’sample =Asample/S
(II)T =1 - A’sample /A’control
(2) Calculation of Removal Rate The removal rate of the component in the smoke with respect to the control cigarette of each combustion type smoking article was calculated from the following equation.
(I) A ' control = A control / S, A' sample = A sample / S
(II) T = 1-A ' sample / A' control
 ここで、Asampleは、各活性炭を入れた燃焼型喫煙物品から得られた煙中成分の定量値を表し、Acontrol は、比較対象として準備したコントロールシガレットから得られた煙中成分の定量値を表す。 
 Sは、異なる日程で喫煙試験を行った場合の作業による誤差を校正する為に用いる、標準シガレットの煙中成分の定量値を表す。標準シガレットについては、喫煙試験毎に煙中成分の定量を実施した。
Here, A sample represents the quantitative value of the component in the smoke obtained from the combustion type smoking article containing each activated carbon, and A control represents the quantitative value of the component in the smoke obtained from the control cigarette prepared as a comparison target Represents
S represents the quantitative value of the smoke component of the standard cigarette, which is used to calibrate the error due to the work when the smoking test is performed on different dates. For standard cigarettes, quantification of the constituents in the smoke was carried out for each smoking test.
 6-3.結果
 結果を図13および図14に示す。図13は、たばこ主流煙中のアンモニアの低減率を示すグラフである。図14は、たばこ主流煙中の蒸気成分の低減率を示すグラフである。
6-3. Results The results are shown in FIG. 13 and FIG. FIG. 13 is a graph showing the reduction rate of ammonia in mainstream cigarette smoke. FIG. 14 is a graph showing the reduction rate of the vapor component in mainstream cigarette smoke.
 図13に示すように、酸化炭および強酸化炭を使用した場合、たばこ主流煙中のアンモニアの除去が検出された。強酸化炭のアンモニアの低減率は、酸化炭より高く、これは、強酸化炭が、酸化炭と比べて含酸素官能基の量が多いためであると考えられる。また、ラクトン型カルボキシル基(およびラクトン基)(Group II)、フェノール性水酸基(Group III)はアンモニアの吸着に寄与しており、アンモニアの特異的な吸着を有するために、カルボキシル基(Group I)は必ずしも必要ない。 As shown in FIG. 13, when oxidized carbon and strongly oxidized carbon were used, removal of ammonia in mainstream cigarette smoke was detected. The reduction rate of ammonia in strongly oxidized carbon is higher than that of oxidized carbon, which is considered to be due to the fact that strongly oxidized carbon has a larger amount of oxygenated functional groups than oxidized carbon. In addition, lactone type carboxyl group (and lactone group) (Group II) and phenolic hydroxyl group (Group III) contribute to the adsorption of ammonia, and since they have specific adsorption of ammonia, the carboxyl group (Group I) Is not necessary.
 なお、弱酸化炭を使用した場合、たばこ主流煙中のアンモニアの除去が検出されなかった。この結果は、実施例5において、弱酸化炭が、物理吸着および化学吸着の両方によりアンモニアを吸着することが実証されているため、実施例6の検出方法の検出精度によるものであると考えられる。 In addition, when weakly oxidized carbon was used, removal of ammonia in mainstream cigarette smoke was not detected. This result is considered to be due to the detection accuracy of the detection method of Example 6, since it is demonstrated in Example 5 that weakly oxidized carbon adsorbs ammonia by both physical adsorption and chemical adsorption. .
 また、図14に示すように、弱酸化炭、酸化炭、および強酸化炭を使用した場合、たばこ主流煙中の蒸気成分を十分に除去することができた。図14には、現行炭のデータも示すが、現行炭は、吸着性能に特に優れた活性炭である。このため、図14において、弱酸化炭、酸化炭、および強酸化炭が、現行炭より多少低い除去率を示したとしても、十分な除去率を示していると考察することができる。さらに、酸化炭および強酸化炭では、ピリジン類やピラジン類などの塩基性成分の吸着率は現行炭よりも高く、特異的に除去できることが示された。このことは、これらの酸化炭が、現行炭とマイクロ孔容積がほぼ同じであるため、現行炭の吸着量を維持しながら、導入した表面含酸素官能基との相互作用により、目的とする塩基性成分の吸着量を増大することを示している。 In addition, as shown in FIG. 14, when weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon were used, it was possible to sufficiently remove the vapor component in the mainstream cigarette smoke. Although FIG. 14 also shows data of current charcoal, current charcoal is an activated carbon which is particularly excellent in adsorption performance. For this reason, it can be considered in FIG. 14 that even if weakly oxidized carbon, oxidized carbon and strongly oxidized carbon show a somewhat lower removal rate than current charcoal, they show sufficient removal rates. Furthermore, in the case of oxidized carbon and strongly oxidized carbon, it was shown that the adsorption rate of basic components such as pyridines and pyrazines is higher than that of existing carbons and can be specifically removed. This means that since these oxidized carbons have almost the same micropore volume as existing carbons, the target base can be obtained by the interaction with the introduced surface oxygen-containing functional group while maintaining the adsorption amount of the existing coals. It is shown to increase the amount of adsorption of the sex component.
 図13および図14の結果から、弱酸化炭、酸化炭、および強酸化炭の何れかを含む燃焼型喫煙物品は、たばこ主流煙中の蒸気成分を十分に吸着除去することができるとともに、アンモニア等の塩基性成分を特異的に吸着除去することができることが示された。 From the results of FIG. 13 and FIG. 14, the combustion type smoking article containing any of weakly oxidized carbon, oxidized carbon, and strongly oxidized carbon can sufficiently adsorb and remove the vapor component in the mainstream cigarette smoke and ammonia It has been shown that basic components such as can be specifically adsorbed and removed.

Claims (10)

  1.  BET比表面積が1050m/g以上であり、かつラマンスペクトルにおけるDバンドのピーク強度に対するGバンドのピーク強度の比が0.85以上である活性炭を含む香味吸引物品。 A flavor suction article comprising activated carbon having a BET specific surface area of 1050 m 2 / g or more and a ratio of peak intensity of G band to peak intensity of D band in Raman spectrum of 0.85 or more.
  2.  前記活性炭は、Boehm法により測定される、カルボキシル基、ラクトン型カルボキシル基、フェノール性水酸基およびカルボニル基からなる含酸素官能基の量が0.6mmol/g以上である請求項1に記載の香味吸引物品。 The flavor and suction system according to claim 1, wherein the activated carbon has an amount of an oxygen-containing functional group consisting of a carboxyl group, a lactone type carboxyl group, a phenolic hydroxyl group and a carbonyl group as measured by the Boehm method is 0.6 mmol / g or more. Goods.
  3.  前記活性炭は、0.5cm/g以上の細孔容積を有する請求項1または2に記載の香味吸引物品。 The flavor suction article according to claim 1, wherein the activated carbon has a pore volume of 0.5 cm 3 / g or more.
  4.  前記活性炭は、Boehm法により測定される、ラクトン型カルボキシル基およびフェノール性水酸基の合計量が0.3mmol/g以上である請求項1~3の何れか1項に記載の香味吸引物品。 The flavor suction article according to any one of claims 1 to 3, wherein the activated carbon has a total amount of a lactone type carboxyl group and a phenolic hydroxyl group of 0.3 mmol / g or more as measured by the Boehm method.
  5.  前記活性炭は、Boehm法により測定されるカルボキシル基の量が0.12mmol/g以下である請求項1~4の何れか1項に記載の香味吸引物品。 The flavor suction article according to any one of claims 1 to 4, wherein the amount of the carboxyl group measured by the Boehm method is 0.12 mmol / g or less in the activated carbon.
  6.  前記活性炭は、前記BET比表面積が1050~1600m/gである請求項1~5の何れか1項に記載の香味吸引物品。 The flavor suction article according to any one of claims 1 to 5, wherein the activated carbon has a BET specific surface area of 1050 to 1600 m 2 / g.
  7.  前記活性炭は、植物性材料に由来する植物系活性炭である請求項1~6の何れか1項に記載の香味吸引物品。 The flavor suction article according to any one of claims 1 to 6, wherein the activated carbon is a plant-based activated carbon derived from a plant material.
  8.  前記活性炭は、ヤシ殻に由来するヤシ殻系活性炭である請求項1~7の何れか1項に記載の香味吸引物品。 The flavor suction article according to any one of claims 1 to 7, wherein the activated carbon is a coconut shell-based activated carbon derived from coconut shell.
  9.  前記活性炭は、
     有機材料を炭化および賦活化して、原料活性炭を得ることと、
     前記原料活性炭を気相酸化法により酸化することと
    を含む方法により製造される請求項1~8の何れか1項に記載の香味吸引物品。
    The activated carbon is
    Carbonizing and activating an organic material to obtain a raw material activated carbon;
    The flavor suction article according to any one of claims 1 to 8, which is manufactured by a method comprising oxidizing the raw material activated carbon by a gas phase oxidation method.
  10.  前記香味吸引物品はフィルタを含み、前記活性炭は前記フィルタに含まれる請求項1~9の何れか1項に記載の香味吸引物品。 The flavor suction article according to any one of claims 1 to 9, wherein the flavor suction article comprises a filter, and the activated carbon is contained in the filter.
PCT/JP2017/043131 2017-11-30 2017-11-30 Flavor inhalation article WO2019106798A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/043131 WO2019106798A1 (en) 2017-11-30 2017-11-30 Flavor inhalation article
JP2019556489A JP6874152B2 (en) 2017-11-30 2017-11-30 Flavor suction goods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/043131 WO2019106798A1 (en) 2017-11-30 2017-11-30 Flavor inhalation article

Publications (1)

Publication Number Publication Date
WO2019106798A1 true WO2019106798A1 (en) 2019-06-06

Family

ID=66664837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043131 WO2019106798A1 (en) 2017-11-30 2017-11-30 Flavor inhalation article

Country Status (2)

Country Link
JP (1) JP6874152B2 (en)
WO (1) WO2019106798A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138008A1 (en) * 2020-12-24 2022-06-30 日本たばこ産業株式会社 Non-combustion heated tobacco and electrically-heated tobacco product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273169A (en) * 1989-04-14 1990-11-07 Mitsui Petrochem Ind Ltd Filter material for tobacco
WO2012132251A1 (en) * 2011-03-31 2012-10-04 ソニー株式会社 Porous carbon material, adsorbent, orally administrable adsorbent, adsorbent for medical use, filler for blood purification column, adsorbent for water purification, cleansing agent, carrier, agent for extended release of drugs, cell culture scaffold material, mask, carbon/polymer composite, adsorptive sheet, and functional food
JP2017510266A (en) * 2014-03-31 2017-04-13 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Activated carbon for smoking articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273169A (en) * 1989-04-14 1990-11-07 Mitsui Petrochem Ind Ltd Filter material for tobacco
WO2012132251A1 (en) * 2011-03-31 2012-10-04 ソニー株式会社 Porous carbon material, adsorbent, orally administrable adsorbent, adsorbent for medical use, filler for blood purification column, adsorbent for water purification, cleansing agent, carrier, agent for extended release of drugs, cell culture scaffold material, mask, carbon/polymer composite, adsorptive sheet, and functional food
JP2017510266A (en) * 2014-03-31 2017-04-13 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Activated carbon for smoking articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138008A1 (en) * 2020-12-24 2022-06-30 日本たばこ産業株式会社 Non-combustion heated tobacco and electrically-heated tobacco product

Also Published As

Publication number Publication date
JPWO2019106798A1 (en) 2020-09-03
JP6874152B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
RU2407409C2 (en) Porous carbon materials, smoking devices and filters thereof containing such materials
RU2642388C2 (en) Smoking product
RU2572168C2 (en) Smoking product filter
RU2549064C2 (en) Smoke filtration
WO2013001288A1 (en) Preparing porous carbon
WO2019106798A1 (en) Flavor inhalation article
CN108135257B (en) Activated carbon beads for smoking articles
RU2678898C2 (en) Activated carbon for smoking articles
WO2017130045A1 (en) Activated carbon spheroids for smoking articles
TWI732974B (en) Fragrance inhaling article
JP6673564B2 (en) Composition
JP2016502847A (en) Aluminosilicate SAB-15 as an additive to reduce toxic and carcinogenic compounds present in cigarette smoke
WO2023163112A1 (en) Sheet for flavor inhalation article
EP2979552A1 (en) Nanoporous activated carbons as additives in tobacco for reducing the emission of toxic products
CN113647675A (en) Composite filter tip for adsorbing 2-butanone in cigarette smoke and cigarette
CN113558294A (en) Composite filter tip for adsorbing formaldehyde in cigarette smoke and cigarette
CN113598411A (en) Composite filter tip for adsorbing crotonaldehyde in cigarette smoke and cigarette
CN113598412A (en) Composite filter tip for adsorbing 2-acetylpyridine in cigarette smoke and cigarette
JPS596637B2 (en) tobacco filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933425

Country of ref document: EP

Kind code of ref document: A1